
國 立 交 通 大 學

電子工程學系 電子研究所

博 士 論 文

具側漏資訊攻擊防禦之高硬體效能橢圓曲線密碼處理器

High-Performance Elliptic Curve Cryptographic Processor with

Side-Channel Attack Resistance

研 究 生：李人偉

指導教授：李鎮宜 教授

中 華 民 國 一〇二 年 六 月

具側漏資訊攻擊防禦之高硬體效能橢圓曲線密碼處理器

High-Performance Elliptic Curve Cryptographic Processor with

Side-Channel Attack Resistance

研 究 生：李人偉 Student：Jen-Wei Lee

指導教授：李鎮宜 Advisor：Chen-Yi Lee

國 立 交 通 大 學

電子工程學系 電子研究所

博 士 論 文

A Dissertation

Submitted to Department of Electronics Engineering and

Institute of Electronics

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electronics Engineering

June 2013

Hsinchu, Taiwan

中華民國一〇二年六月

i

具側漏資訊攻擊防禦之高硬體效能橢圓曲線密碼處理器

學生：李人偉 指導教授：李鎮宜 博士

國立交通大學

電子工程學系暨電子研究所

摘要

現今，電子通訊帶給人類社會極大便利的資訊交流快速發展，相對應的保護個人訊息安全

需求也日趨漸增。在資訊安全領域裡面，傳統的對稱式密碼系統能在使用者端妥善的加密保護

資料隱密性，但這都還不足以解決金鑰配置、明文完整性以及不合法授權使用的問題。非對稱

式密碼系統，又稱公開金鑰密碼系統，其被開發用來滿足前述應用的需求。在過去的幾年中，

橢圓曲線密碼學是一個被提出相對傳統 RSA演算法安全度較高的可實現方法，但是目前還尚

未有合適橢圓曲線密碼處理器的設計對應方法。

在本論文，我們從系統的角度探索密碼處理器的設計，包含從最上層的演算法、次之硬體

運算單元架構以及底層的電子電路設計。為了追求高硬體效能，我們著手採用了一些改善硬體

速度、硬體複雜度以及能量消耗的設計技巧，除此之外，一個合宜的密碼處理器，也必須包含

側漏資訊攻擊的防禦。如何能在硬體運算時不洩漏和金鑰有關的訊息，也不因為防禦設計上造

成硬體複雜度增加過度的代價，這些都將是設計上的挑戰也是我們實現電路的目標。

如上所述，我們提出了一些新的設計方法，包含隨機式運算與金鑰不相依的硬體排程方法，

此設計的特色除了適合系統實現的整合，也因為不需額外的參數與離線計算，所以硬體計算可

以符合標準化的規範，另外一個優點是和過去的文獻相比，我們的側漏資訊攻擊防禦硬體代價

也相較為低。為了提供更穩健的保護能力，我們也提出一個新的單一晶片真實亂數產生器設計

方法，其能提供足夠的亂度給硬體作隨機式運算。針對這些提出的設計方法，我們的橢圓曲線

密碼處理器架構在硬體效能與側漏資訊攻擊防禦都有相較過去文獻的優異表現。

更進一步呈現我們的研究貢獻，透過聯電 90奈米製程，我們針對各種應用製作開發晶片。

ii

第一顆為 0.41 mm
2
 160位元長的橢圓曲線密碼處理器，其能各別在 GF(p160)與 GF(2

160
)有限域

的 0.34 ms 11.7 µJ 與 0.29 ms 9.3 µJ 下完成一次橢圓曲線點乘法計算，此優異的硬體效能顯示

其將適合在手機通訊產品上的開發使用。第二顆是 521位元長的橢圓曲線密碼處理器，其能各

別在 GF(p521)與 GF(2
521

)有限域的 3.40 ms 與 2.77 ms 時間內完成一次橢圓曲線點乘法計算，其

中透過橢圓曲線點產生法，能減少一半的公開金鑰傳遞訊息量，此設計是達到至今運算最快的

橢圓曲線密碼處理器，其將適合高速的雲端伺服器應用。另外一顆是操作在低電壓 0.5 V與低

時脈頻率 25 MHz 的 192位元長的橢圓曲線密碼處理器，其能各別在 GF(p192)與 GF(2
192

)有限

域的 10.8 ms 438 µJ 與 9.2 ms 437 µJ 下完成一次橢圓曲線點乘法計算，此優異的低能量消耗顯

示其將適合在未來的物聯網產品上的開發使用。最後，這些晶片也都經過收集上百萬條能量軌

跡的側漏資訊攻擊防禦量測驗證其安全性。

iii

High-Performance Elliptic Curve Cryptographic

Processor with Side-Channel Attack Resistance

Student：Jen-Wei Lee Advisors：Dr. Chen-Yi Lee

Department of Electronics Engineering and Institute of Electronics

National Chiao Tung University

ABSTRACT

Nowadays, the fast development of network communication in electronics indus-

try brings the people to a quick and convenient life, while the demand in safety for

protecting the personal private data from revealing significantly increases as well. In

security, the conventional symmetric-key scheme can locally achieve the encryption,

but the decryption key and ciphertext are still needed to be sent without disclosure,

modification, duplication, forgery, and even unauthorized access. The asymmetric-key

scheme or so called public-key cryptosystems (PKC) is developed to satisfy these re-

quirements. In recent years, a new coming approach, elliptic curve cryptography

(ECC), has been adopted in several applications for ensuring the security of infor-

mation exchange. However, the suitable solution of ECC processor has not appeared

so far.

In this dissertation, we investigate the design of crypto engine through a system

view, from top to down, including the algorithm, operation scheduling, pro-

cessing-element architecture, and also circuit-level implementation. For pursuing the

achievement of high-performance accelerator, several improvement techniques for the

hardware speed, hardware complexity, and power consumption are promoted. Besides,

to deliver a decent design of crypto engine, the device security such as the coun-

ter-measure of side-channel attacks (SCAs) is also included in our implementation

iv

target. And then, both of these design issues lead to a big challenge, where it requires

the device to be implemented without both of the key-dependent processed data and

much overhead of SCA resistance.

As above, we proposed a new design method, which is based on the randomized

computation and key-independent scheduling manner, to protect the private date

stored in device from the side-channel information leakage. The feature is that it is

suitable for the system integration and the usage of the standard without any

pre-computation. Another advantage is that the overhead of protected design is lower

than that of related previous works. The robustness of SCA resistance is examined by

exploiting an on-chip true-random number generator (TRNG) with sufficient random-

ness. Moreover, the corresponding design architecture of hardware implementation is

introduced, and our ECC processor outperforms both in the hardware efficiency and

protection against SCAs as compared with the other approaches.

To show more our contributions, we further conduct our research for several

standard applications. Fabricated by UMC 90-nm CMOS technology, a 0.41

mm
2
160-bit ECC chip can achieve 0.34/0.29 ms 11.7/9.3 µJ for one GF(p)/GF(2

m
) el-

liptic curve scalar multiplication (ECSM), which is effective at the hardware cost and

suitable for the mobile device; a 521-bit ECC chip performs each GF(p521) ECSM in

3.40 ms and GF(2
521

) ECSM in 2.77 ms, where it saves 50% data transmission of pub-

lic key by on-chip elliptic curve point generation (ECPG). This is the fastest design

and also applicable for the cloud computing; a 192-bit ECC chip achieves 10.8/9.2 ms

438/437 µW GF(p192)/GF(2
192

) ECSM at scaled 0.5 V and 25 MHz, where it is effi-

cient at the power consumption and suitable for the applications of Internet of Things

(IoT). In addition, the SCA resistance for each design is demonstrated by millions of

measurements.

v

誌 謝

在博士班的求學生涯中，承蒙交大培育、多位師長提攜、朋友的協助以及家人的支持，讓

我能一路度過各個挑戰，最後順利完成我的博士學位。我要非常感謝一起指導我研究的李鎮宜

教授和張錫嘉教授，兩位教授給予我廣大的研究發揮空間以及豐富的研究軟硬體資源，除此之

外，老師們也積極的領導我參與研究相關的國際學術活動，還有強調自我運動健康以及社交活

動的重要性，同時藉由這幾年的研究過程，更讓我從老師們身上學習到待人處世和視野遠見的

培養，讓我博士班生涯有了更全面性的成長。我也要感謝陳榮傑教授在我研究論文的過程，耐

心地教導我建立起數學理論的基礎。另外，要感謝我的口試委員：吳安宇教授、周世傑教授、

謝明得教授、蔡宗漢教授、黃元豪教授與賴伯承教授在百忙之中參加我的口試，給我許多寶貴

的建議，讓我看到研究上許多不同的面向，並啟發我未來的研究方向。

接著，我要感謝 SI2 實驗室以及 Ocean研究團隊的全體同仁，讓我得以在此學習成長，吸

收許多寶貴經驗。在學業上，透過與大家的討論，使得研究更加完善充實；在生活上，也因為

有了各位，在面對研究挑戰的路途上，有更多的歡笑和難以忘懷的甜美回憶。

在這段期間，謝謝交大電子系所提供給我博士班的獎助學金，讓我能心無旁騖、全心全力

盡快完成博士班研究與不斷擴充自己的專業能力。也要感謝行政院國家科學委員會的出席國際

學術會議補助，讓我能除了吸收世界各地優秀學者所提供的研究資訊之外，也提高台灣在國際

學術研究上的能見度。

我要謝謝鍾菁哲學長、許騰仁學長、林建青學長、游瑞元學長、陳志龍學長、林義閔學長、

余建螢學長與涂博銘先生，幫助我了解製作晶片過程與驗證系統行為。感謝范銘隆學長，從我

第一次出國參加會議研討一直到我畢業，這一路上都是我最棒的心靈導師。我也很感謝天公伯

和交大土地公爺爺，總是能在很多關鍵時刻給我強運。

然後，我要由衷的向我台北與宜蘭的大家庭所有人，獻上我最誠摯的感謝，謝謝你們這一

路照顧、陪伴我從小到大。我也特別感謝我的爸爸、媽媽不辭辛勞對我的栽培，謝謝我的哥哥，

能夠分享我的喜怒哀樂並給予經濟上的幫助，也謝謝我的二舅和屘姨，我知道你們一直都很關

心我，待我有如自己的孩子一樣。這些日子多虧有全家人的體諒，有你們無悔的付出與關心，

讓我無後顧之憂地完成博士學業。在這邊以此論文獻給你們，作為我們全家共同分享的成果。

最後，虔誠祈禱上天保佑台灣這塊美麗的寶島，我願和熱愛這片土地的任何人一起努力。

大家加油！為台灣加油！

Contents

List of Figures ix

List of Tables xiii

Glossary xiv

1 Introduction 1

1.1 Previous Works . 5

1.1.1 Elliptic Curve Cryptographic (ECC) Processor 5

1.1.2 Side-Channel Attacks (SCAs) . 7

1.1.3 Summary of Paper Survey . 8

1.2 Motivation and Design Challenge . 9

1.3 Our Solution . 10

1.4 Dissertation Organization . 11

2 An Overview of Cryptographic Algorithms 12

2.1 Public-Key Cryptosystems (PKC) . 12

2.2 Arithmetic of Elliptic Curve Cryptography (ECC) over GF (p) and GF (2m) 16

2.3 Specifications for Applications . 19

2.3.1 IEEE P1363 . 19

2.3.2 IEEE 802.15.4/6 . 19

3 Side-Channel Attacks (SCAs) 23

3.1 Simple Power-Analysis (SPA) Attacks . 28

3.2 Differential Power-Analysis (DPA) Attacks 31

3.3 Zero-Value Power-Analysis (ZPA) Attacks 36

vi

3.4 Collision Power-Analysis (CPA) Attacks 38

4 Proposed Countermeasure of SCAs 41

4.1 Randomized Montgomery Operations . 41

4.1.1 Randomized Montgomery Multiplication (RMM) 42

4.1.2 Randomized Montgomery Division (RMD) 44

4.1.3 Domain Conversion . 48

4.2 Elliptic Curve Point Generation (ECPG) 49

4.3 Right-to-Left Binary Method of Double-and-Add-Always Elliptic Curve

Scalar Multiplication (RL-DAA ECSM) . 52

5 Proposed Design of True-Random Number Generator (TRNG) 54

5.1 Delay Chain of Jitter Amplifier . 56

5.2 Configurable Interlaced Hysteresis Delay Cell (CIHDC) 59

5.3 Ring-Oscillator-Based TRNG with Jitter Amplifier 63

6 Proposed Architecture of Dual-Field ECC (DF-ECC) Processor 66

6.1 Jacobi Symbol and Galois Field Arithmetic Unit (JS-GFAU) 68

6.1.1 Fully-Pipelining Scheme . 68

6.1.2 Programmable Data Path of Modular Reduction with Ladder Se-

lection . 68

6.1.3 Modular Halving, Quartering by Bitwise Shifting 70

6.1.4 Arithmetic Unit Integration . 70

6.2 Heterogeneous Processing Elements (PEs) and Priority-Oriented Scheduling 73

6.3 Parallel Computation of Elliptic Curve Point Generation (ECPG) 77

6.4 Memory Hierarchy with Local Memory Coherence 80

7 Implementation and Experiment Results 84

7.1 Performance Analysis . 84

7.2 Power Measurement . 88

7.2.1 SPA . 88

7.2.2 DPA . 90

7.2.3 ZPA . 90

vii

7.2.4 CPA . 90

7.3 Overhead of SCA Resistance . 95

7.4 Chip Achievement . 96

7.4.1 soECC-B: A 0.55 mm2 19.2/8.2 msGF (p521)/GF (2
409) 521-bit SCA-

Resistant DF-ECC Processor Using Single-GFAU Architecture . . . 96

7.4.2 soECC-P: A 0.41 mm2 0.34/0.29 ms GF (p160)/GF (2
160) 160-bit

SCA-Resistant DF-ECC Processor Using Heterogeneous Two-PE

Architecture . 99

7.4.3 soECC-S: A 1.38 mm2 3.40/2.77 ms GF (p521)/GF (2
521) 521-bit

SCA-Resistant DF-ECC Processor Using Heterogeneous Two-PE

Architecture . 102

7.4.4 soECC-G: A 10.8/9.2 ms 438/437 µW GF (p192)/GF (2
192) 192-bit

SCA-Resistant DF-ECC Processor Using Single-GFAU Architecture 106

7.5 Comparison . 110

7.5.1 High-Performance and SCA-Resistant ECC Processor for IEEE P1363

Applications . 110

7.5.2 Energy-Efficient and SCA-Resistant Crypto Engine for IEEE 802.15.4/6

Applications . 115

8 Conclusion 117

8.1 Summary . 117

8.2 Future Work . 119

A Summary of Research Status 120

B Montgomery Multiplication 121

C Barrett Reduction 124

viii

List of Figures

1.1 A model of network security. 2

1.2 A model of symmetric-key encryption. 2

1.3 A simplified model of PKC. 4

1.4 Research review of ECC hardware implementation. 9

1.5 Our top-to-down design methods of SCA-resistant ECC processor. 10

2.1 Security comparison of ECC versus RSA. 15

2.2 The data flow of each AES mode, where the nonce and initial vector (IV)

are an arbitrary number and secrete value, respectively. The functional

notation MSBTlen/LSBTlen denotes the most/least significant Tlen bits of

the data, and Tlen/Clen is the bit length of the MIC/ciphertext. 21

2.3 Message can be securely sent based on MK to a specific party by using

both of asymmetric and symmetric-key algorithm without pre-knowledge

encryption and decryption keys. 22

3.1 Scenario of side-channel attacks on hardware device. 25

3.2 Power consumption of CMOS circuits with supply voltage Vdd and leakage

current Ileak. 25

3.3 (a) Environment of power measurement. (b) Current running through the

chip is recorded by measuring the voltage drop via a resistor in series with

the core power and supply power. 26

3.4 SPA attacks on the unprotected ECC chip using LR-DA binary method

of ECSM, where the power traces are recorded by 50.0 mV/div voltage

resolution and 2.0 ms/div time base. 29

3.5 DPA attacks on an ECC device. 32

ix

3.6 Correlation analysis obtained from an unprotected ECC chip by conducting

the DPA attacks. 33

3.7 Correlation analysis obtained from an unprotected ECC chip by conducting

the ZPA attacks. 37

3.8 Example of the CPA attacks for the LR-DAA ECSM. 38

3.9 Correlation analysis obtained from an unprotected ECC chip by conducting

the CPA attacks. 40

4.1 Example of randomized Montgomery operations. 42

4.2 The domain conversion can be achieved in pre/post-process stage, where

this overhead of several modular operations can be neglected for overall

ECSM. 48

4.3 Generating a random EC point over DFs. 50

4.4 Computing a square root over DFs. 50

5.1 RO-RNG circuit, where the frequency of ring oscillator (RO), f1 is faster

than that of sampling clock, f2. 55

5.2 RO-RNG with jitter amplifier. 56

5.3 Random normal distribution of clock jitter for the sampled sequence. . . . 56

5.4 Proposed method to amplify jitter with configurable delay cell. 58

5.5 On-the-fly generation of control signals based on the LFSR. 59

5.6 Elementary IHDC. 61

5.7 On-off switch circuit. 62

5.8 The transition waveform of CIHDC, where one CIHDC can increase jitter

by several tens of picosecond at rising and falling edge. 62

5.9 The die photo, where D1 and D2 are the RO-RNG with and without jitter

amplifier, respectively. 63

5.10 3-level IHDC. 64

5.11 On-off switch circuit of 3-level IHDC. 64

5.12 Layout of 3-level CIHDC. 65

6.1 Block diagram of our DF-ECC processor. 66

6.2 Hierarchy implementation of ECC schemes. 67

x

6.3 (a) Data path separation of UV comparison and RS calculation. (b) The

fully-pipelining scheme of hardware implementation for the proposed radix-

4 RMD in Algorithm 7. 69

6.4 The overall DF modular operations are integrated into a fully-pipelined

GFAU. 72

6.5 The priority-oriented scheduling for (a) conventional RL-DAA ECSM and

(b) modified RL-DAA ECSM, where the solid line is the ECPD operation

flow and the dash line is the ECPA operation flow. 76

6.6 Two-level memory hierarchy for heterogeneous two-PE architecture. 81

6.7 Example of data access sequences MOV GFAU(R reg) to MAS(S reg) and

MOV MAS(R reg) to GFAU(S reg) (a) without (b) with local memory syn-

chronization scheme. The data transitions through MEM for interleaved

processing in (a) can be eliminated in (b). 83

7.1 Detailed data flow for the proposed priority-oriented scheduling of ECSM

calculation over DFs. 85

7.2 SPA attacks on the protected ECC chip using LR-DAA binary method

of ECSM, where the power traces are recorded by 50.0 mV/div voltage

resolution and 2.0 ms/div time base. 89

7.3 DPA attacks on protected ECC device processing ECSM with randomized

computation, where the random sequence fails NIST P800-22 test suite. . . 91

7.4 DPA attacks on protected ECC device processing ECSM with randomized

computation, where the random sequence passes NIST P800-22 test suite. . 92

7.5 Correlation analysis obtained from a protected ECC chip by conducting

the ZPA attacks. 93

7.6 Correlation analysis obtained from a protected ECC chip by conducting

the CPA attacks. 94

7.7 System architecture of soECC-B. 97

7.8 Chip micrograph of our 521-bit DF-ECC processor, where soECC-B is

shown in (b). 98

7.9 System architecture of soECC-P. 100

7.10 Shmoo plot for the measurement results of chip soECC-P. 101

xi

7.11 Chip micrograph of our 160-bit DF-ECC processor, soECC-P. 101

7.12 System architecture of soECC-S. 103

7.13 Shmoo plot for the measurement results of chip soECC-S. 105

7.14 Chip micrograph of our 521-bit DF-ECC processor, soECC-S. 106

7.15 System architecture of our CE. 107

7.16 The power consumption of CE chip working at different supply voltage and

operation frequency. 109

7.17 Chip micrograph of our CE cooperating with embedded processor and other

components, such as data memory (DM), program memory (PM), sensing

interface, and bio-signal processing module. 109

7.18 Layout view of our 521-bit DF-ECC processor, ECC-DF521. 111

A.1 Overview of our research status. 120

xii

List of Tables

2.1 Formulas of EC Point Calculation (ECPC) in Affine Coordinates 16

2.2 Operations for ECPC over DFs in Various Coordinates 18

4.1 Operations in Randomized Montgomery Domain 42

4.2 Analysis of Various Division Algorithms 46

5.1 Functionality of CIHDC . 60

6.1 Implementation Results of GF (p256) GFAU and MAS on Xilinx Virtex-II

FPGA Device with Comparison . 73

6.2 Architecture for Parallel Computing GF (p) Square Roots 78

6.3 Architecture for Parallel Computing GF (2m) Square Roots 79

7.1 Time Analysis of Proposed Priority-Oriented Scheduling 87

7.2 Implementation Analysis for Different DF-ECC Designs 88

7.3 Chip Summary of soECC-B . 97

7.4 Chip Summary of soECC-P . 99

7.5 Chip Summary of soECC-S . 104

7.6 Chip Summary of soECC-G . 110

7.7 Comparison Among Previous Approaches for GF (p) 112

7.8 Comparison Among Previous Approaches for GF (2m) 113

7.9 Comparison Among Previous Approaches 114

7.10 ASIC and FPGA Comparison Among Previous Works 116

xiii

Glossary

ADD – Addition. 53

AES – Advanced Encryption Standard. 1

ALU – Arithmetic Logic Unit. 6

ASIC – Application-Specific Integrated Circuit. 8

CBC-MAC – Cipher Block Chaining Message Authentication Code. 19

CCM – CTR with CBC-MAC. 19

CE – Crypto Engine. 115

CIHDC – Configurable Interlaced Hysteresis Delay Cell. 60

CMAC – Cipher-based Message Authentication Code. 19

CPA – Collision Power-Analysis. 24

CTR – Counter. 19

DES – Data Encryption Standard. 1

DF – Dual Field or Dual-Field. 5

DF-ECC – Dual-Field Elliptic Curve Cryptography (or Cryptographic). 115

DHK – Diffie-Hellman Key. 115

DLP – Discrete Logarithm Problem. 12

DPA – Differential Power-Analysis. 24

DSA – Digital Signature Algorithm. 13

EC – Elliptic Curve. 16

ECC – Elliptic Curve Cryptography (or Cryptographic). 3, 4

ECDLP – Elliptic Curve Discrete Logarithm Problem. 3

ECIES – Elliptic Curve Integrated Encryption Scheme. 19

ECPA – Elliptic Curve Point Addition. 16

xiv

ECPC – Elliptic Curve Point Calculation. 17

ECPD – Elliptic Curve Point Doubling. 16

ECPG – Elliptic Curve Point Generation. 34

ECPS – Elliptic Curve Point Subtraction. 16

ECSM – Elliptic Curve Scalar Multiplication. 27

ECSP-DSA – Elliptic Curve Signature Primitive Digital Signature Algorithm. 19

ECSP-NR – Elliptic Curve Signature Primitive Nyberg-Rueppel. 19

ECSVDP-DH – Elliptic Curve Secret Value Derivation Primitive Diffie-Hellman. 19

ECSVDP-MQV – Elliptic Curve Secret Value Derivation Primitive Menezes-Qu-Vanstone.

19

FHE – Fully Homomorphism Encryption. 119

FPGA – Field-Programmable Gate Array. 8

GF (2m) – Notation of “Galois field with characteristic 2 and degree m” or “extension

binary field”. 5–7

GFAU – Galois Field Arithmetic Unit. 71

GF (p) – Notation of “Galois field with characteristic p” or “prime field”. 5–7

HT – Half Trace. 67

IBE – ID-based Encryption. 119

IC – Integrated Circuit. 54

IEEE – Institute of Electrical and Electronics Engineers. 4

IHDC – Interlaced Hysteresis Delay Cell. 59

IoT – Internet of Things. 119

JS-GFAU – Jacobi Symbol and Galois Field Arithmetic Unit. vii, 68

KO – Karatsuba-Ofman. 5

LR-DA – Left-to-Right Double-and-Add. 28

LR-DAA – Left-to-Right Double-and-Add-Always. 28

LR-DAS – Left-to-Right Double-and-Add/Substract. 112

LS – Lucas Sequence. 67

xv

m – Notation of “bit size of the operating field length”. 5, 6

MAS – Multiplier-Adder/Subtractor. 53

MD – Modular Division. 53

MK – Master Key. 20

MM – Modular Multiplication. 53

MS – Modular Squaring. 17

n – Notation of “maximum bit size of the operating field length”. 41

ONB – Optimal Normal Basis. 5

p – Notation of “prime”. 13

PKC – Public-Key Cryptosystems. 2, 3, 12

PRNG – Pseudo-Random Number Generator. 54

RADD – Randomized Addition. 42

RFID – Radio-Frequency Identification. 7

RL-DAA – Right-to-Left Double-and-Add-Always. 39

RMD – Randomized Montgomery Division. 42

RMM – Randomized Montgomery Multiplication. 42

RNG – Random Number Generator. 10

RNS – Residue Number System. 5

RO – Ring Oscillator. x, 55

RO-RNG – Ring-Oscillator-based Random Number Generator. 54

RSUB – Randomized Subtraction. 42

SCA – Side-Channel Attack. 4, 8

SPA – Simple Power-Analysis. 24

SUB – Subtraction. 53

TADD – Notation of “computation time of ADD”. 53

TMD – Notation of “computation time of MD”. 53

TMM – Notation of “computation time of MM”. 53

TRNG – True-Random Number Generator. vii, 54

TSUB – Notation of “computation time of SUB”. 53

xvi

ZPA – Zero-value Power-Analysis. 24

xvii

Chapter 1

Introduction

A general model for the network security is shown in Figure 1.1, where the message is

to be transferred from one party to another across some sort of wireless communications

or Internet service. The two parties, who are the principals in this transaction, must

cooperate the exchange to take place. A logical information channel is established by

defining a communication protocol such as GSM, Wi-Fi, and TCP/IP. The trusted third

party may be needed to achieve secure transmission. For example, a third party may be

responsible for distributing the secret information to the two principals while keeping it

from any opponent. Or a third party may be needed to arbitrate disputes between the

two principals concerning the authenticity of a message transmission.

