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摘   要 

 

本研究中我們發展一套自動化系統做為磁振造影與腦磁波圖對位。腦磁波圖

是一種非侵入式方法提供高時間解析度的腦神經活化訊號但卻缺乏解剖構造資

訊，而磁振造影可以提供卓越的空間解析度。因此整合磁振造影與腦磁波圖可以

得到兩者的資訊並且用在評估腦部活動源之研究。先前的對位方法需要額外的標

記點及易受到操作者因素影響等缺點，為解決這些問題我們使用 Kinect for 

Windows 作為介面，將磁振造影座標系統和數位筆(digitizer)座標系統對位在

一起。 

本研究方法主要分成兩個部分，第一部分為使用臉部資訊將 Kinect 與磁振

造影的座標系統對位在一起，第二部分為利用臉上事先貼好的標記點在 Kinect

座標系統和數位筆座標系統中的相對應座標找彼此的轉換關係。經由我們的對位

系統，數位筆所點的電極位置會和磁振造影在同一個座標系統。由於記錄電擊帽

上的電極位置並不是貼緊在頭皮上面，我們利用厚度補償來調整電極的位置。最

後使用三種評估方法來驗證對位的結果並比較先前所作的方法。 

本實驗中有十位受測者參與且每位做了兩次實驗。所使用的三種評估方法其

中平均感測器對位誤差為 1.67釐米且平均十字對位誤差為 1.83釐米。比較其他

論文的結果顯示我們的系統有足夠的準確性、重複使用性、快速等特性用於磁振

造影與腦磁波圖對位。 
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Abstract 

 

In this study, we developed an automatic system to co-register EEG and MRI 

data that used for the source estimation of electric brain activity. Integration of EEG 

and MRI brain data could obtain high temporal and spatial resolution that can localize 

sources of rapid changes of cortical activation. In the conventional method, there are 

still some drawbacks such as the need of additional markers and the manual error. 

Thus, by using Kinect for Windows which extracts color and depth information at the 

same time as interface, we aligned MRI coordinate system with digitizer coordinate 

system to resolve problems. 

In the proposed method, a complete EEG-MRI co-registration would be achieved 

in two steps: (i) Aligned Kinect coordinate system with MRI coordinate system using 

facial information. (ii) The transformation is based on matching of corresponding 

markers pasted on the face during acquisition of both in the Kinect and digitizer 

coordinate systems. By our system, the location of electrodes which were recorded by 

digitization device would be found in the same coordinate system. Due to the 

thickness of electrodes on the EEG cap, we adjusted them with thickness 

compensation. Finally, using three error estimations to evaluate the results of 

co-registration and compared with different methods made before. 

The experiment was performed with ten subjects, and each one done twice. The 

mean residual error of sensors was 1.67 mm, and the mean residual error of cross was 

1.83 mm. These results compared with other methods show that our system is 

sufficiently accurate, repeatable, efficient and labor-intensive to be used to assist 

neuroscience studies. 
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Chapter 1

Introduction



2 Introduction

1.1 Introduction

The goal of brain source images is to investigate the brain activity which can be esti-

mated by measuring electroencephalography (EEG) signals and solving inverse problem.

In which EEG provides excellent temporal resolution noninvasively but lacks for anatomi-

cal information. However, Magnetic Resonance Imaging (MRI) is also noninvasive method

but provides anatomical structure of brain. Therefore, co-registration of EEG and MRI data

that can combine the functional and structural information is profitable to localization and

observation of the brain activity over the subject’s cortex.

Generally, the co-registration of EEG and MRI data includes two steps. First, we can

know the positions of EEG sensors in the three-dimensional space by any digitization de-

vices. Second, by co-registration method that transforms the positions of sensors from

digitizer coordinate system to MRI coordinate system, we can localize the brain activity

in MRI coordinate system. Figure 1.1 illustrates the co-registration of EEG and MRI data.

Accurate anatomical localization of functional brain depends on the precise co-registration,

otherwise it will influence on next steps including forward modeling or inverse problem.

Figure 1.1: The co-registration of EEG and MRI data. By co-registration method that
transforms the positions of sensors from digitizer coordinate system to MRI coordinate
system.

In the conventional method, the co-registration method required to manually determine

at least three landmark positions on the head of subject, and which had to find the same

positions both in MRI and digitizer coordinate systems. [15] This method would produce
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differences from variable operators or times. Another method is using external fiducial

markers visible in MRI without the judgement of operators to find the same positions in

two different coordinate systems. [14] But this method was discomfort for participants

due to wearing fiduical markers. Besides, the relatively larger markers produce the larger

error from transformation. Therefore, some techniques were developed to improve these

drawbacks, such as using visible electrodes in MRI [10, 17] and distance-based method.

[9, 11, 12, 16] Using visible electrodes in MRI no need to the procedure of alignment, so

this method do not have error of transformation between two different coordinate systems.

However, due to having to a new MRI scanning every time when experimenting, using

MRI visible markers was lack of flexibility and economic benefits, and also not suitable

for retrospective studies. In addition, it remains to be proven whether it works with the

environment of MRI scans. There was another way that utilizes the digitization device to

record over five hundreds points on face and minimize the distance between those facial

points and the scalp of head from MR images to find the best transformation relation, yet

this cost too much time and labor on recording facial points and the degree of distribution

which would affect the final result. Moreover, the different operators also affect the result

of registration.

In order to tackle the problems mentioned above, our study used Kinect for windows

that could extract the depth and color information at the same time as interface to co-

register between MRI and digitizer coordinate systems. In this way, we could find these

points recorded by the digitization device precisely through coordinate transformation in

MR images. Our method did not need additional markers and more effort of operator,

and the result of alignment would not be affected by uneven distribution of these points.

Certainly, the time spent in recording the facial points was saved. Furthermore, medical

resources would be saved because every subject only had to accept MR scans once.
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1.2 Related work

For several years, there are many researches about co-registration of EEG and MRI

data. In this section, we would introduce these related works about distance-based method.

Estimation of the accuracy of a surface matching technique for registration of EEG

and MRI data

The system aligned head surface which recorded by 3D ultrasound localizing device

with segmentation of MRI data. By calculating the centroid of digitized head surface and

MRI-derived head surface matched together to give the good initial. The surface matching

technique aims to minimizing the cost function that converges to a minimum. And the cost

function can see equation 1.1. The accuracy was estimated by calculating the residual error

of the surface and intra-subject and inter-subject variability. Figure 1.2 shows the result of

registration of EEG and MRI data. [9]

1

n

n∑
i=1

d (T (Pi)) (1.1)

where d is the relative distance, Pi (i = 1,2,...,n) the 3D-scanned head-surface points, and T

the rigid transformation that maps the 3D-scanned head-surface points into the coordinate

system of the 3D image.

