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ABSTRACT

Nowadays, the fast development of network communication in electronics indus-
try brings the people to a quick and convenient life, while the demand in safety for
protecting the personal private data from revealing significantly increases as well. In
security, the conventional symmetric-key scheme can locally achieve the encryption,
but the decryption key and ciphertext are still needed to be sent without disclosure,
modification, duplication, forgery, and even unauthorized access. The asymmetric-key
scheme or so called public-key cryptosystems (PKC) is developed to satisfy these re-
quirements. In recent years, a new coming approach, elliptic curve cryptography
(ECC), has been adopted in several applications for ensuring the security of infor-
mation exchange. However, the suitable solution of ECC processor has not appeared
so far.

In this dissertation, we investigate the design of crypto engine through a system
view, from top to down, including the algorithm, operation scheduling, pro-
cessing-element architecture, and also circuit-level implementation. For pursuing the
achievement of high-performance accelerator, several improvement techniques for the
hardware speed, hardware complexity, and power consumption are promoted. Besides,
to deliver a decent design of crypto engine, the device security such as the coun-
ter-measure of side-channel attacks (SCAs) is also included in our implementation
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target. And then, both of these design issues lead to a big challenge, where it requires
the device to be implemented without both of the key-dependent processed data and
much overhead of SCA resistance.

As above, we proposed a new design method, which is based on the randomized
computation and key-independent scheduling manner, to protect the private date
stored in device from the side-channel information leakage. The feature is that it is
suitable for the system integration and the usage of the standard without any
pre-computation. Another advantage is that the overhead of protected design is lower
than that of related previous works. The robustness of SCA resistance is examined by
exploiting an on-chip true-random number generator (TRNG) with sufficient random-
ness. Moreover, the corresponding design architecture of hardware implementation is
introduced, and our ECC processor outperforms both in the hardware efficiency and
protection against SCAs as compared with the other approaches.

To show more our contributions, we further conduct our research for several
standard applications. Fabricated by UMC 90-nm CMOS technology, a 0.41
mm?*160-bit ECC chip can achieve 0.34/0.29 ms 11.7/9.3 pJ for one GF(p)/GF(2™) el-
liptic curve scalar multiplication (ECSM), which is effective at the hardware cost and
suitable for the mobile device; a 521-bit ECC chip performs each GF(ps,;) ECSM in
3.40 ms and GF(2°%") ECSM in 2.77 ms, where it saves 50% data transmission of pub-
lic key by on-chip elliptic curve point generation (ECPG). This is the fastest design
and also applicable for the cloud computing; a 192-bit ECC chip achieves 10.8/9.2 ms
438/437 pW GF(p1s,)/GF(2'%) ECSM at scaled 0.5 V and 25 MHz, where it is effi-
cient at the power consumption and suitable for the applications of Internet of Things
(1oT). In addition, the SCA resistance for each design is demonstrated by millions of
measurements.
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Chapter 1

Introduction

A general model for the network security is shown in Figure 1.1, where the message is
to be transferred from one party to another across some sort of wireless communications
or Internet service. The two parties, who are the principals in this transaction, must
cooperate the exchange to take place. A logical information channel is established by
defining a communication protocol such as GSM, Wi-Fi, and TCP/IP. The trusted third
party may be needed to achieve secure transmission. For example, a third party may be
responsible for distributing the secret information to the two principals while keeping it
from any opponent. Or a third party may be needed to arbitrate disputes between the
two principals concerning the authenticity of a message transmission.

Symmetric-key encryption is a form of cryptosystem where the encryption and decryp-
tion are performed by using the same key. It is also known as conventional encryption.
Symmetric-key encryption transforms security-related message, plaintext, into ciphertext
using a secret key and an encryption algorithm, such as stream cipher RC4 [1], block ci-
pher DES (Data Encryption Standard) [2], and block cipher AES (Advanced Encryption
Standard) [3]. By using the same key and decryption algorithm, the plaintext is recovered
from the ciphertext. The traditional symmetric-key ciphers use the substitution and/or
transposition techniques. Substitution techniques map plaintext elements into ciphertext
elements (each letter retains its position but changes its identity). Transposition tech-
niques systematically transpose the positions of plaintext elements (each letter retains its
identity but changes its position). An example model of conventional encryption is shown

in Figure 1.2.
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Figure 1.2: A model of symmetric-key encryption.

On the other hand, asymmetric-key encryption is developed to achieve the encryp-
tion and decryption with two different keys in which one is a public key and another

one is a private key. It is also known as public-key cryptosystems (PKC). In contrast to



the symmetric-key encryption, asymmetric-key algorithms are based on the mathematical
functions rather than on the substitution and transposition. For one thing, although the
asymmetric-key ciphers can achieve the same function of encryption, the symmetric-key
ciphers will not be abandoned because the computational overhead of current asymmetric-
key encryption schemes. Usually, the both of symmetric-key and asymmetric-key encryp-
tion schemes are used together in a security system. For example, the short message such
as encryption key is securely generated from the combination of recipient’s public key and
sender’s private key by asymmetric-key ciphers in an open channel, and then the long
message such as plaintext is scrambled by symmetric-key ciphers. In this case, only the
corresponding recipient who has the correct private key can unscramble the ciphertext,
where the decryption key can be obtained from the combination of sender’s public key and
recipient’s private key in the similar way. In addition to the message encryption, due to
the flexibility of using the public/private key pair, the PKC have profound consequences
in the area of confidentiality and authentication. For more practical examples, they can
be referred to the standardized applications, such as WPAN, NFC, SSL, and PGP. An
example model of PKC is shown in Figure 1.3. Note that the PKC are an efficient ap-
proach to solve the problem of key distribution for the symmetric-key encryption, where
the encryption key is usually assumed to be unknown for the recipient before establishing
the communication session.

The traditional achievable method for the PKC is RSA [4], which was publicly de-
scribed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman. The difficulty of
attacking RSA is based on the hard problem of finding the big prime factors of a compos-
ite number. To provide a sufficient security, the key size is usually selected to be several
thousands of bits. This big key size results in a high complexity in computation, and it
is inconvenient for user in practical implementation. According to these, in 1985, ellip-
tic curve cryptography (ECC) is independently discovered by Victor Miller [5] and Neal
Koblitz [6] to be an alternative scheme for PKC. Its security is based on the hardness of
a different problem, namely the elliptic curve discrete logarithm problem (ECDLP). Cur-
rently, the best algorithms known to solve ECDLP have fully exponential running time,
in contrast to the subexponential-time algorithms known for the integer factorization.

This means that a desired security level can be attained with significantly smaller keys
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in elliptic curve systems than those of RSA. For instance, it is generally accepted that a
160-bit elliptic curve key provides the same level of security as a 1024-bit RSA key. The
advantages that can be gained from smaller key size include speed and efficient use of
power consumption, transmission bandwidth, and memory storage.

The security protocol based on ECC schemes has been specified in IEEE standards,
IEEE P1363 [7], in 2000 with an extended version [8] appeared in 2004. The ECC is also
applied in practical commercial electronic products using IEEE 802.15.4 [9] and IEEE
802.15.6 [10]. They are the standards in physical layer for currently existing low power
and low cost solution of ZigBee [11], Bluetooth low energy [12], and wireless body area
networks [13], which are extensively used in industry, business, and medical treatment,
respectively. Moreover, high-speed crypto engine is indispensable for the ubiquitous appli-
cations of computing server. The hardware accelerator of ECC, so called ECC processor,
is dedicated to reducing the system retard from high computation complexity of ECC
functions. Instead of conventional performance-oriented design methods, a current issue
for delivering a decent crypto engine is the device security such as the protection of side-
channel attacks (SCAs). In [14], a demonstration shows that the key in circuit device can
be easily broken by power measurement, while the suitable solution of SCA resistance for

ECC processor has not been discovered much yet.



1.1 Previous Works

1.1.1 Elliptic Curve Cryptographic (ECC) Processor

To date, several works of the ECC hardware implementation have been published
in [15-28]. To save hardware complexity, single finite field architecture either for prime
field GF(p) [17,19, 21, 26, 29] or extension binary field GF'(2™) [15,25,27], and fixed
modulus approach on specific elliptic curves (ECs) [20-22] can be used. However, the
applications of IEEE P1363 including digital signature are approved for supporting dual-
field (DF) functions on arbitrary ECs. Exploiting carry-save adder trees in word-based
multipliers is a common technique to integrate DF data path [16,24,28], but the limit of
integration for distinct arithmetic units still results in large hardware cost.

In general, the GF'(2™) design is faster than the GF(p) design because of carry-free
addition over GF'(2™). Besides, there are some well-known techniques to pursue high-
speed GF(2™) ECC design. A divide-and-conquer algorithm, Karatsuba-Ofman (KO)
multiplication [30], is applied to reduce the computation complexity of number of bit
operations. Classical methods to multiply two m-bit polynomials require O(m?) bit oper-
ations. The KO algorithm reduces this to O(m'°%23). As the polynomial modulus is fixed,
the reduction over GF(2™) is simple [31], and then the throughput of KO multiplier can
be elevated by adopting fully pipelining architecture [32,33]. Another design technique
over GF'(2™) using fixed polynomial modulus is the fast squaring [34]. The binary rep-
resentation of a polynomial a(z)? is obtained by inserting a zero-bit between consecutive
bits of the binary representation of a(z). Thus the computation complexity is most dom-
inated by the reduction over GF'(2™), which is easily achieved by combinational circuit
using exclusive-OR, gates only. In contrast to standard (polynomial) representation of
elements over GF'(2™), optimal normal basis (ONB) representation [7,34] has benefits in
squaring because it can be achieved by simple shifting operations. But it is inevitable for
the computing overhead of conversion between the standard and ONB representation.

For arithmetic over GF(p), based on Chinese remainder theorem, residue number
system (RNS) [35, 36] represents a large integer using a set of smaller integers, so that
computation may be performed more efficiently. This briefs the long delay within the

data path of carry-propagation adder, and the multiple multipliers can be implemented



with parallelism. RNS implementations bear the extra cost of an input converter (binary-
to-RNS) to translate numbers from a standard binary format into residues and an output
converter (RNS-to-binary) to implement the translation from RNS to a binary represen-
tation. An RNS implementation applied to GF(p) ECC processor is presented in [23],
where the technique of data flow graph for the optimization of ECC function is utilized
as well.

For the implementation of scalable architecture performing flexible field length and
arbitrary modulus, Montgomery algorithm [37] is commonly adopted. It is an efficient
approach to achieve the modular multiplication over DF's, where the long-precision integer
division is not required during the calculation of Montgomery multiplication (or called
Montgomery modular multiplication). The key idea is that the reduction after integer
multiplication can be achieved by shifting bit position as the domain constant is selected to
be two to the power of m or x with degree m (i.e., 2™ over GF(p) and 2™ over GF(2™)),
where the constant 2™ and z™ is so called Montgomery constant. Another benefit for
the hardware implementation of Montgomery algorithm is that the GF(p) and GF'(2™)
arithmetic logic unit (ALU) is suitable for integration in VLSI circuit because the sum of
carry-save adder is equal to two bitwise exclusive-OR operators [15,27,38]. The overhead
is the multiplexer to select the data path between operating fields. In [39,40], a word-
based Montgomery multiplier is presented to avoid the high fanout of AND operators
in conventional serial-parallel architecture [15]. In [16,24,41], a w x w multiplier is
exploited to tradeoff between the hardware speed and area cost with flexible size w. As w
equals field length m, one modular multiplication can be performed within several cycle
periods [17,42]. Note that, although the Montgomery algorithm still requires the overhead
of conversion between integer and Montgomery domain, it can be immediately achieved
by Montgomery division described in [38].

For high speed target, a usually adopted technique is the parallel computation with
multiple processing elements (PEs) of homogeneous architecture [18,24,43]. However, in
practice, this approach by directly duplicating the PEs has less hardware utilization for
various operations. Another approach of improving computation speed of ECC processor
is the window methods [34]. The key idea is to store some pre-computed data in device,

and then the on-line running time can be reduced.



On the contrary, the parallel computation and window methods requiring the overhead
of device memory would not be suitable for the low power and low cost applications
such as radio-frequency identification (RFID). ISO/IEC 18000-3 [44] is an international
standard for the item level identification of the passive RFID, and it also describes the
parameters for air interface communications at 13,56 MHz. Several previous works [22,29,
45,46] are targeted at the implementation of low hardware complexity. In [45], a 192-bit
GF(p)/GF(2™) ECC processor supporting hash function [47] and consuming less than
30 uW is reported, while the execution time is over 1 second per operation due to low
operating frequency 175 kHz. In [46], the GF'(2™) fast squaring approach is exploited
to efficiently computed inversion in affine coordinates. In [29], a 192-bit GF(p) ECC
processor is presented, where a radix-4 Montgomery multiplication approach is used and
the inversion is achieved by extended Euclidean algorithm [34]. In [22], a 163-bit GF'(2™)
ECC design with micro-controller and bus manager is implemented to connect to the
front-end module in RFID device. A dedicated register file management is used to save
the high complexity of multiplexers. To further save the number of temporary register, a
common Z projective coordinate system modified from [48] is exploited.

To pursue the embedded system market, in [49], a hardware/software co-design of
ECC processor is implemented and performed at 12 MHz on an 8051 micro-controller.
Communication overhead due to operand transfers is reduced by integration of a direct
memory access unit and through the inclusion of an additional I/O register into the
hardware accelerator. In [50], a cryptographic core compliant with the IEEE 802.15.4
standard [9] and based on FPGA is described. It consists of three components including
an AES-CCM module, a content-addressable memory achieving an access control list, and

an RSA module based on Montgomery arithmetic.

1.1.2 Side-Channel Attacks (SCAs)

Traditional cryptanalysis assumes that an adversary only has access to input and out-
put pairs without the knowledge about internal states of the device. However, the advent
of side-channel analysis showed that a cryptographic device can leak critical information.
By monitoring the timing, power consumption, electromagnetic emission of the device or

by injecting faults, adversaries can obtain the information about internal processed data



or operations, and then the key is extracted out of the cryptographic device without math-
ematically breaking the primitives. This kind of attacks using side-channel information
is so called side-channel attacks (SCAs).

In 1999, Kocher [51] has presented a real threat on the hardware device by power
measurement. The detailed description for the attacks on symmetric-key crypto engine
is given in [14], and the power-analysis attacks are successfully conducted on the micro-
processor, ASIC, and even FPGA. The common techniques against power-analysis attacks
for symmetric-key crypto engine are the dual-rail logic cell equalizing the power consump-
tion and the masking in substitution which depends on the key value. The previous one
needs to change the design flow including the back-end physical layout to ensure inter-
connect capacitances of the true and false output nodes of logic gates are equal; the last
one requires the overhead of hardware speed and cost from combinational circuit. Several
published papers [52-55] show other kinds of logic cells to “balance” the power consump-
tion. On the other hand, a systematic overview for most of currently existing SCAs
and countermeasure on asymmetric-key design is reported in [56]. However, most of the
previous approaches illustrate the theoretical analysis rather than real implementation
together with measurement results. In Chapter 3, we will give more description about the
principle and show the evaluation of power-analysis attacks on ECC device from power

measurement.

1.1.3 Summary of Paper Survey

The research age of ECC hardware implementation is briefly shown in Figure 1.4.
The ECC processor with small key size and single field has less hardware complexity
22, 25,29, 49], but it sacrifices the security. The DF design [24,28,45,57,58] and large
key size approach [38,59] have higher security level. However, there is still relatively little
design targeted at the applications such as cloud computing and portable device, where

the both of flexibility and device security are necessary.
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Figure 1.4: Research review of ECC hardware implementation.
1.2 Motivation and Design Challenge

As described in sub-section 1.1, the suitable solution of ECC processor to provide
hardware efficiency against SCAs has not so far appeared. In our work, not only the per-
formance but also the practical applications are taken into consideration. For instance,
the speed is a key factor for server computing. But the RFID device and portable appli-
cations are targeted at the requirements of low power and low cost. These would bring
a big difficulty to the hardware designer due to the trade-off between speed and cost for
current design approaches.

The following are to list the items about our design target:

1. Low SCA-resistant overhead of speed, cost, power and no modification of circuit

design flow
2. Performance improvement from delivering a new hardware architecture
3. Compliance with current standards, such as IEEE P1363 and IEEE 802.15.4/6
4. A high-speed ECC design for the cloud computing

5. An energy-efficient and cost-effectiveness ECC design for the portable applications



1.3 Owur Solution
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Figure 1.5: Our top-to-down design methods of SCA-resistant ECC processor.

Figure 1.5 briefly illustrates our proposed solution for the design objective. In the
upper-level view, we try to randomize the processed data and schedule the operation tasks
in the key-independent manner for breaking the dependence on attacking model. The
noticeable things are that these methods would not bring much modification for both of the
hardware architecture and circuit design flow, and little overhead is added to the protected
design. For hardware components, the high-radix and heterogeneous processing element
architecture is used to accelerate the modular operations with utilization improvement
as compared to the conventional approaches. The reconfigurable computing is exploited
by arithmetic unit integration for the reduction of hardware complexity. Besides, for the
multiple processing element design, memory hierarchy is adopted to address the data
bandwidth with benefits in power saving. Finally, we use circuit-level design techniques
to improve the randomization ability of random number generator (RNG) in which the

robustness against SCAs is achieved.
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1.4 Dissertation Organization

The remainder of this dissertation is outlined as follows. Chapter 2 reviews the basics
of PKC and arithmetic of ECC over finite field. Chapter 3 presents the principle and
evaluation of various SCAs on ECC processor. Our proposed countermeasure of SCAs and
hardware design of random source are introduced in Chapter 4 and Chapter 5, respectively.
For the proposed processing elements, operation scheduling, parallel computation, and
memory architecture of ECC processor, they are given in Chapter 6. Chapter 7 shows the
implementation and experiment results of our ECC processor with performance analysis
and power measurement. Finally, Chapter 8 concludes our work and gives several new

research targets for the future as well.
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Chapter 2

An Overview of Cryptographic
Algorithms

2.1 Public-Key Cryptosystems (PKC)

Public-key cryptosystems (PKC) refer to a cryptographic system requiring two sepa-
rate keys, one of which is secret and one of which is public. Although different, the two
parts of the key pair are mathematically linked. One key locks or encrypts the plaintext,
and the other unlocks or decrypts the ciphertext. Neither key can perform both functions
by itself. The public key may be published without compromising security, while the
private key must not be revealed to anyone not authorized to read the messages.

