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a b s t r a c t

Code acquisition in CDMA systems is conventionally conducted with a matched-filter

based structure. However, the performance of this method degrades greatly while

multiple access interference presents. Recently, an adaptive filtering scheme was

proposed to solve this problem. It has been shown that the computational complexity of

this approach is proportional to the delay uncertainty and inversely proportional to the

required acquisition time. When propagation delay is large and the required acquisition

time is short, the computational complexity of the adaptive filtering approach will

become high. In this paper, we propose a multirate adaptive code acquisition approach

to alleviate this problem. The proposed scheme is comprised of several acquisition units

operating in different processing rates. Thanks to the decimation property in multirate

processing, the overall computational complexity can be greatly reduced. Theoretical

analysis of adaptive filters and mean acquisition time is also provided. Experimental

results show that while the proposed scheme can have comparable performance with

respect to the original adaptive acquisition scheme, its computational complexity is

much lower.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Code-division multiple access (CDMA) is a promising
technique for wireless mobile communication. It is well
known that the main performance bottleneck for a CDMA
system is the multiple access interference (MAI). MAI not
only affects detection, but also code synchronization. Code
synchronization can be further divided into code acquisi-
tion and code tracking. In this paper, we consider code
acquisition with MAI. Code acquisition has been widely
studied in the literature. The conventional approach to
this problem is the well-known matched-filter (MF) based
method [1–10,32,36] (and references therein). The MF can
have a serial [1], parallel [2–4], or hybrid search structure
ll rights reserved.

uscottt@gmail.com
providing an easy trade-off between hardware complexity
and acquisition time. However, the MF-based method is
only optimal for the single-user case. The acquisition
performance degrades greatly when MAI presents, espe-
cially in near–far environments [5,6]. To evaluate the
performance of an acquisition scheme, a measure called
acquisition-based capacity was defined in [7]. This
capacity corresponds to the maximum number of users
that a system can serve (with certain acquisition perfor-
mance). It was shown in [7,19] that the asymptotic
acquisition-based capacity for the MF is L=½2 lnðLÞ�, where
L is the processing gain. The quantity is less than the bit-
error-rate-based capacity [8] which is proportional to
L. This implies that code acquisition may become a
limiting factor for a CDMA system capacity. Another
discussion on the acquisition-based capacity for the MF
can be found in [9].

Another category of the acquisition technique qem-
ploys subspace- or matrix-based methods [11–18]. The
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Fig. 1. Conventional 1R code acquisition system, where x1ðn� qMcÞ is

user-1’s PN sequence at qth cell with q ¼ 0; . . . ;Q � 1.
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advantage of subspace-based approaches is that it does
not require training sequences. However, these methods
usually have to estimate, decompose, and inverse the
autocorrelation matrix of the received signal vector. This
often demands high computational complexity, especially
at a large processing gain. The projection degree measure-
ment (PDM) algorithm [11] observes two successive
symbols in order to obtain the complete information of
one desired symbol. As a consequence, the PDM has to
estimate and inverse an autocorrelationmatrix of dimen-
sion 2L-by-2L. The multiple signal classification (MUSIC)
algorithm has also been applied to code acquisition
[12–14]. The MUSIC algorithm has to carry out eigen-
decompositions and extract eigen-vectors corresponding
to noise subspace. Despite of the oversampling operation
in [12], the computational complexity of the MUSIC
algorithm is with OðL3

Þ. Besides, this algorithm is
constrained under 2KoL, where K is the number of users.
A matrix-based method [18] called a large sample
maximum likelihood (LSML) acquisition algorithm, pro-
vides excellent performance and robustness against the
near-far problem. However, it requires a large amount of
received bit signals and, again, pays a high computational
complexity in the matrix operations. Notably, these
methods are specifically designed for CDMA systems with
periodic spreading codes (i.e., the spreading code repeats
itself for every bit) and may not straightforwardly apply to
the aperiodic-code systems (i.e., the periodicity of the
spreading code is great than a bit interval).

Recently, the adaptive filter technique [19–26] was
proposed to solve the acquisition problem in the presence
of MAI. The method [19–24] separates the delay un-
certainty into several regions, named (delay) cells. The
input to the adaptive filter is the desired user’s pseudo-
noise (PN) sequence with a code delay associated to a cell.
Each cell is then sequentially tested and the code delay
can then be estimated with the location of the maximum
convergent tap-weight. This method can also have a serial
or parallel searching structure trading performance with
computational complexity. It was addressed in [19,20]
that the adaptive filtering scheme can have a much higher
acquisition-based capacity than the MF. Apart from the
maximum weight testing, architectures with the thresh-
old testing were also considered [21,22]. The threshold
can be set for the mean-squared error (MSE) or for the
maximum tap-weight (in a cell). It was found in [23] that
the tap-weight testing can bring better performance than
the MSE testing. The acquisition performance with fading
channels was analyzed and reported in [24]. Yet, another
adaptive receiver structure reported in [26] performs an
exhaustive search to find the integer chip delay, and then
solve aquadratic equation to find the corresponding
fractional chip delay. The drawback of this approach is
that its complexity is high particularly for a large
processing gain.

In this paper, we propose a code acquisition algorithm
using a multirate adaptive filtering technique. Similar to
the original adaptive filter approach [19,20], our structure
is valid for periodic as well as for aperiodic spreading
codes. In fact, many commercial CDMA systems, including
IS-95 standard [28], CDMA-2000 proposal [29], and 3G
CDMA-based wireless networks [30,31], adopt aperiodic
codes for spreading. The fundamental structure of the
proposed algorithm is similar to that in [19,20]; however,
the proposed scheme contains several adaptive filters
operating in different rates. The adaptive filters with low
rates will search the code delay in low resolutions. The
adaptive filters with higher rates will then resolve the
code delay in higher resolutions. The adaptive filter with
the highest rate, say the chip-rate, can finally identify the
original code delay. The proposed multirate processing
can have a much lower computational complexity than
the conventional adaptive filtering approaches in [19,20].
This is particularly true in the applications where the
processing gain as well as the delay uncertainty is large.

Throughout this paper, the notations ð�ÞT and Au;v

denote the transposition operator and the uvth entry of a
matrix A, respectively. Also, dye indicates the smallest
integer greater than or equal to the value y, whereas byc
the largest integer smaller than or equal to y. Besides,
z represents the unit delay operator, I the identity matrix,
and Ef�g the statistical expectation operation. The rest of
this paper is organized as follows. Section 3 reviews the
conventional adaptive code acquisition scheme. Section 3
describes the proposed multirate code acquisition
scheme. Section 4 analyzes the performance of the
proposed scheme, and Section 5 reports simulation
results. Finally, we draw conclusions in Section 6.
2. Conventional adaptive code acquisition

In this section, we briefly review the conventional
adaptive code acquisition scheme [19,20]. Fig. 1 shows the
structure of this scheme. For reference convenience, we
name this scheme as a one-rate (1R) scheme since only
one processing rate (i.e., chip-rate) is used. The baseband
chip-rate sampled received signal can be expressed as

rðnÞ ¼
XK

k¼1

Akxkðn� tkÞ þwðnÞ, (1)
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where K , tk, Ak, xkðnÞ, and wðnÞ denotes the number of
user, the code delay, the signal amplitude, the transmitted
signal of user-k, and channel noise, respectively. The
channel noise is assumed to be additive white Gaussian
and its mean is zero. The transmitted signal of user-k can
be expressed as

xkðnÞ ¼
X1

j¼�1

dkðjÞ
XL�1

l¼0

ck;jðlÞpðn� l� jLÞ; k ¼ 1; . . . ;K , (2)

where dkðjÞ denotes the jth BPSK signal of user-k and
ck;jðlÞ 2 f1;�1g corresponds to the lth chip signal in dkðjÞ.
Also, L denotes the processing gain and pðnÞ the chip-rate
sampled pulse. Before proceed further, we list assump-
tions to be used in the sequel:
(a)
 User-1’s code delay is of interest and A1 ¼ 1.

