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Abstract.

In this thesis, we find the optimized method of r@piens of the RRAM with sweep and
pulse operations. We measured the RTN amplitudeutative density function (CDF) in
different current orders and compared the influenegh different HfOx thickness on the
cumulative density functions.

There are two electrical ways to switch the reastaof RRAM: sweep & pulse. We
applied these two ways to the forming & Set/Regmdrations of RRAM, and we find the
sweep forming & pulse Set/Reset operation methadtha best characteristics of memory
window and endurance. We measured the RTN ampli@e in different current orders in
both 60A and 30A devices, and the CDF follow a ewial distribution in each current

order. The CDF of high resistance states (HRS) hawedistribution trends. In both 60A and



30A devices, the main distributions follow an exeotial trend and the average of RTN
amplitude increase with the resistance, but theusmtof change is less sensitive to the

resistance in 30A devices.
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Chapter |

Introduction

For downscaling flash non-volatile memory, thehtemogy node is approaching the
physical and electrical scaling limitatigh.1][1.2][1.3]. In the last few years, the resistance
switching random access memory (RRAM) has beemrpiaterest due to their potential for
high density, low voltage operation, scalabilityddow fabrication cost with CMOS process
compatibility [1.4]. The RRAM cell is built by a MIM or MIS capacitdike structure. The
materials of the insulating oxide layer and the ®ilectron conductors play important role in
the phenomenon of resistance switching (Fig[1.%). An electrical forming operation which
is usually required to activate the resistancectwig property is distinctive to other kinds of
non-volatile memories. For HfOx-based RRAM, thaxiorg process constructs a path usually
called conducting filament (CF) which is formed rajothe grain boundary by the oxygen
vacancies[1.6]. The set/reset resistance switching mechanismbleas attributed to the
formation/rupture of the CF with oxygen vacandies], and this fluctuation of the CF can be
connected to the variance of the energy band diadFag.1.2)[1.5]. For bipolar operating
principle in HfOx-based RRAM ( the HfOx-based RRAdsIN be operated in unipolar method
[1.8]), the oxygen ions ©can be pulled out from the lattice and accumulatetthe electrode
according to the polarity of applied voltage durithg forming/set process, and the oxygen
vacancies Vo would be generated to be defectseimligdectric layer. When the concentration
of the Vo is sufficiently high, the transition agsistance from high resistance state (HRS) to
low resistance state (LRS) means the success dbtheng/set process. For the process of
reset, by applying a voltage with opposite polatitythe forming/set, the resistance state will

be changed from LRS to HRS when th& B attracted by the electric field and move from



the electrode to the dielectric layer and recombingh the Vo (Fig.1.3)1.9].

The operation for resistance switching of RRAM d¢anclassified in two electrical
methods, sweep and pulse. In chapter 2, a compabstween the sweep and pulse in
processes of forming and set/reset is accomplistittbut the issue of current overshoot,
which may induce the result that reset currentargdr than the forming/set compliance

current[1.10].

The conducting mechanism in HfOx-based RRAM ip-asisted-tunneling..11] by
the oxygen vacancies Vo in the conducting filamenlsvertheless, the generated Vo may
occupy the lattice points which are not in the aariohg filaments and play the role of traps
for random telegraph noise (RTN) through the blogkinechanism or trap-assisted-tunneling
(TAT) mechanisnjl1.12]. In chapter 3, base on the best method of operatioch is found in
chapter 2, the distributions of cumulative densitgiction (CDF) for amplitude of random
telegraph noise are measured in different thickrméddfOx layers. The RTN distributions
demonstrate the blocking mechanism and the TAT amsm. The dependence of RTN
distributions on resistance states and oxide tleis&ns determined in chapter 3. Finally, the

conclusion is accomplished in chapter 4.
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Fig. 1.1 Classification of the resistive switchingeffects which are considered for

non-volatile memory applications[1.5].
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Fig. 1.3 lllustration of the behavior of @ and Vo during set/reset procesgL.9].



