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國立交通大學   電信工程研究所 

 

中文摘要 

 

    在本論文中，首先介紹了漏波的條件，接著在理論上採用全波分析法-頻域法

(spectral domain approach)得到單一導體結構的第一高階洩漏模的傳播常數，其中在空間

波輻射頻段，正規化的相位常數非常接近 1，透過洩漏波天線洩漏角度之關係式可得知

此天線之主波束(main beam)幾乎固定在端射(end-fire)方向。由於單一導體結構的第一高

階洩漏模的基本物理特性為完美電牆(perfect electric wall)中心對稱，表示縱向電流為奇

對稱分布而橫向電流為偶對稱分布，所以我們使用平衡式微帶線和反向平衡式微帶線來

饋入以激發此模態，並成功地設計出具有高增益與寬頻的單一導體帶狀洩漏波天線。 

    從此天線的輻射場型圖(radiation pattern)之模擬結果，我們觀察到後波瓣(back lobe)

的輻射相當大。在分析了單一導體帶狀洩漏波天線的結構之後，我們推斷出饋入電路中

的訊號回流機制會造成向天線左右兩端以及後端的輻射。為了抑制這種現象，我們利用

兩個寬頻巴倫(balun)以上下顛倒的方式分別接在饋入電路的左右兩側，而實驗的結果也

證實天線的前後輻射比(front-to-back ratio)確實有了明顯的改善(此一構想是將回流路徑

中的訊號當作巴倫的輸入訊號，而在兩輸出端可產生大小相同、相位差卻為180的反相

訊號，最後將其匯合後來達到抵消的效果，因此向後端福射的效應也隨之減小)。 
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Abstract 

 

This thesis presents the condition of leakage and mode distinction at first; then the 

well-known full-wave method, spectral domain approach, is applied to investigate the 

propagation characteristics of the first higher-order mode of the single-conductor strip 

structure. In this case, the normalized phase constant is very close to 1 in the space-wave 

leaky region. By the leakage angle equation of leaky-wave antenna, we find that the main 

beam of this antenna is fixed in the end-fire direction over a broadband region. For the first 

higher-order leaky mode in this structure, a virtual perfect electric wall is assumed at the 

center of the strip, this means that the longitudinal currents are odd-symmetric and the 

transverse currents are even-symmetric with respect to the center. A broadband planar feeding 

structure based on the balanced microstrip lines and the inverted balanced microstrip lines is 

developed to feed this single-conductor strip structure and thus excite the first higher-order 

leaky mode. Then, a high gain and wideband leaky-wave antenna is implemented. 

    From the radiation patterns of our single-conductor strip leaky-wave antenna, we observe 

that the back lobe is quite large. After analyzing the single-conductor strip leaky-wave 

antenna, we conclude that the feeding structure of this antenna causes this undesired effect. In 
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order to alleviate this undesired radiation from the feeding structure, we turn two broadband 

planar baluns upside down and attach themselves to the left and right sides of the feeding 

structure, respectively. Experimental results show significant improvement of the 

front-to-back ratio of this antenna. 
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Chapter 1 

Introduction 

 

1.1 MOTIVATION 

    The printed-circuit type antenna is the best choice for the trend in antenna development, 

which is compact, relatively inexpensive, and highly reliable. In RF and narrow-band 

applications, resonant type antennas are most widely used since the matching network design 

is simple, and the antenna size is small when using a higher dielectric constant substrate. 

However, in millimeter wave and wide band applications, the resonant type antenna (usually a 

patch one) is no longer the best choice due to its inherent nature such as a narrow operational 

bandwidth, complexity in matching network design for array applications, and serious 

tolerance requirement in fabrication. So the printed circuit type leaky wave antenna is a better 

candidate in millimeter wave applications owing to its advantages such as simplicity in array 

design, broad band, beam-scanning capability, and relaxed requirement of tolerance.  

In [1], experimental verification of a microstrip-line higher order mode leaky-wave 

antenna was conducted without explaining the physics underlying the design of the antenna. 

In [2], [3], Oliner explained the physics underlying the leaky-wave antenna design 

constructed in [1], and presented analysis data for the antenna design. In [4], [5], the familiar 

spectral-domain analysis was used, with the appropriate choice of branch cuts and integration 

contours. Thus, numerous issues about leaky-wave antennas are subsequently investigated, 

such as full-wave analysis of leaky modes, feeding structures, antenna arrays, etc.  

    In [6], A leaky-wave broad band antenna that has only a single-conductor strip on a 

substrate but no ground plane was presented. That absence of a ground plane allows both TE0 

and TM0 surface-wave modes to exist in this single-conductor strip structure. The main 
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feature of the single-conductor strip leaky-wave antenna is that the main beam is fixed in the 

end-fire direction over a broad band region. This pattern feature is useful in some applications 

that require a main beam in the end-fire direction. From the radiation patterns of this 

leaky-wave antenna, we observe that the back lobe is quite large. In this thesis, a novel 

method is proposed to alleviate this undesired radiation. 

 

1.2 ORGANIZATION OF THIS THESIS 

    This thesis is divided into four parts. In chapter 2, we introduce the condition of leakage 

and mode distinction. In chapter3, the full-wave method, spectral domain approach is used to 

analyze the propagation characteristics of the first higher-order leaky mode of the 

single-conductor strip structure. The numerical results are calculated to decide the operating 

frequency band of leaky-wave antenna. In chapter 4, in order to alleviate the large back lobe 

of the single-conductor leaky-wave antenna, the feeding structure is modified with two 

broadband planar baluns. Finally, some conclusions and future work are made in Chapter 5. 
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Chapter 2 

Physical Properties of Leaky Waves 

 

    Most planar transmission lines used in microwave and millimeter-wave frequency region 

can exhibit several new propagation phenomena. They have relevance to leaky modes that 

leak power in the form of the surface wave and/or the space wave. Both the surface wave 

leakage and the space wave leakage on planar transmission structures can produce unwanted 

crosstalk between neighboring parts of a circuit and undesired package effects, or can be used 

to create new circuit components and antennas. In this chapter, we will explain when leakage 

can occur. 

 

2.1 LEAKAGE CONDITION 

    In general, leaky modes can be divided in two types: surface-wave leaky modes and 

space-wave leaky modes [3]. The surface-wave leaky modes are those modes that leak power 

in the form of surface waves on the surrounding substrate as they propagate. The space-wave 

leaky modes leak power in the form of space waves radiating into space as well as surface 

waves. 

2.1.1 Surface-Wave Leaky Mode 

    Fig. 2.1 illustrates the structure of a coplanar waveguide (CPW). As shown in Fig. 2.2, 

the surface wave leakage condition can be examined from the top view of a metal strip lying 

on the air-substrate interface, where this strip can represent the center strip of CPW, or the 

strip of microstrip line, or whatever. From the figure the relation below is observed  

                            
    

                                 (2-1) 

where   is the phase constant of the dominant mode guided along the z-direction,    is the 
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transverse wavenumber, and    is the propagation wavenumber of the surface wave 

supported on the substrate in the vicinity of the guiding strip. If     , Eq. (2.1) results in 

  
   , then    is seen to be imaginary, it means that the modal field decays transversely in  

 

 

 

 

 

 

 

          

 

the x-direction and the mode guided in the z-direction is purely bound. On the other hand, if 

    , Eq. (2.1) results in   
   , then    is seen to be real, it means that power will leak 

from the guided mode at an angle   in the form of surface waves on the surrounding 

substrate, or a parallel-plate mode if there exists a top cover above the substrate. The angle   

can be defined by  

                                             (2-2) 

where    is the free space wavenumber. For this reason, the surface wave leakage occurs 

when the condition      is satisfied, or, dividing both sides by   , that can be written as  

                                       (2-3) 

Truly, when leakage occurs, the wavenumber of the guided mode becomes complex     , 

where   is the attenuation constant. Eq. (2.2) is no longer exactly correct, but it is still a 

    

  

Fig. 2.2 Top view of a metal strip lying 

on the substrate, showing the angle   

of leakage into the surface wave    on 

the surrounding substrate. 

 

   

   

      

Fig. 2.1 Coplanar waveguide structure. 

  
    

     

       
 

  
 



 

5 
 

good approximation. 

    We observe from the dispersion curves for a CPW in Fig. 2.3 that Eq. (2.3) is satisfied 

when frequency f is greater than the critical frequency    at which the two curves cross in Fig. 

2.3 [7]. All of the uniplanar lines will leak power above some critical frequency. The power 

will radiate away in the lateral direction at an angle that varies with frequency, and the 

leakage rate is also frequency-sensitive. The manner in which the dominant mode becomes 

leaky, and the critical frequency at which this occurs, are quite different for each of the 

guiding structure. For example, the dominant mode of conductor-backed coplanar waveguide 

(CBCPW, see Fig. 2.4) is leaky at all frequency as shown in Fig. 2.5. Nevertheless, the 

fundamental physical idea for all various planar transmission line structures can be made easy 

with the illustration shown in Fig. 2.2. 

 

 

  

    
      

     

(II) leaks (I) bound 

   

Fig. 2.3 A typical dispersion plot for a CPW. For      the 

mode becomes leaky, in accordance with Eq. (2.3). 
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    Fig. 2.6 depicts the structure of a conductor-backed slotline (CBSL), the effective 

dielectric constant,     , of the slotline is between    and 1, where            

           [8]. The characteristic parallel-plate propagation constant,         , is 

unconditionally greater than  , which results in an unconditional leakage effect, independent 

of frequency or parallel-plate thickness. We see the top view of a CBSL as shown in Fig. 2.7, 

the point   and   receive the characteristic waves originating respectively from the points 

   and    along the slot, where              . When the slotline is lossy because of the  

 

 

 

 

 

 

 

 

   

Fig. 2.5 Dispersion curves of the normalized phase 

constant of the surface-wave leaky mode for a CBCPW. 

    

  

   

Fig. 2.4 Conductor-backed coplanar 

waveguide structure. 

   

b a 

  

Fig. 2.6 Conductor-backed slotline structure. 

  

  

Fig. 2.7 The amplitude decays in the z direction 

(     ) due to leakage loss, but in the x direction at a 

given z, the amplitude increases exponentially (   ). 
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leakage effect, the electric field on the slotline has an exponential decay along the propagation 

direction, resulting in a larger value at    than at   . Hence, the field magnitude at b tends to 

be larger than that at a, which explains an increasing trend of the electric field in the 

transverse direction. 