PKC use asymmetric-key algorithms and can also be referred to by the more generic

7

term “asymmetric-key encryption.” The algorithms used for PKC are based on mathe-
matical relationships that presumably have no efficient solution. The most notable ones
being the integer factorization and discrete logarithm problem (DLP). Although it is com-
putationally easy for the intended recipient to generate the public and private keys, to
decrypt the message using the private key, and easy for the sender to encrypt the mes-
sage using the public key, it is extremely difficult or effectively impossible for anyone to
derive the private key, based only on their knowledge of the public key. This is why,
unlike symmetric-key algorithms, a public-key algorithm does not require a secure initial

exchange of one or more secret keys between the sender and receiver. The use of these

algorithms also allows the authenticity of a message to be checked by creating a digital
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signature of the message using the private key, which can then be verified by using the
public key. In practice, only a hash of the message is typically encrypted for signature
verification purposes.

There are three primary kinds of PKC: public-key distribution systems, digital signa-
ture systems, and public-key cryptosystems, which can perform both public key distri-
bution and digital signature services. Diffie-Hellman key (DHK) exchange is the most
widely used public-key distribution system, while the digital signature algorithm (DSA)
is the most widely used digital signature system.

For the history of PKC, the pioneering paper by Diffie and Hellman [60] presented an
approach to cryptography and challenged cryptologists to come up with a cryptographic
algorithm that met the requirements for public-key systems. The first achievable method
is the RSA [4]. It is a block cipher in which the plaintext and ciphertext are integers
between 0 and n — 1 for some n. Plaintext is encrypted in blocks, with each block having
a binary value less than some number n. A typical size for n is 1024 bits or 309 decimal
digits. The following are the brief description of the RSA algorithm.

For some plaintext block M and ciphertext block C', encryption and decryption of
RSA are of the following form.

C'=M°¢ (mod n)
M=C? (modn)= (M (modn)=M (modn).

Both sender and receiver must know the value of n. The sender knows the value of e,
and only the receiver knows the value of d. Thus, this is a public-key encryption algorithm
with a public key of PU = {e,n} and a private key of PR = {d,n}. For this algorithm

to be satisfactory for public-key encryption, the following requirements must be met.
1. Tt is possible to find values of e, d, n such that M® (mod n) = M for all M < n.

2. It is relatively easy to calculate M€ (mod n) and C¢ (mod n) for all values of M <

n.
3. It is infeasible to determine d given e and n.

The preceding relationship holds if e and d are multiplicative inverses modulo ¢(n),

where ¢(n) is the Euler’s totient function. For p, ¢ prime, ¢(pq) = (p — 1) x (¢ —1). The

13



relationship between e and d can be expressed as ed (mod ¢(n)) = 1. This is equivalent
to saying ed = 1 (mod ¢(n)) and d = e~ (mod ¢(n)). That is, e and d are multiplicative
inverses (mod ¢(n)). Note that, according to the rules of modular arithmetic, this is true
only if d (and e) is relatively prime to ¢(n) (i.e., ged(p(n),d) = 1).

We are now ready to state the RSA scheme. The ingredients are the following.
e p, ¢ two prime numbers (private, chosen)

e n = pq (public, calculated)

e ¢, with ged(¢p(n),e) =1 and 1 < e < ¢(n) (public, chosen)

e d=ec! (mod ¢(n)) (private, calculated)

The private key consists of {d,n} and the public key consists of {e,n}. Suppose that
user Alice has published her public key and that user Bob wishes to send the message
M to Alice. Then Bob calculates C' = M*¢ (mod n) and transmits C'. On receipt of this
ciphertext, user Alice decrypts by calculating M = C? (mod n).

For the security of RSA, there are three approaches to attacking RSA mathematically.

1. Factor n into its two prime factors. This enables calculation of ¢(n) = (p—q)x(g—1),

which, in turn, enables determination of d = e~ (mod ¢(n)).

2. Determine ¢(n) directly, without first determining p and ¢. Again, this enables

determination of d = e~! (mod ¢(n)).
3. Determine d directly, without first determining ¢(n).

Most discussions of the cryptanalysis of RSA have focused on the task of factoring n
into its two prime factors. Determining ¢(n) given n is equivalent to factoring n. With
presently known algorithms, determining d given e and n appears to be at least as time-
consuming as the factoring problem [61]. Thus, we can use factoring performance as a
benchmark against which to evaluate the security of RSA.

For the size of n, a number of other constraints have been suggested by researchers.
To avoid values of n that may be factored more easily, the algorithm’s inventors suggest

the following constraints on p and gq.
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1. p and ¢ should differ in length by only a few digits. Thus, for a 1024-bit key, both
p and ¢ should be on the order of magnitude of 107 to 10'%°.

2. Both (p — 1) and (¢ — 1) should contain a large prime factor.
3. ged(p — 1,q — 1) should be small.

The key size of 1024 bits was generally considered the minimum necessary for the RSA
encryption algorithm. However, it would result in high complexity of hardware cost and
time execution. Figure 2.1 shows the comparison of security strengths for ECC versus
RSA. It is shown that the key size of ECC can be several tens of times shorter than that
of RSA with equivalent security. This also means that the user has convenience in using

the shorter key by ECC approach.

ECC o _‘_512:1‘5350

1 . RSA - 384:7680

256:3072
‘ 224:2048 | 1

01024 gy B
80 112 128 192 256

Security Level (Bit)

-
@)

o

o o

Key Size (K-Bit)

Figure 2.1: Security comparison of ECC versus RSA.
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2.2 Arithmetic of Elliptic Curve Cryptography (ECC)
over GF(p) and GF(2™)

As described in IEEE P1363 [7], the standardized elliptic curve (EC) over GF(p) is
y* = 2° + apr + by, where z,y € GF(p) and 4a} + 2702 # 0 (mod p), and the other
one over GF(2™) is y? + xy = 2° + ap2® + by with z,y € GF(2™) and b, # 0. For the
ECC schemes, the discrete logarithm problem (DLP) is based on the elliptic curve scalar
multiplication (ECSM) such that KP = P+ P+---+ P with an integer private key K and
a point P(z,y) on EC. The ECSM is applied in ECC as a means of producing a trapdoor
function. Thus the security of ECC depends on the intractability of determining K from
(Q = K P given known values of () and P. The fundamental theorem of arithmetic about
ECC is described in the guide books [62,63].

For implementation, the ECSM is the most time-critical operation, and it can be
achieved by the serial EC point addition and doubling (ECPA and ECPD) with binary
method. Note that the ECPA is to perform P3(Ps,, Ps,) < Pi(P1,, P1,) + Po(P,, P,)
with P, # +P, and the ECPD calculates P5(Ps,, P3,) < 2P (Py,, P,) with P, # —P;.
The dual-field (DF) arithmetic of ECPA and ECPD in affine coordinates is summarized
in Table 2.1, where the EC point subtraction (ECPS) can be achieved by performing the
ECPA with modification of coordinate values such as P(x,y) — —P(z, —y) over GF(p)
and P(z,y) — —P(z,z + y) over GF(2™).

Table 2.1: Formulas of EC Point Calculation (ECPC) in Affine Coordinates

Field ECPA ECPD
P, —P, _ 3PE +ap
)\ - Plz—Pzz )\ - 21P1y
GF(p) Py, =N =P, — P, Py, =\ 2P,
P, = MNPy, — P3,) — Py, P, = MNP, — P3,) — P,
P y+P Y o P
)‘:Pinerz )‘_le+%
GF2m) | Py, =N+ A+ P, + P, +a Py =X 4 A+a
Py, = \NP, + P3,) + P5, + P, | P35, = APy, + P3,) + P3, + P,
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The ECPC can be implemented in several coordinate systems, where the computa-
tional complexity analysis can be referred to [64] and [22]. The major operations of ECPC
over both GF(p) and GF(2™) are summarized in Table 2.2, where the notation of MD,
MM, and MS represents the modular division, multiplication, and squaring, respectively.
Note that the GF(2™) MS with a fixed irreducible polynomial [34] can be performed
within relative fewer cycles than those of the MD and MM, but the fixed irreducible poly-
nomial method restricts the flexibility and results in the low security. Since our work is
targeted at supporting the arbitrary irreducible polynomial, the MS is regarded as the
MM with the same multiplier and multiplicand. From comparison Table 2.2, it can be
found that as the time ratio % is smaller than 3, the ECSM performance is the fastest in

the affine coordinates over DFs. Otherwise, the computation time is less in the projective

coordinates.
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Table 2.2: Operations for ECPC over DFs in Various Coordinates

Field ECPC Modular Operations
A<+ 2A IMD + 1MM + 2MS
SP «+ 2SP TMM + 5MS
ECPD J+—2J AMM + 6MS
I 200 4MM + 4MS
Jo < 2Jc 5MM + 6MS
A—A+A IMD + 1IMM + 1MS
GF(p) SP < SP + SP 12MM + 2MS
J—J+J 12MM + 4MS
I — I + I 13MM + 6MS
ECPA
Jo = Jo + Jc 11MM + 3MS
J= i A 8MM + 3MS
Jn <~ JIm + A 9MM + 5MS
Jo+Jc+A 8MM + 3MS
A+ 2A IMD + 1MM + 1MS
ECPD LD« 2LD 4AMM + 1MS
LD,, < 2LD,, 5MM + 1MS *
GF(2™)
A—A+A IMD + 1IMM + 1MS
ECPA LD+ LD+ LD 2MM + 4MS
LD,, - LDy, + LDy, 2MM + 3MS

A:affine, SP:standard projective, J:Jacobian, J;,:modified Jacobian,

Jo: Chudnovsky Jacobian, LD:Loépez-Dahab, LD,,:modified Lépez-Dahab.

* The respective coordinates z are unequal values.
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2.3 Specifications for Applications

2.3.1 1IEEE P1363

The standard IEEE P1363 [7] with its extension version [8] specify several prim-
itives based on ECC to achieve the cryptographic schemes. For the key agreement
schemes, the primitives include elliptic curve secret value derivation primitive Diffie-
Hellman (ECSVDP-DH) [5,6, 65] and elliptic curve secret value derivation primitive
Menezes-Qu-Vanstone (ECSVDP-MQV) [66]. For the signature schemes with appendix,
the primitives include elliptic curve signature primitive Nyberg-Rueppel (ECSP-NR) [5,6,
67) and elliptic curve signature primitive digital signature algorithm (ECSP-DSA) [5,6,68].
In addition, elliptic curve integrated encryption scheme (ECIES) [69] is adopted to im-

plement encryption and decryption.

2.3.2 IEEE 802.15.4/6

As specified in the IEEE 802.15.4 [9], the symmetric-key cryptographic algorithm
uses block cipher AES [3] with three operation modes; that is, counter (CTR), ci-
pher block chaining message authentication code (CBC-MAC), and CTR with CBC-MAC
(CCM) [70]. Also, it is applied to conduct the security schemes involving with encryp-
tion, authentication, and message integrity, respectively. In addition to two AES operation
modes, cipher-based message authentication code (CMAC) [71] and CCM exerted in IEEE
802.15.6 [10], an asymmetric-key cryptographic algorithm based on ECC [7] is adopted to
achieve the message exchange with Diffie-Hellman key (DHK) agreement [65] on an open

channel.

AES algorithm

As described in [3], the AES cipher processes a 128-bit plaintext block with either 128,
192, or 256-bit secret key to generate a 128-bit ciphertext block. The design with larger
key size provides higher security level but it has more processed cycles. A round is the
basic transformation function in AES algorithm, and the number of rounds for one AES
encryption depends on the key size. Key sizes 128, 192, and 256-bit refer to 10, 12, and 14

rounds respectively for single 128-bit input message. The round function consists of four
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basic transformations: SubByte, ShiftRow, MixColumn, and AddRoundKey, except for the
last round, which is without MixColumn. The KeySchedule algorithm expends the secret
key in a word-oriented fashion, and it generates a 128-bit round key every round to add
the state value by a simple bit-wise exclusive-OR operation in AddRoundKey, where the

state value is a 16 8-bit temporary data for AES round calculation.

Encryption, authentication, and message integrity

Figure 2.2(a) and Figure 2.2(b) show the AES schemes including encryption (or de-
cryption), authentication, and message integrity by using CTR, CBC-MAC/CMAC, and
CCM modes, respectively. In the CTR mode, the plaintext is encrypted by performing
bit-wise exclusive-OR. logic operator with a block-stream ciphertext, which is produced
from the AES output by feeding in a block message consists of nonce and counter. Note
that the data flow of decryption in CTR mode is the similar with that of encryption.
For the CBC-MAC and CMAC modes, a message integrity code (MIC) is produced by
a chain reaction of AES encryption for detecting any tampering in the plaintext. For
achieving the message integrity scheme (i.e., authenticated encryption), the CCM mode

is efficiently implemented by a combined operation of CTR and CBC-MAC modes.

Message exchange with DHK agreement

Figure 2.3 shows the procedure before message exchange between two parties commu-
nicating over an insecure channel based on well-known DHK agreement [65]. Address A
and Address B represent the media access control address of Alice and Bob, respectively,
and security suite indicates the security level of cipher function. Note that both of the
public-key generation and DHK agreement can be achieved by performing the ECSM
from a selected private key. As communicating in an open channel, the delivered message
is encrypted and decrypted by using the AES CCM mode based on a master key (MK),

which is refreshed and activated when a new party is joining in the network.
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Figure 2.2: The data flow of each AES mode, where the nonce and initial vector

(IV) are an arbitrary number and secrete value, respectively. The functional notation

MSBrjen/LSBrien denotes the most /least significant Tlen bits of the data, and Tlen/Clen

is the bit length of the MIC/ciphertext.
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Figure 2.3: Message can be securely sent based on MK to a specific party by using
both of asymmetric and symmetric-key algorithm without pre-knowledge encryption and

decryption keys.
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Chapter 3

Side-Channel Attacks (SCAs)

Modern security systems apply the cryptographic algorithms to provide confidentiality,
integrity, and authenticity of data, where the cryptographic algorithms are mathematical
functions that usually take two input parameters, including message (also called plain-
text) and a cryptographic key. The cryptographic algorithms map these parameters to
an output, called ciphertext, and this process is regarded as the encryption. In current
cryptography, the cryptographic algorithms are assumed to be known, which means that
all details about the cryptographic algorithms are publicly available and only the crypto-
graphic key is kept secret. This notion can be traced back to Auguste Kerckhoffs [72], who
was a Dutch cryptographer of the 19th century, and the concept is famous as “Kerckhofts’
principle”.

Breaking a cryptographic algorithm typically means that finding the secret key is
based on some public information, such as instance pairs of plaintexts and ciphertexts.
A cryptographic algorithm is considered to be secure in practice if there are no attacks
known that can break it within a reasonable amount of time and with a reasonable amount
of computing power. Many algorithms are designed such that the effort of breaking them
grows significantly or exponentially with the number of bits of the key. Consequently, the
length of the key is an important factor in the security of a cryptographic algorithm.

Crypto engines are the electronic devices, such as an application-specified integrated
circuit (ASIC), field-programmable gate array (FPGA), or microprocessor, that imple-
ment cryptographic algorithms using the keys stored on them. The fact that crypto

engines are used to accelerate the cryptographic algorithms, while this leads to a new
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issue for the practical security of the algorithms. In practice, not only the security of
the cryptographic algorithm should be taken into concern. The security of the whole
system, i.e. the crypto engine that implements the cryptographic algorithms, needs to be
considered. Breaking a crypto engine means extracting the key of the device. A person
who tries to extract the key of a crypto engine in an unauthorized way is the attacker,
and then any attempt to extract the key in an unauthorized way is viewed as an attack.
In order to evaluate the security of a crypto engine, it is necessary to make assumptions
about the knowledge that an attacker has about it. The strongest assumption is that the
attacker is assumed to know the details of the crypto engines.

In recent years, several kinds of attacks on crypto engines have become public. Side-
channel attacks (SCAs) are the attacks based on information leakage obtained from the
physical implementation of cryptosystems, rather than brute force or theoretical weak-
nesses in the algorithms. In Figure 3.1, for example, the timing information, power
consumption, electromagnetic leaks or even sound can provide an extra source of infor-
mation, which can be exploited to break the system. Among of them, the power-analysis
attacks, initially presented by Kocher [51], have received such a large amount of attention
because they are very powerful and because they can be conducted relatively easily. The
basic idea of this kind of attacks is to reveal the key of a crypto engine by analyzing
its power consumption. The variation of power consumption is directly to reflect the
difference of key-dependent processed data, where the total power consumption Py, of
a cell is the sum of static power P, and dynamic power Pgy, as shown in Figure 3.2.
Consequently, the power-analysis attacks pose a serious threat to the security of crypto
engines in practice.

