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摘    要 

在傳統多媒體通訊系統中，解碼端有低運算複雜度的設計限制。隨著半導體

技術進步，解碼端的運算能力越來越高。在解碼端可能採用先進的影像處理技術

增加系統效能。本論文討論如何利用解碼端影像技術增進系統效能。我們將這樣

的概念利用在兩個不同的應用上：分散式編碼系統和穩健編碼系統。 

分散式編碼系統利用解碼端影像處理技術來作畫面間預測，系統中將複雜的

畫面間預測從編碼端移到解碼端，因此可以大幅度降低編碼端的複雜度。我們提

出利用解碼端畫面間預測誤差分析來最佳化編碼系統。我們提出預測誤差分類的

概念，先分析解碼端預測誤差分佈然後分類，讓每一個分類裡的預測誤差統計特

性接近。最後再分別將每一類誤差編碼。這樣分類編碼的方法可以節省 3%~10%

的位元數。我們更進一步提出基於視覺分析的編碼方法，我們提出解碼端預測誤

差的視覺分析，從視訊紋理分佈、運動分佈、、、等特性分析視覺誤差的分佈，

接下來加強視覺誤差的編碼。這樣的基於視覺分析的編碼方法和傳統編碼法相比

可以節省 10%~18%位元數，在主觀視覺上更有明顯的改善。我們提出了分散式編
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碼系統中編碼方法的非平等數據保護版本，實驗結果顯示我們提出的編碼法可以

提供非平等數據保護的特性，這個特性可以開啟很多分散式編碼系統新的研究方

向。 

我們也將解碼端影像處理技術用在穩健編碼系統的設計。我們基於階層式 B

畫面編碼架構，提出了兩個穩健編碼系統。第一個系統是利用一種混合的階層式

B畫面編碼架構可以提升解碼端錯誤修復的效果。第二個系統是基於多重描述編

碼，我們利用最佳化的方法來設計一套可以根據影像內容和網路品質動態調整的

編碼方法，實驗結果顯示我們提出來的系統都有較好的編碼容錯能力。 
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Abstract 

In traditional multimedia communication systems, the computation complexity of the 

decoder is constrained. Due to advance of semiconductor technologies, the 

computation capability of decoder increases. It is possible to apply advanced image 

processing technologies on the decoder side. This thesis discusses how to utilize 

decoder side image processing technologies to improve system performance. We 

apply this concept on two applications: distributed video coding and robust video 

coding. 

Distributed video coding adopts decoder side video prediction technologies to do 

inter-frames coding. The systems move complexity of inter-frame prediction from 

encoder to decoder, so the complexity of encoders decreases dramatically. We utilize 

analysis of inter-frame prediction error to optimize the compression system. The error 

classification is proposed: the decoder analyze macroblocks and classify them into 

different groups based on prediction error characteristics.  Macroblocks in the same 

group have similar error characteristics and are encoded by a channel code. The 

classification based coding method would save 3%-10% bit rates. Furthermore, we 
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proposed a perceptual based coding method. Perceptual error on the decoder side is 

identified by analyzing image texture distribution, motion behavior, and so on. 

Wyner-Ziv (WZ)  bits are then concentrated on correcting these perceptual error. 

Compared with original coding system, the proposed perceptual based coding can 

save 10%-18% bit rates.  Subjective quality improvement is even more. 

We also apply decoder side video processing technologies in robust video coding 

systems. Two systems are proposed based hierarchical-B coding structures. The first 

system adopts a hybrid hierarchical-B structure to improve the quality of error 

concealment method. The second system is based on multiple description video 

coding. We proposed a R-D optimization framework that adaptively allocates 

redundancy based on video content and channel conditions. Experimental results 

show the proposed system can provide good error resilient capability. 

 

 

Keywords: distributed video coding, multiple description video coding, decoder side 

inter-frame prediction, video restoration. 

 

  



v 
 

Acknowledgement 
 

能夠順利完成博士論文首先要感謝我的指導教授：蔡文錦老師 和 李素瑛老

師。蔡文錦老師研究上提供我各種資源，論文討論中提供我各種想法，一路上給

了我很多的建議和支持。無論大小問題，蔡文錦老師都會親切用心的替學生著想，

給予各種幫助，真的很感激老師的幫忙。在博士研究過程中，李素瑛老師就像一

個慈祥的大家長一樣無私的給予學生各種幫助，在學生低潮的時候給學生鼓勵和

替學生打氣，學生遇到瓶頸時，老師立刻就會幫學生想各種解決的方法。老師時

時刻刻都能給學生一股安定的力量，這樣的力量在我的博士生涯中是非常重要的。

很感激兩位老師的幫忙，因為有老師的幫忙，我才能夠完成今天的博士論文。 

也很感謝撥冗參加學生口試的林嘉文教授、杭學鳴教授、張隆紋教授、張寶

基教授和廖弘源教授，委員們的建議對我的研究論文幫助很大。 

也謝謝一路上學長姐、同學和學弟妹的幫忙：蕭永慶學長、何健鵬學長和陳

渏紋學長一路上給予我各種建議，也教了我很多事情；林憲正、林喚宇和我一起

互相鼓勵，很高興我們都畢業了；還有一起準備資格考的讀書會同學們；謝謝實

驗室小靜、小啾、巧安、閃六、建儒、小高、史達 和 SA，很高興可以和你們共

度歡樂的研究時光。 

當然一定要謝謝我的家人一路上的鼓勵，這讓我有堅持下去的力量。 

最後再次感謝所有幫助我的人，謝謝你們。 

  



vi 
 

Table of Contents 
 

摘要............................................................................................................................. ...............................i 

ABSTRACT.............................................................................................................................................iii 

ACKNOWLEDGEMENT............................................................................................................... ........v 

CHAPTER 1 INTRODUCTION ........................................................................................................... 1 

1.1 DISTRIBUTED VIDEO CODING ......................................................................................................... 3 

1.2 ROBUST VIDEO CODING ................................................................................................................. 5 

CHAPTER 2 DISTRIBUTED VIDEO CODING .............................................................................. 10 

2.1 MACROBLOCK GROUPING FOR WZ CODING ................................................................................. 12 

2.1.1 Side Information Error Analysis .................................................................................. 12 

2.1.2 DVC With Macroblock Grouping ................................................................................ 14 

2.1.2.1 System Architecture ..................................................................................................................... 15 

2.1.2.2 Side Information Generation Algorithm ....................................................................................... 18 

2.1.2.3 Error Model Estimator ................................................................................................................. 20 

2.1.3 Experimental results .................................................................................................... 23 

2.1.3.1 Test Conditions ............................................................................................................................. 24 

2.1.3.2 WZ Coding Efficiency Evaluation ............................................................................................... 24 

2.2 PERCEPTUAL BASED DISTRIBUTED VIDEO CODING ...................................................................... 25 

2.2.1 Side Information Perceptual Analysis .......................................................................... 25 

2.2.2 The proposed DVC framework.................................................................................... 28 

2.2.2.1 Texture Distribution Similarity (TDS) Analysis ........................................................................... 29 

2.2.2.2 Motion Consistency (MC) Analysis ............................................................................................. 30 

2.2.2.3 Texture Structure Consistency (TSC) Analysis ............................................................................ 31 

2.2.2.4 Valid Motion Projection (VMP) Analysis ..................................................................................... 32 

2.2.2.5 Determination of Regions of Interest (ROI) ................................................................................. 33 

2.2.2.6 Impact of large GOP sizes on the proposed      perceptual metrics ..................................... 36 

2.2.2.7 Complexity analysis of the proposed perceptual DVC codec ....................................................... 37 

2.2.3 Experimental Results ................................................................................................... 40 

2.2.3.1 R-D Performance Evaluation ....................................................................................................... 40 

2.2.3.2 Visual Quality Comparisons ......................................................................................................... 45 

CHAPTER 3 ROBUST VIDEO CODING ......................................................................................... 52 

3.1 ERROR-RESILIENT VIDEO CODING USING MULTIPLE REFERENCE FRAMES .................................. 53 

3.1.1 Related Works .............................................................................................................. 53 

3.1.1.1 Rate-Distortion Optimization in JM ............................................................................................. 53 



vii 
 

3.1.1.2 Expected End-to-End Distortion Model ....................................................................................... 54 

3.1.2 The proposed method .................................................................................................. 55 

3.1.2.1 Candidate Reference Frames ........................................................................................................ 55 

3.1.2.2 Error Resilient RDO ..................................................................................................................... 57 

3.1.3 Computational Cost Reduction .................................................................................... 58 

3.1.3.1 Reference Frame Selection ........................................................................................................... 59 

3.1.3.2 Reference Frame Skipping ........................................................................................................... 59 

3.1.3.3 Long Term Motion Search Center Prediction ............................................................................... 60 

3.1.3.4 Summarization of the Proposed Method ...................................................................................... 62 

3.1.4 Experimental Results ................................................................................................... 63 

3.1.4.1 Overall Rate Distortion Performance ........................................................................................... 63 

3.1.4.2 Mismatch of Packet Loss Rate ..................................................................................................... 66 

3.1.4.3 Effect of ER-frames ..................................................................................................................... 67 

3.1.4.4 Computational Cost ...................................................................................................................... 68 

3.2 ERROR RESILIENT VIDEO CODING BASED ON HIERARCHICAL B PICTURES .................................. 71 

3.2.1 Introduction ................................................................................................................. 71 

3.2.2 Motivation ................................................................................................................... 71 

3.2.3 Proposed Method ......................................................................................................... 74 

3.2.4 Estimation of lost pictures ........................................................................................... 77 

3.2.5 Experimental Results ................................................................................................... 80 

3.2.5.1 Effects of Hybrid Structures ......................................................................................................... 80 

3.2.5.2 Effects of Hybrid Structure Variations ......................................................................................... 80 

3.2.5.3 Packet Loss Performance ............................................................................................................. 81 

3.2.5.4 Error Free Performance ................................................................................................................ 84 

3.3 RATE-DISTORTION OPTIMIZED MODE SELECTION METHOD FOR MULTIPLE DESCRIPTION VIDEO 

CODING .............................................................................................................................................. 87 

3.3.1 Proposed MDC based on a hierarchical B-picture structure ........................................ 88 

3.3.1.1 The encoder architecture .............................................................................................................. 89 

3.3.1.2 The decoder estimation methods .................................................................................................. 91 

3.3.2 Rate-Distortion mode selection method....................................................................... 92 

3.3.2.1 Rate-Distortion optimization on an ideal MDC channel .............................................................. 92 

3.3.2.2 Rate-Distortion estimation ........................................................................................................... 95 

3.3.2.3 Rate-Distortion optimization on a packet loss channel................................................................. 99 

3.3.2.4 Summary of proposed Rate-Distortion mode selection method ................................................. 101 

3.3.3 Experimental Result .................................................................................................. 103 

3.3.3.1 Packet Loss Performance ........................................................................................................... 103 

3.3.3.2 Side Reconstruction Performance .............................................................................................. 109 

CHAPTER 4 CONCLUSION AND FUTURE WORKS ................................................................. 113 



viii 
 

4.1 COMMENTS ON DISTRIBUTED VIDEO CODING ............................................................................ 113 

4.2 COMMENTS ON ROBUST VIDEO CODING ..................................................................................... 114 

REFERENCE ....................................................................................................................................116 

 

  



ix 
 

List of Figures 

 
FIG. 1 SI OF 70

TH
 FRAME OF FOREMAN (LEFT), AND ITS ERROR IMAGE (RIGHT). ................................... 13 

FIG. 2 PROPOSED DVC ARCHITECTURE WITH MACROBLOCK GROUPING ................................................ 14 

FIG. 3 QUANTIZATION MATRIX FOR WZ FREQUENCE COMPONENT ......................................................... 17 

FIG. 4 BI-DIRECTIONAL MOTION REFINEMENT. C IS THE SI BLOCK TO BE PREDICTED. A AND B ARE 

MATCHING BLOCKS THAT ARE LOCATED ALONG THE TRANSLATIONAL MOTION PATH FROM KEY 

FRAME N TO N+1, RESPECTIVELY. ................................................................................................... 20 

FIG. 5 MOTION REFINEMENT USING HIERARCHICAL SEARCH. THE MV REPRESENTED IN DASHED LINE IS 

THE REFINED MV FOR SMALL BLOCKS TO BE ESTIMATED FROM THE COASER MVS REPRESENTED IN 

SOLID LINES FOR LARGE BLOCKS. .................................................................................................. 20 

FIG. 6 SIDE INFORMATON ERROR HISTOGRAMS. ....................................................................................... 22 

FIG. 7 ERROR CLASSIFICATION RESULT. ................................................................................................... 23 

FIG. 8 AN EXAMPLE OF SI WITH GOOD PERCEPTUAL QUALITY BUT LOW PSNR. THE PSNR OF THE SI 

FRAME IS ONLY 17.5 DB, BUT ITS VISUAL QUALITY IS COMPARABLE TO THE NEIGHBORING KEY 

FRAMES (AROUND 30 DB). ............................................................................................................. 26 

FIG. 9 PERCEPTUAL-BASED RECONSTRUCTION OF SI PREDICTION ERRORS. THE RECONSTRUCTED WZ 

FRAME IN (B) TRIES TO CORRECT THE PREDICTION ERRORS OF THE WHOLE SI FRAME USING 12.38 

KBITS OF LDPCA CODES. THE RECONSTRUCTED WZ FRAME IN (D) ONLY CORRECTS A 

RECTANGULAR AREA THAT CONTAINS THE FACE OF FOREMAN USING 10.46 KBITS OF LDPCA CODES.

 ...................................................................................................................................................... 28 

FIG. 10 THE PROPOSED DVC ARCHITECTURE. GRAY BLOCKS ARE PROPOSED MODULES. ......................... 29 

FIG. 11 EXAMPLES OF SI FRAMES (LEFT) AND DETECTED VISUALLY DISTORTED MACROBLOCKS (RIGHT).

 ...................................................................................................................................................... 34 

FIG. 12 AN EXAMPLE OF THE 72
ND

 SI FRAME AND THE DETECTED VISUALLY DISTORTED MACROBLOCKS. 34 

FIG. 13 NEIGHBORHOOD STRUCTURE OF THE ROI REFINEMENT PROCESS. THE SQUARES ARE THE 

MACROBLOCKS UNDER CONSIDERATION AND THE CIRCLES ARE THEIR NEIGHBORS. ....................... 35 

FIG. 14 EXAMPLES OF ROI DETECTION RESULTS. MACROBLOCKS WITH NORMAL GRAY LEVELS ARE IN 

ROI. .............................................................................................................................................. 36 

FIG. 15 QCIF SEQUENCES R-D PERFORMANCE COMPARISONS USING PSNR AND SSIM. THE AVERAGE BD 

PSNR GAIN OVER DISCOVER IS 0.71DB, AND THE AVERAGE SSIM GAIN IS 0.016. ..................... 43 

FIG. 16 R-D PERFORMANCE COMPARISONS USING PSNR AND SSIM. THE AVERAGE PSNR BD GAIN OVER 

DISCOVER IS 0.41DB, AND THE AVERAGE SSIM GAIN IS 0.010. .................................................. 44 

FIG. 17 THE PSNRS OF RECONSTRUCTED FRAMES OF THE FOREMAN (160 KBPS) AND COASTGUARD (100 

KBPS) SEQUENCES USING THE PROPOSED DVC CODEC. .................................................................. 46 

FIG. 18 VISUAL COMPARISONS BETWEEN THE PROPOSED CODEC (TOP ROW) AND THE DISCOVER CODEC 



x 
 

(BOTTOM ROW) AT FRAME POSITIONS WITH HIGHEST PSNR VARIATIONS. THE BITRATE OF THE 

PROPOSED CODEC IS 160.0 KBPS, AND THE BITRATE OF DISCOVER IS 161.6 KBPS ........................ 47 

FIG. 19 THE SI FRAME OF THE PROPOSED CODEC (LEFT) USED IN 0, AND ITS ERROR IMAGE (RIGHT). THE SI 

FRAME OF THE DISCOVER CODEC IS NOT AVAILABLE. .................................................................. 47 

FIG. 20 VISUAL COMPARISONS BETWEEN THE PROPOSED CODEC (TOP ROW) AND THE DISCOVER CODEC 

(BOTTOM ROW) AT FRAME POSITIONS WITH HIGHEST PSNR VARIATIONS. THE BITRATE OF THE 

PROPOSED CODEC IS 99.4 KBPS, AND THE BITRATE OF THE DISCOVER CODEC IS 101.4 KBPS. ...... 48 

FIG. 21 THE SI FRAME OF THE PROPOSED CODEC (LEFT) USED IN 0, AND ITS ERROR IMAGE (RIGHT). THE SI 

FRAME OF THE DISCOVER CODEC IS NOT AVAILABLE. .................................................................. 48 

FIG. 22 VISUAL COMPARISONS BETWEEN THE PROPOSED CODEC (TOP ROW) AND THE DISCOVER CODEC 

(BOTTOM ROW) AT FRAME POSITIONS WITH NOTICABLE VISUAL IMPROVEMENTS. THE BITRATE OF 

THE PROPOSED CODEC IS 127.8 KBPS, AND THE BITRATE OF THE DISCOVER CODEC IS 131.5 KBPS.

 ...................................................................................................................................................... 49 

FIG. 23 THE SI FRAME OF THE PROPOSED CODEC (LEFT) USED IN 0, AND ITS ERROR IMAGE (RIGHT). THE SI 

FRAME OF THE DISCOVER CODEC IS NOT AVAILABLE. .................................................................. 49 

FIG. 24 VISUAL COMPARISONS BETWEEN THE PROPOSED CODEC (TOP ROW) AND THE DISCOVER CODEC 

(BOTTOM ROW) AT FRAME POSITIONS WITH NOTICEABLE VISUAL IMPROVEMENTS. THE BITRATE OF 

THE PROPOSED CODEC IS 134.1 KBPS, AND THE BITRATE OF THE DISCOVER CODEC IS 134.4 KBPS.

 ...................................................................................................................................................... 50 

FIG. 25 THE SI FRAME OF THE PROPOSED CODEC (LEFT) USED IN 0, AND ITS ERROR IMAGE (RIGHT). THE SI 

FRAME OF THE DISCOVER CODEC IS NOT AVAILABLE. .................................................................. 50 

FIG. 26 VISUAL COMPARISONS BETWEEN THE PROPOSED CODEC (TOP ROW) AND THE DISCOVER CODEC 

(BOTTOM ROW) AT FRAME POSITIONS WITH POOREST SI QUALITY. THE KEY FRAMES FOR BOTH 

CODECS ARE THE SAME. THE WZ RATE FOR THE CORRESPONDING FRAME ARE THE SAME TOO. THE 

BITRATE OF THE PROPOSED CODEC IS 150.4 KBPS, AND THE BITRATE OF THE PROPOSED CODEC IS 

161.6 KBPS. .................................................................................................................................... 51 

FIG. 27 THE SI FRAMES OF THE PROPOSED CODEC (TOP ROW) USED IN 0, AND ITS ERROR IMAGE (BOTTOM 

ROWS). ........................................................................................................................................... 51 

FIG. 28 ER-FRAMES AS PART OF REFERENCE FRAMES. ............................................................................. 57 

FIG. 29 MOTION VECTOR COMPOSITION USING FDVS AND ACCUMULATED FDVS .................................. 62 

FIG. 30 THE FLOW CHART OF THE PROPOSED MRF-MCP WITH FAST MOTION ESTIMATION ...................... 63 

FIG. 31 R-D PERFORMANCE COMPARISON USING FIVE REFERENCE FRAMES ............................................ 65 

FIG. 32 PERFORMANCE FOR MISMATCH WITH AN ASSUMED PLR OF (A) 5%; (B) 10% .............................. 66 

FIG. 33 FRAME REFERENCE DISTRIBUTION .............................................................................................. 67 

FIG. 34 EXECUTION TIME RATIO OF DIFFERENT METHODS ........................................................................ 69 

FIG. 35 PERFORMANCE WITH AND WITHOUT COMPUTATIONAL TIME REDUCTION TECHNIQUES. ............... 70 

FIG. 36 HIERARCHICAL B-PICTURE PREDICTION STRUCTURE ................................................................... 74 

FIG. 37 EXPERIMENTAL SETTING FOR DIFFERENT COMBINATIONS OF MOTION FRAMES (DF1, DF2, AND 



xi 
 

DF3) AND DATA FRAMES (MF1, MF2, AND MF3). ......................................................................... 74 

FIG. 38 THE PROPOSED HYBRID MODEL BASED ON HIERARCHICAL B STRUCTURE ................................... 75 

FIG. 39 ARCHITECTURE OF THE PROPOSED HYBRID MODEL HN+M ......................................................... 77 

FIG. 40 MOTION INTERPOLATION, COMPOSITION, AND EXTRAPOLATION .................................................. 79 

FIG. 41 CODING STRUCTURES OF HYBRID MODEL, H4+4, AND ORIGINAL MODEL. ...................................... 82 

FIG. 42 PACKET-LOSS PERFORMANCE OF FOUR HYBRID MODELS. ............................................................ 84 

FIG. 43 RATE-DISTORTION PERFORMANCE COMPARISON IN ERROR FREE ENVIRONMENT. ......................... 86 

FIG. 44 THE ENCODER ARCHITECTURE OF THE PROPOSED MDC SYSTEM. ................................................ 89 

FIG. 45 SPATIAL SPLITTING OF THE PROPOSED MDC. .............................................................................. 90 

FIG. 46 PROPOSED MDC BASED ON HIERARCHICAL B-PICTURE PREDICTION. .......................................... 91 

FIG. 47 AN EXAMPLE OF R-D OPTIMIZATION. .......................................................................................... 94 

FIG. 48 ILLUSTRATION OF ERROR WEIGHT. ............................................................................................. 96 

FIG. 49 FITTING RESULT OF PROPAGATION DECAYS FACTORS,    . ........................................................ 98 

FIG. 50 FITTING RESULT OF   IN EQ. (15). ............................................................................................ 102 

FIG. 51 R-D PERFORMANCE OF THE FORMAN SEQUENCE. (A) PACKET LOSS RATE = 1%. (B) PACKET LOSS 

RATE = 5%. (C) PACKET LOSS RATE = 10%. (D) PACKET LOSS RATE = 20%. .................................. 105 

FIG. 52 R-D PERFORMANCE OF THE NEWS SEQUENCE. (A) PACKET LOSS RATE = 1%. (B) PACKET LOSS 

RATE = 5%. (C) PACKET LOSS RATE = 10%. (D) PACKET LOSS RATE = 20%. .................................. 106 

FIG. 53 R-D PERFORMANCE OF THE STEFAN SEQUENCE. (A) PACKET LOSS RATE = 1%. (B) PACKET LOSS 

RATE = 5%. (C) PACKET LOSS RATE = 10%. (D) PACKET LOSS RATE = 20%. .................................. 107 

FIG. 54 R-D PERFORMANCE OF THE TABLE TENNIS SEQUENCE. (A) PACKET LOSS RATE = 1%. (B) PACKET 

LOSS RATE = 5%. (C) PACKET LOSS RATE = 10%. (D) PACKET LOSS RATE = 20%. ......................... 108 

FIG. 55 SIDE DECODING R-D PERFORMANCE. (A) FOREMAN. (B) NEWS. (C) STEFAN. (D) TABLE TENNIS.

 .................................................................................................................................................... 111 

FIG. 56 CENTER DECODING R-D PERFORMANCE. (A) FOREMAN. (B) NEWS. (C) STEFAN. (D) TABLE TENNIS.