2.1.2 Space-Wave Leaky Mode 

    Let us consider the microstrip line (see Fig. 2.8) as an example, of which the cross 

section is shown in Fig. 2.9. With similar discussion to explain the condition of surface wave 

leakage, the radiation condition into space wave is given, in good approximation, by     , 

or, dividing both sides by   , that can be expressed as 

                                                                 (2-4) 

On the other hand, the relation       is always held, so that the leakage condition into 

surface wave      is always satisfied, this new mode leaks power in the forms of both the 

surface wave propagating on substrate and space wave radiating into space. Therefore, this 

mode is physical in the fast-wave (         ) region, and we call it here the 

space-wave leaky mode that corresponds to radiation at an angle               (This 

again is not rigorously true for complex     , but provides a fairly good approximation), 

the value of this angle changing with the frequency. 

 

 

 

 

 

 

 

 

 

  

  

  

  

   

   

  

   

Fig. 2.8 Microstrip line structure. Fig. 2.9 Cross section of a microstrip line. 
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Also, with similar discussion to explain the exponential growth of the electric field in the 

transverse direction for the surface wave leakage case, one can explain in this case a 

nondecaying field in the normal direction (   ) (see Fig. 2.10) for the space wave leakage. 

Interestingly, any forward wave that decays in the longitudinal direction due to leakage loss 

must increase exponentially in the surrounding air region. The leaky wave is often described 

as being "improper" or "nonspectral", meaning exponentially increasing in the air region [9]. 

 

 

 

 

 

 

 

 

 

2.2 MODE DISTINCTION 

After our previous discussions, we will follow the classification by Lin in [10], [11] to 

divide the frequency range into the following four regions: 

1.     ,     (large  ) ----------reactive cutoff region. 

2.     ,     (small  ) ----------surface wave and space wave leakage region. 

3.        , (small  ) -------------surface wave leakage region. 

4.     ,     -----------------------bound mode region. 

In the radiation region (    ) with a larger attenuation constant is reactive and below cutoff, 

and has a different mode nature from that with a smaller attenuation constant. Therefore, this 

radiation-frequency region can further be divided into two regions with decreasing frequency: 

the antenna-mode region (    ,    ) where most of the guided power leaks away in the 

      

b 

a 

Fig. 2.10 Radiation leakage in a microstrip 

line at the air-substrate interface. 
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forms of space wave and surface wave, and the reactive cutoff region, where most of the 

power is reflected back to the feed line, however, the propagation constant is still a complex 

number with a small real part,  , and a large imaginary part,   , indicating that the mode is 

not strictly cutoff, but a very small portion of energy still propagates down the transmission 

line. In design of leaky-wave antennas, this distinction of mode nature in the radiation region 

is essential since the antenna efficiency is low in the reactive-mode region. We can simply 

define the lower frequency edge (  ) and the upper frequency edge (  ) of the usable 

frequency range for the leaky wave antenna:  

                                                                  (2-5) 

                                                                 (2-6) 

Fig. 2.11 shows the normalized propagation constant for the first higher-order mode of 

microstrip line as an example. For this case (       ,           ,        ), the 

usable frequency range for the leaky wave antenna is approximately 5.1 to 6.1 GHz. 

 

 

 

 

Fig. 2.11 Behavior of the normalized phase constant      and the attenuation constant 

     as a function of frequency for the first higher-order mode of the microstrip line. 
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Chapter 3 

Analysis and Numerical Results 

 

Planar transmission line analysis in the Fourier transform domain (or spectral domain) is 

superior to many numerical methods in the spatial domain. The spectral domain approach 

(SDA) was presented by Itoh and Mittra [12], this method is basically a modification of 

Galerkin’s approach adapted for application in the Fourier transform domain, or spectral 

domain (In SDA, Galerkin’s method is used to yield a homogeneous system of equations to 

determine the propagation constant). The Fourier transform is taken along the direction 

parallel to the substrate and perpendicular to the strip. The main reason the SDA is 

numerically efficient is that it requires a significant analytical preprocessing. This feature in 

turn imposes a certain restriction on the applicability of the method. One of the limitations is 

that SDA requires infinitesimal thickness for the strip conductor. It is also difficult to treat the 

structure with a strip having finite conductivity. No discontinuity in the substrate in the 

sideward direction is allowed. In spite of these limitations, however, SDA is one of the most 

popular and widely used numerical techniques.  

    In this chapter, the general approach (field approach) is described [13]. 

 

3.1 SPACE DOMAIN TO SPECTRAL DOMAIN 

    Before the detailed formulation process is presented, let us compare the types of 

equations obtained by the SDA and those obtained by a typical space domain formulation [13]. 

Fig. 3.1 shows a shielded microstrip line with its cross-sectional view as an example. In 

conventional space domain analysis, the structure can be analyzed by first formulating the 

following coupled homogeneous integral equations. 
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The equations will then be solved for the unknown propagation constant  . 

 ( ', ) ( ') ( ', ) ( ') ' ( ) zz z zx x zZ x x y J x Z x x y J x dx E x               (3-1a) 

 ( ', ) ( ') ( ', ) ( ') ' ( ) xz z xx x xZ x x y J x Z x x y J x dx E x               (3-1b) 

Where zE  and xE  are unknown electric fields on the boundary at      , zJ  and xJ  

are the longitudinal and transverse current components on the strip        , and the 

spatial Green’s functions ( zzZ , zxZ , xzZ , xxZ ) are functions of  . The integration is over the 

strip where ( )zE x  and ( )xE x  are zero, as the strip is perfectly conducting. The left-hand 

sides of the equations are therefore required to be zero on the strip. These equations can be 

solved if zzZ , zxZ , xzZ  and xxZ  are given. As we will see shortly, the following algebraic 

equations, instead of the coupled integral equations, are obtained in the spectral domain 

formulation. These equations are Fourier transforms of the coupled integral equations. 

( , ) ( ) ( , ) ( ) ( , )zz x z x zx x x x z xZ k d t J k Z k d t J k E k d t                (3-2a) 

( , ) ( ) ( , ) ( ) ( , )xz x z x xx x x x x xZ k d t J k Z k d t J k E k d t                (3-2b) 

Where quantities with tildes (
~
) are Fourier transforms of corresponding quantities.  

 

 

Ground Plane 

Center Strip 

w 

    

    

      

        

  

  

Fig. 3.1 Corss-sectional view of a shielded microstrip line. 

Ground Plane 
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The Fourier and inverse Fourier transform are defined as  

( ) ( )  xjk x

xk x e dx



                          (3-3a) 

   
1

( ) ( )  
2π

xjk x

x xx k e dk





                       (3-3b) 

The right-hand side of Eqs. (3-2) is no longer zero because the Fourier transform requires 

integration over all x, not only over the strip. The equations contain four unknowns 
zJ , 

xJ , 

zE , xE  with unknown  . zE  and xE , however, will be eliminated in the solution process 

based on the Galerkin procedure. 

 

3.2 SDA ON SINGLE-CONDUCTOR STRIP STRUCTURE 

3.2.1 Field Approach 

    In this section, the Green’s impedance functions zzZ , zxZ , xzZ , xxZ  will be derived 

for the single-conductor strip structure in Fig. 3.2. Only one perfect conducting and infinitely 

thin strip is located at the interface between a semi-infinite air layer and an isotropic lossless 

substrate, with a dielectric constant of    and a thickness of h. This structure is assumed to 

be uniform and infinite in both x- and z-directions. First, the hybrid fields are expressed in 

terms of Superposition of TE-to-y and TM-to-y expressions [14] with scalar potentials e  

and h  as follows: 

 

 

 

 

Fig. 3.2(a) Single-conductor strip structure. Fig. 3.2(b) Cross-sectional view of a single-conductor 

strip structure. 
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2 2
2 2

2 2

                  
ˆ ˆ

1 1
                       

ˆ ˆ

                  
ˆ ˆ

e h
h ex x

x z x z

e h

y y

e h
h ez z

z x z x

k k
E j jk H jk j

y y z y

E k H k
y y z y

k k
E j jk H jk j

y y z y

 
 

 

 
 

 
    

 

    
      

    

 
     

 

         (3-4) 

2 2ˆ ˆ                   =   y j z j k      

Where   is permittivity,   is permeability, the time convention      is implied, and the z 

dependence        is assumed. Each field quantity in (3-4) is a Fourier transform of a 

corresponding quantity in the space domain (see Appendix A). The Fourier-transformed 

Helmholtz equation is expressed as (see Appendix A)  

2
2 2 2

2
0x zk k k

y
 

 
     

 
                      (3-5) 

The solution for this homogeneous differential equation is described in the form of  

2 2 2 2

1 2cosh sinh ,     x zc y c y k k k                       (3-6) 

with appropriate coefficients    and   . When the boundary conditions at    ,     

and      are satisfied, the scalar potentials in each region are given as follows:  

Region 1: 

  1 1( ) ( )

1 1    y h y he e h hA e A e                        (3-7) 

Region 2: 

                     2 2 2s i n h c o s he e eB y C y                          (3-8) 

                           2 2 2c o s h s i n hh h hB y C y      

Region 3: 

3 3

3 3       
y ye e h hD e D e

   
                        (3-9) 

where each subscript refers to the corresponding region and eA , hA , …, hD  are unknown 
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coefficients.   is the propagation constant in the y-direction and may be written as      . 