In this dissertation, we have tried our best to investigate the state-of-the-art ap-
proaches of power-analysis attacks. They include the simple power-analysis (SPA) at-
tacks [51], differential power-analysis (DPA) attacks [73], zero-value power-analysis (ZPA)
attacks [74], and collision power-analysis (CPA) attacks [75]. The concepts of them are
described in the following sub-sections, and we also show the successful attacks of the
power measurement conducted on the devices. Figure 3.3(a) and Figure 3.3(b) show our
power-analysis verification environment of the chip, where it is powered by an ECC crypto

engine fabricated by UMC 90-nm CMOS technology.
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For a quick preview, the ECC processor is targeted at accelerating the elliptic curve
scalar multiplication (ECSM) K P, where K is the private key and P is the point on
elliptic curve. Thus the object of power-analysis attacks on ECC processor is to extract
the private key K by the measured power traces of ECSM calculation. Since P is usually
public, it is reasonable to assume that the attacker has the information about P, and the

attacker can control or inject any input values of P as possible.
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3.1 Simple Power-Analysis (SPA) Attacks

Simple power-analysis (SPA) is the technique that involves directly interpreting power
measurement collected during cryptographic operations. In other words, the attacker tries
to derive the key more or less directly from a given power trace. The SPA attacks are
useful in practice if only one or very few power traces are available for a given set of inputs.
In the attacked device, the key must have a significant impact on the power consumption,
otherwise the effectiveness of SPA attacks is reduced by the noise.

Algorithm 1 shows the conventional ECSM by the left-to-right double-and-add (LR-
DA) binary method [17]. With this approach, there is a branch in Step 4, where the
ECPA depends on the value of i-th bit position of the key K. It means that the execution
time of ECSM is correlated to the hamming weight of the key, and then the SPA attacks

become a threat to reveal the key value through recording power traces over time.

Algorithm 1 LR-DA ECSM
Input: K and P

Output: KP
1: Let Qg+ 0

2: For i from m — 1 to 0 do

3: Qo < 2Qo

4: If K; =1then Q<+ Qo+ P
5: Return @

Figure 3.4 shows the power traces for different hamming weight of the key over time
obtained from an unprotected ECC chip performing LR-DA ECSM in Algorithm 1, where
the hamming weight of the key is denoted by H(K'). As the chip is processing, it consumes
1.79 mW at 10 MHz, which results in a voltage drop above 50 mV across the measured
resistor. From these waveforms, the key value in the chip using LR-DA ECSM can
be distinguished by visual inspections because the processing time is dependent on the
hamming weight of the key.

As shown in Algorithm 2, the left-to-right double-and-add-always (LR-DAA) ECSM
performing the uniformed ECPC in each iteration can resist the SPA attacks [22], but

it averagely requires 50% ECPA operation overhead. In sub-section 4.3, we present our
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Figure 3.4: SPA attacks on the unprotected ECC chip using LR-DA binary method
of ECSM, where the power traces are recorded by 50.0 mV/div voltage resolution and

2.0 ms/div time base.
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new method which not only resists the SPA attacks but also has more efficiency in the

overhead of computing ECSM.

Algorithm 2 LR-DAA ECSM
Input: K and P

Output: KP
. Let QQ<—0,Q1<—P

—_

2: For ¢ from m — 1 to 0 do

3: Qo < 2Qo

4: Q1+ Qo+ P
5: Qo < Wk,

6: Return Qg
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3.2 Differential Power-Analysis (DPA) Attacks

In contrast to SPA attacks, differential power-analysis (DPA) attacks exploit a large
number of power traces to analyze the power consumption at a fixed moment of time
as a function of the processed data. In general, even though the execution time is inde-
pendent on the key value or the noise dominates the device power, the DPA attacks can
be conducted on the SPA-resistant crypto engine to extract private information as any
key-dependent power still exists. In SPA attacks, the power consumption of a device is
mainly analyzed along the time axis. The attacker tries to find patterns or tries to match
templates in a single trace. In case of DPA attacks, the shape of the traces along the
time axis is not so important. The DPA attacks evaluate how the power consumption at
a specific sampling time depends on the processed data. Hence, the DPA attacks focus
exclusively on the data dependency of the power traces.

The strategy to apply DPA attacks on crypto engine has four steps.

1. Choosing a key-dependent intermediate result of the executed algorithm.
2. Measuring the reference power consumption to build the power model.

3. Measuring the target power consumption.

4. Comparing the correlation between the target and reference power traces.

For example, to attack the SPA-resistant ECC processor using Algorithm 2, the scenario
is shown in Figure 3.5. The intermediate values of ECPD in Steps 3 depend on the zero
and non-zero bits of the key value in Step 5. Hence, with a chosen point P, the key value
can be distinguished by matching the power trace segment of ECPD calculation.

In Figure 3.6, the correlation coefficients between the target traces and power model
for all possible hamming distances of the point coordinate (Qy in Algorithm 2 are plotted
over power traces, and those of the correct and incorrect key hypothesis are plotted in
black and gray, respectively. In this case, as more than ten thousand power traces are
used, the correlation value of the correct key is the highest one among that of all the other
key hypotheses, and then the bit value of key can be found easily. As a result, by this
approach, an overall 160 to 521-bit key of ECC device can be extracted within hundreds

experiments.
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Figure 3.5: DPA attacks on an ECC device.
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Hiding technique with algorithm-independent dedicated circuit is a common approach
to protect crypto engines from attackers collecting the key-dependent characteristics of
power traces. In [76], wave dynamic differential logic (WDDL) circuit with regular rout-
ing algorithm is exploited to equalize the current between rising and falling transitions.
However, more than 200% overhead in area, performance, and power consumption is
added to the unprotected crypto engines due to precharging for half cycle, and gener-
ating complementary logic outputs from divided single ended modules with equivalent
power consumption. Switched capacitor [77] is able to isolate the encryption core from
the external power supplies, but this approach results in 50% speed loss for replenishing
charge every cycle. In order to avoid the throughput degradation, a countermeasure cir-
cuit using digital controlled ring oscillators [78] is designed outside of the critical path.
The concept is to generate random noise power to dominate the power consumption of
arithmetic unit, and then, the correlation peak would not be found even matching the cor-
rect key value. However, this demands extra 100% power overhead for the key-dependent
processing element.

At the algorithm level, masking the processed data independent of power consumption
is another approach to avoid the DPA attacks. For the ECC schemes, since the scalar
K of ECPC is periodic with the point order #FE, a key-blinded technique proposed by
Coron [79] can be adopted to change the key value by adding « - #FE for every ECSM
calculation such as KP = (K + a - #E)P, where « is a random integer. However,
with this method, the throughput overhead is inevitable due to extending the key length.
In [38], the ECSM of 521-bit key extended with a 32-bit random value needs 10% more
execution time to be carried out than that of the unprotected approach. Another DPA
countermeasure also presented in [79] is to mask the primary base point with the pre-
computed random points M and N = KM. Then the ECSM is achieved by computing
K(P + M) = KP'" and subtracting N before returning such that KP' — N = KP. For
every next ECSM calculation, the random points M and N are refreshed by performing
M <+ (=1)P2M and N <« (—1)?2N with a single random bit 4. But the time-cost random
elliptic curve point generation (ECPG) is not suitable for real-time applications as the
EC parameters are various with different users. In [80], the EC isomorphism method can

randomize the primary base point by simple finite field operations without pre-computing
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random points. However, it is limited to be applied in single finite field GF(p).

In sub-section 4.1, we present our method against the DPA attacks, and it has benefits
in the overhead of the hardware cost, speed, and even the power consumption. Also, our
DPA-resistant approach is suitable for DF implementation and standard applications

without any pre-computation.
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3.3 Zero-Value Power-Analysis (ZPA) Attacks

Zero-value power-analysis (ZPA) attacks generalize the refined power-analysis (RPA)
attacks presented by Goubin [81], where the RPA attacks focus on the analysis of the
existence of zero-value for the coordinates of point P in ECSM calculation, such as (z,0)
and (0,y). In contrast, the ZPA attacks exploit any key-dependent information of zero-
value in device calculation. Even if a point has no zero-value point coordinates, the
temporary registers or processing elements might take zero-value. A large amount of
transition to zero-value in transistor results in a large variation of power consumption
due to charging or discharging current. These attacks are available because the point in
ECC scheme is usually public. Thus the attacker can control the primary base point P,
and then let the chip perform ECSM as usual.

Both of the ZPA and RPA attacks can still extract the key value of the SPA and
DPA-resistant device. The unified or double-and-add-always ECSM such as Algorithm 2
and the randomized techniques including random projective coordinates [79], randomized
EC isomorphism [80], randomized field isomorphism [80] cannot avoid the key-dependent
zero-value. Thus a unified countermeasure of SCAs is necessary.

After applying the correlation analysis, Figure 3.7 shows a successful ZPA attack on an
unprotected ECC device, where the correlation value of correct and incorrect hypothesis
is plotted in black and gray color, respectively. The correlation value of the correct key
is the highest one among that of all the other key hypotheses as the zero-value happens,
and then the bit value of key can be revealed. As the attacker intends to collect more
information of the key value, then the primary base point P can be changed and apply
the ZPA attacks during ECSM calculation until disclosing the overall bit value of the key.

To protect the ZPA attacks, the randomized base point technique [79] can be applied
for eliminating the correlation between point coordinates and key value, and it also de-
feats the fault attacks by injecting low order point [74]. In sub-section 4.2, we present an
efficient method to generate the random EC points. Besides, our corresponding imple-

mentation architecture is described in sub-section 6.1 and sub-section 6.3.
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3.4 Collision Power-Analysis (CPA) Attacks

Collision power-analysis (CPA) attacks use a pre-decided pair of messages (or primary
inputs) to generate the key-dependent collisions between their power traces at arbitrary
time frames. In ECC scheme, the successful CPA attacks can be conducted to reveal
the key value as even the conventional SPA-resistant LR-DAA ECSM in Algorithm 2 is
adopted. By injecting a pair of primary input points P and 2P, the attacker is able to
classify the bit value of private key K from matching the power segment waveforms of
ECPD operations.

To formally illustrate the CPA attacks on the design using LR-DAA ECSM, the j-th

ECPD operations for input points P and 2P are given as follows:

2<2( o (2(2(2P + Km—2P) + Km—3P) + Km—4p> + - ) + Km—(j—l)P)

and

2(2(- - (2(2(2(2P) + Km—2(2P)) + Kin—3(2P)) + Kn-a(2P)) + - - ) + K51y (2P)),

respectively. According to these formulations, if the bit K,,_(;_1) is zero value, then the
(7 — 1)-th ECPD for the case of input point 2P is the same as the j-th ECPD with input
point P. On the other hand, if the value of K,,,_(;_1) is non-zero, the ECPD operations are
different due to the ECPA calculation. An example of the CPA attacks for Algorithm 2
is shown in Figure 3.8. As a result, the zero bits and non-zero bits of key value can be
distinguished from collisions and non-collisions by comparing the correlation of ECPD

power traces.

Input Point ECPC K= 1 0 0 1 0 1 1
. ECPD Q= 0 2P (4P) (8P) 18P GB6P 74P
ECPA Q= P 3P 5P 9P 19P 37P 75P

ECPD Q= O

5 @ @ 16P @ 72P  148P

ECPA Q= 2P 6P 10P 18P 38P 74P 150P

Figure 3.8: Example of the CPA attacks for the LR-DAA ECSM.

From the experiment results for unprotected ECC device shown in Figure 3.9, the cor-

relation analysis shows that there are high dependence and independence between the zero
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and non-zero bit value of key due to collision and non-collision operations, respectively.
The correlation coefficients of the power traces related to the zero and non-zero bits of
the key are drawn in circle and star, respectively. The mean of correlation coefficients
for zero and non-zero bits is over 0.8 and near 0 due to the key-dependent collisions and
non-collisions, respectively. Note that the bit value of the key can be distinguished from
a difference of at least 0.4 in correlation coefficients.

To protect the CPA attacks, the right-to-left double-and-add-always (RL-DAA) binary
method of ECSM in Algorithm 3 can be applied for eliminating the key-dependent ECPD.
However, Algorithm 3 prevents the private key from being revealed by detecting the
difference among ECPD operations with specific primary input points, the read-after-
write scheduling hazard inherently exists in ECPC. The ECPA @y, < Qo, , + Qo, , for
i-th iteration in Step 3 can only be processed after finishing the ECPD @, | < 2Q), ,
for previous iteration in Step 4. This operand dependency results in a long latency for
idling through parallel computations. In sub-section 4.3, we present a new method to
explore the parallelism of Algorithm 3. Besides, our corresponding operation scheduling

to improve the hardware utilization is described in sub-section 6.2.

Algorithm 3 RL-DAA ECSM
Input: K and P

Output: KP
1: Let Qo+ 0,Q1 < 0,Q9 < P

2: For ¢ from 0 to m — 1 do

3: Q1 < Qo+ Q2
4: Q2 202

5: Qo < Qk,

6: Return @
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Chapter 4

Proposed Countermeasure of SCAs

4.1 Randomized Montgomery Operations

The fundamental concept of DPA countermeasure is to break the dependency between
intermediate values and power traces. For achieving the ECPC, the well-known Mont-
gomery algorithm [37] is usually adopted to perform the field arithmetic in a specific
domain such that A =a -7 (mod p), where a is in the integer domain and r = 2™ is the
Montgomery constant with m-bit field length. In this work, we introduce an approach to
resist the DPA attacks at modular algorithm by calculating the operands in a randomized
Montgomery domain A = a -2* (mod p), where it is also a kind of random field auto-
morphism. The domain value A equals the Hamming weight of an n-bit random value
a, and it is represented by A = H(«). Note that n is the maximum field length and the
bit values of (a,_1,@y_2, ..., Q) are set to zero for preventing A from exceeding m. By
exploiting this approach, the intermediate values can be masked because they are various
with different domain values such as 29 (mod p) # 2" (mod p) when 0 < g # h < m.
The definition of overall randomized Montgomery operations for input operands X = z-2*
(mod p) and Y =y - 2* (mod p) is summarized in Table 4.1.

An example of the randomized Montgomery operations with modulus 7 is shown in
Figure 4.1. As A = 0, the elements 1 to 6 is aligned as the same as those in the integer
domain. As A\ = 1, the elements (1,2,3,4,5,6) with A = 0 are mapped to the elements
(2,4,6,1,3,5). Similarly, as A = 2, the elements (1,2, 3,4,5,6) with A = 0 are mapped to

the elements (4, 1,5,2,6,3). These mean that the processed data can be randomized by
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the proposed approach.

Table 4.1: Operations in Randomized Montgomery Domain

Operation Arithmetic

Randomized Montgomery multiplication (RMM) | RMM(X,Y) =z -y -2* (mod p)

Randomized Montgomery division (RMD) RMD(X,Y)=z-y~'-2* (mod p)
Randomized addition (RADD) RADD(X,Y) = (z +y)-2* (mod p)
Randomized subtraction (RSUB) RSUB(X,Y) = (z —y) - 2* (mod p)

N
I
o

N
1
N

S
]
—
—
N
w
N
(@)
(@))

Figure 4.1: Example of randomized Montgomery operations.

4.1.1 Randomized Montgomery Multiplication (RMM)

Algorithm 4 shows our proposed randomized Montgomery multiplication (RMM) which
contains two operating steps in every iteration to change the intermediate domain value
A, and these steps are determined by the i-th bit of random value «. If a;; = 1, the domain
value of output operand R decreases by one in Step 4 such as R = w (mod p); the
domain value remains the same as ; = 0 in Step 5 such as R = R+ V- S (mod p). The
initial values of operands (V, R, S) are set to be (X,0,Y"). In further iterative calculation,
the bit value Vj is equal to the i-th bit value of X since V' = %, and the operand S doubles

its value as a; = 0. Based on these, the functionality can be derived as follows:
e For 1-st iteration, the intermediate result of R is (Xy-Y) 27 (mod p).
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e For 2-nd iteration, R becomes ((Xg-Y)-27% (mod p) + X; - (217H@0) . y)) . 27
(mod p).

e Until m-th iteration, the final result of R is (- (((Xo-Y)-27% (mod p) + X; -
(217 ¥)) - 27 (amod p) + Xy - (22O - Y)) 970 (mod p) 4 X -
(2m—1-H(am—2.e1,00) . Y)) . 27@m-1 (mod p)
= (X,-Y-27H@m-1-00)) (mod p)+ (X, Y -27H@m—1m00)1) (mod p)+- -+ ( Xy -
Y - 27H@m1m00)tm=1y (;oq p)
=X .Y .2 Hen-1.00) (mqod p)
=X-Y -2 (mod p).

Hence, the RMM in Algorithm 4 can be performed in m iterations, the same as those in

conventional radix-2 Montgomery multiplication [38].