 .................................................................................................................................................... 112 

  



xii 
 

List of Tables 

 
TABLE. I BIT RATE REDUCTION WITH PROPOSED MACROBLOCK GROUPING ......................................... 24 

TABLE. II IMPACT OF GOP SIZE ON THE PROPOSED PERCEPTUAL METRICS. ............................................. 37 

TABLE. III ENCODING TIME COMPARISON FOR FOREMAN, QCIF@15FPS. ................................................ 38 

TABLE. IV DECODING TIME COMPARISON FOR FOREMAN, QCIF@15FPS. ................................................ 38 

TABLE. V BREAKDOWN OF ENCODING TIME PER FRAME (IN MSEC) FOR THE PROPSOED CODEC. ............. 39 

TABLE. VI BREAKDOWN OF DECODING TIME PER FRAME (IN MSEC) FOR THE PROPSOED CODEC. ........... 39 

TABLE. VII QUANTIZATION SETTING (QP,QM) OF DVC CODECS IN THE EXPERIMENTS. ....................... 41 

TABLE. VIII BD RESULTS OF THE TEST SEQUENCES. .............................................................................. 41 

TABLE. IX EXPERIMENTAL RESULT FOR ALL COMBINATIONS OF MOTION FRAMES AND DATA FRAMES. ... 74 

TABLE. X MINIMAL PIXEL RECOVERING DISTANCE FOR LOST FRAMES AT DIFFERENT HIERARCHICAL 

LEVELS .......................................................................................................................................... 74 

TABLE. XI PERFORMANCE COMPARISON BETWEEN HYBRID MODEL, H4+4, AND THE ORIGINAL MODEL. 

BOTH MODELS ENCODE FOREMAN SEQUENCE (CIF) AT 800KBPS. .................................................. 83 

TABLE. XII PACKET-LOSS PERFORMANCE COMPARISON. ....................................................................... 83 

TABLE. XIII THE BIT-RATE REDUNDANCY COMPARISON. THE REDUNDANCY IS DEFINED AS THE 

BJONTEGARRD BIT-RATE DIFFERENCE[55] BETWEEN JM AND EACH METHOD. ............................... 86 

TABLE. XIV SUMMARY OF THE CASES FOR DIFFERENT ESTIMATION METHODS. ..................................... 92 

TABLE. XV BD RESULTS OF THE PROPOSED FRAMEWORK ON PACKET LOSS CHANNELS. THE COLUMN OF 

"COMPARING WITH THE MDC SYSTEM IN [89]" SHOWS THE BD DIFFERENCE BETWEEN THE 

PROPOSED METHOD AND THE MDC SYSTEM IN [89]; THE COLUMN OF "COMPARING WITH 

DO-MDC" SHOWS THE DIFFERENCE BETWEEN THE PROPOSED METHOD AND DO-MDC. ............ 104 

TABLE. XVI SIDE DECODING BD RESULTS OF THE PROPOSED FRAMEWORK. THE COLUMN OF 

"COMPARING WITH THE MDC SYSTEM IN [89]" SHOWS THE BD DIFFERENCE BETWEEN THE 

PROPOSED METHOD AND THE MDC SYSTEM IN [89]; THE COLUMN OF "COMPARING WITH 

DO-MDC" SHOWS THE DIFFERENCE BETWEEN THE PROPOSED METHOD AND DO-MDC. ............ 109 

TABLE. XVII CENTER DECODING BD RESULTS OF THE PROPOSED FRAMEWORK. THE COLUMN OF 

"COMPARING WITH THE MDC SYSTEM IN [89]" SHOWS THE BD DIFFERENCE BETWEEN THE 

PROPOSED METHOD AND THE MDC SYSTEM IN [89]; THE COLUMN OF "COMPARING WITH 

DO-MDC" SHOWS THE DIFFERENCE BETWEEN THE PROPOSED METHOD AND DO-MDC. ............ 110 

 



1 
 

Chapter 1 Introduction 

In traditional video communication systems, the computational complexity of the 

decoder is constrained because the computational power of the decoder is usually low. 

However, in recent years, the computational power of the decoder is increasing due to 

advance of semiconductor technologies. Therefore, it is possible to apply advanced 

image processing technologies on the decoder side to improve system performance. 

Moreover, lots of new applications, such as mobile visual network, have different 

system requirements: low complex encoding. In these applications, the computation 

power of the decoder is better than that of the encoder. The advanced compression 

tools on the decoder side play an important role to improve the system performance. 

In this thesis, we study decoder side image prediction technologies. Different 

image processing technologies on the decoder are proposed to do inter-frame 

prediction or image restoration. We combine the proposed technologies into several 

coding systems. The proposed systems are categorized into two parts: 

The first part is distributed video coding system (DVC) [1]. In recent years, DVC 

has been considerably investigated because, theoretically, DVC allows flexible 

distribution of coding complexity between the encoder and the decoder without losing 

compression efficiency. This characteristic makes DVC a potential solution for 

emerging applications such as Mobile 2.0, surveillance systems, and sensor networks 

where encoders have limited computation ability due to power consumption 

constraint[2]. The theoretical bound for this coding scheme has been investigated by 

Slepian-Wolf [3] and Wyner-Ziv[4]. Based on these studies, it is possible to shift 

coding complexity from the encoder to the decoder using distributed principle while 

still approaching the coding efficiency of the traditional closed-loop coding schemes. 

The second part is robust video coding. During the stage of transmission through 

the error-prone environment, packet loss might occur. In the case of transmission of 

compressed video sequences, robust video coding plays an important role to handle 

packet loss that may result in a completely damaged stream at the decoder side. In 

recent years, several robust video coding methods have been developed, such as 

forward error correction (FEC) [5], intra/inter coding mode selection [6], temporal 

error concealment [7], and multiple description coding (MDC)[8][9]. 
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In this thesis, five technologies have been proposed. Some are for DVC; while 

others for robust video coding as listed below: 

 

DVC: 

 an Adaptive source grouping coding method 

 a perceptual-based decoder-side skip mode strategy 

Robust Video Coding: 

 error-resilient video coding using multiple reference frames 

 error resilient video coding based on hierarchical b pictures 

 rate-distortion optimized mode selection method for multiple description 

video coding 

 

The following sections of Chapter 1 introduce the related works of DVC and 

robust video coding. The proposed technologies of DVC and robust video coding are 

depicted in Chapter 2 and Chapter 3, respectively. Finally, Chapter 4 makes a 

conclusion and discusses the future work. 
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1.1 Distributed Video Coding 

In many DVC implementations [1][10]-[12], a video source sequence is divided 

into two interleaving sub-sequences: key frame subsequences and Wyner-Ziv (WZ) 

frame subsequences. Key frames are encoded using a traditional low-complexity 

encoder (such as the motion JPEG encoder or the intra-coder of any video codecs). 

For WZ frames, the decoder first applies sophisticated algorithm to construct a 

predictor (called side information) from the previously received data (typically key 

frames). On the encoder side, it takes the original video frames as input and applies a 

low-complexity algorithm to generate error-correction bits (refer to as the WZ bits) 

that can help the decoder correct any side information (SI) prediction errors such that 

the resulting WZ frames are close to the original video frames. The key components 

in a DVC framework are the SI generator and the WZ bits encoder. For SI generator, 

many researchers adopt motion compensated frame interpolation method [13][14]. In 

[13], an advanced true motion estimation technique is proposed to improve SI quality; 

in [14], error surface of motion estimation is integrated into WZ decoding iteration to 

find MAP solution of motion field for improving the quality of the reconstructed 

frame. For WZ encoding, different channel codes are adopted in several 

implementations [15][16]. Note that the efficiency of the channel codes is highly 

dependent on the side information error statistics. In [18][19], the SI error model is 

studied, and then a MAP-based decoding method is proposed. 

In traditional closed-loop codec, a key technique to improve coding efficiency is 

the mode decision tool.  Based on the characteristics of the next group of data to be 

coded, the mode decision module selects the most appropriate set of coding tool that 

achieves best coding efficiency. Ascenso et al. [20] propose to adaptively adjust the 

size of GOP according to the motion activity. Zhang et al. [21] propose to use the 

difference of co-located pixels as a mode decision measure to switch between 

zero-motion skip and WZ code, and [22][23] propose similar idea between 

WZ-coding and intra-coding mode decision. In [24], co-located pixel error measure is 

also used to decide quantization level of each region. However, the co-located pixel 

error measure fails to recognize that a textured region with consistent translational 

motion should be coded in WZ mode. A more sophisticated mode decision measure is 

proposed in [25], where a low complexity estimation of optical flow is used at the 
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encoder side to predict the quality of the side information generated at the decoder 

(and hence the efficiency of WZ coder). Although the concept of mode decision is 

important in fine-tuning the performance of DVC, it does not address the crucial issue 

of how to improve the coding efficiency of the WZ coding tool. 

In this thesis, a new coding strategy with adaptive source grouping for prioritized, 

unequal error correction is proposed. In short, the proposed technique classifies side 

information data into several groups based on estimated prediction error statistics. 

Different groups of video data are channel-coded together at the encoder side. The 

decoder requests WZ bits to correct corresponding groups of SI data out-of-order, 

based on their error levels. An early concept of the adaptive source grouping principle 

is presented in [26], where a binary decision is used to classify the importance of each 

macroblock. Comparing with previous implementation, in this thesis, more advanced 

SI generation algorithm is adopted to produce better SI as well as error estimates. 

Furthermore, multi-level classification techniques are adopted. As the experimental 

results in this thesis show, accurate error model estimation is the key to the efficiency 

of WZ coders. 

In addition to prediction error analysis, we also propose a very different approach 

of perceptual-based decoder-side skip mode strategy in this chapter. The proposed 

technique comes from the key observation that SI frames predicted using 

motion-projection algorithms often contain image areas with large prediction errors 

(in MSE sense) but small visual distortions. One such example is a video sequence of 

a low-motion scene taken by a shaky camera. If we remove every other frame and 

interpolate the missing frames with motion-projection algorithms, the resulting video 

may become smoother without major visual distortions except at image boundaries. 

However, to reconstruct the original shaky video from the interpolated frames using 

channel codes requires significant amount of parity bits, which is not worthwhile from 

perceptual rate-distortion perspective. In short, the proposed technique performs 

perceptual-based analysis to determine the SI regions where visual distortions are 

noticeable, and only uses channel codes to correct these regions. 
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1.2 Robust Video Coding 

In recent years, several robust video coding methods have been developed, such as 

forward error correction (FEC) [5], intra/inter coding mode selection [6] ,temporal 

error concealment [7], and multiple description coding (MDC)[8][9]. In this chapter, 

we proposed three different approaches. 

One way to reduce error propagation is to insert intra-coded macroblocks in 

inter-coded frames [6]. The common drawback of these techniques is that network 

conditions and error concealment are not considered. On the other hand, a number of 

error-resilient RDO (ER-RDO) techniques accounting for the impact of packet loss 

have been proposed [28]-[30]. Recursive optimal per-pixel estimate (ROPE) method 

[28] has been recognized as an effective method to estimate the expected end-to-end 

distortion. In [29], the expected end-to-end distortion is estimated in a manner of 

independently operating K copies of the random variable channel behavior and 

decoder pairs in the encoder. Since this method suffers from high computational cost, 

Y. Zhang et al. [30] proposed a new model, in which the overall distortion is 

calculated and stored in block-level instead of pix-level. Since Y. Zhang et al.’s 

ER-RDO focuses on coding-mode selection, it combats the error propagation by 

intra-macroblock insertion. However, intra macroblocks have much lower coding 

efficiency than inter macroblocks so that the overall coding efficiency may be 

degraded significantly if a large number of intra macroblocks are inserted.  

Alternatively, Yang et al. [31] recognized that motion prediction has a 

considerable impact on error resilience. As an example, predicting current block from 

an intra-coded block is a more robust choice than predicting it from an inter-coded 

block that may entail propagated error. Therefore, they integrate ROPE-based 

distortion estimation into RDO for motion vector selection. A number of work 

addressing similar objectives can also be found in [32][33]. However, in their works, 

only single reference frame is adopted. If their approach is applied for multiple 

reference frames, impractical extra complexity will be induced. Wan et al. addressed 

this problem and proposed a method in [34] to solve it. 

Multiple reference frame motion compensated prediction (MRF-MCP) is adopted 

in H.264/AVC to enhance the coding efficiency of the compressed video stream. This 

feature has been investigated earlier in H.263 for error resilience. Rather than using 
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near frames for reference, [35] develop a long-term reference frame selection method, 

in which for every k
th

 frame, select n macroblocks, called Periodic Macroblock, to 

predict from the frame that is k frames away. In their approach, the values of both n 

and k are predefined constants; and the locations of Periodic Macroblocks are 

determined according to expected distortion of macroblocks. The authors in [36] 

proposed an alternative scheme, where every P-frame selects a number of 

macroblocks called Robust Macroblock, to predict from the nearest intra-coded frame. 

In their approach, the number of Robust Macroblocks per frame is a fixed number; 

and the locations of Robust Macroblocks are also determined according to a distortion 

estimation model. A number of works using long-term reference frames can also be 

found in [37]-[39]. These works adopt dual frames, one long-term and one short- term 

reference frames, to achieve error resilience with low computational cost. The results 

in [35]-[39] have shown that error propagation can be effectively suppressed by using 

long-term reference frames. However, the approach in [35] used predefined constants 

for some parameters, such as the period and the number of Periodic Macroblocks, 

which are intuitively related to channel conditions and video characteristics; the 

approach in [36] assumed that all intra-coded frames are intact and fixed the number 

of Robust Marcoblocks for every P-frame; and  approach in [38] selected every 10
th

 

frame as a long-term reference and encoded these frames with a quantization 

parameter (QP) lower by 7 compared to the general QP for the entire sequence. These 

predefined constants and constraints make their approaches hard to adapt to various 

content characteristics and channel conditions. 

Error concealment (EC) techniques are another key issue of robust video coding.  

In case of packet loss, EC techniques can be used to recover the lost information. 

There are many existing EC algorithms, such as spatial interpolation, frequency 

domain interpolation, and temporal compensation based on inter-frame correlation. 

Among them, temporal error concealment is the most widely used approach, 

especially to combat the whole-frame loss problem, when hierarchical B-picture 

coding is used. The simplest temporal EC method is frame copy, in which each 

damaged macroblock is directly replaced by the co-located one in the temporally 

previous picture. Although it seems to be simple and fast, it suffers from large 

distortion in case of fast motion in the erroneous block area. Thus, some methods 

based on motion compensation have been proposed, which replace the lost block with 
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the one from previous frame that is shifted to compensate the estimated motion. To 

eliminate the complexity of motion estimation in these methods, an approach based 

on temporal direct mode [76] has been adopted in H.264/AVC (SVC). It derives the 

motion vector for each block in the lost B-picture according to the motion vector of 

the co-located block in the temporally subsequent reference picture. This method has 

low computational complexity due to no motion estimation. However, its EC 

efficiency is usually unsatisfactory. Thus, improved approaches have been proposed. 

Ji et al. [7] proposed a method based on enhanced temporal direct mode. in which the 

motion vectors for each block are allowed to be derived from the temporally not only 

subsequent reference picture, as in H.264/AVC, but also previous reference picture. 

Thus, the approach in [7] derived motion of each block in the lost picture from the 

motion vector of the co-located block in the temporal subsequent or previous 

reference picture. In addition, they also proposed that the motion of the damaged 

block can be derived from the motion vectors of the co-located blocks in the 

temporally neighboring left and/or right B-pictures at next higher temporal level. 

Their experimental results show that motion prediction in this way can improve the 

EC performance. 

Multiple description coding (MDC) is another approach of robust video coding. 

MDC encodes a single video stream into two or more equally important sub-streams, 

called descriptions, each of which can be decoded independently. Different from the 

traditional single description coding (SDC) where the entire video stream (single 

description) is sent in one channel, in MDC, these multiple descriptions are sent to the 

destination through different channels, resulting in much less probability of losing the 

entire video stream (all the descriptions), where the packet losses of all the channels 

are assumed to be independently and identically distributed. The first MD video coder, 

called multiple description scalar quantizer (MDSQ)[81], has been realized in 1993 by 

Vaishampayan who proposed an index assignment table that maps a quantized 

coefficient into two indices each could be coded with fewer bits. Due to effectiveness 

in providing error resilience, a variety of research on different MDC approaches had 

been proposed afterwards. These approaches can be intuitively classified through the 

stage where it split the signal, such as, frequency domain[81][82], spatial domain 

[83][84], and temporal domain [85][86]. In our previous works [87], a hybrid MDC 

method has been proposed, which applies MDC first in spatial domain to split motion 
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compensated residual data, and then in frequency domain to split quantized 

coefficients. A hybrid MDC method with spatial and temporal splitting was proposed 

in [88] and a hierarchical B-picture based hybrid MDC method was proposed in [89]. 

The results in [87]-[89] show that, by properly utilizing more than one splitting 

technique, the hybrid MDC method can improve error-resilient performance. 

To improve coding performance, some researchers proposed to optimize the 

encoding coefficient for rate-distortion performance. In [91], a R-D optimization 

technique is proposed for the MDC with one descriptor containing all DCT 

coefficients and the second one containing only few low frequency coefficients. The 

R-D technique aims at optimizing the number of pruning coefficients. In [92], the 

method to find out optimized quantization parameters was proposed for the MDC 

based on H.264/AVC redundant slices[93]. Then, Lin et al.[94] extended the method 

from the slice level to the macroblock level.  

There are two major benefits of the rate-distortion optimization concept. First, 

video contents vary spatially and temporally, so it would be inefficient to use a fixed 

encoding method to encode whole contents. In addition, the importance of different 

parts of video contents may be different, so adopting an unequal error protection can 

achieve better rate-distortion performance. Second, the channel condition also varies 

over time, so a mechanism to dynamically adjust protection level is necessary. With 

rate-distortion optimization, the encoder can change coding strategy according to 

video contents and channel conditions, and therefore improve the performance. 

However, the previous optimization frameworks were based on the specific MDC 

systems. Since a variety of new MDC coding tools are being proposed and each tool 

has different characteristics. To enable the rate-distortion optimization concept on 

these MDC tools, a general framework is desirable.  

In this thesis, three technologies of robust video coding are proposed: 

First, a MRF-MCP based error resilient scheme is proposed, which employs the 

nearest error-resilient frame (ER-frame) as one of the reference frames and adopts 

error-resilient RDO (ER-RDO) for optimal reference block selection. The ER-frame 

in our approach is a frame capable of suppressing error propagation, which can be an 

intra-coded frame, or an inter-coded frame with high ratio of intra-coded macroblocks. 

Incorporating ER-RDO in our approach is for the purpose of making the choice of the 

number and location of the macroblocks referring to ER-frames to be decided 
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adaptively by using rate-distortion technique. Significant performance gains in the 

experiments confirm that our approach has substantial improvement over competed 

schemes in providing error resilience using MRF-MCP. Besides, some techniques 

based on our error resilient scheme are further proposed to reduce the computational 

cost. These techniques include moving ER-RDO from motion vector to reference 

frame selection, skipping unnecessary reference frames, and predicting precise motion 

search centers. 

Second, an error resilient coding based on hierarchical B pictures is proposed. In 

this approach, a new hierarchical coding structure which combines two conventional 

hierarchical coding structures is employed to reduce the distance between a lost 

picture and its recovering pictures. In addition, based on the new structure, an 

improved estimation method is also proposed to further increase the accuracy of 

recovered motion. 

Third, a rate-distortion optimization framework for MDC systems is proposed. 

With the proposed framework, the encoder can dynamically adjust coding strategy 

according to both video contents and channel conditions. 
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Chapter 2 Distributed Video Coding 

In this chapter, a new coding strategy with adaptive source grouping for 

prioritized, unequal error correction is proposed. In short, the proposed technique 

classifies side information data into several groups based on estimated prediction 

error statistics. Different groups of video data are channel-coded together at the 

encoder side. The decoder requests WZ bits to correct corresponding groups of SI 

data out-of-order, based on their error levels. An early concept of the adaptive source 

grouping principle is presented in [26], where a binary decision is used to classify the 

importance of each macroblock. Comparing with previous implementation, in this 

thesis, more advanced SI generation algorithm is adopted to produce better SI as well 

as error estimates. Furthermore, multi-level classification techniques are adopted. As 

the experimental results in this thesis show, accurate error model estimation is the key 

to the efficiency of WZ coders. 

In addition to prediction error analysis, we also propose a very different approach, 

i.e., the of perceptual-based decoder-side skip mode strategy, in this chapter. The 

proposed technique is inspired from the observation that SI framespredicted using 

motion-projection algorithms often contain image areas with large prediction errors 

(in MSE sense) but small visual distortions. One such example is a video sequence of 

a low-motion scene taken by a shaky camera. If we remove every other frame and 

interpolate the missing frames with motion-projection algorithms, the resulting video 

may become smoother without major visual distortions except at image boundaries. 

However, to reconstruct the original shaky video from the interpolated frames using 

channel codes requires significant amount of parity bits, which is not worthwhile from 

perceptual rate-distortion perspective. In short, the proposed technique performs 

perceptual-based analysis to determine whether the SI regions have noticeable visual 

distortions because our approach allocates channel codes only for these regions. 

This chapter is organized as three parts as follows:  

In section 2.1, the proposed new coding strategy with adaptive source grouping is 

introduced. Some discussions on the error patterns of the side information are 

presented. The key observation highlighted in this section is that SI prediction errors 

are highly dependent on true motion and should not be modeled by an i.i.d. process. 

Therefore, regrouping of data with similar error levels into the same coding block can 
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significantly improve the coding efficiency. Based on this observation, the proposed 

DVC framework is presented in section 2.1.2. Both the SI generator and the WZ 

coding method are described in detail in section 2.1.2. Although the SI generator is 

based on the algorithm in [13], it is not straightforward to match the SI quality 

demonstrated in [13]. Hence, we present our implementation in detail in section 2.1.2 

so that others can repeat our result. In section 2.1.2.3, the major contribution is 

presented. Namely, macroblock grouping for WZ coding. Experimental results show 

that the proposed framework achieves as much as 3% ~ 10% bit saving over a 

re-implementation of the DISCOVER codec. 

In section 2.2, the perceptual-based decoder-side skip mode strategy are proposed.  

Section 2.2.1 presents the rationale behind perceptual-based coding for DVC. Some 

examples comparing perceptual-based and SAD-based WZ coding are shown in this 

section to shed light on the proposed scheme. The proposed perceptual-based DVC 

codec is described in section 2.2.2. Experimental results are presented in section 2.2.3.  
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2.1 Macroblock Grouping for WZ 

Coding 

2.1.1 Side Information Error Analysis 

In DVC, side information (SI) at the decoder can be considered as a noisy version 

of the original video transmitted through a virtual channel from the encoder. Based on 

this model, the encoder computes the channel codes using the original video so that 

the SI errors could be corrected at the decoder side. In existing DVC frameworks, 

modified channel codes [15] are adopted and the parity bits are the only physical data 

that are transmitted to the decoder for WZ frames. Obviously, the error-correction 

efficiency of the parity bits translates directly into compression efficiency of the DVC 

codecs. 

In many DVC systems, decoders use the motion compensated frame interpolation 

method to generate SI [13]. This method assumes that the motions of objects in video 

sequences are translational motions with constant velocity. Therefore, the observation 

(i.e. SI) of WZ frames through the virtual channel could be predicted by linear 

interpolation from neighboring key frames. There are three kinds of prediction errors 

of SI in the motion compensated frame interpolation process. The first type of error is 

due to compression of key frames. Since key frames are compressed with quality loss, 

the distortions in key frames will propagate to the SI. 

The second type of error is from the uncertainty of estimated motions. Unlike 

traditional closed-loop coding where true motions may not be critical to achieving 

good compression efficiency, motion compensated frame interpolation algorithms for 

SI generation require estimation of true motion fields between reference (key) frames 

to reduce SI prediction error. The third type of error is due to the assumption that 

objects move in constant velocity. In case of non-translational and/or non-constant 

translational motion, linear interpolation would produce texture position shift which 

would cause large PSNR degradation in textured region. However, such position shift 

may not degrade visual quality since human visual system is insensitivity to consistent 

pixel-wise image shift. 
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Fig. 1 SI of 70
th

 frame of FOREMAN (left), and its error image (right).shows an 

example of the SI frame generated by a motion compensated frame interpolation 

method. It is obvious from Fig. 1 SI of 70
th

 frame of FOREMAN (left), and its error 

image (right).  that the error distribution is not spatially invariant. The SI error 

characteristics are affected by both the texture and the motion complexities in video 

content. Since both texture and motion fields are not spatially invariant, it is 

ineffective to assume a spatially invariant i.i.d. SI error model and try to use channel 

code to correct these errors in a uniform manner. A possible solution is to estimate 

prior probability of each pixel using error statistics derived from the SI generation 

process and to adjust likelihood function before the decoding procedure [18]. 