Symmetric-key encryption is a form of cryptosystem where the encryption and decryp-

tion are performed by using the same key. It is also known as conventional encryption.

Symmetric-key encryption transforms security-related message, plaintext, into ciphertext

using a secret key and an encryption algorithm, such as stream cipher RC4 [1], block ci-

pher DES (Data Encryption Standard) [2], and block cipher AES (Advanced Encryption

Standard) [3]. By using the same key and decryption algorithm, the plaintext is recovered

from the ciphertext. The traditional symmetric-key ciphers use the substitution and/or

transposition techniques. Substitution techniques map plaintext elements into ciphertext

elements (each letter retains its position but changes its identity). Transposition tech-

niques systematically transpose the positions of plaintext elements (each letter retains its

identity but changes its position). An example model of conventional encryption is shown

in Figure 1.2.

1

Information Channel

S
e
c
u
re
 M
e
s
s
a
g
e

M
e
s
s
a
g
e

T
ra
n
s
fo
ra
m
ti
o
n

S
e
c
u
re
 M
e
s
s
a
g
e

M
e
s
s
a
g
e

T
ra
n
s
fo
ra
m
ti
o
n

Trusted Third Party

Opponent

Sender Recipient

Figure 1.1: A model of network security.

Information Channel

S
e
c
u
re
 M
e
s
s
a
g
e

M
e
s
s
a
g
e

T
ra
n
s
fo
ra
m
ti
o
n

S
e
c
u
re
 M
e
s
s
a
g
e

M
e
s
s
a
g
e

T
ra
n
s
fo
ra
m
ti
o
n

Sender Recipient

Sender's

Secrete Key

Sender's

Secrete Key

Figure 1.2: A model of symmetric-key encryption.

On the other hand, asymmetric-key encryption is developed to achieve the encryp-

tion and decryption with two different keys in which one is a public key and another

one is a private key. It is also known as public-key cryptosystems (PKC). In contrast to

2

the symmetric-key encryption, asymmetric-key algorithms are based on the mathematical

functions rather than on the substitution and transposition. For one thing, although the

asymmetric-key ciphers can achieve the same function of encryption, the symmetric-key

ciphers will not be abandoned because the computational overhead of current asymmetric-

key encryption schemes. Usually, the both of symmetric-key and asymmetric-key encryp-

tion schemes are used together in a security system. For example, the short message such

as encryption key is securely generated from the combination of recipient’s public key and

sender’s private key by asymmetric-key ciphers in an open channel, and then the long

message such as plaintext is scrambled by symmetric-key ciphers. In this case, only the

corresponding recipient who has the correct private key can unscramble the ciphertext,

where the decryption key can be obtained from the combination of sender’s public key and

recipient’s private key in the similar way. In addition to the message encryption, due to

the flexibility of using the public/private key pair, the PKC have profound consequences

in the area of confidentiality and authentication. For more practical examples, they can

be referred to the standardized applications, such as WPAN, NFC, SSL, and PGP. An

example model of PKC is shown in Figure 1.3. Note that the PKC are an efficient ap-

proach to solve the problem of key distribution for the symmetric-key encryption, where

the encryption key is usually assumed to be unknown for the recipient before establishing

the communication session.

The traditional achievable method for the PKC is RSA [4], which was publicly de-

scribed in 1977 by Ron Rivest, Adi Shamir, and Leonard Adleman. The difficulty of

attacking RSA is based on the hard problem of finding the big prime factors of a compos-

ite number. To provide a sufficient security, the key size is usually selected to be several

thousands of bits. This big key size results in a high complexity in computation, and it

is inconvenient for user in practical implementation. According to these, in 1985, ellip-

tic curve cryptography (ECC) is independently discovered by Victor Miller [5] and Neal

Koblitz [6] to be an alternative scheme for PKC. Its security is based on the hardness of

a different problem, namely the elliptic curve discrete logarithm problem (ECDLP). Cur-

rently, the best algorithms known to solve ECDLP have fully exponential running time,

in contrast to the subexponential-time algorithms known for the integer factorization.

This means that a desired security level can be attained with significantly smaller keys

3

Information Channel

S
e
c
u
re
 M
e
s
s
a
g
e

M
e
s
s
a
g
e

T
ra
n
s
fo
ra
m
ti
o
n

S
e
c
u
re
 M
e
s
s
a
g
e

M
e
s
s
a
g
e

T
ra
n
s
fo
ra
m
ti
o
n

Sender Recipient

Sender's

Private Key

Recipient's
Public Key

Recipient's
Private Key

Sender's
Public Key

Figure 1.3: A simplified model of PKC.

in elliptic curve systems than those of RSA. For instance, it is generally accepted that a

160-bit elliptic curve key provides the same level of security as a 1024-bit RSA key. The

advantages that can be gained from smaller key size include speed and efficient use of

power consumption, transmission bandwidth, and memory storage.

The security protocol based on ECC schemes has been specified in IEEE standards,

IEEE P1363 [7], in 2000 with an extended version [8] appeared in 2004. The ECC is also

applied in practical commercial electronic products using IEEE 802.15.4 [9] and IEEE

802.15.6 [10]. They are the standards in physical layer for currently existing low power

and low cost solution of ZigBee [11], Bluetooth low energy [12], and wireless body area

networks [13], which are extensively used in industry, business, and medical treatment,

respectively. Moreover, high-speed crypto engine is indispensable for the ubiquitous appli-

cations of computing server. The hardware accelerator of ECC, so called ECC processor,

is dedicated to reducing the system retard from high computation complexity of ECC

functions. Instead of conventional performance-oriented design methods, a current issue

for delivering a decent crypto engine is the device security such as the protection of side-

channel attacks (SCAs). In [14], a demonstration shows that the key in circuit device can

be easily broken by power measurement, while the suitable solution of SCA resistance for

ECC processor has not been discovered much yet.

4

1.1 Previous Works

1.1.1 Elliptic Curve Cryptographic (ECC) Processor

To date, several works of the ECC hardware implementation have been published

in [15–28]. To save hardware complexity, single finite field architecture either for prime

field GF (p) [17, 19, 21, 26, 29] or extension binary field GF (2m) [15, 25, 27], and fixed

modulus approach on specific elliptic curves (ECs) [20–22] can be used. However, the

applications of IEEE P1363 including digital signature are approved for supporting dual-

field (DF) functions on arbitrary ECs. Exploiting carry-save adder trees in word-based

multipliers is a common technique to integrate DF data path [16,24,28], but the limit of

integration for distinct arithmetic units still results in large hardware cost.

In general, the GF (2m) design is faster than the GF (p) design because of carry-free

addition over GF (2m). Besides, there are some well-known techniques to pursue high-

speed GF (2m) ECC design. A divide-and-conquer algorithm, Karatsuba-Ofman (KO)

multiplication [30], is applied to reduce the computation complexity of number of bit

operations. Classical methods to multiply two m-bit polynomials require O(m2) bit oper-

ations. The KO algorithm reduces this to O(mlog2 3). As the polynomial modulus is fixed,

the reduction over GF (2m) is simple [31], and then the throughput of KO multiplier can

be elevated by adopting fully pipelining architecture [32, 33]. Another design technique

over GF (2m) using fixed polynomial modulus is the fast squaring [34]. The binary rep-

resentation of a polynomial a(z)2 is obtained by inserting a zero-bit between consecutive

bits of the binary representation of a(z). Thus the computation complexity is most dom-

inated by the reduction over GF (2m), which is easily achieved by combinational circuit

using exclusive-OR gates only. In contrast to standard (polynomial) representation of

elements over GF (2m), optimal normal basis (ONB) representation [7,34] has benefits in

squaring because it can be achieved by simple shifting operations. But it is inevitable for

the computing overhead of conversion between the standard and ONB representation.

For arithmetic over GF (p), based on Chinese remainder theorem, residue number

system (RNS) [35, 36] represents a large integer using a set of smaller integers, so that

computation may be performed more efficiently. This briefs the long delay within the

data path of carry-propagation adder, and the multiple multipliers can be implemented

5

with parallelism. RNS implementations bear the extra cost of an input converter (binary-

to-RNS) to translate numbers from a standard binary format into residues and an output

converter (RNS-to-binary) to implement the translation from RNS to a binary represen-

tation. An RNS implementation applied to GF (p) ECC processor is presented in [23],

where the technique of data flow graph for the optimization of ECC function is utilized

as well.

For the implementation of scalable architecture performing flexible field length and

arbitrary modulus, Montgomery algorithm [37] is commonly adopted. It is an efficient

approach to achieve the modular multiplication over DFs, where the long-precision integer

division is not required during the calculation of Montgomery multiplication (or called

Montgomery modular multiplication). The key idea is that the reduction after integer

multiplication can be achieved by shifting bit position as the domain constant is selected to

be two to the power of m or x with degree m (i.e., 2m over GF (p) and xm over GF (2m)),

where the constant 2m and xm is so called Montgomery constant. Another benefit for

the hardware implementation of Montgomery algorithm is that the GF (p) and GF (2m)

arithmetic logic unit (ALU) is suitable for integration in VLSI circuit because the sum of

carry-save adder is equal to two bitwise exclusive-OR operators [15,27,38]. The overhead

is the multiplexer to select the data path between operating fields. In [39, 40], a word-

based Montgomery multiplier is presented to avoid the high fanout of AND operators

in conventional serial-parallel architecture [15]. In [16, 24, 41], a w × w multiplier is

exploited to tradeoff between the hardware speed and area cost with flexible size w. As w

equals field length m, one modular multiplication can be performed within several cycle

periods [17,42]. Note that, although the Montgomery algorithm still requires the overhead

of conversion between integer and Montgomery domain, it can be immediately achieved

by Montgomery division described in [38].

For high speed target, a usually adopted technique is the parallel computation with

multiple processing elements (PEs) of homogeneous architecture [18, 24, 43]. However, in

practice, this approach by directly duplicating the PEs has less hardware utilization for

various operations. Another approach of improving computation speed of ECC processor

is the window methods [34]. The key idea is to store some pre-computed data in device,

and then the on-line running time can be reduced.

6

On the contrary, the parallel computation and window methods requiring the overhead

of device memory would not be suitable for the low power and low cost applications

such as radio-frequency identification (RFID). ISO/IEC 18000-3 [44] is an international

standard for the item level identification of the passive RFID, and it also describes the

parameters for air interface communications at 13, 56 MHz. Several previous works [22,29,

45, 46] are targeted at the implementation of low hardware complexity. In [45], a 192-bit

GF (p)/GF (2m) ECC processor supporting hash function [47] and consuming less than

30 µW is reported, while the execution time is over 1 second per operation due to low

operating frequency 175 kHz. In [46], the GF (2m) fast squaring approach is exploited

to efficiently computed inversion in affine coordinates. In [29], a 192-bit GF (p) ECC

processor is presented, where a radix-4 Montgomery multiplication approach is used and

the inversion is achieved by extended Euclidean algorithm [34]. In [22], a 163-bit GF (2m)

ECC design with micro-controller and bus manager is implemented to connect to the

front-end module in RFID device. A dedicated register file management is used to save

the high complexity of multiplexers. To further save the number of temporary register, a

common Z projective coordinate system modified from [48] is exploited.

To pursue the embedded system market, in [49], a hardware/software co-design of

ECC processor is implemented and performed at 12 MHz on an 8051 micro-controller.

Communication overhead due to operand transfers is reduced by integration of a direct

memory access unit and through the inclusion of an additional I/O register into the

hardware accelerator. In [50], a cryptographic core compliant with the IEEE 802.15.4

standard [9] and based on FPGA is described. It consists of three components including

an AES-CCM module, a content-addressable memory achieving an access control list, and

an RSA module based on Montgomery arithmetic.

1.1.2 Side-Channel Attacks (SCAs)

Traditional cryptanalysis assumes that an adversary only has access to input and out-

put pairs without the knowledge about internal states of the device. However, the advent

of side-channel analysis showed that a cryptographic device can leak critical information.

By monitoring the timing, power consumption, electromagnetic emission of the device or

by injecting faults, adversaries can obtain the information about internal processed data

7

or operations, and then the key is extracted out of the cryptographic device without math-

ematically breaking the primitives. This kind of attacks using side-channel information

is so called side-channel attacks (SCAs).

In 1999, Kocher [51] has presented a real threat on the hardware device by power

measurement. The detailed description for the attacks on symmetric-key crypto engine

is given in [14], and the power-analysis attacks are successfully conducted on the micro-

processor, ASIC, and even FPGA. The common techniques against power-analysis attacks

for symmetric-key crypto engine are the dual-rail logic cell equalizing the power consump-

tion and the masking in substitution which depends on the key value. The previous one

needs to change the design flow including the back-end physical layout to ensure inter-

connect capacitances of the true and false output nodes of logic gates are equal; the last

one requires the overhead of hardware speed and cost from combinational circuit. Several

published papers [52–55] show other kinds of logic cells to “balance” the power consump-

tion. On the other hand, a systematic overview for most of currently existing SCAs

and countermeasure on asymmetric-key design is reported in [56]. However, most of the

previous approaches illustrate the theoretical analysis rather than real implementation

together with measurement results. In Chapter 3, we will give more description about the

principle and show the evaluation of power-analysis attacks on ECC device from power

measurement.

1.1.3 Summary of Paper Survey

The research age of ECC hardware implementation is briefly shown in Figure 1.4.

The ECC processor with small key size and single field has less hardware complexity

[22, 25, 29, 49], but it sacrifices the security. The DF design [24, 28, 45, 57, 58] and large

key size approach [38,59] have higher security level. However, there is still relatively little

design targeted at the applications such as cloud computing and portable device, where

the both of flexibility and device security are necessary.

8

Small Key

Single Field

Small Key

Dual Fields

Large Key

Dual Fields

Large Key

Dual Fields

SCA Resistance(~ 2009) (~ 2011) (~ 2012)

Small Key

Dual Fields

SCA Resistance

Cloud Computing

Portable Device

Low High
Security Level

Figure 1.4: Research review of ECC hardware implementation.

1.2 Motivation and Design Challenge

As described in sub-section 1.1, the suitable solution of ECC processor to provide

hardware efficiency against SCAs has not so far appeared. In our work, not only the per-

formance but also the practical applications are taken into consideration. For instance,

the speed is a key factor for server computing. But the RFID device and portable appli-

cations are targeted at the requirements of low power and low cost. These would bring

a big difficulty to the hardware designer due to the trade-off between speed and cost for

current design approaches.

The following are to list the items about our design target:

1. Low SCA-resistant overhead of speed, cost, power and no modification of circuit

design flow

2. Performance improvement from delivering a new hardware architecture

3. Compliance with current standards, such as IEEE P1363 and IEEE 802.15.4/6

4. A high-speed ECC design for the cloud computing

5. An energy-efficient and cost-effectiveness ECC design for the portable applications

9

1.3 Our Solution

RNG

Hardware

Architecture

Scheduling

ECSM
Randomization against SCAs

Key-independent parallel

computation

High radix and multiple types

of processor elements

Enlarging random space

Figure 1.5: Our top-to-down design methods of SCA-resistant ECC processor.

Figure 1.5 briefly illustrates our proposed solution for the design objective. In the

upper-level view, we try to randomize the processed data and schedule the operation tasks

in the key-independent manner for breaking the dependence on attacking model. The

noticeable things are that these methods would not bring much modification for both of the

hardware architecture and circuit design flow, and little overhead is added to the protected

design. For hardware components, the high-radix and heterogeneous processing element

architecture is used to accelerate the modular operations with utilization improvement

as compared to the conventional approaches. The reconfigurable computing is exploited

by arithmetic unit integration for the reduction of hardware complexity. Besides, for the

multiple processing element design, memory hierarchy is adopted to address the data

bandwidth with benefits in power saving. Finally, we use circuit-level design techniques

to improve the randomization ability of random number generator (RNG) in which the

robustness against SCAs is achieved.

10

1.4 Dissertation Organization

The remainder of this dissertation is outlined as follows. Chapter 2 reviews the basics

of PKC and arithmetic of ECC over finite field. Chapter 3 presents the principle and

evaluation of various SCAs on ECC processor. Our proposed countermeasure of SCAs and

hardware design of random source are introduced in Chapter 4 and Chapter 5, respectively.

For the proposed processing elements, operation scheduling, parallel computation, and

memory architecture of ECC processor, they are given in Chapter 6. Chapter 7 shows the

implementation and experiment results of our ECC processor with performance analysis

and power measurement. Finally, Chapter 8 concludes our work and gives several new

research targets for the future as well.

11

Chapter 2

An Overview of Cryptographic

Algorithms

2.1 Public-Key Cryptosystems (PKC)

Public-key cryptosystems (PKC) refer to a cryptographic system requiring two sepa-

rate keys, one of which is secret and one of which is public. Although different, the two

parts of the key pair are mathematically linked. One key locks or encrypts the plaintext,

and the other unlocks or decrypts the ciphertext. Neither key can perform both functions

by itself. The public key may be published without compromising security, while the

private key must not be revealed to anyone not authorized to read the messages.

PKC use asymmetric-key algorithms and can also be referred to by the more generic

term “asymmetric-key encryption.” The algorithms used for PKC are based on mathe-

matical relationships that presumably have no efficient solution. The most notable ones

being the integer factorization and discrete logarithm problem (DLP). Although it is com-

putationally easy for the intended recipient to generate the public and private keys, to

decrypt the message using the private key, and easy for the sender to encrypt the mes-

sage using the public key, it is extremely difficult or effectively impossible for anyone to

derive the private key, based only on their knowledge of the public key. This is why,

unlike symmetric-key algorithms, a public-key algorithm does not require a secure initial

exchange of one or more secret keys between the sender and receiver. The use of these

algorithms also allows the authenticity of a message to be checked by creating a digital

12

signature of the message using the private key, which can then be verified by using the

public key. In practice, only a hash of the message is typically encrypted for signature

verification purposes.

There are three primary kinds of PKC: public-key distribution systems, digital signa-

ture systems, and public-key cryptosystems, which can perform both public key distri-

bution and digital signature services. Diffie-Hellman key (DHK) exchange is the most

widely used public-key distribution system, while the digital signature algorithm (DSA)

is the most widely used digital signature system.

For the history of PKC, the pioneering paper by Diffie and Hellman [60] presented an

approach to cryptography and challenged cryptologists to come up with a cryptographic

algorithm that met the requirements for public-key systems. The first achievable method

is the RSA [4]. It is a block cipher in which the plaintext and ciphertext are integers

between 0 and n− 1 for some n. Plaintext is encrypted in blocks, with each block having

a binary value less than some number n. A typical size for n is 1024 bits or 309 decimal

digits. The following are the brief description of the RSA algorithm.

For some plaintext block M and ciphertext block C, encryption and decryption of

RSA are of the following form.

C =Me (mod n)

M = Cd (mod n) = (Me)d (mod n) =Med (mod n).

Both sender and receiver must know the value of n. The sender knows the value of e,

and only the receiver knows the value of d. Thus, this is a public-key encryption algorithm

with a public key of PU = {e, n} and a private key of PR = {d, n}. For this algorithm

to be satisfactory for public-key encryption, the following requirements must be met.

1. It is possible to find values of e, d, n such that Med (mod n) =M for all M < n.

2. It is relatively easy to calculate Me (mod n) and Cd (mod n) for all values of M <

n.

3. It is infeasible to determine d given e and n.

The preceding relationship holds if e and d are multiplicative inverses modulo φ(n),

where φ(n) is the Euler’s totient function. For p, q prime, φ(pq) = (p− 1)× (q− 1). The

13

relationship between e and d can be expressed as ed (mod φ(n)) = 1. This is equivalent

to saying ed ≡ 1 (mod φ(n)) and d ≡ e−1 (mod φ(n)). That is, e and d are multiplicative

inverses (mod φ(n)). Note that, according to the rules of modular arithmetic, this is true

only if d (and e) is relatively prime to φ(n) (i.e., gcd(φ(n), d) = 1).

We are now ready to state the RSA scheme. The ingredients are the following.

• p, q two prime numbers (private, chosen)

• n = pq (public, calculated)

• e, with gcd(φ(n), e) = 1 and 1 < e < φ(n) (public, chosen)

• d ≡ e−1 (mod φ(n)) (private, calculated)

The private key consists of {d, n} and the public key consists of {e, n}. Suppose that

user Alice has published her public key and that user Bob wishes to send the message

M to Alice. Then Bob calculates C = Me (mod n) and transmits C. On receipt of this

ciphertext, user Alice decrypts by calculating M = Cd (mod n).

For the security of RSA, there are three approaches to attacking RSA mathematically.

1. Factor n into its two prime factors. This enables calculation of φ(n) = (p−q)×(q−1),

which, in turn, enables determination of d ≡ e−1 (mod φ(n)).

2. Determine φ(n) directly, without first determining p and q. Again, this enables

determination of d ≡ e−1 (mod φ(n)).

3. Determine d directly, without first determining φ(n).

Most discussions of the cryptanalysis of RSA have focused on the task of factoring n

into its two prime factors. Determining φ(n) given n is equivalent to factoring n. With

presently known algorithms, determining d given e and n appears to be at least as time-

consuming as the factoring problem [61]. Thus, we can use factoring performance as a

benchmark against which to evaluate the security of RSA.

For the size of n, a number of other constraints have been suggested by researchers.

To avoid values of n that may be factored more easily, the algorithm’s inventors suggest

the following constraints on p and q.

14

1. p and q should differ in length by only a few digits. Thus, for a 1024-bit key, both

p and q should be on the order of magnitude of 1075 to 10100.

2. Both (p− 1) and (q − 1) should contain a large prime factor.

3. gcd(p− 1, q − 1) should be small.

The key size of 1024 bits was generally considered the minimum necessary for the RSA

encryption algorithm. However, it would result in high complexity of hardware cost and

time execution. Figure 2.1 shows the comparison of security strengths for ECC versus

RSA. It is shown that the key size of ECC can be several tens of times shorter than that

of RSA with equivalent security. This also means that the user has convenience in using

the shorter key by ECC approach.

Figure 2.1: Security comparison of ECC versus RSA.

15

2.2 Arithmetic of Elliptic Curve Cryptography (ECC)

over GF (p) and GF (2m)

As described in IEEE P1363 [7], the standardized elliptic curve (EC) over GF (p) is

y2 = x3 + apx + bp, where x, y ∈ GF (p) and 4a3p + 27b2p 6= 0 (mod p), and the other

one over GF (2m) is y2 + xy = x3 + abx
2 + bb with x, y ∈ GF (2m) and bb 6= 0. For the

ECC schemes, the discrete logarithm problem (DLP) is based on the elliptic curve scalar

multiplication (ECSM) such that KP = P+P+· · ·+P with an integer private key K and

a point P (x, y) on EC. The ECSM is applied in ECC as a means of producing a trapdoor

function. Thus the security of ECC depends on the intractability of determining K from

Q = KP given known values of Q and P . The fundamental theorem of arithmetic about

ECC is described in the guide books [62, 63].

For implementation, the ECSM is the most time-critical operation, and it can be

achieved by the serial EC point addition and doubling (ECPA and ECPD) with binary

method. Note that the ECPA is to perform P3(P3x , P3y) ← P1(P1x , P1y) + P2(P2x , P2y)

with P1 6= ±P2, and the ECPD calculates P3(P3x , P3y) ← 2P1(P1x , P1y) with P1 6= −P1.

The dual-field (DF) arithmetic of ECPA and ECPD in affine coordinates is summarized

in Table 2.1, where the EC point subtraction (ECPS) can be achieved by performing the

ECPA with modification of coordinate values such as P (x, y) → −P (x,−y) over GF (p)

and P (x, y)→ −P (x, x+ y) over GF (2m).