Algorithm 4 Proposed radix-2 RMM
Input: X,Y,p, and «

Output: R =RMM(X,Y)
L Let V=X R=0,S=Y

2: For 7 from 0 to m — 1 do
33 R=R+Vy-S (modp),V=2=X
4: If a;=1then R=£ (mod p)

5. else S =25 (mod p)
6: Return R

Algorithm 5 shows a radix-4 approach to Algorithm 4 for almost 50% iteration reduc-
tion. The domain value of R is determined by the Hamming weight of two continuous
bits of random value a in Steps 5, 6, and 7. For the case of H(awii1, an;) = 2, it is reduced
by two through performing quartering operation such as R = ’f (mod p). While halving
R and doubling S operations are performed as H(agiy1, ani) = 1, these are deduced by
computing one iteration of radix-2 Montgomery reduction and one iteration of radix-2
modular reduction in single period. For the rest case of H(aug;iy1, ;) = 0, the operand

S =4S (mod p) is performed due to the unchanged domain value of R.
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Algorithm 5 Proposed radix-4 RMM
Input: X,Y,p, and «

Output: R = RMM(X,Y)
L LetV=X,R=0,S=Y
2: For ¢ from 0 to (%W —1do
33 If m (mod2)=1andi=[2]—1then R=R+V,-S (modp), V=
4 else R=R+Vy-S+V;-25 (modp), V=21
5. If (Qgis1,a9) = (1,1) then R =% (mod p)
6:  else if (a1, ) = (1,0) or (0,1) then R =% (mod p), S =25 (mod p)
7. else S =4S (mod p)

8: Return R

0|

4.1.2 Randomized Montgomery Division (RMD)

To achieve the division in Montgomery domain, Kaliski [82] first proposed an iterative
algorithm which needs m ~ 2m iterations of successive reduction, 0 ~ m iterations for
degree recovery (reduce intermediate domain value A to be m as A’ > m), and two addi-
tional Montgomery multiplications with a final modular reduction p — R. The algorithm

presented in [82] is formulated from the identical equations as follows:

Y-R=-U-2" (mod p)
Y-S=V-2¥ (mod p).

Based on Kaliski’s method, we derive a new randomized Montgomery division (RMD)
which is described in Algorithm 6. To directly achieve the division operation without
additional multiplication and final modular reduction, our method is to modify the initial
values of (U, V,R,S) to be (p,Y,0,X) in Step 1 and the RS data path with modular
subtraction in Steps 10, 11, 13, 14. Then the identities become

X1 Y-R=U-2" (mod p)
X1.Y.S=V-2" (mod p).
Similar to RMM, the RS data path between the Montgomery domain and integer domain

is determined by the i-th bit value of a. The domain value of operands R and S increases

by one as o; = 1 and remains the same as a; = 0.
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Algorithm 6 Proposed radix-2 RMD

Input: X,Y,p, and «
Output: R = RMD(X,Y)

1 Let U=p,V=Y,R=0,S=X

2: While (V > 0) do

3:  If Uis even then U = %

4: If a; =1 then S =2S (mod p)
5: else R =% (mod p)

6: else if V is even then V = %
7: If a; =1 then R =2R (mod p)

8: else S =% (mod p)

9: else ifU>VthenU:%
10: If a;=1then R=R— S (mod p), S=2S (mod p)
11: else R = £52 (mod p)
12 else V = %
13: If a;=1then S=S5—R (mod p), R=2R (mod p)
14: else S = 2% (mod p)
15: Ifi<mtheni=17+1
16: Return R
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For further reducing the degree recovery phase, the RS data path turns into dividing
values by two in Steps 5, 8, 11, 14 to keep the intermediate domain value in A = H(«) as

1 = m. Thus the identities in Algorithm 6 are given as follows:

X1 Y-R=U-2" (mod p)

X 1.y.S=V-2" (mod p)
X1.Y.-R=U-2" (mod p)
X1.y.S=V-2* (mod p).

If i < m,then

else

Before the last iteration, both U and V are 1 because the initial values of U and V
are relatively prime. Then after finishing the iterative operations in Step 2, the values of
(U,V,R,S) become (1,0, X -Y~1.2* (mod p),0). As a result, the proposed randomized
division algorithm requires at most 2m iterations of successive reduction. Table 4.2 shows
the expected operation time and the comparison with related works on modifying radix-2
Montgomery division algorithm. With randomization capability, Algorithm 6 will also

benefit the hardware design owing to the low latency.

Table 4.2: Analysis of Various Division Algorithms

Algorithm 6 TCAS-T'06 [17] | ESSCIRC’10 [38]
Iteration Time m ~ 2m m ~ 2m m ~ 3m
Multiplication 0 2~3 0
Domain Random 2*, 0 < A <m Fixed 2™ Fixed 2™

Algorithm 7 shows the radix-4 RMD derived from Algorithm 6, and there are more
branches in the algorithm as the radix becomes lager. To remain the domain value of R
unpredictable in the flexible range of [0, m — 1), it is determined by the Hamming weight
of random value «; or (a1, ;). The values of UV are reduced to at least % except
U=1 (mod4), V=3 (mod4)orU=3 (mod4), V=1 (mod4)in Steps 17 and 18.
With this approach and the radix-4 RMM given in Algorithm 5, the ECPC can be carried
out faster in affine coordinates than that in projective coordinates, where the iteration

time ratio £ = 1.32 over GF(p) and 1.44 over GF(2™).
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Algorithm 7 Proposed radix-4 RMD

Input: X,Y,p, and «

Output: R = RMD(X,Y)

1. Let U=p,V=Y,R=0,S=X,1=0
2: While (V > 0) do

3: c=U (mod4),d=V (mod 4),t =2

4: If i=m —1then R=2R (mod p),S =25 (mod p),t =1

5: else if c=0then U =Y, 5 =4S (mod p)

6: else if d =0 then V =Y R=4R (mod p)

7: else if ¢ = d then

8: If U >V then U = ,R=R— S (mod p),S =4S (mod p)

9: else V = ,S=S5—R (mod p), R=4R (mod p)

10: else if ¢ =2 then

11: IfQ>VthenU—2 , R=R—2S (mod p), S =4S (mod p)

12: else V = 2U, =LY, 5=25— R (mod p), R =2R (mod p)

13: else if d =2 then

14: If U>Ythen U="Z V=Y R=2R— S (modp),S =25 (mod p)
15: else V = 2 , S=S5—2R (mod p), R=4R (mod p)

16: else

17: If U >V then U = ,R=R—S (mod p),S =25 (mod p),t =1
18: else V = ,S=S5—R (mod p), R=2R (mod p),t =1

19: If i <m then

20: If i=m—1ort=1then

21: If a;=1then R=R (mod p),S =S (mod p)

22: else R=24 (mod p),S =2 (mod p)

23: else

24: If (ir1,06) = (1,1) then R= R (mod p),S =S (mod p)

25: else if (a,-+1,a,-) = (1,0) or (0,1) then R=£ (mod p),S =2 (mod p)
26: else R=2% (mod p),S =2 (mod p)

27: t=1+t1

28: else R= £ (mod p), S =2 (mod p)

29: Return R
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4.1.3 Domain Conversion

Since the primary inputs of EC coefficient and points are in integer domain, the
domain conversion of field automorphic function v can be performed by the proposed
RMD operation such that RMD(a, 1) = a2* (mod p). On the other hand, to return the
point coordinates in integer domain, the RMM can be exploited to perform v~! such as
RMM(a2*,1) = a (mod p). For calculating one ECSM in affine coordinates, the overhead
of domain conversion is three RMD and two RMM operations as shown in Figure 4.2,
where both of them can be performed by the divisor and multiplier to avoid any pre-

computation from host system.

Integer domain to randomized Randomized Montgomery
Montgomery domain domain to integer domain
(Input: P=(e, fland a |t E =RMD(e, 1) »  g=RMM(G, 1)
L] L]
F = RMD(f, 1) ECSM: KQ h = RMM(H, 1)
L]
A =RMD(a, 1) v
| ) [ Output: KP=(g, h) j
Q=(E, F)

Figure 4.2: The domain conversion can be achieved in pre/post-process stage, where this

overhead of several modular operations can be neglected for overall ECSM.
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4.2 Elliptic Curve Point Generation (ECPG)

Figure 4.3 shows the approach of generating a random EC point over DFs. For GF(p),
the first step is to initialize the non-zero coordinate value of x. The Jacobi symbol (JS)
can be applied to check whether the square root of ¢ = 2® +ax +b (mod p) exists or not,

where JS(2) represents the JS, defined for all integers a and all odd primes p by

a
p

0if a=0 (mod p)

a
JS(];) =4 +1if a#0 (mod p) and for some integer x,a = x?(modp)

—1 if there is no such z.

The JS can be performed by an iterative algorithm described in IEEE P1363. Algorithm 8
is our proposed high radix approach of JS, which has 34% iteration reduction as compared
with the radix-2 JS in IEEE P1363. As the square root of ¢ exists, the coordinate value
of y is the square root of ¢ with a positive or negative value. For GF(2™), after the
initialization of the non-zero coordinate value of x, the next step is to compute the square
root of z, where z°+z = 3 (mod p(z)) with § = % (mod p(z)). And then, the coordinate
value of y is equal to (z + p)z (mod p(z)) with random 1-bit p.

Figure 4.4 shows the methods of computing a square root over DFs. The computation
complexity is dominated by the exponentiation in Step 2.2 (or Step 4.2) over GF(p)
and Step 2.2 (or Step 3) over GF(2™). The computation time is proportional to the
field length of m. To improve the performance of hardware implementation, we adopt a

parallel computing approach, which is described in sub-section 6.3 with more details.
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GF(p)
1. Choose a random x UGF(p) <+

v

g=x+ax+b

2. Compute JS( )
p

y=1

3. Compute square root r, where

z1

r* = g(mod p)
Y
4. Return (x, y =(-1)*r(mod p)),

where [/ is a random single bit

GF(2")
1. Choose a random x [JGF'(2™)

2. Let ¢ =x’ +ax’ + b(mod p(x))

v

3. Compute square root z, where z° + z =

B(mod p(x)), with B =-L(mod p(x))
X

4. Return (x, y =(z + f)x(mod p(x))),

where // is a random single bit

Figure 4.3: Generating a random EC point over DFs.

GF(p)
=1 l. Compute _ 1

GF(2™)
—o 1. Compute _

r p(mod4) _l lim(m0d2) —l

2.1. Lett =1 2.2. Compute 21 Letr=1 2.2. Compute z =
Lﬂ 2 4
r=gq* (modp) B+B +B° +-
+° (mod p(x)
\/ ,
= - =0 3. Compute
ﬁ_l 3. Compute JS(qt 4) wf() , P )
h A p L z; =z, +w_, B(mod p(x))
4.1. Choose ¢ £1 4. Choose W, = w?, +1(mod p(x))
a random 4.2. Compute a random :
1GF(p) r=V. (gt -2.0) (G2 )for i from1tom—1
t =V,.(qt" -2, m
L & w#0

5. Return » 5. Return z

Figure 4.4: Computing a square root over DFs.
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Algorithm 8 Proposed radix-4 JS algorithm

Input: a € GF(p) and p
Output: JS(¢) € {£1,0}

a
p

1: Let U=p,V=0aT=1
2: While (V > 0) do

3:

4:

5:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

If V (mod 4) =0 then V =¥
else if U (mod 4) =V (mod 4) then
If U >V then
If U=V (mod4)=3thenT =-T
SWAP(U, V),V = X4
else V = %
else if V' (mod 2) =0 then
If U (mod 8) =3 or5thenT = —-T
V-4
else
If U >V then
If U=V (mod4) =3 then T =-T
SWAP(U,V)
If U (mod 8) =3 or 5 then T = —-T

_V-U
V= 2

else

If U (mod 8) =3 or 5 then T = —-T

21: If U =1 then Return T

22: else Return 0
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4.3 Right-to-Left Binary Method of Double-and-Add-
Always Elliptic Curve Scalar Multiplication (RL-
DAA ECSM)

Although Algorithm 3 in sub-section 3.4 prevents the private key from being revealed
by detecting the difference among ECPD operations with specific primary input points,
the read-after-write scheduling hazard inherently exists in ECPC. The ECPA @, +
Qo,_, + Q)o,_, for i-th iteration in Step 3 can only be processed after finishing the ECPD
2, , < 2Q), , for previous iteration in Step 4. This operand dependency results in a
long latency for idling through parallel computations. For exploring parallelism in ECSM
calculation, Algorithm 9 shows the reformulation of Algorithm 3. By using a temporary
point Q)r to store the values of point ()9, , before starting the i-th ECPD, the iterative
ECPC @, < 2Q), , in Step 4 and @y, < Qo, , + Qr, = Qo, , + @2, , in Step 5 can be
computed into two parallel threads, where the field operations of ECPC are regarded as

the tasks.

Algorithm 9 Modified RL-DAA ECSM
Input: K and P

Output: KP
1I: Let Qr < 0,Q0+ 0,Q1 + 0,Q2+ P

2: For 7 from 0 to m — 1 do

3: Qr + Q2
4: Q2 < 2Q
5: Q1< Qo+ Qr
6: Qo < Ok,

7. Return Q)

A design method for accelerating Algorithm 9 by parallel computations is to exploit
two duplicated PEs of homogeneous architecture, and each PE specifically performs the
ECPD in Step 4 or ECPA in Step 5. With this approach, the overall execution time
in each iteration of processing GF(p) and GF(2™) ECSM is dominated by the ECPD

operations. The homogeneous architecture using two identical PEs can outperform the
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single PE design nearly two times in speed, but the hardware complexity increases double
as well.

The computation time of distinct field operations is different such as Tyip > Ty >>
Tapp, Tsus, where Tyvp, Tviv, Tapp, Tsus represent the computation time of modular
division (MD), multiplication (MM), addition (ADD), and subtraction (SUB). The PE
can be simplified since the MD is not necessary to be processed all the time. In this work,
we introduce a heterogeneous architecture including a powerful Galois field arithmetic unit
(GFAU) and a synergistic multiplier-adder /subtractor (MAS) to speed up the ECSM with
lower hardware complexity than that of two-GFAU design using two duplicated GFAU
accelerators. The GFAU supports the overall field operations, and its detailed circuit unit

design is described in sub-section 6.1.
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Chapter 5

Proposed Design of True-Random
Number Generator (TRNG)

As described in sub-section 4.1 and sub-section 4.2, to achieve the randomized compu-
tation, the random number sequence is necessarily required. For hardware implementa-
tion, the pseudo-random number generator (PRNG) is the most frequently implemented
in circuit because the designer can adopt several given deterministic functions [83]. How-
ever, there are design issues for pseudo-random sequence used in protection against power-
analysis attacks. It is that the attacker can still predict the side-channel information by
applying system reset [84]. Thus, to avoid using predictable sequence for randomization, a
true-random number generator (TRNG) without initially deterministic state is necessary
for crypto-1Cs.

To produce the true-random sequence, we implement the ring-oscillator-based random
number generator (RO-RNG) [85-87]. It exploits the metastability and cycle-to-cycle time
jitter in free running ring oscillators and sampling clock, respectively. An elementary
RO-RNG is shown in Figure 5.1. Another benefit of RO-RNG is that it is suitable for
integration on single chip. But the design problem is that, in actual implementation,
the jitter of sampling clock is not sufficiently large for wide range of bit sequence. Then
the sampled output sequence would not have much randomness or fail some patterns in
the NIST random test, NIST P800-22 [88]. To give a more robust resistance against
side-channel attacks, we proposed a new design method of TRNG, where the sampled

output sequence passes all patterns in NIST P800-22, and the experiment results in sub-

o4



section 7.2.2 show that the key value of ECC chip cannot be extracted with millions of

measurements.

5 Gl 10101101001...

-
T Random Sequence

| |
| |
R I | | S rCLK

samping 4 LT LT LI LI LT 5 7>r

Clock

RO

Figure 5.1: RO-RNG circuit, where the frequency of ring oscillator (RO), f; is faster than

that of sampling clock, fs.
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5.1 Delay Chain of Jitter Amplifier

Our proposed method for improving the randomness is to amplify the jitter of sampling
clock [89], where the jitter amplifier is designed between the primary sampling clock and
flip-flop. Figure 5.2 shows the RO-RNG with jitter amplifier. The concept is shown as
Figure 5.3, where the gray and white color regions are the 1 (high-logic) and 0 (low-logic)
sequence over time, respectively. The regions hatched with slash lines are the probability
of sampled sequence. If there is a bias for the random normal distribution of clock jitter,
the area under probability density function curve between 1 and 0 samples is unequal.
However, without changing the characteristic function of the distribution for clock jitter,
the probability for sampling 1 and 0 values can be balanced by sampling more bit sequence

during the cycle period.

RO »D  Qle—» 10101101001...

: : J]m“wﬁ Random Sequence
S e S

S Sk Jitter CLK
mEEEE - B
Sampling VARVIEg

Clock

A

Figure 5.2: RO-RNG with jitter amplifier.

Figure 5.3: Random normal distribution of clock jitter for the sampled sequence.

An analog frequency divider which amplifies the sampling clock jitter is conventionally
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used [90]. However, this approach results in degraded throughput from decreasing the
sampling rate. Thus, it is not a decent design of real-time and high-throughput encryption
which is in high demand for security applications. For addressing this, we proposed a new
all-digital design of jitter amplifier by utilizing a delay chain with a random configuration
scheme of delay time to increase the jitter uncertainty scale. Because the sampling source
of flip-flop is just buffered from the system clock, the output sequence can be generated
without the penalty of operating frequency.

Figure 5.4 illustrates the design for amplifying the jitter of input oscillating signal
SC IN by using a delay chain with configurable delay time, where the control signal RAN
is to select the rise/fall time of the delay cells. The unit jitter of output oscillating signal
SC OUT can be enlarged by changing an operation mode from fast mode to slow mode
through immediately varying the RAN control signals every clock period. To randomly
scale the jitter further, a linear feedback shift register (LFSR) is exploited, and the RAN
control signals are fed from the output of distinct registers. Figure 5.5 depicts the imple-
mented control signal generator, where the bit value (seed) stored in temporary register is
real-time randomly refreshed by the sampling output bitstream with a Galois-type LFSR.
The delay chain is designed so that each delay t; can be changed by RAN from fastest
delay t4 to slowest delay t4s, where 4 < t45. Besides, to change the scaling of t4, every

delay cell can have different delay time in fast mode and slow mode.
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Figure 5.4: Proposed method to amplify jitter with configurable delay cell.
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» N

RANx RAN.1 RAN; RAN;

f(x) = fxr + fqxm1 + ..+ fix" + fy, where fo = f, = 1

Figure 5.5: On-the-fly generation of control signals based on the LFSR.