(b)
 The code delay is an integer multiples of the chip-

duration and smaller than L.

(c)
 Carrier synchronization is established before code

acquisition.

(d)
 No data are modulated for user-1’s signal in the period

of code acquisition, i.e., d1ðjÞ ¼ 1.

(e)
 The chip-pulse is considered as a rectangular pulse

with unit amplitude.

(f)
 The code sequence ck;j has a period much higher than

the processing gain such that the input to the adaptive
filter can be viewed as statistically white.
(g)
 Only the additive white Gaussian noise (AWGN)
channel is considered and the summation of MAI
and white Gaussian noise can be modeled as another
white Gaussian noise [32].
The 1R scheme first divides L into Q ¼ dL=Mce cells,
where Mc is the length of the adaptive filter. The adaptive
filter then serially searches the code delay in these cells.
The least-mean-square (LMS) algorithm is employed to
minimize the MSE between the received signal rðnÞ and
the adaptive filter output (see Fig. 1). The tap-weight
update equations are given by

wqðnþ 1Þ ¼ wqðnÞ þ mceðnÞxqðnÞ, (3)

eðnÞ ¼ rðnÞ � ½wqðnÞ�TxqðnÞ; q 2 f0; . . . ;Q � 1g, (4)

where mc denotes the step size controlling the conver-
gence of the adaptive filter, wqðnÞ ¼ ½wq

0ðnÞ;w
q
1ðnÞ; . . . ;

wq
Mc�1ðnÞ�

T the filter tap-weight vector for the qth cell,
and xqðnÞ ¼ ½x1ðn� qMcÞ; x1ðn� qMc � 1Þ; . . . ; x1ðn� qMc �

Mc þ 1Þ�T the corresponding input vector. Here, q is
sequentially increased from zero to Q � 1. The tap-weight
vector wqðnÞ for a particular q is stored after some
iterations, say N1 chips. Then, an estimation of t1 can be
derived with the tap-index of the maximum tap-weight
(among all cells). Let the D̂cth tap (0pD̂coMc) of the
adaptive filter in the âcth cell has the maximum value.
Then, we can have the delay estimation t̂1 ¼ âcMc þ D̂c .
Combine wqðN1Þ, q ¼ 0;1; . . . ;Q � 1 into a big vector w,
i.e., w ¼ ½½w0ðN1Þ�

T; ½w1ðN1Þ�
T; . . . ; ½wQ�1ðN1Þ�

T�T. It can be
shown that the probability of acquisition error is

Pe ¼ 1� PbðwcXwjÞ; caj; fc; jg 2 f0;1; . . . ; L� 1g, (5)
where wj denotes the jth element of w and wc the tap-
weight corresponding to the true code delay t1 (i.e.,
c ¼ t1). To evaluate (5), we need to know the stochastic
properties of the tap-weights. It has been shown in [33]
that these tap-weights at convergence have Gaussian
distributions with a mean vector of

mðL�1Þ ¼ wo, (6)

and a covariance matrix of

CðL�LÞ �
mc

2
JminI (7)

9s2
wI, (8)

where wo is the optimum solution of w solved with
the Wiener equations [34], Jmin is the corresponding
minimum mean-squared error (MMSE), and s2

w is the
variance of each tap-weight. Let Rq

¼ EfxqðnÞ½xqðnÞ�Tg and
pq ¼ EfxqðnÞrðnÞg. Since the input is white, Rq

¼ IMc�Mc
. It is

well known that wq
o ¼ ðR

q
Þ
�1pq. Let t1 ¼ acMc þDc ,

0pDcoMc , and pq
j is the jth entry of pq (j 2 f0;1; . . . ;

Mc � 1g). It is simple to show that pq
j ¼ 1 when q ¼ ac and

j ¼ Dc , and pq
j ¼ 0 otherwise. This is to say that a unique

peak with value one will appear in wc , and all other
weights are zeros. Thus, we can have Jmin ¼ Efr2ðnÞg � 1.
Using Eqs. (6) and (8), we can rewrite (5) as

Pe ¼ 1�

Z 1
�1

1� Q
wc

sw

� �� �L�1

exp �
ðwc � 1Þ2

2s2
w

 !
dwc , (9)

where Q ð�Þ denotes the Q-function [35]. It is known that
an Mc-tap adaptive filter (with the LMS algorithm)
requires 2Mc multiplications per iteration. Thus, the
computational complexity is proportional to the filter size.

3. Proposed adaptive multirate code acquisition

To understand our idea easier, we start our develop-
ment with a two-rate (2R) system. Then, we will extend it
to a three-rate (3R) system.

3.1. 2R scheme

Following the assumptions given in Section 2, we
express (1) as

rðnÞ ¼
XK

k¼1

Akxkðn� tkÞ þwðnÞ

¼ x1ðn� t1Þ þ vðnÞ, (10)

where

vðnÞ ¼
XK

k¼2

Akxkðn� tkÞ þwðnÞ (11)

denotes the sum of MAI and white Gaussian noise. Let the
variance of vðnÞ be s2

v. For notational simplification, we
will omit the subscripts of x1ðnÞ and t1 in following
derivations. Fig. 2 shows the architecture of the proposed
2R acquisition system. As we can see, the system contains
two units with two different processing rates. We call the
unit in Fig. 2(a) as a low-rate unit (LRU). In this unit, the
adaptive filter updates its tap-weights with a low rate. For
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this reason, we refer to the adaptive filter in this unit as a
low-rate adaptive filter (LRAF). By contrast, we call the
unit in Fig. 2(b) a high-rate unit (HRU). The adaptive filter
in this unit updates its tap-weights with a high rate. We
refer to the adaptive filter in this unit as a high-rate
adaptive filter (HRAF). Note that the high-rate here
denotes the chip-rate. There are feedforward and feedback
operations in the system. We now describe the funda-
mental feedforward operation. First, consider Fig. 2(a).
The system passes the received signal rðnÞ and the locally
generated user-1’s signal xðnÞ through lowpass filters
(LPFs) to obtain rLPFðnÞ and xLPFðnÞ, respectively. Then, it
downsamples these signals with a factor of D and feeds
the resultant signals to the LRAF. Let Mp ¼ dL=De. Then,
the code delay can be rewritten as t ¼ aDþ D where a 2
f0;1; . . . ;Mpg and �D=2oDpD=2. Note that the ranges of
a and D are defined different from that in the previous
section. The LRAF will adapt to estimate a low-resolution t
having the value in f0;D; . . . ;MpDg. Similar to the 1R
system, we select the tap-index associating with the
maximum tap-weight value. Note that Mp þ 1 is the filter
length of the LRAF and ðMp þ 1ÞD must be great or equal to
L. Let theindex with the maximum tap-weight in the LRAF
be â. The HRU in Fig. 2(b) then delays xðnÞ with âD chips.
We call the device to perform the delay function as the
delay-tuning filter (DTF). With this operation, the HRAF
adapts to refine the code-delay resolution. After conver-
gence, we select the tap-index D̂ with the maximum tap-
weight. It is easy to see that the index should be in the
range of �D=2. Combing these two tap-weight indices, we
can finally obtain a code-delay estimate. In summary, the
LRU attempts to acquire t in a multi-chip level (low reso-
lution), while the HRU in a chip level (high resolution).