Chapter 2
Method of Operation and Characteristics of RRAM

2.1 Introduction

The HfOx-based RRAM can exhibit the non-polar shiitig behaviorf2.1], namely,
the polarity of the applied voltage can be eitheolar or unipolar mode. In this chapter, the
sweep and pulse operation methods are appliedetpribcess of forming and set/reset with
bipolar mode respectively. The differences betwdensweep and pulse operation are the
process time and the process voltage. Before #ig té operation methods, the  effects of
the compliance current for sweep forming are deinatesl. According to the result of
experiments, the compliance current for successiidep forming process has to be bigger
than the threshold compliance current which is &®&QuA. To identify the influence of
current overshoot, the devices are operated ireréifit compliance current to observe the

maximum reset current.

2.2 Device Details and Measurement setup

The structure of device we used in this chaptelfustrated in Fig. 2.1. The devices
are HfOx-based RRAM with the TiN top electrode ahe " poly Si bottom electrode, the
thickness of the HfOx layer is 60A, the width i§@n and the length is 0.6um. The devices
are manufactured by the Nano Device Laboratory (NOlhe HfOx layer is deposited by

MOCVD.

The measurement setup is shown in Fig. 2.2. Theepuave is provided by Agilent



81110A, and the sweep and read measurement armplisioed by the Agilent 4155C. The

pristine RRAM device exhibits a resistance £ X0,namely, the read current of the pristine

RRAM is beyond the limitation of the instrument. elpristine devices are subjected to a
forming operation and then to the set/reset cyBlgositive voltage is applied to the top
electrode of the device for forming/set operatiod a negative voltage is applied to the top
electrode during the reset operation. The bottosttelde is always grounded in each
operation. The read voltage is -0.1V and the réa@ is 1sec in order to avoid the read
disturbancg2.2]. The read operation will be applied to the topcetale of the device after

the operation of forming/set/reset to confirm tbsistance state of the RRAM device.

2.3 Current Compliance for Sweep Forming and Currem

Overshoot

The result of the influence of current compliancesweep forming is shown in Fig.
2.3. As shown in Fig. 2.3, the influence of the piiance current.lon sweep forming is not
obvious when the. lis larger than 80uA, that is, the current commleap has no effect on the
resistance state after the forming process if ¢l larger than 80uA. The forming would not
success if the compliance current is smaller thamA8 the resistance state would be high
because of the incomplete conducting filament. Tégistance states are close after a

successful forming, about 10k according to the ohmic conduction behaviorxW) in a

low-voltage regimé2.2].

The current overshoot refers to the origin of tbsult that reset current is larger than
the forming/set compliance current; thgel = I. when the current overshoot is negligible

as shown in Fig. 2.4(a2.3]. The relation between the reset current and camgéd current is

7



shown in Fig. 2.5, theeket = IcWhen the compliance current is larger than 80ule $aoft
breakdown during the forming/set operation withkie@urrent may reduce the effect of

current overshod®.4], and the law of{dset = Iccan extend down as shown in Fig. 2.4(b).

2.4 Sweep and Pulse Operation for Forming/Set/Reset

2.4.1 Sweep Forming & Sweep Set/Reset

The result of sweep forming & sweep set/resethmvd in Fig. 2.6. The hysteresis
phenomenon is obvious but the memory window isavari~or forming process, the voltage

iIs swept from OV— 5V — 0QV; for set process the voltage is swept from 6V 1.5V —
0V; for reset process the voltage is swept from-8V-1.5V — 0V. The sweep operation is

a slow process, the time of process is much lotiger that in pulse operation, but the applied
voltage is much smaller than that in pulse opematibis is the voltage-time dilemma of

RRAM [2.5].

2.4.2 Pulse Forming & Pulse Set/Reset

The pulse forming and pulse set/reset operation caase several complex results, as
shown in Fig. 2.7. The complex results of operatinay come from the pulse forming
operation. The locations of oxygen vacancies otth@lucting filaments are mostly generated
at the weak points along the grain boundarg]. For the sweep forming, the long process
time and the moderate increase of voltage makexijgen vacancies Vo be generated step by
step along the grain boundary and form a completelucting filament finally; For the pulse
forming, a sharp pulse wave is applied to the ipestievice with high energy, this may cause
the result of widespread Vo in the HfOx layer. Tiheomplete conducting filaments may

cause a complex result of set/reset operation.