Table 2.1: Formulas of EC Point Calculation (ECPC) in Affine Coordinates

Field ECPA ECPD

GF (p)

λ =
P1y−P2y

P1x−P2x
λ =

3P 2
1x

+ap

2P1y

P3x = λ2 − P1x − P2x P3x = λ2 − 2P1x

P3y = λ(P2x − P3x)− P2y P3y = λ(P1x − P3x)− P1y

GF (2m)

λ =
P1y+P2y

P1x+P2x
λ = P1x +

P1y

P1x

P3x = λ2 + λ+ P1x + P2x + ab P3x = λ2 + λ+ ab

P3y = λ(P2x + P3x) + P3x + P2y P3y = λ(P1x + P3x) + P3x + P1y

16

The ECPC can be implemented in several coordinate systems, where the computa-

tional complexity analysis can be referred to [64] and [22]. The major operations of ECPC

over both GF (p) and GF (2m) are summarized in Table 2.2, where the notation of MD,

MM, and MS represents the modular division, multiplication, and squaring, respectively.

Note that the GF (2m) MS with a fixed irreducible polynomial [34] can be performed

within relative fewer cycles than those of the MD and MM, but the fixed irreducible poly-

nomial method restricts the flexibility and results in the low security. Since our work is

targeted at supporting the arbitrary irreducible polynomial, the MS is regarded as the

MM with the same multiplier and multiplicand. From comparison Table 2.2, it can be

found that as the time ratio MD
MM

is smaller than 3, the ECSM performance is the fastest in

the affine coordinates over DFs. Otherwise, the computation time is less in the projective

coordinates.

17

Table 2.2: Operations for ECPC over DFs in Various Coordinates

Field ECPC Modular Operations

GF (p)

ECPD

A← 2A 1MD + 1MM + 2MS

SP← 2SP 7MM + 5MS

J← 2J 4MM + 6MS

Jm ← 2Jm 4MM + 4MS

JC ← 2JC 5MM + 6MS

ECPA

A← A + A 1MD + 1MM + 1MS

SP← SP+ SP 12MM + 2MS

J← J+ J 12MM + 4MS

Jm ← Jm + Jm 13MM + 6MS

JC ← JC + JC 11MM + 3MS

J← J + A 8MM + 3MS

Jm ← Jm + A 9MM + 5MS

JC ← JC + A 8MM + 3MS

GF (2m)

ECPD

A← 2A 1MD + 1MM + 1MS

LD← 2LD 4MM + 1MS

LDm ← 2LDm 5MM + 1MS *

ECPA

A← A + A 1MD + 1MM + 1MS

LD← LD+ LD 2MM + 4MS

LDm ← LDm + LDm 2MM + 3MS

A:affine, SP:standard projective, J:Jacobian, Jm:modified Jacobian,

JC: Chudnovsky Jacobian, LD:López-Dahab, LDm:modified López-Dahab.

* The respective coordinates z are unequal values.

18

2.3 Specifications for Applications

2.3.1 IEEE P1363

The standard IEEE P1363 [7] with its extension version [8] specify several prim-

itives based on ECC to achieve the cryptographic schemes. For the key agreement

schemes, the primitives include elliptic curve secret value derivation primitive Diffie-

Hellman (ECSVDP-DH) [5, 6, 65] and elliptic curve secret value derivation primitive

Menezes-Qu-Vanstone (ECSVDP-MQV) [66]. For the signature schemes with appendix,

the primitives include elliptic curve signature primitive Nyberg-Rueppel (ECSP-NR) [5,6,

67] and elliptic curve signature primitive digital signature algorithm (ECSP-DSA) [5,6,68].

In addition, elliptic curve integrated encryption scheme (ECIES) [69] is adopted to im-

plement encryption and decryption.

2.3.2 IEEE 802.15.4/6

As specified in the IEEE 802.15.4 [9], the symmetric-key cryptographic algorithm

uses block cipher AES [3] with three operation modes; that is, counter (CTR), ci-

pher block chaining message authentication code (CBC-MAC), and CTR with CBC-MAC

(CCM) [70]. Also, it is applied to conduct the security schemes involving with encryp-

tion, authentication, and message integrity, respectively. In addition to two AES operation

modes, cipher-based message authentication code (CMAC) [71] and CCM exerted in IEEE

802.15.6 [10], an asymmetric-key cryptographic algorithm based on ECC [7] is adopted to

achieve the message exchange with Diffie-Hellman key (DHK) agreement [65] on an open

channel.

AES algorithm

As described in [3], the AES cipher processes a 128-bit plaintext block with either 128,

192, or 256-bit secret key to generate a 128-bit ciphertext block. The design with larger

key size provides higher security level but it has more processed cycles. A round is the

basic transformation function in AES algorithm, and the number of rounds for one AES

encryption depends on the key size. Key sizes 128, 192, and 256-bit refer to 10, 12, and 14

rounds respectively for single 128-bit input message. The round function consists of four

19

basic transformations: SubByte, ShiftRow, MixColumn, and AddRoundKey, except for the

last round, which is without MixColumn. The KeySchedule algorithm expends the secret

key in a word-oriented fashion, and it generates a 128-bit round key every round to add

the state value by a simple bit-wise exclusive-OR operation in AddRoundKey, where the

state value is a 16 8-bit temporary data for AES round calculation.

Encryption, authentication, and message integrity

Figure 2.2(a) and Figure 2.2(b) show the AES schemes including encryption (or de-

cryption), authentication, and message integrity by using CTR, CBC-MAC/CMAC, and

CCM modes, respectively. In the CTR mode, the plaintext is encrypted by performing

bit-wise exclusive-OR logic operator with a block-stream ciphertext, which is produced

from the AES output by feeding in a block message consists of nonce and counter. Note

that the data flow of decryption in CTR mode is the similar with that of encryption.

For the CBC-MAC and CMAC modes, a message integrity code (MIC) is produced by

a chain reaction of AES encryption for detecting any tampering in the plaintext. For

achieving the message integrity scheme (i.e., authenticated encryption), the CCM mode

is efficiently implemented by a combined operation of CTR and CBC-MAC modes.

Message exchange with DHK agreement

Figure 2.3 shows the procedure before message exchange between two parties commu-

nicating over an insecure channel based on well-known DHK agreement [65]. Address A

and Address B represent the media access control address of Alice and Bob, respectively,

and security suite indicates the security level of cipher function. Note that both of the

public-key generation and DHK agreement can be achieved by performing the ECSM

from a selected private key. As communicating in an open channel, the delivered message

is encrypted and decrypted by using the AES CCM mode based on a master key (MK),

which is refreshed and activated when a new party is joining in the network.

20

AES
EncryptionKey

c 5 0 1
Nonce Counter

AES
EncryptionKey

c 5 0 2
Nonce Counter

AES
EncryptionKey

c 5 F F
Nonce Counter

S1 || S2 || || Sm
S1 S2 Sm

Plaintext ||

AES
EncryptionKey

Plaintext
M127~0

AES
EncryptionKey

Plaintext

IV

Plaintext

AES
EncryptionKey

Last BlockM255~128
0

K1

CMAC

MSBTlen(…

AES
Encryption Key

c 5 0 0
Nonce Counter

S0

Ciphertext

MIC

MSBTlen(…

AES
EncryptionKey

Plaintext
M383~256

(a) Encryption

AES
EncryptionKey

c 5 0 1
Nonce Counter

AES
EncryptionKey

c 5 0 2
Nonce Counter

AES
EncryptionKey

c 5 F F
Nonce Counter

S1 || S2 || || Sm
S1 S2 Sm

MSBClen-Tlen(Ciphertext…
≠

AES
EncryptionKey

Plaintext
M127~0

AES
EncryptionKey

Plaintext

IV

Plaintext

AES
EncryptionKey

Last BlockM255~128
0

K1

CMAC

MSBTlen(…

AES
Encryption Key

c 5 0 0
Nonce Counter

S0

Invalid

MIC

MSBTlen(…
LS

B T
le

n(
C

ip
he

rte
xt

…

Plaintext

AES
EncryptionKey

Plaintext
M383~256

(b) Decryption

Figure 2.2: The data flow of each AES mode, where the nonce and initial vector

(IV) are an arbitrary number and secrete value, respectively. The functional notation

MSBTlen/LSBTlen denotes the most/least significant Tlen bits of the data, and Tlen/Clen

is the bit length of the MIC/ciphertext.

21

1a. Choose private key KA and
calculate public key QA=ECSM(KA, P…

1b. Choose private key KB and
calculate public key QB=ECSM(KB, P…

4b. Reply Ack frame

2a. Select 128-bit Nonce A
3a. Send Nonce A, QA Address A, Address B, and Security Suite

7b. Compute DHK=x-coordinate(ECSM(KB,QA……
KMAC 3B=MSB64(CMAC(MSB128(DHK…,Address A||Address B||Nonce A||Nonce B||Security Suite……
KMAC 4B=MSB64(CMAC(MSB128(DHK…,Address B||Address A||Nonce B||Nonce A||Security Suite……

Bob

2b. Select 128-bit Nonce B

8b. Send Nonce B, QB, KMAC 3B, Address A,
Address B, and Security Suite

6a.Reply Ack frame

7a. Compute DHK=x-coordinate(ECSM(KA,QB……
KMAC 3A=MSB64(CMAC(MSB128(DHK…,Address A||Address B||Nonce A||Nonce B||Security Suite……
KMAC 4A=MSB64(CMAC(MSB128(DHK…,Address B||Address A||Nonce B||Nonce A||Security Suite……

10a. Check KMAC 3A=?KMAC 3B
Do not proceed if check fails
11a. Send Nonce A, QA ,KMAC 4A,
Address A, Address B, and Security Suite

12b. Reply Ack frame
13b. Check KMAC 4A=?KMAC 4B
Do not proceed if check fails

14. Both parties compute & activate their new MK=CMAC(LSB128(DHK…, Nonce A||Nonce B…

9a. Reply Ack frame

5b. Send Nonce B,
QB, and Address A,
Address B, and
Security Suite

Alice

Figure 2.3: Message can be securely sent based on MK to a specific party by using

both of asymmetric and symmetric-key algorithm without pre-knowledge encryption and

decryption keys.

22

Chapter 3

Side-Channel Attacks (SCAs)

Modern security systems apply the cryptographic algorithms to provide confidentiality,

integrity, and authenticity of data, where the cryptographic algorithms are mathematical

functions that usually take two input parameters, including message (also called plain-

text) and a cryptographic key. The cryptographic algorithms map these parameters to

an output, called ciphertext, and this process is regarded as the encryption. In current

cryptography, the cryptographic algorithms are assumed to be known, which means that

all details about the cryptographic algorithms are publicly available and only the crypto-

graphic key is kept secret. This notion can be traced back to Auguste Kerckhoffs [72], who

was a Dutch cryptographer of the 19th century, and the concept is famous as “Kerckhoffs’

principle”.

Breaking a cryptographic algorithm typically means that finding the secret key is

based on some public information, such as instance pairs of plaintexts and ciphertexts.

A cryptographic algorithm is considered to be secure in practice if there are no attacks

known that can break it within a reasonable amount of time and with a reasonable amount

of computing power. Many algorithms are designed such that the effort of breaking them

grows significantly or exponentially with the number of bits of the key. Consequently, the

length of the key is an important factor in the security of a cryptographic algorithm.

Crypto engines are the electronic devices, such as an application-specified integrated

circuit (ASIC), field-programmable gate array (FPGA), or microprocessor, that imple-

ment cryptographic algorithms using the keys stored on them. The fact that crypto

engines are used to accelerate the cryptographic algorithms, while this leads to a new

23

issue for the practical security of the algorithms. In practice, not only the security of

the cryptographic algorithm should be taken into concern. The security of the whole

system, i.e. the crypto engine that implements the cryptographic algorithms, needs to be

considered. Breaking a crypto engine means extracting the key of the device. A person

who tries to extract the key of a crypto engine in an unauthorized way is the attacker,

and then any attempt to extract the key in an unauthorized way is viewed as an attack.

In order to evaluate the security of a crypto engine, it is necessary to make assumptions

about the knowledge that an attacker has about it. The strongest assumption is that the

attacker is assumed to know the details of the crypto engines.

In recent years, several kinds of attacks on crypto engines have become public. Side-

channel attacks (SCAs) are the attacks based on information leakage obtained from the

physical implementation of cryptosystems, rather than brute force or theoretical weak-

nesses in the algorithms. In Figure 3.1, for example, the timing information, power

consumption, electromagnetic leaks or even sound can provide an extra source of infor-

mation, which can be exploited to break the system. Among of them, the power-analysis

attacks, initially presented by Kocher [51], have received such a large amount of attention

because they are very powerful and because they can be conducted relatively easily. The

basic idea of this kind of attacks is to reveal the key of a crypto engine by analyzing

its power consumption. The variation of power consumption is directly to reflect the

difference of key-dependent processed data, where the total power consumption Ptotal of

a cell is the sum of static power Pstat and dynamic power Pdyn as shown in Figure 3.2.

Consequently, the power-analysis attacks pose a serious threat to the security of crypto

engines in practice.

In this dissertation, we have tried our best to investigate the state-of-the-art ap-

proaches of power-analysis attacks. They include the simple power-analysis (SPA) at-

tacks [51], differential power-analysis (DPA) attacks [73], zero-value power-analysis (ZPA)

attacks [74], and collision power-analysis (CPA) attacks [75]. The concepts of them are

described in the following sub-sections, and we also show the successful attacks of the

power measurement conducted on the devices. Figure 3.3(a) and Figure 3.3(b) show our

power-analysis verification environment of the chip, where it is powered by an ECC crypto

engine fabricated by UMC 90-nm CMOS technology.

24

Processing Time
Electromagnetic

Emission

Current, Voltage

Plaintext, Ciphertext, Key and Password

Data I/O

Figure 3.1: Scenario of side-channel attacks on hardware device.

total dyn stat L dd2 leak dd

L

dd

Figure 3.2: Power consumption of CMOS circuits with supply voltage Vdd and leakage

current Ileak.

25

(a)

(b)

Figure 3.3: (a) Environment of power measurement. (b) Current running through the

chip is recorded by measuring the voltage drop via a resistor in series with the core power

and supply power.

26

For a quick preview, the ECC processor is targeted at accelerating the elliptic curve

scalar multiplication (ECSM) KP , where K is the private key and P is the point on

elliptic curve. Thus the object of power-analysis attacks on ECC processor is to extract

the private key K by the measured power traces of ECSM calculation. Since P is usually

public, it is reasonable to assume that the attacker has the information about P , and the

attacker can control or inject any input values of P as possible.

27

3.1 Simple Power-Analysis (SPA) Attacks

Simple power-analysis (SPA) is the technique that involves directly interpreting power

measurement collected during cryptographic operations. In other words, the attacker tries

to derive the key more or less directly from a given power trace. The SPA attacks are

useful in practice if only one or very few power traces are available for a given set of inputs.

In the attacked device, the key must have a significant impact on the power consumption,

otherwise the effectiveness of SPA attacks is reduced by the noise.

Algorithm 1 shows the conventional ECSM by the left-to-right double-and-add (LR-

DA) binary method [17]. With this approach, there is a branch in Step 4, where the

ECPA depends on the value of i-th bit position of the key K. It means that the execution

time of ECSM is correlated to the hamming weight of the key, and then the SPA attacks

become a threat to reveal the key value through recording power traces over time.

Algorithm 1 LR-DA ECSM

Input: K and P

Output: KP

1: Let Q0 ← 0

2: For i from m− 1 to 0 do

3: Q0 ← 2Q0

4: If Ki = 1 then Q0 ← Q0 + P

5: Return Q0

Figure 3.4 shows the power traces for different hamming weight of the key over time

obtained from an unprotected ECC chip performing LR-DA ECSM in Algorithm 1, where

the hamming weight of the key is denoted by H(K). As the chip is processing, it consumes

1.79 mW at 10 MHz, which results in a voltage drop above 50 mV across the measured

resistor. From these waveforms, the key value in the chip using LR-DA ECSM can

be distinguished by visual inspections because the processing time is dependent on the

hamming weight of the key.

As shown in Algorithm 2, the left-to-right double-and-add-always (LR-DAA) ECSM

performing the uniformed ECPC in each iteration can resist the SPA attacks [22], but

it averagely requires 50% ECPA operation overhead. In sub-section 4.3, we present our

28

Figure 3.4: SPA attacks on the unprotected ECC chip using LR-DA binary method

of ECSM, where the power traces are recorded by 50.0 mV/div voltage resolution and

2.0 ms/div time base.

29

new method which not only resists the SPA attacks but also has more efficiency in the

overhead of computing ECSM.

Algorithm 2 LR-DAA ECSM

Input: K and P

Output: KP

1: Let Q0 ← 0, Q1 ← P

2: For i from m− 1 to 0 do

3: Q0 ← 2Q0

4: Q1 ← Q0 + P

5: Q0 ← QKi

6: Return Q0

30

3.2 Differential Power-Analysis (DPA) Attacks

In contrast to SPA attacks, differential power-analysis (DPA) attacks exploit a large

number of power traces to analyze the power consumption at a fixed moment of time

as a function of the processed data. In general, even though the execution time is inde-

pendent on the key value or the noise dominates the device power, the DPA attacks can

be conducted on the SPA-resistant crypto engine to extract private information as any

key-dependent power still exists. In SPA attacks, the power consumption of a device is

mainly analyzed along the time axis. The attacker tries to find patterns or tries to match

templates in a single trace. In case of DPA attacks, the shape of the traces along the

time axis is not so important. The DPA attacks evaluate how the power consumption at

a specific sampling time depends on the processed data. Hence, the DPA attacks focus

exclusively on the data dependency of the power traces.

The strategy to apply DPA attacks on crypto engine has four steps.

1. Choosing a key-dependent intermediate result of the executed algorithm.

2. Measuring the reference power consumption to build the power model.

3. Measuring the target power consumption.

4. Comparing the correlation between the target and reference power traces.

For example, to attack the SPA-resistant ECC processor using Algorithm 2, the scenario

is shown in Figure 3.5. The intermediate values of ECPD in Steps 3 depend on the zero

and non-zero bits of the key value in Step 5. Hence, with a chosen point P , the key value

can be distinguished by matching the power trace segment of ECPD calculation.

In Figure 3.6, the correlation coefficients between the target traces and power model

for all possible hamming distances of the point coordinate Q0 in Algorithm 2 are plotted

over power traces, and those of the correct and incorrect key hypothesis are plotted in

black and gray, respectively. In this case, as more than ten thousand power traces are

used, the correlation value of the correct key is the highest one among that of all the other

key hypotheses, and then the bit value of key can be found easily. As a result, by this

approach, an overall 160 to 521-bit key of ECC device can be extracted within hundreds

experiments.

31

Statistical Analysis

Correlation Coefficient (CC):

CC(R0i, T0i) > CC(R1i, T0i)

K_Ti = 0 is found

The i-th bit of key K_Ri = 0

Operation: 2Q0

Intermediate value: ED56 … 12FB

Measured M reference traces R0i1~M

with L sample points

Next round for K_Ti-1

K_Ri = 0 is correct hypothesis

K_Ri = 1 is incorrect hypothesis

R0i1,1 R0i1,2

R0i2,1

R0iM,1

R0i1,L

R0iM,L

R0i2,LR0i2,2

R0iM,2

The i-th bit of key K_Ri = 1

Operation: 2Q1

Intermediate value: 07AB … AA33

Measured M reference traces R1i1~M

with L sample points

R1i1,1 R1i1,2

R1i2,1

R1iM,1

R1i2,2

R1iM,2

R1i1,L

R1iM,L

R1i2,L

The i-th bit of key K_Ti = 0

Operation: 2Q0

Intermediate value: ED56 … 12FB

Measured M target traces T0i1~M

with L sample points

T0i1,1 T0i1,2

T0i2,1

T0iM,1

T0i1,L

T0iM,L

T0i2,LT0i2,2

T0iM,2

...

...

...

...

...

...

..
.

..
.

..
.

..
.

..
.

..
.

Figure 3.5: DPA attacks on an ECC device.

32

Correct Hypothesis
Incorrect Hypothesis

3

3

Figure 3.6: Correlation analysis obtained from an unprotected ECC chip by conducting

the DPA attacks.

33

Hiding technique with algorithm-independent dedicated circuit is a common approach

to protect crypto engines from attackers collecting the key-dependent characteristics of

power traces. In [76], wave dynamic differential logic (WDDL) circuit with regular rout-

ing algorithm is exploited to equalize the current between rising and falling transitions.

However, more than 200% overhead in area, performance, and power consumption is

added to the unprotected crypto engines due to precharging for half cycle, and gener-

ating complementary logic outputs from divided single ended modules with equivalent

power consumption. Switched capacitor [77] is able to isolate the encryption core from

the external power supplies, but this approach results in 50% speed loss for replenishing

charge every cycle. In order to avoid the throughput degradation, a countermeasure cir-

cuit using digital controlled ring oscillators [78] is designed outside of the critical path.

The concept is to generate random noise power to dominate the power consumption of

arithmetic unit, and then, the correlation peak would not be found even matching the cor-

rect key value. However, this demands extra 100% power overhead for the key-dependent

processing element.

At the algorithm level, masking the processed data independent of power consumption

is another approach to avoid the DPA attacks. For the ECC schemes, since the scalar

K of ECPC is periodic with the point order #E, a key-blinded technique proposed by

Coron [79] can be adopted to change the key value by adding α · #E for every ECSM

calculation such as KP = (K + α · #E)P , where α is a random integer. However,

with this method, the throughput overhead is inevitable due to extending the key length.

In [38], the ECSM of 521-bit key extended with a 32-bit random value needs 10% more

execution time to be carried out than that of the unprotected approach. Another DPA

countermeasure also presented in [79] is to mask the primary base point with the pre-

computed random points M and N = KM . Then the ECSM is achieved by computing

K(P +M) = KP ′ and subtracting N before returning such that KP ′ − N = KP . For

every next ECSM calculation, the random points M and N are refreshed by performing

M ← (−1)β2M and N ← (−1)β2N with a single random bit β. But the time-cost random

elliptic curve point generation (ECPG) is not suitable for real-time applications as the

EC parameters are various with different users. In [80], the EC isomorphism method can

randomize the primary base point by simple finite field operations without pre-computing

34

random points. However, it is limited to be applied in single finite field GF (p).

In sub-section 4.1, we present our method against the DPA attacks, and it has benefits

in the overhead of the hardware cost, speed, and even the power consumption. Also, our

DPA-resistant approach is suitable for DF implementation and standard applications

without any pre-computation.

35

3.3 Zero-Value Power-Analysis (ZPA) Attacks

Zero-value power-analysis (ZPA) attacks generalize the refined power-analysis (RPA)

attacks presented by Goubin [81], where the RPA attacks focus on the analysis of the

existence of zero-value for the coordinates of point P in ECSM calculation, such as (x, 0)

and (0, y). In contrast, the ZPA attacks exploit any key-dependent information of zero-

value in device calculation. Even if a point has no zero-value point coordinates, the

temporary registers or processing elements might take zero-value. A large amount of

transition to zero-value in transistor results in a large variation of power consumption

due to charging or discharging current. These attacks are available because the point in

ECC scheme is usually public. Thus the attacker can control the primary base point P ,

and then let the chip perform ECSM as usual.

Both of the ZPA and RPA attacks can still extract the key value of the SPA and

DPA-resistant device. The unified or double-and-add-always ECSM such as Algorithm 2

and the randomized techniques including random projective coordinates [79], randomized

EC isomorphism [80], randomized field isomorphism [80] cannot avoid the key-dependent

zero-value. Thus a unified countermeasure of SCAs is necessary.

After applying the correlation analysis, Figure 3.7 shows a successful ZPA attack on an

unprotected ECC device, where the correlation value of correct and incorrect hypothesis

is plotted in black and gray color, respectively. The correlation value of the correct key

is the highest one among that of all the other key hypotheses as the zero-value happens,

and then the bit value of key can be revealed. As the attacker intends to collect more

information of the key value, then the primary base point P can be changed and apply

the ZPA attacks during ECSM calculation until disclosing the overall bit value of the key.

To protect the ZPA attacks, the randomized base point technique [79] can be applied

for eliminating the correlation between point coordinates and key value, and it also de-

feats the fault attacks by injecting low order point [74]. In sub-section 4.2, we present an

efficient method to generate the random EC points. Besides, our corresponding imple-

mentation architecture is described in sub-section 6.1 and sub-section 6.3.

36

KP = P + P + P + + P + + P
0.6

-0.2
-0.1

0.5
0.4
0.3
0.2
0.1

0

3
210

Correct Hypothesis
Incorrect Hypothesis

Figure 3.7: Correlation analysis obtained from an unprotected ECC chip by conducting

the ZPA attacks.

37

3.4 Collision Power-Analysis (CPA) Attacks

Collision power-analysis (CPA) attacks use a pre-decided pair of messages (or primary

inputs) to generate the key-dependent collisions between their power traces at arbitrary

time frames. In ECC scheme, the successful CPA attacks can be conducted to reveal

the key value as even the conventional SPA-resistant LR-DAA ECSM in Algorithm 2 is

adopted. By injecting a pair of primary input points P and 2P , the attacker is able to

classify the bit value of private key K from matching the power segment waveforms of

ECPD operations.