We now examine some properties of the 2R feedfor-
ward operation. For low complexity consideration, we let
the LPF filtered rðnÞ (in (10)) as

rLPF ðnÞ ¼
XD�1

j¼0

rðn� jÞ

¼
XD�1

j¼0

xðn� t� jÞ þ vLPFðnÞ, (12)

where

vLPFðnÞ ¼
XD�1

j¼0

vðn� jÞ. (13)

It is simple to see that this is just an averaging operation
with a D-tap filter (apart from a constant). In Fig. 2(a), fL

indicates a vector consisting of the impulse response of
the LPF. As shown, each element of fL has the value of one.
Substituting t ¼ aDþD, we can rewrite (12) as

rLPF ðnÞ ¼
XD�1

j¼0

xðn� aD�D� jÞ þ vLPF ðnÞ. (14)

Downsampling (14) with a factor of D, we then have

rLðmÞ9rLPFðnÞjn¼mD

¼
XD�1

j¼0

xððm� aÞD� D� jÞ þ vLðmÞ, (15)

where we let m ¼ bn=Dc and vLðmÞ ¼ vLPF ðmDÞ. Similarly,
we can average xðnÞ to obtain

xLPF ðnÞ ¼
XD�1

j¼0

xðn� jÞ, (16)

and downsample xLPFðnÞ to obtain

xLðmÞ9xLPF ðnÞjn¼mD

¼
XD�1

j¼0

xðmD� jÞ. (17)

Let the input vector of the LRAF be xLðmÞ. Then, we have

xLðmÞ ¼ ½xLðmÞ; xLðm� 1Þ; . . . ; xLðm�MpÞ�
T. (18)

For a different value of D, the performance of the LRAF
will be different. To evaluate the impact of D on LRAF, we
calculate the optimal tap-weights and the corresponding
steady-state MSE. We put the detailed derivation in
Appendix A, and summarize the result below. For DX0,
we have the optimal tap-weights as

wL;o;� ¼

1� r; � ¼ a;
r; � ¼ aþ 1;

0 otherwise;

8><
>: � 2 f0;1; . . . ;Mpg, (19)

and the steady-state MSE as

JLð1Þ ¼ 1þ
ðMp þ 1ÞmL

2

� �
JL;min. (20)

For Do0, we have

wL;o;� ¼

1� r; � ¼ a;
r; � ¼ a� 1;

0 otherwise;

8><
>: � 2 f0;1; . . . ;Mpg, (21)
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and

JLð1Þ ¼ 1þ
ðMp þ 1ÞmL

2

� �
JL;min, (22)

where r ¼ jDj=D and JL;min is defined in (A.14), respec-
tively. Using (A.14) and observing 0prp1=2, we see that
when r gets larger, JL;min will become larger. This will also
make the steady-state MSE in (22) larger. When D ¼ 0,
r ¼ 0 and t can be divided by D. The response of the LRAF
can be seen as a perfectly downsampled version of the
channel response. If the channel has an impulse-like
response, so does the LRAF. When D40 (or Do0), t4aD

(or toaD). In both cases, t cannot be divided by D. The
response of the LRAF cannot have an impulse-like
response. From Eqs. (A.12) and (A.37), we see that a
nonzero r (D ¼ 0) will produce two nonzero weights and
make the value of the peak tap-weight smaller than one.
Combining these effects, we can conclude that the larger
the r, the worse the acquisition performance. The worst
case occurs when r ¼ 1=2 yielding two nonzero equal
weights. In what follows, we will develop a system that
can null r.

Now, let us consider operations in the HRU. As Fig. 2(b)
shows, the input to the HRAF is xðn� âDÞ. As mentioned,
the optimal filter of the LRAF may have two nonzero
weights with the same value. Thus, the peak position can
be a or aþ 1. In other words, we need at least Dþ 1 taps
for the HRAF. To simplify our analysis, we let â ¼ a. It is
simple to see that the optimal weights of the HRAF will
have a unique peak at D̂. Since the analysis of HRAF is
straightforward, we only provide the results without
detailed derivations. Let

xHðnÞ ¼ ½xðn� âDþ D=2Þ; . . . ; xðn� âDÞ; . . . ; xðn� âD� D=2Þ�T

9½xH;�D=2ðnÞ; . . . ; xH;0ðnÞ; . . . ; xH;D=2ðnÞ�
T (23)

wHðnÞ9½wH;�D=2ðnÞ; . . . ;wH;0ðnÞ; . . . ;wH;D=2ðnÞ�
T, (24)

where we assume that D=2 is an integer (for notational
convenience). Notice that RH9EfxHðnÞxT

HðnÞg ¼ I. We then
have the optimum weights listed below:

wH;o;j ¼
1; j ¼ D;
0 otherwise;

(
(25)

where wH;o;j is the jth element of wH;o, and wH;o is the
optimal solution of wHðnÞ. We then have the MMSE and
steady-state MSE as

JH;min ¼ Ef½rðnÞ �wT
HðnÞxHðnÞ�

2gjwHðnÞ¼wH;o

¼ Efr2ðnÞg � 2wT
H;oEfxHðnÞrðnÞg þwT

H;oRHwH;o

¼ s2
v, (26)

JHð1Þ ¼ 1þ
ðDþ 1ÞmH

2

� �
JH;min, (27)

where mH is the step size used in the HRAF.
The main problem associated with the 2R scheme

described above is that sampling phases for rLPFðnÞ and
xLPFðnÞ may not be synchronized (i.e., Da0). As analyzed,
the acquisition performance can be greatly affected when
D is not equal to zero. Our remedy to this problem is to
adjust the sampling phase of xðnÞ during filter adaptation.
This is possible if D estimated by the HRAF can be
feedback to the LRAF. To realize this thought, we use a
device, namely phase-tuning filter (PTF), to tune the input
phase with D̂ chips (see the feedback operation in Fig. 2).
The PTF can advance or lag the phase of its input signal.
Practically, the PTF can be implemented with a buffer and
a multiple-input-to-one-output selector. With this struc-
ture, the sampling phases for rLPF ðnÞ and xLPFðnÞ can be
synchronized and, therefore, (A.12) can have a unique
peak. Note that the LRU and HRU interact only when
n ¼ mD. Letting D ¼ 0 (i.e., r ¼ 0) in Eqs. (A.14) and (A.25),
we have

JL;min ¼ Ds2
v , (28)

Q �;�ðmÞ ¼
mL

2
Ds2

v; � 2 f0; . . . ;Mpg. (29)