8



2.4.3 Sweep Forming & Pulse Set/Reset

The combination of sweep forming and pulse sedfrbas excellent performance as
shown in Fig. 2.8. Under this method of operatite, memory window can extend from one
order to four orders. The LRS for pulse are closeesthe LRS current is decided by the size
of conducting filament; The HRS are scattered siemeh reset operation would recombine

the oxygen vacancies Vo randomly.

For sweep forming and pulse set/reset operati@nsiveep forming process provide a
complete conducting filament and let the pulseressét operation drive the oxygen ions
through the CF properly. Finally, the sweep formamgl pulse set/reset operation is chosen to

measured the RTN amplitude in chapter 3.
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Chapter 3
RTN Main Distribution in HfOx-based RRAM

3.1 Introduction

The oxygen vacancies Vo may occupy the entire cliételayer, most of the vacancies
stay closed along the grain boundary to form thedooting filamentg3.1], some of the
vacancies may appear near the conducting filameshthe random telegraph noise traps as

shown in Fig. 3.1. The fluctuation of the read entrdue to the random telegraph noise may
induce the read failure in the memory applicatioitse amplitude of RTN is defined a%ll—

where the Al is the difference between thgd and |ow, and the | at the denominator is the
Inigh- As shown in Fig. 3.2, multi-level RTN phenomenereasy to observe in the RRAM

devices, the amplitude of the RTN is related to résstance states of the RRAM devices.
The distributions of RTN amplitude have been aredym different resistance states with

Weibull plot in 30A and 60A HfOx RRAM devices.

3.2 RTN Distributions in RRAM

The RTN distributions in each current level areveon Fig. 3.3, the distributions
split at the region of small amplitude. For thetmisitions in HRS, the distribution follows a
straight line as exponential when the amplitudemsller than a specific value and remains a
tail in high amplitude region. To eliminate theesffs of the tails on the main distributions, the
tails are removed. There is no effect on the slapie main distributions when the tails are

removed in different amplitude as shown in Fig. 3.4

18



The RTN distributions in different current levets 60A RRAM devices with tail
removed are shown in Fig. 3.5(a), we remove theptesrof RTN amplitude which are larger
than 40% in current order E-8 and 20% in curredeniE-7 and 10% in current order E-6.
The distributions split and follow straight lines @ach current order and the average of the
RTN amplitude increase with the resistance staseshawn in Fig. 3.5(b). For 30A RRAM
devices, the RTN main distributions with tail reredvare shown in Fig. 3.6(a), we remove
the samples of RTN amplitude which are larger th@% in each current level. The increase
of the average with the resistance states is muetiler than that in 60A devices as shown in

Fig. 3.6(b).

3.3 RTN Main Distributions with Weibull Analysis in 60A and

30A RRAM

The RTN main distributions follow straight linedasplit in each current level, so we

assume the function form of the cumulative derfsitction as below

1-CDF (x) = ®"' Eq. (3.1)

And we transfer the eq.(3.1) as

—In(1-CDF (X)) = (X/A)" Eq. (3.2)

To identify the value of shape parameter k aradlesparameterA in the equation, we

transfer the eq. (3.2) as

19



In(—In(1-CDF (x))) =kInx-kInA Eq. (3.3)

The Weibull plot of the 60A HfOx RRAM device s&own in Fig. 3.7 and the Weibull
plot of the 30A HfOx RRAM device is shown in Fig.83 The bending part of the Weibull
plots in 60A and 30A RRAM come from the limitatiof the resolution of instruments and
the RTN amplitude that we can not recognize. TiB&idutions for 60A RRAM in Weibull
plot seem to be parallel and equidistant betweeh earrent level, but the distributions for
30A RRAM in Weibull plot seem to be less correlatlvetween each current level. According

to eg. (3.3), we can find out the shape paramegerckthe scale parameter in each current

level, and the result of 60A RRAM is in Table lethesult of 30A RRAM is in Table Il. The
rebuild distributions according to the parameteesshown in Fig. 3.9, the distributions are

fitting well in both 60A and 30A RRAM.

