Applied Soft Computing 9 (2009) 1170-1176

Contents lists available at ScienceDirect

Applied

utin

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Controlling the movement of crowds in computer graphics by using
the mechanism of particle swarm optimization
Ying-ping Chen*, Ying-yin Lin

Department of Computer Science, National Chiao Tung University, 1001 Ta Hsueh Road, HsinChu City 300, Taiwan

ARTICLE INFO ABSTRACT

Article history:

Received 21 September 2007

Received in revised form 14 September 2008
Accepted 15 March 2009

Available online 25 March 2009

This paper presents a uniform conceptual model to co-operate with particle swarm optimization (PSO)
for controlling the movement of crowds in computer graphics. According to the PSO mechanism, each
particle in the swarm adopts the information to automatically find a path from the initial position to the
optimum. However, PSO aims to obtain the optimal solution instead of the searching path, while the
purpose of this work concentrates on the control of the crowd movement, which is composed of the
generated searching paths of particles. Hence, in order to generate seemingly natural, appropriate paths
of people in a crowd, we propose a model to work with the computational facilities provided in PSO.
Compared to related approaches previously presented in the literature, the proposed model is simple,
uniform, and easy to implement. The results of the conducted simulations demonstrate that the coupling
of PSO and the proposed technique can generate appropriate non-deterministic, non-colliding paths for
the use in computer graphics for several different scenarios, including static and dynamic obstacles,

Keywords:

Crowd control

Moving path generation
Computer graphics

Particle swarm optimization
Adaptive behavior

moving targets, and multiple crowds.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays virtual crowds created by using the technologies of
computer graphics can be frequently seen in games, movies,
commercials, and the like. Creating computer animations for
crowds is largely applied to movies and games but in fact, it is not
an easy task to create virtual human beings behaving like real
human beings. Many research fields and sophisticated techniques
are involved to achieve acceptable results. In order to create high
quality virtual human beings or animals, at least three facets must
be taken into consideration [1]: The first one is appearance
modeling. Lots of computer graphic techniques have been
developed to create a vivid human including the shapes of face
and body, skin textures, hairstyle, and clothes. Appearance largely
affects people to judge how much the computer creation is similar
to a real person. Then, the second facet is to produce realistic,
smooth, and flexible motions in possible situations. Most existing
methods for creating motions are parameter-based models with
numerous parameters for controlling the motions. It is difficult to
have a single flexible, versatile model which can fit in all scenarios.
Finally, realistic high-level behavioral actions have to be generated
for the virtual human being. It is undoubtedly an extremely

* Corresponding author. Tel.: +886 3 5712121x31446; fax: +886 3 6126520.
E-mail addresses: ypchen@nclab.tw (Y.-p. Chen), yylin@nclab.tw (Y.-y. Lin).

1568-4946/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
do0i:10.1016/j.as0c.2009.03.004

difficult problem because defining what kinds of behaviors are
human itself is worth a philosophical debate. To resolve the issue
technically, many artificial intelligence and agent-based techni-
ques are adopted to achieve the goal, while the techniques are still
being developed and improved.

Particle swarm optimization (PSO) [2] is an optimization
paradigm proposed in the field of evolutionary computation for
searching the problem domain and reaching the global optimum.
The concept of PSO is easy to comprehend, and the mechanism is
easy to implement. The ability of PSO to reach the position of the
optimum creates the possibility to automatically generate non-
deterministic paths of virtual human beings from one specified
position to another. In this study, we focus on creating a realistic
smooth and flexible moving pattern for virtual human beings by
utilizing the computational facilities offered by PSO. Particularly,
we present a uniform conceptual model to co-operate with PSO to
simulate the movement of all the persons in a crowd based on the
analogy between a particle swarm and a human crowd. By
“uniform,” we mean that functions of a single family is used to
describe all kinds of objects in the simulation system, including the
target, static obstacles, dynamic obstacles, as well as persons. A
person can be considered as a particle, which would like to find a
way to reach the best solution. The proposed model can be used in
several different scenarios, including static obstacles, moving
targets, and multiple crowds. The figures as well as the video clips
for the simulations in those scenarios are presented.