Thus, steady-state MSEs of the LRAF and the HRAF are

JLð1Þ ¼ 1þ
ðMp þ 1ÞmL

2

� �
Ds2

v, (30)

JHð1Þ ¼ 1þ
ðDþ 1ÞmH

2

� �
s2

v. (31)

3.2. 3R scheme

In the previous subsection, we have proposed a 2R
scheme that is able to null r. Since the HRAF operates in a
high processing rate, it dominates the overall computa-
tional complexity. This becomes an important issue when
the tap-length Dþ 1 is large. We can solve the problem by
introducing a unit with another processing rate. We call
this unit as a medium-rate unit (MRU). This unit contains
a medium-rate adaptive filter (MRAF) sharing the compu-
tational loading of the HRAF. As shown in Fig. 3(b), the
LPFs fM average rðnÞ and xðnÞ with a window side of DM ,
and the decimators downsample the resultant signals
with a factor of DM . Let the DPTF denote the device
cascading the DTF and PTF. Here, the processing rate of the
MRU is D=DM times faster than that of the LRU, but DM

times slower than that of the HRU.
With the additional MRU, we have three resolutions to

work with. We can express the code delay as
t ¼ aDþ bDM þ d, where a 2 f0;1; . . . ;Mpg;b 2 f�D=

ð2DMÞ; . . . ;0; . . . ;D=ð2DMÞg, and d 2 f�DM=2; . . . ;0; . . . ;
DM=2g. For convenience, again, we assume that D=ð2DMÞ

and DM=2 are integers. Then, we use the LRU, MRU and
HRU to estimate fa;b;dg, respectively. Note that
�ðDþ DMÞ=2pbDM þ dpðDþ DMÞ=2, where DMX2. In
other words, the MRAF and HRAF can span a delay region
greater than Dþ 1. Define the tap-weight vector and the
input vector of the MRAF as

wMðsÞ9½wM;�D=ð2DM Þ
ðsÞ; . . . ;wM;0ðsÞ; . . . ;wM;D=ð2DM Þ

ðsÞ�T, (32)

xMðsÞ9½xM;�D=ð2DM Þ
ðsÞ; . . . ; xM;0ðsÞ; . . . ; xM;D=ð2DM Þ

ðsÞ�T, (33)
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Fig. 3. Proposed 3R code acquisition system with (a) LRU, (b) MRU, and

(c) HRU. Again, all units interact only when n ¼ mD and the dash-lines

are for feedforward and feedback operations.

H.-L. Yang, W.-R. Wu / Signal Processing 89 (2009) 1162–1175 1167
where s ¼ bn=DMc. The update equation for the MRAF is
given by

wMðsÞ ¼ wMðs� 1Þ þ mMxMðsÞ½rMðsÞ � xT
MðsÞwMðs� 1Þ�,

(34)

where mM is the corresponding step size and

rMðsÞ ¼
XDM�1

j¼0

rðn� jÞjn¼sDM
, (35)

xM;�ðsÞ ¼
XDM�1

j¼0

xðn� âD� d̂� �DM � jÞjn¼sDM
,

� 2 f�D=ð2DMÞ; . . . ;0; . . . ;D=ð2DMÞg, (36)

where we have used âD and d̂ obtained from other two
units. The weight adaptations for the LRAF and HRAF are
similar to (A.19).

We have analyzed the performance of the HRAF and
LRAF in a 2R system previously. The performance of the
MRU in a 3R system can be done in a similar way. We can
treat the MRU as a special LRU, and replace D with DM for
the formulas derived for the LRAF. Since this is straight-
forward, we omit the detailed results here. Note that in
Fig. 3 all units update parameters in their PTFs or DTFs
simultaneously at n ¼ mD. Let the estimates for a, b, and d
at the instant n ¼ mD be âðmÞ, b̂ðsÞ, and d̂ðnÞ, respectively.
When n ¼ mD, the PTF in the LRU delays xðnÞ by b̂ðsÞDM þ

d̂ðnÞ chips, the DPTF in the MRU delays xðnÞ by âðmÞDþ
d̂ðnÞ chips, and the DPTF in the HRU delays xðnÞ by âðmÞDþ
b̂ðsÞDM chips. We can extend the idea to a four-rate or
higher rate system; however, the system architecture will
become complex. For typical applications, a 2R or 3R
system will be sufficient. As described, all the filters
are adjusted using the LMS algorithm. As shown later,
the tap-weight of an adaptive filter can be treated as a
random variable. Thus, a, b, or d may be incorrectly
estimated during the adaptation, which we call a decision
error. Note that the LMS algorithm changes the filter-
weight values slowly. For most cases, theestimation
error can be corrected shortly. There are only few cases
that the error will propagate between adaptive filters and
the overall effect may lower the final amplitudes of
the peak tap-weights. To alleviate the decision error
problem, we can let the LRU operate for a short period
of time without feedback at the initial. Simulations show
that the error propagation effect only slightly slows the
convergence.
4. Performance analysis

To compare the proposed schemes with the 1R
system in Section 2, we employ some performance
measures such as the required computational complexity
(per iteration), acquisition error probability, and mean
acquisition time.
4.1. Computational complexity

To have a fair comparison, we let N ¼ N1 ¼ NM , where
NM denotes the iteration time of the multirate system.
Also, we let D ¼ Q such that the filter size in the 1R
system is approximately equal to that of the LRAF
(Mc � Mp þ 1). Since the main operation in filtering is
multiplication, we only take this into account. We first
calculate the total multiplications required in N iterations
and then divide the result by N.
4.1.1. 1R scheme

As mentioned in Section 2, the Mc-tap adaptive filter
will require 2Mc multiplications per iteration. Then, the
computational complexity of the 1R system, denoted as
C1, is 2Mc ¼ 2dL=De.
4.1.2. 2R scheme

For the 2R scheme, we have to take both the LRAF and
HRAF into account. Since the HRAF has Dþ 1 taps and
operates in the chip-rate, it requires 2ðDþ 1Þ multi-
plications per iteration. On the other hand, the LRAF has
Mp þ 1 taps operating in a rate D times slower. Thus, the
required multiplications per iteration for a 2R scheme, C2,
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is given by

C2 ¼

2ðMp þ 1Þ
N

D
þ 2ðDþ 1ÞN

N
(37)

¼
2ðMp þ 1Þ

D
þ 2ðDþ 1Þ. (38)

4.1.3. 3R scheme

Similarly, we take the LRAF, MRAF, and HRAF into
account. The required multiplication per iteration for a 3R
system, C3, turns out to be

C3 ¼

2ðMp þ 1Þ
N

D
þ 2

Dþ 1

DM

� �
N

DM
þ 2ðDM þ 1ÞN

N
(39)

¼
2ðMp þ 1Þ

D
þ

2

DM

Dþ 1

DM

� �
þ 2ðDM þ 1Þ, (40)

where dðDþ 1Þ=DMe is the minimum required tap-length
for the MRAF.