5.2 Configurable Interlaced Hysteresis Delay Cell (CI-
HDC)

To achieve a long delay time on unit cell without large power dissipation, an inter-
laced hysteresis delay cell (IHDC) [91] which functions as a buffer is exploited, and its
schematic is shown in Figure 5.6. One IHDC consists of two serial inverters realized by
eight MOS transistors (P-MOS transistors P1 ~ P4 and N-MOS transistors N1 ~ N4) for
its basic functionality with four bypass transistors (A, B, C, D) for charge redistribution.
It generates propagation delay signal from IN to OUT by charging/discharging cascaded
transistors through cross wiring of each gate node to the drain node. Functionality is as
follows: As IN charged to be logic high, transistor N1 switches on and then discharge its
drain to be logic low. This turns transistor P3 on, charging its drain to be logic high
with the gate of transistor N2. Then transistor N2 discharges the node INTERM and
turns transistor P4 on, which charges the node OUT to be logic high. Hence the IHDC
achieves a time-delay mechanism. Another case for that IN is charged to be power ground
is deduced as the similar way, where the transistor delay sequence is P1 = N3 = P2 =
N4. These chain reactions throughout the cell contain the charging/discharging of four
transistor gates; thus further on there will be referred to it as four transistor delays. Be-
sides, for changing the delay path, the node INTERM can be pre-charged by a switch
implemented with pass-transistor logic circuit. The switch circuit, shown in Figure 5.7,
is controlled by the RAN signal. The fact that the switch creates three transistor delays
can be seen as follows: As the RAN signal is logic low, the P-MOS pass-transistor S4
switches on. At the same time as IN is in logic high, S4 propagates the high value to
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open transistor S6. After that, node INTERM is discharged to be power ground and
then the gate of transistor P4 turns to be opening. Because the drain node of transistor
P3 is charged to be logic high only after discharging transistor N1, a logic high value is
immediately propagated to node OUT. The switch has two transistor delays and turns
one transistor on/off in the IHDC. Therefore, this pre-charging technique for configuring
delay time makes it one transistor delay faster than that in regular operation. The overall
functionality of proposed delay cell is summarized in Table 5.1, and the propagated delay
waveform shown in Figure 5.8 is simulated by HSPICE using the UMC 90-nm CMOS
process. Since the majestic peak power caused from short-circuit current is prevented be-
fore turning on the last transistor during delay period, the proposed configurable IHDC
(CIHDC) saves 93% average power as compared to the standard unit delay cell with same
transistor sizing. Another benefit is that the hardware cost can be improved by achieving

various delay time on single circuit unit without using the multiplexer to select different

delay path.
Table 5.1: Functionality of CIHDC
IN RAN | OUT Delay Sequence Transistor Delay
0—1 0 0—1 5S4 = S6 = P4 3
0—1 1 0—1|Nl=P3=N2= P4 4
1—-0 1 1—0 S1 = S3 = N4 3
1—=20 0 1=-0|Pl=N3=P2= N4 4
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Figure 5.7: On-off switch circuit.
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Figure 5.8: The transition waveform of CIHDC, where one CIHDC can increase jitter by

several tens of picosecond at rising and falling edge.
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5.3 Ring-Oscillator-Based TRNG with Jitter Ampli-
fier

The proposed RO-RNG was fabricated by 90-nm UMC 1P9M CMOS process, and its
chip photo is shown in Figure 5.9, where the feedback polynomials of Fibonacci RO, Galois
RO, and LFSR are 2 + 284210+ 25 4+ 23 4 22 4 oS 4ot 422 41, 2?20+ 27+ 210427+
22422 +1, and 232+ 27 + 28422 +1, respectively. To efficiently avoid the bias of individual
bits, 0 and 1, induced by metastability in ROs, the final random output sequence is post-
processed by reusing the LFSR with simple logic operator @ @& (RANy; V RAN;). The
delay chain for amplifying jitter consists of 32 three-level CIHDCs and occupies 903 pm?,
and the total area of the RO-RNG is 1,935 um?. The schematic of three-level IHDC is
shown in Figure 5.10 with its switch circuit shown in Figure 5.11. The physical layout
of one three-level CIHDC with 11.2 x 2.25 = 28.224um? area is shown in Figure 5.12.
Note that another RO-RNG without jitter amplifier is integrated into this test chip, and
the recorded random bitstream of ten one-million-bit sequences is verified by the NIST
randomness tests, NIST P800-22 [88], where the significance level « is chosen to be the
default of 0.01 (99% confidence). From measurement results, 115 Mbits/sec 0.76 mW
throughput without degradation is achieved. The RNG without jitter amplification failed
4 tests of NIST test suite including non-overlapping template matching, approximate

entropy, random excursions, and random excursions variant. Contrarily, all tests are

passed in the NIST test suite due to the proposed jitter amplifier.

i B EREEER

Figure 5.9: The die photo, where D1 and D2 are the RO-RNG with and without jitter

amplifier, respectively.
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Figure 5.11: On-off switch circuit of 3-level IHDC.
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Figure 5.12: Layout of 3-level CIHDC.
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Chapter 6

Proposed Architecture of Dual-Field
ECC (DF-ECC) Processor

/\

ECC Control —
W d
Address Decoder ’r( Sequencer ]
8 I(Operation Scheduler)
% ’—|> Key Shift LT L(Memow Management)
-E —
0 PEs
>
m Memory D ID ] - D]
Block - ®1  Arithmetic Units

V4

Figure 6.1: Block diagram of our DF-ECC processor.

Figure 6.1 shows the overall block diagram of our proposed dual-field ECC (DF-ECC)
processor. The user-specific commands are decoded by the address decoder from the

predetermined address. The DF-ECC processor supports a variety of functions such as
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modular operations, Jacobi symbol, ECPC (ECPA, ECPS, ECPD, ECSM), and ECPG
required in the ECC schemes over GF'(p) and GF(2™). The ECC control combines the
sequencer, operation scheduler, and memory management. Due to the binary method of
ECSM calculation, the key is scanned and shifted by 1-bit precision. To efficiently handle
the transmission of intermediate values, a memory block separated from the register in
PEs is used. For the secure implementation, users are prohibited from read access to the
intermediate values and the private key.

The sequencer shown in Figure 6.2 has a four-level hierarchical structure. The highest
level, Level 4, executes the ECC schemes. Level 3 supports the calculation of ECSM and
ECPG. The sequencer at Level 2 provides the basic ECPC of ECPA, ECPS, and ECPD,
and the function of half trace (HT') over GF'(2™) and Lucas sequence (LS) over GF(p) for
ECPG. Level 1 supports the low-level functions such as the basic (Montgomery) modular
operations and Jacobi symbol. Our architecture has a clearly separated control structure,

and it is easy to design and modify the logic and it has high flexibility for functional

extensions.
Level 4 ECC Schemes
Y ) \
Level 3 ECSM ECPG
Y ) Y \ Y

Level 2 ECPA (ECPS) ECPD HT LS

Yy Vv ¢ v ¢ v v ¢ Yy v Y
Level 1 RMM RMD RADD RSUB JS

Figure 6.2: Hierarchy implementation of ECC schemes.
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6.1 Jacobi Symbol and Galois Field Arithmetic Unit
(JS-GFAU)

6.1.1 Fully-Pipelining Scheme

As the iterative operations shown in Algorithm 7 are performed within one cycle, the
critical path is to calculate the results of operands R or S, which consists of the UV
comparison with modular operations. The time-critical comparison operations such as
Uu>1V, % >V, U > % in Steps 8, 11, 14 achieved by subtraction are nearly equal to an
addition delay. Since the results of operands R, S are irrelevant to the results of operands
U or V, a fully-pipeline stage is inserted between the UV and RS data path to reduce
the critical path delay. Figure 6.3(a) and Figure 6.3(b) illustrate the hardware behavior
of the pipelining scheme. After initialization, the UV data path is determined at the
first cycle. Then the next cycle is to set the values of operands R, S and simultaneously
determine the second case of UV comparison. The following cycles can be deduced from
this approach until V' = 0. Although an additional cycle is needed after pipelining, this

is negligible as the division takes hundreds of cycles.

6.1.2 Programmable Data Path of Modular Reduction with Lad-

der Selection

To calculate the operands within finite filed set over GF(p) in Algorithm 5, Algo-
rithm 7, and Algorithm 8, a low-level parallel architecture with 2’s complement number
system is exploited. The values of all operands are bounded by the interval [0, p). For
instance, as processing the modular reduction of S =45 (mod p), the 45 can be achieved
by bitwise shifting operand S' left two bits, and the result is needed to be bounded in the
interval [0, p). To achieve this, the arithmetic functions fs,, =4S — 3p, fs,, = 45 — 2p,
fs,s =4S —p, and fg, = 45 are carried out simultaneously, while the correct value is
sequentially determined with a ladder selection by checking the signed bit. The arithmetic
functions substrated by different multiple modulus are carried out simultaneously, while
the correct value is sequentially determined with a ladder selection [58] by checking the

signed bit: if fg, is positive, then S = fg ; else if fg, is positive, then S = fg ,; else if
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Figure 6.3: (a) Data path separation of UV comparison and RS calculation. (b) The
fully-pipelining scheme of hardware implementation for the proposed radix-4 RMD in

Algorithm 7.
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s, 1s positive, then S = fq .; else S = fg ,. These multiple modular operations in the
iterative calculation can be effectively implemented by using a programmable data path
of bit-level architecture, which consists of the carry-save adders with a carry-lookahead

adder at the last stage [38].

6.1.3 Modular Halving, Quartering by Bitwise Shifting

In Algorithm 7, the halving and quartering of the UV data path can be easily achieved
by shifting right one and two bit positions because the least significant one and two
bits of intermediate values are definitely zero. However, the least significant bit values
of operands R and S are undetermined in the iterative calculation. Here, we use the
modulus p to on-the-fly fix the least significant one and two bits of R, S to be zero.
To simplify the illustration, the intermediate value of R, S is denoted as X, where the
subscribed means the bit position in binary representation. For calculating the modular
halving operation % (mod p), it is achieved by performing (X + Xy - p) >> 1 since the
prime p must be an odd value. For the modular quartering operation % (mod p), it is
conducted by performing the following calculation: if (X7, Xo) = (0,0), X is shifted right
two bit positions; if (X1, Xo) = (1,0), (X —2p) >> 2 is performed; if (X, Xo) = (1,1) or
(0,1), and there are two sub-cases. As the least significant two bits of X — p are (1,0),
(X —3p) >> 2 is performed because —p; is the complement value of —3p;. On the other
hand, it is achieved by (X — p) >> 2. As a result, the overall modular halving and
quartering operations in Algorithm 5, Algorithm 7, and Algorithm 8 can be implemented

by bitwise shifting with simple logic gates without time-cost modular division.

6.1.4 Arithmetic Unit Integration

To map the multiple modular operations in Algorithm 7 into hardware unit without
using distinct circuit components and without a quite complex multiplexer of operand
selection, symmetric operations such as =2 (mod p) and 5% (mod p) can be executed
by using the same computational unit with a swap logic circuit. In Algorithm 7, the RS
data path within Step 4 to Step 18 is classified into two groups: the first group includes
Steps 6, 9, 12, 15, and 18; the second one consists of the remainder. The two operands R

and S are switched to each other as the processing group is different from the group in
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previous cycle. Furthermore, since the ECPC and ECPG are the computation of serial
field operations, both of the temporary registers and modular operations in Algorithm 5,
Algorithm 7, and Algorithm 8 can be reused.

Figure 6.4 shows the detailed architecture of Galois field arithmetic unit (GFAU),
where it supports the radix-4 RMM in Algorithm 5, radix-4 RMD in Algorithm 7, and
modular addition, subtraction over DFs. Without pipelining, the delay path is equal to
(1) + (2) + (3) + (5) over GF(p) and (1) + (2) + (4) + (5) over GF(2™). The delay
path (1) can be eliminated due to the fully-pipeline stage of data path separation, so that
the RS select signal is delayed one cycle from the UV select signal. Besides, the swap
logic circuit can be implemented by an exclusive-OR, logic operator to change the input
operands of RS data path as the previous and current swap signals have inverse values.
After arithmetic processing, the ladder selection is to pick out the value belonging to
the finite field set. Note that the MAS is implemented by similar design approach with
less hardware complexity than that of GFAU, and the circuit components of MAS are
depicted in gray color in Figure 6.4.

In comparison with the previous works on GF'(pas6) field arithmetic unit in [92] and
93], we also implement our processing elements (PEs) using the identical field length by
the same FPGA family. Table 6.1 gives the performance results. Due to pipelined and
highly integrated architecture, our design has benefits in the area-time (AT) product and

outperforms others at least two times in the hardware speed.
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Figure 6.4: The overall DF modular operations are integrated into a fully-pipelined GFAU.
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Table 6.1: Implementation Results of GF(pess) GFAU and MAS on Xilinx Virtex-1I
FPGA Device with Comparison

Area Multiplication Division
f (MHz)
(Slices) Time (us/Op.) | AT | Time (us/Op.) | AT
(93] 5,477 14 18.28 1 43.89 1
[92] 5,379 34 7.53 0.40 13.55 0.30
Our GFAU | 9,213 37 3.46 0.29 4.98 0.18
Our MAS 4,843 37 3.46 0.13 - -

AT product = area x time.

6.2 Heterogeneous Processing Elements (PEs) and
Priority-Oriented Scheduling

To further ensure that the PEs are utilized as much as possible, the priority-oriented
scheduling which queues higher priority task before lower priority task is exploited [94].
Algorithm 10 is our proposed operation scheduling for the modified RL-DAA ECSM in
Algorithm 9, and it has two stages. The first stage in Step 1 is to configure the tasks
with higher priority based on larger computation time. At the second stage in a loop of
Step 4, the current task is processed as the capable PEs are available. Otherwise, when
the current task is pushed into the instruction FIFO (first-in-first-out), it will be issued as
the GFAU is available in Step 9. The task and thread counter are refreshed in Step 10 to
Step 13 after checking thread dependence. By this interleaved processing approach, the
PEs can cooperate with each other to carry out the ECSM for utilization improvement.

Figure 6.5(a) and Figure 6.5(b) illustrate the major operations of ECPC by Algo-
rithm 3 and Algorithm 9 with priority-oriented scheduling, respectively. In these figures,
the horizontal direction is the hardware behavior and the vertical direction is the timing.
Also, the block in gray color signifies the idle execution. As adopting Algorithm 3, even
though the last two multiplications of (i —1)-th ECPD can be performed by the MAS, the
tasks of i-th ECPA still have to wait to be issued until generating the coordinates of 20,
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Algorithm 10 Proposed priority-oriented scheduling

1: Prioritize tasks:

MD is high priority
MM is medium priority
ADD and SUB are low priority

2: Create ECPD and ECPA to be a thread individually

3: Initialize task and thread counter:

u=1,L=1

4: While (L <m) do

5:

6:

10:

11:

12:

13:

Get u™ task in L™ thread
If (task priority < high) then
Assign task on PE
else
If (PE ID is GFAU) then
Assign task on PE
else / x Interleaved Processing * /
Push task into FIFO, exchange PE ID,
and then wait until GFAU is available
If (u'h task is the last task) then
If (L™ thread is independent of all L + 1*® threads) then
u=1,L=L+1

else
Wait until all parallel L™ threads are done,
u=1,L=L+1
else
u=u+1

14: ECSM is done
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in previous iteration. On the other hand, with Algorithm 9, the GFAU can immediately

start calculation as the value of 2Q)s, , is stored before i-th ECPA. For the average execu-

tion time at one bit of key value, the interleaved processing shown in Figure 6.5(a) needs
1Typ + 4Ty over GF(p) and 1Typ +4Tvm over GF(2™). In respect of the case shown in
Figure 6.5(b), it takes 17yp + 37wm over GF(p) and 4Ty over GF(2™). Therefore, the
modified RL-DAA binary method of ECSM calculation with our proposed architecture
and operation scheduling has fewer idle operations and more advantages in the hardware

utilization than those of conventional RL-DAA approach, where the detailed operation

flow of Figure 6.5(b) is described in sub-section 7.1.
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Figure 6.5: The priority-oriented scheduling for (a) conventional RL-DAA ECSM and (b)
modified RL-DAA ECSM, where the solid line is the ECPD operation flow and the dash
line is the ECPA operation flow.
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6.3 Parallel Computation of Elliptic Curve Point Gen-
eration (ECPG)

Table 6.2 shows our parallel computation of Step 2.2 and Step 4.2 in Figure 4.4 over
GF(p). There are two cases determined by value of p (mod 4). For a field element
a € GF(p) and an integer e with valid length [, as p (mod 4) = 3, it simply computes the
modular exponentiation a¢ (mod p) by iterative multiplications. The computation time is
I MM operations. On the other hand, as p (mod 4) = 1, it performs the Lucas sequence
(LS) Vi(a,1) which is modified by Miiller [95]. The LS can be similarly achieved by
iterative modular operations of multiplication followed by subtraction. The computation
time is [ MM —+ [ SUB operations. These iterative operations can be implemented by the
heterogeneous two-PE architecture described in sub-section 6.2. For GF(2™), similarly,
the method of parallel computation of Step 2.2 (z = HT(/3)) and Step 3 in Figure 4.4 is
shown in Table 6.3. The computation time requires (2 MM + ADD) and m(2 MM +
ADD) operations for Step 2.2 and Step 3 in Figure 4.4, respectively.