Solution of (3-7) (3-9) into (3-4) yields the field expressions in the three regions: 

1 1

3 3

- ( - ) - ( )

1 1

2 2 2 2 2 2

3 3

( cosh sinh ) ( cosh sinh )                                                                        

y h y he h

x x y z

e e h h

x x y z

y ye h

x x y z

E jk A e jk A e

E jk B y C y jk B y C y

E jk D e jk D e

 

 



    





 

 

    

  

1

3

- ( - )2 2

1 1 1

1

2 2

2 2 2 2 2

2

2 2

3 3 3

3

1
( )

ˆ

1
( )( sinh cosh )

ˆ

1
( )

ˆ

y he

y

e e

y

ye

y

E k A e
y

E k B y C y
y

E k D e
y







  

 

 

  

 

 

1 1

3 3

- ( ) - ( - )

1 1

2 2 2 2 2 2

3 3

+ 

( cosh sinh ) ( cosh sinh )

(3 10)

y h y he h

z z y x

e e h h

z z y x

y ye h

z z y x

E jk A e jk A e

E jk B y C y jk B y C y

E jk D e jk D e

 

 



    





 



    

   

1 1

3 3

- ( - ) - ( )

1 1

2 2 2 2 2 2

3 3

( sinh cosh ) ( sinh cosh )

y h y he h

x z x z

e e h h

x z x z

y ye h

x z x z

H jk A e jk A e

H jk B y C y jk B y C y

H jk D e jk D e

 

 



    





 

 

   

 

 

1

3

- ( - )2 2

1 1 1

1

2 2

2 2 2 2 2

2

2 2

3 3 3

3

1
( )

ˆ

1
( )( cosh sinh )

ˆ

1
( )

ˆ

y hh

y

h h

y

yh

y

H k A e
z

H k B y C y
z

H k D e
z







  

 

 

  

 

 

1 1

3 3

- ( - ) - ( )

1 1

2 2 2 2 2 2

3 3

( sinh cosh ) ( sinh cosh )

y h y he h

z x z z

e e h h

z x z z

y ye h

z x z z

H jk A e jk A e

H jk B y C y jk B y C y

H jk D e jk D e

 

 



    





 

  

    

  

 

    2 2 2 2=                               = 1 , 2 , 3
ˆ ˆ

i i
i xi zi i yi zi

i i

k k k i
y z

 
             

where each subscript refers to the corresponding region. The unknown coefficients eA , 

hA ,…, hD  are eliminated by imposing the boundary conditions at each interface. The 

boundary conditions in the spectral domain are obtained as the Fourier transforms of those in 

the space domain. In space domain, the boundary conditions are written as follows, 
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At    : 

1 2

1 2

2 1

2 1

2

0 2

2

0 2

for all 

for all 

( )

( )

x x

z z

z

x x

x

z z

x w

x w

x w

x w

E E x

E E x

J x
H H

J x
H H





 








  




  



 

At    : 

2 3

2 3

2 3

2 3

for all 

for all 

for all 

for all 

x x

z z

x x

z z

E E x

E E x

H H x

H H x









 

where ( )xJ x  and ( )zJ x  are the unknown surface current distributions on the strip at    . 

Notice these quantities need to be introduced so that the boundary conditions are specified for 

the entire range of x. Otherwise; it is not possible to take Fourier transforms. In the spectral 

domain, the boundary conditions are now given by the following equations. 

At    : 

1 2

1 2

2 1

2 1

( )

( )

x x

z z

x x z x

z z x x

E E

E E

H H J k

H H J k





 

  

                       (3-11) 

At    : 

2 3

2 3

3 2

3 2

0

0

x x

z z

x x

z z

E E

E E

H H

H H





 

 

                            (3-12) 

where ( )z xJ k  and ( )x xJ k  are Fourier transforms of unknown surface current components 

( )zJ x  and ( )xJ x  on the strip at    . 
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Finally, the algebraic equations are derived in matrix from as follows: 

1

1

 
  

 

zz zxz z

EJ

x xxz xx

Z ZE J
E G J

E JZ Z

    
                

        

                          (3-13) 

2 2

e h2 2

1
( Z + Z )zz z x

x z

Z k k
k k





                                         (3-14) 

e h2 2
(Z Z )x z

zx

x z

k k
Z

k k


 


                                            (3-15) 

xz zxZ Z                                                        (3-16) 

2 2

e h2 2

1
( Z + Z )xx x z

x z

Z k k
k k





                                         (3-17) 

0

0 0

coth

2coth

y y

e

y y y y

h
Z

h

  

    




 
                                    (3-18) 

0

0 0

1 1
coth

2coth

z z
h

z z z z

h

Z
h


 

    




 

                                     (3-19) 

2 2 2 2 2 2

0 0 0 0 0,x zk k k k        

2 2 2 2 2 2

0 0,x z rk k k k         

0
0

0

y
j





 ,   

0

y

rj




 
 ,   0

0

0

z
j





 ,   

0

z
j





  

The derivation of these formulations is detailed in Appendix B. It should be noted that there is 

one more set of boundary conditions not used up to this stage. In the space domain, it is 

0 for 2 atz xE E x w y h                       (3-20) 

This set of conditions is incorporated in the solution process as we will see below. 
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3.2.2 Choice of Basis Functions 

In order to solve (3-13), the unknown zJ  and xJ  should be expanded by known basis 

functions zmJ  and xmJ  

1

1

( )

( )

N

z m zm x

m

M

x m xm x

m

J c J k

J d J k












                        (3-21) 

Where mc  and md  are unknown coefficients. These approximations are assumed that zJ  

and xJ  have known forms, and the only unknowns in their representation are the amplitude 

coefficients mc  and md . The basis functions must be chosen to correspond to the odd or 

even symmetry of the currents for the mode of interest. The current is nonzero only on the 

strip. Therefore, the basis functions ( )zm xJ k  and ( )xm xJ k  must also be chosen such that 

their inverse Fourier transforms are nonzero only on the strip 2x w . The accuracy of the 

numerical results can be increased by selecting higher values of M and N, but it is relatively 

low efficiency because of taking more time during numerical computation. It means that the 

accuracy and efficiency depend on the numbers of basis functions. As shown in Fig. 3.3, due 

to the structural symmetry, a virtual perfect electric wall is placed at the center of the single  

 

 

 

 

  

 

 

 

  
  

PEC 

Fig. 3.3 Cross-sectional view of a single-conductor strip structure. A virtual perfect 

electric wall is placed at the center of this structure for the first higher-order mode. 
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conductor strip structure for the first higher-order mode, so odd basis functions for 
zJ  and 

even basis functions for 
xJ  are chosen [6]. Here, the following set of basis functions is 

employed [13]: 

 
2

sin (2 1) /
( ) , 1, 2, ...,

1 (2 / )
zm

m x w
J x m N

x w


 


               (3-22) 

 
2

cos (2 1) /
( ) , 1, 2, ...,

1 (2 / )
xm

m x w
J x m M

x w


 


                (3-23) 

Note that the definitions given above are only over the strip 2x w  and the functions are 

zero elsewhere. The functions in (3-22) incorporate the correct edge singularity. The shapes of 

the first three functions are shown in Fig. 3.4. The Fourier transforms of (3-22) and (3-23) are 

(see Appendix C for derivations) 

  0 0

(2 1)π (2 1)ππ

4 2 2

x x
zm x

wk m wk mw
J k J J

j

       
     

    
         (3-24) 

  0 0

(2 1)π (2 1)ππ

4 2 2

x x
xm x

wk m wk mw
J k J J

       
     

    
           (3-25) 

where 0J  denotes the zero-order Bessel function of the first kind. 

 

 

 

 

 

 

 

 

 

 Fig. 3.4 Shapes of basis functions 

( )zmJ x ( )xmJ x
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3.2.3 Method of Solution 

In this section, an efficient method for solving (3-13) is presented. It is noted that the two 

equations in (3-13) contain four unknowns zJ , xJ , zE  and xE . The latter two unknowns 

zE  and xE , however, can be eliminated by applying Galerkin’s method in the spectral 

domain [12], [13]. The first step is to expand the unknown zJ  and xJ  in terms of known 

basis functions zmJ  and xmJ  as shown in (3-21). After substituting (3-21) into (3-13), one 

takes the inner products of the resultant equations with the known basis functions ( )zk xJ k , 

( )xl xJ k , respectively, for different values of k and l. This process yields the matrix equation 

1 1

0,    1,2,3...
x

N M

zk zz m zm zk zx m xm x
k

m m

J Z c J J Z d J dk k N
 

 
   

 
           (3-26a) 

1 1

0,    1,2,3...
x

N M

xl xz m zm xl xx m xm x
k

m m

J Z c J J Z d J dk l M
 

 
   

 
           (3-26b) 

The right hand sides of (3-26) are zero by virtue of Parseval’s theorem, because the currents 

( )zkJ x , ( )xlJ x  and the field components ( , )zE x h , ( , )xE x h  are nonzero in the 

complementary regions of x. For instance, if the inner product of zE  on the left-hand side of 

(3-13) and ( )zk xJ k  is taken, one obtains 

1 1( ) ( ) 2π ( ) ( ) 0zk x z x x zk zJ k E k dk J x E x dx
 

 
     

In the above, ( )zkJ x  is zero outside the strip and 1( )zE x  is zero on the strip, thereby the 

integrand 1( ) ( )zk zJ x E x  vanishes for any value of x. Therefore, the final boundary condition 

(3-20) is now used.  
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Equations (3-26) will be expressed in matrix form as follows 

(1,1) (1,2)

1 1

0, 1, 2, ...,
N M

km m km m

m m

K c K d k N
 

                  (3-27a) 

 (2,1) (2,2)

1 1

0, 1, 2, ...,
N M

lm m lm m

m m

K c K d l M
 

                       (3-27b) 

where 

(1,1) ( ) ( , ) ( )km zk x zz x z zm x xK J k Z k k J k dk



                                 (3 -28) 

(1,2) ( ) ( , ) ( )km zk x zx x z xm x xK J k Z k k J k dk



                                (3 -29) 

(2,1) ( ) ( , ) ( )lm xl x xz x z zm x xK J k Z k k J k dk



                                 (3-30) 

(2,2) ( ) ( , ) ( )lm xl x xx x z xm x xK J k Z k k J k dk



                                (3 -31) 

For example, if one basis function for zJ  and two basis functions for xJ  are assumed, the 

matrix form of (3-27) with N=1 and M=2 becomes  

1 1 1 1 1 2

1

1 1 1 1 1 2 1

2

2 1 2 1 2 2

  

0

x x x

x x x

x x x

z zz z z zx x z zx x
k k k

x xz z x xx x x xx x
k k k

x xz z x xx x x xx x
k k k

J Z J J Z J J Z J
c

J Z J J Z J J Z J d

d
J Z J J Z J J Z J

 
   
   

    
     
 

  

  

  

            (3-32) 

In order that mc  and md  have nontrivial solutions, the determinant of the matrix must be 

zero, and it is calculated with an assumed value of zk . Then, by applying a root-seeking 

process, the true value of zk  is obtained at each frequency. 
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3.2.4 Discussion of Integration Contours 

The main feature of interest in the spectral-domain analysis is the appropriate path of 

integration used to compute the matrix elements listed in (3-28)-(3-31) from which the 

propagation constant 
zk  of a specific wave mode is to be found. Since the path is an open 

contour in the 
xk  plane, from    to   , different solutions for 

zk  are possible 

depending upon the choice of the integration contour. The conventional path, which lies along 

the real axis in the complex 
xk -plane (contour 0C  of Fig. 3.5), yields the solution for the 

proper (bound) mode. The other two paths 1C  and 2C  in Fig. 3.5 are used to obtain 

leaky-mode solutions [15]. The absence of a ground plane allows the TM0 and the TE0 

surface-wave modes to exist in the single-conductor strip structure [6]. Because both of the 

TM0 and the TE0 surface-wave modes exist for a dielectric slab structure (see Appendix D), so 

two proper surface-wave poles of 
0, TMxpk  and 

0, TExpk  are present in the xk  plane. As seen 

in Fig. 3.5, the path 1C  detours around the poles of the integrand in the xk  plane that 

correspond to the TM0 and the TE0 surface-wave modes of the dielectric slab structure, and 

lies entirely on the top Riemann sheet of the xk  plane, which is the proper sheet for the 

vertical wavenumber yk  [16]. This path is used to obtain the solution for a leaky mode that 

has leakage into only the TM0 and the TE0 surface waves [8]. In order to yield the solution for 

a leaky mode that energy leaks into both the space wave and the surface wave, the path 2C  is 

utilized. This path lies partly on the improper sheet of the xk  plane in the region between the 

branch cuts and includes both proper surface-wave poles for the TM0 and the TE0 modes [6]. 