4.2. Probability of acquisition error

For a general LMS adaptive filter with a step size mc , the
time to converge can be evaluated using d1=mce (see p. 348
in [34]), which is called the time-constant. For the
proposed 1R system, we have Q cells to adapt sequen-
tially. To ensure that the steady state can be achieved
closely, we let the adaptation time be four time-constants
for each cell. Therefore, the overall adaptation time for the
1R system, denoted as N1, is then 4Qd1=mce. Let the step
size for the adaptive filter in the 1R system and that in the
HRAF be the same (i.e., mc ¼ mH9m). For multirate systems
described in Section 3, we further let mL ¼ m=D and
mM ¼ m=DM . In this way, the variances of these adaptive
filter taps are the same (see Eqs. (7) and (29)).

4.2.1. 2R scheme

An acquisition error may occur due to âaa, D̂aD, or
both. When the phase feedback to PTF is not correct, i.e.,
D̂aD, the peak magnitude of wL;aðmÞ will be reduced, and
the overall acquisition performance will be affected. If we
assume that there are no decision errors, the probability of
acquisition error for the time instant n, denoted as PeðnÞ,
can be written as

PeðnÞ ¼ 1� PL;cðmÞPH;cðnÞ, (41)

PL;cðmÞ ¼ PðwL;cðmÞXwL;jðmÞÞ; caj; fc; jg 2 f0;1; . . . ;Mpg,

(42)

PH;cðnÞ ¼ PðwH;cðnÞXwH;jðnÞÞ,

caj; fc; jg 2 f�D=2; . . . ;0; . . . ;D=2g, (43)

where PL;cðmÞ and PH;cðnÞ denote the correct acquisition
probabilities of the LRAF and HRAF, respectively. Also,
wL;cðmÞ and wH;cðnÞ denote the taps whose tap-indices
correspond to the actual code delay.

Using the transient analysis of LMS algorithms in [33],
we have the mean weight vector of the LRAF as

EfwLðmÞg ¼ ½I� ðI� mLRLÞ
m
�wL;o, (44)
and the ðMp þ 1Þ-by-ðMp þ 1Þ covariance matrix as

CLðmÞ ¼
mLDs2

v

2
½I� ðI� 2mLRLÞ

m
�. (45)

Since RL ¼ DI, we can let CLðmÞ ¼ s2
wL
ðmÞI where s2

wL
ðmÞ

is an equivalent variance that can be derived from (45).
Here, wLðmÞ and wHðnÞ are assumed to be Gaussian
distributed. Similarly, we can have the mean weight
vector and the covariance matrix of wHðnÞ as

EfwHðnÞg ¼ ½I� ðI� mHRHÞ
n
�wH;o, (46)

and

CHðnÞ ¼
mHs2

v

2
½I� ðI� 2mHRHÞ

n
�. (47)

Since RH ¼ I, we can let CHðnÞ ¼ s2
wH
ðnÞI. Similarly,

s2
wH
ðnÞ is an equivalent variance that can be derived from

(47). From Eqs. (45) and (47), we find that tap-weights are
independent and identically distributed. As mentioned,
both the HRAF and LRAF are run for N chips. For notational
simplicity, we let AL as the peak in EfwLðbN=DcÞg,
s2

L ¼ s2
wL
ðbN=DcÞ, PL ¼ PL;cðbN=DcÞ, AH as the peak in

EfwHðNÞg, s2
H ¼ s2

wH
ðNÞ, PH ¼ PH;cðNÞ, and Pe ¼ PeðNÞ. The

probabilities in Eqs. (42) and (43) at n ¼ N turn out to be

PL ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
L

q Z 1
�1

1� Q
w

sL

� �� �Mp

exp �
ðw� ALÞ

2

2s2
L

 !
dw,

(48)

PH ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
H

q Z 1
�1

1� Q
w

sH

� �� �D

exp �
ðw� AHÞ

2

2s2
H

 !
dw.

(49)

Finally, we obtain

Pe ¼ 1� PLPH . (50)

As mentioned in Section 3, incorrect decisions can occur
and the error propagation between the HRAF and LRAF
will lower the peak amplitudes of final tap-weights. Thus,
the results in Eqs. (48)–(50) may be too optimistic.
However, the exact analysis of the error propagation
effect turns out to be very difficult, if not impossible. In
what follows, we propose a simple approximation method
to overcome the problem. We first assume that the error
propagation affects the mean of a tap-weight much more
serious than the variance. As a result, we only consider the
variation of mean weight vectors. For an adaptation
period, a decision error can occur in any instant and the
error sequence can have many patterns. For simplicity, we
only investigate those affecting performance most. Con-
sider the LRAF. It is simple to see that if there are k
decision errors during the adaptation period (i.e., between
m ¼ 0 and bN=Dc), the error pattern corresponding to the
worst performance will be the one when all errors occur
between m ¼ bN=Dc � kþ 1 and bN=Dc. In other words,
once a decision error occurs, the error will continue to the
end of the adaptation period. This will make the peak
weight value of the LRAF decrease from m ¼ bN=Dc � kþ
1 monotonically. We then use this pattern to represent all
possible error patterns having k decision errors. From
(44), we have AL ¼ 1� ð1� mLDÞbN=Dc. Taking the decision
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errors into account, we may then rewrite AL as

ALðkÞ ¼ ½1� ð1� mLDÞbN=Dc�k
� exp �

k
ZL

� �
, (51)

where Z�1
L ¼ mLlL and lL ¼ D is the eigenvalue of RL [34].

We may treat k as a random variable with a binomial
distribution as

pðkÞ ¼ bN=Dc

k

� �
ð1� PLÞ

kPbN=Dc�k
L , (52)

where PL is the correct probability in (48). We then use
Eqs. (51) and (52) to calculate the mean value of ALðkÞ,
denoted as ĀL. It is given by

ĀL ¼
XbN=Dc

k¼0

ALðkÞpðkÞ. (53)

Then, the probability of correct acquisition for the LRAF,
denoted as P̄L, can be obtained by substituting ĀL into (48).
Similarly, we can use the same procedure to obtain the
probability of correct acquisition for the HRAF, P̄H . Finally,
the probability of acquisition error for a 2R system,
denoted as PE, is obtained by

PE ¼ 1� P̄LP̄H . (54)

It is worth mentioning that PL and PH are the
correct acquisition probabilities without decision errors.
Thus, these values essentially correspond to two upper
bounds of the correct acquisition probabilities. Using
these values in the calculation of pðkÞ (as that in
(52)) will underestimate the acquisition error probability.
On the other hand, we only take the worst decision
error patterns into consideration and this will over-
estimate the acquisition error probability. Thus, (54) is a
result corresponding a compromise of these two extreme
cases.
 N chips for

iteration ACQ

START

TpPEz

Tp+NPEz

1 − PE

ACQ

START

(1−PE) zN

Fig. 4. Markov chain model for multirate code acquisition schemes. The

right hand side figure illustrates an equivalent model, where z is a delay

operator, PE the probability of acquisition error, Tp penalty time, and ACQ

the correct acquisition state.
4.2.2. 3R scheme

Using the similar idea, we can have the probabi-
lity of acquisition error for the decision-error-free
case as

PeðnÞ ¼ 1� PL;cðmÞPM;cðsÞPH;cðnÞ, (55)

PL;cðmÞ ¼ PðwL;cðmÞXwL;jðmÞÞ,

caj; fc; jg 2 f0;1; . . . ;Mpg, (56)