To formally illustrate the CPA attacks on the design using LR-DAA ECSM, the j-th

ECPD operations for input points P and 2P are given as follows:

2(2(· · · (2(2(2P +Km−2P) +Km−3P) +Km−4P) + · · ·) +Km−(j−1)P)

and

2(2(· · · (2(2(2(2P) +Km−2(2P)) +Km−3(2P)) +Km−4(2P)) + · · ·) +Km−(j−1)(2P)),

respectively. According to these formulations, if the bit Km−(j−1) is zero value, then the

(j− 1)-th ECPD for the case of input point 2P is the same as the j-th ECPD with input

point P . On the other hand, if the value ofKm−(j−1) is non-zero, the ECPD operations are

different due to the ECPA calculation. An example of the CPA attacks for Algorithm 2

is shown in Figure 3.8. As a result, the zero bits and non-zero bits of key value can be

distinguished from collisions and non-collisions by comparing the correlation of ECPD

power traces.

ECPC

ECPD

ECPA

ECPD

ECPA

0

P

0

2P

2P

3P

4P

6P

4P

5P

8P

10P

8P

9P

16P

18P

18P

19P

36P

38P

36P

37P

72P

74P

74P

75P

148P

150P

1 0 0 1 0 1 1Input Point

P

2P

K =

Q0 =

Q1 =

Q0 =

Q1 =

Figure 3.8: Example of the CPA attacks for the LR-DAA ECSM.

From the experiment results for unprotected ECC device shown in Figure 3.9, the cor-

relation analysis shows that there are high dependence and independence between the zero

38

and non-zero bit value of key due to collision and non-collision operations, respectively.

The correlation coefficients of the power traces related to the zero and non-zero bits of

the key are drawn in circle and star, respectively. The mean of correlation coefficients

for zero and non-zero bits is over 0.8 and near 0 due to the key-dependent collisions and

non-collisions, respectively. Note that the bit value of the key can be distinguished from

a difference of at least 0.4 in correlation coefficients.

To protect the CPA attacks, the right-to-left double-and-add-always (RL-DAA) binary

method of ECSM in Algorithm 3 can be applied for eliminating the key-dependent ECPD.

However, Algorithm 3 prevents the private key from being revealed by detecting the

difference among ECPD operations with specific primary input points, the read-after-

write scheduling hazard inherently exists in ECPC. The ECPA Q1i ← Q0i−1
+ Q2i−1

for

i-th iteration in Step 3 can only be processed after finishing the ECPD Q2i−1
← 2Q2i−2

for previous iteration in Step 4. This operand dependency results in a long latency for

idling through parallel computations. In sub-section 4.3, we present a new method to

explore the parallelism of Algorithm 3. Besides, our corresponding operation scheduling

to improve the hardware utilization is described in sub-section 6.2.

Algorithm 3 RL-DAA ECSM

Input: K and P

Output: KP

1: Let Q0 ← 0, Q1 ← 0, Q2 ← P

2: For i from 0 to m− 1 do

3: Q1 ← Q0 +Q2

4: Q2 ← 2Q2

5: Q0 ← QKi

6: Return Q0

39

1.0

-0.4
-0.2

0.8
0.6
0.4
0.2

0

5002500

0.83
0.01

Ki=0
Ki=1*

Figure 3.9: Correlation analysis obtained from an unprotected ECC chip by conducting

the CPA attacks.

40

Chapter 4

Proposed Countermeasure of SCAs

4.1 Randomized Montgomery Operations

The fundamental concept of DPA countermeasure is to break the dependency between

intermediate values and power traces. For achieving the ECPC, the well-known Mont-

gomery algorithm [37] is usually adopted to perform the field arithmetic in a specific

domain such that A ≡ a · r (mod p), where a is in the integer domain and r = 2m is the

Montgomery constant with m-bit field length. In this work, we introduce an approach to

resist the DPA attacks at modular algorithm by calculating the operands in a randomized

Montgomery domain A ≡ a · 2λ (mod p), where it is also a kind of random field auto-

morphism. The domain value λ equals the Hamming weight of an n-bit random value

α, and it is represented by λ = H(α). Note that n is the maximum field length and the

bit values of (αn−1, αn−2, . . . , αm) are set to zero for preventing λ from exceeding m. By

exploiting this approach, the intermediate values can be masked because they are various

with different domain values such as 2g (mod p) 6= 2h (mod p) when 0 ≤ g 6= h < m.

The definition of overall randomized Montgomery operations for input operands X ≡ x·2λ

(mod p) and Y ≡ y · 2λ (mod p) is summarized in Table 4.1.

An example of the randomized Montgomery operations with modulus 7 is shown in

Figure 4.1. As λ = 0, the elements 1 to 6 is aligned as the same as those in the integer

domain. As λ = 1, the elements (1, 2, 3, 4, 5, 6) with λ = 0 are mapped to the elements

(2, 4, 6, 1, 3, 5). Similarly, as λ = 2, the elements (1, 2, 3, 4, 5, 6) with λ = 0 are mapped to

the elements (4, 1, 5, 2, 6, 3). These mean that the processed data can be randomized by

41

the proposed approach.

Table 4.1: Operations in Randomized Montgomery Domain

Operation Arithmetic

Randomized Montgomery multiplication (RMM) RMM(X, Y) ≡ x · y · 2λ (mod p)

Randomized Montgomery division (RMD) RMD(X, Y) ≡ x · y−1 · 2λ (mod p)

Randomized addition (RADD) RADD(X, Y) ≡ (x+ y) · 2λ (mod p)

Randomized subtraction (RSUB) RSUB(X, Y) ≡ (x− y) · 2λ (mod p)

λ

λ

λ

Figure 4.1: Example of randomized Montgomery operations.

4.1.1 Randomized Montgomery Multiplication (RMM)

Algorithm 4 shows our proposed randomized Montgomery multiplication (RMM) which

contains two operating steps in every iteration to change the intermediate domain value

λ′, and these steps are determined by the i-th bit of random value α. If αi = 1, the domain

value of output operand R decreases by one in Step 4 such as R = R+V0·S
2

(mod p); the

domain value remains the same as αi = 0 in Step 5 such as R = R+ V0 · S (mod p). The

initial values of operands (V,R, S) are set to be (X, 0, Y). In further iterative calculation,

the bit value V0 is equal to the i-th bit value of X since V = V
2
, and the operand S doubles

its value as αi = 0. Based on these, the functionality can be derived as follows:

• For 1-st iteration, the intermediate result of R is (X0 · Y) · 2−α0 (mod p).

42

• For 2-nd iteration, R becomes ((X0 · Y) · 2−α0 (mod p) +X1 · (2
1−H(α0) · Y)) · 2−α1

(mod p).

• Until m-th iteration, the final result of R is (· · · (((X0 · Y) · 2
−α0 (mod p) + X1 ·

(21−H(α0) · Y)) · 2−α1 (mod p) +X2 · (2
2−H(α1,α0) · Y)) · 2−α2 (mod p) + · · ·+Xm−1 ·

(2m−1−H(αm−2,··· ,α1,α0) · Y)) · 2−αm−1 (mod p)

≡ (X0 ·Y ·2
−H(αm−1,...,α0)) (mod p)+(X1 ·Y ·2

−H(αm−1,...,α0)+1) (mod p)+· · ·+(Xm−1 ·

Y · 2−H(αm−1,...,α0)+m−1) (mod p)

≡ X · Y · 2−H(αm−1,...,α0) (mod p)

≡ X · Y · 2−λ (mod p).

Hence, the RMM in Algorithm 4 can be performed in m iterations, the same as those in

conventional radix-2 Montgomery multiplication [38].

Algorithm 4 Proposed radix-2 RMM

Input: X, Y, p, and α

Output: R = RMM(X, Y)

1: Let V = X , R = 0, S = Y

2: For i from 0 to m− 1 do

3: R ≡ R + V0 · S (mod p), V = V
2

4: If αi = 1 then R ≡ R
2
(mod p)

5: else S ≡ 2S (mod p)

6: Return R

Algorithm 5 shows a radix-4 approach to Algorithm 4 for almost 50% iteration reduc-

tion. The domain value of R is determined by the Hamming weight of two continuous

bits of random value α in Steps 5, 6, and 7. For the case of H(α2i+1, α2i) = 2, it is reduced

by two through performing quartering operation such as R ≡ R
4
(mod p). While halving

R and doubling S operations are performed as H(α2i+1, α2i) = 1, these are deduced by

computing one iteration of radix-2 Montgomery reduction and one iteration of radix-2

modular reduction in single period. For the rest case of H(α2i+1, α2i) = 0, the operand

S ≡ 4S (mod p) is performed due to the unchanged domain value of R.

43

Algorithm 5 Proposed radix-4 RMM

Input: X, Y, p, and α

Output: R = RMM(X, Y)

1: Let V = X , R = 0, S = Y

2: For i from 0 to
⌈
m
2

⌉
− 1 do

3: If m (mod 2) ≡ 1 and i =
⌈
m
2

⌉
− 1 then R ≡ R + V0 · S (mod p), V = V

2

4: else R ≡ R + V0 · S + V1 · 2S (mod p), V = V
4

5: If (α2i+1, α2i) = (1, 1) then R ≡ R
4
(mod p)

6: else if (α2i+1, α2i) = (1, 0) or (0, 1) then R ≡ R
2
(mod p), S ≡ 2S (mod p)

7: else S ≡ 4S (mod p)

8: Return R

4.1.2 Randomized Montgomery Division (RMD)

To achieve the division in Montgomery domain, Kaliski [82] first proposed an iterative

algorithm which needs m ∼ 2m iterations of successive reduction, 0 ∼ m iterations for

degree recovery (reduce intermediate domain value λ′ to be m as λ′ > m), and two addi-

tional Montgomery multiplications with a final modular reduction p−R. The algorithm

presented in [82] is formulated from the identical equations as follows:

Y · R ≡ −U · 2λ
′

(mod p)

Y · S ≡ V · 2λ
′

(mod p).

Based on Kaliski’s method, we derive a new randomized Montgomery division (RMD)

which is described in Algorithm 6. To directly achieve the division operation without

additional multiplication and final modular reduction, our method is to modify the initial

values of (U, V,R, S) to be (p, Y, 0, X) in Step 1 and the RS data path with modular

subtraction in Steps 10, 11, 13, 14. Then the identities become

X−1 · Y · R ≡ U · 2λ
′

(mod p)

X−1 · Y · S ≡ V · 2λ
′

(mod p).

Similar to RMM, the RS data path between the Montgomery domain and integer domain

is determined by the i-th bit value of α. The domain value of operands R and S increases

by one as αi = 1 and remains the same as αi = 0.

44

Algorithm 6 Proposed radix-2 RMD

Input: X, Y, p, and α

Output: R = RMD(X, Y)

1: Let U = p, V = Y,R = 0, S = X

2: While (V > 0) do

3: If U is even then U = U
2

4: If αi = 1 then S ≡ 2S (mod p)

5: else R ≡ R
2
(mod p)

6: else if V is even then V = V
2

7: If αi = 1 then R ≡ 2R (mod p)

8: else S ≡ S
2
(mod p)

9: else if U > V then U = U−V
2

10: If αi = 1 then R ≡ R− S (mod p), S ≡ 2S (mod p)

11: else R ≡ R−S
2

(mod p)

12: else V = V−U
2

13: If αi = 1 then S ≡ S −R (mod p), R ≡ 2R (mod p)

14: else S ≡ S−R
2

(mod p)

15: If i < m then i = i+ 1

16: Return R

45

For further reducing the degree recovery phase, the RS data path turns into dividing

values by two in Steps 5, 8, 11, 14 to keep the intermediate domain value in λ = H(α) as

i = m. Thus the identities in Algorithm 6 are given as follows:

If i < m, then

X−1 · Y · R ≡ U · 2λ
′

(mod p)

X−1 · Y · S ≡ V · 2λ
′

(mod p)

else

X−1 · Y · R ≡ U · 2λ (mod p)

X−1 · Y · S ≡ V · 2λ (mod p).

Before the last iteration, both U and V are 1 because the initial values of U and V

are relatively prime. Then after finishing the iterative operations in Step 2, the values of

(U, V,R, S) become (1, 0, X · Y −1 · 2λ (mod p), 0). As a result, the proposed randomized

division algorithm requires at most 2m iterations of successive reduction. Table 4.2 shows

the expected operation time and the comparison with related works on modifying radix-2

Montgomery division algorithm. With randomization capability, Algorithm 6 will also

benefit the hardware design owing to the low latency.

Table 4.2: Analysis of Various Division Algorithms

Algorithm 6 TCAS-I’06 [17] ESSCIRC’10 [38]

Iteration Time m ∼ 2m m ∼ 2m m ∼ 3m

Multiplication 0 2 ∼ 3 0

Domain Random 2λ, 0 ≤ λ ≤ m Fixed 2m Fixed 2m

Algorithm 7 shows the radix-4 RMD derived from Algorithm 6, and there are more

branches in the algorithm as the radix becomes lager. To remain the domain value of R

unpredictable in the flexible range of [0, m− 1), it is determined by the Hamming weight

of random value αi or (αi+1, αi). The values of UV are reduced to at least UV
4

except

U ≡ 1 (mod 4), V ≡ 3 (mod 4) or U ≡ 3 (mod 4), V ≡ 1 (mod 4) in Steps 17 and 18.

With this approach and the radix-4 RMM given in Algorithm 5, the ECPC can be carried

out faster in affine coordinates than that in projective coordinates, where the iteration

time ratio RMD
RMM

∼= 1.32 over GF (p) and 1.44 over GF (2m).

46

Algorithm 7 Proposed radix-4 RMD

Input: X, Y, p, and α

Output: R = RMD(X, Y)

1: Let U = p, V = Y,R = 0, S = X, i = 0

2: While (V > 0) do

3: c ≡ U (mod 4), d ≡ V (mod 4), t = 2

4: If i = m− 1 then R ≡ 2R (mod p), S ≡ 2S (mod p), t = 1

5: else if c = 0 then U = U
4
, S ≡ 4S (mod p)

6: else if d = 0 then V = V
4
, R ≡ 4R (mod p)

7: else if c = d then

8: If U > V then U = U−V
4
, R ≡ R − S (mod p), S ≡ 4S (mod p)

9: else V = V−U
4
, S ≡ S −R (mod p), R ≡ 4R (mod p)

10: else if c = 2 then

11: If U
2
> V then U =

U
2
−V

2
, R ≡ R− 2S (mod p), S ≡ 4S (mod p)

12: else V =
V−U

2

2
, U = U

2
, S ≡ 2S − R (mod p), R ≡ 2R (mod p)

13: else if d = 2 then

14: If U > V
2
then U =

U−V
2

2
, V = V

2
, R ≡ 2R− S (mod p), S ≡ 2S (mod p)

15: else V =
V
2
−U

2
, S ≡ S − 2R (mod p), R ≡ 4R (mod p)

16: else

17: If U > V then U = U−V
2
, R ≡ R − S (mod p), S ≡ 2S (mod p), t = 1

18: else V = V−U
2
, S ≡ S −R (mod p), R ≡ 2R (mod p), t = 1

19: If i < m then

20: If i = m− 1 or t = 1 then

21: If αi = 1 then R ≡ R (mod p), S ≡ S (mod p)

22: else R ≡ R
2
(mod p), S ≡ S

2
(mod p)

23: else

24: If (αi+1, αi) = (1, 1) then R ≡ R (mod p), S ≡ S (mod p)

25: else if (αi+1, αi) = (1, 0) or (0, 1) then R ≡ R
2
(mod p), S ≡ S

2
(mod p)

26: else R ≡ R
4
(mod p), S ≡ S

4
(mod p)

27: i = i+ t

28: else R ≡ R
2t

(mod p), S ≡ S
2t

(mod p)

29: Return R

47

4.1.3 Domain Conversion

Since the primary inputs of EC coefficient and points are in integer domain, the

domain conversion of field automorphic function ψ can be performed by the proposed

RMD operation such that RMD(a, 1) = a2λ (mod p). On the other hand, to return the

point coordinates in integer domain, the RMM can be exploited to perform ψ−1 such as

RMM(a2λ, 1) = a (mod p). For calculating one ECSM in affine coordinates, the overhead

of domain conversion is three RMD and two RMM operations as shown in Figure 4.2,

where both of them can be performed by the divisor and multiplier to avoid any pre-

computation from host system.

E = RMD(e, 1…

F = RMD(f, 1…

A = RMD(a, 1…

ECSM: KQ

g = RMM(G, 1…

h = RMM(H, 1…

Output: KP=(g, h…

Integer domain to randomized
Montgomery domain

Randomized Montgomery
domain to integer domain

Input: P=(e, f… and a

Q=(E, F…

Figure 4.2: The domain conversion can be achieved in pre/post-process stage, where this

overhead of several modular operations can be neglected for overall ECSM.

48

4.2 Elliptic Curve Point Generation (ECPG)

Figure 4.3 shows the approach of generating a random EC point over DFs. For GF (p),

the first step is to initialize the non-zero coordinate value of x. The Jacobi symbol (JS)

can be applied to check whether the square root of q ≡ x3+ ax+ b (mod p) exists or not,

where JS(a
p
) represents the JS, defined for all integers a and all odd primes p by

JS(
a

p
) =

0 if a ≡ 0 (mod p)

+1 if a 6= 0 (mod p) and for some integer x, a ≡ x2(modp)

−1 if there is no such x.

The JS can be performed by an iterative algorithm described in IEEE P1363. Algorithm 8

is our proposed high radix approach of JS, which has 34% iteration reduction as compared

with the radix-2 JS in IEEE P1363. As the square root of q exists, the coordinate value

of y is the square root of q with a positive or negative value. For GF (2m), after the

initialization of the non-zero coordinate value of x, the next step is to compute the square

root of z, where z2+z ≡ β (mod p(x)) with β ≡ q

x2 (mod p(x)). And then, the coordinate

value of y is equal to (z + µ)x (mod p(x)) with random 1-bit µ.

Figure 4.4 shows the methods of computing a square root over DFs. The computation

complexity is dominated by the exponentiation in Step 2.2 (or Step 4.2) over GF (p)

and Step 2.2 (or Step 3) over GF (2m). The computation time is proportional to the

field length of m. To improve the performance of hardware implementation, we adopt a

parallel computing approach, which is described in sub-section 6.3 with more details.

49

1. Choose a random (2)∈ mx GF

3 22. Let (mod ())= + +q x ax b p x

2

2

3. Compute square root , where

(mod ()), with (mod ()) β β

+ =

=

z z z

q
p x p x

x

4. Return (, () (mod ())),

where is a random single bit

µ
µ

= +x y z x p x

1. Choose a random ()∈x GF p

3

2. Compute JS()
= + +q x ax b

p

2

3. Compute square root , where

(mod)=
r

r q p

4. Return (, (-1) (mod)),

where is a random single bit

µ

µ
=x y r p

1=
1≠

()GF p (2)mGF

Figure 4.3: Generating a random EC point over DFs.

1. Compute

(mod2)m

2 4

1

2 2

2

2.2. Compute

(mod ())
m

z

p x

β β β

β
−

=

+ + +

+

L

1=0=

2.1. Let 1t =

2 2

1 1

2

1

3. Compute

(mod ())

(mod ())

for from 1 to 1

β− −

−

= +

= +
−

i i i

i i

z z w p x

w w t p x

i m

0=w

5. Return z

4. Choose

a random

(2)∈ m
t GF

1. Compute

(mod4)p

1

4

2.2. Compute

(mod)
+

=
p

r q p

3=1=

2.1. Let 1t =

2 4
3. Compute JS()

−qt

p

2

1

4

4.2. Compute

(- 2,1)−= pr V qt

1≠

5. Return r

4.1. Choose

a random

()∈t GF p

1=

(2)mGF()GF p

0w ≠

Figure 4.4: Computing a square root over DFs.

50

Algorithm 8 Proposed radix-4 JS algorithm

Input: a ∈ GF (p) and p

Output: JS(a
p
) ∈ {±1, 0}

1: Let U = p, V = a, T = 1

2: While (V > 0) do

3: If V (mod 4) ≡ 0 then V = V
4

4: else if U (mod 4) ≡ V (mod 4) then

5: If U > V then

6: If U ≡ V (mod 4) ≡ 3 then T = −T

7: SWAP(U, V), V = V−U
4

8: else V = V−U
4

9: else if V (mod 2) ≡ 0 then

10: If U (mod 8) ≡ 3 or 5 then T = −T

11: V = V
2

12: else

13: If U > V then

14: If U ≡ V (mod 4) ≡ 3 then T = −T

15: SWAP(U, V)

16: If U (mod 8) ≡ 3 or 5 then T = −T

17: V = V−U
2

18: else

19: If U (mod 8) ≡ 3 or 5 then T = −T

20: V = V−U
2

21: If U = 1 then Return T

22: else Return 0

51

4.3 Right-to-Left Binary Method of Double-and-Add-

Always Elliptic Curve Scalar Multiplication (RL-

DAA ECSM)

Although Algorithm 3 in sub-section 3.4 prevents the private key from being revealed

by detecting the difference among ECPD operations with specific primary input points,

the read-after-write scheduling hazard inherently exists in ECPC. The ECPA Q1i ←

Q0i−1
+Q2i−1

for i-th iteration in Step 3 can only be processed after finishing the ECPD

Q2i−1
← 2Q2i−2

for previous iteration in Step 4. This operand dependency results in a

long latency for idling through parallel computations. For exploring parallelism in ECSM

calculation, Algorithm 9 shows the reformulation of Algorithm 3. By using a temporary

point QT to store the values of point Q2i−1
before starting the i-th ECPD, the iterative

ECPC Q2i ← 2Q2i−1
in Step 4 and Q1i ← Q0i−1

+ QTi
= Q0i−1

+ Q2i−1
in Step 5 can be

computed into two parallel threads, where the field operations of ECPC are regarded as

the tasks.

Algorithm 9 Modified RL-DAA ECSM

Input: K and P

Output: KP

1: Let QT ← 0, Q0 ← 0, Q1 ← 0, Q2 ← P

2: For i from 0 to m− 1 do

3: QT ← Q2

4: Q2 ← 2Q2

5: Q1 ← Q0 +QT

6: Q0 ← QKi

7: Return Q0

A design method for accelerating Algorithm 9 by parallel computations is to exploit

two duplicated PEs of homogeneous architecture, and each PE specifically performs the

ECPD in Step 4 or ECPA in Step 5. With this approach, the overall execution time

in each iteration of processing GF (p) and GF (2m) ECSM is dominated by the ECPD

operations. The homogeneous architecture using two identical PEs can outperform the

52

single PE design nearly two times in speed, but the hardware complexity increases double

as well.

The computation time of distinct field operations is different such as TMD > TMM >>

TADD, TSUB, where TMD, TMM, TADD, TSUB represent the computation time of modular

division (MD), multiplication (MM), addition (ADD), and subtraction (SUB). The PE

can be simplified since the MD is not necessary to be processed all the time. In this work,

we introduce a heterogeneous architecture including a powerful Galois field arithmetic unit

(GFAU) and a synergistic multiplier-adder/subtractor (MAS) to speed up the ECSM with

lower hardware complexity than that of two-GFAU design using two duplicated GFAU

accelerators. The GFAU supports the overall field operations, and its detailed circuit unit

design is described in sub-section 6.1.

53

Chapter 5

Proposed Design of True-Random

Number Generator (TRNG)

As described in sub-section 4.1 and sub-section 4.2, to achieve the randomized compu-

tation, the random number sequence is necessarily required. For hardware implementa-

tion, the pseudo-random number generator (PRNG) is the most frequently implemented

in circuit because the designer can adopt several given deterministic functions [83]. How-

ever, there are design issues for pseudo-random sequence used in protection against power-

analysis attacks. It is that the attacker can still predict the side-channel information by

applying system reset [84]. Thus, to avoid using predictable sequence for randomization, a

true-random number generator (TRNG) without initially deterministic state is necessary

for crypto-ICs.

To produce the true-random sequence, we implement the ring-oscillator-based random

number generator (RO-RNG) [85–87]. It exploits the metastability and cycle-to-cycle time

jitter in free running ring oscillators and sampling clock, respectively. An elementary

RO-RNG is shown in Figure 5.1. Another benefit of RO-RNG is that it is suitable for

integration on single chip. But the design problem is that, in actual implementation,

the jitter of sampling clock is not sufficiently large for wide range of bit sequence. Then

the sampled output sequence would not have much randomness or fail some patterns in

the NIST random test, NIST P800-22 [88]. To give a more robust resistance against

side-channel attacks, we proposed a new design method of TRNG, where the sampled

output sequence passes all patterns in NIST P800-22, and the experiment results in sub-

54

section 7.2.2 show that the key value of ECC chip cannot be extracted with millions of

measurements.

RO

Sampling
Clock

D Q 10101101001...
Random Sequencef1

f2 f1 > f2

CLK

Figure 5.1: RO-RNG circuit, where the frequency of ring oscillator (RO), f1 is faster than

that of sampling clock, f2.