mailto:ypchen@nclab.tw
mailto:yylin@nclab.tw
http://www.sciencedirect.com/science/journal/15684946
http://dx.doi.org/10.1016/j.asoc.2009.03.004

Y.-p. Chen, Y.-y. Lin/Applied Soft Computing 9 (2009) 1170-1176 1171

The remainder of this paper is organized as follows. Section 2
describes the related studies on the control of crowds in computer
graphics to give the readers some background information. Section
3 briefly introduces swarm intelligence and the methodology of
particle swarm optimization. Section 4 proposes the key idea as
well as the framework to utilize PSO for controlling the movement
of crowds. Section 5 demonstrates the simulation results in several
common scenarios. Finally, Section 6 concludes this paper.

2. Related work

Collective behavior had been studied for a long time in many
research domains but was applied to computer graphics and
computer simulation only recently. In the field of computer
graphics, Reynolds [3,4] created a distributed behavior model to
simulate the aggregate motion of the flock. Bouvier and Guilloteau
[5] presented an application specifically oriented to the visualiza-
tion of urban space dedicated to transportation. Brogan and
Hodgins [6] described an algorithm for controlling the movements
of creatures that travel as a group. Still [7] developed a model to
simulate the crowd as an emergent phenomenon using simulated
annealing and mobile cellular automata. Helbing et al. [8] used a
model of pedestrian behavior to investigate the mechanisms of
panic and jamming by uncoordinated motion in crowds.

Moreover, there are many studies on the realistic and real-time
performance for crowd control. Aubel and Thalmann [9] used a
multi-layered approach to handle muscles of varying shape, size,
and characteristics and does not break in extreme skeleton poses.
Tecchia and Chrysanthou [10] showed a real-time visualization
system based on image-based rendering techniques for densely
populated urban environments. Aubel et al. [11] presented a
hardware-independent technique that improves the display rate of
animated characters by acting on the sole geometric and rendering
information. Ulicny and Thalmann [12] defined a modular
behavioral architecture of a multi-agent system allowing auton-
omous and scripted behavior of agents supporting variety. Treuille
et al. [13] presented a real-time crowd model based on continuum
dynamics. Stylianou and Chrysanthou [14] used a flow grid to
measure flow over an area and navigate the crowd.

Although there are many approaches for controlling the move-
ment of crowds in computer graphics, only a few researchers try to
use evolutionary algorithms for this purpose. Kwong and Jacob [15]
presented breeding experiments of dynamic swarm behavior
patterns using an interactive evolutionary algorithm. Kim and Shin
[16]incorporated several specifically designed mechanisms into the
conventional particle swarm optimization methodology for simu-
lating decentralized swarm agents. Instead of modifying the
conventional PSO and designing different mechanisms for different
issues, in this paper, we propose a conceptual model to work with
PSO for creating a stochastic, non-deterministic, non-colliding path
for each agent with a uniform approach. With the proposed
framework, there is no need for sophisticated mathematical models
and complicated algorithmic implementations. Generating paths for
each person in the crowd can be flexible and easy to control.

3. Particle swarm optimization

Swarm intelligence is a concept and a methodology used in
artificial intelligence, possibly first proposed by Beni and Wang
[17] in 1989. It studies the collective behaviors of agents
interacting in the environment. There is no centralized control
to manage the agents, but all agents or some of the agents,
depending on the adopted neighborhood structure or other
equivalent algorithmic design, exchange their information to
cooperate and emerge group behaviors. Many swarm intelligence
systems are inspired by nature, including ant colonies, bird

flocking, and fish schooling. They have been adopted in a lot of
research fields, such as ant colony optimization (ACO) [18],
stochastic diffusion search (SDS) [19], PSO [2], and the like. For
many hard, real-world problems, methods developed based on the
idea of swarm intelligence can deliver acceptable or good results.
Among these swarm intelligence systems, PSO models a solution as
a flying particle on a hyperplane and conducts continual move-
ments in the search space.