PM;cðsÞ ¼ PðwM;cðsÞXwM;jðsÞÞ,

caj; fc; jg 2 f�D=ð2DMÞ; . . . ;0; . . . ;D=ð2DMÞg, (57)

PH;cðnÞ ¼ PðwH;cðnÞXwH;jðnÞÞ,

caj; fc; jg 2 f�DM=2; . . . ;0; . . . ;DM=2g, (58)

where PL;cðmÞ, PM;cðsÞ, and PH;cðnÞ are the correct acquisi-
tion probabilities of the LRU, MRU, and HRU, respectively;
wL;cðmÞ, wM;cðsÞ, wH;cðnÞ denote the taps whose tap-indices
correspond to the actual code delay. Note that s ¼ bn=DMc.
Let PL ¼ PL;cðbN=DcÞ, PM ¼ PM;cðbN=DMcÞ, PH ¼ PH;cðNÞ,
and Pe ¼ PeðNÞ. Then PL can be calculated as that in (48),
while PM and PH are given by

PM ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
M

q Z 1
�1

1� Q
w

sM

� �� �D=DM

exp �
ðw� AMÞ

2

2s2
M

 !
dw,

PH ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
H

q Z 1
�1

1� Q
w

sH

� �� �DM

exp �
ðw� AHÞ

2

2s2
H

 !
dw,

(59)

where AM and s2
M can be obtained as that described in

Eqs. (44) and (45). Then, we have Pe ¼ 1� PLPMPH . Again,
Pe does not consider the decision error propagation effect.
We can follow the same notation definitions and proce-
dures outlined in the previous subsection to obtain
{P̄L; P̄M ; P̄H}. Finally, we have the probability of acquisition
error for the 3R system as

PE ¼ 1� P̄LP̄MP̄H . (60)

4.3. Mean acquisition time

Mean acquisition time analysis is generally derived
with a Markov chain model [36]. Since our multirate
systems is different from the MF with serial search,
the commonly used model [10] cannot be applied here.
Fig. 4 shows the model derived for our systems. As
the figure shows, the system iterates for N chips to
obtain t̂ and the probability of acquisition error is PE.
If the acquisition fails, it will wait for a period of time
Tp (chips) before the system re-starts the acquisition.
Here, Tp is generally referred to as the penalty time
[32]. For our schemes, t̂ is constructed from fâ; D̂g or
fâ; b̂; d̂g at n ¼ N. If t̂at, the receiver will re-initialize
acquisition after a time interval of Tp chips. We can have
the transfer function of the Markov chain model in Fig. 4
as [27,36]

HðzÞ ¼
ð1� PEÞz

N

1� PEzTpþN
, (61)

where z is a delay operator and PE is the probability of
acquisition error formulated above. The mean acquisition
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time can then be easily found as

Tacq9
d

dz
HðzÞjz¼1 (62)

¼ N þ
ðTp þ NÞPE

ð1� PEÞ
. (63)

Note that the unit of Tacq is chip.
5. Simulation results

In this section, we conduct computer simulations to
demonstrate the effectiveness of the proposed algorithms.
First, we investigate the computational complexity issue.
Using Eqs. (38) and (40), we can evaluate the computa-
tional complexity requirement per chip versus D for 1R,
2R, and 3R schemes. We list the results in Tables 1–3 for
D ¼ 4, 8, and 16, respectively. The numbers inside the
parentheses in these tables indicate the values of DM used
for the 3R system. Also, the last two rows of the tables give
the complexity ratio defined as C2=C1 and C3=C1,
respectively. From these tables, we can have several
observations. Firstly, the larger the processing gain, the
higher efficiency the multirate system can achieve.
Secondly, the 3R system is always more efficient than
the 2R system. Lastly, there exists an optimum D for a
given processing gain L. For example, when L ¼ 1024 and
D ¼ 8, the computational complexity of the 2R system is
about 20% of the 1R system. For the same processing gain
with D ¼ 16, the complexity of the 3R system is only
about 16% of the 1R system. These outcomes state that the
Table 1
Computational complexity comparison for D ¼ 4.

L 128 256 512 1024

C1 64 128 256 512

C2 26.50 42.50 74.50 138.50

C3 25.5 (2) 41.5 (2) 73.5 (2) 137.5 (2)

C2=C1 0.414 0.332 0.291 0.271

C3=C1 0.398 0.324 0.287 0.269

Table 2
Computational complexity comparison for D ¼ 8.

L 128 256 512 1024

C1 32 64 128 256

C2 22.25 26.25 34.25 50.25

C3 14.25 (3) 18.25 (3) 26.25 (3) 42.25 (3)

C2=C1 0.695 0.410 0.268 0.196

C3=C1 0.445 0.285 0.205 0.165

Table 3
Computational complexity comparison for D ¼ 16.

L 128 256 512 1024

C1 16 32 64 128

C2 35.125 36.125 38.125 42.125

C3 13.125 (3) 14.125 (3) 16.125 (3) 20.125 (3)

C2=C1 2.195 1.129 0.596 0.329

C3=C1 0.821 0.441 0.252 0.157
multirate system can be much more efficient than the 1R
system for large L.

We set signal-to-interference-plus-noise ratio (SINRc),
which is defined 1=s2

v, as �13 dB (about 20 users with
equal power). Also, L ¼ 128, D ¼ 8, DM ¼ 4, m ¼ mH ¼

mLD ¼ mMD=2, and N ¼ 4Dd1=me. To show how the
proposed scheme works, we let t ¼ 51 and use a 3R
system with above parameter setting to conduct simula-
tions (100 trials). Fig. 5 shows the averaged peak-weight
positions associated with the LRAF, the MRAF, and the
HRAF. As we can see, â ¼ 7,b̂ ¼ �1, and ĝ ¼ �1. Thus, the
code delay can be estimated as t̂ ¼ âDþ b̂DM þ ĝ ¼ 51,
which is equal to the actual delay. We then compare the
probabilities of acquisition error for 1R, 2R, and 3R
systems. The code delay, t, here is uniformly and
randomly selected from ½0; LÞ. We conduct 104 indepen-
dent trials and show the results in Fig. 6. Also shown in
the figure is the theoretical results derived in Section 4.
Experimental results in Fig. 6 indicate that the perfor-
mance of multirate systems are slightly better than that of
the 1R system. Theoretical predictions for all systems are
accurate particularly when the step size is large. For the
1R system, the deviation between experimental and
theoretical values is smaller than that in 2R and 3R
systems. This is not surprising, since the 1R system does
not have the error propagation problem.

As mentioned, an important acquisition performance
measure is the mean acquisition time. To derive the mean
acquisition time, Tacq, we first set Tp ¼ 1:28� 104 chips
(100 bits) and substitute the experimental acquisition
error probabilities obtained from Fig. 6 into (63). Fig. 7
shows the mean acquisition time for all systems. The
lower bound in Fig. 7 corresponds to the case that no
acquisition errors occur. In this case, Tacq ¼ N ¼ 4Dd1=me
and this can serve as a performance bound for compar-
ison. As we can see, ini-tially the mean acquisition time
decreases when the step size increases. When the step
size is larger than m ¼ 5� 10�3, the mean acquisition time
starts to increase. For the setting here, the optimal step
size is around m ¼ 5� 10�3. In this case, Tacq for the 1R
system is about 7500 chips, that for the 2R system is
about 7150 chips, and that for the 3R system is about 7250
chips. We also examine the probability of acquisition error
for various SINRc . Fig. 8 shows the experimental results.
Here, we let m ¼ 5� 10�3, L ¼ 128, D ¼ 8, DM ¼ 4, and
N ¼ 4Dd1=me. We find that all systems have similar
performance. Also, the higher the SINRc , the better
performance we can have. The 2R system behaves slightly
better than the others. Fig. 9 shows the corresponding
mean acquisition time. In terms of the mean acquisition
time, we have the same conclusion that all systems have
similar performance.