55

5.1 Delay Chain of Jitter Amplifier

Our proposed method for improving the randomness is to amplify the jitter of sampling

clock [89], where the jitter amplifier is designed between the primary sampling clock and

flip-flop. Figure 5.2 shows the RO-RNG with jitter amplifier. The concept is shown as

Figure 5.3, where the gray and white color regions are the 1 (high-logic) and 0 (low-logic)

sequence over time, respectively. The regions hatched with slash lines are the probability

of sampled sequence. If there is a bias for the random normal distribution of clock jitter,

the area under probability density function curve between 1 and 0 samples is unequal.

However, without changing the characteristic function of the distribution for clock jitter,

the probability for sampling 1 and 0 values can be balanced by sampling more bit sequence

during the cycle period.

RO

Jitter
Amplifier

Sampling
Clock

D Q 10101101001...
Random Sequencef1

f2 f1 > f2

CLK

Figure 5.2: RO-RNG with jitter amplifier.

PS

1 0

PS

Figure 5.3: Random normal distribution of clock jitter for the sampled sequence.

An analog frequency divider which amplifies the sampling clock jitter is conventionally

56

used [90]. However, this approach results in degraded throughput from decreasing the

sampling rate. Thus, it is not a decent design of real-time and high-throughput encryption

which is in high demand for security applications. For addressing this, we proposed a new

all-digital design of jitter amplifier by utilizing a delay chain with a random configuration

scheme of delay time to increase the jitter uncertainty scale. Because the sampling source

of flip-flop is just buffered from the system clock, the output sequence can be generated

without the penalty of operating frequency.

Figure 5.4 illustrates the design for amplifying the jitter of input oscillating signal

SC IN by using a delay chain with configurable delay time, where the control signal RAN

is to select the rise/fall time of the delay cells. The unit jitter of output oscillating signal

SC OUT can be enlarged by changing an operation mode from fast mode to slow mode

through immediately varying the RAN control signals every clock period. To randomly

scale the jitter further, a linear feedback shift register (LFSR) is exploited, and the RAN

control signals are fed from the output of distinct registers. Figure 5.5 depicts the imple-

mented control signal generator, where the bit value (seed) stored in temporary register is

real-time randomly refreshed by the sampling output bitstream with a Galois-type LFSR.

The delay chain is designed so that each delay td can be changed by RAN from fastest

delay tdf to slowest delay tds, where tdf < tds. Besides, to change the scaling of td, every

delay cell can have different delay time in fast mode and slow mode.

57

Fast

Slow

SC IN SC OUT

Fastest
Delay (tdf…

Slowest
Delay (tds…

SC IN

SC OUT

R
AN

1

Fast

Slow

R
AN

X

……

Slow

R
AN

2

Slow

R
AN

3

Slow

R
AN

4

Fast Fast Fast

Figure 5.4: Proposed method to amplify jitter with configurable delay cell.

58

fr-1

RANX RANX-1 RAN3 RAN2

f2 f1

f(x… = frxr + fr-1xr-1 + + f1x1 + f0, where f0 = fr = 1

RAN1

Q

Figure 5.5: On-the-fly generation of control signals based on the LFSR.

5.2 Configurable Interlaced Hysteresis Delay Cell (CI-

HDC)

To achieve a long delay time on unit cell without large power dissipation, an inter-

laced hysteresis delay cell (IHDC) [91] which functions as a buffer is exploited, and its

schematic is shown in Figure 5.6. One IHDC consists of two serial inverters realized by

eight MOS transistors (P-MOS transistors P1 ∼ P4 and N-MOS transistors N1 ∼ N4) for

its basic functionality with four bypass transistors (A, B, C, D) for charge redistribution.

It generates propagation delay signal from IN to OUT by charging/discharging cascaded

transistors through cross wiring of each gate node to the drain node. Functionality is as

follows: As IN charged to be logic high, transistor N1 switches on and then discharge its

drain to be logic low. This turns transistor P3 on, charging its drain to be logic high

with the gate of transistor N2. Then transistor N2 discharges the node INTERM and

turns transistor P4 on, which charges the node OUT to be logic high. Hence the IHDC

achieves a time-delay mechanism. Another case for that IN is charged to be power ground

is deduced as the similar way, where the transistor delay sequence is P1 ⇒ N3 ⇒ P2 ⇒

N4. These chain reactions throughout the cell contain the charging/discharging of four

transistor gates; thus further on there will be referred to it as four transistor delays. Be-

sides, for changing the delay path, the node INTERM can be pre-charged by a switch

implemented with pass-transistor logic circuit. The switch circuit, shown in Figure 5.7,

is controlled by the RAN signal. The fact that the switch creates three transistor delays

can be seen as follows: As the RAN signal is logic low, the P-MOS pass-transistor S4

switches on. At the same time as IN is in logic high, S4 propagates the high value to

59

open transistor S6. After that, node INTERM is discharged to be power ground and

then the gate of transistor P4 turns to be opening. Because the drain node of transistor

P3 is charged to be logic high only after discharging transistor N1, a logic high value is

immediately propagated to node OUT. The switch has two transistor delays and turns

one transistor on/off in the IHDC. Therefore, this pre-charging technique for configuring

delay time makes it one transistor delay faster than that in regular operation. The overall

functionality of proposed delay cell is summarized in Table 5.1, and the propagated delay

waveform shown in Figure 5.8 is simulated by HSPICE using the UMC 90-nm CMOS

process. Since the majestic peak power caused from short-circuit current is prevented be-

fore turning on the last transistor during delay period, the proposed configurable IHDC

(CIHDC) saves 93% average power as compared to the standard unit delay cell with same

transistor sizing. Another benefit is that the hardware cost can be improved by achieving

various delay time on single circuit unit without using the multiplexer to select different

delay path.

Table 5.1: Functionality of CIHDC

IN RAN OUT Delay Sequence Transistor Delay

0 → 1 0 0 → 1 S4 ⇒ S6 ⇒ P4 3

0 → 1 1 0 → 1 N1 ⇒ P3 ⇒ N2 ⇒ P4 4

1 → 0 1 1 → 0 S1 ⇒ S3 ⇒ N4 3

1 → 0 0 1 → 0 P1 ⇒ N3 ⇒ P2 ⇒ N4 4

60

A

C

P1

P2

N2

N1

P3

P4

N4

N3

D

B

IN OUTINTERM

Figure 5.6: Elementary IHDC.

61

S2

S5

IN

S3

RAN

S1

S6

INTERM

S4

RAN

Figure 5.7: On-off switch circuit.

0 0.2 0.4

0

0.5

1

Slow: N1 ⇒ P3 ⇒ N2 ⇒ P4

Time (ns)

V
ol

ta
ge

 (
V

)

0 0.2 0.4

0

0.5

1

Slow: P1 ⇒ N3 ⇒ P2 ⇒ N4

Time (ns)

V
ol

ta
ge

 (
V

)

0 0.2 0.4

0

0.5

1

Fast: S4 ⇒ S6 ⇒ P4

Time (ns)

V
ol

ta
ge

 (
V

)

0 0.2 0.4

0

0.5

1

Fast: S1 ⇒ S3 ⇒ N4

Time (ns)

V
ol

ta
ge

 (
V

)

V(IN)
V(Gate of P2)
V(Gate of P3)
V(Gate of N2)
V(Gate of N3)
V(INTERM)
V(OUT)

101ps 142ps

98ps 145ps

Figure 5.8: The transition waveform of CIHDC, where one CIHDC can increase jitter by

several tens of picosecond at rising and falling edge.

62

5.3 Ring-Oscillator-Based TRNG with Jitter Ampli-

fier

The proposed RO-RNG was fabricated by 90-nm UMC 1P9M CMOS process, and its

chip photo is shown in Figure 5.9, where the feedback polynomials of Fibonacci RO, Galois

RO, and LFSR are x20+x18+x16+x15+x13+x12+x5+x4+x2+1, x21+x19+x17+x16+x7+

x3+x2+1, and x32+x7+x6+x2+1, respectively. To efficiently avoid the bias of individual

bits, 0 and 1, induced by metastability in ROs, the final random output sequence is post-

processed by reusing the LFSR with simple logic operator Q ⊕ (RAN2 ∨ RAN7). The

delay chain for amplifying jitter consists of 32 three-level CIHDCs and occupies 903 µm2,

and the total area of the RO-RNG is 1,935 µm2. The schematic of three-level IHDC is

shown in Figure 5.10 with its switch circuit shown in Figure 5.11. The physical layout

of one three-level CIHDC with 11.2 × 2.25 = 28.224µm2 area is shown in Figure 5.12.

Note that another RO-RNG without jitter amplifier is integrated into this test chip, and

the recorded random bitstream of ten one-million-bit sequences is verified by the NIST

randomness tests, NIST P800-22 [88], where the significance level α is chosen to be the

default of 0.01 (99% confidence). From measurement results, 115 Mbits/sec 0.76 mW

throughput without degradation is achieved. The RNG without jitter amplification failed

4 tests of NIST test suite including non-overlapping template matching, approximate

entropy, random excursions, and random excursions variant. Contrarily, all tests are

passed in the NIST test suite due to the proposed jitter amplifier.

D1D1 D2D2 Other Design

4
8
m

4
8
m

41 m41 m 22 m22 m

Figure 5.9: The die photo, where D1 and D2 are the RO-RNG with and without jitter

amplifier, respectively.

63

P1

P3

N3

N1

P4

P6

N6

N4

IN OUTINTERM

P2 P5

N2 N5

G

E

H

F

C

A

D

B

X1

X2

Figure 5.10: 3-level IHDC.

S2

S5

IN

S3

RAN

S1

S8

INTERM

S4

RAN

S4

S9

S5

S10

X1 X2

Figure 5.11: On-off switch circuit of 3-level IHDC.

64

Figure 5.12: Layout of 3-level CIHDC.

65

Chapter 6

Proposed Architecture of Dual-Field

ECC (DF-ECC) Processor

PEs

Wrapper and
Address Decoder

Key Shift

Memory
Block

ECC Control

Arithmetic Units
…

Sequencer

Memory Management

Operation Scheduler

JS

Figure 6.1: Block diagram of our DF-ECC processor.

Figure 6.1 shows the overall block diagram of our proposed dual-field ECC (DF-ECC)

processor. The user-specific commands are decoded by the address decoder from the

predetermined address. The DF-ECC processor supports a variety of functions such as

66

modular operations, Jacobi symbol, ECPC (ECPA, ECPS, ECPD, ECSM), and ECPG

required in the ECC schemes over GF (p) and GF (2m). The ECC control combines the

sequencer, operation scheduler, and memory management. Due to the binary method of

ECSM calculation, the key is scanned and shifted by 1-bit precision. To efficiently handle

the transmission of intermediate values, a memory block separated from the register in

PEs is used. For the secure implementation, users are prohibited from read access to the

intermediate values and the private key.

The sequencer shown in Figure 6.2 has a four-level hierarchical structure. The highest

level, Level 4, executes the ECC schemes. Level 3 supports the calculation of ECSM and

ECPG. The sequencer at Level 2 provides the basic ECPC of ECPA, ECPS, and ECPD,

and the function of half trace (HT) over GF (2m) and Lucas sequence (LS) over GF (p) for

ECPG. Level 1 supports the low-level functions such as the basic (Montgomery) modular

operations and Jacobi symbol. Our architecture has a clearly separated control structure,

and it is easy to design and modify the logic and it has high flexibility for functional

extensions.

Figure 6.2: Hierarchy implementation of ECC schemes.

67

6.1 Jacobi Symbol and Galois Field Arithmetic Unit

(JS-GFAU)

6.1.1 Fully-Pipelining Scheme

As the iterative operations shown in Algorithm 7 are performed within one cycle, the

critical path is to calculate the results of operands R or S, which consists of the UV

comparison with modular operations. The time-critical comparison operations such as

U > V , U
2
> V , U > V

2
in Steps 8, 11, 14 achieved by subtraction are nearly equal to an

addition delay. Since the results of operands R, S are irrelevant to the results of operands

U or V , a fully-pipeline stage is inserted between the UV and RS data path to reduce

the critical path delay. Figure 6.3(a) and Figure 6.3(b) illustrate the hardware behavior

of the pipelining scheme. After initialization, the UV data path is determined at the

first cycle. Then the next cycle is to set the values of operands R, S and simultaneously

determine the second case of UV comparison. The following cycles can be deduced from

this approach until V = 0. Although an additional cycle is needed after pipelining, this

is negligible as the division takes hundreds of cycles.

6.1.2 Programmable Data Path of Modular Reduction with Lad-

der Selection

To calculate the operands within finite filed set over GF (p) in Algorithm 5, Algo-

rithm 7, and Algorithm 8, a low-level parallel architecture with 2’s complement number

system is exploited. The values of all operands are bounded by the interval [0, p). For

instance, as processing the modular reduction of S ≡ 4S (mod p), the 4S can be achieved

by bitwise shifting operand S left two bits, and the result is needed to be bounded in the

interval [0, p). To achieve this, the arithmetic functions fSp1 = 4S − 3p, fSp2 = 4S − 2p,

fSp3 = 4S − p, and fSp4 = 4S are carried out simultaneously, while the correct value is

sequentially determined with a ladder selection by checking the signed bit. The arithmetic

functions substrated by different multiple modulus are carried out simultaneously, while

the correct value is sequentially determined with a ladder selection [58] by checking the

signed bit: if fSp1 is positive, then S = fSp1; else if fSp2 is positive, then S = fSp2 ; else if

68

i = m - 1

d = 0

F

F

R ≡ R/2 (mod p)

S ≡ S/2 (mod p)

UV data path

F

RS data path

c = 0

T

T

T

1

2

3
H(i+1, i… = 0

...

R ≡ R (mod p)

S ≡ S (mod p)
1

2

3

1

2

3

R ≡ R/4 (mod p)

S ≡ S (mod p)

R ≡ R/2 (mod p)

S ≡ 2S (mod p)

R ≡ R (mod p)

S ≡ 4S (mod p)

R ≡ R (mod p)

S ≡ S/4 (mod p)

R ≡ 2R (mod p)

S ≡ S/2 (mod p)

R ≡ 4R (mod p)

S ≡ S (mod p)

... ...

...

-

1

2

3

H(i+1, i… = 2

H(i+1, i… = 1

(a)

(b)

Figure 6.3: (a) Data path separation of UV comparison and RS calculation. (b) The

fully-pipelining scheme of hardware implementation for the proposed radix-4 RMD in

Algorithm 7.

69

fSp3 is positive, then S = fSp3 ; else S = fSp4 . These multiple modular operations in the

iterative calculation can be effectively implemented by using a programmable data path

of bit-level architecture, which consists of the carry-save adders with a carry-lookahead

adder at the last stage [38].

6.1.3 Modular Halving, Quartering by Bitwise Shifting

In Algorithm 7, the halving and quartering of the UV data path can be easily achieved

by shifting right one and two bit positions because the least significant one and two

bits of intermediate values are definitely zero. However, the least significant bit values

of operands R and S are undetermined in the iterative calculation. Here, we use the

modulus p to on-the-fly fix the least significant one and two bits of R, S to be zero.

To simplify the illustration, the intermediate value of R, S is denoted as X , where the

subscribed means the bit position in binary representation. For calculating the modular

halving operation X
2

(mod p), it is achieved by performing (X + X0 · p) >> 1 since the

prime p must be an odd value. For the modular quartering operation X
4

(mod p), it is

conducted by performing the following calculation: if (X1, X0) = (0, 0), X is shifted right

two bit positions; if (X1, X0) = (1, 0), (X − 2p) >> 2 is performed; if (X1, X0) = (1, 1) or

(0, 1), and there are two sub-cases. As the least significant two bits of X − p are (1, 0),

(X − 3p) >> 2 is performed because −p1 is the complement value of −3p1. On the other

hand, it is achieved by (X − p) >> 2. As a result, the overall modular halving and

quartering operations in Algorithm 5, Algorithm 7, and Algorithm 8 can be implemented

by bitwise shifting with simple logic gates without time-cost modular division.

6.1.4 Arithmetic Unit Integration

To map the multiple modular operations in Algorithm 7 into hardware unit without

using distinct circuit components and without a quite complex multiplexer of operand

selection, symmetric operations such as R−S
4

(mod p) and S−R
4

(mod p) can be executed

by using the same computational unit with a swap logic circuit. In Algorithm 7, the RS

data path within Step 4 to Step 18 is classified into two groups: the first group includes

Steps 6, 9, 12, 15, and 18; the second one consists of the remainder. The two operands R

and S are switched to each other as the processing group is different from the group in

70

previous cycle. Furthermore, since the ECPC and ECPG are the computation of serial

field operations, both of the temporary registers and modular operations in Algorithm 5,

Algorithm 7, and Algorithm 8 can be reused.

Figure 6.4 shows the detailed architecture of Galois field arithmetic unit (GFAU),

where it supports the radix-4 RMM in Algorithm 5, radix-4 RMD in Algorithm 7, and

modular addition, subtraction over DFs. Without pipelining, the delay path is equal to

(1) + (2) + (3) + (5) over GF (p) and (1) + (2) + (4) + (5) over GF (2m). The delay

path (1) can be eliminated due to the fully-pipeline stage of data path separation, so that

the RS select signal is delayed one cycle from the UV select signal. Besides, the swap

logic circuit can be implemented by an exclusive-OR logic operator to change the input

operands of RS data path as the previous and current swap signals have inverse values.

After arithmetic processing, the ladder selection is to pick out the value belonging to

the finite field set. Note that the MAS is implemented by similar design approach with

less hardware complexity than that of GFAU, and the circuit components of MAS are

depicted in gray color in Figure 6.4.

In comparison with the previous works on GF (p256) field arithmetic unit in [92] and

[93], we also implement our processing elements (PEs) using the identical field length by

the same FPGA family. Table 6.1 gives the performance results. Due to pipelined and

highly integrated architecture, our design has benefits in the area-time (AT) product and

outperforms others at least two times in the hardware speed.

71

>>1

>>1

AD
D

AD
D

XO
R

>>2
>>1
>>2

>>2

>>2

>>2
>>1

>>2

U

V

>>1

>>1

>>1

>>1

U[1:0]
V[1:0] i = m

i = m-1

G
ro

up

D
ec

is
io

n

R

S

p

0

0

0

0

0
1

0
1

AD
D

AD
D

AD
D

0
1

0
1

0 XO
R

AD
D

AD
D

AD
D

0
1

0
1

0
1

XO
R

0

<<1

<<1

<<1

<<1

<<1
<<2

<<1
<<2

<<1

<<1

<<1

<<1

<<1

>>1

>>1
>>2

>>2

>>1

>>1

Buffer

RS State

V[1:0]
i = m

x[1:0]+y1[1:0]+
y2[1:0]
x[1:0]+y1[1:0]+
y2[1:0]-p[1:0]

[1:0]

field

C
O

N
T

x[0]^y1[0]^
y2[0]
x[1]^y1[1]^
y2[1]^p[1]
DEG1(2R ,2S …
DEG2(2S ,
DEG3&2p…
DEG3(2S …

CONT

R

S

x

y2

y1

SIGN

SIGN

SIGN

SIGN

SIGN

SIGN

RS State

Figure 6.4: The overall DF modular operations are integrated into a fully-pipelined GFAU.

72

Table 6.1: Implementation Results of GF (p256) GFAU and MAS on Xilinx Virtex-II

FPGA Device with Comparison

Area
f (MHz)

Multiplication Division

(Slices) Time (µs/Op.) AT Time (µs/Op.) AT

[93] 5,477 14 18.28 1 43.89 1

[92] 5,379 34 7.53 0.40 13.55 0.30

Our GFAU 9,213 37 3.46 0.29 4.98 0.18

Our MAS 4,843 37 3.46 0.13 - -

AT product = area × time.

6.2 Heterogeneous Processing Elements (PEs) and

Priority-Oriented Scheduling

To further ensure that the PEs are utilized as much as possible, the priority-oriented

scheduling which queues higher priority task before lower priority task is exploited [94].

Algorithm 10 is our proposed operation scheduling for the modified RL-DAA ECSM in

Algorithm 9, and it has two stages. The first stage in Step 1 is to configure the tasks

with higher priority based on larger computation time. At the second stage in a loop of

Step 4, the current task is processed as the capable PEs are available. Otherwise, when

the current task is pushed into the instruction FIFO (first-in-first-out), it will be issued as

the GFAU is available in Step 9. The task and thread counter are refreshed in Step 10 to

Step 13 after checking thread dependence. By this interleaved processing approach, the

PEs can cooperate with each other to carry out the ECSM for utilization improvement.

Figure 6.5(a) and Figure 6.5(b) illustrate the major operations of ECPC by Algo-

rithm 3 and Algorithm 9 with priority-oriented scheduling, respectively. In these figures,

the horizontal direction is the hardware behavior and the vertical direction is the timing.

Also, the block in gray color signifies the idle execution. As adopting Algorithm 3, even

though the last two multiplications of (i−1)-th ECPD can be performed by the MAS, the

tasks of i-th ECPA still have to wait to be issued until generating the coordinates of 2Q2

73

Algorithm 10 Proposed priority-oriented scheduling

1: Prioritize tasks:

MD is high priority

MM is medium priority

ADD and SUB are low priority

2: Create ECPD and ECPA to be a thread individually

3: Initialize task and thread counter:

u = 1, L = 1

4: While (L ≤ m) do

5: Get uth task in Lth thread

6: If (task priority < high) then

Assign task on PE

7: else

8: If (PE ID is GFAU) then

Assign task on PE

9: else / ∗ Interleaved Processing ∗ /

Push task into FIFO, exchange PE ID,

and then wait until GFAU is available

10: If (uth task is the last task) then

11: If (Lth thread is independent of all L+ 1th threads) then

u = 1, L = L+ 1

12: else

Wait until all parallel Lth threads are done,

u = 1, L = L+ 1

13: else

u = u+ 1

14: ECSM is done

74

in previous iteration. On the other hand, with Algorithm 9, the GFAU can immediately

start calculation as the value of 2Q2i−1
is stored before i-th ECPA. For the average execu-

tion time at one bit of key value, the interleaved processing shown in Figure 6.5(a) needs

1TMD+4TMM over GF (p) and 1TMD+4TMM over GF (2m). In respect of the case shown in

Figure 6.5(b), it takes 1TMD + 3TMM over GF (p) and 4TMM over GF (2m). Therefore, the

modified RL-DAA binary method of ECSM calculation with our proposed architecture

and operation scheduling has fewer idle operations and more advantages in the hardware

utilization than those of conventional RL-DAA approach, where the detailed operation

flow of Figure 6.5(b) is described in sub-section 7.1.

75

MD

MM
MM

MM

MM
MM

MM

MD

MM

MM
MM MD

MD

MM
MM

MM

MD

MM
MM MD

MM
MM

MD

MD

MM

GF(p… GF(2m…

MM

K0

K1

K0

K1

Initialization Initialization

(a)

MM
MM
MM
MM

MM
MM

MM
MMMM

MM

MM

MM
MM

MM

MM
MM

MM
MM

MM

MM MM
MM

MD

MD

MD

MD

MD

MD

MD

MD

MD

MD

GF(p… GF(2m…

K0

K1

K0

K1

Initialization Initialization

(b)

Figure 6.5: The priority-oriented scheduling for (a) conventional RL-DAA ECSM and (b)

modified RL-DAA ECSM, where the solid line is the ECPD operation flow and the dash

line is the ECPA operation flow.

76

6.3 Parallel Computation of Elliptic Curve Point Gen-

eration (ECPG)

Table 6.2 shows our parallel computation of Step 2.2 and Step 4.2 in Figure 4.4 over

GF (p). There are two cases determined by value of p (mod 4). For a field element

α ∈ GF (p) and an integer e with valid length l, as p (mod 4) = 3, it simply computes the

modular exponentiation αe (mod p) by iterative multiplications. The computation time is

l MM operations. On the other hand, as p (mod 4) = 1, it performs the Lucas sequence

(LS) Ve(α, 1) which is modified by Müller [95]. The LS can be similarly achieved by

iterative modular operations of multiplication followed by subtraction. The computation

time is l MM + l SUB operations. These iterative operations can be implemented by the

heterogeneous two-PE architecture described in sub-section 6.2. For GF (2m), similarly,

the method of parallel computation of Step 2.2 (z = HT(β)) and Step 3 in Figure 4.4 is

shown in Table 6.3. The computation time requires m
2
(2 MM + ADD) and m(2 MM +

ADD) operations for Step 2.2 and Step 3 in Figure 4.4, respectively.

For GF (p), assume that the rate of JS value in Step 2 of Figure 4.3 and Step 3 of

Figure 4.4 is denoted by fJS. The executed operations of computing ECPG over GF (p)

in average is

1

fJS=1
(3MM+ 2ADD+ JS)

︸ ︷︷ ︸

Step 2 in Figure 4.3

+

{
1

2
mMM
︸ ︷︷ ︸

Step 2.2 in Figure 4.4

+
1

2
[

1

fJS 6=1
(2MM+ SUB + JS)

︸ ︷︷ ︸

Step 3 in Figure 4.4

+ mMM+mSUB
︸ ︷︷ ︸

Step 4.2 in Figure 4.4

]}

︸ ︷︷ ︸

Step 3 in Figure 4.3

.