PSO was proposed by Kennedy and Eberhart [2] in 1995,
inspired by the social behavior of bird flocking or fish schooling.
PSO is a population-based optimization method and considers
each potential solution as a particle. In a D-dimensional problem, a
particle is represented as

T
X =[X1,X,...,Xp] .

Each particle has a position, a velocity, and an objective value
determined by the objective function. It uses the experiential and
social metaphor to move toward the expected and currently
known best solution. The velocity is varied according to Eq. (1):

Vi(t + 1) = w*v;(t) + crxr1#(Pprs — Pi(t)) + CaxT2%(Ppes
- pi(t)), (1)

where v; and p; are the velocity and position of the ith particle. w is
the weight for the previous velocity. pg is the best position where
this particle had been, and pgs is the overall global best position
ever achieved by the swarm. c; and ¢, are the cognitive and social
parameters, controlling the level of influence of pgg and pges to
make different movements. r; and r, are random numbers
uniformly distributed in [0, 1]. The stochastic scheme makes the
velocity more diverse.

After computing the velocity, the position can then be updated
according to Eq. (2):

pi(t+1) = pi(t) +vi(t +1). (2)

For every iteration, each particle updates its velocity and position.
The new position is evaluated by the given objective function, and
an objective value is assigned to the particle accordingly. Based on
the objective value, pgs and pggs might be updated and have
influence in the next iteration. Because the fundamental concept is
quite similar to that of the movement of pedestrians, in this study,
we would like to simulate a crowd with the optimization process in
which particles move toward the expected and currently known
best solutions.

Although PSO does possess certain characteristics of the crowd
behavior, it is still incompatible with the use for controlling the
crowd movement in computer graphics. Firstly, the particle in PSO
is absolutely free to fly everywhere in the given multidimensional
space, i.e., the search space. However, the given environment for a
crowd may have obstacles, and the pedestrians in the crowd must
avoid collisions, including the collision with the given obstacles
and the collision with their fellow pedestrians, where other
pedestrians can be considered as dynamic obstacles. These
dynamic obstacles are not predictable and may appear and
disappear in the environment at any moment. Moreover, it is
important to make a virtual pedestrian to walk smoothly and
naturally, instead of just oscillate uncertainly and strangely. The
walking path must be reasonable and appropriate. For these
essential reasons, we propose a uniform model to work with the
original PSO for path creation in the next section.

4. The proposed framework
In the light of the analogy between swarms and crowds, we may

consider a person as a particle and a group as a swarm. To resolve the
aforementioned incompatibility issues, we propose a framework to

1172 Y.-p. Chen, Y.-y. Lin/Applied Soft Computing 9 (2009) 1170-1176

co-operate with PSO such that the movement of particles can be
made similar to that of real people.

4.1. PSO essence

We control the movement on the x-z plane,! just like to have a
bird’s eye view on the top of people’s heads. The position and the
velocity can be represented by 2D vectors, such as p; = [py, Pi]”
and v; = [V, V;]". Although it is unnecessary, simply for conve-
nience, we separate the velocity into a direction part, D; = [Dj, D,»Z]T
and a speed part, S. The speed part S is used to model and match the
various paces of different people and has a maximum limit. Each
particle holds the information about itself, including a position, a
direction, a speed, and an objective value. Based on PSO, the
direction is computed as

Di(t + 1) = w=D;(t) + c1xr1#(Piprs — Pi(t)) + C2xT2%(Ppss — Pi(t))s

where (pigs — p;i(t)) and (pges — p;(t)) are both unit vectors for
indicating the direction only. Other parameters are defined as the
same parameters of the velocity in the conventional PSO.

After deciding the direction of the particle, the position can be
computed as

pi(t+1) = p;(t) + Si(t + 1)*Di(t + 1),

where S;(t + 1) is the speed part. The range of speed is [0, V], and
Vmax 1S set by a step size with a random number or some extra
parameters adopted by the user. The speed is updated proportional
to the reverse of the particle’s objective value. Such a design can fit
the different pace of each person and make the environment more
dynamic. Because the whole environment is established as a
landscape for minimization, if a particle approaches an obstacle,
the speed will be slower, due to greater objective values, for the
particle to avoid the obstacle. The mechanism can eliminate the
collision issues and reduce the oscillatory situation that occurs in
PSO. As a consequence, the generated paths may look more natural
and realistic.