For 60A RRAM, the shape parameter k equals ito dach current level as shown in
Table I, which means the main distributions follawirend of exponent for every resistance

states. Because the main distributions are expiahetite scale parametgr is equals to the

average of the distribution, and the average ofRA& amplitude increase about 2 times

when the resistance state increase one order.

For 30A RRAM, the shape parameter k is closk itoeach current order but the value

of scale parametér(average)are not similar to those in 60A RRAM. The increaehe
average with the resistance is much smaller thasetin 60A RRAM. To identify the

difference, we compare the RTN amplitué?é to the Al and find that the values oAl in

20



60A and 30A RRAM devices are closed in each curlerdl, but the increase o$ with

resistance are much bigger in 60A RRAM than thaBOA as shown in Fig. 3.10. The

component of current in 30A RRAM may be differemthte current in 60A RRAM.

The comparisons between the 60A RRAM and 30A RIR¥#e shown in Fig.3.11 and
Table Ill. The trend of the distributions is expatial in each resistance states in both 30A
and 60A devices, but the distributions are moresitiga to the resistance of the RRAM in
60A RRAM devices. The average of RTN amplitude éase rapidly with the resistance in a
thick HfOx layer device, which means the RTN indiicead failure is more serious in thick

HfOx layer device as shown in Fig. 3.12.
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Fig. 3.3 The RTN distributions in different current levels. The distributions

split at the region of small amplitude.
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Fig. 3.7 The distributions of RTN amplitude in 60ARRAM follow straight line

with slope equals to one in each current level in Aibull plot.
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Fig. 3.11 (a) For current order E-6>the RTN amplitude distribution with tail

(b)(c)

removing seems to be very similar to each other foBOA and 60A

devices.

The RTN amplitude distributions in 60Adevices are more larger than

the RTN amplitude distributions in 30A devices forthe current order

of E-7 and E-8.
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Read failure is much serious in thick Hf® devices.
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Current Order

Shape parameter k

Scale parametern

E=5

E-6

E-7

Table |

1.02488

1.02488

1.02488

1.02488

0.013803

0.025665

0.051569

0.100974

Value of k and ) in 60A RRAM.
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Current Order Shape parameter k Scale parameteri

E-6 1.077466 0.026156
= 1.148097 0.032455
E-8 1.193457 0.050712

Table Il Value ofkand A in 30A RRAM.
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Current
Order

60A Average 30A Average

E-6 0.025665 0.026156
E-7 0.051569 0.032455
E-8 0.100974 0.050712

Table Il The comparison between 60A and 30A device
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Chapter 4

Conclusion

The current compliance has to be bigger than ashiotd current for successful
forming to ignore the issue of current oversho®tcomparison of operation method
between 1) sweep forming and sweep set/reset apdl2® forming and pulse set/reset
and 3) sweep forming and pulse set/reset is acésheal in chapter 1. The method of
sweep forming and sweep set/reset induces a namamory window but good
endurance; the method of pulse forming and pulsieeset make a complex result of
operations because of the unstable conducting éitemvhich is constructed by pulse
forming; the method of sweep forming and pulseres¢t can switch the resistance states
in a large range and has good endurance. We chibeseethod of sweep forming and

pulse set/reset to measure the RTN amplitude fardiit resistance states.

The RTN distributions have two distribution trendsigh resistance state in both
30A and 60A HfOx-based RRAM devices. In 60A HfOxsed RRAM, the RTN main
distributions of each current order follow an exgotmal trend in plot of cumulative
density function & amplitude. These distributioqitsapart between each current order,
and the average of the RTN amplitude increase abdumes when the resistance state
increase one order. In 30A HfOx-based RRAM, therithistions follow an exponential
trend, but the average increase lightly with therease of resistance. The RTN main
distributions become less sensitive to the resistatate when the thickness of RRAM is
scaling down. The memory state read failure caavmed by scaling the thickness of the

dielectric layer.
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