 

 

Fig. 1 SI of 70
th

 frame of FOREMAN (left), and its error image (right). 

In existing rate-adaptive DVC schemes [1][10]-[12], the decoder continuously 

requests parity bits to correct SI errors in a uniform manner until the bit budget is 

empty. Since some pixels in SI are close to the original pixels, it is inefficient to 

request too many parity bits for these ‘good’ pixels because these bits are simply 

discarded at the decoder. Consequentially, pixels with different error levels should not 

be mixed in the same coding block and protected (corrected) together as a group since 

many parity bits are wasted. To improve the coding efficiency, macroblock grouping 

of data with similar (estimated) error statistics at encoder side is proposed in this 

paper. Macroblock grouping can be considered as an unequal or prioritized error 

correction scheme where SI areas with high probability of errors are protected by 

more parity bits. 

Although, macroblock grouping of pixels on the encoder side can improve coding 

efficiency, it is not trivial to get error statistics of SI at the encoder side since SI is 

only available in the decoder while original video data is available only to the encoder. 
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In practice, if the encoder simply adopts the same SI generation algorithm used in the 

decoder, the true error model can be obtained. In fact, this is exactly what the 

closed-loop coding schemes, such as AVC/H.264, are doing. But this violates the key 

objective of DVC, namely, low complexity encoding. For applications with feedback 

channel, error statistics could be estimated at decoder side and send back to the 

encoder. The proposed DVC framework with macroblock grouping is proposed in 

next section 

2.1.2 DVC With Macroblock Grouping 

 

Fig. 2 Proposed DVC Architecture with Macroblock Grouping 

In the proposed DVC framework, key frames are coded using an intra video codec 

and transmitted to the decoder. The decoder uses motion-projection based algorithm 

to generate SI for a WZ frame using the received key frames. SI prediction errors are 

estimated by the decoder and transmitted back to the encoder using an uplink channel. 

To reduce uplink bandwidth, error model is computed macroblock-wise. The encoder 

then groups original video macroblocks into different coding blocks based on their 

error model. The proposed coding framework has the following advantages: 

1. Since video data in the same coding block has similar error characteristics, the 

corresponding hypothetical virtual channel noises can be more accurately 

modeled as i.i.d. noises. In addition, grouping allows large coding block length 

and improves channel code efficiency. 

2. Grouping enables unequal error correction on the decoder side. When combined 

with proper bit allocation algorithm, one can achieve better R-D performance. 
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3. Based on our experiments, unequal error correction of SI prediction error also 

reduces visual quality variation between key frames and WZ frames. Without 

macroblock grouping, enforcing constant quality constraint across all coded 

video frames degrades R-D performance noticeably. 

 

The detailed design of the proposed DVC framework is described in the following 

sections. 

2.1.2.1 System Architecture 

The system block diagram of the proposed DVC codec with macroblock grouping 

is illustrated in Fig. 2 Proposed DVC Architecture with Macroblock Grouping. The 

basic structure of the codec is based on the DISCOVER DVC codec [12]. At the 

encoder side, the video sequence is divided into odd frames (key frames) and even 

frames (WZ frames). Key frames would be encoded by H.264/AVC main profile intra 

encoder. WZ frame would be encoded by transform domain WZ codec. The encoder 

will receive macroblock error model information from the decoder. Before WZ 

encoding, it will reorder and group macroblocks according to this information. Then, 

each group of macroblocks form a basic Low-Density Parity-Check Accumulate  

(LDPCA) coding block and parity bits are encoded into the bitstream. At the decoder 

side, for every two received key frames, a motion-compensated frame interpolation 

procedure is used to generate the SI of the WZ frames. The decoder will classify 

macroblocks into several groups based on an error model estimator. The group index 

(of the error model) will be sent back to the encoder through an uplink channel. 

Before LDPCA decoding, the decoder will group macroblocks of SI in the same 

manner. 

Detail of operations of different modules in Fig. 2 are described as follows: 

 Transform/Inverse Transform: the 4-by-4 integer block transform from 

AVC/H.264 is used here. This integer transform has very low complexity 

and is suitable for low complexity encoder implementation. 

 Quantization: After integer transform, each coefficient component is 

quantized. The quantization matrices for different distortion levels are 

shown in Fig. 3. For DC coefficients, uniform quantizer with range between 
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0 and 1024 is adopted. For AC coefficients, double dead zone quantizer is 

used, and adaptive quantizer range of each band is sent to decoder on a 

frame-by-frame basis. Comparing traditional uniform quantizer with double 

dead zone quantizer, we found that the latter improves R-D performance 

significantly. The reason is that lots of AC coefficients are small and near 

zero. For these coefficients, small errors in side information prediction 

could change its sign. This phenomenon impacts bit-plane coding seriously 

because small errors may corrupt the first bit-plane (the most significant one) 

and influence the initial state of the following bit-plane decoding process. 

Since these small errors should not dominate decoding quality, double dead 

zone quantizer eliminates these errors and gains better R-D performance. 

 Bit-plane Extraction: After quantization, frequency components in each 

band are separated into bit-planes. For example, in WZ distortion level 2 

(QM=2), a DC coefficient is quantized to 32 level represented by a 5-bit 

number. Therefore, DC coefficients are separated into 5 bit-plane. AC 

coefficients are organized into bit-planes in the same manner. In QM=2, 

there are 11 bit-planes in total (5+3+3=11), 5 for DC coefficient and 6 for 

two AC bands (note that there are only two AC bands for QM = 2). 

 Macroblock Grouping: Based on error model classification information 

form the decoder, data bits in each bit-plane are rearranged into different 

coding blocks. Each bit-plane is divided into 4 groups, and the size of each 

group varies. After grouping, each bit-plane is divided into several 

sub-planes with similar characteristics. The classification algorithm is 

described in next section. 

 LDPCA Encoding: The LDPCA channel code proposed in [15] is used to 

encode the coding blocks. Note that at this point, each coding block 

contains bit-plane data bits from macroblocks with similar estimated error 

characteristics. 
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Fig. 3 Quantization Matrix for WZ Frequence Component 

 Side Information Generation: After intra decoding of key frames, SI is 

predicted from neighboring key frames using a motion compensated frame 

interpolation technique [13]. The implementation details will be presented 

in section 3.2. 

 Error Model Estimation: The SI prediction error of each 16x16 macroblock 

will be estimated using an estimator to be described in section 3.3. Exact 

error model can not be obtained because decoder does not have the original 

video data. This is the key reason why all existing DVC schemes perform 

worse than closed-loop codecs in practice. With a sophisticated error model 

estimator, one can improve the performance of DVC significantly. 

 LDPCA Decoding: Using grouped WZ bits received from the encoder and 

SI generated in the decoder, LDPCA decoder can correct side information 

errors. The LDPCA decoder uses the belief propagation technique and the 

SI error statistic for each coding block is modeled as a Laplacian 

distribution during the LDPCA decoding process. 

 Reconstruction: According to the LDPCA decoded bit-plane, the coded 

picture is reconstructed using MAP principle. In other words, after LDPCA 

decoding, if the original prediction value is inside decoded quantization 

range, the predicted SI pixel value remains unchanged. Otherwise, the 
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predicted SI value will be modified to the nearest bound of decoded 

quantization level. 

2.1.2.2 Side Information Generation Algorithm 

The side information generation algorithm adopted in the proposed system is a 

motion compensated frame interpolation algorithm [13]. For DVC codec, the quality 

of the predicted SI is one of the dominating factors in improving overall coding 

efficiency. The SI generation algorithm outlined in [13] is one of the best SI 

generation algorithms among existing DVC codecs. However, our re-implementation 

does not match the published SI quality in [13]. Therefore, in this subsection, we 

explain the details of our implementation in this section so that others can repeat our 

results. The detail SI generation procedure is as follows. 

Step 1. Motion estimation with smoothness constraint: 

The first step is to find initial motion field of WZ frame. The initial motion field is 

interpolated from the motion field between the neighboring key frames. The motion 

field resolution is one motion vector per 1616 block. Smoothness constraint is 

applied during motion search between key frames in to motion vector outliers caused 

by the aperture problem. The cost function of motion search is 

      
  











 
 ij BUB

jjji
v

i vDvDvDv minarg ,    (2.1.1) 

where iv  is the estimated MV of block i, and Di(v) is the mean  absolute difference 

(MAD) of matching block pair between key frames. The first term is common in 

traditional motion search as cost function. The second term is smoothness constraint. 

The smoothness is calculated with eight Bi neighboring blocks U(Bi). The Lagrange 

multiplier is calculated adaptively as: 
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 .     (2.1.2) 

In this paper, β is set to 10. An iterative regularization process based on this cost 

function is performed to solve for the optimal solution. 

Step 2. Bi-directional motion refinement: 
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After the first step, the motion field is further refined by “bi-directional” motion 

estimation. The terminology (from [13]) is somewhat misleading since the process is 

different from the bidirectional motion estimation process in traditional closed-loop 

codec where the target block to be coded is used as a search template to perform 

motion search in both backward and forward frames (hence, bi-directional). In DVC, 

the target block of the original video frame is not available (at the decoder side). 

Therefore, what this “bi-directional” motion refinement process really does is the 

refinement of the motion vectors produced in step 1 (and step 3) so that the constraint 

that one of the matching block in the key frames must be located at a macroblock grid 

position is removed. The motion estimation process is still uni-directional, from one 

key frame to another. The refinement search is conducted around each initial motion 

vector. As shown in Fig. 4, a small search ranges on both ends of the initial motion 

vector (from one key frame to another) are select for the refinement process. The 

position of A is symmetric to that of B, with respect to the position of C. The iterative 

search method and cost function are the same as those described in step 1. The search 

range is adaptively calculated based on the motion vectors of neighboring blocks. The 

method used to calculate search range will be discussed later. Bi-directional motion 

refinement improves SI quality significantly. 

Step 3. Hierarchical motion estimation:  

A coarse-to-fine motion search strategy is also adopted in our implementation. At 

the coarsest level of motion search, initial search block size is 1616. After the first 

bi-directional motion refinement, the resulting motion field would then be used to 

drive the second level motion estimation for each 88 blocks. The initial motion 

vectors for the second-level search is computed from the top-level motion vectors 

using an affine model, as illustrated in Fig. 5. As Fig. 5 shows, three neighboring 

MVs (shown as solid lines) are used to estimate local affine parameters, and compute 

the 88 motion vector (shown as dashed line). During this process, new search ranges 

will be calculated for another iteration of bi-directional motion refinement. Finally, a 

third-level of hierarchical motion search will be performed to obtain motion fields at 

the density of one vector for each 44 block. 
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Fig. 4 Bi-directional motion refinement. C is the SI block to be predicted. A and B are 

matching blocks that are located along the translational motion path from Key frame n 

to n+1, respectively. 

 

Fig. 5 Motion refinement using hierarchical search. The MV represented in dashed 

line is the refined MV for small blocks to be estimated from the coaser MVs 

represented in solid lines for large blocks. 

2.1.2.3 Error Model Estimator 

Since the decoder does not have the original frames, it can only estimate the SI 

prediction error using the texture and motion characteristics of the neighboring key 

frames. Since the SAD value of a matching block pair of key frames obtained during 

SI generation process indicates consistency of the texture alone motion path, it is a 

strong cue that indicates the reliability of the predicted SI block. Therefore, cost 

function defined in (1) is used to estimate the error levels of predicted SI blocks. 

There are other possible cues for estimating SI quality. For example, the number of 

corner points and the strength of edge pixels in an SI block indicate the complexity of 

the texture. The regularity of the dense motion field between neighboring key frames 

indicates how well the true motion matches the block-based constant-velocity 

translational motion model. In current implementation, only the SAD measure is used 

A

B
search range of A

C

search range of B

Key frame n WZ frame n Key frame n+1
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for the proposed DVC framework. Other sophisticated measures will be investigated 

in the future. 

Based on the estimated error level, the macroblocks will be classified into several 

groups (4 groups per video frame are used in current implementation). Mean-Shift 

algorithm [45][46] is used for classification of macroblocks. The classification 

process is described as follows: 

Step 1. Initially sort macroblocks evenly into 4 groups according to their error levels. 

Calculate mean of error level in each group. 

Step 2. Re-group the macroblocks so that each macroblock is classified into the group 

with nearest error level mean. 

Step 3. If the classification process converges (i.e. no macroblock is moved to a 

different group), terminate the process, otherwise, go back to step 2. 
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(a) Example of estimated error distribution. 

 

 

 

 

 (b) True error distributions. 

Fig. 6 Side informaton error histograms. 
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Fig. 7 Error classification result. 

Fig. 6 and Fig. 7 show the classification results of 66
th

 frame of the Foreman 

sequence. Fig. 6(a) is the histogram of estimated error levels for all 1616 

macroblocks and the classification of errors into four groups. In current 

implementation, error model estimator use the motion search cost defined in (1) as the 

error level of a macroblock in the SI. In the future, more sophisticated error model 

estimator will be used to classify macroblocks based on error levels as well as error 

types. Fig. 6(b) shows true error histograms of each classified groups, where the 

original video frame is used to compute the true error levels of the SI’s. Fig. 7 shows 

the distribution of the four groups of macroblocks in the video frame. It is interesting 

to see that the proposed error model estimator classifies the face area, the textured 

background region, and the smooth background region into different groups. 

After the decoder classifies macroblocks into four groups, the information 

(two-bit per macroblock) is entropy coded and sent back to the encoder. On the 

encoder side, group-wise bit allocation would be performed so that channel codes can 

be used more efficiently to cope with different level of errors. 

2.1.3 Experimental results 

This section presents several experiments to demonstrate the efficiency of the 

proposed framework. We have implemented the DISCOVER codec as described in 

[12] as a baseline codec for comparison (referred to as the DISCOVER* codec in this 

section). The proposed techniques are then integrated into this baseline codec. 

However, we have found that our baseline implementation of the DISCOVER codec 
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has worse performance than the original DISCOVER codec, probably due to the 

inferior SI generator as mentioned in section 3.2. Therefore, a binary executable of the 

DISCOVER codec provided by the original authors is also used in the following 

evaluations. Nevertheless, to make fair judgments of the performance gain from the 

proposed macroblock grouping WZ coding tool, one should still compare the 

proposed DVC codec against the DISCOVER* codec. In addition, the AVC/H.264 

intra coder and AVC/H.264 zero-motion inter coders are used for R-D performance 

comparison against all DVC codecs. 

2.1.3.1 Test Conditions 

The QCIF version of eight standard test sequences, Foreman, Hall Monitor, 

Soccer, Coastguard, Mobile, Car Phone, Table Tennis and Motion-and-Daughter, are 

used in the experiments. The temporal resolution of these sequences is 15Hz. For all 

sequences, the DVC GOP size is 2. The key frames are coded using AVC/H.264 main 

profile intra coder. Reference software JM [47] is used and the RDO is turned on. 

2.1.3.2 WZ Coding Efficiency Evaluation 

In this section, an experiment is conducted to verify the WZ coding gain from the 

proposed macroblock grouping scheme directly. An LDPCA channel coder is used to 

generate syndrome bits of the original video sequences with and without the 

macroblock grouping tool. The two decoders (with or without macroblock grouping) 

then request just enough syndrome bits to correct the SI’s to produce exactly the same 

reconstructed frames. Take Foreman sequence for example, when the quantization 

level of all WZ frames is set to QM=3 and the QP of Key frames is 33, the required 

syndrome bit rate is 7.72 kbps without the proposed macroblock grouping tool. 

However, after macroblock classification and grouping, the required syndrome bit rate 

is reduced to 6.56kpbs. The bit rate saving is 15%. The experiment is conducted over 

all test sequences and over all combinations of encoder settings, Key QP=25~40 and 

WZ QM=1~8 (i.e. 128 WZ rate settings in total). TABLE. I summarizes the 

maximum, minimum, and mean of bit rate change of the proposed coding tool over 

these 128 decoding rates (note that a negative percentage means bit rate reduction). 

TABLE. I Bit Rate Reduction with Proposed Macroblock Grouping 
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Sequence Maximum Minimum Mean 

Foreman -5.10% 0.47% -2.68% 

Hall -22.33% -0.82% -9.73% 

Coastguard -12.64% 0.86% -3.21% 

Soccer -15.38 0.8% -4.85% 

Carphone -13.43% -0.17% -4.92% 

Mobile -5.66% 1.48% -1.24% 

Table Tennis -20.59% -1.85% -8.24% 

Mother-and-Daughter -8.97% -0.39% -4.05% 

 

As the results shown, WZ coding with macroblock grouping can improve coding 

efficiency about 5% on average. The amount of bit rate reduction depends on how 

well the error estimator classifies the SI error levels of the corresponding video 

sequence. With more sophisticated error model estimator, the performance of the 

proposed techniques can be further improved. 

 

2.2 Perceptual Based Distributed Video 

Coding 

In this section, we propose a very different approach of perceptual-based 

decoder-side skip mode strategy. The proposed technique comes from the key 

observation that SI frames predicted using motion-projection algorithms often contain 

image areas with large prediction errors (in MSE sense) but small visual distortions. 

the proposed technique performs perceptual-based analysis to determine whether the 

SI regions have noticeable visual distortions. Our approach allocates channel codes 

only for these regions. 

2.2.1 Side Information Perceptual Analysis 

Fig. 8 shows the SI prediction frame generated by motion-projection using two 

neighboring key frames. The SI in this example is particularly interesting because the 

PSNR differences between the key frames (31.2 dB and 29.9 dB) and the in-between 

SI frame (17.5 dB) are more than 10 dB, but visually, video quality across the key 
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frames and the SI frame are still consistent. Therefore, if perceptual quality is the 

coding goal, there is no need to request parity bits to correct the large amount of 

errors in this SI frame. Note that the main reason that the PSNR of the SI is low is 

because the scene is shaky due to slight camera motion. The motion field of the SI 

frame predicted from the two key frames is a smooth field different from the true 

motion field. The interpolated SI frame using this predicted motion field is visually 

appealing, but is different from the original frame. 

 

 

 

 

 

 

   

(a) Original frames 37, 38, and 39 (from left to right) of the 15 Hz Coastguard sequence. 

   

(b) The SI frame (middle) and the two key frames (left and right) used for SI prediction. 

   

(c) The error image of SI and the projected motion field  

between the SI frame and key frame 37. 

Fig. 8 An example of SI with good perceptual quality but low PSNR. The PSNR of 

the SI frame is only 17.5 dB, but its visual quality is comparable to the neighboring 

key frames (around 30 dB). 
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Another issue with WZ frame reconstruction is that the error distribution of SI 

prediction is spatially varying [48].  

Fig. 9 shows one such example.  

Fig. 9(a) is a predicted SI frame of the 48
th

 frame of the Foreman sequence 

(QCIF@15Hz). The SI error characteristics are affected by both the texture and 

motion complexities in video contents.  

Fig. 9(b) shows the reconstructed WZ frame using LDPCA code (the amount of 

parity bits are 12.38 kbits). The PSNR is 31.22 dB. There are spatially varying burst 

errors in the SI frame and it is ineffective to assume a spatially invariant i.i.d. SI 

error model and try to use channel codes to correct these errors. Burst errors usually 

happen at moving edge boundaries. However, existing DVC techniques [1][10]-[12] 

group consecutive macroblocks in scan line order into a coding block without taking 

into account the texture and motion characteristics of these macroblocks. 

If we only correct the facial area (using 10.46 kbits), the partially reconstructed 

WZ frame looks visually more appealing, as shown in  

Fig. 9(d). Note that the sharp straight lines of the background building in the SI 

frame have uniform pixel-shift errors that cause a low PSNR value (28.62 dB). 

However, visually, there are no perceptible errors. On the other hand, the image in  

Fig. 9(b) uses part of the bit budget to correct the sharp edges towards the correct 

pixel position to certain degree. Unfortunately, such halfway correction produces 

fuzzy edges and degrades visual quality. In short, if a decoder can determine the 

regions of interest (ROI) automatically, and applies WZ reconstruction only in the 

ROI, we can achieve better visual quality at lower WZ rates. In addition, more bit 

budget can be allocated to key frames to further improve overall R-D performance 

[49]. In this paper, we define ROI as the areas in the SI frame where distortions are 

perceptually salient. 

 

 

(a) SI frame      (b) Full correction     (c) Error of (b) 
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(d) Partial correction     (e) Error of (d) 

Fig. 9 Perceptual-based reconstruction of SI prediction errors. The reconstructed WZ 

frame in (b) tries to correct the prediction errors of the whole SI frame using 12.38 

kbits of LDPCA codes. The reconstructed WZ frame in (d) only corrects a rectangular 

area that contains the face of Foreman using 10.46 kbits of LDPCA codes. 

 

It is important to point out that the main strength of the proposed scheme is not 

just to deal with the extreme cases illustrated in Fig. 8 or  

Fig. 9 Since all video frames are captured with noises, as a result, the predicted SI 

frame usually contains noises inherited (motion-compensated) from the key frames 

that are different from the noises in the original WZ frames. With the proposed 

approach, we will not waste syndrome bits on the correction of one set of sample 

noises to another set of sample noises, unless they are visually significant. 

2.2.2 The proposed DVC framework  

Fig. 10 is the block diagram of the proposed DVC codec. We have added 

perceptual-based coding tools to a transform-domain DVC framework. The baseline 

implementation of the DVC codec is similar to the DISCOVER codec [12], plus 

prioritized macroblock grouping [50]. An AVC/H.264 intra coder is used to encode 

key frames and an LDPCA code [16] is used to correct SI frames. For each SI 

macroblock, the decoder performs perceptual distortion analysis and discriminates 

whether the macroblock belongs to the ROI. The encoder receives the ROI 

information from the decoder via a feedback channel and groups ROI macroblocks 

into the same coding block. Since the coding block size varies from frame to frame, 

the LDPCA module must handle variable block-length (VBL) coding. The rest of this 

section describes the proposed perceptual-based error analysis. 
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Fig. 10 The proposed DVC architecture. Gray blocks are proposed modules. 

2.2.2.1 Texture Distribution Similarity (TDS) Analysis 

Based on our empirical investigations, bursty SI prediction errors often happen at 

the boundaries of texture-rich moving objects. Therefore, the first step in the proposed 

perceptual-based error analysis is to identify whether the distribution of texture-rich 

macroblocks in the SI frame is the same as that in the quantized original frame. If an 

SI macroblock is texture-rich while the corresponding quantized original macroblock 

is not (or vice versa), the SI macroblock should be corrected by parity bits. Since the 

original video frames are available only to the encoder, the encoder must compute a 

texture distribution map of the quantized original frame and transmit it to the decoder 

for analysis. 

The texture distribution generator first determines edge pixels in a frame using the 

Sobel edge operator and a threshold edge. A macroblock is considered a texture-rich 

block if the percentage of edge pixels in the block is larger than a threshold texture. 

Finally, the distribution of texture-rich blocks is recorded using a bit map, one bit per 

macroblock. In the bit map, a ‘1’ signals a texture-rich macroblock while a ‘0’ signals 

a regular macroblock. 

The selection of the two thresholds, edge and texture, are described as follows. 

The thresholds are adaptive to the video contents. To determine the distribution of 

texture-rich blocks of a WZ frame at t, we compute edge and texture of a frame at 

time t as in Eq. (2.2.1): 
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where st(p) is the sum of magnitudes of horizontal and vertical Sobel edge strength of 

pixel p of the WZ frame at time t, and M is the number of pixels in a key frame. 

Pedge,t(p) is a binary function of edge map, i.e. Pedge,t(p) is 1 if p is an edge pixel 

and Pedge,t(p) is 0 otherwise. While the encoder generates the texture distribution 

map of the WZ frame, the decoder uses the same algorithm to generate the texture 

distribution map of the SI. The decoder can then compare the received texture 

distribution map with the texture distribution map of SI. The set of SI macroblocks 

that have the same texture property as the corresponding original macroblocks is 

denoted by ΩTDS. 