For GF(p), assume that the rate of JS value in Step 2 of Figure 4.3 and Step 3 of
Figure 4.4 is denoted by fjs. The executed operations of computing ECPG over GF(p)

in average is

7 (3MM + 2ADD + JS) +
JS=1

-

Step 2 in Figure 4.3

{5 mMM +§[st¢1 (2MM + SUB + JS) + mMM + mSUB |} .

Step 2.2 in Figure 4.4 - ~  Step 4.2 in Figure 4.4
Step 3 in Figure 4.4

Step 3 in Figure 4.3

On the other hand, for GF'(2™), assume that the rate of w value in Step 3 of Figure 4.4
is denoted by f,. The executed operations of computing ECPG over GF(2™) in average
is

3MM + 2ADD +

—_————

Step 2 in Figure 4.3

1 1
{[Z5(2MM + ADD)] + - [—m(2MM + ADD)]} .
2 N ~ - 2 \fw;ﬁO -
Step 2.2 in Figure 4.4 Step 3 in Figure 4.4

(. J/

~
Step 3 in Figure 4.3
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Table 6.2: Architecture for Parallel Computing G F(p) Square Roots

Input: e = Z;ZO ej2),a € GF(p), and p

af (mod p)
Output:
Ve(a, 1) € GF(p)
a? (mod p) - —
L Ry=a, R = ylo = yh =
a? — 2 (mod p) a 2

2. For i from!—1to0do
/* JS-GFAU */ /* MAS */

2.1.a. MM(Ry, R, Res)  2.1.b. MM(R,,, R.,, R.,)

2.2.a. 2.2.b.
SUB(Re;, to, Re;) SUB(R.,,t1, Re,)
Ry

3. Return
Ry
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Table 6.3: Architecture for Parallel Computing GF'(2™) Square Roots

Input: 5 € GF(2™), , and m
t

Output: z and

w
3 _ _
1. Ry= Ry = o= B, t1 =
0 t t
m=1
2. For i from 1 to 2 do
m—1
/% JS-GFAU */ /¥ MAS */
2.1.a. MM(Ry, Ry, Ro) 2.1b. 4

(

MM(Ry, Ry, Ry)
2.2.a. 2.2b. —

>
ADD(Ry, to, Ro) -
2.3.a. 2.3.b.
ADD(Ry, R, Ro) ADD(Ry, t1, Ry)

Ry
3. Return R, and

Ry
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6.4 Memory Hierarchy with Local Memory Coher-
ence

The memory bandwidth is also a critical factor of system performance for the inter-
leaved processing within various PEs; thus, we design a hierarchical memory architecture
shown in Figure 6.6 with a local memory synchronization scheme to reduce the memory
access time. Note that a w-bit register buffer is used to avoid the intrinsic latency of
reading data from SRAM, where w is the data width of shared memory. For arbitrary
field length m, one data transition between the PEs and MEM needs Tygy = (%w +1
cycles. The on-demand registers, implemented by using the D-type flip-flops, are the
local memory for PEs to perform arithmetic without fetching instantly used data from
the shared memory every time. To ensure the data consistency, the memory management

strategy is as follows:

e Write Back: As the data are predicted to be used in the same PE only for next
calculation such as the intermediate values for iterative calculation of MD, MM and

ADD, SUB, they are saved into the on-demand registers.

o Write Through: The data are written into both of the on-demand registers and
shared memory when they are predicted to be used for further calculation, such as

the values of EC slope A and point coordinates (z,y).

e Local Memory Synchronization: As the task for interleaved processing in Algo-

rithm 10 is issued, the data in on-demand registers are exchanged between PEs.

Figure 6.7(a) and Figure 6.7(b) give an example to show that the data bandwidth is
improved by applying the local memory synchronization scheme. The data in the local
memory of GFAU and MAS have to be exchanged as the sequences MOV GFAU(R reg)
to MAS(S reg) and MOV MAS(R reg) to GFAU(S reg) are performed. Without local
memory synchronization as shown in Figure 6.7(a), the data in R reg of MAS and GFAU
are written through to MEM such as GFAU (R reg) — MEMx and MAS (R reg) — MEMy;
then the data are serially fetched from MEM to GFAU and MAS such as MEMx — MAS
(Sreg) and MEMy — GFAU (S reg). Contrarily, by exploiting the scheme of local memory

synchronization, the exchanged data between processing elements can be achieved in one
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Figure 6.6: Two-level memory hierarchy for heterogeneous two-PE architecture.
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data transition such as GFAU (R reg) — MAS (S reg) and MAS (R reg) — GFAU (S reg)
as shown in Figure 6.7(b). Compared with a shift-register based memory architecture [38]
leading to a large amount of active circuit, our proposed hierarchical memory architecture

with local memory synchronization scheme gains an average of 14.2% of power reduction.
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4 data transitions

Write Write
_________ —< Through Through Fetch >< Fetch >-______________"

GFAU(Rreg) MAS(R reg) MEMx to MEMy to
to MEMXx to MEMy MAS(Sreg) GFAU(S reg)

1 data transition

1. GFAU(R reg) 2. MAS(R reg)
to MAS(S reg) to GFAU(S reg)

(b)

Figure 6.7: Example of data access sequences MOV GFAU(R reg) to MAS(S reg) and MOV
MAS(R reg) to GFAU(S reg) (a) without (b) with local memory synchronization scheme.

The data transitions through MEM for interleaved processing in (a) can be eliminated in

(b).
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Chapter 7

Implementation and Experiment

Results

7.1 Performance Analysis

Figure 7.1 shows the explicit scheduling of our proposed parallel computation scheme.
To effectively align the data transitions during processing ECSM, the atomic block is split
into several stages over GF(p) and GF(2™). In Algorithm 9, the coordinates of @)y are
zero until finishing the first iteration including the initial step. Thus the ECPA operation
Q1 = Qo + Qr can be simply achieved by moving the value of Q7 to that of ;. Stages
IS1, IS2, IS3 over GF'(p) and Stages IS1, IS2 over GF'(2™) are the initial stages to process
the operations as Qo = 0. Stages I, I, IIT over GF'(p) and Stages I, IT over GF(2™) are
the operating stages between interleaved processing for the iterative ECSM calculation as
Qo # 0. In Figure 7.1, the computation in Stages IS1, IS2, IS3 over GF(p) and Stages
IS1, IS2 over GF(2™) are similar to that in Stages II, 111, T over GF'(p) and Stages II, T
over GF'(2™) except disabling the ECPA operations, respectively.

On the basis of the cycle analysis results of MD, MM, ADD, SUB operations, and
data transitions, the execution time for the proposed heterogeneous architecture using
priority-oriented scheduling can be computed. Table 7.1 gives the operation time among

distinct operating stages, and the execution time of one ECSM over DF's for a valid key
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Figure 7.1: Detailed data flow for the proposed priority-oriented scheduling of ECSM
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length Lk is summarized as follows:

4

GF(p) : Tppre + Tpmx + 2(Tpas1 + Tpas2) + Tpuss + (L — 1) T, s1+
(L —2)(Ty 52 + Ty s3) + Tpuk + Ty post

GF(2™) : Typre + Dok + 2Ty 181 + Thise + (Lx — 1)Th 1+

(Lx — 2)Ty 52 + Ty ux + Thpost-

0
Note that, with radix-4 approaches, Ty = 0.5m, Typ = 0.66m, Tapp = Tsus = 1,
Tyviem = ]_%-‘ + 1 with w-bit data width of shared memory. For one 160-bit ECSM, the
overhead of the masking and unmasking primary point is 0.80%, and the overhead of the
pre-processing and post-processing is 0.72%.

To compare the different design methods under the consideration of power-analysis
resistance, the post-layout simulations of ECC hardware implementation are given in
Table 7.2. Single-GFAU [58] and two-GFAU designs are the tradeoff between hardware
complexity and speed due to the difference between serial and parallel computations. By
using a cooperative MAS which has lower hardware complexity than that of GFAU, the
heterogeneous architecture moderates the cost from duplicating GFAU. But the paral-
lelism ability is still required to be improved further. Algorithm 9 reducing the data
hazard in Algorithm 3 has fewer idle operations as exploiting the proposed scheduling in
Algorithm 10. As a result, the design using the heterogeneous architecture and a newly
introduced priority-oriented scheduling with the independent parallel threads for ECPC

has advantages in the hardware efficiency.
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Table 7.1: Time Analysis of Proposed Priority-Oriented Scheduling

(a) GF(p)

Operating Stage

Computation Time

Pre-process

T, pre = 3Tvp + 6TvEM

Mask Tynk = Twp + 2T + 6Tsup + 13Tvem
IS1 Tpis1 = Tavm + 4Tapp + 61vEM
IS2 Ty1s2 = Tvp + Tvem
1S3 Tp1s3 = 2Tviv + 4TsuB + 9T vEMm
I Tys1 = Tyuem + 2Tvum + 4TsuB + 8TvEM
I Tys2 = Tam + 4Tapp + TTvem
I11 Tps3 = Tvem + Tup
Unmask T, vk = Tvp + 2Tvm + T1sus + 15Tviem

Post-process

Ty post = 21viv + 4TvEM

(b) GF(2™)

Operating Stage

Computation Time

Pre-process

Ty prE = 3Tnp + 6TvEM

Mask Tymx = Tvp + 2Tvm + 9T app + 16T vEm
IS1 Ty181 = Tvip + Tapp + 2TvEM
IS2 Tyis2 = 21w + 5Tapp + 9TvEm
I Ty s1 = Tvem + 27 + 5T app + 8Tvem
II Tys2 = 2Tvivt + TTapp + 10TvEM
Unmask Ty uk = Tvp + 27w + 10T app + 18T vieMm

Post-process

Ty post = 2Tvim + 4TvEM
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Table 7.2: Implementation Analysis for Different DF-ECC Designs

Area Operating | Time (ms/ECSM)
Design Method AT
(mm?/KGates) Field Qf (MHz)
Single-GFAU DF-ECC GF(pieo) 0.44@Q256 1
0.29/70
with Algorithm 3 GF(2'%) 0.38@260 1
Two-GFAU DF-ECC GF(p16o) 0.25@256 1.05
0.54/129
with Algorithm 9 GF(2'%0) 0.19@260 0.92
Heterogeneous DF-ECC GF(pieo) 0.39@256 1.20
0.39/95
with Algorithm 3 GF(2'%) 0.30@260 1.07
Heterogeneous DF-ECC GF (p1o) 0.25@256 0.77
0.40/96
with Algorithm 9 GF(2!%) 0.22@260 0.78

AT product = gate count x time.

7.2 Power Measurement

In this sub-section, the power analysis for the ECC chip using our SCA countermeasure

in Chapter 4 is presented.

7.2.1 SPA

Figure 7.2 shows the power traces for different hamming weight of the key over time
obtained from a protected ECC chip performing LR-DAA ECSM in Algorithm 2, where
the hamming weight of the key is denoted by H(K'). As the chip is processing, it consumes
1.79 mW at 10 MHz, which results in a voltage drop above 50 mV across the measured
resistor. From these waveforms, the key value in the chip using LR-DAA ECSM cannot

be distinguished by visual inspections because the processing time is independent on the

hamming weight of the key.
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Figure 7.2: SPA attacks on the protected ECC chip using LR-DAA binary method of
ECSM, where the power traces are recorded by 50.0 mV/div voltage resolution and

2.0 ms/div time base.
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7.2.2 DPA

In Figure 7.3, the correlation coefficients between the target traces and power model for
all possible hamming distances of the point coordinate g in Algorithm 2 with randomized
computation are plotted over power traces, and those of the correct and incorrect key
hypothesis are plotted in black and gray, respectively. By using a basic RO-RNG without
the jitter amplifier, the reset problem [84] is solved. However, the chip is still susceptible
to DPA attacks owing to low randomness as shown in Figure 7.3, where the jitter of
the sampling clock is not sufficiently large in practical implementations and the random
sequence fails several patterns of the NIST randomness test [88]. In this case, the key of
ECC chip using randomized computation with the primary random sequence can still be
revealed after three million power traces.

In contrast, Figure 7.4 shows the correlation analysis of DPA attacks for the ECC chip
using random sequence generated from the RO-RNG with jitter amplifier. The random
sequence is examined to meet the 15 patterns of NIST randomness test with o > 0.01.
For this, due to randomness improvement, the key value of the protected ECC chip using

randomized computation cannot be revealed even after 12 million power traces.

7.2.3 ZPA

After applying the correlation analysis, Figure 7.5 shows the ZPA attacks on a pro-
tected ECC device using masked base point approaches. The correlation value of correct
and incorrect hypothesis is plotted in black and gray color, respectively. The correlation
value of the correct key is not the highest one among that of all the other key hypotheses

because the zero-value does not happen. Thus the bit value of key cannot be revealed.

7.2.4 CPA

From the experiment results for protected ECC device using RL-DAA ECSM, as
shown in Figure 7.6, the correlation analysis shows that the correlation value of correct
and incorrect hypothesis cannot be scattered in high dependence because of collision
operations. The correlation coefficients of the power traces related to the zero and non-

zero bits of the key are drawn in circle and star, respectively. In Figure 7.6, the bit value
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Figure 7.3: DPA attacks on protected ECC device processing ECSM with randomized

computation, where the random sequence fails NIST P800-22 test suite.
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Figure 7.4: DPA attacks on protected ECC device processing ECSM with randomized

computation, where the random sequence passes NIST P800-22 test suite.
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Figure 7.5: Correlation analysis obtained from a protected ECC chip by conducting the
ZPA attacks.
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of the key cannot be distinguished, where the mean of correlation coefficients is nearly

equal because the collision operations are generated for all possible key values.
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Figure 7.6: Correlation analysis obtained from a protected ECC chip by conducting the
CPA attacks.
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7.3 Overhead of SCA Resistance

For the DPA resistance, our approach is to mask the processed data uncorrelated
with power traces without changing the logic family and without dominating the power
consumption of key-dependent operations. The overhead is the simple control logic gate
for determining the domain value. Compared with the unprotected design, the area and
time overhead of protected design is 3.6% and 0%, respectively.

For the ZPA resistance, our countermeasure is to hide the information of primary
input point by ECPA, and the results can be correctly returned by ECPS. The overhead
is the combinational logic circuit for the operations required in the ECPG. Compared
with the unprotected design, the area and time overhead of protected design is 4.2% and
1.52%, respectively.

To resist the SPA and CPA attacks, we exploit the RL-DAA ECSM. The overhead
is the control logic gate and temporary register for saving the coordinates of EC points.
Compared with the unprotected design, the area and time overhead of protected design
is 1.04% and 0%, respectively.

As above, the low (< 10%) overhead of SCA resistance has benefits in both of high-
speed and resource-constrained applications. Although the random sequence is assumed
to be an input for the design using randomized Montgomery operations and ECPG. The
RO-RNG with jitter amplifier with several thousands of gates does not dominate the area

complexity of ECC processor which needs hundreds thousands of gates.
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7.4 Chip Achievement

By using a UMC 90-nm CMOS technology, our four IEEE P1363-compliant ECC chips
with different specifications and design techniques are fabricated for various applications,
including the mobile device, computing server, and Internet of Things (IoT). The standard
AMBA AHB bus interface [96] is integrated, and the inputs of ECC processor are the
user public/private-key, EC coordinates, EC parameters, and protocol instructions. To
real-time perform these contents, the instruction decoder and pre/post-processing of data
domain conversion are also combined in the ECC processor. The four ECC chips are
named for our research groups, where the combination of “silicon” and “ocean”, so, is
used. To give a brief classification, the soECC-B chip is for the acceleration of basic
ECC function over DFs; the soECC-P chip is targeted at the performance in terms of
hardware speed and area cost; the soECC-S chip achieves the fastest speed; the soECC-
G chip is designed for the green-energy requirements by several low power techniques of

VLSI circuit.