For all simulations shown above, we have fixed N ¼

4Dd1=me for the systems. In terms of mean acquisition
time, this choice may not be optimal. Fig. 10 shows the
mean acquisition time for various N (SINRc is �13 dB). As
we can see, there are optimum N’s for multirate systems.
For m ¼ 5� 10�3, we find that the mean acquisition time
of the 3R system increases quicker than that of the 2R
system when N is smaller than the optimum value. This is
because the performance of low-rate units depends on N
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more strongly. When N is larger than the optimum value,
the mean acquisition times of both systems approach the
lower bounds. We can observe the same behaviors when
m ¼ 3� 10�3. From the figure, we also find that the
optimal N is about 2 and 2.5 time-constants for m ¼
3� 10�3 and 5� 10�3, respectively. In these cases, Tacq ¼

6� 103 chips (47 bits) for both step sizes.
6. Conclusions

The performance of conventional code acquisition in a
CDMA system degrades greatly when MAI presents. The
adaptive filtering approach proposed recently has been
proven to be MAI-resistant. In this paper, we propose a
multirate adaptive code acquisition scheme that can
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significantly reduce the required computational complexity.
We have specifically studied the 2R and 3R systems and
theoretically analyzed their performance; this includes the
filter convergence properties, acquisition error rate, and
mean acquisition time. Experimental results show that
while the proposed schemes can perform similarly with
the conventional adaptive acquisition, the computational
complexity is much lower. The proposed scheme is specially
suitable for CDMA systems operating in large propagation
delay environments. With proper choice of D or DM, the
multirate code acquisition scheme can achieve an efficient
compromise between the mean acquisition time and
computational complexity. The proposed scheme can also
be used in a carrier-phase unsynchronized system. In this
circumstance, we have to take the inphase as well as
quadrature components of tap-weights into account. If the
code delay has a fractional part, the optimum tap-weights
will have two peaks and this will enlarge the MMSE, which
in turn affects the acquisition performance. To mitigate this
problem, we can oversample the receive signal and conduct
a sub-chip level acquisition. In this paper, we only consider
the scenario of the AWGN channel. It is straightforward to
extend the use of the proposed scheme to multipath
channels. In this case, the HRAF will acquire the signal from
the strongest path. The performance analysis can then serve
as a potential topic for further research.
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Appendix A

In this section, the optimal tap-weights of a LRAF with
different D will be derived. With the results, the steady-
state MSE of a LRAF can be evaluated. To simplify the
notation, we let

r ¼ jDj
D

. (A.1)

A.1. The case of DX0

Consider the case where DX0 first. The element
xLðm� �Þ, � 2 f0;1; . . . ;Mpg in (18) can be rewritten as

xLðm� �Þ ¼
XD�1

j¼0

xððm� �ÞD� jÞ

¼
XD�1

j¼0

xððm� �ÞD� jÞ þ
XD�1

j¼D

xððm� �ÞD� jÞ
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¼
XD�1

j¼0

xððm� �ÞD� jÞ þ
XD�D�1

j¼0

xððm� �ÞD�D� jÞ

¼
ffiffiffiffiffiffiffi
Dr

p 1ffiffiffiffiffiffiffi
Dr

p XD�1

j¼0

xððm� �ÞD� jÞ

8<
:

9=
;

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
(

XD�D�1

j¼0

xððm� �ÞD�D� jÞ

9=
;. (A.2)

Let

yðmÞ ¼
1ffiffiffiffiffiffiffi
Dr

p XD�1

j¼0

xðmD� jÞ, (A.3)

fðmÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dð1� rÞ
p XD�D�1

j¼0

xðmD�D� jÞ, (A.4)

HðmÞ ¼ ½yðmÞ; yðm� 1Þ; . . . ; yðm�MpÞ�
T, and UðmÞ ¼

½fðmÞ; fðm� 1Þ; . . . ;fðm�MpÞ�
T. Thus, (A.2) can be writ-

ten as

xLðm� �Þ ¼
ffiffiffiffiffiffiffi
Dr

p
yðm� �Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
fðm� �Þ,

� 2 f0;1; . . . ;Mpg, (A.5)

and (18) as

xLðmÞ ¼
ffiffiffiffiffiffiffi
Dr

p
HðmÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
UðmÞ. (A.6)

Note that yðmÞ, fðmÞ and vLðmÞ are zero mean, mutually
uncorrelated, and

EfyðmÞyðm� �Þg ¼ dð�Þ,
EffðmÞfðm� �Þg ¼ dð�Þ,

EfvLðmÞvLðm� �Þg ¼ Ds2
vdð�Þ, (A.7)

where dð�Þ denotes a Kronecker Dirac delta function. Using
Eqs. (A.3) and (A.4), we can also express (15) as

rLðmÞ ¼
XD�1

j¼0

xððm� aÞD�D� jÞ þ vLðmÞ

¼
XD�D�1

j¼0

xððm� aÞD�D� jÞ

þ
XD�1

j¼D�D

xððm� aÞD� D� jÞ þ vLðmÞ

¼
XD�D�1

j¼0

xððm� aÞD�D� jÞ

þ
XD�1

j¼0

xððm� a� 1ÞD� jÞ þ vLðmÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
fðm� aÞ þ

ffiffiffiffiffiffiffi
Dr

p
yðm� a� 1Þ þ vLðmÞ.

(A.8)
rLðmÞ

¼ xT
L ðmÞwL;o þ vLðmÞ

�ð1� rÞ
ffiffiffiffiffiffiffi
Dr

p
½yðm� aÞ � yðm� a� 1Þ� þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl
9xðmÞ
Let the tap-weights of the LRAF be
wLðmÞ ¼ ½wL;0ðmÞ;wL;1ðmÞ; . . . ;wL;Mp

ðmÞ�T. Also, let the cor-
responding optimal solution be wL;o. Using the corre-
sponding Wiener equations, we can have

wL;o ¼ R�1
L pL, (A.9)

where pL9EfxLðmÞrLðmÞg and RL9EfxLðmÞxT
L ðmÞg. From

Eqs. (A.6) and (A.7), it is simple to derive

RL ¼ DI. (A.10)

Using Eqs. (A.6) and (A.8), we can find the cross-
correlation between rLðmÞ and xLðmÞ as

pL ¼ 0; . . . ;0|fflfflfflffl{zfflfflfflffl}
a

;D�D;D;0; . . . ;0

2
4

3
5T

(A.11)

From (A.9), we obtain

wL;o;� ¼

1� r; � ¼ a;
r; � ¼ aþ 1;

0 otherwise;