At each step, each particle gets an objective value to measure
the current position. At the same time, the local best position and
the global best position are updated according to the newly
obtained objective value. Such a PSO mechanism, with appropriate
parameter settings, will make the particles in the group converge
to the target in a high probability. Moreover, we can adopt different
objective functions to arrange the final status of a group, such as a
line, a circle, or other possible, desired shapes.

4.2. Objective function

As a matter of fact, PSO is only interested in the final positions of
particles and cares nothing about the particle paths at each step. It
is very different from crowds in the real world. In the real world,
not everywhere can be stepped on or gone through. There are
obstacles, such as holes and walls. Moreover, a person normally
also does not step on another person. These situations contribute
to the incompatibility of PSO for controlling the movement of
crowds. In order to resolve these incompatibility issues with a
uniform approach, we firstly design an objective function to
represent the specified target, the static obstacle, as well as all the
particles.

4.2.1. Cost function for a unit obstacle

The objective value of a particle is affected by two factors: the
target and the obstacles. For the purpose to use the optimization
ability of PSO, we make the target as the minimum on the x-z

! Because the y-axis usually represents the height in the 3D space in computer
graphics, the ground surface is the x-z plane.

plane, considered as the mathematical search space. If a particle
approaches the target, it should get a better objective value. All the
particles in the crowd move toward the region with lower
objective values just like water flows downward. On the other
hand, the objective value rises as penalty if the particle comes close
to or even possibly touches obstacles. Since PSO used in this study
is for solving a minimization problem, we will view the objective
value as “cost” in the remainder of this paper.

We use an exponential function to represent everything in the
search space, including the target and the obstacles. Exponential
functions are adopted because they are easy to calculate and to
manipulate. Functions of other families can also be adopted in a
similar way as long as they can fulfill the need of users. The
function adopted in this study for calculating the cost of an object p
relative to another object g is defined as

Cost (qu) = exp (_((px 7 QX)Z + (pz — qz)22>>7 (3)
(0p, +0q,)

(0p, +0g,)°

where (q,,q;) is the the position the object g, and (oy,,04,) is the
scope of q. q can be a target, an obstacle, or a particle. For example, if
an obstacle’s area is 30 by 50, we can set (0q,,0¢,) = (15,25).If itis
the target, (oq,,0q,) is set to the whole search area. (p,, p,) is the
position of a particle for which the cost is calculated. (op,,0p,) is
the scope in the search space occupied by p. Fig. 1 shows the
exponential model for an obstacle. The box indicates the obstacle
to be represented by the function. The scope for an object can be
easily adjusted and controlled with the designed parameter.

The proposed exponential model is similar to the 2D normal
distribution with a mean and a standard deviation. The difference
is that every exponential function representing an object in the
system has its own volume size, while the volume size is always
one for the normal distribution. The different sizes in volume make
it relatively easy to model the landscape for pedestrians to go
through as well as for the space occupied by particles and objects. A
complex landscape with a minimum position as the target can be
created by overlaying these exponential functions with identical or
different parameters. Therefore, the overall objective function
proposed in this study can be described as

1

Cost(p,g)’

Fopj(P) = Cops¥MaX,co(Cost (p,0)) +

where O is the set of all obstacles, g is the target for particles to
reach, and c,, is a constant for the user to adjust the relative
importance between the target and obstacles.

It has to be noticed that the set O contains not only all the
specified obstacles, such as holes and walls, on the landscape but

=== obstacle
—e— P01 (scope 10)
—&— P2 (scope 20)

T T T

100 80 60 40 20 0 20 40 60 80 100
Distance

Fig. 1. The exponential model for an obstacle.