7.4.1 soECC-B: A 0.55 mm? 19.2/8.2 ms GF(pss1)/GF(2'%) 521-
bit SCA-Resistant DF-ECC Processor Using Single-GFAU

Architecture

Figure 7.7 shows the block diagram of the system of soECC-B. For performing division
operations, a radix-2 unified division algorithm [38] is used to save 62% execution cycles
for the implementation using both of Kaliski’s Montgomery invertion [82] and conventional
radix-2 Montgomery multiplication. A single processing element, GFAU, is exploited to
accelerate the ECPC and modular operations over DFs. The multiplexer complexity for
the long bit length of registers is reduced by using the separated 32-bit circular shift
registers. With LR-DAA ECSM and key-blinded approaches, the SPA, DPA, ZPA, and
CPA attacks can be counteracted as the random value « is selected to be 32 bits. Note
that, for this design using PRNG, we assume that the attacker does not apply the system
reset before collecting power trances. Table 7.3 shows the summary of chip performance for
our 521-bit SCA-resistant DF-ECC processor. Figure 7.8(a) and Figure 7.8(b) show the
die photos, where an unprotected ECC chip and a protected ECC chip are implemented

96



to show the evaluation of SCA countermeasure.
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Figure 7.7: System architecture of soECC-B.
Table 7.3: Chip Summary of soECC-B
Technology 90-nm
Core Area 0.55 mm?
Gate Count 170 K
Key Size 521
Field Dual
GF(p) GF(2™)
Field Length
160 | 256 | 521 | 163 | 283 | 409
Time (ms/ECSM) | 1.62 | 4.4 | 19.2 | 1.15 | 3.33 | 8.2
f (MHz) 154 | 147 | 132 | 188 | 182 | 166
Power (mW) 66.3 | 67.6 | 58.5 | 72.5 | 87.0 | 86.4
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Figure 7.8: Chip micrograph of our 521-bit DF-ECC processor, where soECC-B is shown
in (b).
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7.4.2 soECC-P: A 0.41 mm? 0.34/0.29 ms GF (pie0) /GF(2'%7) 160-
bit SCA-Resistant DF-ECC Processor Using Heteroge-

neous Two-PE Architecture

Figure 7.9 shows the block diagram of the system of soECC-P. For high speed, the
radix-4 modular operations [58] are exploited to save the execution cycles for the im-
plementation using radix-2 approach. To improve hardware utilization, the heteroge-
neous two-PE architecture, composed of one GFAU and one MAS, with priority-oriented
scheduling is adopted. The memory hierarchy with local memory coherency is used to
save 14.2% power consumption as compared with the circular shift registers [38]. With
RL-DAA ECSM in Algorithm 9 and masked base point approaches, the SPA, DPA, ZPA,
and CPA attacks can be counteracted. For this design, a basic RO-RNG without jit-
ter amplifier is implemented in device. Table 7.4 lists the summary of chip performance
for our 160-bit SCA-resistant DF-ECC processor. The measurement results of operat-
ing frequency and power consumption over supply voltage are shown in Figure 7.10. The
maximum frequency is higher as the field length is lower because the critical path depends

on the field length. Figure 7.11 shows the die photo of the ECC chip.

Table 7.4: Chip Summary of soECC-P

Technology 90-nm
Core Area 0.41 mm?
Gate Count 98 K
Key Size 160
Field Dual

GF(p) | GF(2™)

Field Length
160 160

Time (ms/ECSM) 0.34 0.29

£ (MHz) 194 204

Energy (uJ/ECSM) | 11.7 9.3
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Figure 7.9: System architecture of soECC-P.
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Figure 7.10: Shmoo plot for the measurement results of chip soECC-P.
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Figure 7.11: Chip micrograph of our 160-bit DF-ECC processor, soECC-P.
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7.4.3 soECC-S: A 1.38 mm? 3.40/2.77 ms GF(pss1)/GF(2°%!) 521-
bit SCA-Resistant DF-ECC Processor Using Heteroge-

neous Two-PE Architecture

Figure 7.12 shows the block diagram of the system of soECC-S. To save the compu-
tation overhead against SCAs from the key-blinded approach with extended key size, the
radix-4 randomized Montgomery operations [97] described in sub-section 4.1 are exploited.
The heterogeneous two-PE architecture is adopted to accelerate the ECPC, ECPG, and
modular operations over DFs, where it consists of one JS-GFAU and one MAS. The
memory hierarchy with local memory coherency is used to transfer data efficiently. With
RL-DAA ECSM in Algorithm 9 and masked base point approaches, the SPA, DPA, ZPA,
and CPA attacks can be defeated. To give the robustness against SCAs, a RO-RNG with
jitter amplifier is implemented in device. For accelerating the calculation of ECPG, the
EC points can be randomly generated by parallel computation from the components of
JS-GFAU and MAS. Since the ECPG can be achieved in chip device, another advantage
is the transmission reduction of public key [7]. The compressed form is that the y co-
ordinate, denoted ¢, is a single bit, where § = y (mod 2). The decompression of y is
to compute a square root z of g = 2® + a,z + b, (mod p) over GF(p). Let Z be the
rightmost bit of z. If Z = ¢, then y < z, else y <= p — 2. In the case of field GF'(2™), the
decompression of y is first to compute 3 = a(z?)7!, where a = 23 + apz? + b, (mod p(z)).
And then find a field element z such that z? + z = 3. Let Z be the rightmost bit of z.
Finally, compute y = (z 4+ Z 4 g)x and return coordinate value y.

Table 7.5 lists the summary of chip performance for our 521-bit SCA-resistant DF-
ECC processor. The measurement results of operating frequency and energy dissipation
over supply voltage are shown in Figure 7.13(a) and Figure 7.13(b), respectively. The
range of supply voltage is from 0.6 V to 1.2 V. The maximum frequency is higher as the
field length is lower because the critical path depends on the field length. In contrast, the
energy consumption per ECSM operation is proportional to the field length because of
the binary method of scalar multiplication. Figure 7.14 shows the die photo of the ECC
chip.
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Table 7.5: Chip Summary of soECC-S

Technology 90-nm
Core Area 1.38 mm?
Gate Count 342 K
Key Size 521
Field Dual
GF(p) GEF(2™)
Field Length
160 | 521 | 163 | 409 | 521
Time (ms/ECSM) | 0.29 | 3.40 | 0.25 | 1.72 | 2.77
£ (MHz) 214 | 187 | 224 | 217 | 216
Energy (uJ/ECSM) | 57 | 598 | 56 | 329 | 532
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Figure 7.14: Chip micrograph of our 521-bit DF-ECC processor, soECC-S.

7.4.4 soECC-G: A 10.8/9.2 ms 438/437 uyW GF(pig)/GF(2?)
192-bit SCA-Resistant DF-ECC Processor Using Single-
GFAU Architecture

Figure 7.15 shows the block diagram of the system of our proposed crypto engine (CE),

where the following are the supported security schemes manipulated by CE control.

e AES schemes: CTR, CBC-MAC, CMAC, and CCM modes, where the encryption
and decryption key sizes are 128 bits.

e ECC schemes: ECPA, ECPD, ECPS, ECSM operations, and DHK agreement over
GF(p) and GF(2™), where the public and private key sizes are 192 bits.

e Modular operations: addition, subtraction, multiplication, inversion, and division

over GF(p) and GF(2™).
e Random number sequence: 8-bit true random bitstream per cycle.

To conveniently integrate our proposed CE into an embedded system, a standard
AMBA AHB bus interface [96] is used. Also, for real-time transmitting the encrypted

and decrypted message frame in system applications, a direct data path from AES core to
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data memory is exploited to access outside memory without dominating system bus. Since
the electronic metastability inherently exists in free running ring oscillators (ROs), the
ROs can be efficiently reused to implement both random power generator (RO-RPG) [84]
and random number generator (RO-RNG), where they are required to protect the key in
AES core from revealing by power-analysis attacks. To save the SCA-resistant overhead
of ECC processor, soECC-G, from the key-blinded approach with extended key size, the
radix-2 randomized Montgomery operations described in sub-section 4.1 are exploited. A
single processing element, GFAU, is efficiently exploited to accelerate the ECPC in ECC
schemes.

To support the requirements of security functions in the applications of IoT, a 128-
bit AES core, a 192-bit DF-ECC processor, and an 8-bit RO-RNG are integrated with
bio-signal processing system [98]. The digital processing module and sensing interface
are included, and a 32-bit RISC CPU core, Andes N903-C05 [99], is utilized to enhance
the instruction scheduling. To reduce the system power, the processor sleeps in the data
collection stage and activates in the data processing stage by a wakeup/power control
logic. To improve the battery life of portable device, the chip working at 0.5 V low supply
voltage is achieved by a reconstructed logic cell [100]. Moreover, to apply the voltage
scaling scheme, the cell behavior and timing information in the range of 1 V to 0.5 V
supply voltage are simulated and re-calibrated, then the cell library after picking out
the cells which work normally is reconstructed. With the reconstructed cell library, the
proposed CE chip can be implemented by using standard-cell based design procedure. By
scaling the supply voltage from 1.0 V to 0.5 V, the power is reduced by 80-84%, where
Figure 7.16 plots the power consumption versus the voltage and frequency. Since the
power consumption is dominated by leakage power at low frequency, the CE operating
frequency is raised to work at 25 MHz for the sake of energy efficiency. Additionally, as
the operations in security schemes are finished, the CE can be turned off by the power
gating for leakage power saving. The hardware performance of our AES core achieves
60 Mb/s 99 uW, where the throughput is 6 times higher than the 10 Mb/s required in
IEEE 802.15.6 standard and 30 times higher than the 2 Mb/s specified in IEEE 802.15.4
standard. The RO-RNG generates 25 Mb/s random sequence and consumes 47 pW. For
the DF-ECC processor it can perform one GF'(p1g2) ECSM in 10.8 ms with 438 W and
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one GF(2'92) in 9.2 ms with 437 W, sufficiently passing the 250 ms at 13.56 MHz reaction
requirement in ISO 18000-3 of RFID tag applications [44] using Schnorr’s identification
protocol [22]. For the hardware complexity, the equivalent gate counts of AES core, RO-
RNG, and DF-ECC processor are 7.24 K, 0.43 K, and 61.68 K, respectively. Figure 7.17
shows the die photo and Table 7.6 shows the summary of chip performance for our 192-bit
SCA-resistant DF-ECC processor.
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Figure 7.16: The power consumption of CE chip working at different supply voltage and
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Figure 7.17: Chip micrograph of our CE cooperating with embedded processor and other
components, such as data memory (DM), program memory (PM), sensing interface, and

bio-signal processing module.
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Table 7.6: Chip Summary of soECC-G

Technology 90-nm
Core Area 0.34 mm?
Key Size 192
Field Dual

GF(p) | GF(2™)
Field Length

192 192
Time (ms/ECSM) 10.8 9.2
£ (MHz) 25 25

Energy (uJ/ECSM) | 4.73 4.02

7.5 Comparison

7.5.1 High-Performance and SCA-Resistant ECC Processor for
IEEE P1363 Applications

Based on our proposed programmable design architecture described in sub-section 7.4.2,
six additional ECC designs, including the 192-bit DF (ECC-DF192), 521-bit DF (ECC-
DF521), 192-bit GF(p) (ECC-P192), 256-bit GF(p) (ECC-P256), 163-bit GLF(2™) (ECC-
B163), 192-bit GF(2™) (ECC-B192) ECC processors, are also implemented to compare
with the previous works. The layout view of ECC-DF521 is shown in Figure 7.18. The chip
performance and implementation results with comparison to other related ECC hardware
implementations over GF(p) and GF(2™) are summarized in Table 7.7 and Table 7.8,
respectively. Note that, in consideration for the scaling effect of fabrication technology
and supply voltage, the normalization factor of area-time product and energy can be
referred to [101] and [102], respectively. The normalization factor of area-time product
is proportional to the ratio of minimum gate length for transistor; the normalization
factor of energy is proportional to the square ratio of minimum gate length for tran-

sistor multiplied by the square ratio of supply voltage. By interleaved processing the
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ECSM operations without duplicating PEs, our heterogeneous two-PE ECC processor
with arithmetic unit integration outperforms previous works using four identical multipli-
ers architecture [24,28], separated arithmetic units [17,25,29,46,103], and single integrated
arithmetic unit [22,38,45,49] in terms of cost effectiveness. Moreover, since an operation
scheduling in a key-independent manner with randomized intermediate values is used to
protect the chip from power-analysis attacks including SPA, DPA, ZPA, and CPA attacks,
our design supports higher security level. These benefits demonstrate that the proposed

solution is well suited for the portable applications such as mobile device.

Figure 7.18: Layout view of our 521-bit DF-ECC processor, ECC-DF521.

Table 7.9 shows the comparison of our another ECC design described in sub-section 7.4.3
with related works. Compared with single-PE 521-bit designs [38,59] and a four-multiplier-
based 160-bit design [28], our soECC-S chip outperforms both in hardware speed and in
protection against SCAs. These advantages demonstrate the proposed design solution is

suitable for high-end applications, such as cloud computing.
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Table 7.7: Comparison Among Previous Approaches for GF'(p)

Area Field Time(ms/ Energy ECSM Power-Analysis
Technology Field KCycles AT
(mm? /KGates) Length | ECSM)@Qf(MHz) (pJ/ECSM) | Method Resistance
Our soECC-P SPA, DPA, ZPA,
90-nm 0.41/98 Dual 160 0.34@194 66.2 1 11.7 RL-DAA
(Measurement@1.0V) and CPA attacks
TCAS-1°09 [24] 3.09 42.6
130-nm 1.44/169 Dual 160 0.61@121 74.0 ) LR-DAS -
(Measurement@1.2V) (2.147) (14.2%)
TVLSI'11 [28] 2.09 31.0
130-nm 1.35/179 Dual 160 0.39@141 54.4 ) LR-DAS -
(Measurement@1.2V) (1.457) (10.3%)
Our ECC-DF192 SPA, DPA, ZPA,
90-nm 0.46/122 Dual 192 0.36@263 94.2 1 24.4 RL-DAA
(Post-layout@1.0V) and CPA attacks
RFIDSec’05 [45]* SPA and DPA
90-nm 0.09/23.8 Dual 192 1,300@0.545 677 704.5 39 LR-DAA
(Post-layout) attacks
160 0.30@220 66.2 1 12
192 0.43@220 94.2 - 26
Our ECC-DF521 224 0.59@217 127.2 - 39 SPA, DPA, ZPA,
90-nm 1.12/313 Dual RL-DAA
(Post-layout@1.0V) 256 0.76@217 165.1 1 54 and CPA attacks
384 1.69@217 366.1 - 143
521 3.15@212 668.6 1 292
160 1.62@154 249.5 2.93 107
ESSCIRC’10 [38] SPA, DPA, ZPA,
90-nm 0.55/170 Dual 256 4.40@147 646.8 3.14 297 LR-DAA
(Measurement@1.0V) and CPA attacks q
521 19.2@132 2,534 3.31 1,123
Our ECC-P192 SPA, DPA, ZPA,
90-nm 0.41/108 GF(p) 192 0.36@263 94.2 1 23.9 RL-DAA
(Post-layout@1.0V) and CPA attacks
ISCAS’07 [29] 1.52 SPA and DPA
130-nm 0.15/23.6 GF(p) 192 2.5@200 502 ) - LR-DAA
(Post-layout) (1.057) attacks
Our ECC-P256 8,272 SPA, DPA, ZPA,
Virtex-II Pro GF(p) 256 4.41@37 165.1 1 - RL-DAA
(Post-layout) CLB Slices and CPA attacks
TCAS-T°06 [17] 15,755
Virtex-II Pro GF(p) 256 3.86@39 151.4 1.67 - LR-DA -
(Post-layout) CLB Slices

AT product = gate count (or CLB slices) X time.

Energy = average power X time.

T Normalization factor is 0.69 (90-nm/130-nm).

i Normalization factor is 0.33 ((90-nm/130-nm)? x (1.0V/1.2V)?).

9 Resistance failed by activating reset signal before ECSM calculation.

* Support hash function.

LR-DAS: left-to-right double-and-add/subtract.

112




Table 7.8: Comparison Among Previous Approaches for GF(2™)

Area Field Time(ms/ Energy ECSM Power-Analysis
Technology Field KCycles AT
(mm?/KGates) Length | ECSM)@f (MHz) (pJ/ECSM) | Method Resistance
Our soECC-P SPA, DPA, ZPA,
90-nm 0.41/98 Dual 160 0.29@204 62.5 1 9.3 RL-DAA
(Measurement@1.0V) and CPA attacks
TCAS-1°09 [24] 2.20 30.5
130-nm 1.44/169 Dual 160 0.37Q146 54.3 ) LR-DAS -
(Measurement@1.2V) (1.527) (10.1%)
TVLSI’11 [28] 1.70 21.6
130-nm 1.35/179 Dual 160 0.27@158 43.0 ) LR-DAS -
(Measurement@1.2V) (1.18T) (7.1h)
Our ECC-DF192 SPA, DPA, ZPA,
90-nm 0.46/122 Dual 192 0.32@263 84.7 1 18.2 RL-DAA
(Post-layout@1.0V) and CPA attacks
RFIDSec’05 [45]* SPA and DPA
90-nm 0.09/23.8 Dual 192 800@0.545 426 487.7 24 LR-DAA
(Post-layout) attacks
163 0.26@238 62.5 1 14
Our ECC-DF521 233 0.52@238 124.3 - 34 SPA, DPA, ZPA,
90-nm 1.12/313 Dual RL-DAA
(Post-layout@1.0V) 283 0.76@238 181.3 1 55 and CPA attacks
409 1.58@235 372.5 1 141
163 1.15@188 216.2 2.40 76
ESSCIRC’10 [38] SPA, DPA, ZPA,
90-nm 0.55/170 Dual 283 3.33@182 606.1 2.36 225 LR-DAA
(Measurement@1.0V) and CPA attacks
409 8.20@166 1,361 2.82 480
Our ECC-B163 SPA, DPA, ZPA,
90-nm 0.24/65 GF((2™) 163 0.22@277 62.5 1 8.2 RL-DAA
(Post-layout@1.0V) and CPA attacks
TC08 [22] 213.2 8.94
130-nm - /12.5 GF(2™) 163 244@0.001 275.8 LR-DAA SPA attacks
(Synthesis@1.2V) (ar.6ty| (3.0
MWSCAS’09 [25] 9.12 257
180-nm 2.10/69 GF(2™) 163 1.89@181 228.1 LR-DA -
(Post-layout@1.8V) (4.56%) (15.4%)
ICITA’05 [103] 9.81
350-nm - /46 GF(2™) 163 3.056@44 134 - LR-DAS -
(Synthesis@3.3V) (2.52%)
RFIDSec’06 [46] 31.22 SPA and DPA
350-nm - /16 GF(E2™)| 163 27.9@13.56 376.8 : LR-DAA
(Synthesis@3.3V) (8.03%) attacks
Our ECC-B192 SPA, DPA, ZPA,
90-nm 0.32/84.6 GF(2™) 192 0.32@263 84.7 1 17.1 RL-DAA
(Post-layout@1.0V) and CPA attacks
CHES’06 [49] 128.1
350-nm - /29.4 GF(2™)| 192 118@12 1,416 - - -
(Synthesis@3.3V) (32.95”)

AT product = gate count X time.