8><
>: � 2 f0;1; . . . ;Mpg, (A.12)

where wL;o;� is the �th element of wL;o. Let the MSE that the
Wiener filter minimizes be JLðmÞ. Then,

JLðmÞ ¼ Ef½rLðmÞ �wT
L ðmÞxLðmÞ�

2g

¼ Efr2
L ðmÞg � 2wT

L ðmÞpL þwT
L ðmÞRLwLðmÞ, (A.13)

where Efr2
L ðmÞg ¼ DEfr2ðnÞg ¼ Dðs2

v þ 1Þ. Replacing wLðmÞ

with wL;o, we can obtain the corresponding MMSE, JL;min,
as

JL;min ¼ DEfr2ðnÞg � D½ð1� rÞ2 þ r2�

¼ D½s2
v þ 2rð1� rÞ�. (A.14)

From (A.14), we can see that a nonzero r will produce
an extra term in the MMSE. We now proceed to find the
MSE yielded by the LMS algorithm. Using Eqs. (A.6) and
(A.12), we derive

xT
L ðmÞwL;o ¼ ð1� rÞf

ffiffiffiffiffiffiffi
Dr

p
yðm� aÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
fðm� aÞg

þ rf
ffiffiffiffiffiffiffi
Dr

p
yðm� a� 1Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
fðm� a� 1Þg (A.15)

¼
ffiffiffiffiffiffiffi
Dr

p
yðm� aÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
fðm� aÞ

� r
ffiffiffiffiffiffiffi
Dr

p
yðm� aÞ � r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
fðm� aÞ

þ r
ffiffiffiffiffiffiffi
Dr

p
yðm� a� 1Þ

þ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
fðm� a� 1Þ. (A.16)

Substituting (A.8) into (A.16), we obtain

xT
L ðmÞwL;o ¼ rLðmÞ � vLðmÞ þ ð1� rÞ

ffiffiffiffiffiffiffi
Dr

p
�fyðm� aÞ � yðm� a� 1Þg

� r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
ffðm� aÞ �fðm� a� 1Þg.

(A.17)

Rewriting (A.17), we have
½fðm� aÞ � fðm� a� 1Þ�fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} , (A.18)
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where xðmÞ is zero mean and its variance is
s2
x ¼ 2Drð1� rÞ. The LMS tap-weight update equation

for the LRAF is given by

wLðmÞ ¼ wLðm� 1Þ þ mLxLðmÞ½rLðmÞ � xT
L ðmÞwLðm� 1Þ�,

(A.19)

where mL is the step size. Substituting (A.18) into (A.19),
we have

wLðmÞ ¼ wLðm� 1Þ þ mLxLðmÞ½x
T
L ðmÞwL;o þ vLðmÞ þ xðmÞ

� xT
L ðmÞwLðm� 1Þ�. (A.20)

Subtracting wL;o on both sides of (A.20) and letting
DwLðmÞ ¼ wLðmÞ �wL;o, we can rewrite (A.20) as

DwLðmÞ ¼ DwLðm� 1Þ � mLxLðmÞx
T
L ðmÞDwLðm� 1Þ

þ mLxLðmÞvLðmÞ þ mLxLðmÞxðmÞ

¼ ½I� mLxLðmÞx
T
L ðmÞ�DwLðm� 1Þ

þ mLxLðmÞvLðmÞ þ mLxLðmÞxðmÞ. (A.21)

Let Q ðmÞ ¼ EfDwLðmÞDwT
L ðmÞg. Then,

Q ðmÞ ¼ Ef½I� mLxLðmÞx
T
L ðmÞ�DwLðm� 1Þ

� DwT
L ðm� 1Þ½I� mLxLðmÞx

T
L ðmÞ�

Tg

þ m2
L Efv2

L ðmÞxLðmÞx
T
L ðmÞg

þ m2
L Efx2

ðmÞxLðmÞx
T
L ðmÞg. (A.22)

Eq. (A.22) can be written as

Q ðmÞ ¼ ðI� mLRLÞQ ðm� 1ÞðI� mLRLÞ

þ m2
L Ds2

vRL þ m2
Ls

2
xRL. (A.23)

Note that in (A.23) we implicitly assume that x2
ðmÞ and

xLðmÞxT
L ðmÞ are uncorrelated. The �th entry on the main

diagonal of Q ðmÞ is

Q �;�ðmÞ ¼ ð1� mLDÞ2Q �;�ðm� 1Þ þ m2
L D2s2

v þ m
2
L Ds2

x .

(A.24)

When m�!1, we have the asymptotic result as

Q �;�ðmÞ �
mL

2
ðDs2

v þ s
2
xÞ

¼
mLD

2
½s2

v þ 2rð1� rÞ� � 2 f0;1; . . . ;Mpg. (A.25)

Using Eqs. (A.14) and (A.25), we can have the MSE for
the LMS algorithm in steady-state [34] as

JLð1Þ ¼ JL;min þ
ðMp þ 1ÞmLD

2
½s2

v þ 2rð1� rÞ�

¼ 1þ
ðMp þ 1ÞmL

2

� �
JL;min. (A.26)

A.2. The case of Do0

Next, let us consider the case where Do0. We define a
new set of yðmÞ and fðmÞ as

yðmÞ9
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dð1� rÞ
p XD�jDj�1

j¼0

xðmD� jÞ, (A.27)

fðmÞ9
1ffiffiffiffiffiffiffi
Dr

p XjDj�1

j¼0

xððm� 1ÞDþ jDj � jÞ. (A.28)
Then, we can have xLðm� �Þ as

xLðm� �Þ ¼
XD�1

j¼0

xððm� �ÞD� jÞ (A.29)

¼
XD�jDj�1

j¼0

xððm� �ÞD� jÞ

þ
XD�1

j¼D�jDj

xððm� �ÞD� jÞ (A.30)

¼
XD�jDj�1

j¼0

xððm� �ÞD� jÞ

þ
XjDj�1

j¼0

xððm� �� 1ÞDþ jDj � jÞ (A.31)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
yðm� �Þ þ

ffiffiffiffiffiffiffi
Dr

p
fðm� �Þ, (A.32)

and (15) as

rLðmÞ ¼
XD�1

j¼0

xððm� aÞDþ jDj � jÞ þ vLðmÞ (A.33)

¼
XjDj�1

j¼0

xððm� aÞDþ jDj � jÞ þ
XD�1

j¼jDj

xððm� aÞD

þ jDj � jÞ þ vLðmÞ (A.34)

¼
XjDj�1

j¼0

xððm� aÞDþ jDj � jÞ

þ
XD�jDj�1

j¼0

xððm� aÞD� jÞ þ vLðmÞ (A.35)

¼
ffiffiffiffiffiffiffi
Dr

p
fðm� aþ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð1� rÞ

p
yðm� aÞ þ vLðmÞ.

(A.36)

Following the similar procedure for the case that DX0,
we can derive

wL;o;� ¼

1� r; � ¼ a;
r; � ¼ a� 1;

0 otherwise;

8><
>: � 2 f0;1; . . . ;Mpg, (A.37)

and

JLð1Þ ¼ JL;min þ
ðMp þ 1ÞmLD

2
½s2

v þ 2rð1� rÞ�

¼ 1þ
ðMp þ 1ÞmL

2

� �
JL;min. (A.38)
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