On the other hand, for GF (2m), assume that the rate of w value in Step 3 of Figure 4.4

is denoted by fw. The executed operations of computing ECPG over GF (2m) in average

is

3MM+ 2ADD
︸ ︷︷ ︸

Step 2 in Figure 4.3

+

{
1

2
[
m

2
(2MM+ADD)

︸ ︷︷ ︸

Step 2.2 in Figure 4.4

] +
1

2
[

1

fw 6=0
m(2MM+ADD)]

︸ ︷︷ ︸

Step 3 in Figure 4.4

}

︸ ︷︷ ︸

Step 3 in Figure 4.3

.

77

Table 6.2: Architecture for Parallel Computing GF (p) Square Roots

Input: e =
∑l

j=0 ej2
j , α ∈ GF (p), and p

Output:

αe (mod p)

Ve(α, 1) ∈ GF (p)

1. R0 = α,R1 =

α2 (mod p)

α2 − 2 (mod p)

, t0 =

−

α

, t1 =

−

2

2. For i from l − 1 to 0 do

/* JS-GFAU */ /* MAS */

2.1.a. MM(R0, R1, Rej) 2.1.b. MM(Rej , Rej , Rej)

2.2.a.

−

SUB(Rej , t0, Rej)

2.2.b.

−

SUB(Rej , t1, Rej)

3. Return

R1

R0

78

Table 6.3: Architecture for Parallel Computing GF (2m) Square Roots

Input: β ∈ GF (2m),

−

t

, and m

Output: z and

−

w

1. R0 =

β

0

, R1 =

−

t

, t0 = β, t1 =

−

t

2. For i from 1 to

m−1
2

m− 1

do

/* JS-GFAU */ /* MAS */

2.1.a. MM(R0, R0, R0) 2.1.b.

−

MM(R1, R1, R1)

2.2.a.

MM(R0, R0, R0)

MM(R1, t0, R2)

2.2.b. −

2.3.a.

ADD(R0, t0, R0)

ADD(R0, R2, R0)

2.3.b.

−

ADD(R1, t1, R1)

3. Return R0 and

R1

R0

79

6.4 Memory Hierarchy with Local Memory Coher-

ence

The memory bandwidth is also a critical factor of system performance for the inter-

leaved processing within various PEs; thus, we design a hierarchical memory architecture

shown in Figure 6.6 with a local memory synchronization scheme to reduce the memory

access time. Note that a w-bit register buffer is used to avoid the intrinsic latency of

reading data from SRAM, where w is the data width of shared memory. For arbitrary

field length m, one data transition between the PEs and MEM needs TMEM =
⌈
m
w

⌉
+ 1

cycles. The on-demand registers, implemented by using the D-type flip-flops, are the

local memory for PEs to perform arithmetic without fetching instantly used data from

the shared memory every time. To ensure the data consistency, the memory management

strategy is as follows:

• Write Back: As the data are predicted to be used in the same PE only for next

calculation such as the intermediate values for iterative calculation of MD, MM and

ADD, SUB, they are saved into the on-demand registers.

• Write Through: The data are written into both of the on-demand registers and

shared memory when they are predicted to be used for further calculation, such as

the values of EC slope λ and point coordinates (x, y).

• Local Memory Synchronization: As the task for interleaved processing in Algo-

rithm 10 is issued, the data in on-demand registers are exchanged between PEs.

Figure 6.7(a) and Figure 6.7(b) give an example to show that the data bandwidth is

improved by applying the local memory synchronization scheme. The data in the local

memory of GFAU and MAS have to be exchanged as the sequences MOV GFAU(R reg)

to MAS(S reg) and MOV MAS(R reg) to GFAU(S reg) are performed. Without local

memory synchronization as shown in Figure 6.7(a), the data in R reg of MAS and GFAU

are written through to MEM such as GFAU (R reg)→MEMx and MAS (R reg)→MEMy;

then the data are serially fetched from MEM to GFAU and MAS such as MEMx → MAS

(S reg) and MEMy→ GFAU (S reg). Contrarily, by exploiting the scheme of local memory

synchronization, the exchanged data between processing elements can be achieved in one

80

V
re

g
S

re
g

V
re

g
S

re
g

M
EM

 B
uf

MEM

MEMQ0x

MEMQ0y

MEMQ1x

MEMQ1y

MEMQ2x

MEMQ2y

MEMQTx

MEMQTy

MEMTMAS

MEMTGFAU

MEMa

w

w

MEM out

MEM in

w
MAS in1

MAS in2
w

M
AS

 o
ut

w

G
FA

U
 o

ut

w

w
GFAU in1

w
GFAU in2

R
 re

g
R

 re
g

MEMMx

MEMMy

MEMNx

MEMNy

MAS
ALU

U
 re

g

GFAU
ALU

U
 re

g

Figure 6.6: Two-level memory hierarchy for heterogeneous two-PE architecture.

81

data transition such as GFAU (R reg)→MAS (S reg) and MAS (R reg)→ GFAU (S reg)

as shown in Figure 6.7(b). Compared with a shift-register based memory architecture [38]

leading to a large amount of active circuit, our proposed hierarchical memory architecture

with local memory synchronization scheme gains an average of 14.2% of power reduction.

82

Write
Through

Write
Through Fetch Fetch

GFAU(R reg…
to MEMx

MAS(R reg…
to MEMy

MEMy to
GFAU(S reg…

MEMx to
MAS(S reg…

(a)

Sync.

1. GFAU(R reg…
to MAS(S reg…

2. MAS(R reg…
to GFAU(S reg…

(b)

Figure 6.7: Example of data access sequences MOV GFAU(R reg) to MAS(S reg) and MOV

MAS(R reg) to GFAU(S reg) (a) without (b) with local memory synchronization scheme.

The data transitions through MEM for interleaved processing in (a) can be eliminated in

(b).

83

Chapter 7

Implementation and Experiment

Results

7.1 Performance Analysis

Figure 7.1 shows the explicit scheduling of our proposed parallel computation scheme.

To effectively align the data transitions during processing ECSM, the atomic block is split

into several stages over GF (p) and GF (2m). In Algorithm 9, the coordinates of Q0 are

zero until finishing the first iteration including the initial step. Thus the ECPA operation

Q1 = Q0 + QT can be simply achieved by moving the value of QT to that of Q1. Stages

IS1, IS2, IS3 over GF (p) and Stages IS1, IS2 over GF (2m) are the initial stages to process

the operations as Q0 = 0. Stages I, II, III over GF (p) and Stages I, II over GF (2m) are

the operating stages between interleaved processing for the iterative ECSM calculation as

Q0 6= 0. In Figure 7.1, the computation in Stages IS1, IS2, IS3 over GF (p) and Stages

IS1, IS2 over GF (2m) are similar to that in Stages II, III, I over GF (p) and Stages II, I

over GF (2m) except disabling the ECPA operations, respectively.

On the basis of the cycle analysis results of MD, MM, ADD, SUB operations, and

data transitions, the execution time for the proposed heterogeneous architecture using

priority-oriented scheduling can be computed. Table 7.1 gives the operation time among

distinct operating stages, and the execution time of one ECSM over DFs for a valid key

84

2x 2y

0y Ty 0x Tx

2y
2x 2y

Tx Ty

1y

2y 2x

2x 2y

0y Ty 0x Tx

Ty
2y

Tx 0x

1y

2y 2x

MAS
GFAU

2x 2y

Figure 7.1: Detailed data flow for the proposed priority-oriented scheduling of ECSM

calculation over DFs.

85

length LK is summarized as follows:

GF (p) : Tp,PRE + Tp,MK + 2(Tp,IS1 + Tp,IS2) + Tp,IS3 + (LK − 1)Tp,S1+

(LK − 2)(Tp,S2 + Tp,S3) + Tp,UK + Tp,POST

GF (2m) : Tb,PRE + Tb,MK + 2Tb,IS1 + Tb,IS2 + (LK − 1)Tb,S1+

(LK − 2)Tb,S2 + Tb,UK + Tb,POST.

Note that, with radix-4 approaches, TMM = 0.5m, TMD = 0.66m, TADD = TSUB = 1,

TMEM =
⌈
m
w

⌉
+ 1 with w-bit data width of shared memory. For one 160-bit ECSM, the

overhead of the masking and unmasking primary point is 0.80%, and the overhead of the

pre-processing and post-processing is 0.72%.

To compare the different design methods under the consideration of power-analysis

resistance, the post-layout simulations of ECC hardware implementation are given in

Table 7.2. Single-GFAU [58] and two-GFAU designs are the tradeoff between hardware

complexity and speed due to the difference between serial and parallel computations. By

using a cooperative MAS which has lower hardware complexity than that of GFAU, the

heterogeneous architecture moderates the cost from duplicating GFAU. But the paral-

lelism ability is still required to be improved further. Algorithm 9 reducing the data

hazard in Algorithm 3 has fewer idle operations as exploiting the proposed scheduling in

Algorithm 10. As a result, the design using the heterogeneous architecture and a newly

introduced priority-oriented scheduling with the independent parallel threads for ECPC

has advantages in the hardware efficiency.

86

Table 7.1: Time Analysis of Proposed Priority-Oriented Scheduling

(a) GF (p)

Operating Stage Computation Time

Pre-process Tp,PRE = 3TMD + 6TMEM

Mask Tp,MK = TMD + 2TMM + 6TSUB + 13TMEM

IS1 Tp,IS1 = TMM + 4TADD + 6TMEM

IS2 Tp,IS2 = TMD + TMEM

IS3 Tp,IS3 = 2TMM + 4TSUB + 9TMEM

I Tp,S1 = TMEM + 2TMM + 4TSUB + 8TMEM

II Tp,S2 = TMM + 4TADD + 7TMEM

III Tp,S3 = TMEM + TMD

Unmask Tp,UK = TMD + 2TMM + 7TSUB + 15TMEM

Post-process Tp,POST = 2TMM + 4TMEM

(b) GF (2m)

Operating Stage Computation Time

Pre-process Tb,PRE = 3TMD + 6TMEM

Mask Tb,MK = TMD + 2TMM + 9TADD + 16TMEM

IS1 Tb,IS1 = TMD + TADD + 2TMEM

IS2 Tb,IS2 = 2TMM + 5TADD + 9TMEM

I Tb,S1 = TMEM + 2TMM + 5TADD + 8TMEM

II Tb,S2 = 2TMM + 7TADD + 10TMEM

Unmask Tb,UK = TMD + 2TMM + 10TADD + 18TMEM

Post-process Tb,POST = 2TMM + 4TMEM

87

Table 7.2: Implementation Analysis for Different DF-ECC Designs

Design Method
Area Operating Time (ms/ECSM)

AT

(mm2/KGates) Field @f (MHz)

Single-GFAU DF-ECC
0.29/70

GF (p160) 0.44@256 1

with Algorithm 3 GF (2160) 0.38@260 1

Two-GFAU DF-ECC
0.54/129

GF (p160) 0.25@256 1.05

with Algorithm 9 GF (2160) 0.19@260 0.92

Heterogeneous DF-ECC
0.39/95

GF (p160) 0.39@256 1.20

with Algorithm 3 GF (2160) 0.30@260 1.07

Heterogeneous DF-ECC
0.40/96

GF (p160) 0.25@256 0.77

with Algorithm 9 GF (2160) 0.22@260 0.78

AT product = gate count × time.

7.2 Power Measurement

In this sub-section, the power analysis for the ECC chip using our SCA countermeasure

in Chapter 4 is presented.

7.2.1 SPA

Figure 7.2 shows the power traces for different hamming weight of the key over time

obtained from a protected ECC chip performing LR-DAA ECSM in Algorithm 2, where

the hamming weight of the key is denoted by H(K). As the chip is processing, it consumes

1.79 mW at 10 MHz, which results in a voltage drop above 50 mV across the measured

resistor. From these waveforms, the key value in the chip using LR-DAA ECSM cannot

be distinguished by visual inspections because the processing time is independent on the

hamming weight of the key.

88

Figure 7.2: SPA attacks on the protected ECC chip using LR-DAA binary method of

ECSM, where the power traces are recorded by 50.0 mV/div voltage resolution and

2.0 ms/div time base.

89

7.2.2 DPA

In Figure 7.3, the correlation coefficients between the target traces and power model for

all possible hamming distances of the point coordinate Q0 in Algorithm 2 with randomized

computation are plotted over power traces, and those of the correct and incorrect key

hypothesis are plotted in black and gray, respectively. By using a basic RO-RNG without

the jitter amplifier, the reset problem [84] is solved. However, the chip is still susceptible

to DPA attacks owing to low randomness as shown in Figure 7.3, where the jitter of

the sampling clock is not sufficiently large in practical implementations and the random

sequence fails several patterns of the NIST randomness test [88]. In this case, the key of

ECC chip using randomized computation with the primary random sequence can still be

revealed after three million power traces.

In contrast, Figure 7.4 shows the correlation analysis of DPA attacks for the ECC chip

using random sequence generated from the RO-RNG with jitter amplifier. The random

sequence is examined to meet the 15 patterns of NIST randomness test with α > 0.01.

For this, due to randomness improvement, the key value of the protected ECC chip using

randomized computation cannot be revealed even after 12 million power traces.

7.2.3 ZPA

After applying the correlation analysis, Figure 7.5 shows the ZPA attacks on a pro-

tected ECC device using masked base point approaches. The correlation value of correct

and incorrect hypothesis is plotted in black and gray color, respectively. The correlation

value of the correct key is not the highest one among that of all the other key hypotheses

because the zero-value does not happen. Thus the bit value of key cannot be revealed.

7.2.4 CPA

From the experiment results for protected ECC device using RL-DAA ECSM, as

shown in Figure 7.6, the correlation analysis shows that the correlation value of correct

and incorrect hypothesis cannot be scattered in high dependence because of collision

operations. The correlation coefficients of the power traces related to the zero and non-

zero bits of the key are drawn in circle and star, respectively. In Figure 7.6, the bit value

90

Correct Hypothesis
Incorrect Hypothesis

6

6

Figure 7.3: DPA attacks on protected ECC device processing ECSM with randomized

computation, where the random sequence fails NIST P800-22 test suite.

91

Figure 7.4: DPA attacks on protected ECC device processing ECSM with randomized

computation, where the random sequence passes NIST P800-22 test suite.

92

K(P+M… = KP = P + P + + PMask point
Unmask point KP - KM = KP

Refresh M ±2M, KM ±2KM
0.15

-0.1

0.1

0.05

0

-0.05

3
210

Correct Hypothesis
Incorrect Hypothesis

Figure 7.5: Correlation analysis obtained from a protected ECC chip by conducting the

ZPA attacks.

93

of the key cannot be distinguished, where the mean of correlation coefficients is nearly

equal because the collision operations are generated for all possible key values.

0.86

0.79
0.8

0.85
0.84
0.83
0.82
0.81

5002500

0.828

0.826

Ki=0
Ki=1*

Figure 7.6: Correlation analysis obtained from a protected ECC chip by conducting the

CPA attacks.

94

7.3 Overhead of SCA Resistance

For the DPA resistance, our approach is to mask the processed data uncorrelated

with power traces without changing the logic family and without dominating the power

consumption of key-dependent operations. The overhead is the simple control logic gate

for determining the domain value. Compared with the unprotected design, the area and

time overhead of protected design is 3.6% and 0%, respectively.

For the ZPA resistance, our countermeasure is to hide the information of primary

input point by ECPA, and the results can be correctly returned by ECPS. The overhead

is the combinational logic circuit for the operations required in the ECPG. Compared

with the unprotected design, the area and time overhead of protected design is 4.2% and

1.52%, respectively.

To resist the SPA and CPA attacks, we exploit the RL-DAA ECSM. The overhead

is the control logic gate and temporary register for saving the coordinates of EC points.

Compared with the unprotected design, the area and time overhead of protected design

is 1.04% and 0%, respectively.

As above, the low (< 10%) overhead of SCA resistance has benefits in both of high-

speed and resource-constrained applications. Although the random sequence is assumed

to be an input for the design using randomized Montgomery operations and ECPG. The

RO-RNG with jitter amplifier with several thousands of gates does not dominate the area

complexity of ECC processor which needs hundreds thousands of gates.

95

7.4 Chip Achievement

By using a UMC 90-nm CMOS technology, our four IEEE P1363-compliant ECC chips

with different specifications and design techniques are fabricated for various applications,

including the mobile device, computing server, and Internet of Things (IoT). The standard

AMBA AHB bus interface [96] is integrated, and the inputs of ECC processor are the

user public/private-key, EC coordinates, EC parameters, and protocol instructions. To

real-time perform these contents, the instruction decoder and pre/post-processing of data

domain conversion are also combined in the ECC processor. The four ECC chips are

named for our research groups, where the combination of “silicon” and “ocean”, so, is

used. To give a brief classification, the soECC-B chip is for the acceleration of basic

ECC function over DFs; the soECC-P chip is targeted at the performance in terms of

hardware speed and area cost; the soECC-S chip achieves the fastest speed; the soECC-

G chip is designed for the green-energy requirements by several low power techniques of

VLSI circuit.

7.4.1 soECC-B: A 0.55 mm2 19.2/8.2 ms GF (p521)/GF (2
409) 521-

bit SCA-Resistant DF-ECC Processor Using Single-GFAU

Architecture

Figure 7.7 shows the block diagram of the system of soECC-B. For performing division

operations, a radix-2 unified division algorithm [38] is used to save 62% execution cycles

for the implementation using both of Kaliski’s Montgomery invertion [82] and conventional

radix-2 Montgomery multiplication. A single processing element, GFAU, is exploited to

accelerate the ECPC and modular operations over DFs. The multiplexer complexity for

the long bit length of registers is reduced by using the separated 32-bit circular shift

registers. With LR-DAA ECSM and key-blinded approaches, the SPA, DPA, ZPA, and

CPA attacks can be counteracted as the random value α is selected to be 32 bits. Note

that, for this design using PRNG, we assume that the attacker does not apply the system

reset before collecting power trances. Table 7.3 shows the summary of chip performance for

our 521-bit SCA-resistant DF-ECC processor. Figure 7.8(a) and Figure 7.8(b) show the

die photos, where an unprotected ECC chip and a protected ECC chip are implemented

96

to show the evaluation of SCA countermeasure.

W
ra

p
p
e
r

32

2 x 553-bit 2

x 8

Key

Circular Shift Register

Instruction Decoder

ECC Arithmetic Functions

(ECSM, ECPA, ECPD, ECPS)

Pre/Post-Processing

(Domain Conversion, Blinding Key)

GF(p)

GF(2
m
)

Montgomery/Modular

Operations

Address

Decoder

521-bit 522-bit
x 3 x 2

Data

Buffer

Divisor

Multiplier

Adder/Substractor

Galois Field Arithmetic Unit
32

32 32

A
H
B
 B
U
S

ECC Control

521-bit

32

soECC-B

Figure 7.7: System architecture of soECC-B.

Table 7.3: Chip Summary of soECC-B

Technology 90-nm

Core Area 0.55 mm2

Gate Count 170 K

Key Size 521

Field Dual

Field Length
GF (p) GF (2m)

160 256 521 163 283 409

Time (ms/ECSM) 1.62 4.4 19.2 1.15 3.33 8.2

f (MHz) 154 147 132 188 182 166

Power (mW) 66.3 67.6 58.5 72.5 87.0 86.4

97

Data BufferData Buffer

C
ir
c
u
la
r

S
h
if
t

R
e
g
is
te
r

C
ir
c
u
la
r

S
h
if
t

R
e
g
is
te
r

ECC

Control

ECC

Control

W
ra
p
p
e
r

W
ra
p
p
e
r

(a) Without SCA resistance

Data BufferData Buffer

C
ir
c
u
la
r

S
h
if
t

R
e
g
is
te
r

C
ir
c
u
la
r

S
h
if
t

R
e
g
is
te
r

ECC

Control

ECC

Control

W
ra
p
p
e
r

W
ra
p
p
e
r

(b) With SCA resistance

Figure 7.8: Chip micrograph of our 521-bit DF-ECC processor, where soECC-B is shown

in (b).

98

7.4.2 soECC-P: A 0.41 mm2 0.34/0.29 ms GF (p160)/GF (2
160) 160-

bit SCA-Resistant DF-ECC Processor Using Heteroge-

neous Two-PE Architecture

Figure 7.9 shows the block diagram of the system of soECC-P. For high speed, the

radix-4 modular operations [58] are exploited to save the execution cycles for the im-

plementation using radix-2 approach. To improve hardware utilization, the heteroge-

neous two-PE architecture, composed of one GFAU and one MAS, with priority-oriented

scheduling is adopted. The memory hierarchy with local memory coherency is used to

save 14.2% power consumption as compared with the circular shift registers [38]. With

RL-DAA ECSM in Algorithm 9 and masked base point approaches, the SPA, DPA, ZPA,

and CPA attacks can be counteracted. For this design, a basic RO-RNG without jit-

ter amplifier is implemented in device. Table 7.4 lists the summary of chip performance

for our 160-bit SCA-resistant DF-ECC processor. The measurement results of operat-

ing frequency and power consumption over supply voltage are shown in Figure 7.10. The

maximum frequency is higher as the field length is lower because the critical path depends

on the field length. Figure 7.11 shows the die photo of the ECC chip.

Table 7.4: Chip Summary of soECC-P

Technology 90-nm

Core Area 0.41 mm2

Gate Count 98 K

Key Size 160

Field Dual

Field Length
GF (p) GF (2m)

160 160

Time (ms/ECSM) 0.34 0.29

f (MHz) 194 204

Energy (µJ/ECSM) 11.7 9.3

99

n-bit Prime/Poly. reg

AM
BA

 A
H

B
BU

S n-bit FieldLen reg

1-bit FieldSel reg

Wrapper and
Address Decoder

n-bit Key Shift reg

Operand regOperand reg

Instruction Decode
Task Management

Pre/Post-Processing
Memory Control

Internal Bus

ECC Control

Shared Control Logic

Dual-Field Arithmetic

Divisor
Multiplier
Adder/

Subtractor

Multiplier
Adder/

Subtractor

RO-RNG

Figure 7.9: System architecture of soECC-P.

100

0.8 1 1.2 1.4
0

50

100

150

200

250

Core Power (V)

M
ax

im
um

 F
re

qu
en

cy
 (

M
H

z)

GF(p)

GF(2m)

0.8 1 1.2 1.4
0

10

20

30

40

50

60

70

Core Power (V)

A
ve

ra
ge

 P
ow

er
 (

m
W

)

GF(p)

GF(2m)

(0.78,13)

(0.76,12)

(1.0,34)

(1.0,32)

(1.2,62)

(1.2,58)

(1.2,208)

(1.2,199)

(1.0,204)

(1.0,194)

(0.76,78) (0.78,80)

Figure 7.10: Shmoo plot for the measurement results of chip soECC-P.

Figure 7.11: Chip micrograph of our 160-bit DF-ECC processor, soECC-P.

101

7.4.3 soECC-S: A 1.38 mm2 3.40/2.77 ms GF (p521)/GF (2
521) 521-

bit SCA-Resistant DF-ECC Processor Using Heteroge-

neous Two-PE Architecture

Figure 7.12 shows the block diagram of the system of soECC-S. To save the compu-

tation overhead against SCAs from the key-blinded approach with extended key size, the

radix-4 randomized Montgomery operations [97] described in sub-section 4.1 are exploited.

The heterogeneous two-PE architecture is adopted to accelerate the ECPC, ECPG, and

modular operations over DFs, where it consists of one JS-GFAU and one MAS. The

memory hierarchy with local memory coherency is used to transfer data efficiently. With

RL-DAA ECSM in Algorithm 9 and masked base point approaches, the SPA, DPA, ZPA,

and CPA attacks can be defeated. To give the robustness against SCAs, a RO-RNG with

jitter amplifier is implemented in device. For accelerating the calculation of ECPG, the

EC points can be randomly generated by parallel computation from the components of

JS-GFAU and MAS. Since the ECPG can be achieved in chip device, another advantage

is the transmission reduction of public key [7]. The compressed form is that the y co-

ordinate, denoted ỹ, is a single bit, where ỹ = y (mod 2). The decompression of y is

to compute a square root z of g ≡ x3 + apx + bp (mod p) over GF (p). Let z̃ be the

rightmost bit of z. If z̃ = ỹ, then y ← z, else y ← p− z. In the case of field GF (2m), the

decompression of y is first to compute β ≡ α(x2)−1, where α ≡ x3+abx
2+ bb (mod p(x)).

And then find a field element z such that z2 + z = β. Let z̃ be the rightmost bit of z.

Finally, compute y ≡ (z + z̃ + ỹ)x and return coordinate value y.