 

 

 

 

 



 

22 
 

 

 

 

 

 

 

 

For the first higher-order leaky mode of a single conductor strip structure: 

1) propagation constant zk j                                    (3-33) 

2) 
2 2 2

0 0y x zk k k k    , (proper sheet "  ", improper sheet "+")            (3-34) 

3) branch points ( 0 0yk  ): 
2 2

0xb zk k k                               (3-35) 

These branch points define a two-sheeted Riemann surface in the xk  plane. Using the 

Sommerfeld choice for defining the corresponding branch cuts,

: integral path 

   

BP 

TM0 
TE0 

   

   

Im(  ) 

Re(  ) 

Bottom improper sheet 

0
Im( ) 0
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Fig. 3.5 Integral paths of the inverse Fourier transform on the xk  plane. 
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2 2 2

0 0Im( ) Im 0y x zk k k k    , the two sheets correspond to the vertical wavenumver 

0yk  being proper (imaginary part negative) and improper (imaginary part positive). The 

derivation is detailed in Appendix E. 

4) TM0 poles: 
0 0

2 2

, TM , TMxp s zk k k                                    (3-36) 

where 
0, TMsk  is the wavenumber associated with the TM0 surface wave mode of the 

dielectric slab structure. 

5) TE0 poles: 
0 0

2 2

, TE , TExp s zk k k                                     (3-37) 

where 
0, TEsk  is the wavenumber associated with the TE0 surface wave mode of the 

dielectric slab structure. 

 

For the integration of the products in Eqs. (3-28)-(3-31), the Green’s functions meet 

poles along the 
xk  integral path. These poles are encountered when the denominator of eZ  

or hZ  is equal to zero. The zeros of the denominators of eZ  and hZ  correspond to the odd 

TM and odd TE surface wave modes in the dielectric slab waveguide, respectively. That is, 

the zeros of the denominators of eZ  and hZ  give the phase constant of the surface waves 

(
0, TMsk  and 

0, TEsk ) existing in the dielectric slab waveguide. Substituting  
0, TMsk  into Eq. 

(3-36) and 
0, TEsk  into Eq. (3-37), we obtain the locations of the TM0 and TE0 surface wave 

poles (
0, TMxpk  and 

0, TExpk ) in the complex 
xk  plane. By further deforming the path 2C  in 

Fig. 3.6, we obtain a simple contour 2C  that encloses 
0, TMxpk  and 

0, TExpk  in the residue 

sense. This means that the integrands of Eqs. (3-28)-(3-31) involve four residual contributions 

which correspond physically to excitation of the TM0 and TE0 surface waves; therefore we 
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can rearrange each of them as the quotient form as follows: 

( )
( ) ( ) ( )

( )

x
x x x

x

p k
J k Z k J k

q k
                         (3-38) 

where p and q are both analytic at surface wave poles xpk , and ( ) 0xpp k  , ( ) 0xpq k  , 

( ) 0xpq k  . It can be shown that the residue is 

                          
( )( )

Res
( ) ( )x xp

xpx

x xp
k k

p kp k

q k q k



                         (3-39) 

Thus, the spectral integrals need to be evaluated along 2C  and can be simplified to  

, TM , TM0 0

Re( ) Re( ) Re( )

Re( ) Re( ) Re( )

Re( )

Re( )

improper sheet

( ) ( ) ( ) ( ) ( )

( ) ( ) 2π Res ( ) Res ( ) Res

xb xb xb xb xb

xb xb xb xb

xb

xp xp
xb xb

k k k k k

x x x x x
k k k k

k

x x k k
k k

dk dk dk dk dk

dk dk j

  

   





   

    

    

  , TE , TE0 0

( ) Res ( )
xp xpk k

 
 

                                                                (3-40) 

where ( )  is the integrand of Eqs. (3-28)-(3-31). 
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Fig. 3.6 Integral paths of the inverse Fourier transform on the xk  plane. 
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3.2.5 Numerical Results 

    Fig. 3.7 plots the normalized phase constant 
0k  and the normalized attention 

constant 
0k  against the frequency of the first higher order mode of the single conductor 

strip structure with         and            for different strip widths. Because of the 

resonance of the transverse currents, the leaky region obviously shifts to a higher frequency 

for a narrow strip. Also, a narrow strip increases the attention constant. 

 

 

 

 

 

     

     

     

     

       

Fig. 3.7 Behavior of the normalized phase constants and the normalized attenuation 

constants as a function of frequencies for the first higher order mode of the single 

conductor strip structure with         and            for different strip widths. 
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Fig. 3.8 plots the normalized phase constant 
0k  and the normalized attention 

constant 
0k  against the frequency of the first higher order mode of the single conductor 

strip structure with         and            for different dielectric constants. A 

substrate with a high dielectric constant will rapidly increase the normalized phase constant. 

Increasing the dielectric constant of the substrate also increase the attenuation constant.  

 

 

 

 

 

 

 

 

             

             

             

             

       

Fig. 3.8 Behavior of the normalized phase constants and the normalized attenuation 

constants as a function of frequencies for the first higher order mode of the single conductor 

strip structure with         and            for different dielectric constants. 
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Fig. 3.9 plots the normalized phase constant 
0k  and the normalized attention 

constant 
0k  against the frequency of the first higher order mode of the single conductor 

strip structure with         and         for different substrate thicknesses. When 

the thickness of the substrate increases, the normalized phase constant increases, since the 

effective strip width is reduced by the fringing effect. The attenuation constant of a thin 

substrate is less than that of a thick substrate. Most of the energy is focused under the strip 

when the dielectric constant is high or the substrate is thick. The energy leaks out to the air 

more easily if the thickness or the dielectric constant of the substrate is lower or smaller. 

 

 

 

                
                

                

                

       

Fig. 3.9 Behavior of the normalized phase constants and the normalized attenuation 

constants as a function of frequencies for the first higher order mode of the single conductor 

strip structure with         and         for different substrate thicknesses. 
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Chapter 4 

Antenna Design, Simulation and Measurement 

 

Broadband, high gain, and frequency-scanning are the main features of leaky wave 

antennas [9]. In some applications, such as point-to-point communication, the 

frequency-scanning characteristic is undesired. In this chapter, we use a single-conductor strip 

leaky wave antenna, which is proposed in [6]. Unlike other leaky-wave antennas, whose main 

beam changes according to frequency, the single-conductor strip leaky-wave antenna has a 

fixed main beam in the end-fire direction over a broadband region. Compared to the resonant 

antennas such as microstrip patch antenna and dipole antenna, whose radiation patterns are in 

the broadside direction, the pattern feature of single-conductor strip leaky-wave antenna is 

useful in some applications that require a main beam in the end-fire direction. Finally, to 

alleviate the problem of a large back lobe [17], the feeding structure of the single-conductor 

strip leaky-wave antenna is modified with two broadband planar baluns [18]. The simulated 

and measured results are also presented in this chapter. 

 

4.1 DESIGN OF SINGLE-CONDUCTOR STRIP LEAKY-WAVE 

ANTENNA 

4.1.1 Broadband Planar Feeding Structure 

As described above, the single-conductor strip structure has only a single-conductor strip 

on a substrate without a practical ground plane. For the first higher-order leaky mode in this 

structure, an infinite virtual PEC boundary is assumed at the center of the strip, in which the 

longitudinal currents are odd-symmetric and the transverse currents are even-symmetric with 

respect to the center [6]. As shown in Fig. 4.1, these current distributions help us design an 

appropriate feeding structure which generates two out-of-phase currents to feed this 



 

29 
 

 

 

 

 

 

 

single-conductor strip structure and thus excites the first higher order leaky mode. As shown 

in Fig. 4.2, a broadband planar feeding structure which consists of a conventional microstrip 

line、a microstrip-to-balanced-microstrip-line transition、a balanced-microstrip-line T-junction 

power divider and one set of the balanced microstrip lines is changed to form the inverted 

balanced microstrip lines is developed for the first higher-order leaky mode of the 

single-conductor strip line [6]. As shown in Fig. 4.3, gradually tapering the ground plane to a 

width equal to the strip width w makes conventional microstrip line a balanced microstrip line, 

with a strip of positive voltage on the upper side of the substrate and a strip of negative 

voltage on the lower side of the substrate. 

y 

z 

x 

PEC symmetry plane 

To excite the first higher-order leaky mode 

w 

h 

No ground 

Fig. 4.1 An appropriate feeding structure which generates two 

out-of-phase currents is used to feed the single-conductor strip 

structure and thus excites the first higher order leaky mode. 
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(I) (II) (III) (IV) 

Fig. 4.2(a) Diagram of the broadband balun structure used to excite the first higher 

order leaky mode of the single-conductor strip line. The strips of the balun on the 

lower side of the substrate are connected to each other and returned back to the 

original ground plane of the microstrip line. This feeding structure consists of (I) a 

conventional microstrip line; (II) a microstrip-to-balanced-microstrip-line transition; 

(III) a balanced-microstrip-line T-junction power divider and (IV) one set of the 

balanced microstrip lines is changed to form the inverted balanced microstrip lines. 

Fig. 4.2(b) The strip of the balun 

on the upper side of the substrate. 

Inverter 

Fig. 4.2(c) The strip of the balun 

on the lower side of the substrate. 

Circumfluence fabrication  

 

Circumfluence fabrication  
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w 

Fig. 4.3(a) Gradually tapering the ground plane to a width equal to the strip 

width w makes conventional microstrip line a balanced microstrip line. 