Energy = average power X time.

T Normalization factor is 0.69 (90-nm/130-nm).

1 Normalization factor is 0.50 (90-nm/180-nm).

b Normalization factor is 0.26 (90-nm/350-nm).

i Normalization factor is 0.33 ((90-nm/130-nm)? x (1.0V/1.2V)?).

§ Normalization factor is 0.08 ((90-nm/180-nm)? x (1.0V/1.8V)?).

9 Resistance failed by activating reset signal before ECSM calculation.

* Support hash function.

LR-DAS: left-to-right double-and-add/subtract.
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Table 7.9: Comparison Among Previous Approaches

Technol Area Fiold Field Time(ms/ Energy Compressed Power-Analysis
echnology ie
(mm2/KGates) Length [ECSM)Qf(MHz) | (uJ/ECSM) | Public-Key Resistance
GF(pigo) 0.29@214 57
Our soECC-S Clipsa1)] 5400187 28 SPA, DPA, ZPA
ur so - ) ) k)
90-nm 1.38/342 Dual | GF(2163) 0.25@224 56 Yes
(Measurement@1.2V) and CPA attacks
GF(2409) 1.72@217 329
GF(252h) 2.77@216 532
GF(p160) 1.62@154 107
ESSCIRC’10 [38] GF(ps21) 19.2@132 1,123 SPA, DPA, ZPA,
90-nm 0.55/170 Dual No
(Measurement@1.0V) GF(2193) 1.15@188 76 and CPA attacks 9
GF(2409) 8.20@166 480
GF(pigo) 0.74@256 20
TCAS-1I"12 [59] GF(ps21) 8.08@250 450 SPA and DPA
90-nm 0.58/168 Dual No
(Post-Layout@1.0V) GF(2'63) 0.63@270 20 attacks
GF(2499) 4.65@263 240
TVLSI'11 [28] GF(p160) 0.39@141 31.0
90-nm 1.35/179 Dual No -
(Measurement@1.2V) GF(2190) 0.27@158 21.6

9 Resistance failed by activating reset signal before ECSM calculation.
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7.5.2 Energy-Efficient and SCA-Resistant Crypto Engine for
IEEE 802.15.4/6 Applications

The comparison of our CE chip with other related AES [76,104-107] and ECC [22,
24,25, 28, 57, 58] hardware implementations are summarized in Table 7.10. By using
our highly-integrated architecture with low overhead of randomized techniques, it shows
advantages in energy efficiency and power-analysis resistance. Besides, through system-
level integration, security schemes specified in both of IEEE 802.15.4 and IEEE 802.15.6
standards are supported. Compared to a previous work of IEEE 802.15.4 security device
with RSA-based Diffie-Hellman Key (DHK) agreement [50], we also implement another
crypto engine (CE-II) by the same FPGA family. Note that the key size of DF-ECC
processor in CE-II is set to 224 bits, where it achieves the same level of security as 2048-
bit RSA used in [50]. The synthesized results are shown in Table 7.10. Our CE-II occupies
20,166 slice LUT's and 4,399 slice registers which are 13% and 65% less than those of [50],
respectively. On the other hand, our DF-ECC processor needs at most 336K cycles to
complete the DHK agreement, which is about 94% less than those of RSA-based DHK
agreement design. In addition, our design supports higher security level against power-
analysis attacks. These advantages indicate that our proposed solution is well suitable

for the resource constrained applications such as IoT.
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Table 7.10:

ASIC and FPGA Comparison Among Previous Works

Area AES Throughput | AES Energy ECSM Time ECSM Power-Analysis
Technology Standards
(mm2) (Mb/s)@f (MHz) (pnJ/Mb) (ms)@f(MHz) Energy (nJ) Resistance
Our CE GF(pi92) 10.8@25 4.73 SPA and DPA |IEEE 802.15.4
90-nm 0.34 60@25 1.65
(Measurement) GF(2'92) | 9.2@25 4.02 attacks IEEE 802.15.6
JSSC’11 [104]
45-nm 0.052 53,000@2,100 2.36 - - - SPA attacks -
(Measurement)
ESSCIRC’11 [105] SPA and DPA
90-nm 0.104 2,970@255 2.39 - - - -
(Measurement) attacks
JSSC10 [106] SPA and DPA
130-nm 0.44 1,280@100 34.64 - - - -
(Measurement) attacks
TVLSI’10 [107]
130-nm 0.02 4.3Q12 23.02 - - - SPA attacks -
(Measurement)
JSSC06 [76] SPA and DPA
180-nm 2.45 990@85.5 202 - - - -
(Measurement) attacks
TVLSI'11 [28] 150 3 GF(p1go) | 0.39@141 31.0
30-nm .35 - - - -
(Measurement) GF(2'60) | 0.27@158 21.6
ISCAS’11 [58] o0 {A GF(p16o) | 0.31@256 6.98
-nm L - - - -
(Post-layout) GF(2'6%) | 0.19@290 4.92
TCAS-1I°09 [24] 150 1, GF(pigo) | 0.61@121 42.6
oU-nm . - - - -
(Measurement) GF(2'69%) | 0.37@146 30.5
MWSCAS’09 [25] - 4 -
180-nm 2.10 - - - -
(Post-layout) GF(2'63) | 1.89@181 257
TC08 [22] - - -
130-nm - - - SPA attacks -
(Synthesis) GF(2163) |244@0.001 8.94
CRASH’05 [57] o0 000 GF(p192) | 1.13@600 37.29
-nm LU e - - -
(Post-layout) GF(2'°1) | 0.71@600 23.46
Our CE-II Spartan 6 | 20,166/4,3991 GF(p224)/ | 336/286K SPA and DPA | IEEE 802.15.4
133.295Q@56.234 - -
(Synthesis) xc6s1x75-3 | (LUTs/REGs) GF(222%) cycles attacks IEEE 802.15.6
SCVT’11 [50] Spartan 6 |23,079/12,679% 6,291K*
452.85@233.503 - RSAsqus . . IEEE 802.15.4
(Synthesis) xc6slx75-3 | (LUTs/REGs) cycles

Energy = average power X time.

T AES core + DF-ECC processor.

I AES core + RSA processor.

* BEstimated by m X (m + 0.5 X m) cycles [108], where m is the key size.
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Chapter 8

Conclusion

8.1 Summary

In this dissertation, our research works about the design and implementation for PKC
have been reported. We reviewed the state-of-the-art approaches of the ECC hardware
implementation and SCA countermeasure. Several design techniques have been presented
for hardware performance improvement, and some arithmetical methods of ECC have
been used to avoid key-dependent processed data against SCAs. Unfortunately, there is
relatively little total solution for the SCA-resistant ECC processor. Also, although the
ECC has been adopted in some existing standards, there is a lack of design methods for
distinct realistic applications. According to these considerations, our design objectives
are not only the hardware efficiency against SCAs but also the standard compliance.
In our work, we adopt a new top-to-down design approach including the basic modular
operations over DFs, operation scheduling for both the ECSM and ECGP, and on-chip
implementation of the random bitstream generation.

The randomized Montgomery operations with low overhead of hardware complexity
are proposed for DPA resistance, where the iteration reduction of randomized Mont-
gomery division is also achieved to improve the execution time as compared to Kaliski’s
Montgomery inversion. The domain conversion can be immediately performed by several
operations of Montgomery multiplication and division, and it is time costless for the com-
putation of ECSM. To prevent the attackers from observing some key-dependent specific

processed data such as zero value, the masked base point technique of ZPA resistance is
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exploited. By reusing the PEs,; a parallel computation of ECPG is efficiently implemented
to save time overhead. Besides, to avoid the potential threats in operation scheduling,
the RL-DAA ECSM with SPA and CPA resistance is used, where a modification for that
is to explore the parallelism. The execution time can be further improved by the priority-
oriented scheduling method. Note that our SCA countermeasure does not need to modify
the standard cell and ASIC/FPGA design flow, and it can be applied for the standard
ECC function over DFs.

As above, the randomized computation requires the random sequence. The evidence is
that the low randomness of bitstream results in weakness of DPA resistance. To defeat this
problem, we introduce a new design of RO-RNG, which generates the random sequence
without deterministic state. A jitter amplifier is exploited to enlarge the sample space,
leading to higher capability against bias sampling. After applying this technique, ten one-
million-bit sequences pass the 15 patterns in NIST random tests with 99% confidence.
From measurement results, the DPA attacks cannot reveal the key value in ECC chip
using these random sequences even with 12 million power traces.

For hardware architecture, the integrated and fully-pipelined PEs (i.e., JS-GFAU,
GFAU, and MAS) are used to save cost area from multiple ALUs. To improve the uti-
lization further, the heterogeneous two-PE architecture is exploited for the parallel com-
putation of ECSM and ECPG without duplicating PEs. Besides, the two-level memory
hierarchy with local memory coherence is applied to reduce the data transition, gain-
ing benefits in the power dissipation as compared with conventional shift-register based
approaches.

By using a UMC 90-nm CMOS technology, several SCA-resistant ECC chips with dif-
ferent specifications and design criteria were fabricated for various applications, including
the mobile device, computing server, and IoT. A 0.41 mm? 160-bit ECC chip, soECC-
P, performs one GF(p)/GF(2™) ECSM in 0.34/0.29 ms 11.7/9.3 pJ. It is effective at
the hardware cost for the mobile device. A 521-bit ECC chip, soECC-S, supporting
compressed public-key form can achieve each GF(psz;) ECSM in 3.40 ms and GF(2°?!)
ECSM in 2.77 ms. This is the fastest design for the cloud computing. Furthermore, a
192-bit ECC chip, soECC-G, operating at low supply voltage 0.5 V and cooperating with
bio-signal module achieves 10.8/9.2 ms 438/437 W GF(p1g2)/GF(2'9%) ECSM. This is
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targeted at the power efficiency and suitable for the applications of IoT.

8.2 Future Work

For pursuing broader and more flexible range of security requirements in various ap-
plications, such as cloud computing and big data system, our future work includes the
ID-based encryption (IBE) and fully homomorphism encryption (FHE) [109]. IBE is a
type of public-key encryption in which the public key of a user is some unique information
about the identity of the user (e.g. a user’s email address). This can use the text-value of
the name or domain name as a key or the physical IP address. On the other hand, FHE is
a form of encryption which allows specific types of computations to be carried out on ci-
phertext and obtain an encrypted result which decrypted matches the result of operations
performed on the plaintext, where “fully” means that the operations of addition and mul-
tiplication are supported. We are constructing a system level and demonstrable prototype
with our ECC processor. A variety of security applications can therefore be evaluated on
this prototype considering the tradeoff of speed, cost, energy consumption, and also the
SCA resistance. The evaluation results can then be applied to a realistic cryptosystem

and be used to justify the feasibility and effectiveness of our security platform.
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Appendix A

Summary of Research Status

SHA and RC4

(2012)
(1) High-speed by pipelining
(2) Low-cost by hardware

Hardware Side-Channel Random EC Point sharing
Performance Attack Resistance Generation
A Y )
— — & (1) Radix-4 Jacobi symbol TRNG
GF(2m) GF(p) DFs (2) Parallel computation of
(ESSCIRC10) Lucas sequence
L I L 521b DF-ECC with SPA, (3) Trace vector (1IssCC'13)
, s DPA resistance - RO-RNG with jitter amplifier
- (2011) (ISCAS'12) (ISCAS'11) using configurable IHDC
High-speed ECC  High-speed ECC  Radix-4 division algorithm JL
using fully-pipelined  using full-word 5 (TCAS-I'12 and VLSIC'12)
Montgomery Montgomery Radix-2 randomized
multiplier multiplier with SPA (TVLSI"3 and Montgomery algorithm for
resistance Silicon Awards) DPA resistance
Heterogeneous two-PE
DF-ECC with SPA, DPA, &
ZPA, CPA resistance (CHES12)

Radix-4 randomized
Montgomery algorithm for
DPA resistance

(ISSCC’13)
High-speed DF-ECC with
SPA, DPA, ZPA, CPA

resistance

Figure A.1: Overview of our research status.
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Appendix B

Montgomery Multiplication

Montgomery multiplication is an efficient approach for the calculation of finite filed
multiplication without long-precision division in reduction. In fact, the long-precision
integer multiplication of two m-bit operands x and y is still required, while the reduction
can be simply achieved by bitwise shifting. The key concept is that the modular reduction
by N is to be the division by constant r = 2™ > N, where ged(r, N) = 1; as the last
m-bit of intermediate value is zero value, the division by r can be implemented by bitwise
shifting. For 0 < T < Nr, the Montgomery reduction of T' modulo N is defined as the
value Tr~! (mod N), and the constant r is so called Montgomery constant. To conduct
the Montgomery algorithm, the primary input operands require the domain conversion
such that X =z -r (mod N) and Y = y - r (mod N), and then the X and Y are in
the Montgomery domain. Algorithm 11 shows the Montgomery multiplication, where
ror ' = N-N=1with0<r'=2" (mod N) < N and 0 < N’ <r.

To understand why Algorithm 11 gives the right answer, let’s consider the following:
UN (mod r) = TNN' (mod r)=T(rr' —1) (mod r) = —T (mod r). Thus, T+ UN
(mod ) =0 (mod r), and then (T'+ UN) is exactly divisible by  which also means that
the last m-bit of ¢ is zero value. Then the division of ¢ by r can be easily implemented by
bitwise shifting. Furthermore, since 0 < T < Nr, t < 2N as U < r, the return value R is
always less than N.

Note that N’ = "2 =1 = —~ N~ (mod ) and the computation of —~N~' (mod r) is
shown in Algorithm 12. In the for loop of Algorithm 12, N-¢ =1 (mod 2%). Algorithm 13
shows the GF(2™) version of Algorithm 12, where ¢ = N(z)™' (mod r) with » = 2™. The
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Algorithm 11 Montgomery Multiplication
Input: X, Y, N, N, and m

Output: R=X-Y -r~! (mod N)
1: T'= X -Y (m x m-bit Multiplication) (log, T" = 2m)

2: U= (T (mod r))-N" (mod r) (m-bit Truncation + m x m-bit Multiplication + m-bit
Truncation) (log, U = m)

3: t = THEN (i x m-bit Multiplication + 2m-bit Addition + m-bit Bitwise Shift Right)
(logyt =m+1)

4: If t > N then R =t — N (m-bit Subtraction)

5: Return R

operation of N(x)-q in Step 3 is implemented by the polynomial multiplication, while the

operation of 271 < N(z)-¢ (mod 2%) in Step 3 is implemented by the integer comparison.

Algorithm 12 Computation of —N~! (mod r) for r = 2™
Input: N with 0 < N <r and m

Output: ¢ = —N~! (mod 7)
1: g=1
2: For ¢ from 2 to m do
3: If (277! < N -¢q (mod 2%))
4: then ¢ = ¢ + 217!
5 Return ¢ =2" —¢q
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Algorithm 13 Computation of N™! (mod r) for r = 2™

Input: N(z) =2" + a(z) and m
Output: ¢ = N(z)™' (mod r)
1. g=1
2: For i from 2 to m do
3: If (27! < N(2) - ¢ (mod 2%))
4: then ¢ = ¢ ® 2!

5: Return ¢
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Appendix C

Barrett Reduction

Barrett reduction shown in Algorithm 14 finds 7' (mod N) with a given (k + 1)-bit

value p = L%J and a suitably-chosen base b = 2*, where p can be obtained from pre-

22k

computation. For example, as b = 2, p = [F¢|; ¢ =T >> (k- 1); @2 = ¢ - i3
G=q>> (k+1); Ry =T[k:0]; Ro =q3-N; Ry = Ro[k : 0]; R =Ry — Ry; If (R <0)
then R = R+ 2! While (R > N) R = R — N; Return R. To compute the value of p
required in Algorithm 14, it is shown in Algorithm 15.

Algorithm 14 Barrett Reduction
Input: 0 < 7T = (Top_1, Top_2, 11, To)p < b**, N, b >3, k = |log, N| + 1, and pu

Output: R = (Ry_1,...,Ro)y =71 (mod N)
1: ¢1 = | 3] (Bitwise Shift Right)

2: go = q1 - p (Multiplication)

3: g3 = |y&7]) (Bitwise Shift Right)

4: Ry =T (mod bv*1) (Truncation)

5. Ry = g3+ N (mod bF*1) (Multiplication + Truncation)
6: R = Ry — Ry (Subtraction)

7. If (R < 0) then R = R+ V"' (Addition)

8: While (R > N) do R = R — N (Subtraction)

9: Return R

Both of Barrett reduction and Montgomery reduction are the approach to find the
field element in GF(p) for an integer of double bit length without trial division. They

also require a pre-computed constant. For the differences, Barrett reduction does not
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Algorithm 15 Computation of
Input: p, and k = |log, N| + 1

Output: p = L%J
1. p= b*
2: Repeat

3: S=u

Ut

: Until p < S

6: t=b%—N-pu

7. While (¢ < 0) do
8: uw=pu—1

9: t=t+N

10: Return R

need the domain conversion of primary inputs. In contrast, Montgomery reduction needs

the domain conversion of primary inputs.
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