Y.-p. Chen, Y.-y. Lin/Applied Soft Computing 9 (2009) 1170-1176 1173

also other people in the crowd. We adopt the identical model for
everything in the scenario instead of using different models for
objects of different kinds. By doing so, no extra model has to be
introduced into the system when new objects are included, such as
moving cars or running animals. Furthermore, the proposed model
induces an interesting situation for PSO. Every particle actually
“sees” a different landscape due to the relative relations among
particles. Such a situation does not exist in common optimization
applications. Under this condition, according to the results of this
study, with appropriate parameter settings, PSO can accomplish its
assigned task, and the particles converge to the desired goal via
reasonable paths in a high probability.

4.2.2. Local search for collision avoidance

Even with the specifically designed objective function, the
possibility for a particle to pass through an obstacle still need to be
eliminated. In this study, we implement this functionality as a form
of local search, which is a common mechanism used with PSO.
When we get the cost for a new position of a particle, whether or
not the new position is accepted should be checked. We use a
stochastic mechanism to decide whether the new position should
be accepted according to the cost. The probability to accept a newly
generated position is computed by

Prob(f)=1- ka (4)

where f is the cost for the newly generated position, and k is a
constant to control the behavior when a particle come close to the
obstacle. The shape of the exponential function is quite appro-
priate to estimate whether or not a particle is too close to an
obstacle. It helps the particle to avoid collisions and makes the
path smoother. Moreover, there exists a hard boundary when
o =1 according to Eq. (3), because the probability will be 0 if
f =e"1. Therefore, we can theoretically verify that collisions
under this checking mechanism can never happen. Similar to the
use of exponential functions, Eq. (4) can also be possibly replaced
by other kinds of functions as long as the user deems fit. Fig. 2
shows the probability to accept a new position around an obstacle
according to Eq. (4). Different values of k can be used to
conveniently and appropriately specify the accepting probability
around the obstacle.

If the cost is not accepted, another direction must be taken to
create a smooth path. According to the original direction, a random
angle less than 20° is added to or subtracted from the direction
vector of the particle to find an acceptable position. The position of
a lower cost is chosen to be the new position.

o
®

Probability
o
[o2]

0.4F .
I obstacle
0.2+ —k=-05|]
——-k =1
0 +k = 2
100 80 60 40 20 0 20 40 60 80 100

Distance

Fig. 2. The probability to accept a new position around an obstacle.

Fig. 3. The paths of an influx simulated by the original PSO.

5. Moving path generation in different scenarios

With the proposed framework, we generate the moving paths
for several common scenarios on the x-z plane and show the
movement of crowds. In addition to the figures displayed in this
paper, for animated visualization, readers can watch the video clips
at http://www.nclab.tw/SM/2007/02/video/ and the .avi file-
names will be indicated in the following sections. Readers can also
directly access the file with its URL, such as http://www.nclab.tw/
SM/2007/02/video/01.avi.

5.1. Crowd simulation by using the original PSO

We first attempt to simulate a crowd by using the original PSO.
The parameter settings of this experiment for PSO are w = 1.0,
c; =0.5, c; =0.5, and the population size is 20. Because the
purpose in this study is to generate moving paths, the initial
positions of the particles are assigned according to the need of
users. The velocities are initialized at random. Fig. 3 shows an
influx. Each solid line indicates a path of a person. People initially
are scattered and finally converge to the target. Fig. 4 shows a
stream, in which people on the left side move toward the right side.
We can observe that they converge first and move toward the
target together. For an influx or a stream, the appropriate paths can
be created under the mechanism of the original PSO. The video
clips 01.avi and 02.avi display the dynamics for the two cases.

5.2. Crowd simulation with static obstacles

The original PSO may make all the persons to reach the goal, and
sometimes an obstacle can be avoided with certain probability as
shown in Fig. 5(a). For this experiment, the parameter settings are
w =1.0,cq =0.5,c, = 0.5, and the population size is 20. The static
obstacle is modeled at (500, 15) with 0 = 30 and k = 1. As we can
clearly observe in another typical run, the original PSO does not
have the ability to make the particles to avoid obstacles. The
particles may fly through obstacles, which should not be stepped
on or penetrated, as shown in Fig. 5(b) as well as in 03.avi.