2.2.2.2 Motion Consistency (MC) Analysis 

Motion behavior is a useful cue for estimating SI prediction quality. For example, 

the optical flow field between neighboring key frames is a good indication of how 

well the true motion field matches the block-based motion model [25]. If the motion 

field is irregular in a highly textured area, the visual distortion of the predicted SI may 

be large. For the SI frame at time t, we first calculate the motion smoothness t(k) 

measure of a 44 block at block position k using Eq.(2.2.2) 
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where ΩN(k) is the set of eight direct neighbors of block k, and vf(k) is the estimated 

forward motion vector of block k for the SI frame at time t. The motion consistency 

measure Δt(i) of macroblock i is defined using Eq.(2.2.3): 
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 ,      (2.2.3) 

 

where ΩB(i) is the set of sixteen 44 blocks of macroblock i. Macroblocks whose 

motion consistency measures are smaller than a threshold MC belong to the set ΩMC 

of macroblocks with consistent motion. The threshold is adaptively calculated using 

Eq.(2.2.4):  
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tt

tMC    ,     (2.2.4) 

 

where
t

 and
t

  are the mean and standard deviation of Δt() of SI frame t, 

respectively. Note that, the motion vector estimates at low-texture areas are unreliable. 

Thus, we set MC to infinity for macroblocks with no textures so that such 

macroblocks are always counted as motion-consistent macroblocks. We use the 

average Sobel edge strengths of a macroblock to determine its texture level. If the 

total edge strength of a macroblock is larger than a threshold TL, it is treated as a 

texture-rich macroblock. The threshold TL is set to 50 in this paper and it is not a 

sensitive parameter (any values from 50 to 100 produces similar results for all the test 

sequences). 

Statistically speaking, the policy for selecting MC will include a fixed percentile 

of the SI macroblocks into the set ΩMC. In theory, for the detection of macroblocks 

with irregular motions, a sequence dependent fixed-value threshold, instead of a 

fixed-percentile threshold, should be used. However, our experiments show that 

Eq.(2.2.4) works quite well for video scenes with distinctive regions of interest, for 

example, for sensor network-based surveillance videos or head-and-shoulder videos 

for mobile social networks, etc. 

2.2.2.3 Texture Structure Consistency (TSC) Analysis 

For motion-projection algorithms, the texture structure consistency between the 

matching blocks in key frames is also an indication of visual quality level of the 

corresponding SI macroblock. Higher structure consistency could imply better visual 

quality, even if the true error is high due to uniform shifting of object pixels. For the 

SI frame at time t, we calculate the correlation coefficient between the edge strength 

of the forward and backward motion compensated predictor images (i.e., the two 

hypotheses of SI) using Eq.(2.2.5): 
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Note that sf,t() and sb,t() are the edge strength images of the forward and backward 
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hypotheses at time t, respectively. The edge strength is computed by the sum of the 

magnitudes of horizontal and vertical Sobel edge strength at each pixel position. ΩMB(i) 

is the set of pixels of macroblock i. f,t(i) and 
f,t(i) are the mean and variance of 

sf,t(p), pΩMB(i), and b,t(i) and 
b,t (i) are the mean and variance of sb,t(p), pΩMB(i). 

SI macroblocks whose t(i)’s are larger than a threshold TSC belong to the set 

ΩTSC of macroblocks with high texture structure consistency. The threshold TSC is 

adaptively calculated by Eq.(2.2.6) : 

 
tt

tTSC    ,      (2.2.6) 

 

where
t

  and 
t

  are mean and standard deviation of the structure consistency 

measure, respectively. Note that if a pair of macroblocks do not contain any structures, 

comparing their structure correlation is meaningless. Therefore, macroblocks whose 

average edge strengths are below half of the average edge strength of current frame 

would be directly included into the set ΩTSC. 

Since the formulation of TSC is similar to SSIM [51], it might be possible to use 

SSIM to replace TSC and achieve similar effects. However, there are two key 

differences between TSC and SSIM. First, TSC is computed using the edge images, 

not the original pixels (as in SSIM). We have observed that most visual errors in 

reconstructed SI frames happen around edge pixels. In other words, TSC is a variant 

of SSIM that is fine-tuned to capture “texture similarity” around edge pixels (which 

makes the threshold TSC less sensitive to lighting differences between key frames). 

The second key difference is about computational complexity. For SSIM, the 

computed variance, covariance, and mean images (a total of five images per key 

frame) are filtered by an 1111 Gaussian filter. The complexity is quite high for our 

purposes. For TSC, we use only two 33 Sobel filters (horizontal and vertical) per key 

frame to compute structure correlation. 

2.2.2.4 Valid Motion Projection (VMP) Analysis 

Motion-projection algorithms use neighboring key frames to predict SI frames. 

For boundary macroblocks, the projected motion vectors are often extrapolated from 

outside the frame boundaries, which can cause large visual distortions in SI frames. 

Therefore, we use the error εt(p) between the matching key frame pixels that are 
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projected to pixel p of SI at time t to determine whether a boundary macroblock i of 

SI have large errors, 

))(())(()( 11 pvppvpp btftt II   ,    (2.2.7) 

 

where It() is the image function at time t, vf(p) and vb(p) are the matching forward 

and backward motion vectors from the key frames to the SI pixel p, respectively. A 

threshold, θ, is calculated as: 
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where 
t

  and 
t

  are the mean and standard deviation of εt() of all SI pixels at 

time t, respectively. In other words, an invalid motion projection pixel is defined as a 

pixel p whose motion vectors projected from key frame falls outside the frame 

boundary, and its error measure t(p) is larger than θ. The set ΩVMP of valid motion 

projection is defined as all SI macroblocks that contain less than θVMP = 10% invalid 

motion projection pixels. Note that, most interior macroblocks belong to the set ΩVMP, 

regardless of the magnitude of their error measure t(). The selection of θVMP is based 

on empirical analysis. We have computed the percentage of invalid motion projection 

pixels of all SI macroblock of the test sequences. Setting θVMP to 10% is a strict 

threshold that eliminates all visual errors due to wrong boundary motion projection in 

all the test sequences. In fact, any value of θVMP below 15% should work fine for all 

the test sequences. However, as the threshold gets smaller, the coding efficiency may 

drop accordingly.  

2.2.2.5 Determination of Regions of Interest (ROI) 

The set ROI of macroblocks is composed of the macroblocks that have 

noticeable visual distortions. If a macroblock belongs to the intersection of the four 

sets ΩTDS, ΩMC, ΩTSC, and ΩVMP, we can consider this block as a macroblock 

that has little visual distortion and it does not require WZ reconstruction. Therefore, 

the initial set ROI of visually distorted macroblocks is defined as in Eq.(2.2.9): 

 

ROI = (ΩTDS  ΩMC  ΩTSC  ΩVMP)
C
,     (2.2.9) 
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where the superscript C denotes the complementary set. 

Fig. 11 and Fig. 12 illustrate examples of the complementary sets of several 

frames in the Foreman sequence. Fig. 11(a)~(d) show 
C

TDS
, 

C

MC
, 

C

TSC
, and 

C

VMP
 for different frames of Foreman where each metric capture unique visually 

distorted blocks. Fig. 12 shows how these metrics complement each other in a specific 

frame of the Foreman sequence. Note that VMP is not particularly useful in Fig. 12. It 

is designed to detect artifacts at boundary blocks. Thus, it is useful when there are 

camera-panning motions (as in Fig. 11 Examples of SI frames (left) and detected 

visually distorted macroblocks (right).(d)). The unions of these sets can capture 

almost all SI areas with noticeable visual distortions for video scenes with distinctive 

regions of interest used in our experiments. 

 

 

 

 

  (a) 
C

TDS             (b) 
C

MC         (c) 
C

TSC     (d) 
C

VMP  

Fig. 11 Examples of SI frames (left) and detected visually distorted macroblocks 

(right). 

     

   (a) SI             (b) 
C

TDS        (c) 
C

MC        (d) 
C

TSC        (e) 
C

VMP  

Fig. 12 An example of the 72
nd

 SI frame and the detected visually distorted 

macroblocks. 

Once the initial ROI is obtained using Eq.(2.2.9), we further refine ROI by 

removing isolated macroblocks and filling ROI holes. If a macroblock belongs to 
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ROI, but none of its neighbors belongs to ROI, it is probably an isolated outlier 

(unless it is located at the frame boundary). On the other hand, if a macroblock is not 

in ROI while the majority of its neighbors are, it probably should belong to ROI 

too. To obtain the refined ROI, we first remove isolated non-boundary macroblocks 

in ROI and then iteratively include a non-ROI macroblock into ROI if the 

majority of its neighbors are in ROI. The neighborhood structure is a diamond 

shape area around the macroblock under consideration as shown in Fig. 13 

Neighborhood structure of the ROI refinement process. The squares are the 

macroblocks under consideration and the circles are their neighbors.. The iterative 

process continues until it converges. In the worse case, all macroblocks will be 

included into ROI, which means reliable detection of ROI is not possible and the 

codec falls back to full-frame WZ reconstruction. However, this situation never 

happens in our experiments. 

 

 

Fig. 13 Neighborhood structure of the ROI refinement process. The squares are the 

macroblocks under consideration and the circles are their neighbors. 

 

Another observation is that, typically, 5~10% of macroblocks belong to the set 
C

TDS. 

However, at a scene change frame, the number of macroblocks in 
C

TDS would suddenly 

become large. Therefore, if the size of 
C

TDS  is larger than a threshold θSC = 20% in a frame, 

full-frame WZ reconstruction would be used. Similar edge-based scene change detection 

methods have been proposed in [52][53]. Any value of θSC from 20% to 40% produces 

similar results in all the test sequences. If we occasionally mis-detect one of the frame 

as a scene change frame because the threshold is too low, there will not be any visual 

distortion. We simply suffer slightly on the coding gain. However, if we set the 

threshold too high, we may fail to detect some scene change frames and causes some 

visual artifacts. Thus, we set θSC to 20%. Fig. 14 shows some examples of macroblocks 

that belong to ROI.  

(a) QCIF (b) CIF
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Fig. 14 Examples of ROI detection results. Macroblocks with normal gray levels are 

in ROI. 

2.2.2.6 Impact of large GOP sizes on the proposed      

perceptual metrics 

We have been using the DVC coding structure with GOP size equals two due to 

the constraint of the SI generation algorithm used in this paper. The motion-projection 

SI generation algorithm assumes that the motions between two key frames are 

constant velocity translational motion. For most of the macroblocks, this assumption 

is valid when GOP size is small. However, as GOP size becomes large, most of the 

macroblocks will violate the constant velocity translational motion model. As a result, 

in addition to high SI prediction errors, there will be larger discrepancy between the 

predicted motion vectors and true motion vectors. 

If the SI prediction error is high, the TDS metrics will include a large portion of 

macroblocks into the ROI since the original WZ and the predicted SI will have very 

different texture structure (even if the visual quality of the SI is good). Similar 

situation may happen to the TSC and VMP metrics because a larger portion of SI 

macroblocks will now be compensated from mismatched blocks due to translational 

motion constraint. Furthermore, because we try to use constant velocity translational 

motion to approximate nonlinear motions across a large period of time (i.e., large 

GOP), the estimated motion fields would become less regular. The proposed MC 

metric would also include more macroblocks into the ROI. In TABLE. II, we list the 

average percentage of macroblocks captured by each metric to illustrate the effect of 

GOP size increase on the Foreman sequence to demonstrate the impact of large GOP 

size on the proposed framework. The Foreman sequence has the most complex 

motion among four test sequences. 
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To solve the issue of larger GOP sizes, we have to adopt a more complex SI 

generation algorithm. For example, in[54], the initial SI generated using a first-order 

motion projection algorithm is used only for decoding of most significant bands (e.g. 

DC bands). The partially reconstructed WZ frame will then be used to help the second 

phase SI generation. Alternatively, one can use a higher-order motion-projection 

algorithm that takes into account more reconstructed frames (instead of simply two 

key frames) and tracks object trajectories for SI generation. 

TABLE. II Impact of gop size on the proposed perceptual metrics. 

 GOP Size TDS
c 
(%) MC

c 
(%) TSC

c 
(%) VMP

c 
(%) ROI (%) 

Foreman 2 6.3 14.0 14.0 3.4 36.0 

4 9.4 30.1 45.0 5.0 68.8 

8 15.1 36.5 50.2 6.5 77.7 

 

2.2.2.7 Complexity analysis of the proposed perceptual DVC 

codec 

The proposed DVC framework has to perform extra computations in both the 

encoder and the decoder for perceptual analysis. Nevertheless, the overall complexity 

of the proposed decoder is often less than the complexity of the traditional DVC 

codecs. Note that the most time-consuming module in a DVC codec is the channel 

decoder (e.g., the LDPCA decoder in this paper) and the SI generation algorithm. The 

proposed perceptual analysis technique allows us to perform only partial LDPCA 

decoding. This scheme reduces the decoder complexity significantly when the ROI is 

small. On the encoder side, although the complexity does increase slightly, it is 

negligible compared to the baseline implementation. 

To quantify the computational complexity of the encoder and the decoder, we 

have tested the proposed DVC codec, the DISCOVER codec, the AVC intra codec, 

and the AVC zero-motion inter codec on an Intel Core2 3GHz CPU with 4GB RAM. 

The AVC codec used is JM 17.2 and the coding structure of the AVC zero-motion 

codec has GOP size 2 with a B frame between two I frames. The video sequence used 

is the FOREMAN sequence at 15 frames per second (a total of 149 frames). TABLE. 
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II shows the encoding time comparison while TABLE. III shows the decoding time 

comparison. 

As one can see from TABLE. III and TABLE. IV, although the complexity of the 

proposed encoder is slightly higher than the complexity of the DISCOVER encoder 

(about 0.76% higher on average), the decoder complexity of the proposed codec is 

less than that of the DISCOVER codec (about 30.0% lower on average). The 

breakdown numbers of the execution time per frame of each module of the 

proposed codec for the same experimental setup are shown in  

 

 

TABLE. V and TABLE. VI. 

TABLE. III encoding time comparison for foreman, qcif@15fps. 

 

TABLE. IV decoding time comparison for foreman, qcif@15fps. 
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TABLE. V breakdown of encoding time per frame (in msec) for the propsoed codec. 

 

TABLE. VI breakdown of decoding time per frame (in msec) for the propsoed codec. 

 

Although the overall complexity is usually lower for the proposed approach, its 

theoretical coding delay is indeed longer than that of the traditional DVC approaches. 

When the proposed encoder receives an original WZ frame, it has to wait until the 

decoder provides the ROI map before it can start LDPCA encoding. This delay is 

composed of two parts: the computation time of the ROI map and the transmission 

time of the map back to the encoder. The uncompressed ROI information is one bit 

per macroblock. For CIF@15fps, the time interval between two video frames is about 

66 milliseconds. With a feedback channel bandwidth of 20 kbps, it would take 19.8 

milliseconds to transmit 396 bits per frame back to the encoder. Such feedback 

bandwidth is not difficult for today’s wireless access technology. 

As for the coding delay caused by the computation of the ROI map, it includes the SI 

generation time plus the proposed perceptual analysis time. From  

 

 

TABLE. V, it is obvious that the SI generation time requires hardware 

acceleration in the decoder in order to fulfill real-time requirement. However, since 
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the SI generation algorithm is very similar to the motion estimation algorithm of 

traditional video encoders, there are many hardware solutions available. 

 

2.2.3 Experimental Results 

This section presents experiments to demonstrate the efficiency of the proposed 

framework. The experiments are composed of two parts. The first part compares the 

R-D performance of the proposed framework with the DISCOVER codec [12], 

AVC/H.264 intra codec, and AVC/H.264 zero-motion inter codec. The GOP size of 

the DVC codecs and the AVC/H.264 zero-motion inter codec is two. The coding 

structure of the AVC/H.264 zero-motion inter codec is IBI. The DISCOVER codec is 

obtained from the DISCOVER website. The second part of experiments provides 

video snapshots of consecutive frames for visual quality evaluations. Visual results of 

the proposed DVC codec and the DISCOVER codec are shown side-by-side for 

comparisons. The 15 Hz, QCIF version of four standard test sequences, (Foreman, 

Hall Monitor, Coastguard, and Car Phone), and the 30 Hz, CIF version of four 

standard test sequences, (Foreman, Hall Monitor, Coastguard, and News), are used in 

the experiments. The key frames are coded using an AVC/H.264 main profile intra 

coder (JM 17.2). Note that the proposed codec requires transmission of texture 

distribution bitmap and ROI bitmap in addition to the WZ bits. Both maps are 

represented using an uncompressed bitmap of 1 bit per macroblock (i.e. 99 bits per 

map for QCIF images).  Although we can use Huffman codes to compress the maps 

by 68% on average, we do not think it is critical to do so for the proposed framework. 

All R-D curves of the proposed codec in this section include the data rates required 

for transmission of the extra information. 

2.2.3.1 R-D Performance Evaluation 

Fig. 15 and Fig. 16 show the R-D performance of different codecs using both PSNR 

metric and the perceptual metric SSIM [51]. For DVC codecs, each rate point assumes 

a constant key frame QP and a constant WZ frame quantization matrix QM. For the 

proposed codec, we have adopted the same (QP, QM) setting as in the DISCOVER 

codec, obtained by minimizing the PSNR variance of the sequence. The (QP, QM) 

settings in the experiments are listed in  
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TABLE. VII. For the AVC/H.264 intra codec and the AVC/H.264 zero-motion 

inter codec, we choose the QP parameters from 29 to 43. For QCIF version of the 

sequences, the proposed DVC codec has better performance in all sequences 

comparing to the AVC-intra and the DISCOVER codecs. When compared against the 

AVC zero-motion inter codec, the proposed codec has better performance for 

Coastguard, and worse for Carphone, Foreman, and Hall Monitor. The main reason 

that the proposed perceptual-based codec out-performs DISCOVER in objective 

evaluation is that, with the proposed perceptual coding model, only a small portion of 

WZ bits is required to maintain consistent visual quality across the sequence. In other 

words, more data bits can be allocated to key frames to improve overall PSNR in the 

proposed scheme. As a result, the BD PSNR gain [55] over DISCOVER is 0.71 dB on 

average, and the SSIM gain is 0.016 on average. 

For CIF version of the sequences, the result is similar. When compared against the 

AVC zero-motion inter codec, the proposed codec has better performance for 

Coastguard, slightly worse for Foreman, but worse for News and Hall Monitor. The 

overall PSNR gain over DISCOVER is 0.41 dB on average, and the SSIM gain is 

0.010 on average. The BD Rate and BD PSNR results are listed in TABLE. VIII. 

 

TABLE. VII Quantization Setting (QP,QM) of DVC codecs in the experiments. 

QCIF Sequences 

Carphone (40,1) (40,2) (39,3) (36,4) (36,5) (34,6) (32,7) 

Coastguard (38,1) (37,2) (37,3) (34,4) (33,5) (31,6) (30,7) 

Foreman (40,1) (39,2) (38,3) (34,4) (34,5) (32,6) (29,7) 

Hall (37,1) (36,2) (36,3) (33,4) (33,5) (31,6) (29,7) 

CIF Sequences 

Coastguard (37,1) (36,2) (36,3) (34,4) (34,5) (33,6) (30,7) 

Foreman (39,1) (37,2) (37,3) (35,4) (35,5) (33,6) (31,7) 

Hall (35,1) (35,2) (34,3) (33,4) (33,5) (31,6) (30,7) 

News (38,1) (37,2) (36,3) (34,4) (34,5) (32,6) (30,7) 

TABLE. VIII BD results of the test sequences. 

QCIF CIF 

Sequence Rate PSNR SSIM Sequence Rate PSNR SSIM 

Carphone -18.6% 0.93 0.021 Coastguard -5.5% 0.23 0.014 

Coastguard -10.5% 0.47 0.019 Foreman -7.8% 0.28 0.011 

Foreman -11.3% 0.59 0.016 Hall -6.6% 0.31 0.005 
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Hall -10.6% 0.83 0.008 News -12.9% 0.81 0.009 
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Fig. 15 QCIF sequences R-D performance comparisons using PSNR and SSIM. The 

average BD PSNR gain over DISCOVER is 0.71dB, and the average SSIM gain is 

0.016. 
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Fig. 16 R-D performance comparisons using PSNR and SSIM. The average PSNR 

BD gain over DISCOVER is 0.41dB, and the average SSIM gain is 0.010. 
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2.2.3.2 Visual Quality Comparisons 

Since objective measures, such as the PSNR, do not fully reflect the visual quality 

of video sequences, subjective evaluation is often required for practical purposes. 

Therefore, in this section, we show some reconstructed frames from the proposed 

codec and the DISCOVER codec for visual quality evaluation. Since we have to 

match the target bitrate of a reconstructed sequence by the DISCOVER codec, we 

cannot use the same QP/QM selected using DISCOVER’s algorithm. The reason is 

that, given same QP/QM, the encoded bit rate using the proposed codec would be 

much lower than that of DISCOVER’s. Therefore, for each video sequence, we will 

use the rate ratio obtained using DISCOVER’s QP/QM, and then find a set of finer 

QP/QM quantizers that maintains this rate ratio and produces an initial rate that is 

close to the target bitrate of DISCOVER’s. To match the rate exactly, for each 

sequence, the following rate-allocation policy is applied. The bitrate of key frames are 

deducted from the target bitrate of DISCOVER’s. The remaining bits are allocated to 

WZ frames. The target bit budget for each WZ frame is linearly proportional to the 

total sum of the errors εt(p) in its ROI (see Eq.(2.2.7)). Note that such process is not a 

general policy for rate control of the proposed codec. Rate control of DVC codecs is a 

difficult problem [56]-[59]. We simply use the aforementioned process to match 

DISCOVER’s bitrates for visual comparisons. To evaluate visual quality, in Fig. 18 

and Fig. 20, we show the snapshots of consecutive frames where the proposed codec 

produces largest PSNR differences between key frames and the in-between WZ frame 

for the Foreman and Coastguard sequences. The PSNR values across frames of 

Foreman and Coastguard are shown in 0. It is quite evident from Fig. 18 and Fig. 20 

that PSNR, as well as SSIM [51] and FSIM [60], do not precisely reflect visual 

quality. For Hall Monitor and Carphone, we show the snapshots where there are 

noticeable visual improvements between the proposed method and the DISCOVER 

codec in Fig. 22 and Fig. 24. When the sequences are played back in real time, all 

four test sequences reconstructed by the proposed codec look sharper and have better 

visual quality than those reconstructed by the DISCOVER codec. 

Since key frame quality has direct impact on the visual quality of the 

reconstructed DVC video, we also conduct another experiment where the same key 

frames are used for both the DISCOVER codec and the proposed codec. The key 
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frames are encoded using the DISCOVER codec. In addition, same amount of WZ 

bits are used to correct WZ frames for each method. However, in the proposed codec, 

WZ bits are used to reconstruct only the ROI region. Some reconstructed frames are 

shown in Fig. 26. In Fig. 26, snapshots are chosen at frame positions with poorest SI 

quality. It is clear that the visual quality of the ROI-only decoding is much better than 

that of the full-frame decoding method because the WZ bits are devoted to error 

corrections of the ROI areas where the visual errors are estimated to be large. 

                     

 

(a)Foreman 

 

 (b)Coastguard 

Fig. 17 The PSNRs of reconstructed frames of the Foreman (160 kbps) and 

Coastguard (100 kbps) sequences using the proposed DVC codec. 
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Proposed: 35.7 dB         Proposed: 23.0 dB        Proposed: 36.0 dB 
14.1 kbits          2.1 kbits    13.2 kbits 

 (SSIM=9.4, FSIM=9.6)       (SSIM=7.4, FSIM=7.9)      (SSIM=9.5, FSIM=9.6) 

    

DISCOVER: 33.4 dB       DISCOVER: 29.5 dB      DISCOVER: 33.7 dB 
10.4 kbits          16.4 kbits       9.4 kbits 

 (SSIM=9.2, FSIM=9.4)      (SSIM=8.6, FSIM=9.0)     (SSIM=9.2, FSIM=9.4) 

Foreman, left-to-right: 75
th 

(key), 76
th

 (WZ), and 77
th

 (key) frames 

Fig. 18 Visual comparisons between the proposed codec (top row) and the 

DISCOVER codec (bottom row) at frame positions with highest PSNR variations. 