Table 7.5 lists the summary of chip performance for our 521-bit SCA-resistant DF-

ECC processor. The measurement results of operating frequency and energy dissipation

over supply voltage are shown in Figure 7.13(a) and Figure 7.13(b), respectively. The

range of supply voltage is from 0.6 V to 1.2 V. The maximum frequency is higher as the

field length is lower because the critical path depends on the field length. In contrast, the

energy consumption per ECSM operation is proportional to the field length because of

the binary method of scalar multiplication. Figure 7.14 shows the die photo of the ECC

chip.

102

521-bit Modulus

521-bit Field Length

1-bit Field Select

Wrapper and
Address Decoder

521-bit Key

OperandsOperands

Instruction Decode
Task Management

Pre/Post-Processing
Memory Control

Internal Bus

ECC Control

Shared Control Logic

Dual-Field Arithmetic

Divisor
Multiplier
Adder/

Subtractor

Multiplier
Adder/

Subtractor

RO-RNG with JA

Jacobi
Symbol

Point/Curve Check

Dual Fields Dual Fields

Figure 7.12: System architecture of soECC-S.

103

Table 7.5: Chip Summary of soECC-S

Technology 90-nm

Core Area 1.38 mm2

Gate Count 342 K

Key Size 521

Field Dual

Field Length
GF (p) GF (2m)

160 521 163 409 521

Time (ms/ECSM) 0.29 3.40 0.25 1.72 2.77

f (MHz) 214 187 224 217 216

Energy (µJ/ECSM) 57 598 56 329 532

104

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
60

80

100

120

140

160

180

200

220

240

Core Power (V)

M
ax

im
um

 F
re

qu
en

cy
 (

M
H

z)

GF(p
160

)

GF(p
192

)

GF(p
224

)

GF(p
256

)

GF(p
384

)

GF(p
521

)

GF(2163)

GF(2233)

GF(2283)

GF(2409)

GF(2521)

(a) Operating frequency over supply voltage

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

100

200

300

400

500

600

Core Power (V)

E
ne

rg
y

(u
J/

E
C

S
M

)

GF(p
160

)

GF(p
192

)

GF(p
224

)

GF(p
256

)

GF(p
384

)

GF(p
521

)

GF(2163)

GF(2233)

GF(2283)

GF(2409)

GF(2521)

(b) Energy dissipation over supply voltage

Figure 7.13: Shmoo plot for the measurement results of chip soECC-S.

105

Figure 7.14: Chip micrograph of our 521-bit DF-ECC processor, soECC-S.

7.4.4 soECC-G: A 10.8/9.2 ms 438/437 µW GF (p192)/GF (2
192)

192-bit SCA-Resistant DF-ECC Processor Using Single-

GFAU Architecture

Figure 7.15 shows the block diagram of the system of our proposed crypto engine (CE),

where the following are the supported security schemes manipulated by CE control.

• AES schemes: CTR, CBC-MAC, CMAC, and CCM modes, where the encryption

and decryption key sizes are 128 bits.

• ECC schemes: ECPA, ECPD, ECPS, ECSM operations, and DHK agreement over

GF (p) and GF (2m), where the public and private key sizes are 192 bits.

• Modular operations: addition, subtraction, multiplication, inversion, and division

over GF (p) and GF (2m).

• Random number sequence: 8-bit true random bitstream per cycle.

To conveniently integrate our proposed CE into an embedded system, a standard

AMBA AHB bus interface [96] is used. Also, for real-time transmitting the encrypted

and decrypted message frame in system applications, a direct data path from AES core to

106

AES Core

CBC
Reg.

Nonce/IV
Reg.

CTR
Reg. Plaintext

Reg.

Ciphertext
Reg.128

128

CE Control
128

soECC-G
AM

BA
 A

H
B

BU
S

0.5V

O
N

/O
FF

DF-ECC I/O

Input Text

Output Text

Key

Address
Decoder

Application Data

RO-RPG/
RNG

8

CTR

CBC
CMAC
CCM

Figure 7.15: System architecture of our CE.

107

data memory is exploited to access outside memory without dominating system bus. Since

the electronic metastability inherently exists in free running ring oscillators (ROs), the

ROs can be efficiently reused to implement both random power generator (RO-RPG) [84]

and random number generator (RO-RNG), where they are required to protect the key in

AES core from revealing by power-analysis attacks. To save the SCA-resistant overhead

of ECC processor, soECC-G, from the key-blinded approach with extended key size, the

radix-2 randomized Montgomery operations described in sub-section 4.1 are exploited. A

single processing element, GFAU, is efficiently exploited to accelerate the ECPC in ECC

schemes.

To support the requirements of security functions in the applications of IoT, a 128-

bit AES core, a 192-bit DF-ECC processor, and an 8-bit RO-RNG are integrated with

bio-signal processing system [98]. The digital processing module and sensing interface

are included, and a 32-bit RISC CPU core, Andes N903-C05 [99], is utilized to enhance

the instruction scheduling. To reduce the system power, the processor sleeps in the data

collection stage and activates in the data processing stage by a wakeup/power control

logic. To improve the battery life of portable device, the chip working at 0.5 V low supply

voltage is achieved by a reconstructed logic cell [100]. Moreover, to apply the voltage

scaling scheme, the cell behavior and timing information in the range of 1 V to 0.5 V

supply voltage are simulated and re-calibrated, then the cell library after picking out

the cells which work normally is reconstructed. With the reconstructed cell library, the

proposed CE chip can be implemented by using standard-cell based design procedure. By

scaling the supply voltage from 1.0 V to 0.5 V, the power is reduced by 80-84%, where

Figure 7.16 plots the power consumption versus the voltage and frequency. Since the

power consumption is dominated by leakage power at low frequency, the CE operating

frequency is raised to work at 25 MHz for the sake of energy efficiency. Additionally, as

the operations in security schemes are finished, the CE can be turned off by the power

gating for leakage power saving. The hardware performance of our AES core achieves

60 Mb/s 99 µW, where the throughput is 6 times higher than the 10 Mb/s required in

IEEE 802.15.6 standard and 30 times higher than the 2 Mb/s specified in IEEE 802.15.4

standard. The RO-RNG generates 25 Mb/s random sequence and consumes 47 µW. For

the DF-ECC processor it can perform one GF (p192) ECSM in 10.8 ms with 438 µW and

108

one GF (2192) in 9.2 ms with 437 µW, sufficiently passing the 250 ms at 13.56 MHz reaction

requirement in ISO 18000-3 of RFID tag applications [44] using Schnorr’s identification

protocol [22]. For the hardware complexity, the equivalent gate counts of AES core, RO-

RNG, and DF-ECC processor are 7.24 K, 0.43 K, and 61.68 K, respectively. Figure 7.17

shows the die photo and Table 7.6 shows the summary of chip performance for our 192-bit

SCA-resistant DF-ECC processor.

0 5 10 15 20 25
0

500

1000

1500

2000

2500

Frequency (MHz)

P
ow

er
 C

on
su

m
pt

io
n

(µ
W

)

0.5V
1.0V

(0,1196)

(0,198)

(25,2292)

(25,453)

80−84% OFF

Figure 7.16: The power consumption of CE chip working at different supply voltage and

operation frequency.

CPUCPU
DF-ECC

Processor

DF-ECC

Processor

AES+

RO-

RPG/R

NG

AES+

RO-

RPG/R

NG

P
M

P
M

D
M

D
M

CLKCLK

Conf.Conf.

Bio-Signal

Processing

Bio-Signal

Processing
Sens I/FSens I/F

2
2

5
µ

m
2

2
5

µ
m

225µm225µm

540µm540µm

5
4

0
µ

m
5

4
0

µ
m

Figure 7.17: Chip micrograph of our CE cooperating with embedded processor and other

components, such as data memory (DM), program memory (PM), sensing interface, and

bio-signal processing module.

109

Table 7.6: Chip Summary of soECC-G

Technology 90-nm

Core Area 0.34 mm2

Key Size 192

Field Dual

Field Length
GF (p) GF (2m)

192 192

Time (ms/ECSM) 10.8 9.2

f (MHz) 25 25

Energy (µJ/ECSM) 4.73 4.02

7.5 Comparison

7.5.1 High-Performance and SCA-Resistant ECC Processor for

IEEE P1363 Applications

Based on our proposed programmable design architecture described in sub-section 7.4.2,

six additional ECC designs, including the 192-bit DF (ECC-DF192), 521-bit DF (ECC-

DF521), 192-bit GF (p) (ECC-P192), 256-bit GF (p) (ECC-P256), 163-bit GF (2m) (ECC-

B163), 192-bit GF (2m) (ECC-B192) ECC processors, are also implemented to compare

with the previous works. The layout view of ECC-DF521 is shown in Figure 7.18. The chip

performance and implementation results with comparison to other related ECC hardware

implementations over GF (p) and GF (2m) are summarized in Table 7.7 and Table 7.8,

respectively. Note that, in consideration for the scaling effect of fabrication technology

and supply voltage, the normalization factor of area-time product and energy can be

referred to [101] and [102], respectively. The normalization factor of area-time product

is proportional to the ratio of minimum gate length for transistor; the normalization

factor of energy is proportional to the square ratio of minimum gate length for tran-

sistor multiplied by the square ratio of supply voltage. By interleaved processing the

110

ECSM operations without duplicating PEs, our heterogeneous two-PE ECC processor

with arithmetic unit integration outperforms previous works using four identical multipli-

ers architecture [24,28], separated arithmetic units [17,25,29,46,103], and single integrated

arithmetic unit [22,38,45,49] in terms of cost effectiveness. Moreover, since an operation

scheduling in a key-independent manner with randomized intermediate values is used to

protect the chip from power-analysis attacks including SPA, DPA, ZPA, and CPA attacks,

our design supports higher security level. These benefits demonstrate that the proposed

solution is well suited for the portable applications such as mobile device.

Figure 7.18: Layout view of our 521-bit DF-ECC processor, ECC-DF521.

Table 7.9 shows the comparison of our another ECC design described in sub-section 7.4.3

with related works. Compared with single-PE 521-bit designs [38,59] and a four-multiplier-

based 160-bit design [28], our soECC-S chip outperforms both in hardware speed and in

protection against SCAs. These advantages demonstrate the proposed design solution is

suitable for high-end applications, such as cloud computing.

111

Table 7.7: Comparison Among Previous Approaches for GF (p)

Technology
Area

Field
Field Time(ms/

KCycles AT
Energy ECSM Power-Analysis

(mm2/KGates) Length ECSM)@f (MHz) (µJ/ECSM) Method Resistance

Our soECC-P
90-nm 0.41/98 Dual 160 0.34@194 66.2 1 11.7 RL-DAA

SPA, DPA, ZPA,

(Measurement@1.0V) and CPA attacks

TCAS-II’09 [24]
130-nm 1.44/169 Dual 160 0.61@121 74.0

3.09 42.6
LR-DAS -

(Measurement@1.2V) (2.14†) (14.2♮)

TVLSI’11 [28]
130-nm 1.35/179 Dual 160 0.39@141 54.4

2.09 31.0
LR-DAS -

(Measurement@1.2V) (1.45†) (10.3♮)

Our ECC-DF192
90-nm 0.46/122 Dual 192 0.36@263 94.2 1 24.4 RL-DAA

SPA, DPA, ZPA,

(Post-layout@1.0V) and CPA attacks

RFIDSec’05 [45]∗

90-nm 0.09/23.8 Dual 192 1,300@0.545 677 704.5 39 LR-DAA
SPA and DPA

(Post-layout) attacks

90-nm 1.12/313 Dual

160 0.30@220 66.2 1 12

RL-DAA

192 0.43@220 94.2 - 26

Our ECC-DF521 224 0.59@217 127.2 - 39 SPA, DPA, ZPA,

(Post-layout@1.0V) 256 0.76@217 165.1 1 54 and CPA attacks

384 1.69@217 366.1 - 143

521 3.15@212 668.6 1 292

ESSCIRC’10 [38]
90-nm 0.55/170 Dual

160 1.62@154 249.5 2.93 107
SPA, DPA, ZPA,

(Measurement@1.0V)
256 4.40@147 646.8 3.14 297 LR-DAA

and CPA attacks ¶

521 19.2@132 2,534 3.31 1,123

Our ECC-P192
90-nm 0.41/108 GF (p) 192 0.36@263 94.2 1 23.9 RL-DAA

SPA, DPA, ZPA,

(Post-layout@1.0V) and CPA attacks

ISCAS’07 [29]
130-nm 0.15/23.6 GF (p) 192 2.5@200 502

1.52
- LR-DAA

SPA and DPA

(Post-layout) (1.05†) attacks

Our ECC-P256
Virtex-II Pro

8,272
GF (p) 256 4.41@37 165.1 1 - RL-DAA

SPA, DPA, ZPA,

(Post-layout) CLB Slices and CPA attacks

TCAS-I’06 [17]
Virtex-II Pro

15,755
GF (p) 256 3.86@39 151.4 1.67 - LR-DA -

(Post-layout) CLB Slices

AT product = gate count (or CLB slices) × time.

Energy = average power × time.

† Normalization factor is 0.69 (90-nm/130-nm).

♮ Normalization factor is 0.33 ((90-nm/130-nm)2×(1.0V/1.2V)2).

¶ Resistance failed by activating reset signal before ECSM calculation.

* Support hash function.

LR-DAS: left-to-right double-and-add/subtract.

112

Table 7.8: Comparison Among Previous Approaches for GF (2m)

Technology
Area

Field
Field Time(ms/

KCycles AT
Energy ECSM Power-Analysis

(mm2/KGates) Length ECSM)@f (MHz) (µJ/ECSM) Method Resistance

Our soECC-P
90-nm 0.41/98 Dual 160 0.29@204 62.5 1 9.3 RL-DAA

SPA, DPA, ZPA,

(Measurement@1.0V) and CPA attacks

TCAS-II’09 [24]
130-nm 1.44/169 Dual 160 0.37@146 54.3

2.20 30.5
LR-DAS -

(Measurement@1.2V) (1.52†) (10.1♮)

TVLSI’11 [28]
130-nm 1.35/179 Dual 160 0.27@158 43.0

1.70 21.6
LR-DAS -

(Measurement@1.2V) (1.18†) (7.1♮)

Our ECC-DF192
90-nm 0.46/122 Dual 192 0.32@263 84.7 1 18.2 RL-DAA

SPA, DPA, ZPA,

(Post-layout@1.0V) and CPA attacks

RFIDSec’05 [45]∗

90-nm 0.09/23.8 Dual 192 800@0.545 426 487.7 24 LR-DAA
SPA and DPA

(Post-layout) attacks

90-nm 1.12/313 Dual

163 0.26@238 62.5 1 14

RL-DAA
Our ECC-DF521 233 0.52@238 124.3 - 34 SPA, DPA, ZPA,

(Post-layout@1.0V) 283 0.76@238 181.3 1 55 and CPA attacks

409 1.58@235 372.5 1 141

ESSCIRC’10 [38]
90-nm 0.55/170 Dual

163 1.15@188 216.2 2.40 76

LR-DAA
SPA, DPA, ZPA,

(Measurement@1.0V)
283 3.33@182 606.1 2.36 225

and CPA attacks ¶

409 8.20@166 1,361 2.82 480

Our ECC-B163
90-nm 0.24/65 GF (2m) 163 0.22@277 62.5 1 8.2 RL-DAA

SPA, DPA, ZPA,

(Post-layout@1.0V) and CPA attacks

TC’08 [22]
130-nm - /12.5 GF (2m) 163 244@0.001 275.8

213.2 8.94
LR-DAA SPA attacks

(Synthesis@1.2V) (147.6†) (3.0♮)

MWSCAS’09 [25]
180-nm 2.10/69 GF (2m) 163 1.89@181 228.1

9.12 257
LR-DA -

(Post-layout@1.8V) (4.56‡) (15.4§)

ICITA’05 [103]
350-nm - /46 GF (2m) 163 3.05@44 134

9.81
- LR-DAS -

(Synthesis@3.3V) (2.52♭)

RFIDSec’06 [46]
350-nm - /16 GF (2m) 163 27.9@13.56 376.8

31.22
- LR-DAA

SPA and DPA

(Synthesis@3.3V) (8.03♭) attacks

Our ECC-B192
90-nm 0.32/84.6 GF (2m) 192 0.32@263 84.7 1 17.1 RL-DAA

SPA, DPA, ZPA,

(Post-layout@1.0V) and CPA attacks

CHES’06 [49]
350-nm - /29.4 GF (2m) 192 118@12 1,416

128.1
- - -

(Synthesis@3.3V) (32.95♭)

AT product = gate count × time.

Energy = average power × time.

† Normalization factor is 0.69 (90-nm/130-nm).

‡ Normalization factor is 0.50 (90-nm/180-nm).

♭ Normalization factor is 0.26 (90-nm/350-nm).

♮ Normalization factor is 0.33 ((90-nm/130-nm)2×(1.0V/1.2V)2).

§ Normalization factor is 0.08 ((90-nm/180-nm)2×(1.0V/1.8V)2).

¶ Resistance failed by activating reset signal before ECSM calculation.

* Support hash function.

LR-DAS: left-to-right double-and-add/subtract.

113

Table 7.9: Comparison Among Previous Approaches

Technology
Area

Field
Field Time(ms/ Energy Compressed Power-Analysis

(mm2/KGates) Length ECSM)@f (MHz) (µJ/ECSM) Public-Key Resistance

90-nm 1.38/342 Dual

GF (p160) 0.29@214 57

Yes
Our soECC-S

GF (p521) 3.40@187 598
SPA, DPA, ZPA,

(Measurement@1.2V)
GF (2163) 0.25@224 56

and CPA attacks
GF (2409) 1.72@217 329

GF (2521) 2.77@216 532

90-nm 0.55/170 Dual

GF (p160) 1.62@154 107

No
ESSCIRC’10 [38] GF (p521) 19.2@132 1,123 SPA, DPA, ZPA,

(Measurement@1.0V) GF (2163) 1.15@188 76 and CPA attacks ¶

GF (2409) 8.20@166 480

90-nm 0.58/168 Dual

GF (p160) 0.74@256 20

No
TCAS-II’12 [59] GF (p521) 8.08@250 450 SPA and DPA

(Post-Layout@1.0V) GF (2163) 0.63@270 20 attacks

GF (2409) 4.65@263 240

TVLSI’11 [28]
90-nm 1.35/179 Dual

GF (p160) 0.39@141 31.0
No -

(Measurement@1.2V) GF (2160) 0.27@158 21.6

¶ Resistance failed by activating reset signal before ECSM calculation.

114

7.5.2 Energy-Efficient and SCA-Resistant Crypto Engine for

IEEE 802.15.4/6 Applications

The comparison of our CE chip with other related AES [76, 104–107] and ECC [22,

24, 25, 28, 57, 58] hardware implementations are summarized in Table 7.10. By using

our highly-integrated architecture with low overhead of randomized techniques, it shows

advantages in energy efficiency and power-analysis resistance. Besides, through system-

level integration, security schemes specified in both of IEEE 802.15.4 and IEEE 802.15.6

standards are supported. Compared to a previous work of IEEE 802.15.4 security device

with RSA-based Diffie-Hellman Key (DHK) agreement [50], we also implement another

crypto engine (CE-II) by the same FPGA family. Note that the key size of DF-ECC

processor in CE-II is set to 224 bits, where it achieves the same level of security as 2048-

bit RSA used in [50]. The synthesized results are shown in Table 7.10. Our CE-II occupies

20,166 slice LUTs and 4,399 slice registers which are 13% and 65% less than those of [50],

respectively. On the other hand, our DF-ECC processor needs at most 336K cycles to

complete the DHK agreement, which is about 94% less than those of RSA-based DHK

agreement design. In addition, our design supports higher security level against power-

analysis attacks. These advantages indicate that our proposed solution is well suitable

for the resource constrained applications such as IoT.

115

Table 7.10: ASIC and FPGA Comparison Among Previous Works

Technology
Area AES Throughput AES Energy ECSM Time ECSM Power-Analysis

Standards
(mm2) (Mb/s)@f (MHz) (µJ/Mb) (ms)@f (MHz) Energy (µJ) Resistance

Our CE
90-nm 0.34 60@25 1.65

GF (p192) 10.8@25 4.73 SPA and DPA IEEE 802.15.4

(Measurement) GF (2192) 9.2@25 4.02 attacks IEEE 802.15.6

JSSC’11 [104]
45-nm 0.052 53,000@2,100 2.36 - - - SPA attacks -

(Measurement)

ESSCIRC’11 [105]
90-nm 0.104 2,970@255 2.39 - - -

SPA and DPA
-

(Measurement) attacks

JSSC’10 [106]
130-nm 0.44 1,280@100 34.64 - - -

SPA and DPA
-

(Measurement) attacks

TVLSI’10 [107]
130-nm 0.02 4.3@12 23.02 - - - SPA attacks -

(Measurement)

JSSC’06 [76]
180-nm 2.45 990@85.5 202 - - -

SPA and DPA
-

(Measurement) attacks

TVLSI’11 [28]
130-nm 1.35 - -

GF (p160) 0.39@141 31.0
- -

(Measurement) GF (2160) 0.27@158 21.6

ISCAS’11 [58]
90-nm 0.29 - -

GF (p160) 0.31@256 6.98
- -

(Post-layout) GF (2160) 0.19@290 4.92

TCAS-II’09 [24]
130-nm 1.44 - -

GF (p160) 0.61@121 42.6
- -

(Measurement) GF (2160) 0.37@146 30.5

MWSCAS’09 [25]
180-nm 2.10 - -

- - -
- -

(Post-layout) GF (2163) 1.89@181 257

TC’08 [22]
130-nm - - -

- - -
SPA attacks -

(Synthesis) GF (2163) 244@0.001 8.94

CRASH’05 [57]
90-nm 0.09 - -

GF (p192) 1.13@600 37.29
- -

(Post-layout) GF (2191) 0.71@600 23.46

Our CE-II Spartan 6 20,166/4,399†

133.295@56.234 -
GF (p224)/ 336/286K

-
SPA and DPA IEEE 802.15.4

(Synthesis) xc6slx75-3 (LUTs/REGs) GF (2224) cycles attacks IEEE 802.15.6

SCVT’11 [50] Spartan 6 23,079/12,679‡

452.85@233.503 - RSA2048

6,291K∗

- - IEEE 802.15.4
(Synthesis) xc6slx75-3 (LUTs/REGs) cycles

Energy = average power × time.

† AES core + DF-ECC processor.

‡ AES core + RSA processor.

∗ Estimated by m × (m + 0.5 × m) cycles [108], where m is the key size.

116

Chapter 8

Conclusion

8.1 Summary

In this dissertation, our research works about the design and implementation for PKC

have been reported. We reviewed the state-of-the-art approaches of the ECC hardware

implementation and SCA countermeasure. Several design techniques have been presented

for hardware performance improvement, and some arithmetical methods of ECC have

been used to avoid key-dependent processed data against SCAs. Unfortunately, there is

relatively little total solution for the SCA-resistant ECC processor. Also, although the

ECC has been adopted in some existing standards, there is a lack of design methods for

distinct realistic applications. According to these considerations, our design objectives

are not only the hardware efficiency against SCAs but also the standard compliance.

In our work, we adopt a new top-to-down design approach including the basic modular

operations over DFs, operation scheduling for both the ECSM and ECGP, and on-chip

implementation of the random bitstream generation.

The randomized Montgomery operations with low overhead of hardware complexity

are proposed for DPA resistance, where the iteration reduction of randomized Mont-

gomery division is also achieved to improve the execution time as compared to Kaliski’s

Montgomery inversion. The domain conversion can be immediately performed by several

operations of Montgomery multiplication and division, and it is time costless for the com-

putation of ECSM. To prevent the attackers from observing some key-dependent specific

processed data such as zero value, the masked base point technique of ZPA resistance is

117

exploited. By reusing the PEs, a parallel computation of ECPG is efficiently implemented

to save time overhead. Besides, to avoid the potential threats in operation scheduling,

the RL-DAA ECSM with SPA and CPA resistance is used, where a modification for that

is to explore the parallelism. The execution time can be further improved by the priority-

oriented scheduling method. Note that our SCA countermeasure does not need to modify

the standard cell and ASIC/FPGA design flow, and it can be applied for the standard

ECC function over DFs.

As above, the randomized computation requires the random sequence. The evidence is

that the low randomness of bitstream results in weakness of DPA resistance. To defeat this

problem, we introduce a new design of RO-RNG, which generates the random sequence

without deterministic state. A jitter amplifier is exploited to enlarge the sample space,

leading to higher capability against bias sampling. After applying this technique, ten one-

million-bit sequences pass the 15 patterns in NIST random tests with 99% confidence.

From measurement results, the DPA attacks cannot reveal the key value in ECC chip

using these random sequences even with 12 million power traces.

For hardware architecture, the integrated and fully-pipelined PEs (i.e., JS-GFAU,

GFAU, and MAS) are used to save cost area from multiple ALUs. To improve the uti-

lization further, the heterogeneous two-PE architecture is exploited for the parallel com-

putation of ECSM and ECPG without duplicating PEs. Besides, the two-level memory

hierarchy with local memory coherence is applied to reduce the data transition, gain-

ing benefits in the power dissipation as compared with conventional shift-register based

approaches.