Automatic alignment of EEG/MEG and MRI data sets

This system uses distance-based alignment (See figure 1.3) that minimizes the Eu-

clidean distance transform, and using 3D geometrical moments for the initial alignment.

This system was tested on inhomogeneous digitized points.(See figure 1.4) And the results

showed the most uniform distribution of points have better results. The average distance

between points and the MRI head surface is calculated as error estimation. [12]
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Figure 1.2: The result of registration of EEG and MRI data. Digitised points of the head
surface superimposed on the points of MRI-derived head surface before (left) and after
(right) surface matching. (Figure source: [9])

Figure 1.3: The concept of distance-based alignment. (Figure source: [12])
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Figure 1.4: The inhomogeneous digitized points. Subject a: the most uniform distribution
of points. (Figure source: [12])

Validation of a method for coregistering scalp recording locations with 3D structural

MR images

The segmentation of MRI scalp points was chosen from the out to inside until the

threshold was reached and the user could adjust the threshold value to extract the MRI

scalp points. The sensor locations and facial points were obtained with a Polhemus. The

MR-derived points are registered to the digitized points recorded in the coordinate system.

And the algorithm uses a MarquardtLevenberg optimization routine that minimizes the

sum of squares of the distances between the two data sets. After alignment, this study

used two non-rigid procedures: (i) scaling that using independent linear scaling factors to

reduce registration errors and (ii) scalp forcing that replacing the digitized points with the

closest segmented MR scalp points. Figure 1.5 denotes the misalignment and the result of

co-registration. [16]

EEG-MRI Co-registration and sensor labeling using a 3D laser scanner

This system acquires the positions of EEG sensors and the facial points by using 3D

handheld laser scanner (see figure 1.6), and the scalp points was obtained from the MR

images. A pre-alignment was given by using three ducial landmarks for co-registration.

As to co-registration, this system used iterative closest point algorithm that minimize the

distance between the two sets of points. This study uses two error estimations which are



1.2 Related work 7

(a) (b)

Figure 1.5: The misalignment and the result of co-registration. (Figure source: [16])

residual error of the face and residual error of the sensor to evaluate the accuracy of co-

registration results. Figure 1.7 shows the result of EEG-MRI co-registration and sensor

labeling. [11]

Figure 1.6: The 3D handheld laser scanner. (Figure source: [11])



8 Introduction

Figure 1.7: The result of EEG-MRI co-registration and sensor labeling. The MRI and
headmodel co-registered with the scanned face and the positions of sensor. [11])
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1.3 Kinect for windows

Kinect is a widely available, inexpensive device that provides color, depth and audio

information. Depth data is obtained by using light coding, which mainly utilizes laser

speckle to code the objects in the space. Kinect sensor projects infrared light uniformly

distributed in the environment through IR emitter. When the rough object is irradiated with

infrared light, it will form random reection spots, called speckle. The encoding light is read

by the CMOS sensor and decoded by the chip to create a depth map. Figure 1.8 shows the

basic operations of Kinect sensor.

Figure 1.8: Basic operations of Kinect for windows. (Figure source: [2])

Microsoft released latest Kinect on February 1st, 2012, called ”Kinect for windows”,

which was designed to connect to the computer that makes inventors able to programs

about Kinect under Windows. In addition to those functions of previous Kinect Xbox360

has, there are more update be added. The most noticeable function is that it provides ”Near

mode”, which enables to view objects near to 40 centimeters in front of the device through

depth camera accurately. Furthermore, these changes make the sensor less sensitive to far

distance objects. When the sensor is in near mode, it is possible to view objects two meters

away precisely, but out to three meters the depth value is unstable. Seeing figure 1.9 that

show the visible depth values.

There is specification of Kinect for windows, seeing table 1.1.
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Figure 1.9: The depth values that Kinect for windows can view. (Figure source: [2])

Table 1.1: The specification of Kinect for windows.

Sensor

Color and depth-sensing lenses

Voice microphone array

Tilt motor for sensor adjustment

Field of View

Horizontal eld of view: 57 degrees

Vertical eld of view: 43 degrees

Physical tilt range: +-27 degrees

Depth sensor range: 0.8m - 4m

Near mode Depth range: 0.4m 3m

Data Streams

320x240 16-bit depth @ 30 frames/sec

640x480 32-bit color@ 30 frames/sec

16-bit audio @ 16 kHz

Skeletal Tracking System

Tracks up to 6 people, including 2 active players

Tracks 20 joints per active player

Ability to map active players to Xbox LIVE Avatars

Audio System
Echo cancellation system enhances voice input

Speech recognition in multiple languages
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1.4 Thesis overview

Figure 1.10 shows the concept of our system. Our system used Kinect for windows

that could extract the point could which owns depth and color information at the same

time as interface to co-register between MRI and digitizer coordinate systems. At first, we

extracted points on facial surface from MR images and aligned with facial points which

extracted by Kinect for windows. Second, using the coordinate correspondences of mark-

ers to find the relation between digitizer and Kinect coordinate systems. Then we could

localize the EEG sensors in the MRI coordinate system.

Figure 1.10: The concept of our system.

1.5 Thesis organization

The remaining part of this thesis is organized as follows. Chapter 2 presents the meth-

ods used in our system. The experiment setup and the results are given in Chapter 3. Some

discussions related to our methods are in Chapter 4 and Chapter 5 is conclusions.
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Chapter 2

Methods



14 Methods

2.1 Overview

At first, the subject would be pasted on four markers and wear head-sized EEG cap.

Apply Kinect for windows that is able to extract depth and color information closely as in-

terface to extract point cloud from the view of Kinect for windows. After that we used depth

threshold to segment the head points from the background scene and do pre-processing in

order to extract the facial points without any noise or outlier. Next, we used scalp segmen-

tation to extract points on facial surface from MR slices and then align with Kinect-derived

facial points.

On the other hand, apply the digitization device to record the centroid of markers on

face and electrodes, then using color information to find the region of markers and calculate

the locations of centroids of markers automatically. In this way we found the transforma-

tion relation between digitizer and Kinect coordinate systems by using the two coordinate

correspondences. However, due to the thickness of electrode on EEG cap, we adjusted

them with the thickness compensation. Finally, we could find these points recorded by the

digitization device precisely in MRI slices through coordinate transformation. The main

structure of our system shows in Figure 2.1.

This chapter would be divided into the following: (i) segmentation of scalp points

from MRI; (ii) extraction of RGB-D data; (iii) depth threshold; (iv) pre-processing; (v)

co-registration; (vi) estimation of centroid of markers; (vii) estimation of transformation

relation; (viii) error estimation.