The bitrate of the proposed codec is 160.0 kbps, and the bitrate of DISCOVER is 

161.6 kbps 

 

  

Fig. 19 The SI frame of the proposed codec (left) used in 0, and its error image (right). 

The SI frame of the DISCOVER codec is not available. 
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      Proposed: 30.2 dB          Proposed: 18.2 dB       Proposed: 29.0 dB 
           9.3 kbits                  7.7 kbits     12.7 kbits 
      (SSIM=8.4, FSIM=9.0)       (SSIM=3.6, FSIM=7.3)      (SSIM=8.2, FSIM=9.1) 

   
      DISCOVER: 30.1 dB      DISCOVER: 21.8 dB     DISCOVER: 28.9 dB 
           9.2 kbits                12.0 kbits            12.6 kbits 
    (SSIM=8.3, FSIM=9.0)      (SSIM=5.4, FSIM=7.7)       (SSIM=8.2, FSIM=9.1) 

 Coastguard, left-to-right: 37
th 

(key),  38
th

 (WZ), and 39
th

 (key) frames 

Fig. 20 Visual comparisons between the proposed codec (top row) and the 

DISCOVER codec (bottom row) at frame positions with highest PSNR variations. 

The bitrate of the proposed codec is 99.4 kbps, and the bitrate of the DISCOVER 

codec is 101.4 kbps. 

 

  

Fig. 21 The SI frame of the proposed codec (left) used in 0, and its error image (right). 

The SI frame of the DISCOVER codec is not available. 
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  Proposed: 34.5 dB     Proposed: 34.1 dB        Proposed: 34.5 dB 
   14.0 kbits          3.6 kbits    14.3 kbits 
   (SSIM=9.6, FSIM=9.6)     (SSIM=9.6, FSIM=9.6)     (SSIM=9.6, FSIM=9.6) 

   
 DISCOVER: 34.3 dB        DISCOVER: 33.5 dB     DISCOVER: 34.2 dB 
   14.0 kbits           5.4 kbits    14.2 kbits 
  (SSIM=9.5, FSIM=9.6)         (SSIM=9.4, FSIM=9.6)      (SSIM=9.5, FSIM=9.6) 

 Hall Monitor, left-to-right: 11
th 

(key), 12
th

 (WZ), and 13
th

 (key) frames 

Fig. 22 Visual comparisons between the proposed codec (top row) and the 

DISCOVER codec (bottom row) at frame positions with noticable visual 

improvements. The bitrate of the proposed codec is 127.8 kbps, and the bitrate of the 

DISCOVER codec is 131.5 kbps. 

 

  

Fig. 23 The SI frame of the proposed codec (left) used in 0, and its error image (right). 

The SI frame of the DISCOVER codec is not available. 
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  Proposed: 34.2 dB       Proposed: 27.0 dB       Proposed: 34.3 dB 
   16.7 kbits          8.8 kbits   17.0 kbits 
   (SSIM=9.4, FSIM=9.6)     (SSIM=8.6, FSIM=9.0)    (SSIM=9.5, FSIM=9.6) 

    
    DISCOVER: 31.0 dB   DISCOVER: 29.4 dB      DISCOVER: 31.0 dB 
   12.2 kbits          10.8 kbits    12.2 kbits 

   (SSIM=9.0, FSIM=9.3)   (SSIM=8.8, FSIM=9.2)        (SSIM=9.1, FSIM=9.3) 

 Carphone, left-to-right: 141
st 

(key), 142
nd

 (WZ), and 143
rd

 (key) frames 

Fig. 24 Visual comparisons between the proposed codec (top row) and the 

DISCOVER codec (bottom row) at frame positions with noticeable visual 

improvements. The bitrate of the proposed codec is 134.1 kbps, and the bitrate of the 

DISCOVER codec is 134.4 kbps. 

 

  

Fig. 25 The SI frame of the proposed codec (left) used in 0, and its error image (right). 

The SI frame of the DISCOVER codec is not available. 
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  Proposed: 29.0 dB       Proposed: 25.9 dB         Proposed: 28.5 dB 

   8.7 kbits              11.9 kbits    13.7 kbits 

   (SSIM=8.9, FSIM=9.2)    (SSIM=7.9, FSIM=8.7)      (SSIM=7.6, FSIM=8.8) 

   

 DISCOVER: 30.9 dB        DISCOVER: 30.8 dB      DISCOVER: 30.5 dB 

   13.3 kbits         15.8 kbits    15.7 kbits 

  (SSIM=8.8, FSIM=9.2)       (SSIM=8.6, FSIM=9.2)     (SSIM=8.2, FSIM=9.1) 

Foreman, left-to-right: 48
th 

(WZ), 94
th

 (WZ), and 106
th

 (WZ) frames 

Fig. 26 Visual comparisons between the proposed codec (top row) and the 

DISCOVER codec (bottom row) at frame positions with poorest SI quality. The key 

frames for both codecs are the same. The WZ rate for the corresponding frame are the 

same too. The bitrate of the proposed codec is 150.4 kbps, and the bitrate of the 

proposed codec is 161.6 kbps. 

   

   

Fig. 27 The SI frames of the proposed codec (top row) used in 0, and its error image 

(bottom rows).   
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Chapter 3 Robust Video Coding 

During the stage of transmission through the error-prone environment, packet loss 

might occur due to signal degradation, oversaturated bandwidth, or routing issues. 

Moreover, the data may arrive too late to be used in real-time applications. In the case 

of transmission of compressed video sequences, this loss may result in a completely 

damaged stream at the decoder side. Error resilience (ER) and error concealment (EC) 

techniques are required for displaying a pleasant video signal despite the errors and 

for reducing distortion introduced by error propagation. 

In recent years, several ER methods have been developed, such as forward error 

correction (FEC) [5], intra/inter coding mode selection [6] , temporal error 

concealment [7], and multiple description coding (MDC)[8][9]. In this chapter, we 

proposed three different approaches. 

In section 3.1, a MRF-MCP based error resilient scheme is proposed, which 

employs the nearest error-resilient frame (ER-frame) as one of the reference frames 

and adopts error-resilient RDO (ER-RDO) for optimal reference block selection. The 

ER-frame in our approach is a frame capable of suppressing error propagation, which 

can be an intra-coded frame, or an inter-coded frame with high ratio of intra-coded 

macroblocks. Incorporating ER-RDO in our approach is for the purpose of making the 

choice of the number and location of the macroblocks referring to ER-frames to be 

decided adaptively by using rate-distortion technique. Significant performance gains 

in the experiments confirm that our approach has substantial improvement over 

competed schemes in providing error resilience using MRF-MCP. Besides, some 

techniques based on our error resilient scheme are further proposed to reduce the 

computational cost. These techniques include moving ER-RDO from motion vector to 

reference frame selection, skipping unnecessary reference frames, and predicting 

precise motion search centers. 

In section 3.2, an error resilient coding based on hierarchical B pictures is 

proposed. In this approach, a new hierarchical coding structure which combines two 

conventional hierarchical coding structures is employed to reduce the distance 

between a lost picture and its recovering pictures. In addition, based on the new 

structure, an improved estimation method is also proposed to further increase the 

accuracy of recovering motion. 
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In section 3.3, a rate-distortion optimization framework for MDC systems. With 

the proposed framework, the encoder can dynamically adjust coding strategy 

according to both video contents and channel conditions. 

3.1 Error-Resilient Video Coding Using 

Multiple Reference Frames 

In this section, a MRF-MCP based error resilient scheme is proposed, which 

employs the nearest error-resilient frame (ER-frame) as one of the reference frames 

and adopts error-resilient RDO (ER-RDO) for optimal reference block selection. Ths 

section is organized as follows. In section 3.1.1, we describe JM RDO and related 

works in end-to-end distortion estimation. The proposed error-resilient MRF-MCP 

scheme and the computational time reduction techniques are presented in sections 

3.1.2 and 3.1.3, respectively. The experimental results are shown in Section 3.1.4. 

3.1.1 Related Works 

This section presents the RDO technique used in JM [47] which is the reference 

software of H.264/AVC, and describes some related works about end-to-end 

distortion estimation.  

3.1.1.1 Rate-Distortion Optimization in JM 

JM provides a Lagrangian method which optimizes the tradeoff between video 

quality and bit rate to determine coding parameters. The Lagrangian method is 

applied at two stages, motion estimation and mode decision. In the stage of motion 

estimation, it is applied to determine the best motion vector (MV) and the reference 

frame; while in the stage of mode decision, it is to decide the best coding mode. 

The Lagrangian formulation for motion estimation stage is written as follows: 

 

    J(mv) = Dsrc+λmotion R(mv, ref)                      (3.1.1) 

 

where the source distortion, Dsrc, denotes the block-level prediction error between the 

current and the reference blocks. It is usually measured as the sum of absolute 
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difference (SAD); R(mv,ref) is the estimate of bitrate for the specified motion vector 

and reference frame index; and λmotion is the Lagrange multiplier to control the weight 

of the bitrate cost. 

 The Lagrangian formulation for mode decision stage is written as follows: 

 

      J(mode) = Dsrc+λmode R(mode)             (3.1.2) 

 

where the source distortion, Dsrc, denotes the macroblock-level difference between 

reconstructed macroblock and the original one. It is usually measured as the sum of 

squared difference (SSD); λmode is the Lagrange multiplier for mode decision; and 

R(mode) denotes the estimated coding rate for the specified mode (reference frame, 

coding mode, residue, etc.). 

3.1.1.2 Expected End-to-End Distortion Model 

Commonly, the expected end-to-end distortion is defined using sum of squared 

differences (SSD). That is 

 

     
       

     
  
 
                                 (3.1.3) 

 

where   
  and    

  denote the original value and the decoder reconstructed value, 

respectively, for pixel i in frame n. To effectively calculate the distortion, the decoder 

reconstructed value    
  which is unknown in the encoder needs to be derived further. 

The authors in [11] have derived    
  in a way such that dn

i
 can be recursively 

calculated at the encoder. We summarize their approach here. Let    
  and    

  be the 

reconstructed value and the reconstructed residue in the encoder, respectively. With a 

motion vector mv predicted from reference frame ref,    
 can be represented as 

   
       

        
 . Suppose the transmission error rate is known as p and frame copy is 

adopted as the error concealment policy. Then, the decoder reconstructed value    
  

can be represented as 

 

       
   

     
        

               

     
                                  

                (3.1.4) 
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Hence, the expected end-to-end distortion   
  for inter-coded pixel i in frame n 

was derived as 

  
       

     
  
 
   

           
        

        
    

 
        

       
  

 
   

             
             

            
       

  
 
        

      (3.1.5) 

 

where ds denotes the source distortion and dep the error- propagated distortion. The 

detailed derivation can be found in [66] and thus is omitted here. Since    
 ,   

 , and 

     
  are known at the encoder, the estimation of   

  mainly relies on the calculation 

of       
     and       

 . Since       
     and       

  are in a similar style, they are 

derived in a generalized formula as 

 

    
             

             
       

  
 
        

                  (3.1.6) 

 

It is observed that the error-propagated distortion of current frame (i.e.,     
 ) can 

be recursively calculated by the error-propagated distortion values from previous 

frames. As a consequence, the expected end-to-end distortion   
  can be estimated at 

the encoder. 

3.1.2 The proposed method 

This section presents a novel scheme which exploits MRF-MCP taking into 

account channel conditions and content characteristics to achieve the goal of error 

resilience.  

3.1.2.1 Candidate Reference Frames 

In traditional MRF-MCP techniques, the current coding frame uses immediately 

preceding K frames as reference frames. Due to high co-relation between these frames 

and the current coding frames, a good coding efficiency can be achieved. However, 

since these frames are located closely in the sequence, they have similar 
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characteristics in regard to error propagation length. Predicting from any of them shall 

obtain similar low error-resilient capabilities. However, in some circumstances such 

as high packet-loss rates, obtaining better error resilience is preferred even with some 

loss in coding efficiency. Hence, we include high error-resilient frames as part of 

reference frames. The nearest intra-frame (NIF) is a good candidate because of its 

high error-resilience. Assume the number of reference frames is 2. In Fig. 28(a), for 

instance, the candidate reference frames of the current coding frame fn will consist of 

fNIF as well as fn-1. 

When scene changes occur, however, the difference between the two consecutive 

frames right before and after a scene cut becomes large. In Fig. 28(b), assume a scene 

change happened between frames fn-4 and fn-3. For those frames (e.g., fn) locating after 

the scene cut and before the next I-frame, predicting from the NIF, fNIF, may suffer 

from a large prediction error and dramatically decrease the coding efficiency. In this 

case, it would be no longer beneficial for fn to predict from the NIF as the gain from 

error propagation suppression may not be able to compensate the considerable loss in 

coding efficiency. As a consequence, fn will choose to predict from fn-1, suffering from 

the error propagation from fNIF to fn-1. We also notice that the frame right after the 

scene cut (called scene-change frame) often has a high ratio of intra-coded blocks, 

which provide a certain ability to alleviate error propagation. Compared with NIF, 

referencing to this scene-change frame shall obtain a much better coding efficiency. 

Therefore, for those frames after the scene cut and before the next I-frame, we employ 

the scene change frame, instead of NIF, as one of the reference frames. As shown in 

Fig. 28(b), the candidate reference frames of fn would become fn-1 and fn-3 if fn-3 is a 

scene-change frame. To be more general, for a frame with K reference frames, we 

propose that its reference frames include (K－1) immediately preceding frames as 

well as the nearest ER-frame, which can be either  

 an intra-fame (I frame), or 

 an inter-frame (P or B frame) with high-ratio of intra- coded macroblocks (e.g., 
scene-change frames) 

 
While encoding frame n, the encoder maintains K frames (K-1 short-term and one 

long-term reference frames) in buffer. The short-term reference are frames n-1, 

n-2, …, and (n-K+1). The long-term reference is the nearest ER-frame. When the 

encoder moves on to encode frame n+1, if frame n is not an ER-frame, then the 



57 
 

long-term reference frame remains the same and the short-term reference slide 

forward by one to frames n, n-1, …, n-K+2; otherwise, the long-term reference jumps 

forward to frame n and the short-term reference frames are all removed from the 

encoder buffer. In the latter case, when the encoder moves on to encode succeeding 

non-ER frames, the long-term reference remains static and the number of short-term 

reference frames increases one at a time till k-1 frames are maintained in buffer and 

then the k-1 frames slide forward by one again as described above. 

 

  (a) The nearest I-frame as the ER-frame 

 

(b) The scene change frame as the ER-frame 

Fig. 28 ER-frames as part of reference frames. 

3.1.2.2 Error Resilient RDO 

Even though the periodic-macroblock method in [67] and the robust-macroblock 

method in [68] have shown that error propagation can be suppressed by using 

long-term reference frames, they used predefined constant for the number of the 

macroblocks predicting from long-term reference frames and selected these blocks 

from the ones having maximum estimated distortion, without considering the bit-rate 

increased. Therefore, these methods are not adaptive to various network conditions 

and content characteristics. In this paper, we use rate-distortion optimization (RDO) 

technique to dynamically choose the number and locations of the blocks that refer to 

ER-frames. 

As have described, JM exploits RDO technique at the stages of motion estimation 

and mode decision (using formulae (3.1.1) and (3.1.2), respectively) for coding 
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parameter selection. However, the RDO is designed for error-free environments. In 

order to provide error resilience, we incorporate the expected end-to-end distortion as 

computed in the previous section within JM RDO framework. Toward this goal, the 

only change in formula (3.1.1) is the replacement of source distortion Dsrc with the 

expected end-to-end distortion E(Dee), where the E(Dee) is the sum of the distortion 

contribution of the individual pixel in the block currently under motion estimation, i.e., 

E(Dee) =    
 

        for the dn
i
 calculated by formula (3.1.5) . Hence, the 

resulting error-resilient RDO (ER-RDO) is as follows: 

 

J(mv, ref) = E{Dee(mv, ref)}+λerrRblock(mv, ref)     (3.1.7) 

 

where λerr is equal to (1－p)λ according to [66], in which the λ denotes the Lagrange 

multiplier in error-free environment. Rather than applying RDO formula (3.1.1) for 

motion vector and reference frame selection as that in JM, our approach adopts 

ER-RDO formula (3.1.7) such that the number and locations of blocks referring to 

ER-frames are determined by taking into account for channel conditions. Besides, we 

also incorporate error resilience for mode decision. By replacing the source distortion 

Dsrc in formula (3.1.2) with the expected end-to-end distortion E(Dee), the ER-RDO 

for mode decision is defined as 

 

J(mode) = E{Dee(mode)} + λerrRMB( mode)         (3.1.8) 

 

where the Lagrange multiplier λerr is identical to that used in formula (3.1.7). 

Since optimal coding parameters (including motion vectors, reference frame indices 

and coding modes) are selected according to ER-RDO, the number and locations of 

blocks that refer to ER-frames are determined adaptively to varying channel 

conditions and various content characteristics. 

3.1.3 Computational Cost Reduction 

Even though the proposed scheme may improve the error- resilience of the coded 

video, it suffers from increased cost in computation. To reduce the computational cost 

of our error- resilient scheme, three techniques are further proposed. They are 
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reference-frame selection, reference frame skipping, and long-term motion search 

center prediction. 

3.1.3.1 Reference Frame Selection 

Motion vector selection taking end-to-end distortion into account often incurs 

impractical complexity because the distortion needs to be calculated for each 

candidate reference block in the search window to find the best one. To reduce the 

computational cost, we proposed to adopt JM RDO for motion vector selection, and 

utilize ER-RDO only for reference frame selection. Namely, end-to-end distortion is 

only calculated in reference frame selection. The reason is that blocks in the same 

reference frame have similar lengths of error propagation paths and thus, JM RDO 

considering source distortion at low cost in computation should be good enough to 

choose the best one among them. However, since blocks in different reference frames 

have different error propagation lengths, it is worth to take error propagated distortion 

into account, even with more computational cost. So, ER-RDO which considers 

end-to-end distortion is adopted in selecting reference frames. In our approach, we 

refer to JM RDO formula (3.1.1) as RDOmv for motion vector selection, the ER-RDO 

formula (3.1.7) as ER-RDOref for reference frame choice, and the ER-RDO formula 

(3.1.8) as ER-RDOmode for mode decision. As an example, for a block on current 

frame fn, its motion search is performed on five reference frames, fn-1, fn-2, fn-3, fn-4, and 

fER, each of which has its best motion vector decided by RDOmv. Among the five 

motion vectors, the choice is made according to ER-RDOref , and thus, the reference 

frame under current block mode is determined. The above process goes for each block 

mode, and finally the best mode is decided by ER-RDOmode. 

3.1.3.2 Reference Frame Skipping 

This subsection presents how to skip unnecessary reference frames to reduce time 

complexity in motion estimation. As have described, even though predicting from 

near frames may have better coding efficiency, it suffers from longer error 

propagation. Predicting from ER-frames, however, alleviates the propagation at the 

expense of higher bit-rates since the correlation between the ER-frame and current 

frame becomes weaker in general as they are more widely separated. Hence, it is 
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worth to determine the dominant cost between bit-rate and distortion. Toward this 

goal, we refer to both ER-frame and the immediately previous frame as dominant 

frames and use these two frames to decide whether it is necessary to go on for other 

reference frames. Assume current coding frame is n. For its two dominant frames, if 

frame n－1 is selected, motion estimation will go on for reference frames n－2, n－3, 

and n－4; otherwise, the motion estimation for current block is early terminated (i.e., 

only two reference frames are used). The idea behind this is that if frame n－1 is 

selected according to ER-RDO, it indicates that coding efficiency dominates the cost 

function and thus, motion estimation shall continue with reference frames n－2, n－3, 

and n－4 which have similar characteristics with frame n－1. This could be the case 

that the channel is at a low packet loss rate or the video is with high-motion content. 

On the contrary, selecting ER-frame indicates that error propagation distortion 

dominates the cost function and thus, it is unnecessary to check remaining three 

frames because they cannot provide better error resilience. 

3.1.3.3 Long Term Motion Search Center Prediction 

Since ER-frames can be far away from current frame, the conventional way of 

using MBs in current frame to predict motion search center may not be adequate, 

especially for moving objects. A better search center across multiple frames is 

necessary. Motion vector composition is a good technique for this purpose. 

Considering a simple example that an object with motion MVn(n-1) between frames fn 

and fn-1, and MV(n-1)(n-2) between fn-1 and fn-2., the most common way to represent the 

corresponding motion between fn and fn-2 would be MVn(n-1)+ MV(n-1)(n-2). MV 

composition can be extended to across more frames. Assuming that current frame is fn 

and ER-frame is f0, the predicted MV (called PMV) from fn to f0 can be represented as 

 

PMVn, 0 =         
 
                 (3.1.9) 

 

In block-based motion estimation, however, the area pointed by a MV may not 

align on block boundary. Several methods [69][70] have been proposed to choose 

proper MVs for composition. Without loss of generality, we adopt FDVS method 

proposed in [70], where the MV associated with the block having the largest 



61 
 

overlapping area out of overlapped MBs is selected. Let b0~b19 in Fig. 29(a) denote 

aligned blocks in frames f0~f4. To calculate PMV4→0 for block b16, since the area 

pointed by MV43(b16) is overlapped with four blocks as shown in Fig. 29(b); the MV 

associated with b15 which has the largest overlapping area is selected for composition. 

Similarly, the MVs associated with b10 in f2 and b4 in f1 are selected. As a result, 

PMV40 of b16 is obtained by MV43(b16) + MV32(b15) + MV21(b10) + MV10(b4) 

according to FDVS. 

It can be seen that, the PMV calculation using formula (3.1.9) relies on the 

availability of all MVs between fn and f0, but these MVs may not be all available in 

the encoding buffer. To save memory space usage, we use an Accumulated Motion 

Vector (AMV) to represent the latest composite MVs. Let AMVi0 denote the 

composite MV pointing to ER-frame (say f0) by a block in fi. Obviously, AMVi0 can 

be recursively derived from AMV(i-1) 0 using composition formula (3.1.10), where 

the initial term AMV00 is (0,0) because f0 is an ER-frame. 

 

AMVi0 = MVi(i－1) + AMV(i-1) 0   for i >1  (3.1.10) 

 

As an example in Fig. 29(c), assuming that AMVs of the blocks in f3 are available, 

AMV40(b16) can be derived from MV43(b16) + AMV30(b15). It is interesting to note 

that, with AMVs of f3, the MVs of f3, f2, and f1 are no longer required in PMV40 

composition and thus can be removed from the encoder buffer. Compared with FDVS 

in Fig. 29(b) which requires MVs of all the frames along current coding frame to the 

ER-frame, using AMV can save plenty of memory space. Once PMVs for all the 

blocks in f4 have been conducted, these PMVs become AMVs of f4 and can be used in 

PMV calculation for f5. By updating AMVs frame by frame, only AMVs of one frame 

need to be maintained for PMV composition. With proper PMVs, motion search range 

on ER-frames can be reduced to save computational cost. In our experiments, the 

search windows on ER-frames are set to 4x4; while on other reference frames, they 

are set to 32x32. 
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(a) Aligned blocks 

 

(b) FDVS 

 

(c) Aaccumulated FDVS 

Fig. 29 Motion vector composition using FDVS and accumulated FDVS 

3.1.3.4 Summarization of the Proposed Method 

The flow chart of the proposed method is shown in Fig. 30, where the frame under 

processing is fn. For each MB in fn, first perform motion estimation on dominant 

frames, fn-1 and fER, and then select reference frame between them by using 

ER-RDOref. Perform motion estimation using JM RDO on fn-2, fn-3 and fn-4 if fER is not 

selected; otherwise, choose the next block mode and repeat the above process until all 

modes of current MB are done. Then, perform mode decision using ER-RDOmode to 

determine the best mode for current MB. After all MBs in fn have been processed, 

scene-change detection is performed. Replace ER-frame with fn if fn is a scene-change 

frame; otherwise, only AMV needs to be updated. Since the proposed algorithm is 

independent of scene change detection methods, any method that can correctly detect 

scene changes can be incorporated into our approach. In later experiments, a frame is 

regarded as a scene-change frame if the ratio of its intra-coded MBs is higher than 

50% because such a frame can provide high ability to alleviate error propagation. 
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Fig. 30 The flow chart of the proposed MRF-MCP with fast motion estimation 

3.1.4 Experimental Results 

The performance of the proposed error resilient scheme is evaluated with respect 

to rate-distortion performance, mismatch of packet loss rates, and the effects of 

ER-frames. 