L 

(a) (b) (c) 

Microstrip line Transition Balanced microstrip line 

w Top layer strip 

Bottom layer strip 

Fig. 4.3(b) Cross-sectional view of a balanced microstrip line, 

with a strip of positive voltage on the upper side of the substrate 

and a strip of negative voltage on the lower side of the substrate. 
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The position of the positive strip on the upper side of the substrate of the inverted balanced 

microstrip line structure is exchanged with that of the negative strip on the lower side of the 

substrate after a microstrip phase inverter illustrated in Fig. 4.4(a). As shown in Fig. 4.4(b), 

each of these positive and negative strips (strip1 and strip2) is terminated with a chamfered 

right-angled bend in an opposite direction, and each of the subsequent strips (strip3 and strip4) 

is also headed with a chamfered right-angle bend but in the other direction. A slanted gap 

separates two strips on the same side of the substrate. The bent stubs    , and     on the 

upper and lower sides of the substrate, respectively, can be used to compensate for the 

reactance induced by the via holes and the slanted gaps, and may have different lengths. The 

positive strip on the upper substrate is connected vertically through a cylindrical via to the 

subsequent strip on the lower side of the substrate. The negative strip on the lower side is 

similarly connected to the subsequent strip on the upper side. Hence, the positions of the 

positive and negative strips alternate as shown in Fig. 4.4(c). The details of the design method 

for such a microstrip phase inverter structure are presented in [19]. 

 

 

 

 

via 

Fig. 4.4(a) Top view of the inverted balanced microstrip line. 
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Top layer strips Bottom layer strips 

Strip1 Strip3 Strip2 Strip4 

Fig. 4.4(b) The width of the bent stubs:           ; the length of the bent 

stubs:             and           ; the gap width:             ; 

the diameter of vias:           ; the slanted angle is 45 degrees. 

Top layer signal flow 

Bottom layer signal flow 

Fig. 4.4(c) Signal flow graph of the inverted balanced microstrip line. 
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Using a balanced-microstrip-line T-junction power divider with inverted balanced microstrip 

lines substituted for balanced microstrip lines in one of the two output ports, two pairs of 

broadband planar baluns can be formed as shown in Fig 4.5.  

 

 

 

 

 

 

 

 

 

The balun on the lower side of the substrate produces a disturbed radiation because no 

background metal plane is located beneath the single-conductor strip structure. Fig. 4.2(a) 

depicts a method for preventing such disturbed radiation pattern. The strips of the balun on 

the lower side of the substrate are connected to each other and returned back to the original 

ground plane of the microstrip line. Hence, only the balun on the upper side of the substrate 

feeds the single-conductor strip and a closed metal loop is formed on the lower side of the 

substrate. As shown in Fig. 4.2(c), on this closed metal loop, two semicircles beneath the two 

feeding strips are etched out with diameters equal to the widths of the feeding strips, 

respectively, to enhance the electrical field transition from feeding points to the 

single-conductor strip. 

 

 

 

 

  

  

  

  

Fig. 4.5 Two pairs of the broadband planar baluns on the upper and 

lower substrate sides, respectively. 
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4.1.2 Performance of Single-Conductor Strip Leaky-Wave Antenna 

Fig. 4.6 shows the geometry of the single-conductor strip leaky-wave antenna with a 

strip width of 32.5mmw  and a strip length of 100mmL  , on a substrate with a 

dielectric constant of 3.55r   and a thickness of 0.508mmh  . The substrate used to 

design this antenna is Rogers 4003. The geometry of the broadband feeding structure of this 

antenna is shown in Fig. 4.7, and the S parameter magnitudes and phase difference of this 

broadband feeding structure are plotted in Fig. 4.8(a) and Fig. 4.8(b), respectively. The return 

loss is always below -10 dB from 3 GHz to 8 GHz and insertion losses are between -3.4 dB 

and -3.8 dB over the frequency range of 5 GHz to 6 GHz. The phase imbalance is calculated 

as    21 31180 S S    , and is shown to be less than 10
 from 3 GHz to 8 GHz. Within 

the frequency from 5 GHz to 6 GHz, the phase imbalance is less than 2 . Careful attention is 

paid to the feeding points in the edge of strip to exploit the leaky-wave bandwidth as much as 

possible. As shown in Fig. 4.6, the feeding points are offset from the edges by 8.075 mm. The 

length of leaky-wave antenna is related to the attenuation constant   and can be determined 

by 
2 0.01Le    (the inequality ignores dissipative losses in the structure). This design is call 

for a 99% radiation efficiency [9]. 

 

 

 

 

         

 

          

 

      

 

      

 
         

 

       

   

  
  

Fig. 4.6 Geometry of the single-conductor strip leaky-wave antenna. 
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(4 mm) 

Fig. 4.7(a) Side view of the broadband planar feeding structure. 

Transition 

Microstrip line   Balanced 

microstrip line 

Microstrip line 

Inverter 

Fig. 4.7(b) Top view of the broadband planar feeding structure. 

Port1  

Port2  

Port3  

(31 Ω) 

(45 Ω) 

(50 Ω) 

(1.13 mm) 

(1.35 mm) 

(2.71 mm) 

(17 mm) 

(6 mm) 
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Fig. 4.8(a) Simulated S-parameter magnitudes of the broadband planar feeding structure. 

Fig. 4.8(b) Simulated phase difference of the broadband planar feeding structure. 



 

38 
 

The propagation constant of the single-conductor strip leaky-wave antenna is decided by 

the strip width w, the thickness h of the substrate, and the dielectric constant   . Using the 

SDA discussed previously, we obtain the normalized phase constant   and the normalized 

attenuation constant   of the first higher-order leaky mode of the single-conductor strip 

leaky-wave antenna, as shown in Fig. 4.9. For the leaky-wave antenna structure, the 

space-wave radiation roughly starts at a frequency that the real power propagating starts to 

exceed the imaginary power, and ends when        [11]. Therefore, the radiation region 

of this first higher-order leaky mode is from 2.8 GHz to 7 GHz. According to Fig. 4.9, the 

value of the normalized phase constant ranges from 0.91 to 1 in the space-wave leaky region; 

this means that the main beam of this antenna is fixed in the end-fire direction over a 

broadband region. 

 

 

 

  

Radiation region 

2.8 GHz~7 GHz 

       

     

     

 3.55

  32.5 mm

   0.508 mm

r

w

h

 





 

Fig. 4.9 Normalized propagation constant of the single-conductor strip structure with a strip width 

of 32.5mmw , a dielectric constant of 3.55r  , and a thickness of 0.508mmh  . 

w h    
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As shown in Fig. 4.10, the simulated return loss of this single-conductor strip leaky-wave 

antenna is below -10 dB from 4.35 GHz to 6.85 GHz. 

 

 

 

 

 

Fig. 4.11(a)-(h) present the simulated E-plane (x-y plane) and H-plane (y-z plane) radiation 

patterns of this single-conductor strip leaky-wave antenna at 5.2 GHz, 5.4 GHz, 5.6 GHz, and 

5.8 GHz, respectively. According to the simulated H-plane (y-z plane) radiation patterns, we 

can see that the main beam of this antenna is always fixed in the end-fire direction as 

expected. 

 

 

 

4.35 GHz~6.85 GHz 

Fig. 4.10 Simulated return loss of the single-conductor strip leaky-wave antenna. 
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Fig. 4.11(a) Simulated E-plane (x-y plane) radiation pattern of the 

single-conductor strip leaky-wave antenna with a gain of 6.24 dBi at 5.2 GHz. 

Fig. 4.11(b) Simulated H-plane (y-z plane) radiation pattern 

of the single-conductor strip leaky-wave antenna at 5.2 GHz. 
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Fig. 4.11(d) Simulated H-plane (y-z plane) radiation pattern 

of the single-conductor strip leaky-wave antenna at 5.4 GHz. 

  

  

  

  

Fig. 4.11(c) Simulated E-plane (x-y plane) radiation pattern of the 

single-conductor strip leaky-wave antenna with a gain of 6.96 dBi at 5.4 GHz. 
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Fig. 4.11(e) Simulated E-plane (x-y plane) radiation pattern of the 

single-conductor strip leaky-wave antenna with a gain of 7.23 dBi at 5.6 GHz. 

Fig. 4.11(f) Simulated H-plane (y-z plane) radiation pattern 

of the single-conductor strip leaky-wave antenna at 5.6 GHz. 
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Fig. 4.11(g) Simulated E-plane (x-y plane) radiation pattern of the 

single-conductor strip leaky-wave antenna with a gain of 7.51 dBi at 5.8 GHz. 

Fig. 4.11(h) Simulated H-plane (y-z plane) radiation pattern 

of the single-conductor strip leaky-wave antenna at 5.8 GHz. 
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4.2 REDUCTION OF THE BACK LOBE 

4.2.1 Consideration during Design Procedure 

From the radiation patterns of our single-conductor strip leaky-wave antenna, we observe 

that the back lobe is quite large. After analyzing the single-conductor strip leaky-wave 

antenna, we conclude that the feeding structure of this antenna causes this undesired effect. As 

shown in Fig. 4.12, one of the reasons why the feeding structure produces this undesired 

radiation is the circumfluence fabrication of the feeding structure [17]. In order to alleviate 

this undesired radiation from the feeding structure, we turn two broadband planar baluns 

upside down and attach themselves to the left and right sides of the feeding structure, 

respectively. Fig. 4.13 shows the geometry of this modified single-conductor strip leaky-wave 

antenna.  

 

 

 Fig. 4.12 Surface current in the current returning paths in the ground plane. 
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Fig. 4.13(a) Top view of the modified single-conductor strip leaky-wave antenna. 

Fig. 4.13(b) Back view of the modified single-conductor strip leaky-wave antenna. 

31.9 mm 

19 mm 

8 mm 

35 mm 

100 mm 

110 mm 

32.5 mm 

53 mm 

60 mm 

2.26 mm 

1.13 mm 

1.13 mm 

  

  
  

  

  
  



 

46 
 

4.2.2 Broadband Planar Balun 

When two microstrip-to-slotline transitions are connected back-to-back-as shown in Fig. 

4.14(a), an additional 180
 phase shift is introduced in the signal path [20]. This can be 

explained qualitatively by considering the E-field distribution associated with the 

microstrip-to-slotline transition. Referring to Fig. 4.14(b), we note that the electric field in the 

input microstrip line (near the transition) is in the  y-direction. This produces a slotline wave 

with the E-field in the x-direction. At the second transition an x-directed component of E will 

cause the E-field in the output microstrip to lie in the y-direction. Thus, in addition to the 

phase change introduced by the line length, the E-field direction changes from –y to y, which 

amounts to an equivalent 180
 phase change. This phase change is independent of frequency 

(at least in a first-order analysis) and can thus be used in wide-band circuits.  