2.2 Segmentation of scalp points from MRI

We used the gray value threshold to find the border between scalp and outer surrounding

air from left-right, right- left, anterior-posterior and up-down directions, and the union of

the points from all scanning directions as the scalp points (S). According to [16], the gray

value threshold was defined as a fraction of the largest gray value at first (threshold = 0.04).

In this procedure, the operator was allowed to adjust the threshold manually, in order to

find the correct scalp points. The operator could obverse the segmentation of scalp points

which is smooth enough or not (expose the inner structure of brain) to decide whether to
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Figure 2.1: Flow chart of automatic co-registration of EEG-MRI data using RGB-D
camera.
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Figure 2.2: Flow chart of segmentation of scalp points from MRI.

adjust the threshold. After segmentation done, we could get about 80,000 140,000 all head

scalp points, and we extract about front one-third (rough 40,000 -60,000 points) to obtain

the points of facial region (F) to align with facial points extracted by Kinect for windows in

order to reduce the time cost for the registration and increase the accuracy of the registration

result. The flow chart can see Figure 2.2.

2.3 Extraction of RGB-D data

We extracted the data of Kinect for windows by OpenNI [4] and utilized the transfor-

mation formula of OpenNI to get the point and its coordinate value of x, y, z. In addition,

OpenNI provides Calibration function to correct the visual angles between two cameras and

align the object to the same place. We required the light of space be brightened and bal-

ance to extract RGB-D data and used color information to estimate the accuracy of marker

centroids.

In order to acquire the more accuracy facial points extracted by Kinect for windows,
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(a)

(b)

Figure 2.3: The result of segmentation of Scalp points from MRI. (a) The left shows the
MR image, and right shows the segmentation of scalp points that superimposed on the MR
image. (b) The facial points are viewed from three angles.
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the subject have to near the Kinect sensor as close as possible. However, when the subject

close to about 0.46 meter, some parts depth information such as tip of nose would be

unstable. Sometimes Kinect could receive depth information at there, but sometimes could

not. We had to reduce these missing data before further processing or have the subject

move backward for a short distance. According to [8], we averaged thirty depth images in

real-time streaming to reduce noise and missing data.

2.4 Depth threshold

At first, we could use depth threshold to separate the head point cloud(H) from data set

due to the subject sat closely in front of the Kinect for windows. As to threshold value,

we found the range between the smallest depth value in the point cloud and back extension

about 0.15 meters as head points. The equation can see below:

H = {x|xz < minz + 0.15 m, x ∈ points extracted by Kinect.} (2.1)

2.5 Pre-processing

We wanted facial points to align with the MRI-derived facial points without any noise

or outlier to affect the result of registration. But after depth threshold, there still have

points of EEG cap and markers region in the Kinect-derived head points. So we used

color information to extract the points of facial region, and used some methods to remove

outliers and noises. As below we partitioned into (i) skin color filter and (ii) outlier removal

to explain how to get clean Kinect-derived facial points. Figure 2.5 shows the result of

preprocessing.

2.5.1 Skin color filter

We could take advantage of color information to remove the part of EEG cap and mak-

ers from point cloud. We transformed the color information of point cloud from RGB

to YCbCr color space.(See equation 2.1) According to Chai and Ngan [7] mentioned the
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skin color region, we obtained the facial region by extracting those skin color range in the

YCbCr space, and the skin range could see equation 2.2.


Y

Cb

Cr

 =


0.299 0.587 0.114

−0.168 −0.331 0.5

0.5 −0.418 −0.081



R

G

B

+


0

128

128

 (2.2)

Skin =


1, if

{
77 < Cb < 127

133 < Cr < 173

0, otherwise

(2.3)

2.5.2 Outlier removal

Kinect for windows typically generate point cloud of varying point densities. Addi-

tionally, measurement errors lead to sparse outliers which corrupt registration result even

more. Some of these irregularities could be solved by performing a statistical analysis on

the neighbour of each point, and removing those points which do not have a certain criteria.

Some of points are dispersed like outliers or noise so we remove the points which do not

have enough number of neighbuor points within a certain range.

Statistical outlier removal

The concept of statistical outlier removal is based on the computation of the distribution

of distance between each point and its neighbours in the data set. For each point x, we

calculated the mean distance d between it to its two hundred neighbour points.

d(x) = avg
y∈kNN

(‖x− y‖2) (2.4)

Following we calculated the global mean d̄ and standard deviation SD from the mean dis-

tance of all points in the data set. By assuming that the data set was Gaussian distribution,

the point in the data set would be considered as outlier while its mean distance was larger

than the global mean plus one standard deviation and would be removed. [5]∣∣d (x)− d̄
∣∣ > 1SD (2.5)
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Radius outlier removal

The concept of radius outlier removal is that removing the point which does not have

enough number of neighbour points within a certain range. We set a number of neighbour

points which each point must have within a certain radius in the point set. Figure 2.4 shows

what the radius outlier removal filter does. For example if one neighbor point is specified,

the star point will be removed. If two neighbor points are specified then both the star and

triangle points will be removed. [5]

Figure 2.4: Schematic diagram of radius outlier removal. If threshold T is one, then star
point will be removed. If threshold T is two, then star and triangle points will be removed.

Erosion

Owing to the definition of skin color range is overly broad, the region connected with

the edge of face such as the brim of EEG cap would be extracted whereas it was not the

region of skin. Therefore, operators may make a judgement about the point cloud they

extracted to eliminate the edge of face by erosion.

2.5.3 Down-sampling

In order to speed up the registration between Kinect and MRI coordinate systems using

facial points, we reduced the Kinect-derived facial points uniformly to do registration. The

method of down-sampling is giving threshold T and choosing the pixel at intervals of T

both in the horizontal and vertical directions. Operator can adjust the threshold to control

number of facial points to do co-registration. Figure 2.6 represents the different level of

down sampling facial points.
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(a) (b)

(c) (d)

Figure 2.5: The results of preprocessing. (a) A original image. (b) After depth threshold.
(c) After skin color filter . (d) After outlier removal.
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2.6 Co-registration

The conventional ICP algorithm [6] is aim to iterative a group of data set to another

until the Euclidean distance of two data sets was minimal. The equation can see below:

(
R̂, t̂

)
= arg min

(R, t)

M∑
j=1

N∑
i=1

(
‖xi −Rpj − t‖2

)
(2.6)

where t is translation vector, R is Rotation matrix, xi and pj are points in two data sets

respectively for i = 1 to N and j = 1 to M.