3.1.4.1 Overall Rate Distortion Performance 

The rate-distortion performance of the proposed method was examined with three 

different packet loss rates (PLR=1%, 5%, and 10%) on three CIF sequences: Foreman, 

Football and News. 200 frames are encoded for each sequence and GOP structure is 

IPPP. The methods adopted include: Proposed, JM, eRDO_md [66], and eRDO_mcp 

[71]. All these methods are implemented based on JVT reference software, JM [47], 

with rate control disabled. The Proposed is the full version of our error-resilient 

scheme with computational time reduction techniques included; the JM is JM 

software; the eRDO_md is the approach in [66], where ER-RDO was applied in mode 

decision; the eRDO_mcp is the method in [71], where ER-RDO is not only applied on 

mode decision, but also on motion estimation. All these methods use five reference 
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frames and the performance was examined in a simulated Bernoulli channel which 

assumes that packets are lost independently of each other. 

The performance result is shown in Fig. 31, where the average PSNR values as a 

function of bitrates for Foreman, News, and Football, respectively, are presented. The 

average PSNR values are obtained from 300 runs of the experiment, each with 

different seeds of the random number generator for packet loss patterns. From Fig. 31, 

it is observed that the JM scheme has the worst performance as expected in most of 

the cases. This is due to the fact that channel conditions are not considered in JM 

RDO which takes into account source distortion only. eRDO_mcp performed better 

than eRDO_md for all the cases. Their performance gaps become larger as the loss 

rate increases, indicating that error-resilient capability can be enhanced by accounting 

for overall distortion at the stage of motion vector selection. Compared with 

eRDO_mcp, the proposed method performed even better, especially for sequences: 

Foreman and News at high packet loss rates. This implies that, by considering 

end-to-end distortion in both motion-vector selection and mode decision, eRDO_mcp 

scheme still cannot have sufficient error robustness because it utilizes only near 

reference frames. By adopting long-term ER-frames as reference, the proposed 

method can suppress error propagation effectively and thus improve the error 

resilience. As for football sequence, since it is a high-motion video, predicting from 

long-term reference frames will suffer from low coding efficiency and thus very few 

blocks will choose to predict from ER-frames according to RDO technique. This issue 

will be further discussed in Section V.D. Since not many benefits can be obtained 

from the use of ER-frames, the proposed method performed almost equally to 

eRDO_mcp for Football sequence. To summarize, the overall results in Fig. 31 show 

that compared with other methods, the proposed approach is more robust to packet 

loss. 
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(a) Foreman sequence (PLR = 1%, 5%, 10%) 

 

(b) News sequence (PLR = 1%, 5%, 10%) 

 

(c) Football sequence (PLR = 1%, 5%, 10%) 

Fig. 31 R-D Performance comparison using five reference frames 
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3.1.4.2 Mismatch of Packet Loss Rate 

To see the effects of a mismatch in the packet-loss-rate values (PLR), experiments 

were conducted for the mismatch between the assumed PLR at the encoder and the 

actual PLRs in the network. To this end, the video sequences were coded assuming a 

certain PLR and transmitted over channels with various packet loss rates. The 

assumed PLRs of 5% and 10% are considered for Foreman sequence. Fig. 32 presents 

the results for the methods: Proposed, eRDO_md, eRDO_mcp, and JM (all of them 

use five reference frames as described in Section 3.1.4.1). From these figures, it can 

be seen that in all scenarios the proposed method offers the best performance 

exhibiting improved robustness to the mismatch. Furthermore, if PLR= 10% is 

assumed, better performance is observed by all methods (except JM) in comparison to 

the case where PLR=5% is assumed for the same actual packet loss rates. The JM 

method does not take packet loss rates into account during encoding and therefore, its 

performance is not affected by the assumed PLRs. According to these empirically 

observed effects, it is advisable to assume worse network conditions at the encoder. 

This will guarantee better overall performance when the actual packet loss rate is not 

as severe as assumed. 

 

(a) Assumed PLR = 5% (Foreman, CIF, 1614kbps, five reference frames) 

 

(b) Assumed PLR=10% (Foreman, CIF, 1614kbps, five reference frames) 

Fig. 32 Performance for mismatch with an assumed PLR of (a) 5%; (b) 10% 
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3.1.4.3 Effect of ER-frames 

To examine the effects of incorporating ER-frames into reference frames, Fig. 33 

presents the percentage distribution of intra-coded blocks, inter-coded blocks 

predicting from ER- frames and inter-coded blocks predicting from four previous 

frames for the Bernoulli channel at different packet loss rates. From Fig. 33, it is 

observed that the percentage of blocks predicting from ER-frames can be up to 18% 

for Foreman sequence. Since the result is the average of all frames in the sequence, 

this percentage can be even higher for some individual frames, indicating that 

ER-frames did serve as an important role in Foreman sequence. For Mobile sequence, 

since it is a high-motion video, predicting from ER-frames will suffer from too much 

increase in bit-rate and therefore most of blocks chose intra-coding to stop error 

propagation. The percentage of blocks predicting from ER-frames ranges from 5% to 

7% only. As for News sequence, since it is a low-motion video, lost data can be 

concealed well without much error propagation. As a result, the ER-frames which are 

mainly utilized for suppressing error propagation cannot provide much help in News 

sequence. The percentage of blocks predicting from ER-frames is about 9% for three 

loss rates. However, even with low ER-frame reference ratio in News sequences, the 

proposed method is still able to achieve the PSNR gain of up to 1dB and 2.5dB (see 

Fig. 32), when compared to eRDO_md and eRDO_mcp, respectively because both of 

them did not use long-term reference frames. 

 

 

Fig. 33 Frame reference distribution 
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3.1.4.4 Computational Cost 

To examine how the computational cost can be saved by these time-reduction 

methods, experiments were conducted for two versions of the proposed method: 

Proposed1 which denotes the method presented in Section 3.1.2 and Proposed_full 

which denotes the Proposed1 added with computational time reduction techniques in 

Section 3.1.3. The two methods are implemented based on JM with full-search motion 

estimation and five reference frames enabled. The results are shown in Fig. 34, where 

the execution time relative to the time executed by JM is presented. As Fig. 34 shows, 

Proposed1 which adopts ER-RDO at motion estimation stage obtained an obvious 

increase in execution time when compared to JM. The increased time, however, can 

be reduced substantially by using the proposed computational time reduction 

techniques. As shown in Fig. 34, Proposed_full achieves a reduction of up to 40% in 

execution time, when compared to Proposed1. The time reduction increases as the 

packet loss rate increases. This is mainly due to that the probability of selecting 

ER-frame as reference frame increases as packet loss rate increases, resulting in more 

short-term reference frames to be skipped. With such time reduction, Proposed_full 

can run even faster than original JM which does not support error resilience in its 

MRF-MCP.  

To examine how the performance might be affected by these computational time 

reduction methods, Fig. 35 shows the R-D performance of Proposed1 and 

Proposed_full for different video sequences at different packet loss rates. We 

observed that the performance gaps between the two methods are all within 0.5dB, 

meaning that, by moving ER-RDO from motion- estimation stage to reference-frame 

selection and skipping unnecessary reference frames, Proposed_full can save a lot of 

computational cost without causing much loss in performance. In some cases, 

Proposed_full even outperformed Proposed slightly. This stems from the fact that 

Proposed_full uses MV composition to locate the motion search center on ER-frame 

and thus, improve coding efficiency and overall performance. 

To summarize, the overall results in Fig. 34 and Fig. 35 show the superiority of 

proposed computational time reduction methods in regard to time saving with 

neglectable loss in performance. Moreover, since Proposed_full applies ER-RDO at 

the stage of reference frame selection which is independent of motion estimation, any 
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block-matching search algorithm or early termination method that is used to speed up 

motion estimation process can be incorporated into our approach. According to our 

experiments, up to 80% and 76% of the execution time in Fig. 34 can be further 

reduced by simply changing the motion estimation algorithm used in Proposed_full 

from full-search to EPZS [72] and Multi-Hexagon-Grid-Search (UMHexagonS) [73] 

in JM, respectively. Since it is easy to adapt the proposed method to different motion 

estimation algorithms, it can be applied to advanced motion-estimation approaches to 

provide error robustness for time-sensitive applications. This paper focuses on 

providing a cost-effective error-resilient scheme. Selecting the best motion estimation 

method to be integrated is beyond the scope of this paper. 

 

 

Fig. 34 Execution time ratio of different methods 
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(a) Foreman sequence 

 

(b) Football sequence   

 

(c) News sequence  

Fig. 35 Performance with and without computational time reduction techniques. 
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3.2 Error Resilient Video Coding Based 

on Hierarchical B Pictures 

3.2.1 Introduction 

A hierarchical B-picture coding structure has demonstrated superior compression 

performance than a conventional one[74], in this section, we proposed an error 

resilient coding based on hierarchical B pictures. In our approach, a new hierarchical 

coding structure which combines two conventional hierarchical coding structures is 

employed to reduce the distance between a lost picture and its recovering pictures. In 

addition, based on the new structure, an improved estimation method is also proposed 

to further increase the accuracy of recovering motion. 

3.2.2 Motivation 

A typical hierarchical prediction framework with 4 dyadic hierarchy stages is 

illustrated in Fig. 36, where the key frames (which can be I or P frames) are coded in 

regular intervals. A key frame and all frames that are temporally located between the 

key frame and the previous key frame form a group of pictures (GOP). The remaining 

B frames are hierarchically predicted using two reference frames from the nearest 

neighboring frames of the previous temporal level as shown in Fig. 36. For optimized 

encoding, it is better to set smaller QPs for the frames that are referenced by other 

frames. In the Joint Scalable Video Model 11 (JSVM11) [75], QPs of the B frames at 

level-1 equal to the QPs of the I/P frames plus 4, and the QPs increase by 1 from one 

hierarchical level to the next level. 

We refer to the I/P frames at the lowest hierarchical level as key frames; the B 

frames at intermediate levels as reference B frames (RB frames) because they are 

used as reference; and the B frames at the highest level as non-reference B frames 

(NRB frames) because they are not used as reference. Hierarchical B-frame structure 

has the characteristic that the frames at different levels have different reference 

distances (which means the temporal distance between a frame and its reference 

frame). Among the three types of frames, key frames have the longest reference 

distance, RB frames the medium, and NRB frames the shortest. 
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Temporal error concealment in hierarchical B-picture structure includes 

lost-motion and lost-pixel recovery. The lost information is estimated by referring 

other valid frames. The lost-motion would be estimated by interpolating, extrapolating,  

or compositing the motion vectors of the blocks in the motion prediction frame (MF). 

Then, the lost-pixel could be recovered from pixels of the data prediction frame (DF) 

according to estimated motions. DF can be different from MF. To have better error 

concealment, it is important to select appropriate MFs and DFs. Because the 

correlation of the lost frame and the referred frame increases when the frame distance 

decreases, frames within smaller distance could provide more reliable recovering 

information and thus better concealment performance. To explore the relation 

between error concealment performance and recovery distance, experiments were 

conducted for Foreman sequence (CIF), where assume a four-level hierarchical 

B-frame structure is adopted and frame-loss occurs on every level-1 frame. To 

recover these lost frames, temporal concealment is applied with various selections of 

DFs and MFs. As illustrated in Fig. 37 Experimental setting for different 

combinations of motion frames (DF1, DF2, and DF3) and data frames (MF1, MF2, 

and MF3)., to recover frame n+4, both MFs and DFs were chosen from frames n+5, 

n+6, or n+8, denoted by MF3/DF3, MF2/DF2, and MF0/DF0, respectively, because 

they are on levels 3, 2, and 0, respectively, We conducted experiments for all the 

possible combinations of DFi and MFi, where i=0, 2, 3, and the results are shown in 

TABLE. IX.  Note that some combinations in Table I may not be realistic because 

the DF frames are  unavailable (not yet been decoded) when performing error 

concealment, e.g., DF2 and DF3 are not available when level-1 frames are under error 

concealment. We still simulate these cases for illustrating the rationale behind the 

proposed method. In the TABLE. IX, the cell (MF0, DF0) means to use level-0 

frames (i.e., frame n+8) as both DF and MF for recovery. Note that frame n+8 is the 

reference frame of the lost frame in this example, choosing MF and DF in this way is 

known as temporal direct mode (TDM) [76] of H.264/AVC. 

Instead of using reference frames as both MFs and DFs, WTDM [7] chooses MFs 

from the frames on the next level of the lost frame to reduce motion recovering 

distance. In our example, the corresponding performance is the case shown in cell 

(MF2, DF0). Compared with the one in (MF0, DF0), the performance is improved 

because motion recovering distance becomes shorter. From this result we might 
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expect that choosing MF3 as the motion prediction frame should produce the best 

error concealment quality because MF3 has the shortest motion recovering distance. 

However, it is not as expected when DF0 is adopted as the data prediction frame, as 

can be seen in Table I where (MF3, DF0) performs worse than (MF2, DF0). The 

reason might be that even though MF3 is located close to the lost frame, it is far away 

from DF0. Therefore, the motion vectors in MF3 need to be greatly extrapolated to 

reach DF0, resulting in the decrease in motion accuracy and hence the degradation in 

error concealment quality. The result implies that MF and DF should not be 

determined independently.  

Although many methods have been proposed to select proper MFs to reduce 

motion recovering distance, how to reduce data recovering distance is seldom 

discussed. Most of studies use pixels on the reference frames to recover missing 

pixels. Selecting DFs in this way may result in long data recovering distance. Take 

level-1 frame loss as an example, reference frame of the frame n+4 in Fig. 36 are 

frames n and n+8, both of them are four frames away from frame n+4 in display order; 

namely, the data recovering distance will be 4 if frame n+4 is lost. TABLE. X shows 

data recovering distances for frame loss in different hierarchical levels, respectively, 

assuming that their reference frames are used for recovery. It can be seen that data 

recovering distances is large, especially for the cases of frame loss in lower 

hierarchical levels. However, long data recovering distance may result in severe 

quality degradation, as it can be seen in Table I where the performance with DF1 is 

always the worst, while that with DF3 is always the best, if the same MFs are adopted. 

This implies that if data recovering distance can be reduced, it is very promising that 

error concealment performance can be improved. However, with hierarchical coding 

structure, it is hard to take advantage of those frames with recovering distances 

shorter than reference frames because these frames have not yet been decoded when 

the lost frame is under recovery. To solve this problem, we propose a variation of 

hierarchical B structure to reduce data recovering distance.  

In summary, both motion and data recovering distances influence error 

concealment performance significantly, in this paper, an approach based on 

hierarchical B-picture structure is proposed, which is aimed at jointly determining 

MFs and DFs to reduce both motion and data recovering distances. 
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Fig. 36 Hierarchical B-picture prediction structure  

 

Fig. 37 Experimental setting for different combinations of motion frames (DF1, DF2, 

and DF3) and data frames (MF1, MF2, and MF3). 

TABLE. IX Experimental result for all combinations of motion frames and data frames. 

 

 

TABLE. X Minimal pixel recovering distance for lost frames at different hierarchical 

levels 

  

3.2.3 Proposed Method 

Here a variation of hierarchical B structure is proposed to reduce quality 

degradation. As mentioned above, key frames have the longest reference distance, 

Frame No.  n        n+1    n+2    n+3  n+4   n+5    n+6    n+7    n+8    n+9    n+10  n+11  n+12 n+13 n+14   n+15  n+16
Level    0         3         2         3        1         3         2         3         0         3         2  3         1         3        2         3         0 
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B B B

P
B
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BB B B B

Frame No.   n         n+1      n+2        n+3       n+4           n+5        n+6    n+7      n+8         

Level    0           3           2            3            1               3             2            3         0    

B
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B

B B
B

B B

Lost Frame

DF3/MF3

DF2/MF2
DF0/MF0

Recovering Distance 

Concealment performance (db)

Motion Frame
Data Frame

MF0 MF1 MF2

DF0 20.4[13] 23.2[14] 21.9

DF2 (not valid) 23.7 26.6 27.2

DF3 (not valid) 26.2 29.5 29.8

Hierarchical 
level

Lost
frame

Recovering
frame

Recovering 
distance

Level 0 8 0 8        

Level 1 4 0, 8 4         

Level 2
2 0, 4 2         

6 4, 8 2         

Level 3

1 0, 2 1

3 2, 4 1

5 4, 6 1

7 6, 8 1
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resulting in the worst error concealment performance when it is lost. To improve the 

performance, a hybrid model called HN+1 is proposed, which combines an N-level 

with a one- level hierarchical B-picture structure. As an example in 0(a) where N=4, 

by combining a 4-level and a 1-level hierarchical B structures, each key frame in the 

resulting sequence has a neighboring frame located at the same level and predicted 

from the same reference frames. Rather than encoding frame n+10 as a level-2 RB 

frame in the conventional hierarchical B structure shown in 0 (a), the proposed model 

will encode frame n+10 as a key frame (P frame). We call a key frame and its 

neighboring key frame as the buddy frames which are a pair of frames used to recover 

each other when there is a loss. In 0 (a), frame n+9 and frame n+10 are buddy frames. 

If frame n+9 is lost, instead of using its reference frame (frame n) for missing pixel 

recovery, its buddy frame n+10 is used. Compared with WTDM[7] described in the 

previous section, the proposed H4+1 reduces the recovering distance of key frames 

from eight to one frame. By employing buddy frames in this way, error concealment 

performance of key-frame loss can be improved significantly. 

 
(a) The H4+1 model 

 
(b) The H4+2 model 

 
(c) The H4+3 model 

 

(d) The H4+4 model 

Fig. 38 The proposed hybrid model based on hierarchical B structure 
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In addition to key frames, RB frames also suffer from the problem of long 

recovering distance. The proposed buddy frames can also be applied to RB frames to 

reduce the recovering distance. The hybrid model HN+2 which is a variation of HN+1 is 

proposed for this. It combines an N-level hierarchical B structure with a 2-level 

hierarchical B structure as an example in 0 (b) where N=4. By combining a 4-level 

and a 2-level hierarchical B structures, not only each key frame but also each level-1 

RB-frames such as frame n+5 in the resulting sequence have buddy frames located at 

the same level and predicted from the same reference frames. In 0 (b), if RB-frame 4 

is lost, instead of using its reference frames (frames n and n+8 in Fig.1) for missing 

pixel recovery, its buddy frame (frame n+6 in 0 (b)) will be used. Compared with 

WTDM[7] where reference frames are used for recovery, H4+2 model reduces the 

recovering distance of RB-frame n+5 from four frames (the distance between frame 

n+4 and its reference frames shown in Fig.1) to one frame only (the distance between 

frame n+5 and its buddy frames in 0 (b)). 

Similarly, the proposed buddy frames can also be applied to level-2 RB-frames 

and level-3 NRB-frames to reduce their recovering distances. Two variations of 

hybrid model, HN+3,and HN+4 , are shown in 0 (c) and (d), respectively. The HN+3 

model in 0 (c) combines a 4-level and a 3-level hierarchical B structures; while the 

HN+4 model in 0(d) combines a 4-level and a 4-level hierarchical B structures. As 

observed in these figures, H4+3 model reduces the recovering distance of level-2 

RB-frame (e.g., frame n+3) from two to one frame and H4+4 model keeps the 

recovering distance of level-3 NRB frame (e.g., frame n+2) as one frame. 

The proposed various hybrid models can be generalized as a HN+M model which 

means that the resulting sequence is the combination of an N-level hierarchical 

B-picture structure and an M-level one. The encoder architecture of the HN+M model is 

depicted in Fig. 4(a). As the figure shows, the frames in the sequence are split into 

two groups: normal frames and buddy frames first, and then each group will go 

through a standard hierarchical B picture encoder to perform motion estimation, 

transform, quantization and entropy coding. The normal frames are encoded as an 

N-level hierarchical structure and the buddy frames as an M-level structure, resulting 

in a HN+M sequence. 

Different hybrid models are made up by different normal frames and buddy 

frames. For example in H4+1 model, the buddy frames consist of frames 1, 10, 19, 
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28, …, etc., while in H4+2 model, they are frames 1, 6, 11, 16, …, etc. For N=4, the 

buddy frames of the four variations are summarized as follows, where m is an integer. 

H4+1 : frames 1, 10, 19, 28, …, 9m+1 

H4+2 : frames 1,  6,  11, 16, …, 5m+1 

H4+3 : frames 1,  4,   7,  10, …, 3m+1 

H4+4 : frames 1,  3,   5,   7,  …, 2m+1 

The decoder architecture of the proposed hybrid model HN+M is depicted in 0(b), 

where the received frames are first split into two groups, normal frames and buddy 

frames. Then each group will go through a standard hierarchical B decoder for 

entropy decoded, de-quantized, and inversely transformed. Normal frames are 

decoded with an N-level hierarchical structure; while buddy frames are decoded with 

an M-level one. Finally, the frame-merge and estimation procedure is used to 

reconstruct the order of frames for generating output sequence. If the decoder does not 

receive the two structures intact, the estimation procedure will be adopted to estimate 

the lost data. The details of estimation method will be described in the next section. 

  

(a) Encoder architecture 

 

(b) Decoder architecthre 

Fig. 39 Architecture of the proposed hybrid model HN+M 

3.2.4 Estimation of lost pictures 

In the proposed method, we assume that each frame is divided into three slices in 

raster scan order. In case of packet loss, it will result in successive macroblock loss 

regardless of frame types and levels. Each lost block is recovered based on temporal 

correlation since the neighboring blocks are also lost. We refer to the pictures whose 

pixels are used to predict the missing pixels as the data prediction frame (DF) and the 
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pictures whose block motions are used to predict the motion of the missing blocks as 

the motion prediction frame (MF). In our method, DF can be different from MF. 

To serve as DFs requires that these pictures are decoded earlier than the lost 

picture. Therefore, for hierarchical B structure, almost all the error concealment 

methods choose reference frames of the lost frame to serve as the DF. The DF can be 

in backward direction, forward direction or both. Since data correlation among 

pictures involved tends to considerably weaken as the temporal distances among these 

pictures become longer, for a lost picture, it is better to choose pictures near in the 

display order to serve as its DFs. Therefore, in the proposed hybrid model, we choose 

buddy frame of the lost frame to serve as DF because it is usually located near in 

temporal distance. However, not every frame has buddy frame. For example, in H4+1 

model, only level-0 frames have buddy frames; while in H4+2 model, both level-0 and 

level-1 frames have buddy frames. If the lost frame has no buddy frame, we simply 

use its reference frames to serve as DF. That is, for the lost frame Ft
l
 with hierarchical 

level l at time instant t, we select its DF as 
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where k can be l , l-1, or l-2, depending on what level the reference frame of the 

lost frame is. As an example, for the H4+2 model in 0 (b), if frame n+8 is lost, its DFs 

are frame n+5 and frame n+10 because it has no buddy frame. But if frame n+5 is lost, 

the DF will be its buddy frame n+6. 

 As for MFs, since we can obtain motion information of a frame even though this 

frame is not decoded, the MFs can be the frames later than the lost frame (in decoding 

order). As discussion in the section 3.2.2, how to choose MF depends on not only 

motion recovering distance but also pixel recovering distance. Therefore, instead of 

using reference pictures at lower levels or buddy frames at the same level, if the lost 

frame has buddy frame, we choose the nearest pictures at higher levels to serve as 

MFs because these pictures are temporally closer to the lost picture in display order. 