Fig. 4. The paths of a stream simulated by the original PSO.

http://www.nclab.tw/SM/2007/02/video/
http://www.nclab.tw/SM/2007/02/video/01.avi
http://www.nclab.tw/SM/2007/02/video/01.avi

1174 Y.-p. Chen, Y.-y. Lin/Applied Soft Computing 9 (2009) 1170-1176

(b) Some particles penetrate the obstacle.

Fig. 5. The original PSO does not guarantee to avoid obstacles. (a) No particle
penetrates the obstacle. (b) Some particles penetrate the obstacle.

Therefore, the proposed collision avoidance mechanism has to be
employed. The simulation results will be given in the next section
with dynamic obstacles considered simultaneously.

5.3. Crowd simulation with dynamic obstacles

Avoiding collisions between persons in a crowd is a necessity
for generating reasonable moving paths. In this study, we do not
resort to any extra method or mechanism to handle this issue. In
the proposed framework, each person is considered as an dynamic
obstacle with o = 5 and k = 1. If two persons come close, the cost
of each person will be checked, and an acceptable position for each
person will be determined. The parameter settings are w = 1.0,
c; = 0.5, c; = 0.5, and the population size is 20. Fig. 6(a) presents
the paths when two persons almost collide. The dotted line is the
path from A to B, and the solid line is the one from B to A. Fig. 6(b)
and (c) show the jinking situation. More people are simulated in
Fig. 7. Each circle represents a person, and the dotted lines are their
waking paths. 04.avi shows the movement of a crowd with
collision avoidance. The simulation results demonstrate the
generated paths without collisions. Furthermore, 05.avi, in
which the static obstacle is modeled at (500, 15) with o = 30
and k = 1, demonstrates that static and dynamic objects can be
avoided simultaneously as mentioned in Section 5.2.

5.4. Crowd simulation with a dynamic target

In addition to the fundamental path generation presented in the
previous sections, we also conducted experiments on the crowd

A B

Ol

{(a) The complete meeting paths.

C Sy CaSu
L o

(b) The first action to dodge. (¢} The second action to dodge.

Fig. 6. The dodge of two people with opposing directions is simulated. (a) The
complete meeting paths. (b) The first action to dodge. (c) The second action to
dodge.

ol ‘:@ el
o o -
_______ -
semzzriE b2 .-O
=

-

Fig. 7. A walking crowd of which each particle avoids others.

simulation with a dynamic target in our proposed framework. The
parameter settings are w=1.0, ¢; =0.5, ¢c; =0.5, and the
population size is 20. As the target moves, the crowd is capable
of following the moving target as shown in Fig. 8. The path of the
goal is designed as a circle with radius = 250. Fig. 9 depicts the
generated circular paths according to the moving goal. 06.avi
shows the process of the particles chasing the moving goal. When a
particle comes close to the target, the target goes one further step.
We can simulate a continuous chasing by setting up very small
steps for particles and the goal.

5.5. Simulation for multiple crowds

For the proposed framework, simulating multiple crowds going
toward different directions and/or targets is a simple extension.
Multiple groups can be simply overlaid on the same area such that
more complex scenes are made possible. Fig. 10 demonstrates the
scenario in which four groups at the four corners move toward
their respective opposite corners. The parameter settings for each
group are w = 1.0, c; = 0.5, c; = 0.5, and the population size is 10.
For observation, we use four different kinds of symbols to
represent the persons in different groups. Each group consists of

e LT
e -

* £

(a) A moving goal. (b) The paths of the crowd.

Fig. 8. The moving goal can control a group to behave as expected. (a) A moving goal.
(b) The paths of the crowd.

Fig. 9. The paths of a crowd following a dynamic goal moving circularly.

Y.-p. Chen, Y.-y. Lin/Applied Soft Computing 9 (2009) 1170-1176 1175

s A
iy A oo
\\\ .-‘/
- 4 -
\\ P
\ /
\ /
‘ 1
| ;
! [
!"r “!