However, it needed a good initial value and tend to result in local minimal to get poor

registration effect. For our subsequent registration, the centroid of mass of the Kinect-

derived facial points and the MRI-derived facial points are matched to give an appropriate

initial value. We use modified coherent point drift (CPD) algorithm [13] to do registration.

2.6.1 Modified coherent point drift algorithm

Unlike ICP, Coherent Point Drift Algorithm uses soft assignment of correspondences

that establishes correspondences between all combinations of points. Coherent point drift

algorithm consider the alignment of two data sets as a probabilistic method, and consid-

ering the alignment of two data sets as a probability density estimation problem, where

we fit Kinect-derived facial points as the Gaussian Mixture model (GMM) centroids and

MRI-derived facial points as the data points. At the optimum, two data sets become aligned

Figure 2.6: The different level of down sampling facial points. The leftmost is original
facial points, and the number of points are 29,770. The left two are 7,443. In the middle
are 3,296. The right two are 1,855, and the rightmost are 1,185.
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and the correspondence is obtained using the maximum of the GMM posterior probability

for a given data set. And Andriy et al. [13] derive a closed form solution of the maxi-

mization step of the EM algorithm. The algorithm can see below: Since Kinect-derived

face points contain slightly noise and outliers, we had to reduce the poor effect of regis-

tration and speed up computing. We added considering the average minimal distance of

Kinect-derived faces points that were larger than three standard deviations as outliner in

the iterative process. The outliers were not included in the registration process to increase

the speed of convergence. After registration, the MRI-derived scalp points were aligned

with the Kinect-derived face points in the same coordinate system and the transformation

relation was known.

2.7 Estimation of centroid of markers

At first, we converted point cloud which has color information from RGB color space

to HSL color space (See figure 2.9). HSL is an acronym for hue-saturation-lightness, and

the value of hue would not be changed by the different lightness we photo every time, so

we adopted this color space to extract blue region. By testing the range of hue, we could

extract the markers easily from point cloud. We extract markers region by subtracting the

histogram with a predefined face-only histogram. (Seeing figure 2.11(b) the red block.)

The range of hue values would include the white color, and next made out the blue region

and remove white color by analysis of histograms from red and green domains. We found

the clear boundaries to distinguish between blue and white in red domain and green domain.

Figure 2.7: Schematic diagram of registration. Given two point sets, assign the transfor-
mation relation that maps one point set to the other.
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Figure 2.8: Coherent point drift algorithm. [13]
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Figure 2.11(d)(e) shows the histogram of red domain and green domain.

Figure 2.9: HSL color space. (Figure soure: [1])

After using color information to extract the points of blue region, we used connected

component to distinguish which points belong which regions from the point cloud, and

calculate the respective centroids of regions by averaging their coordinate values. Finally,

we could get the coordinate value of the markers’ centroid. Figure 2.11 shows the result.

2.8 Estimation of transformation relation

In the experiment procedure, we have digitized the centroid of markers that stuck on the

subjects face, and we could get the coordinate value of the points after finding the centroid

by our procedure in the Kinect coordinate system. We took advantage of their correspon-

dence between the coordinate values of each other point to find the transformation matrix.

Our approach used least square method that minimizing the sum of squared differences

between the corresponding positions. The equation can see below:

T̂ = arg min
T

(
N∑
i=1

(
‖xi −Tpi‖2

))
(2.7)

where xi ∈ centroid points, and pi ∈ digitized centroid points for i =1 to N.

First, setting those coordinates values of corresponding points in respective matrices.

Second, calculating the pseudo-inverse of digitizers matrix, and then left multiplied by the

Kinects matrix. After that we could obtain the transformation matrix from digitizer coordi-

nate system to Kinect coordinate system. With this transformation matrix, the position of

digitized electrodes could convert their coordinate value into Kinect coordinate system.
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(a) (b) (c)

(d) (e)

Figure 2.10: The analysis of facial surface colors included markers. (a) The facial surface.
(b) The histogram of hue value of facial surface from (a), including the blue region. The
blue region is in the red block. (c) The histogram of hue value of facial surface from (a),
which is only skin region. (d) The histogram of red domain. (e) The histogram of green
domain.
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2.9 Thickness compensation

Because the electrodes on the EEG cap have a certain thickness, the electromagnetic

digitizer digitizes the sensor position taped on the upper part of this support. To correct the

electrode thickness so that digitized sensor coordinates lie on the scalp surface, the posi-

tions of the digitized target sensors points were adjusted. After coordinate transforms, all

the point clouds (MRI-derived scalp points, Kinect-derived scalp points and digitized sen-

sor points) in one coordinate system and were aligned together. For each digitized sensor

points, found the closest MRI-derived scalp point and its neighbour points and calculated

those points normal. To determine the correct sign for the normal, we calculate inner

product between the vector from the centroid of MRI-derived scalp points to the closest

MRI-derived scalp point and normal. If the result is positive, change the sign of normal,

otherwise unchanged. By this way, we can adjust the direction of normal toward the inward

direction from the scalp. After determine the correct sign for the normal, translate the digi-

tized sensor point with a distance equal to the electrode thickness along the axis defined by

the normal to obtain the scalp sensor point. Figure 2.12 is schematic diagram.

As for the electrode thickness, we measure all electrodes’ thickness on the EEG cap

by using localization device ten times. First, place the paper which draw the electrode-

sized circle and its centroid on the table, and use localization device to record the centroid

coordinate on the paper. Second, for each electrode on the EEG cap, aligned with the circle

in the paper and record the electrode position coordinate. Third, calculate the distance

between two positions coordinates and then average those distances as electrode thickness.

2.10 Error estimation

In order to evaluate the accuracy of registration and compared with different methods

made before, we refer to Koreeler et al. [11] and used three criteria: one is residual error

of face (REF) that is the average of Euclidean distance between each Kinect-derived facial

points and the closest MRI-derived scalp point.

EREF =
1

|a|
∑
a

min
b
‖a− b‖ (2.8)
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where EREF is the residual error of face, a ∈ Kinect-derived facial points and b ∈ MRI-

derived scalp points.

Another one is residual error of sensor (RES) which is the average of Euclidean distance

between the scalp sensor points and the closest points of MRI-derived scalp points.

ERES =
1

|a|
∑
a

min
b
‖a− b‖ (2.9)

where ERES is the residual error of the sensor, a ∈ scalp sensor points and b ∈MRI-derived

scalp points.

In our case, the ”true” error, or called map error which measure a distance between two

real corresponding points does not exist because it requires the knowledge of which MRI

point corresponds to which digitized point. And according to Whalen et al. [16], the target

residual error (TRE), using the markers visible in MRI scans could replace this problem.