Otherwise, we choose the pictures at next level to serve as MFs in order to prevent 

motion interpolation/extrapolation. As an example in 0 (b), if the frame n+8 is lost, 

we will select frames n+7 and n+9 (rather than its reference frames n+5 and n+10) as 
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its MFs. Similarly, if frame n+5 is lost, we will select frames n+4 and n+7 (rather than 

its buddy frame n+6) as its MFs. This selection policy is applied to all frames except 

NRB frames which are at the highest level within the hierarchical structure. For NRB 

frames, the MFs are selected from the reference frame at the next lower level or the 

buddy frame at the same level. As an example, if NRB frame n+5 in 0 (c) is lost, its 

reference frame (frame n+3) at the next lower level is chosen as its MF because it has 

no buddy frame. But if NRB frame n+6 in 0(d) is lost, its buddy frame (frame n+7) at 

the same level will be chosen. 

Once both DFs and MFs of the lost picture have been determined, for every block 

in MF, its motion vectors(s) are composed, extrapolated, or interpolated so that the 

motion vectors pointing to DF from the lost frame can be obtained. Such motion 

vectors are called recovery motion vectors (RMV). If DF and MF are on different 

sides of the lost frame along temporal dimension, the MV pointing to DF from MF are 

interpolated to obtain the RMV as illustrated in 0 (a), where the RMV is denoted 

using a solid arrow. If DF and MF are on the same side of the lost frame, the MV 

pointing to DF from MF are either extrapolated or composed to get RMV as 

illustrated in 0(b) and (c). Once all the RMVs have been derived, if a location on the 

lost picture is pointed by one or more than one RMV, its pixel is replaced by the 

average of these pointed pixels on the DFs. If a location on the lost picture is not 

pointed by any RMV, its pixel is replaced by co-located pixel on the DF. 

 

(a) motion interpolation 

 

(b) motion composition 

 

(c) motion extrapolation 

Fig. 40 Motion interpolation, composition, and extrapolation 
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3.2.5 Experimental Results 

3.2.5.1 Effects of Hybrid Structures 

To see the effects of the proposed hybrid model, experiment was first conducted 

for comparing the proposed H4+4 with a standard hierarchical B-frame structure with 

four levels. It is interesting to observe that, excluding the first I-frame, both structures 

contain two P-frames, two level-1 frames, four level-2 frames, and eight level-3 

frames for every successive sixteen frames, as seen in Fig. 41 (a-b). With the same 

number of frames for each frame type, standard structure encodes the sixteen frames 

as two successive GOPs, while H4+4 encodes them as two independent GOPs with 

interleaved positions in display order. 

 Table.XI shows the resulting performance of the two structures. It can be seen 

that H4+4 performs worse than the standard structure for the error free case as 

expected because temporal prediction distance in H4+4 are much farther than that in 

the standard one. However, in case of packet loss, H4+4 shows superior performance. 

The result shows that, with the proposed hybrid structure, H4+4 did improve error 

resilience significantly. 

3.2.5.2 Effects of Hybrid Structure Variations 

There are four variations of hybrid models: H4+1, H4+2, H4+3, H4+4. This section 

examines how them affect error resilient capability. Since how often a key frame is 

encoded as an I-frame instead of a P-frame also affects the performance of the overall 

sequence, we adopt the same I-frame period, 32, for normal frames in the four hybrid 

models. As for buddy frames, three different I-frame period settings are used for 

comparison. The first setting, called Equal, is to use the same I-frame period (i.e., 32) 

for buddy frames in the four models. Since the amount of buddy frames are different 

from the amount of normal frames in some hybrid models, their I-frame positions in 

buddy frames and normal frames will be different. The second setting, Sync1, is to 

synchronize the positions of I-frames in normal frames and buddy frames. In order 

words, with Sync1, the I-frame periods of buddy frames are 4 in H4+1, 8 in H4+2, 16 in 
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H4+3, and 32 in H4+4. The third setting, Sync2, simply double the Sync1 I-frame 

periods for buddy frames, and keep I-frame period as 32 for normal frames. 

TABLE. XII shows the PSNR as a function of PLR for 12 combinations of the 

four hybrid models with three I-frame periods under four CIF sequences: coastguard, 

flower,  foreman, and news. All combinations encode the same sequence using the 

same bit-rate for fair comparison and the results presented are the averages of 300 

independent runs. It is observed that, among the three I-frame periods, Sync1 have the 

best performance. And, among the 12 combinations, H4+3 with Sync1 achieve the 

overall best performance for all the sequences. 

3.2.5.3 Packet Loss Performance 

Since H4+3 with Sync1 outperforms all other hybrid models, it was adopted for the 

comparison with other methods in a packet-loss scenario. The Bernoulli channel is 

adopted, which assumes that each packet is lost randomly and independently. Each 

frame was encoded into three slices in raster scan order. And, We assume one slide is 

transmitted by one packet. We compare H4+3 with Ji et al.’s method [77] and Zhu et 

al.’s method [78]. Ji et al.’s method called WTDM is a method based upon temporal 

direct mode (TDM) of H.264/AVC for error concealment in hierarchical B-picture 

prediction structure. The I-frame period is 32. Zhu et al.’s method duplicates each test 

sequence into two and then encodes by hierarchical B structure with staggered key 

frames in the two sequences. For example, if one sequence is encoded with the 

structure shown in Fig.1 where frames n, n+8, n+16, … are key frames, then the other 

one will have frames n+1, n+9, n+17, … encoded as key frames. This approach is 

characterized by that each frame at levels 0, 1, or 2 of one sequence will be at  level 

3 of the other sequence and vice versa, resulting in two fidelities of each frame. Two 

variations, defaultQP and modifiedQP, in their literature are adopted in our 

comparison. The defaultQP follows the QP assignment rules specified in JSVM11, 

while modifiedQP modifies the QPs of top-level frames to 51 to reduce bit-rates 

redundancy. The results in [78] show that rate-distortion performance of center 

decoder can be improved remarkably by modifiedQP in comparison to defaultQP. All 

these methods are implemented based on H.264 reference software, JM 16.0. 

Fig.42 shows the result for four different methods with four test sequences. In 

Fig.42, the four methods encode the same sequence using the same bit-rate for fair 
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comparison and the results are the averages of 300 independent runs. It can be seen 

that, as PLR increases, WTDM curves drops much more quickly than others, showing 

its poor error resilience. By duplicating the entire sequence, defaultQP and 

modifiedQP achieve better error robustness than WTDM. Compared with defaultQP, 

the modifiedQP method shows better performance in low PLR because of its reduced 

bit-rate at top-level frames (NRB frames). However, such a reduction in bit-rate 

strongly affects its error concealment effectiveness and hence, degrades its 

performance dramatically at high PLR. Among all methods, the proposed H4+3 

performed the best because it modifies hierarchical B coding structure by encoding 

more key frames and RB frames as buddy frames, resulting in reduced recovery 

distance and better error concealment effect, especially at high PLRs. To summarize, 

the overall results demonstrate that, by combining two hierarchical B-picture 

structures, the proposed hybrid model offers a better trade-off between bit-rate 

redundancy and error-resilient capability and thus, achieves the best performance 

among the four methods. 

 

(a) hybrid model, H4+4. 

 

(b) original model. 

Fig. 41 Coding structures of hybrid model, H4+4, and original model. 
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TABLE. XI Performance comparison between hybrid model, H4+4, and the original 

model. Both models encode Foreman sequence (CIF) at 800kbps. 

 

TABLE. XII Packet-loss performance comparison. 

 

  

Concealment performance (db)

Model
Loss rate

H4+4

hybrid model
Traditional

model

0% 37.8 40.3

5% 35.2 34.5

10% 32.7 30.5

15% 30.6 27.6

20% 28.4 25.7

Sequence Loss 
rate

Sync1 Sync2 Equal

H4+1 H4+2 H4+3 H4+4 H4+1 H4+2 H4+3 H4+4 H4+1 H4+2 H4+3 H4+4

Coastguard

@1600kbps

5% 33.87 33.84 34.02 33.83 33.67 33.58 33.66 33.65 33.31 33.27 33.66 33.83 

20% 28.69 28.93 29.12 29.09 28.13 28.35 28.38 28.46 27.33 27.79 28.38 29.09 

Flower

@2000kbps

5% 33.52 33.58 33.80 33.20 33.26 33.27 33.28 32.82 32.72 32.94 33.28 33.20 

20% 26.38 26.86 26.98 26.57 25.73 26.15 26.14 25.69 24.79 25.58 26.14 26.57 

Foreman

@800kbps

5% 35.29 35.57 35.67 35.22 35.10 35.31 35.14 34.88 34.82 35.09 35.14 35.22 

20% 28.80 29.52 28.80 28.43 28.15 28.88 28.12 27.56 27.51 28.29 28.12 28.43 

News

@400kbps

5% 38.70 38.61 38.94 38.82 38.55 38.35 38.67 38.66 38.30 38.24 38.67 38.82 

20% 34.04 33.84 34.18 34.20 33.50 33.22 33.57 33.56 32.78 33.01 33.57 34.20 
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(a) Coastguard (CIF@1600kbps)    (b) Flower (CIF@2000kbps) 

 

(c) Foreman (CIF@800kbps)     (c) News (CIF@400kbps) 

Fig. 42 Packet-loss performance of four hybrid models. 

3.2.5.4 Error Free Performance 

This section examines the error-free performance of all the methods and the 

results are presented in Fig. 43. It is observed that the eight curves in Fig. 43 can be 

divided into three groups: WTDM and JM have the best rate-distortion performance; 

defaultQP and modifiedQP have the worst performance; and the four hybrid models 

have the performance in between them. TABLE. XIII shows the bitrate redundancy 

produced by each method. The bitrate redundancy is defined as the Bjontegaard delta 

bitrate between JM and each method, which is calculated by the method in [55]. In 

Fig. 43, WTDM has performance the same to JM16.0 because it focused its error 

0 1 5 10 15 20
26

28

30

32

34

36

38

Packet loss rate (%)

P
S

N
R

 (
d

b
)

 

 

H4+3

WDTM

refD

refMD

0 1 5 10 15 20
22

24

26

28

30

32

34

36

38

40

Packet loss rate (%)

P
S

N
R

 (
d

b
)

 

 

H4+3

WDTM

refD

refMD

0 1 5 10 15 20
24

26

28

30

32

34

36

38

40

42

Packet loss rate (%)

P
S

N
R

 (
d

b
)

 

 

H4+3

WDTM

refD

refMD

0 1 5 10 15 20
30

32

34

36

38

40

42

44

Packet loss rate (%)

P
S

N
R

 (
d

b
)

 

 

H4+3

WDTM

refD

refMD



85 
 

concealment approach on missing motion recovery and did not modify hierarchical B 

picture coding structure. Thus, it did not produce any bit-rate redundancy that may 

reduce rate-distortion (RD) performance in Fig. 43. Both defaultQP and modifiedQP 

have large bit-rate redundancy that degrades their performance in Fig.8. As shown in 

Table V, defaultQP produces the redundancy 65%~90%. Compared with defaultQP, 

while modifiedQP reduces the redundancy about 20% by modifying the QPs of NRB 

frames, the RD performance improvement as shown in Fig. 43 is quite limited. 

Compared with modifiedQP, the proposed hybrid models have much lower 

redundancy as shown in TABLE. XIII and much better RD performance than 

defaultQP and modifiedQP as shown in Fig. 43. 
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(a) Coastguard (CIF)    (b) Flower (CIF) 

  

(c) Foreman (CIF)       (c) News (CIF) 

 

Fig. 43 Rate-distortion performance comparison in error free environment. 

TABLE. XIII The bit-rate redundancy comparison. The redundancy is defined as the 

Bjontegarrd bit-rate difference[55] between JM and each method. 
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Bit-rate redundancy (%)

Sequence WTDM RefD RefMD H4+1 H4+2 H4+3 H4+4

coastguard 0 65.1 48.8 24.7 35.4 43.3 47.3

flower 0 68.8 39.6 23.9 28.9 34.3 38.3

foreman 0 76.9 53.9 32.3 41.9 43.7 44.0

news 0 91.1 73.4 46.1 50.4 46.8 44.8
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3.3 Rate-Distortion Optimized Mode 

Selection Method for Multiple 

Description Video Coding 

Multiple description coding is a technique that encodes a single video stream into 

two or more equally important sub-streams, called descriptions, each of which can be 

decoded independently. Different from the traditional single description coding (SDC) 

where the entire video stream (single description) is sent in one channel, in MDC, 

these multiple descriptions are sent to the destination through different channels, 

resulting in much less probability of losing the entire video stream (all the 

descriptions), where the packet losses of all the channels are assumed to be 

independently and identically distributed. The first MD video coder, called multiple 

description scalar quantizer (MDSQ)[81], has been realized in 1993 by Vaishampayan 

who proposed an index assignment table that maps a quantized coefficient into two 

indices each could be coded with fewer bits. Due to effectiveness in providing error 

resilience, a variety of research on different MDC approaches had been proposed 

afterwards. These approaches can be intuitively classified through the stage where it 

split the signal, such as, frequency domain[81][82], spatial domain [83][83][84], and 

temporal domain[85][86]. In our previous works [87][87], a hybrid MDC method has 

been proposed, which applies MDC first in spatial domain to split motion 

compensated residual data, and then in frequency domain to split quantized 

coefficients. A hybrid MDC method with spatial and temporal splitting was proposed 

in [88] and a hierarchical B-picture based hybrid MDC method was proposed in 

[89][89]. The results in [87][88][89] show that, by properly utilizing more than one 

splitting technique, the hybrid MDC method can improve error-resilient performance. 

To improve coding performance, some researchers proposed to optimize the 

encoding coefficient for rate-distortion performance. This concept has been adopt in 

many studies [90]. For MDC, in [91], a R-D optimization technique is proposed for 

the MDC with one descriptor containing all DCT coefficients and the second one 

containing only few low frequency coefficients. The R-D technique aims at 

optimizing the number of pruning coefficients. In [92], the method to find out 

optimized quantization parameters was proposed for the MDC based on H.264/AVC 
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redundant slices [93]. Then, Lin et al.[94] extended the method from the slice level to 

the macroblock level.  

There are two major benefits of the rate-distortion optimization concept. First, 

video contents vary spatially and temporally, so it would be inefficient to use a fixed 

encoding method to encode whole contents. In addition, the importance of different 

parts of video contents may be different, so adopting an unequal error protection can 

achieve better rate-distortion performance. Second, the channel condition also varies 

over time, so a mechanism to dynamically adjust protection level is necessary. With 

rate-distortion optimization, the encoder can change coding strategy according to 

video contents and channel conditions, and therefore improve the performance. 

However, the previous optimization frameworks were based on the specific MDC 

systems. Since a variety of new MDC coding tools are being proposed and each tool 

has different characteristics. To enable the rate-distortion optimization concept on 

these MDC tools, a general framework is desirable. Therefore, this paper aims at 

proposing a general optimization framework. The proposed framework is suitable to 

most coding tools and not restrict to coding structures, such as IPPP or hierarchical 

B-picture structure. This allows ones to easily integrate their proposed coding tools 

into the optimization framework and achieve better performance. 

The remainder of this paper is organized as follows. First, the MDC system [89] 

for applying the proposed optimization framework is presented in section II. Section 

III introduces the proposed framework, and section IV verifies it with simulation data. 

Section V concludes the paper by summarizing the main results, and discussing 

possible future work. 

3.3.1 Proposed MDC based on a hierarchical 

B-picture structure 

This paper proposes a general R-D optimization framework for MDC systems. To 

illustrate and evaluate the proposed framework, the MDC system in [89] is adopted, 

although our optimization approach is not restricted to this specific MDC method. 

The adopted MDC is a complex system with a wide choice of splitters on a 

hierarchical B-picture coding structure. With the illustration of applying our approach 

to this complex MDC system, one can easily apply it to relatively simple MDC 
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systems. The details of the adopt MDC system is described in the following, and the 

proposed R-D optimization framework is described in the section III. 

3.3.1.1 The encoder architecture 

Fig. 44 shows the encoder architecture of the proposed MDC system. The 

architecture contains three MDC coding tools: duplicator, spatial splitter, and 

temporal splitter. The three tools divide a SDC bitstream into two MDC descriptors 

with  different amount of redundancy on each. The proposed architecture is similar 

to the one in [89] except that the mode selection module is added. To encode a frame, 

the mode selection module analyzes the importance of a macroblock in the frame and 

the channel condition and then chooses a suitable splitter for the macroblock, thereby 

optimizing R-D performance. After determining the coding tool, each macroblock is 

split and encoded into two individual descriptors. 

 

 

Fig. 44 The encoder architecture of the proposed MDC system. 

The system contains three MDC coding tools: duplicator, temporal splitter, and 

spatial splitter. The duplicator generates twodescriptors by directly duplicating the 

SDC data into each descriptor. Because each descriptor contains complete SDC data, 

the decoder can perfectly reconstruct the image as long as any one descriptor is 

received.  

The temporal splitter splits the SDC bitstream in temporal domain, which assigns 

input frames, in turn, to the two output paths such that successive frames will go to 
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different descriptors. In other word, if any one descriptor is lost, frames belonging to 

the lost descriptor are completely lost and could only be estimated by the frames in 

the other descriptor.  

Spatial splitter splits each input macroblock into two parts which are then 

separately transformed, quantized, and entropy encoded before going to their 

respective descriptors. The spatial splitter performs splitting on an 8x8 block basis in 

residual domain. For each 8x8 residual block, it is first polyphase permuted inside the 

block and then is split to two, as shown in Fig. 45. The permuting mechanism is that, 

for every 2x2 pixels inside the 8x8 residual block, the top-left pixel (labeled 0 ) is 

re-arranged to the top-left 4x4 block, the top-right pixel (labeled 1) to the top-right 

4x4 block, the bottom-left pixel (labeled 2) to the bottom-left 4x4 block, and the 

bottom-right pixel (labeled 3) to the bottom-right 4x4 block, as illustrated in the 

middle of Fig. 45. After polyphase permutation, the 8x8 block is split into two 8x8 

blocks, each carries two 4x4 blocks chosen in diagonal and the remaining two 4x4 

blocks are given all-zero residuals (labeled as ‘x’ in Fig. 45). Note that there are four 

8x8 residual blocks in each macroblock, all of them are permuted and split in the 

same way. Since these split frames need to be merged to serve as reference frames, a 

Spatial Merger is applied after de-quantization (Q
-1

) and inverse transform (DCT
-1

) as 

shown in Fig. 44. The Spatial Merger first discards the all-zero 4x4 blocks and then 

adopts Polyphase Inverse Permuting (the reversed process of Fig. 440) to reconstruct 

the original 8x8 blocks. 

 

Fig. 45 Spatial splitting of the proposed MDC. 

 

The proposed MDC system is based on a non-dyadic hierarchical B-picture 

coding structure with 4 levels as depicted in Fig. 46. For the same structure, the MDC 
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in [89] applies duplicator on the I/P frames at the lowest hierarchical level for 

providing the highest error resilience, spatial-splitter (S) on the reference B frames at 

intermediate levels for modest error resilience, and temporal-splitter (T) on the 

non-reference B frames at the highest level for the lowest error resilience. The 

rationale behind the assignment in [89] is that the frames at the lower hierarchical 

level are more important and thus should be protected with more redundancy. In this 

paper, we extend the idea from frame level to macroblock level. In other word, we 

adeptly choose the splitters macroblock by macroblock according to its importance. A 

macroblock in the non-reference B frames at the highest level could be split by the 

temporal splitter or the duplicator; while a macroblock in other frames could be split 

by the spatial splitter or the duplicator. The proposed mode selection module plays a 

role to find out a splitter assignment that has better R-D performance.  

 

Fig. 46 Proposed MDC based on hierarchical B-picture prediction. 

3.3.1.2 The decoder estimation methods 

With the proposed MDC, assume the generated two descriptors are denoted by D0 

and D1, respectively. Assuming one description, D0, is lost, the macroblocks split by 

duplicator can be easily reconstructed at decoder by using the same macroblocks in 

the other description, D1. For the macroblocks split by the spatial splitter, one 

descriptor loss will cause partially loss of the macroblocks, which can be estimated by 

using the information of their counterparts in D1. As for the macroblocks split by the 

temporal splitter, one descriptor loss will cause loss of all the macroblocks in a frame, 

which can only be estimated by using other frames. In case of two-description loss, 

D0 and D1, it will result in whole-frame loss regardless of splitter types. For 

whole-frame loss, each macroblock is recovered based on temporal correlation. 

TABLE. XIV summarizes the cases for different estimation methods to be applied, 
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where S denotes the spatial method, T the temporal method, and D the duplication 

method. The columns describe the two loss cases; while the rows describe three types 

of splitters. Since the estimation methods are not the focus of this paper, we simply 

adopt the spatial estimation and the temporal estimation methods in [89] for our 

experiments in the later section. 

 

TABLE. XIV Summary of the cases for different estimation methods. 

Estimation Methods Descriptor Status 

One-descriptor Loss Two-descriptor Loss 

S
p
litter 

T
y
p
e 

Duplicator D T 

Spatial Splitter S T 

Temporal Splitter T T 

 

3.3.2 Rate-Distortion mode selection method 

A MDC system might contain lots of coding tools and have a complex coding 

structure. How to find out the mode assignment which has good R-D performance is a 

challenging problem. This paper proposes a R-D optimization framework. With the 

framework, encoder can decide a suitable splitter mode for each macroblock, thereby 

optimize the R-D performance. In following, we first explain the proposed framework 

on an ideal MDC channel. Then, the framework is extended to a packet loss channel. 

Finally, we summarize the proposed framework. 

3.3.2.1 Rate-Distortion optimization on an ideal MDC 

channel 

An ideal MDC channel assumes that some descriptors are received without losing 

any information while the others are totally lost. Such a situation is referred to as side 

reconstruction. In the MDC system with two descriptors, e.g. the system introduced in 

section. II, there are two cases of side reconstruction. 

Assume a video is encoded by traditional close-loop codec, and the resulting 

coding rate and distortion are      and     , respectively. A MDC system tries to 
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divide the SDC data into two MDC descriptors. First, consider a naive design as a 

baseline design: the system that directly duplicates the whole SDC data into two 

descriptors, which is denoted as duplicator-only-MDC (DO-MDC). In this system, the 

bit-rate of each descriptor, say    and   , is equal to     . And, the distortion of 

side decoders are equal to     .  

For DO-MDC which has two cases of side reconstruction, the average distortion 

of the two side decoders and the total bit-rate of the two descriptors are calculated as 

                            

                         .            (3.3.1) 

When multiple MDC splitters are available, the encoder can choose a different 

splitter, instead of the duplicator, to split macroblocks. If the encoder well chooses the 

splitters for each macroblock, the overall R-D performance would be improved. A 

challenging R-D optimization problem is that how to find out a good splitter 

assignment. Assume the encoder choose a mode assignment (say  ) for all 

macroblocks in the sequence and the changes of the resulting distortion and bitrate, 

compared with DO-MDC, are denoted as                     . Then, the new 

distortion and bitrate are:  

 

                               ,                  

                               .     (3.3.2) 

The R-D optimization problem is to find out the   for better 

(                   ). To solve the problem, we propose a strategy that makes 

                     satisfy the equation:  

           

           
 

                   

                   
 

 

 
 

       

       
.      (3.3.3) 

In Eq. (3.3.3), the first two terms represent the slope of the R-D curve, which 

means the ratio of distortion improvement over bitrate consumption. Larger ratio 

indicates that increasing little bitrate can improve distortion greatly. If we try to divide 

bitrate resource into two targets as Eq. (3.3.2), the best strategy is to keep the slopes 

of two targets the same. Otherwise, we can easily move rates from the target with the 

small slope to the target with the large one, and the overall R-D performance will 

thereby improved. Eq. (3) expresses this concept.  
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To better understand the proposed method's characteristic on R-D performance, 

we take an example in Fig. 47 to illustrate the concept of Eq. (3.3.3). The Foreman 

CIF sequence is encoded by a MDC system and its R-D curve is shown in Fig. 47, 

where there are four R-D points, A, B, C, and D. In the right-down legend, the bitrates 

of four R-D points are shown in the form of                      . Points A and 

B are the R-D points of DO-MDC, where only the duplicator is adopted, so          

equals to zero. With other splitters adopted to replace the duplicator for some 

macroblocks, the R-D points move along the dashed curve from point A to C. 