'l‘ ‘\“
--""' “"‘-..
ez T
- ~
p
"I \\‘

{ b wee
i I 2%
= ! L-X-X-X-]
(a)t=0
1 I
{ ;
\ 4
X 7
% ~
LS
""-"--_‘ AcEoay
\‘\ * . r"'
‘I - lr
h P i
i At !
H a®es® i
! oo i
: & "9 Pg0 %

/ @
o’ e
".,_—-----.‘\‘

-~ Y
3 Y
y \
£ Y
{ \

{ }

E 1
() t =120
[} ']

i ;

\
\ 4
A y
-“---‘-“ .4"-”-
D %o .
\‘ e o "
R %L . [
\ f
E . . !
i . i i
! o o i
a" & * 4 |‘|
4 a R N
,—/ a =
T
- N .
8 ‘f, ‘\ -
i / A
{ i
(e) t = 240

s 0%eo
et R o
L . ° %
V4 N
i A
{ :
(b) t = 60
Y f
| ;
\ s
A 4
% o
.
T, i
™ Y
\) /
A 00, o {
=. OIS
H i
/ - \
/. . \
.-'/ > .
- .
p——— e
NS
" e
’ by
p/ A
/ '-
i 3
']
(d) t = 180
a b i
o\ /
e, g 4
oo X v
o N v
g adiaaee
'''' . ° Lol
-, L
‘\
f/
\ F
\ {
H i
} H
! \
/ b
/ .. "
A . 9
- . - \""-..
e : — . ok
. R -
4 LY
a A ,f b
a § 3
8 { :
(f) t = 300

Fig. 10. Four groups move toward the opposite corners without any collisions. (a) t = 0, (b) t = 60, (c) t = 120, (d) t = 180, (e) t = 240, (f) t = 300.

ten members. As time goes by, persons in each group can pass by
the obstacles and persons in other groups and reach the designated
goals. 07.avi provides the animation for the scenario. The
dynamics of the four groups can be easily observed via the video
clip.

5.6. Control of the 3D landscape

The proposed model can also be used to control and model the
3D landscape of the given virtual environment and therefore to
obtain the desired crowd movement. 08.avi, 09.avi, and
10.avi demonstrate the whole process of a crowd passing over
mountains of three different heights. The parameter settings in this
experiment are w = 1.0, ¢; = 0.5, c; = 0.5, and the population size
is 300. As we can see in 08.avi, the mountain is highest, and no
one goes to the top of the mountain. As the height of mountain

becomes lower, more individuals are able to step on the top of the
mountain and go straightforward toward the destination.

6. Conclusions

This paper proposed a uniform model to co-operate with
particle swarm optimization to simulate crowd movements. We
considered that people finding a walkable path to their target as
the process to find the optimal solution by PSO. The advantages of
PSO are simple, fast, and easy to implement. By the PSO
mechanism, each person can search for a path automatically.
However, particles controlled by the original PSO may penetrate
obstacles. Hence, we developed the collision avoidance mechan-
ism in the form of local search to work with PSO. Static obstacles,
dynamic obstacles, and the target were all modeled with
exponential functions. Combining these exponential functions,

1176 Y.-p. Chen, Y.-y. Lin/Applied Soft Computing 9 (2009) 1170-1176

the scenario environments were constructed, and the particle
paths were generated by the proposed framework.

The proposed method in this study is compact, coherent and
controls the movement of crowds easily. Based on the uniform
model, we can construct a complex “crowd-scape” by stacking up
several crowds. The created paths in such an environment can
therefore be more dynamic and stochastic. Although this study is not
the first to apply the concept of swarm intelligence on crowd control,
to the best of our limited knowledge, it retains the most design of the
original PSO and almost leaves PSO unmodified. The proposed model
is flexible, versatile and can be used to represent a variety of objects.

The future work includes understanding how the parameters
affect the paths, determining whether functions of other classes
can be employed for creating better paths, and integrating the
framework into the existing computer graphics systems. Theore-
tical insights into the crowd behavior might also be obtained
through the development of the proposed framework.