Due to not accessible the TRE, we consult the residual error of sensor proposed by Koreeler

et al. [11], as evaluation criteria that is more suitable for our method even though it under-

estimates the true registration errors. Besides, in order to check the error of transformation,

we used digitization device to point the cross on the head in the digitizer coordination

system, and after transformation we calculated the average of Euclidean distance between

the cross points and the closest points of MRI-derived scalp points as three criteria called

residual error of cross.

EREC =
1

|a|
∑
a

min
b
‖a− b‖ (2.10)

where EREC is the residual error of cross, a ∈ digitized cross points and b ∈ MRI-derived

scalp points. That criterion does not consider the thickness compensation. Moreover, the

intra- and inter- subject variability was calculated.
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(a) (b)

Figure 2.11: The result of estimation of centroid of markers. (a) The positions of markers
on face. (b) After automatic estimation of centroid of markers, the centroids would found.
The pink points are centroid of markers.
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Figure 2.12: Schematic diagram of thickness compensation. The red point floating on
the scalp surface is digitized sensor point Pa. At first, finding the closest MRI-derived
scalp point Pb (blue point) and its neighbourhood (grey points in the blue circle) and cal-
culated those points normal (blue arrow). To determine the correct sign for the normal,
we calculated inner product between the vector (navy blue dotted line) from centroid of
MRI-derived scalp points Pc to the closest MRI-derived scalp point Pb and normal. And
translate the digitized sensor point with a distance equal to the electrode thickness along
the axis defined by the normal to obtain the scalp sensor point Ps (red point that near scalp
surface).



Chapter 3

Experimental Results
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3.1 Experimental Setup

3.1.1 Subjects

Ten healthy subjects participated in this experiment, and do the experiment twice for

each person. Before the experiment started, the face of subject would be pasted on four

markers: one on the tip of nose, another on the middle of the forehead above eyebrows and

the others are on the skin of right and left zygomatic bone. The reasons for choosing these

places and the design of marker would be explained in the following section. Furthermore,

the subject would wear a head-sized EEG cap which used for EEG recordings. In our case,

The EEG cap contains 31 electrodes, and one of that is ground.

3.1.2 MRI

The MRI scans were acquired on Siemens MAGNETOM Trio, A Tim System 3T scan-

ner (Siemens Medical Solution, Erlangen, Germany) with 12-Channel head coil. (See Fig-

ure 3.1.) We used a magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence

(TR = 2530ms, TE = 3.03ms, TI = 1100ms, field of view = 224 x 256, matrix size = 224

x 256 and 192 continuous slices). The slice thickness is 1 mm, and voxel size is 1 x 1 x 1

mm.

Figure 3.1: Siemens MAGNETOM Trio, A Tim System 3T scanner.
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3.1.3 Digitization

Any localization device that could acquire the locations of electrodes was able to be

used in our experiment. Our study used a Polhemus FastTrak that contains two receivers

and one transmitter. (See Figure 3.2) Two receivers include a stylus which points to the

desired locations for collection and three receivers which are fixed to the head of subject to

endure slight displacements of the head without producing digitization errors. The subject

sits before the fixed transmitter which orientation with X pointing up and Y pointing to the

right.

Figure 3.2: Polhemus FastTrak.

3.1.4 Experimental environment

We setup a pair of studio lamp beside the subject because of getting uniform color

images and reducing the effect of the shadow. The Kinect for windows mounted in front

of the subject and toward the subject, and subject near Kinect for windows as close as

possible. The proposed system is implemented in C/C++ language, compiled by Microsoft

Visual Studio 2010 compiler. OpenCV [3], OpenNI [4] and PCL [5] library are also applied

in our system.

3.1.5 Blue marker

Before the experiment started, the subject would be pasted some markers that used to

find the relation of transformation between Kinect and digitizer coordinate systems. In

order to extract the markers conveniently, we choose a specially crafted marker that was

11 mm blue round, white outer ring and white cross line in the central. There were two

reasons for choosing this design of makers: (i) we wanted the color be great different to
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our skin so that we could easily find the range of marker from color information. (ii) To

make sure the cross line would be in the central in the limited technology of printing and

funding budget, the white outer ring and cross line were be printed in the meantime that is

why we must have the white outer ring in the markers. Figure 3.3 shows the blue marker.

In our experiment, we pasted four markers on the face, and in the discussion section

would give information that how many markers and where the appropriate positions of

marker could bring the correct transformation relation.

Figure 3.3: Blue marker.

3.2 Results

Our study used three error estimations to evaluate the accuracy of co-registration, and

we calculated them in root mean square (R.M.S) form and arithmetic mean form respec-

tively. Figure 3.4 shows the Kinect-derived facial points and MRI-derived facial points

in the same coordinate system before co-registration, and Figure 3.5 displays the result of

co-registration of Kinect-derived facial points and MRI-derived facial points in the form of

point cloud. Then Figure 3.6 and 3.7(a)-(i) shows example of Kinect-derived facial points

superimposed on the different slices after co-registration. In this example, we could ob-

serve some noise and outlier that extracted by Kinect for windows floating in the air. Table

3.1 shows the result of the residual error of the face. The mean of residual error of the face

was equal to 0.89 mm ± 0.09 mm (Mean ± SD). Table 3.2 shows our method compared

with other methods made before. It demonstrates that our method has better results by
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using facial points to do registration.

Table 3.1: The results of the residual error of the face. (unit: mm)

R.M.S Mean Std. dev. intra-subject

S1 1.00 0.90 0.58 0.02

1.01 0.86 0.53

S2 1.00 0.87 0.54 0.045

0.99 0.78 0.50

S3 0.94 0.80 0.52 0.06

1.00 0.92 0.53

S4 1.09 0.97 0.64 0.11

1.06 0.75 0.54

S5 1.13 1.02 0.61 0.02

1.22 1.06 0.63

S6 1.05 0.87 0.57 0.025

1.07 0.92 0.65

S7 0.99 0.82 0.56 0.00

0.98 0.82 0.52

S8 1.07 0.85 0.74 0.025

1.09 0.90 0.74

S9 1.01 0.85 0.53 0.015

0.99 0.82 0.54

S10 1.34 1.15 0.74 0.065

1.13 1.02 0.64

The results of the residual error of the sensor were listed in Table 3.3. The mean of

the residual error of the sensor was equal to 1.67 mm ± 0.46 mm (Mean ± SD). The max

value of the residual error of the sensor by different subjects were about 2.67 - 4.76 mm

due to the hair that cause the digitized points floating on the head and the sized difference

between the EEG cap and the head. In addition, The thickness compensation also affected

the residual error of the sensor. On the other hand, we compared with Koessler et al. [11]
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(a)

(b)