 

 

 

 

 

Fig. 4.15 shows the geometry of the broadband planar balun [18]. The return loss is always 

below -10 dB from 2.45 GHz to 5.85 GHz. The magnitude difference has a maximum 0.55 dB 

of separation over the frequency range of 3 GHz to 6 GHz. The phase imbalance is calculated 

as    21 31180 S S    , and is shown to be less than 10
 from 4.2 GHz to 6 GHz.  
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Slotline 
Microstrip Slotline 
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E E 

Input 

Output 
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c d 

Fig. 4.14(a) Two microstrip-to-slotline transitions connected back-to-back 

for 180
 phase change and (b) mechanism for 180

 phase change. 
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35 mm 

19 mm 

11 mm 

Fig. 4.15(a) Top view of the broadband planar balun. 

Fig. 4.15(b) Back view of the broadband planar balun. 
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Fig. 4.16(a) Simulated S-parameter magnitudes of the broadband planar balun. 

Fig. 4.16(b) Simulated phase difference of the broadband planar balun. 
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4.2.3 Comparison of Simulated Results Between Original and Modified 

Single-Conductor Strip Leaky-Wave Antenna 

Fig. 4.17 shows the comparison of the surface currents in the current returning paths in 

the ground plane between the original and the modified single-conductor strip leaky-wave 

antenna, a significant decrease of the surface current is observed. The comparison of the 

simulated E-plane (x-y plane) radiation patterns between the original antenna and the 

modified antenna from 5.2 GHz to 5.8 GHz is shown in Fig. 4.18(a)-(g). Table 4.1 shows the 

simulated results of the gain and the back lobe values. Table 4.2 shows the simulated results 

of the front-to-back ratio values, and the comparison between them are plotted in Fig. 4.19. 

Simulated results show significant improvement of the front-to-back ratio of this antenna. 

 

 

 

 

Fig. 4.17 Comparison of the simulated surface currents in the current returning paths in the 

ground plane between the original and the modified single-conductor strip leaky-wave 

antenna. 
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Fig. 4.18(a) Comparison of the simulated E-plane (x-y plane) radiation 

patterns between the original and the modified single-conductor strip 

leaky-wave antenna at 5.2 GHz. 

Fig. 4.18(b) Comparison of the simulated E-plane (x-y plane) radiation 

patterns between the original and the modified single-conductor strip 

leaky-wave antenna at 5.3 GHz. 
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Fig. 4.18(c) Comparison of the simulated E-plane (x-y plane) radiation 

patterns between the original and the modified single-conductor strip 

leaky-wave antenna at 5.4 GHz. 

Fig. 4.18(d) Comparison of the simulated E-plane (x-y plane) radiation 

patterns between the original and the modified single-conductor strip 

leaky-wave antenna at 5.5 GHz. 

  

  

  

  



 

52 
 

 

 

 

 

 

 

 

 

Fig. 4.18(e) Comparison of the simulated E-plane (x-y plane) radiation 

patterns between the original and the modified single-conductor strip 

leaky-wave antenna at 5.6 GHz. 

Fig. 4.18(f) Comparison of the simulated E-plane (x-y plane) radiation 

patterns between the original and the modified single-conductor strip 

leaky-wave antenna at 5.7 GHz. 

  

  

  

  



 

53 
 

 

 

 

 

 

 

Frequency (GHz) 5.2 5.3 5.4 5.5 5.6 5.7 5.8 

Original antenna 

gain (dBi) 
6.24 6.67 6.89 7.1 7.28 7.31 7.58 

Modified antenna 

gain (dBi) 
5.86 5.67 6.85 7.6 8 8.53 9.03 

Original antenna  

back lobe (dBi) 
-6.67 -4.2 -3.12 -2.66 -2.6 -3.29 -4.16 

Modified antenna  

back lobe (dBi) 
-8.38 -12.63 -15.93 -27.94 -19 -10.6 -6.54 

Fig. 4.18(g) Comparison of the simulated E-plane (x-y plane) radiation 

patterns between the original and the modified single-conductor strip 

leaky-wave antenna at 5.8 GHz. 

Table 4.1 Simulated gain and the back lobe of the original and the modified 

single-conductor strip leaky-wave antenna 
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Frequency (GHz) 5.2 5.3 5.4 5.5 5.6 5.7 5.8 

Original antenna  

front-to-back ratio (dB) 
12.91 10.87 10.01 9.76 9.88 10.6 11.74 

Modified antenna 

front-to-back ratio (dB) 
14.24 18.3 22.78 35.54 27 19.13 15.57 

 

 

 

 

 

 

Table 4.2 Simulated front-to-back ratio of the original and the modified 

single-conductor strip leaky-wave antenna 

Fig. 4.19 Comparison of the simulated front-to-back ratio between the original 

and the modified single-conductor strip leaky-wave antenna. 
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4.2.4 Fabrication and Measurement of Modified Single-Conductor Strip Leaky-Wave 

Antenna 

    Based on the design procedures in Sec. 4.1, 4.2.1, and 4.2.2, a modified single-conductor 

strip leaky-wave antenna is designed and fabricated as shown in Fig. 4.20. 

 

 

 

 

 

 

Fig. 4.20(a) Top view of the fabricated modified single-conductor strip leaky-wave antenna. 

Fig. 4.20(b) Back view of the fabricated modified single-conductor strip leaky-wave antenna. 
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Fig. 4.21 presents the measured and simulated return loss; the measured return loss of this 

modified antenna is below -10 dB from 4.31 GHz to 6.85 GHz. 

 

 

 

 

 

The comparison of the measured and simulated E-plane (x-y plane) radiation patterns from 5.2 

GHz to 5.8 GHz is shown in Fig. 4.22(a)-(g). Table 4.3 shows the measured and simulated 

results, including the antenna gain and the back lobe values. Table 4.4 shows the measured 

and simulated results of the front-to-back ratio values, and the comparison between them are 

plotted in Fig. 4.23. The measured results of this modified antenna are in good agreement 

with the simulated results. 

Fig. 4.21 Meauured and simulated return loss of the modified single-conductor 

strip leaky-wave antenna. 
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Fig. 4.22(a) Meauured and simulated E-plane (x-y plane) radiation patterns 

of the modified single-conductor strip leaky-wave antenna at 5.2 GHz. 

Fig. 4.22(b) Meauured and simulated E-plane (x-y plane) radiation patterns 

of the modified single-conductor strip leaky-wave antenna at 5.3 GHz. 
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Fig. 4.22(c) Meauured and simulated E-plane (x-y plane) radiation patterns 

of the modified single-conductor strip leaky-wave antenna at 5.4 GHz. 

Fig. 4.22(d) Meauured and simulated E-plane (x-y plane) radiation patterns 

of the modified single-conductor strip leaky-wave antenna at 5.5 GHz. 
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Fig. 4.22(e) Meauured and simulated E-plane (x-y plane) radiation patterns 

of the modified single-conductor strip leaky-wave antenna at 5.6 GHz. 

Fig. 4.22(f) Meauured and simulated E-plane (x-y plane) radiation patterns 

of the modified single-conductor strip leaky-wave antenna at 5.7 GHz. 
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Frequency (GHz) 5.2 5.3 5.4 5.5 5.6 5.7 5.8 

Simulated 

gain (dBi) 
5.86 5.67 6.85 7.6 8 8.53 9.03 

Measured 

gain (dBi) 
6.77 4.95 6.48 7.68 7.94 8.57 9.13 

Simulated  

back lobe (dBi) 
-8.38 -12.63 -15.93 -27.94 -19 -10.6 -6.54 

Measured  

back lobe (dBi) 
-7.7 -11 -19.97 -31.03 -18.86 -10.98 -7.65 

Fig. 4.22(g) Meauured and simulated E-plane (x-y plane) radiation patterns 

of the modified single-conductor strip leaky-wave antenna at 5.8 GHz. 

Table 4.3 Measured and simulated results of the gain and the back lobe of the modified 

single-conductor strip leaky-wave antenna 
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Frequency (GHz) 5.2 5.3 5.4 5.5 5.6 5.7 5.8 

Simulated  

front-to-back ratio (dB) 
14.24 18.3 22.78 35.54 27 19.13 15.57 

Measured  

front-to-back ratio (dB) 
14.47 15.95 26.45 38.71 26.8 19.55 16.78 

 

 

 

 

 

 

Table 4.4 Measured and simulated front-to-back ratio of the modified single-conductor 

strip leaky-wave antenna 

Fig. 4.23 Comparison of the measured and simulated front-to-back ratio of the 

modified single-conductor strip leaky-wave antenna. 
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Chapter 5 

Conclusion and Future Work 

 

5.1 CONCLUSION 

    This thesis describes the propagation characteristics of the first higher-order leaky mode 

of the single-conductor strip structure. Both surface wave modes TE0 and TM0 exist in the 

single-conductor strip structure, so the behavior of the space-wave and surface-wave modes 

differs from that of open transmission lines covered with ground planes, and so needs further 

investigation. To alleviate the large back lobe of the single-conductor strip leaky-wave 

antenna, the feeding structure of this antenna is modified with two broadband planar baluns. 

The measured results of radiation patterns reveal significant improvement of the front-to-back 

ratio of this antenna. 