Acknowledgments

The work was supported in part by the National Science Council
of Taiwan under Grant NSC-96-2221-E-009-196 and Grant NSC-96-
2627-B-009-001. The authors are grateful to the National Center for
High-performance Computing for computer time and facilities.

References

[1] N. Magnenat-Thalmann, D. Thalmann, Virtual humans: thirty years of research,
what next? The Visual Computer 21 (12) (2005) 997-1015.

[2] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the 1995
IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942-1948.

[3] C.W. Reynolds, Flocks, herds, and schools: a distributed behavioral model, Com-
puter Graphics 21 (4) (1987) 25-34.

[4] C.W. Reynolds, Steering behaviors for autonomous characters, in: Proceedings of
Game Developers Conference, 1999, pp. 763-782.

[5] E. Bouvier, P. Guilloteau, Crowd simulation in immersive space management, in:
Proceedings of the Eurographics Workshop on Virtual Environments and Scien-
tific Visualization’96, 1996, pp. 104-110.

[6] D.C.Brogan, J.K. Hodgins, Group behaviors for systems with significant dynamics,
Autonomous Robots 4 (1) (1997) 137-153.

[7] G.K. Still, Crowd dynamics, Ph.D. thesis, Warwick University, 2000.

[8] D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic,
Nature 407 (2000) 487-490.

[9] A. Aubel, D. Thalmann, MuscleBuilder: a modeling tool for human anatomy,
Journal of Computer Science and Technology 19 (5) (2004) 585-595.

[10] F. Tecchia, Y. Chrysanthou, Real-time rendering of densely populated urban
environments, in: Proceedings of the Eurographics Workshop on Rendering
Techniques, 2000, pp. 83-88.

[11] A. Aubel, R. Boulic, D. Thalmann, Real-time display of virtual humans: levels of
details and impostors, IEEE Transactions on Circuits and Systems for Video
Technology 10 (2) (2000) 207-227.

[12] B.Ulicny, D. Thalmann, Towards interactive real-time crowd behavior simulation,
Computer Graphics Forum 21 (4) (2003) 767-775.

[13] A. Treuille, S. Cooper, Z. Popovi¢, Continuum crowds, ACM Transactions on
Graphics 25 (3) (2006) 1160-1168.

[14] S. Stylianou, Y. Chrysanthou, Crowd self organization, streaming and short path
smoothing, Journal of WSCG 14 (2006) 33-40.

[15] H. Kwong, C. Jacob, Evolutionary exploration of dynamic swarm behaviour, in:
Proceedings of IEEE Congress on Evolutionary Computation 2003 (CEC 2003),
2003, pp. 367-374.

[16] D.H. Kim, S. Shin, Self-organization of decentralized swarm agents based on
modified particle swarm algorithm, Journal of Intelligent and Robotic Systems
46 (2) (2006) 129-149.

[17] G. Beni,]. Wang, Swarm intelligence in cellular robotics systems, in: Proceedings
of the NATO Advanced Workshop on Robots and Biological Systems, 1989, pp.
703-712.

[18] M. Dorigo, Optimization, learning and natural algorithms, Ph.D. thesis, Politecnico
di Milano, Italy, 1992.

[19] J.M. Bishop, Stochastic searching networks, in: Proceedings of the First IEE
International Conference on Artificial Neural Networks, 1989, pp. 329-331.

	Controlling the movement of crowds in computer graphics by using the mechanism of particle swarm optimization
	Introduction
	Related work
	Particle swarm optimization
	The proposed framework
	PSO essence
	Objective function
	Cost function for a unit obstacle
	Local search for collision avoidance

	Moving path generation in different scenarios
	Crowd simulation by using the original PSO
	Crowd simulation with static obstacles
	Crowd simulation with dynamic obstacles
	Crowd simulation with a dynamic target
	Simulation for multiple crowds
	Control of the 3D landscape

	Conclusions
	Acknowledgments
	References