Figure 3.4: The Kinect-derived facial points and MRI-derived facial points (red points).
There are put in the same coordinate system. (a) and (b) are two different perspectives.
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(a)

(b)

Figure 3.5: The result of co-registration of Kinect-derived facial points and MRI-derived
facial points. (a) Before co-registration. The centroids of Kinect-derived facial points
(white points) and MRI-derived facial points (red points) were matched together by trans-
lation. There are different perspectives. (b) After co-registration. The Kinect-derived facial
points(white points) superimposed on the MRI-derived facial points (red points).
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(a)

(b) (c)

Figure 3.6: Example of the Kinect-derived facial points superimposed on MRI after co-
registration. The red points are the Kinect-derived facial points. (a) The view from the
right side. (b) and (c) are one of slices in vertical and horizontal tangent direction.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: Example of Kinect-derived facial points on the MR slice. The red points are
Kinect-derived facial points. (a) to (h) are different slices in vertical tangent direction.
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Table 3.2: Comparison of the residual error of the face with other methods. (unit: mm)

Our method Koessler et al. Whalen et al.

Subject 10 x 2 4 x 2 6

0.89 ± 0.09 1.68 ± 0.55 1.6 ± 0.1

Mean Max = 1.15 Max = 2.65

Min = 0.75 Min = 1.18

1.05 ± 0.09 1.93 ± 0.91

R.M.S Max = 1.34 Max = 3.5 -

Min = 0.94 Max = 1.19

that listed in Table 3.4, and our method had smaller errors. Figure 3.8 shows the example

of digitized sensor points co-registered with MRI head surface, and Figure 3.8(c) can see

the four makers on the face. Moreover, Figure 3.8(d) shows the sensors and the name of

sensors, and Figure 3.9 shows example of digitized sensor locations on the MR slices.

By residual error of the cross, we could evaluate our system that use Kinect for windows

as interface whether produce the great transformation errors. The results of the residual

error of the cross were listed in Table 3.5. The mean of the residual error of the cross was

equal to 1.83 mm ± 0.43 mm (Mean ± SD), and in R.M.S form was equal to 2.29 mm ±
0.48 mm. Then Figure 3.10 shows example of digitized cross locations on the head surface,

and Figure 3.11 shows the example of digitized cross locations on the different MRI slices.

From ten subjects, we could observe that s9 and s10 have relative larger errors that

because of our EEG cap only having medium and big size, the head of subjects s9 and

subjects s10 were not fit the medium or big sized EEG cap. Simultaneously, the hair of

subjects would influence the locations of digitized sensors. The hair of subject s5 was short

and the head was medium size, so the results were relatively small.
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Table 3.3: The results of the residual error of the sensor. (unit: mm)

R.M.S Mean Std. dev. Max Min intra-subject

S1 2.00 1.48 1.34 4.63 0.08 0.025

1.76 1.43 1.01 3.84 0.21

S2 2.00 1.14 1.64 5.84 0.05 0.21

2.31 1.56 2.15 4.87 0.21

S3 1.57 1.27 0.86 3.01 0.17 0.025

1.68 1.32 1.12 2.67 0.13

S4 2.11 1.93 0.86 3.87 0.11 0.105

2.18 1.72 2.31 4.76 0.88

S5 2.56 0.92 2.39 3.43 0.10 0.065

2.17 1.05 3.14 4.33 0.17

S6 2.4 1.97 3.41 2.43 0.03 0.03

2.07 1.91 1.74 3.33 0.12

S7 3.03 2.54 1.82 4.49 0.28 0.77

1.57 1.00 1.21 3.23 0.12

S8 2.78 1.93 1.34 3.49 0.15 0.205

1.83 1.52 1.44 3.23 0.21

S9 3.2 2.34 2.35 3.49 0.16 0.165

3.17 2.01 2.27 3.34 0.15

S10 3.47 2.31 3.51 5.47 0.35 0.075

3.76 2.16 3.64 5.58 0.12
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(a) (b)

(c) (d)

Figure 3.8: Example of digitized sensor points co-registered with MRI head surface. The
red points are the locations of EEG sensors. (a) The right side of head surface. (b) The left
side of head surface. (c) The front side of head surface. There are four markers on the face.
(d)Looking down form height. The name of sensors were labelled.
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(a)

(b)

Figure 3.9: Example of digitized sensor locations on the MR slice. The red points are the
locations of EEG sensors.
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Table 3.4: Comparison of the residual error of the sensor with Koessker et al.. (unit: mm)

Our method Koessler et al.

Subject 10 x 2 4 x 2

1.67 ± 0.46 2.11 ± 0.46

Mean Max = 2.54 Max = 2.75

Min = 0.92 Max = 1.62

2.38 ± 0.63 2.52 ± 0.63

R.M.S Max = 3.76 Max = 3.49

Min = 1.57 Min = 1.80

(a) (b)

Figure 3.10: Example of digitized cross locations on the head surface. The red points are
the digitized cross points. (a) The right side of head surface. (b) The left side of head
surface.
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Table 3.5: The results of the residual error of the cross. (unit: mm)

Points R.M.S Mean Std. dev. intra-subject

S1 192 2.2 1.57 1.64 0.04

208 1.93 1.49 1.37

S2 152 2.34 2.01 1.28 0.07

113 1.91 1.87 1.33

S3 132 1.76 1.38 1.22 0.1

127 1.97 1.58 1.37

S4 134 2.34 2.31 2.17 0.035

127 1.83 1.62 1.74

S5 162 1.54 1.15 1.01 0.345

173 2.07 1.32 1.59

S6 158 2.33 1.83 2.17 0.165

127 1.65 1.38 0.90

S7 181 1.78 1.47 1.36 0.225

170 2.56 2.09 1.48

S8 212 2.42 1.97 1.41 0.478

179 2.07 1.34 1.64

S9 164 2.48 2.2 1.61 0.01

178 2.79 2.22 1.69

S10 157 3.07 2.78 1.64 0.16

161 3.24 2.46 1.58
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(a) (b)

(c)

Figure 3.11: Example of digitized cross locations on the MRI slices. The red points are the
digitized cross points. (a), (b) and (c) are digitized cross locations on different MR slices.



Chapter 4

Discussions
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4.1 Comparison of Kinect and Kinect for windows

In our study, we used Kinect for windows to extract the color and depth information.