 

5.2 FUTURE WORK 

    In future work, there are still some topics that we can research. For the modified feeding 

structure of the single-conductor strip leaky-wave antenna, one challenge is how to design a 

wideband balun which has a smaller size. Another challenge is how to increase the bandwidth 

of this modified leaky-wave antenna which has the front-to-back ratio more than 20 dB.  
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APPENDIX A 

 

Part 1: 

Maxwell' equations:                      Lorentz condition (or gauge): 
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2) If only M  exists 

    
1
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FH j F j F
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3) If J  and M  both exist  
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It is possible to combine the scalar and vector potentials and the Lorentz condition and form a 

single vector called the Hertz vector, from which all the field components can be derived. Let 

us define the electric Hertz vector   such that 

 
1

e e eA A j
j

    


              

 

TMy : 

ˆ ˆ( , , ) ( , , )

0

y y e yA A x y z a x y z a

F

  


 

 

Let 2 2ˆ ˆ, , =y j z j k      

 
1 1

andA AE j A j A H A
 

        

2 2

2 2
2 2

2 2

2 2

1 1 1

ˆ

1 1
0

ˆ

1 1 1

ˆ

y ye e
x x

y y e y

y ye e
z z

A A
E j H

x y y x y z z

E j k A k H
y y y

A A
E j H

y z y y z x x

 



 

   
      

     

    
         

    

   
    

     

 

 



 

67 
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APPENDIX B 

 

Apply the boundary conditions to (3-10): 

1 2x xE E  at y=h 

1 2 2 2 2 2( cosh sinh ) ( cosh sinh )e h e e h h

x y z x y zjk A jk A jk B h C h jk B h C h             

 (B-1) 
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1 1- -
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                                                                (B-2) 

2 3x xE E  at y=0 

2 3

e h e h
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2 3z zE E  at y=0 

2 3

e h e h
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2 1 ( )x x z xH H J k   at y=h 
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 (B-5)                                                                                   

2 1 ( )z z x xH H J k    at y=h 
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3 2 0x xH H   at y=0 

3 2

e h e h

z x z z x zjk D jk D jk C jk C                                             (B-7) 

3 2 0z zH H   at y=0 

3 2

e h e h

x z z x z zjk D jk D jk C jk C                                             (B-8) 

Multiply (B-1) by 
xk  and (B-2) by 

zk  and add the resulting equations; then multiply (B-1) 

by 
zk  and (B-2) by 

xk  and subtract the latter from the former. Similar procedures are also 

applied to (B-3) and (B-4). The results are 

1 2 2 2 2cosh sinhe e e

y y yA B h C h                                             (B-9) 

2 2cosh sinhh h hA B h C h                                                (B-10) 

2 3

e e

y yB D                                                            (B-11) 

h hB D                                                               (B-12) 

From (B-9)-(B-12), derive eB , hB , 
eC , 

hC  in terms of eA , hA , eD , hD , and substitute 

them into Eqs. (B-5)-(B-8) to obtain 

12 23 12 23[ ] [ ] =e e h h

z x zjk F A P D jk R A Q D J                                    (B-13) 

12 23 12 23[ ] [ ] =e e h h

x z xjk F A P D jk R A Q D J                                    (B-14) 

12 23 12 23[ ] [ ] = 0e e h h

z xjk P A F D jk Q A R D                                    (B-15) 

12 23 12 23[ ] [ ] = 0e e h h

x zjk P A F D jk Q A R D                                    (B-16) 
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where 
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Multiply (B-13) by zk  and (B-14) by xk  and add the resulting equations; then multiply 

(B-13) by xk  and (B-14) by zk  and subtract the latter from the former. Similar procedures 

are also applied to (B-15) and (B-16). 

2 2
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From (B-17)-(B-20), we obtain 
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23 232 2

1
[ ]

( )

h

x z z x

x z h

A j R k J R k J
k k

 
 

                                       (B-22) 

12 122 2

1
[ ]

( )

e

z z x x

x z e

D j P k J P k J
k k

  
 

                                      (B-23) 

12 122 2

1
[ ]

( )

h

x z z x

x z h

D j Q k J Q k J
k k

 
 

                                      (B-24) 

Where 

12 23 12 23e F F P P           1 2 2 3 1 2 2 3h R R Q Q    
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Substitute equations (B-21)-(B-24) into the next equations extracted from (3-10) 

1 1

2 2
1 23 1 2323 23

2 2 2 2

( , ) + 

1 1
[ ] [ ]

( ) ( )

e h

z z x z y x

z y x z yx x z
z x

x z e h x z e h

E E k y h jk A jk A

k F k k Fk R k k R
J J

k k k k



 

  

    
     

    ( B - 2 5 ) 

1 1

2 2
1 23 1 2323 23

2 2 2 2

( , )  

1 1
[ ] [ ]

( ) ( )

e h

x x x x y z

x z y x yx z z
z x

x z e h x z e h

E E k y h jk A jk A

k k F k Fk k R k R
J J

k k k k



 

   

    
     

    ( B - 2 6 ) 

When this process is completed, we obtain the relationship between the Fourier transforms of 

the electric fields and those of the current distributions: 

2 2
1 23 1 2323 23

2 2 2 2

1

2 2
1 1 23 1 2323 23

2 2 2 2

1 1
     

( ) ( )

1 1
     

( ) ( )

z y x z yx x z

x z e h x z e hz

x x z y x yx z z

x z e h x z e h

k F k k Fk R k k R

k k k kE J

E k k F k Fk k R k R

k k k k

 

 

    
                  

    
       

                

z

xJ

 
 
  

(B-27) 

Substituting 23F , 23R , e  and h  into (B-27), then we obtain (3-13). 
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APPENDIX C 

 

0
2 2

1
π ( )

a
j x

a
e dx J a

a x

 





 , 0J : zeroth-order Bessel function of the first kind 

 
2

cos (2 1) /
( ) , 1, 2, ...,

1 (2 / )
xm

m x w
J x m M

x w


 


 and 2x w  

 

 

2

2
2

2 2

2 2
2 2

2

2
2

( )

cos[(2m 1) / ]

1 (2 / )

cos[(2m 1) / ] cos[(2m 1) / ]
cos( ) sin( )

1 (2 / ) 1 (2 / )

(2m 1) (2m
cos cos

1 1

2 21 (2 / )

x

x

jk x

xm x xm

w
jk x

w

w w

w wx x

x x
w

w

J k J x e dx

x w
e dx

x w

x w x w
k x dx j k x dx

x w x w

k w k w
x

w
dx

x w



 









 










 
 

 

   
 
  







 

 2

2
2

2 2

2 2
2 2

(2m 1) (2m 1)

2 2

2 2
2 2

1)

1 (2 / )

(2m 1) (2m 1)
sin sin

1 1

2 21 (2 / ) 1 (2 / )

1 1

2 21 (2 / ) 1 (2 / )

x x

w

w

x x
w w

w w

k w k w
j x j x

w ww w

w w

t

x
w

dx
x w

k w k w
x x

w w
j dx j dx

x w x w

e e
dx dx

x w x w

 



 



 

      
   
   

 



 
 
 



      
   
    

 

 
 





 

 

(2m 1) (2m 1)

2 22 / 1 1

2 21 1

0 0

1 1

2 2 2 21 1

(2 1)π (2 1)ππ

4 2 2

x xk w k w
j t j t

x w

x x

e w e w
dt dt

t t

wk m wk mw
J J

       
   
   

 


 

       
     

    

 

 

The other basis functions can be obtained by similar procedure. 
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APPENDIX D 

 

First, we will assume that the waves propagate along a uniform guiding structure in the 

+z direction with a propagation constant j    . For harmonic time dependence with an 

angular frequency  , the dependence on z and t for all field components can be described by 

the exponential factor
( ) ( )z j t j t z z j t ze e e e e           . Using a phasor representation in 

equations relating field quantities we may replace partial derivatives with respect to t and z 

simply by products with j  and z , respectively; the common factor 
( )j t ze  

 can be 

omitted. Then, let us examine the interrelationships among the six components in Cartesian 

coordinates by expanding the two source-free ( 0, 0J M  ) curl equations. 

 

From From

(D-1a) (D-2a)

(D-1b) (D-2b)

(D-1c) (D-2c)

z z
y x y x

z z
x y x y

y yx x
z z

E j H H j E

E H
E j H H j E

y y

E H
E j H H j E

x x

E HE H
j H j E

x y x y

 

   

   

 

    

 
    

 

 
      

 

  
    

   

 

 

Note that partial derivatives with respect to z have been replaced by multiplications by 

  . All the component field quantities in the equations above are phasors that depend only 

on x and y, the common 
ze 
 factor for z-dependence having been omitted. By manipulating 

these equations we can express the transverse field components xH , yH , xE , and yE  in 

terms of the two longitudinal components zE  and zH .  
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Then we have 

2

2

2

2

1
(D-3)

1
(D-4)

1
(D-5)

1
(D-6)

z z
x

c

z z
y

c

z z
x

c

z z
y

c

E H
H j

k y x

E H
H j

k x y

E H
E j

k x y

E H
E j

k y x

 

 

 

 

  
  

  

  
   

  

  
   

  

  
   

  

 

where 

    2 2 2

ck k                               (D-7) 

 

Typically the cross section of the dielectric slab waveguide would be rectangular with 

height h. To simplify the analysis of this structure, we reduce the problem to a 

two-dimensional one (its length in the x-direction is infinite) so that 0x   . We also 

assume that the dielectric is lossless and that waves propagate in the +z-direction, and the 

structure is infinite in that direction. Let 0d r    and 0  be the permittivity and 

permeability, respectively, of the dielectric slab, which is situated in free space 0 0( , )  . The 

behavior of TM and TE modes will now be analyzed separately. 
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cos( )yk y  sin( )yk y  

( 2)y de  
 

( 2)y de 
 



 

76 
 

Transverse Magnetic (TMz) Modes: 0zH  , ( , )xH y z , ( , )yE y z , ( , )zE y z  

The TMz mode fields that can exist within and outside the dielectric slab. Inside and 

outside the dielectric region, the fields can be represented by a combination of even and odd 

modes as shown in the figure above. For transverse magnetic waves, 0zH  . Since there is 

no x-dependence, we write the phasor ( , )zE y z  as ( ) z

zE y e  . Therefore, we have a 

second-order differential equation as follows: 

                    
2 2

22
0

( )
( ) 0yz

z
y

d E y k
E y

kdy

 
  
 

                      (D-8) 

where 

       
2 2 2 2 2 2

0 0 0 0,y d yk k                            (D-9) 

Solutions of Eq. (D-1) must be considered in both the slab and the free-space regions, and 

they must be matched at the boundaries. 

In the slab region we assume that the waves propagate in the +z-direction without attention 

(lossless dielectric); that is, we assume 

      j                              (D-10) 

The solution of Eq. (D-1) in the dielectric slab may contain both a sine term and a cosine term, 

which are an odd and an even function, respectively, of y: 

      ( ) sin cos ,
2

z o y e y

h
E y E k y E k y y                  (D-11) 

where 

     
2 2 2

0y dk                               (D-12) 

In the free-space regions ( 2y h  and 2y h ) the waves must decay exponentially so that 

they are guided along the slab and do not radiate away from it. We have 

( 2)
,

( 2)
,

2

2

(D-13 )
( )

(D-13 )

y h
u

z y h
l

hy

hy

C e a
E y

C e b





 








 

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where 

     
2 2 2 2

0 0 0yk                              (D-14) 

Equations (D-5) and (D-7) are called dispersion relations because they show the nonlinear 

dependence of the phase constant   on  . 