Keeping adopting the splitters for more macroblocks, the R-D curve will go to point 

D. For the R-D curve in Fig. 47, it is observed that point C has the best R-D 

performance and that the bitrate allocated to          is too small for point A and 

too large for point D. Since different splitting-mode assignments will result in 

different R-D performances, Eq. (3.3.3) provides a guide to select a good 

splitting-mode assignment. 

 

Fig. 47 An example of R-D optimization. 

According to the concept in Eq.(3.3.3), a splitting-mode selection method is 

proposed. For macroblock i, the encoder firstly encodes it by DO-MDC and then try 

each splitter candidate. For each splitter, calculate the bitrate and distortion changes 

from using DO-MDC and then choose the one closest to Eq. (3.3.3).  

In the proposed mode selection method, the encoder should calculate the R-D 

impact for each splitter candidate. However, accurate R-D impact is hard to calculate, 
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because the distortion will propagate among frames according to traditional predictive 

coding scheme. For each splitter candidate applied on a macroblock, all frames that 

directly or indirectly reference to this macroblock should be re-encoded to calculate 

the distortion propagation and then the exact R-D change can be obtained. However, 

the computation is too complex and is not realistic. In following, we proposed a 

realistic method to estimate the R-D impact of each splitter candidate. 

3.3.2.2 Rate-Distortion estimation  

Compared with DO-MDC, if a macroblock i is encoded by a splitter mode j, rather 

than the duplicator, the bitrate change due to this macroblock is denoted by 

             
     and the distortion change is by              

    . The bitrate change can 

be calculated as 

             
                 

                 
     .     (3.3.4) 

The distortion change,              
    , however, is hard to be calculated because it 

needs to take into account all the affected macroblocks caused by motion prediction 

which results in distortion propagation. To reduce the complexity of distortion 

calculation, an estimation method is proposed as Eq.(3.3.5), where each pixel has a 

distortion weight, w, to approximate the distortion from the pixel itself and the 

propagation effect.  

             
                      

     
             

     
      
 ,   (3.3.5) 

where              
     

             
     

  is the distortion change of pixel k by 

replacing the duplicator with a splitter mode j on macroblock i. Note that 

uncapitalized "d" represents distortion of pixel k itself. In contrast, capitalized "D" 

represents distortion superimposed  on the entire sequence, including the distortion 

on macroblok i itself and the distortion propagating to other macroblocks. In 

Eq.(3.3.5), if there is no propagation effect, distortion weight of each pixel will be 

equal to one. With propagation effects, the distortion weight is approximated by a 

linear model which sequentially estimates the propagated distortion of each pixel 

from the trajectory of motion prediction. Since distortion propagation is caused by 

motion prediction, the amount of propagated error should be larger if a pixel is 

referred by more pixels, namely, its distortion weight w should be set larger. 

According to this concept, we calculate w from the motion prediction trajectory. 
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Although similar idea has been proposed in [94], there are two major differences 

between their approach and ours. First, we adopt pixel-level instead of 

macroblock-level estimation. Second, we consider that the propagated distortion will 

decay over time[97][98] and thus adopt a linear model for this effect.  

 

(a) 

 

(b) 

Fig. 48 Illustration of Error Weight. 

Take an example in Fig. 48 to illustrate how to calculate distortion weights. Fig. 

48(a) shows successive frames in a hierarchical B coding architecture, where the 

arrow signs indict the directions of motion prediction. We enlarge the first four frames 

in Fig. 48(b) and highlight four pixels, P1, P2, P3 and P4, to explain the method of    

calculation. Since P1 and P2 are in non-reference frames, their distortion will not 

propagate to other frames and thus the corresponding weights, w1 and w2, both equal 

to 1. Assuming that P3 is referred by P1 and P2, since the distortion of P3 will 

propagate to P1 and P2, we add some distortion to P3 to elevate its impact on the 

overall distortion. In the case of Fig. 48, since P1 and P2 are non-reference pixels, the 

distortion propagated from P3 will stop on these two pixels. The distortion weight of 

P3 can be thereby calculated as        , where 1 represents the distortion of P3 

itself, and    and    represent the distortion propagated to P1 and P2, respectively. 

The values of   depends on motion prediction schemes of P1 and P2. In this 
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example, P1 is bi-predicted by P3 and P4 (0.5* P1+0.5* P4); P2 is uni-predicted by P3. 

Many distortion estimation methods [94][99] assume that the distortion will propagate 

to other pixels without any decay. By this assumption,    and    are 0.5 and 1, 

respectively. However, some coding tools will mitigate the error propagation effects, 

e.g., de-blocking filter, sub-pixel interpolation filter, quantizer, and so on. Therefore, 

we adopt a factor,    ,representing propagation decays and then    and    

become         and     , respectively. Some studies[98] have proposed 

theoretical derivation of propagation decays. In our approach, the decay factor     is 

statistically determined by experiments. In the experiments, we introduced little error 

in a frame and observed the propagated errors in those frames that refer to this frame. 

The factor,    , can be thereby calculated. To conduct the experiments, four CIF 

sequences, Coastguard, Hall, Harbour, and Soccer were adopted and encoded by 

hierarchical B picture structures with QPs equal to 16, 22, 28, and 34, respectively. 

We introduced errors into frames on each hierarchical layer and observed the 

propagated error. The experimental results are shown in Fig. 49, where the vertical 

axis is the observed decay factors and the horizontal axis is QP settings. It can be seen 

that the results of four sequences can be approached by Eq.(3.3.6), a linear function of 

decay factor and QP, using least square method.  

                    .      (3.3.6) 
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Fig. 49 Fitting result of propagation decays factors,    . 

 

In the example of Fig. 48, if P1 and P2 are also referred by other pixels, then the 

w1 and w2 will not equal to 1. The distortion of P3 will propagate not only to P1 and P2 

but also to the pixels referring to them. The distortion weight of P3 will be the sum of 

the distortion weights of P1 and P2, i.e.                         .  

To summarize, the distortion weight of pixel k is 

    

                                  -               

                                                   

 ,    (3.3.7) 

where    is the set of the pixels referring to pixel k and    represents the 

distortion propagation factor which can be calculated as 

    
                       -               

                         -               
   ,   (3.3.8) 

where     is calculated by Eq.(3.3.6). To determine the best mode assignment, 

we start from non-reference frames to all the reference frames in the same GOP, so 

the distortion weights of all pixels in the GOP can be derived from Eq.(3.3.7). And 

then the bit-rate and distortion impact of each mode on each individual macroblock 

can be calculated by Eq. (3.3.4) and Eq. (3.3.5), respectively. Finally, the best mode 
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assignment for each macroblock can be found by Eq. (3.3.3). The proposed mode 

selection method is summarized in section III.D. 

3.3.2.3 Rate-Distortion optimization on a packet loss 

channel 

In section III.A, the proposed mode selection method is discussed in an ideal 

MDC channel. In following, we will extend it to a general packet loss channel. 

Assume a frame is divided into two descriptors. Each descriptor forms a packet 

and is transmitted through a packet loss network. In the decoder side, the frame can be 

perfectly reconstructed if two descriptors are received. If any description loss, the data 

will be recovered by the estimation method proposed in section II. For a macroblock 

MBi, let    
     denote the distortion superimposed on the whole sequence when two 

descriptions are received, and    
     and    

     when one and no descriptor is 

received, respectively. Note that, for a macroblock, the distortion superimposed on the 

sequence includes the distortion caused by itself and the distortion propagated to other 

macroblocks in the sequence.  

Given packet loss rate, Pl, the expectation of the distortion caused by MBi is 

derived as 

   
           

     
                  

       
     

    .    (3.3.9) 

The last part of Eq. (3.3.9) can be neglected for low Pl. Assuming that the 

distortion caused by the loss of a number of macroblocks is mutually 

un-correlated[94], the expectation of their loss can be evaluated as 

        
    

        
       

    
                  

    
  .  (3.3.10) 

To see how Eq.(3.3.10) is affected by mode assignment, we firstly consider 

RO-MDC where the distortion when one or two descriptors are received is equal to 

the distortion of SDC, namly,            
    

             
    

      . When two 

descriptors are received, since all information distributed into descriptors are collected 

on the decoder side without any loss,  we assume    
     would not change. The 

mode assignment will result in distortion change only when there is any description 

loss. Let        denote the distortion change when assignment M is applied and 

one description is lost. With mode assignment, Eq. (3.3.10) will be re-written as  
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                 .  (3.3.11) 

On the other hand, the bit-rate taking account for mode assignment M is 

                             (3.3.12) 

According to Eq. (3), the assignment M should satisfy 

         

 
 

        
 

        
 
 

       
            

 
 

     

     
     (3.3.13) 

which can be rewritten as 

        
 

        
 
 

       
            

           
 

     

     
 .      (3.3.14) 

Using Eq. (3.3.14) instead of Eq. (3.3.3), the best assignment M under packet loss 

network can be found using the method proposed in section III.A. 
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3.3.2.4 Summary of proposed Rate-Distortion mode 

selection method 

Let N, I, and P respectively denote GOP length, the number of macroblocks in one 

frame, and the number of pixels in one frame. ( ) is a function, which indicates the 

frame encoding order. The proposed mode selection method is shown in the 

following: 

 

/*Step1: Record R-D performance and motion prediction trajectory */   

For frame n = (1) to (N) in a GOP 

 For macroblock i = 1 to I in the frame n 

  Encode macroblock i by SDC codec. 

  Record     
     and     

    . 

  Record the motion vectors. 

 end 

end 

/* Step2: Calculate distortion weights */ 

For frame n = (N) to (1) in a GOP.  

 For pixel p = 1 to P in the frame n 

  Calculate distortion weights of pixel p by Eq.(3.3.7). 

 end 

end 

/* Step3: optimize R-D performance*/ 

For frame n = (1) to (N) in a GOP 

 For macroblock i = 1 to I in the frame n 

  Calculate         
     and         

     by Eq.(3.3.4) and Eq.(3.3.5) for each 

  splitting mode j. 

  Select the best mode by Eq.(3.3.3) or Eq.(3.3.14). 

 end 

end 

 

In Eq.(3.3.3) and Eq.(3.3.14), the R-D slope of SDC,                ,  is 

related to adopted SDC codec. For H.264/AVC codec, the slope can be approximated 

by 
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,       (3.3.15) 

where   is empirically fitted as -0.85 in [95][96]. However, this value is not good 

enough for the proposed system. To clarify this, experiments have been conducted to 

find a better   for our framework. We choose four CIF versions of sequences, 

Coastguard, Hall, Harbour, and Soccer and encode them with different combinations 

of QPs (22, 25, 28, and 31) and packet loss rates (10%, 20%, 30%, 40%, and 50%). 

For each packet loss rate, we calculate mode assignments by using ten values of  , 

equally distributed from 0 to 1. Among these ten values, the one with best  R-D 

performance by B-D method is selected.  The best   value selected for each packet 

loss rate is shown in Fig. 50. It can be found that when packet loss rate increases, the 

optimal   value increases. We adopt a linear model to fit the relation between   and 

packet loss rates. The least square fitting result is: 

        -0.67        (3.3.16) 

Even though the data do not exactly distributed linearly, we found that the fitting 

error is not sensitive. Since simple linear model can provide acceptable performance, 

we adopt linear fitting results to conduct the following experiments. 

 

Fig. 50 Fitting result of   in Eq. (15). 

  

10 20 30 40 50
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Packet Loss Rate (%)



 

 

Least Square Fitting

Coastguard

Hall

Harbour

Soccer



103 
 

3.3.3 Experimental Result 

In this section, the performance of the proposed mode selection method was 

evaluated under both packet loss channels and ideal MDC channels. 

3.3.3.1Packet Loss Performance 

For conducting the experiments, four CIF versions of sequences, Foreman, News, 

Stefan, and Table Tennis, were chosen. We select these sequences because they 

contain different types of contents. Note that, for fair comparison, these sequences are 

different from those sequences used for the coefficient fitting described in section III. 

All sequences were encoded using a dyadic hierarchical structure with 4 levels. For 

the optimized encoding, it is better to set smaller QPs for the frames that are 

referenced by other frames. In the Joint Scalable Video Model 11 (JSVM11)[100], 

QPs of the B frames at level-1 equal to the QPs of the I/P frames plus 4, and the QPs 

at level-i increase by 1 from level-(i－1), with i≧2. 

Three MDC systems were adopted for performance evaluation. They are the 

proposed method, the MDC system in [89], and the DO-MDC. Each of the three 

MDC systems generated two descriptors and transmitted them through packet loss 

channels. Four packet loss rates, 1%, 5%, 10%, and 20%, were chosen for evaluation.  

The resulting R-D curves were shown in Fig. 51 to Fig. 54. Bjontegarrd bit rate 

savings (BD-rate) and PSNR gains (BD- PSNR) are calculated using the methodology 

presented in [101] and shown in TABLE. XV. In all experiments, the proposed 

method has the best performance. Compared with the MDC system in [89], the 

proposed method has significant improvement when packet loss rate is low 

(0%~10%). As the packet loss rate increases (10%~20%), the proposed method still 

performs better, although the improvement becomes moderate. However, if packet 

loss rate further increases, resulting in one descriptor is totally lost, the performance 

gap between the proposed method and the MDC in [89] will be turned to increase 

again, which is presented in the next subsection. Compared with the MDC in [89], 

since the proposed method can adjust error resilience ability according to channel 

conditions, the R-D performance can be optimized for various packet loss rates, 

resulting in better performance than the MDC in [89] for every loss rate. Comparing 

with DO-MDC, the proposed method performed better with the performance gap even 
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larger. The reason is that DO-MDC allocated too much redundancy for the channel 

with low error rates. Although the performance gap  decreases as the packet loss rate 

increases, especially when one descriptor is totally lost which is presented in the next 

subsection, the overall results still show the superiority of the proposed method over 

DO-MDC. 

 

TABLE. XV BD results of the proposed framework on packet loss channels. The column 

of "Comparing with the MDC system in [89]" shows the BD difference between the 

proposed method and the MDC system in [89]; The column of "Comparing with 

DO-MDC" shows the difference between the proposed method and DO-MDC. 

Sequence Pl Comparing with 

the MDC system in [89] 

Comparing with 

DO-MDC 

BD-PSNR(db) BD-Rate(%) BD-PSNR(db) BD-Rate(%) 

Foreman 1% 0.457 -9.352 1.345 -26.209 

5% 0.385 -8.329 1.040 -21.554 

10% 0.372 -8.493 0.783 -17.307 

20% 0.376 -10.136 0.418 -11.158 

News 1% 0.232 -3.964 1.579 -24.132 

5% 0.174 -3.102 1.340 -21.257 

10% 0.127 -2.387 1.080 -18.082 

20% 0.105 -2.352 0.628 -12.548 

Stefan 1% 0.682 -11.070 2.018 -32.057 

5% 0.482 -8.710 1.396 -24.501 

10% 0.401 -8.059 0.864 -16.848 

20% 0.398 -9.567 0.243 -5.945 

Table 

Tennis 

1% 0.430 -8.151 1.485 -26.541 

5% 0.293 -5.873 1.110 -21.131 

10% 0.188 -4.044 0.743 -15.177 

20% 0.109 -2.758 0.299 -7.172 
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(a)        (b) 

 
(c)       (d) 

Fig. 51 R-D performance of the Forman Sequence. (a) Packet loss rate = 1%. (b) 

Packet loss rate = 5%. (c) Packet loss rate = 10%. (d) Packet loss rate = 20%. 
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(a)        (b) 

 
(c)        (d) 

Fig. 52 R-D performance of the News Sequence. (a) Packet loss rate = 1%. (b) Packet 

loss rate = 5%. (c) Packet loss rate = 10%. (d) Packet loss rate = 20%. 
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(a)        (b) 

 
(c)        (d) 

Fig. 53 R-D performance of the Stefan Sequence. (a) Packet loss rate = 1%. (b) Packet 

loss rate = 5%. (c) Packet loss rate = 10%. (d) Packet loss rate = 20%. 
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(a)        (b) 

 
(c)        (d) 

Fig. 54 R-D performance of the Table Tennis Sequence. (a) Packet loss rate = 1%. (b) 

Packet loss rate = 5%. (c) Packet loss rate = 10%. (d) Packet loss rate = 20%. 
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3.3.3.2 Side Reconstruction Performance 

In following, we evaluated the performance of the proposed method on ideal 

MDC channels which means that one descriptor is received without losing any 

informance while the other is totally lost. Such performance is called side 

reconstruction performance and the results were shown in TABLE. XVI and Fig. 55. 

It can be found that the proposed method has the best performance. Comparing with 

the MDC system in [89], the performance improvement can be up to 3.7dB. This is 

due to that the MDC in [89] adopted fixed redundancy assignment and hence is only 

suitable for a certain range of packet loss rates. When the loss rate comes to 50% (one 

descriptor is lost), it is obviously that the redundancy is insufficient to reconstruct 

well. The proposed method, however, determines the mode assignment taking into 

account for channel conditions, and thus performs better. Compared with DO-MDC, 

the proposed method still has better performance but the improvement is little. The 

reason might be that the splitting methods adopt in this paper are not good enough. If 

some advanced MDC tools could be adopt in the system in the future, the 

performance improvement might increase. 

We also showed the performance of center decoding in TABLE. XVII and Fig. 56. 

When error amount equals zero, the value of Eq. (3.3.14) goes to negative infinity. 

Therefore, the optimization framework would remove redundancy as much as 

possible and the proposed method thereby has the best R-D performance. 

TABLE. XVI Side decoding BD results of the proposed framework. The column of 

"Comparing with the MDC system in [89]" shows the BD difference between the 

proposed method and the MDC system in [89]; The column of "Comparing with 

DO-MDC" shows the difference between the proposed method and DO-MDC. 

Sequence Comparing with 

the MDC system in [89] 

Comparing with 

DO-MDC 

BD-PSNR(db) BD-Rate(%) BD-PSNR(db) BD-Rate(%) 

Foreman 1.973 -42.235 0.166 -3.872 

News 0.942 -17.252 0.178 -3.350 

Stefan 3.668 -61.209 0.092 -1.826 

Table Tennis 1.847 -37.359 0.044 -0.954 
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TABLE. XVII Center decoding BD results of the proposed framework. The column of 

"Comparing with the MDC system in [89]" shows the BD difference between the 

proposed method and the MDC system in [89]; The column of "Comparing with 

DO-MDC" shows the difference between the proposed method and DO-MDC. 

Sequence Comparing with 

the MDC system in [89] 

Comparing with 

DO-MDC 

BD-PSNR(db) BD-Rate(%) BD-PSNR(db) BD-Rate(%) 

Foreman 0.656 -12.557 1.379 -26.398 

News 0.469 -7.518 1.617 -24.381 

Stefan 0.646 -10.398 2.120 -32.928 

Table Tennis 0.587 -10.551 1.547 -27.126 
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(a)        (b) 

 
(c)        (d) 

Fig. 55 Side decoding R-D performance. (a) Foreman. (b) News. (c) Stefan. (d) Table 

Tennis. 
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(a)        (b) 

 
(c)        (d) 

Fig. 56 Center decoding R-D performance. (a) Foreman. (b) News. (c) Stefan. (d) 

Table Tennis. 
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Chapter 4 Conclusion and Future 

Works 

4.1 Comments on Distributed Video 

Coding 

For distributed video coding, a new coding tool, adaptive macroblock grouping 

for WZ coding, is proposed. The tool uses an SI error estimator to adaptively group 

macroblocks of similar error characteristics into same WZ coding block such that the 

SI error correction efficiency can be improved. In the proposed framework, video 

macroblocks in a Wyner-Ziv frame are classified into different groups based on the 

estimated prediction error of the side information. The information is transmitted via 

uplink channel back to the encoder so that macroblocks with similar error statistics 

can be grouped together into same coding blocks for channel coding. Experimental 

results show that the bit rate can be reduced about 5%-10% by grouping source data. 

In addition, we propose a perceptual-based WZ coding technique for DVC codecs. 

In the proposed framework, the decoder estimates the visual distortion levels of SI 

macroblocks and marks the macroblocks that require WZ reconstruction as the 

macroblocks in the region-of-interest (ROI). The ROI information is then transmitted 

back to the encoder using a bitmap so that parity bits can be generated to correct only 

these macroblocks. Experimental results show that the proposed perceptual-based 

coding technique improves coding efficiency of DVC both subjectively and 

objectively. 

Although the proposed technique works well for video sequences that have 

distinctive regions of interest, it does not detect all the visually distorted regions for 

sequences with multiple complex moving objects. For example, for the QCIF Soccer 

sequence, the proposed technique misses 128 macroblocks (out of 7326) when 

adaptive thresholds of MC and TSC are used. Although we can select fixed 

threshold values such that all visually distorted blocks in Soccer are included into the 

ROI, the size of ROI will become large (contains 62% of macroblocks on average) 
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and makes the proposed techniques less coding effective. More sophisticated visual 

distortion detection techniques will be investigated to deal with complex scenes such 

as the Soccer sequence. 

Currently, the proposed technique has been tested using DVC coding structure of 

GOP size equals two. When GOP size becomes larger, both the SI prediction errors 

and the discrepancy between true and estimated motion fields will become large. As a 

result, the majority of the macroblocks will be included into the ROI. If larger GOP 

size is to be used, a more sophisticated SI generation algorithm has to be used to 

maintain efficiency of the proposed framework. For example, in current 

implementation, we only use the texture distribution map for perceptual-based 

analysis. It is possible to also use the texture map to constrain the motion-projection 

algorithm so that predicted SI and motion field are closer to the original WZ frame 

and true motion fields, respectively. 

Finally, in the proposed framework, LDPCA is used for WZ reconstruction in the 

ROI. Since the size of the ROI is only composed of 20 ~ 30% of macroblocks in a 

frame, the LDPCA coding efficiency may suffer due to short coding block length. 

More detail analysis on the error characteristics of ROI macroblocks will be 

conducted in the future for the design of a more efficient WZ reconstruction 

algorithm. 

4.2 Comments on Robust Video Coding 

In this thesis, a RDO-based error resilient scheme using MRF-MCP is presented, 

which employs the nearest error-resilient frames (i.e., ER-frame) as part of the 

reference frames and adopts ER-RDO for reference block selection. With ER-RDO, 

the choice of blocks predicting from ER-frames will be adaptive to various channel 

conditions and video sequences. Besides, this paper also presents some techniques to 

reduce the time complexity of the proposed scheme. The experimental results show 

that, with these techniques, the computational cost can be reduced dramatically with 

neglectable performance loss. 

In addition, a hybrid model based on hierarchical B pictures is proposed, which 

improves error concealment effects by combining two hierarchical B-picture coding 

structures. For a four-level hierarchical structure, there are four variations of the 

proposed hybrid model. They are H4+1, H4+2, H4+3 and H4+4. In H4+1 model, each 
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base-level key frame has a buddy frame which is used to serve as the data recovery 

frame when it is lost. In H4+2 and H4+3, not only key-frames, but also RB-frames have 

buddy frames. In H4+4, all the frames, including NRB-frames, have buddy frames. 

With buddy frames, data recovery distance can be reduced and the error concealment 

performance can be substantially improved. Experiments have been conducted for 

eight methods: four variations of the proposed model (H4+1, H4+2, H4+3, and H4+4), 

WTDM [7], two methods (defaultQP and modifiedQP) in [78], and JM16.0. The 

experimental results show that the proposed H4+3 has the overall best performance 

among them. 

Finally, we also propose a rate-distortion optimization framework for MDC 

systems. With the proposed framework, the encoder can dynamically adjust coding 

strategy according to both video contents and channel conditions. Experimental 

results show that the proposed optimization framework improves coding efficiency 

significantly. 

Although the proposed technique can optimize coding strategy for different 

channel conditions, the improvement is moderated in the channels with large error 

rates. This might be due to the MDC tools adopted in this paper are not good enough 

to deal with these channels well. If more MDC tools can be adopted in the proposed 

framework, it is possible to further improve R-D performance in the channels with 

large errors. Based on the proposed results, more detail analysis on designing splitters 

capable of handling the channels with large errors will be conducted in the future for 

the design of a more efficient MDC tool. 
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