Compared with Kinect, Kinect for windows provides the near mode that not only extracts

more points but also more precise in the same objects. The more precise these points

were, the more accuracy of co-registration was. In this section we used two different RGB-

D cameras to do registration between Kinect and MRI coordinate systems, and used the

residual error of face to evaluate the accuracy of registration. Table 4.1 presents the average

results by two different RGB-D cameras. The average result of registration using Kinect

for windows was equal to 0.89 mm ± 0.03 mm (mean ± SD), and using Kinect was equal

to 1.24 mm ± 0.07 mm. This experiment showed under the same subjects, using Kinect

for windows to extract the RGB-D data to do registration had better results. The results of

using Kinect to do registration can refer to Table 4.2.

Table 4.1: Comparison of Kinect and Kinect for windows. (unit: mm)

Kinect for windows Kinect

0.89 ± 0.03 1.24 ± 0.07

Mean Max = 0.95 Max = 1.31

Min = 0.83 Min = 1.13

Table 4.2: The results of using Kinect to do registration. (unit: mm)

Case 1 Case 2 Case 3 Case 4

Mean 1.23 1.31 1.3 1.13

Standard deviation 0.61 0.67 0.63 0.67

Maximum 3.04 3.3 2.97 3.41

4.2 The influence of co-registration by down-sampling

In order to speed up the registration between Kinect and MRI coordinate systems using

facial points, we reduced the Kinect-derived facial points uniformly as GMM centroids to
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do registration. But using down-sampling points may influence the results of registration.

Therefore, we used the different degrees of down-sampling Kinect-derived facial points to

align with MRI-derived facial points, and observed whether influence the results of regis-

tration and how much time cost. Table 4.3 represents case about this discussion. It shows

that the larger degree of down-sampling is, the lower time is. Using down-sampling points

almost does not affect the results of registration, and greatly enhances the speed.

Table 4.3: Example of the influence of co-registration by down-sampling. (unit: mm)

Points Time cost RMS Mean Std dev.

Kinect for windows 17,392 1’44’38 1 0.86 0.5

Downsampling

1/22 4,327 ’25’28 1 0.86 0.51

1/32 1,927 ’11’33 1 0.86 0.51

1/42 1,082 ’06’53 1.01 0.86 0.52

1/52 683 ’04’29 1.04 0.86 0.59

4.3 Estimation of transformation relation

In our study, these positions of markers were used to align with Kinect and digitizer

coordinate systems. However, it was unknown that how many markers should be used and

where the positions of markers should be pasted on to bring well transformation relation be-

tween Kinect and digitizer coordinate systems. Therefore, we provided some information

about using of the markers in this section.

In this experiment, the subject was pasted on with nine markers. Figure 4.1(a) shows

these positions of markers. The criteria about choosing the position of marker includes: (i)

Flat area to use the color information of Kinect for windows to extract the entire round of

markers and to calculate its centroids. (ii) Positions where were able to express the ups and

downs and characteristics of human face. Our error estimation was defined as averaged

these correspondence distances between these coordinate values of nine centroids of mark-

ers in the Kinect coordinate system and nine centroids of markers transfer from digitizer
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to Kinect coordinate system by using transformation matrix. And the transformation ma-

trix calculated with different number and positions of markers. Equation 4.1 presents our

error estimation. The smaller the value was, the smaller the error between two coordinate

systems and more precise.

Eθ =
1

N

N∑
i=1

(‖xi −Tθpi‖2) ,

where Tθ = arg min
T

(∑
q∈θ

(
‖xq −Tpq‖2

)) (4.1)

There are three subjects in this experiment, and everyone received twice. Figure 4.1(a)

shows one of these cases. The horizontal axis represents using various numbers of markers,

and the vertical axis indicates the value of error. The data were values of error estimation

calculated by different transformation matrices, and that estimated by different numbers

and positions of markers. For example, we chose four from nine markers and using every

combination to calculate transformation matrix to evaluate error estimation, and the value

of error would be showed on the axis of using four markers.

In Figure 4.1(b), we could observe a case of the errors that calculated by using different

number of points to estimate transformation matrix. With using number of points increases,

the selection of combinations of different points had little effect on the error. For example,

seeing Figure 4.1(b) presents using different number points of median, Q1 and Q3. We

could find different error for each other little difference by selecting seven different points

to produce, and selecting four different points produce the errors disparity is quite large.

However, we found that using different number of points to calculate transformation

matrix and evaluating the error estimation (for example: Choosing i number of points to

do transformation matrix, for i=4 to 9), these errors we got from some combinations that

would reach similar performance (the minimal error of registration), and even less than

the errors we got from choosing more points. For example, the minimal of error in using

four points was 0.69 mm which is the smallest in case 1. Besides, we integrated six data

and it showed these features, seeing Figure 4.2. As a result, we were interested in the

condition of using few points, which points were able to get the less error. Seeing Table

4.4, which shows the combinations of which points that get the minimal error by using



4.3 Estimation of transformation relation 51

different number of points and median of error in using different number of points in case

1.

Table 4.4: In case 1, the combinations of which points that get the minimal error by using
different number of points and median of error in using different number of points.

Points # Minimal of error (mm) Used points Median of error (mm)

9 0.76 all 0.76

8 0.74 1 2 4 5 6 7 8 9 0.79

7 0.74 1 2 4 6 7 8 9 0.84

6 0.72 2 4 5 7 8 9 0.97

5 0.71 2 4 7 8 9 1.21

4 0.69 2 4 8 9 1.97

In the all combinations of four points, we selected the minimum error that were within

fifteen percent (and the errors less than 1 mm) and polled these combinations to find those

four points that occurs most frequently. (See Figure 4.3) Among those points, we found

point #9, #8 and #4 having the higher frequency of appearance (higher than 0.4 of each

case), and point #1, #2, #3 also performs well. However, considering the convenience

for operating, the symmetry and facial feature of our face, we chose point #2. In order

to more understanding which combination of four points could get the less error, we listed

these top 15 smaller case errors of each six case. We found that the combination of (#2,

#4, #8, #9) were top 3 in each case (except the case3 were second and third in case3 1,

case3 2, the other two cases ranked first.) See Table 4.5.

For the purpose of verifying the fourth point accurately, we added a point to forehead.

That is there were 10 markers on the face, and Figure 4.4 shows the positions of markers

on face. We used the same method to estimate the transformation relation of different

numbers and positions. Figure 4.5 shows the data of integrating four subjects which also

owns the features of previous experiment. We also listed four data that were top 15 smaller

error which calculated from using combinations of four points.(See Table 4.6) We found

the combination of (#2, #5, #9, #10) and (#3, #5, #9, #10) were ranked in the top

few, and positions of these points were the same as the previous experiment on the face.

So we decided four positions on the face of subject in our study where one on the tip of
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(a) (b)

Figure 4.1: Example of estimation of transformation relation. (a) The positions of nine
markers on face. (b)The error that calculated by using different number of points to estimate
transformation matrix.