At this stage we have not yet determined the values of yk  and  ; nor have we found the 

relationships among the amplitudes oE , eE , uC  and lC . In the following, we will consider 

the odd and even TM modes separately. 

a) Odd TM modes:  

    For odd TM modes, ( )zE y  is described by a sine function that is antisymmetric with 

respect to the 0y   plane. The only other field components, ( )yE y  and ( )xH y , are 

obtained from Eqs. (D-3) and (D-6), respectively. 

i) In the dielectric region, 2y h : 

                            ( ) s i nz o yE y E k y                           (D-15) 

      ( ) cosy o y

y

j
E y E k y

k


                       (D-16) 

     ( ) cosd
x o y

y

j
H y E k y

k


                      (D-17) 

ii) In the upper free-space region, 2y h : 

     
( 2 )( ) s i n

2

y y h

z o

k h
E y E e   

  
 

                       (D-18) 

     
( 2 )( ) s i n

2

y y h

y o

k hj
E y E e 



  
   

 
                  (D-19) 

     
( 2 )0( ) s i n

2

y y h

x o

k hj
H y E e 



  
  

 
                 (D-20) 

Where uC  in Eq. (D-13a) has been set to equal sin
2

y

o

k h
E , which is the value of ( )zE y  
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in Eq. (D-15) at the upper interface, 2y h . 

iii) In the lower free-space region, 2y h  : 

     
( 2 )( ) s i n

2

y y h

z o

k h
E y E e  

  
 

                     (D-21) 

     
( 2 )( ) s i n

2

y y h

y o

k hj
E y E e





 
   

 
                  (D-22) 

     
( 2 )0( ) s i n

2

y y h

x o

k hj
H y E e





 
  

 
                 (D-22) 

Where lC  in Eq. (D-13b) has been set to equal sin
2

y

o

k h
E , which is the value of ( )zE y  

in Eq. (D-15) at the lower interface, 2y h  . 

    Now we must determine yk  and   for a given angular frequency of excitation  . 

The continuity of xH  at the dielectric surface requires that ( 2)xH h  computed from Eqs. 

(D-17) and (D-20) be the same. We have 

     
0 1

tan (Odd TM modes)
2

y y

y y r

jk k h

k k




                (D-23) 

b) Even TM modes:  

For even TM modes, ( )zE y  is described by a cosine function that is symmetric 

with respect to the 0y   plane: 

     ( ) c o s ,
2

z e y

h
E y E k y y                      (D-24) 

The other nonzero field components, yE  and xH , both inside and outside the dielectric 

slab can be obtained in exactly the same manner as in the case of odd TM modes. Instead 

of Eq. (D-23), the characteristic relation between yk  and   now becomes  

     
0 1

cot (Even TM modes)
2

y y

y y r

jk k h

k k




               (D-25) 
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    From Eqs. (D-12) and (D-14) it is easy to see that the phase constant,  , of propagating 

TM waves lies between the intrinsic phase constant of the free space, 0 0 0k    , and that 

of the dielectric, 0d dk    ; that is, 

0 0 0 d         

As   approaches the value of 0 0   , Eq. (D-14) indicates that   approaches zero. An 

absence of attenuation means that the waves are no longer bound to the slab. The limiting 

frequencies under this condition ( 0 0    ) are called cutoff frequencies of the dielectric 

waveguide. From Eq. (D-12) we have 0 0 0y c dk        at cutoff. Substitution into Eqs. 

(D-23) and (D-25) with   set to zero yields the following relations for TM modes.  

 

At cutoff: 

0 0 0 0 0 0

0 0 0 0 0 0

4, ... 5, ...

where 3

Odd TM Modes Even TM Modes

tan 0 cot 0
2 2

2π π, 0, 2, 4, ... 2π π, 1, 3, 5, ...

, 0, 2, (D-26) , 1, 3, (D-27)
2 1 2 1

co ce
d d

co d ce d

co ce

r r

c =

h h

f h n n f h n n

nc nc
f n f n

h h

 
       

       

 



   
      

   

     

   
 

8 8
10 where 3 10c =m m

s s


 

It is seen that 0cof   for 0n  . This means that the lowest-order odd TM mode (TM0) 

can propagate along a dielectric-slab waveguide regardless of the thickness of the slab. As the 

frequency of a given TM wave increases beyond the corresponding cutoff frequency,   

increases and the wave clings more tightly to the slab. 
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Transverse Electric (TEz) Modes: 0zE  , ( , )xE y z , ( , )yH y z , ( , )zH y z  

    For transverse electric waves, 0zE  . Since there is no x-dependence, we write the 

phasor ( , )zH y z  as ( ) z

zH y e  . Therefore, we have a second-order differential equation as 

follows: 

                     
2 2

22
0

( )
( ) 0yz

z
y

d H y k
H y

kdy

 
  
 

                    (D-28) 

where 2

yk  and 2

0yk  are the same as that given in Eq. (D-9). The solution for ( )zH y  may 

also contain both a sine term and a cosine term: 

     ( ) sin cos ,
2

y o y e y

h
H y H k y H k y y                  (D-29) 

where yk  has been defined in Eq. (D-12). In the free-space regions ( 2y h  and 2y h ) 

the waves must decay exponentially. We write 

( 2)
,

( 2)
,

2

2

(D-30 )
( )

(D-30 )

y h
u

z y h
l

hy

hy

C e a
H y

C e b





 







 
 



where   is defined in Eq. (D-14). Following the same procedure as used for TM waves, we 

consider the odd and even TE modes separately. Besides ( )zH y , the only other field 

components are ( )yH y  and ( )xE y , which can be obtained from Eqs. (D-4) and (D-5). 

a) Odd TE modes: 

i) In the dielectric region, 2y h : 

                            ( ) sinz o yH y H k y                           (D-31) 

      ( ) c o sy o y

y

j
H y H k y

k


                      (D-32) 

     ( ) cosd
x o y

y

j
E y H k y

k


                     (D-33) 
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ii) In the upper free-space region, 2y h : 

      
( 2)( ) sin

2

y y h

z o

k h
H y H e   

  
 

                     (D-34) 

     
( 2 )( ) s i n

2

y y h

y o

k hj
H y H e 



  
   

 
                (D-35) 

     
( 2 )0( ) s i n

2

y y h

x o

k hj
E y H e 



  
   

 
               (D-36) 

iii) In the lower free-space region, 2y h  : 

     
( 2 )( ) s i n

2

y y h

z o

k h
H y H e  

  
 

                    (D-37) 

     
( 2 )( ) s i n

2

y y h

y o

k hj
H y H e





 
   

 
                 (D-38) 

     
( 2 )0( ) s i n

2

y y h

x o

k hj
E y H e





 
   

 
               (D-39) 

    A relation between yk  and   can be obtained by equating ( )xE y , given in Eqs. 

(D-33) and (D-36), at 2y h . Thus, 

   
0

t a n ( O d d T E m o d e s )
2

y y

y y

jk k h

k k


                  (D-40) 

which is seen to be closely analogous to the characteristic equation, Eq. (D-23), for odd TM 

modes. 

b) Even TE modes: 

For even TE modes, ( )zH y  is described by a cosine function that is symmetric with 

respect to the 0y   plane. 

     ( ) c o s ,
2

z e y

h
H y H k y y                     (D-41) 

The other nonzero field components, ( )yH y  and ( )xE y  both inside and outside the 
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dielectric slab can be obtained in the same manner as for odd TE modes. The characteristic 

relation between yk  and   is closely analogous to that for even TM modes as given in Eq. 

(D-25): 

   
0

c o t ( E v e n T E m o d e s )
2

y y

y y

jk k h

k k


                 (D-42) 

It is easy to see that the expressions for the cutoff frequencies given in Eqs. (D-26) and (D-27) 

apply also to TE modes. Like the lowest-order ( 0n  ) TM mode, the lowest-order odd TE 

mode (TE0) has no cutoff frequency. 

8 8

4, ... 5, ...

where 3 10 where 3 10

Odd TE Modes Even TE Modes

, 0, 2, (D-43) , 1, 3, (D-44)
2 1 2 1

co ce

r r

c = c =

nc nc
f n f n

h h

m m
s s

 

 

   
 
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APPENDIX E 

 

 

 

 

 

 

Step1: 

 

 

 

 

 

 

 

 

 

1) 0 00 0
Re( ) Im( ) Im( )

0Let Im( ) 0 : asy yy y
j k j k yjk y k y

yk e e e y
          

2) 0 00 0
Re( ) Im( ) Im( )

0Let Im( ) 0 : asy yy y
j k j k yjk y k y

yk e e e y
          

3) 0 00 0
Re( ) Im( ) Im( )

0Let Im( ) 0 : 0 asy yy y
j k j k yjk y k y

yk e e e y
          

4) 0 00 0
Re( ) Im( ) Im( )

0Let Im( ) 0 : 0 asy yy y
j k j k yjk y k y

yk e e e y
          

B1 B2 

T1 T2 

Re(   ) 

Im(   ) 

: branch cut, 
2 2 2

0 0Im( ) Im 0y x zk k k k     

: branch point, 0 0yk   

: proper surface wave poles (TM0, TE0) 
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B1&B2: The E and H fields propagate along the ± y-direction and the amplitudes 

increase exponentially with distance along the direction of propagation, respectively. 

T1&T2: The E and H fields propagate along the ± y-direction and the amplitudes 

decay exponentially with distance along the direction of propagation, respectively. 

 

Step2: 

              
                                                                 

  

 

 

 

 

 

 

 

 

Step3: 

1) 
2 2 2 2 2 2 2 2

0 0 0 0 2x y z yk k k k k k j          , where zk j    

   When 0 0 (branch point)yk  , 2 2 2 2

0Re( ) 0xk k      , 2Im( ) 2 0xk    

2) 
2 2 2 2 2 2 2xp s z sk k k k j        , where zk j    

   
2 2 2 2R e ( ) 0x p sk k      , 2Im( ) 2 0xpk    

T21 T22 

T14 T13 

Re(   
 ) 

Im(   
 ) 

B11 B12 

B24 B23 

Re(   
 ) 

Im(   
 ) 

T           B           
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T                                 B 

 

Step4: 

         
                                  

      

 

 

 

 

 

 

 

 

T13 

Re(  
 ) 

Im(  
 ) 

B23 B24 

B12 B11 

Re(  
 ) 

Im(  
 ) 

T13 T14 

T22 T21 

Re(  ) 

Im(  ) 

T14 

T13 
T21 

T21 T22 

T22 

T14 

Top sheet           

B23 

Re(  ) 

Im(  ) 

B24 

B23 
B11 

B11 B12 

B12 

B24 

Bottom sheet           

T13, T14: Re(   ) > 0 ; T21, T22: Re(   ) < 0 

 

B11, B12: Re(   ) > 0 ; B23, B24: Re(   ) < 0 

 