Figure 4.2: Average value of six data.
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(a) (b)

Figure 4.3: Frequency of occurrence of points. In the all combinations of four points, we
selected the minimum error that were (b) within fifteen percent (a) and the errors less than
1 mm and polled these combinations to find those four points that occurs most frequently.

Table 4.5: The rank of smaller errors.

Rank Case1 1 Case1 2 Case2 1 Case2 2 Case3 1 Case3 2

1 2 4 8 9 2 4 8 9 2 4 8 9 2 4 8 9 1 4 8 9 1 4 8 9

2 2 4 7 9 2 5 8 9 3 4 8 9 2 4 7 9 2 4 8 9 1 4 7 9

3 2 5 7 9 2 4 7 9 2 4 7 9 3 4 8 9 1 4 7 9 2 4 8 9

4 2 5 8 9 2 5 7 9 3 4 7 9 2 5 8 9 2 4 7 9 2 4 7 9

5 1 4 8 9 4 6 8 9 1 4 8 9 3 4 7 9 2 5 8 9 1 5 8 9

6 1 5 7 9 1 5 8 9 2 5 8 9 1 4 8 9 1 5 8 9 3 4 7 9

7 1 5 8 9 1 4 8 9 1 4 7 9 1 4 7 9 2 5 7 9 1 3 7 9

8 1 4 7 9 2 4 6 8 1 3 4 9 2 5 7 9 1 5 7 9 3 4 8 9

9 4 6 8 9 5 6 8 9 3 5 8 9 3 5 8 9 3 4 8 9 2 5 8 9

10 3 4 7 9 2 5 6 8 2 5 7 9 1 3 4 9 3 4 7 9 1 5 7 9

11 2 4 6 8 1 5 7 9 2 3 4 9 3 5 7 9 3 5 8 9 1 3 4 9

12 4 6 7 9 1 4 7 9 3 5 7 9 1 2 7 9 1 3 4 9 2 5 7 9

13 3 4 8 9 4 6 7 9 1 5 8 9 2 3 4 9 3 5 7 9 1 3 8 9

14 3 5 7 9 5 6 7 9 1 3 5 9 1 2 8 9 1 3 7 9 3 5 8 9

15 1 2 5 9 1 2 5 9 1 3 7 9 1 2 4 9 1 3 8 9 3 5 7 9
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nose, another on the middle of the forehead above eyebrows and the others are on the skin

of right and left zygomatic bone.

Figure 4.4: The positions of ten markers on face.

4.4 Source of error

The errors come from several sources, and we discussed the sources of errors divided

into three error estimation individually. The influence of residual error of the face is (i)

The error of points of coordinate values that extracted from Kinect for windows (includ-

ing outliers and noise), (ii) scalp segmentation from MRI and (iii) the algorithm to do

co-registration. The results showed that the residual error of the face relatively small. Con-

cerning the influence of residual error of the sensor: (i) the sensor thickness and thickness

compensation: different thickness compensation could generate different result due to dif-

ferent calculation of the normal. Certainly, the positions of sensors on the scalp would be

different by different thickness compensation. (ii) EEG cap size and head of subject: the

EEG cap must fit the head of subject, otherwise could influence the digitized coordinate val-

ues of sensors. (iii) Hair: The hair could bring the sensors on the EEG cap not fit to scalp

of head, and influencing the digitized coordinate values. (iv) Camera resolution: Kinect

for windows produces data stream about 640 x 480 and the resolution is lower compared
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Table 4.6: Top 15 smaller error which calculated from using combinations of four points.

Rank Case1 1 Case1 2 Case2 Case3

1 3 5 9 10 2 5 9 10 2 5 9 10 3 5 9 10

2 2 5 9 10 2 6 9 10 4 6 9 10 2 5 9 10

3 3 6 9 10 3 5 9 10 2 6 9 10 1 5 9 10

4 2 6 9 10 3 6 9 10 3 5 9 10 4 5 9 10

5 4 6 9 10 2 3 9 10 1 4 6 10 3 6 9 10

6 2 4 6 10 2 3 6 10 3 6 9 10 2 4 5 10

7 4 5 9 10 2 3 5 10 1 3 9 10 1 4 5 10

8 2 4 5 10 4 6 9 10 2 4 6 10 2 4 6 10

9 1 4 6 10 4 5 9 10 1 4 9 10 4 6 9 10

10 2 3 6 10 3 5 8 10 1 6 9 10 2 6 9 10

11 1 4 5 10 3 6 8 10 1 5 9 10 1 3 5 10

12 3 5 8 10 2 4 6 10 1 4 8 10 1 4 9 10

13 2 5 8 10 2 5 8 10 3 6 8 10 1 3 9 10

14 1 6 9 10 2 4 5 10 2 5 8 10 3 4 5 10

15 1 5 9 10 2 6 8 10 3 5 8 10 1 4 6 10
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with current camera. (v) Digitizer error. (vi) Transformation relation: the error resulting

from transformation relation which calculated by corresponding points and estimation of

markers of centroids in Kinect coordinate system. As to residual error of the cross, there

are no need to consider the sensor thickness and thickness compensation, but having some

errors that come from (i) EEG cap size and head of subject; (ii) hair; (iii) digitizer error;

(iv) transformation relation.
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Figure 4.5: Average value of four data.
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Chapter 5

Conclusion
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In our study, we developed an automatic system to co-register EEG and MRI data used

for the source estimation of electric brain activity. Our study used Kinect for windows

that could extract the depth and color information as interface to align with MRI and dig-

itizer coordinate systems. At first, we extracted points on facial surface from MR images

that aligned with facial points which extracted by Kinect for windows. After reducing

points uniformly and initial translation, we modified the coherent point drift algorithm to

do registration between Kinect and MRI coordinate systems. Moreover, the purpose of

modified coherent point drift algorithm and reduced points uniformly is to increase the

speed and accuracy. Second, we estimated the centorids of markers that using color in-

formation provided by Kinect for windows and connected component automatically. By

any kind of digitization device to record corresponding points on face, we used the co-

ordinate correspondences to find the transformation relation between digitizer and Kinect

coordinate systems. On the other hand, thickness compensation was applied to adjust the

digitized points floating in the scalp surface. By the way, our work could be included any

scalp-placed sensor co-registration.

According to the error estimation by Koessler et al. [11], the results of error estima-

tion showed that our system was sufficiently accuracy. Our system was more accurate

than Koessler et al. [11], and no need to additional labor and time to record facial feature.

Besides, our system was less influence caused by variation of locating the position of the

markers. Based on the above motioned, our system was sufficiently accurate, repeatable,

efficient and labor-intensive to be used to assist neuroscience studies.
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