By using a UMC 90-nm CMOS technology, several SCA-resistant ECC chips with dif-

ferent specifications and design criteria were fabricated for various applications, including

the mobile device, computing server, and IoT. A 0.41 mm2 160-bit ECC chip, soECC-

P, performs one GF (p)/GF (2m) ECSM in 0.34/0.29 ms 11.7/9.3 µJ. It is effective at

the hardware cost for the mobile device. A 521-bit ECC chip, soECC-S, supporting

compressed public-key form can achieve each GF (p521) ECSM in 3.40 ms and GF (2521)

ECSM in 2.77 ms. This is the fastest design for the cloud computing. Furthermore, a

192-bit ECC chip, soECC-G, operating at low supply voltage 0.5 V and cooperating with

bio-signal module achieves 10.8/9.2 ms 438/437 µW GF (p192)/GF (2
192) ECSM. This is

118

targeted at the power efficiency and suitable for the applications of IoT.

8.2 Future Work

For pursuing broader and more flexible range of security requirements in various ap-

plications, such as cloud computing and big data system, our future work includes the

ID-based encryption (IBE) and fully homomorphism encryption (FHE) [109]. IBE is a

type of public-key encryption in which the public key of a user is some unique information

about the identity of the user (e.g. a user’s email address). This can use the text-value of

the name or domain name as a key or the physical IP address. On the other hand, FHE is

a form of encryption which allows specific types of computations to be carried out on ci-

phertext and obtain an encrypted result which decrypted matches the result of operations

performed on the plaintext, where “fully” means that the operations of addition and mul-

tiplication are supported. We are constructing a system level and demonstrable prototype

with our ECC processor. A variety of security applications can therefore be evaluated on

this prototype considering the tradeoff of speed, cost, energy consumption, and also the

SCA resistance. The evaluation results can then be applied to a realistic cryptosystem

and be used to justify the feasibility and effectiveness of our security platform.

119

Appendix A

Summary of Research Status

SHA and RC4

TRNG

(2012…
(1… High-speed by pipelining
(2… Low-cost by hardware
sharing

(ISSCC 13…
RO-RNG with jitter amplifier

using configurable IHDC

Hardware
Performance

Side-Channel
Attack Resistance

(ISCAS 11…
Radix-4 division algorithm

DFsGF(2m… GF(p…

(TVLSI 13 and
Silicon Awards…

Heterogeneous two-PE
DF-ECC with SPA, DPA,

ZPA, CPA resistance

(ESSCIRC 10…
521b DF-ECC with SPA,

DPA resistance

(TCAS-II 12 and VLSIC 12…
Radix-2 randomized

Montgomery algorithm for
DPA resistance

(CHES 12…
Radix-4 randomized

Montgomery algorithm for
DPA resistance

(ISSCC 13…
High-speed DF-ECC with

SPA, DPA, ZPA, CPA
resistance

(ISCAS 12…
High-speed ECC
using full-word
Montgomery

multiplier with SPA
resistance

(2011…
High-speed ECC

using fully-pipelined
Montgomery

multiplier

(1… Radix-4 Jacobi symbol
(2… Parallel computation of
Lucas sequence
(3… Trace vector

Random EC Point
Generation

Figure A.1: Overview of our research status.

120

Appendix B

Montgomery Multiplication

Montgomery multiplication is an efficient approach for the calculation of finite filed

multiplication without long-precision division in reduction. In fact, the long-precision

integer multiplication of two m-bit operands x and y is still required, while the reduction

can be simply achieved by bitwise shifting. The key concept is that the modular reduction

by N is to be the division by constant r = 2m > N , where gcd(r,N) = 1; as the last

m-bit of intermediate value is zero value, the division by r can be implemented by bitwise

shifting. For 0 ≤ T < Nr, the Montgomery reduction of T modulo N is defined as the

value Tr−1 (mod N), and the constant r is so called Montgomery constant. To conduct

the Montgomery algorithm, the primary input operands require the domain conversion

such that X ≡ x · r (mod N) and Y ≡ y · r (mod N), and then the X and Y are in

the Montgomery domain. Algorithm 11 shows the Montgomery multiplication, where

r · r−1 −N ·N ′ = 1 with 0 < r−1 ≡ 2−m (mod N) < N and 0 < N ′ < r.

To understand why Algorithm 11 gives the right answer, let’s consider the following:

UN (mod r) ≡ TNN ′ (mod r) ≡ T (rr−1 − 1) (mod r) ≡ −T (mod r). Thus, T + UN

(mod r) ≡ 0 (mod r), and then (T +UN) is exactly divisible by r which also means that

the last m-bit of t is zero value. Then the division of t by r can be easily implemented by

bitwise shifting. Furthermore, since 0 ≤ T < Nr, t ≤ 2N as U < r, the return value R is

always less than N .

Note that N ′ = r·r−1−1
N

≡ −N−1 (mod r) and the computation of −N−1 (mod r) is

shown in Algorithm 12. In the for loop of Algorithm 12, N ·q ≡ 1 (mod 2i). Algorithm 13

shows the GF (2m) version of Algorithm 12, where q ≡ N(x)−1 (mod r) with r = xm. The

121

Algorithm 11 Montgomery Multiplication

Input: X , Y , N , N ′, and m

Output: R ≡ X · Y · r−1 (mod N)

1: T = X · Y (m×m-bit Multiplication) (log2 T = 2m)

2: U = (T (mod r))·N ′ (mod r) (m-bit Truncation + m×m-bit Multiplication +m-bit

Truncation) (log2 U = m)

3: t = T+U ·N
r

(m×m-bit Multiplication + 2m-bit Addition + m-bit Bitwise Shift Right)

(log2 t = m+ 1)

4: If t ≥ N then R = t−N (m-bit Subtraction)

5: Return R

operation of N(x) ·q in Step 3 is implemented by the polynomial multiplication, while the

operation of 2i−1 < N(x) ·q (mod 2i) in Step 3 is implemented by the integer comparison.

Algorithm 12 Computation of −N−1 (mod r) for r = 2m

Input: N with 0 < N < r and m

Output: q ≡ −N−1 (mod r)

1: q = 1

2: For i from 2 to m do

3: If (2i−1 < N · q (mod 2i))

4: then q = q + 2i−1

5: Return q = 2m − q

122

Algorithm 13 Computation of N−1 (mod r) for r = xm

Input: N(x) = xm + a(x) and m

Output: q ≡ N(x)−1 (mod r)

1: q = 1

2: For i from 2 to m do

3: If (2i−1 < N(x) · q (mod 2i))

4: then q = q ⊕ xi−1

5: Return q

123

Appendix C

Barrett Reduction

Barrett reduction shown in Algorithm 14 finds T (mod N) with a given (k + 1)-bit

value µ = ⌊ b
2k

N
⌋ and a suitably-chosen base b = 2L, where µ can be obtained from pre-

computation. For example, as b = 2, µ = ⌊2
2k

N
⌋; q1 = T >> (k − 1); q2 = q1 · µ;

q3 = q2 >> (k + 1); R1 = T [k : 0]; R2 = q3 ·N ; R2 = R2[k : 0]; R = R1 − R2; If (R < 0)

then R = R + 2k+1; While (R ≥ N) R = R − N ; Return R. To compute the value of µ

required in Algorithm 14, it is shown in Algorithm 15.

Algorithm 14 Barrett Reduction

Input: 0 ≤ T = (T2k−1, T2k−2, T1, T0)b < b2k, N , b ≥ 3, k = ⌊logbN⌋ + 1, and µ

Output: R ≡ (Rk−1, . . . , R0)b = T (mod N)

1: q1 = ⌊
T

bk−1 ⌋ (Bitwise Shift Right)

2: q2 = q1 · µ (Multiplication)

3: q3 = ⌊
q2

bk+1 ⌋ (Bitwise Shift Right)

4: R1 = T (mod bk+1) (Truncation)

5: R2 = q3 ·N (mod bk+1) (Multiplication + Truncation)

6: R = R1 − R2 (Subtraction)

7: If (R < 0) then R = R + bk+1 (Addition)

8: While (R ≥ N) do R = R−N (Subtraction)

9: Return R

Both of Barrett reduction and Montgomery reduction are the approach to find the

field element in GF (p) for an integer of double bit length without trial division. They

also require a pre-computed constant. For the differences, Barrett reduction does not

124

Algorithm 15 Computation of µ

Input: p, and k = ⌊logbN⌋ + 1

Output: µ = ⌊ b
2k

N
⌋

1: µ = bk

2: Repeat

3: S = µ

4: µ = 2µ− ⌊
⌊µ2

bk
⌋·N

bk
⌋

5: Until µ ≤ S

6: t = b2k −N · µ

7: While (t < 0) do

8: µ = µ− 1

9: t = t+N

10: Return R

need the domain conversion of primary inputs. In contrast, Montgomery reduction needs

the domain conversion of primary inputs.

125

Bibliography

[1] R. Rivest, Rivest cipher 4 (RC4), Std., 1987.

[2] Federal Information Processing Standard (FIPS), Data encryption stan-

dard (DES), FIPS Std. 46-3, Oct. 1999. [Online]. Available:

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[3] ——, Advanced encryption standard (AES), FIPS Std. 197, Nov. 2001. [Online].

Available: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[4] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems,” Comm. ACM, vol. 21, no. 2, pp. 120–126, 1978.

[5] V. Miller, “Use of elliptic curve in cryptography,” in Proc. Advances in Cryptology

(Crypto), 1986, pp. 417–426.

[6] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. Computing, vol. 48, pp. 203–209,

1987.

[7] Institute of Electrical and Electronics Engineers (IEEE), Standard specifications

or public-key cryptography, IEEE Std. 1363, Jan. 2000. [Online]. Available:

http://grouper.ieee.org/groups/1363/

[8] ——, Standard specifications or public-key cryptography – Amendment 1:

Additional techniques, IEEE Std. 1363a, Sep. 2004. [Online]. Available:

http://grouper.ieee.org/groups/1363/P1363a/

[9] ——, Wireless medium access control and physical layer specifications for low-rate

wireless personal area networks, IEEE Std. 802.15.4, May 2000.

126

[10] ——, IEEE standard for local and metropolitan area networks - Part 15.6: Wireless

body area networks, IEEE Std. 802.15.6, Feb. 2012.

[11] Z. Alliance, ZigBee specifications, Std., 2006. [Online]. Available:

http://www.zigbee.org

[12] B. SIG, Bluetooth specification version 4.0 [vol 0], Std., Jun. 2010. [Online].

Available: http://www.bluetooth.org

[13] J.-Y. Yu, C.-C. Chung, W.-C. Liao, and C.-Y. Lee, “A sub-mW multi-tone CDMA

baseband transceiver chipset for wireless body area network applications,” in ISSCC

Dig. Tech. Papers, Feb. 2007.

[14] S. Mangard, E. Oswald, and T. Popp, Power analysis attacks - Revealing the secretes

of smart cards. Springer, 2007.

[15] J. Goodman and A. Chandrakasan, “An energy-efficient reconfigurable public-key

cryptography processor,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1808–

1820, Nov. 2001.

[16] A. Satoh and K. Takano, “A scalable dual-field elliptic curve cryptographic proces-

sor,” IEEE Trans. Comput., vol. 52, no. 4, pp. 449–460, Apr. 2003.

[17] C. J. McIvor, M. McLoone, and J. V. McCanny, “Hardware elliptic curve crypto-

graphic processor over GF (p),” IEEE Trans. Circuits Syst. I, vol. 53, no. 9, pp.

1946–1957, Sep. 2006.

[18] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, “Superscalar coprocessor

for high-speed curve-based cryptography,” in Workshop on Cryptographic Hardware

and Embedded Systems (CHES), vol. 4249, Oct. 2006, pp. 415–429.

[19] G. Chen, G. Bai, and H. Chen, “A high-performance elliptic curve cryptographic

processor for general curves over GF (p) based on a systolic arithmetic unit,” IEEE

Trans. Circuits Syst. II, vol. 54, no. 5, pp. 412–416, May 2007.

[20] K. Sakiyama, L. Batina, B. Preneel, and I. Verbauwhede, “Multicore curve-based

cryptoprocessor with reconfigurable modular arithmetic logic units over GF (2n),”

IEEE Trans. Comput., vol. 56, no. 9, pp. 1269–1282, Sep. 2007.

127

[21] T. Güneysu and C. Paar, “Ultra high performance ECC over NIST primes on com-

mercial FPGAs,” in Workshop on Cryptographic Hardware and Embedded Systems

(CHES), vol. 5154, Aug. 2008, pp. 62–78.

[22] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede, “Elliptic-curve-based se-

curity processor for RFID,” IEEE Trans. Comput., vol. 57, no. 11, pp. 1514–1527,

Nov. 2008.

[23] D. M. Schinianakis, A. P. Fournaris, H. E. Michail, A. P. Kakarountas, and

T. Stouraitis, “An RNS implementation of an Fp elliptic curve point multiplier,”

IEEE Trans. Circuits Syst. I, vol. 56, no. 6, pp. 1202–1213, Jun. 2009.

[24] J.-Y. Lai and C.-T. Huang, “A highly efficient cipher processor for dual-field elliptic

curve cryptography,” IEEE Trans. Circuits Syst. II, vol. 56, no. 5, pp. 394–398,

May 2009.

[25] J.-H. Hong and W.-C. Wu, “The design of high performance elliptic curve crypto-

graphic,” in IEEE Int. Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2009, pp.

527–530.

[26] N. Guillermin, “A high speed coprocessor for elliptic curve scalar multiplications

over Fp,” in Workshop on Cryptographic Hardware and Embedded Systems (CHES),

vol. 6225, Aug. 2010, pp. 48–64.

[27] J.-H. Chen, M.-D. Shieh, and W.-C. Lin, “A high-performance unified-field recon-

figurable cryptographic processor,” IEEE Trans. VLSI Syst., vol. 18, no. 8, pp. 1145

–1158, Aug. 2010.

[28] J.-Y. Lai and C.-T. Huang, “Energy-adaptive dual-field processor for high-

performance elliptic curve cryptographic applications,” IEEE Trans. VLSI Syst.,

vol. 19, no. 8, pp. 1512–1517, Aug. 2011.

[29] F. Fürbass and J. Wolkerstorfer, “ECC processor with low die size for RFID appli-

cations,” in IEEE Int. Symp. on Circuits Syst. (ISCAS), May 2007, pp. 1835–1838.

[30] A. Karatsuba and Y. Ofman, “Multiplication of many-digital numbers by automatic

computers,” Soviet Physics-Doklady (English Translation), pp. 595–596, 1962.

128

[31] S. M. Shohdy, A. B. El-Sisi, and N. Ismail, “Hardware implementation of efficient

modified Karatsuba multiplier used in elliptic eurves,” International Journal of

Network Security, vol. 11, no. 3, pp. 155–162, Nov. 2010.

[32] G. Zhou, H. Michalik, and L. Hinsenkamp, “Improving throughput of AES-GCM

with pipelined karatsuba multipliers on FPGAs,” in Springer, vol. 5453, 2009, pp.

193–203.

[33] L. Henzen and W. Fichtner, “FPGA parallel-pipelined AES-GCM core for 100G

Ethernet applications,” in European Solid-State Circuits Conference (ESSCIRC),

Sep. 2010, pp. 202–205.

[34] D. Hankerson, A. Menezes, and S. Vanstone, Guide to elliptic curve cryptography.

New York: Springer, 2004.

[35] H. Nozaki, M. Motoyama, A. Shimbo, and S. Kawamura, “Implementation of RSA

algorithm based on RNS Montgomery multiplication,” in Workshop on Crypto-

graphic Hardware and Embedded Systems (CHES), vol. 2162, May 2001, pp. 364–

376.

[36] J.-C. Bajard and L. Imbert, “A full RNS implementation of RSA,” IEEE Trans.

Comput., vol. 53, no. 6, pp. 769–774, Jun. 2004.

[37] P. L. Montgomery, “Modular multiplication without trial division,” Math. Comput-

ing, vol. 44, no. 170, pp. 519–521, Apr. 1985.

[38] J.-W. Lee, Y.-L. Chen, C.-Y. Tseng, H.-C. Chang, and C.-Y. Lee, “A 521-bit dual-

field elliptic curve cryptographic processor with power analysis resistance,” in Eu-

ropean Solid-State Circuits Conference (ESSCIRC), Sep. 2010, pp. 206–209.

[39] A. F. Tenca and Çetin K. Koç, “A scalable architecture for Montgomery multipli-

cation,” in Workshop on Cryptographic Hardware and Embedded Systems (CHES),

vol. 1717, 1999, pp. 94–108.

[40] W.-C. Lin, J.-H. Ye, and M.-D. Shieh, “Scalable Montgomery modular multiplica-

tion architecture with low latency and low memory bandwidth requirement,” IEEE

Trans. Comput.

129

[41] A. Miyamoto, N. Homma, T. Aoki, and A. Satoh, “Systematic design of RSA

processors based on high-radix Montgomery multipliers,” IEEE Trans. VLSI Syst.,

vol. 19, no. 7, pp. 1136–1146, Jun. 2011.

[42] S.-C. Chung, J.-W. Lee, H.-C. Chang, and C.-Y. Lee, “A high-performance elliptic

curve cryptographic processor over GF (p) with SPA resistance,” in IEEE Int. Symp.

on Circuits Syst. (ISCAS), May 2012, pp. 1456–1459.

[43] S. M. H. Rodŕıguez and F. Rodŕıguez-Henŕıquez, “An FPGA arithmetic logic unit

for computing scalar multiplication using the half-and-add method,” in Interna-

tional Conference on Reconfigurable Computing and FPGAs (ReConFig), Sep. 2005.

[44] ISO/IEC, Information technology-radio frequency identification (RFID) for item

management-part 3: parameters for air interface communications at 13.56 MHz,

ISO/IEC Std. 18 000-3, 2004.

[45] J. Wolkerstorfer, “Is elliptic-curve cryptography suitable to secure RFID tags?” in

Proc. Workshop RFID and Light-Weight Cryptography (RFIDSec), Aug. 2005.

[46] S. S. Kumar and C. Paar, “Are standards compliant elliptic curve cryptosystems

feasible on RFID?” in Proc. Workshop on RFID Security (RFIDSec), Jul. 2006.

[47] F. I. P. S. (FIPS), Secure Hash Standard (SHS), FIPS Std. 180-3, Oct. 2008.

[48] J. López and R. Dahab, “Fast multiplication on elliptic curves over GF (2m) without

precomputation,” in Workshop on Cryptographic Hardware and Embedded Systems

(CHES), vol. 1717, 1999, pp. 316–327.

[49] A. W. M. Koschuch, J. Lechner and J. G. schädl, “Hardware/software co-design of

elliptic curve cryptography on an 8051 microcontroller,” in Workshop on Crypto-

graphic Hardware and Embedded Systems (CHES), vol. 4249, Oct. 2006, pp. 430–444.

[50] A. de la Piedra, A. Touhafi, and G. Cornetta, “Cryptographic accelerator for

802.15.4 transceivers with key agreement engine based on Montgomery arithmetic,”

in IEEE Symposium on Communications and Vehicular Technology in the Benelux

(SCVT), Nov. 2011, pp. 1–5.

130

[51] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in International

Cryptology Conference on Advances in Cryptology., 1999, pp. 388–397.

[52] T. Popp and S. Mangard, “Masked dual-rail pre-charge logic: DPA resistance with-

out routing constraints,” in Workshop on Cryptographic Hardware and Embedded

Systems (CHES), vol. 3659, Aug. 2005, pp. 172–186.

[53] K. Tiri, M. Akmal, and I. Verbauwhede, “A dynamic and differential CMOS logic

with signal independent power consumption to withstand differential power analysis

on smart cards,” in European Solid-State Circuits Conference (ESSCIRC), Sep.

2002, pp. 403–406.

[54] M. Bucci, L. Giancane, R. Luzzi, and A. Trifiletti, “Three-phase dual-rail pre-charge

logic,” in Workshop on Cryptographic Hardware and Embedded Systems (CHES),

vol. 4249, Oct. 2006, pp. 232–241.

[55] M. Bucci, L. Giancane, R. Luzzi, G. Scotti, and A. Trifiletti, “Delay-based dual-rail

precharge logic,” IEEE Trans. VLSI Syst., vol. 19, no. 7, pp. 1147–1153, Jul. 2011.

[56] J. Fan, X. Guo, E. D. Mulder, P. Schaumont, B. Preneel, and I. Verbauwhede,

“State-of-the-art of secure ECC implementations: a survey on known side-channel

attacks and countermeasures,” in IEEE International Symposium on Hardware-

Oriented Security and Trust (HOST), 2010, pp. 76–87.

[57] J. Wolkerstorfer, “Scaling ECC hardware to a minimum,” in ECRYPT Workshop -

Cryptographic Advances in Secure Hardware (CRASH), 2005.

[58] Y.-L. Chen, J.-W. Lee, P.-C. Liu, H.-C. Chang, and C.-Y. Lee, “A dual-field elliptic

curve cryptographic processor with a radix-4 unified division unit,” in IEEE Int.

Symp. on Circuits Syst. (ISCAS), May 2011, pp. 713–716.

[59] J.-W. Lee, J.-H. Hsiao, H.-C. Chang, and C.-Y. Lee, “An efficient DPA counter-

measure with randomized Montgomery operations for DF-ECC processor,” IEEE

Trans. Circuits Syst. II, vol. 59, no. 5, pp. 287–291, May 2012.

[60] W. Diffie and M. E. Hellman, “Multiuser cryptographic techniques,” in Proceedings

of the AFIPS National Computer Conference, vol. 45, Jun. 1976, pp. 109–112.

131

[61] B. Kaliski and M. Robshaw, “The secure use of RSA,” CryptoBytes, 1995.

[62] L. C. Washington, Elliptic curves: number theory and cryptography. Chapman and

Hall/CRC, 2003.

[63] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren,

Handbook of elliptic and hyperelliptic curve cryptography. Chapman and Hall/CRC,

2005.

[64] H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve exponentiation using

mixed coordinates,” in Proc. Adv. Cryptolog. (Asiacrypt), vol. 1514, 1998, pp. 51–

65.

[65] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Trans. Info.

Theory, vol. IT-22, pp. 644–654, Nov. 1976.

[66] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, “An efficient

protocol for authenticated key agreement,” CORR 98-05, Dept. of C & O,

University of Waterloo, Canada, Tech. Rep., Mar. 1998. [Online]. Available:

http://www.cacr.math.uwaterloo.ca/

[67] K. Nyberg and R. Rueppel, “A new signature scheme based on the DSA giving

message recovery,” in Proceedings of First ACM Conference on Computer and Com-

munications Security, ACM Press, 1993, pp. 58–61.

[68] D. W. Kravitz, “Digital signature algorithm,” Patent 5,231,668, Jul., 1993.

[69] American National Standards Institute (ANSI), Public Key Cryptography for the

Financial Services Industry: Key Agreement and Transport Using Elliptic Curve

Cryptography, ANSI Std. X9.63-2002, 2002.

[70] National Institute of Standards and Technology (NIST), Recommendation for

block cipher modes of operation - methods and techniques, NIST Std. 800-38A,

Dec. 2001. [Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-

38a/sp800-38a.pdf

132

[71] ——, Recommendation for block cipher modes of operation - The CMAC

mode for authentication, NIST Std. 800-38B, May 2005. [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-38B/SP 800-38B.pdf

[72] A. Kerckhoffs, “La cryptographie militaire,” Journal des sciences militaires, vol. 9,

pp. 5–38, Jan. 1883.

[73] C. Tokunaga and D. Blaauw, “Secure AES engine with a local switched-capacitor

current equalizer,” in ISSCC Dig. Tech. Papers, Feb. 2009, pp. 64–65.

[74] J. Fan, B. Gierlichs, and F. Vercauteren, “To infinity and beyond: combined attack

on ECC using points of low order,” in Workshop on Cryptographic Hardware and

Embedded Systems (CHES), vol. 6917, Sep. 2011, pp. 143–159.

[75] N. Homma, A. Miyamoto, T. Aoki, A. Satoh, and A. Shamir, “Collision-based power

analysis of modular exponentiation using chosen-message pairs,” in Workshop on

Cryptographic Hardware and Embedded Systems (CHES), vol. 5154, Aug. 2008, pp.

15–29.

[76] D. Hwang, K. Tiri, A. Hodjat, B.-C. Lai, S. Yang, P. Schaumont, and I. Ver-

bauwhede, “AES-based security coprocessor IC in 0.18-µm CMOS with resistance

to differential power analysis side-channel attacks,” IEEE J. Solid-State Circuits,

vol. 41, no. 4, pp. 781–792, Apr. 2006.

[77] C. Tokunaga and D. Blaauw, “Securing encryption systems with a switched capac-

itor current equalizer,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 23–31, Jan.

2010.

[78] P.-C. Liu, H.-C. Chang, and C.-Y. Lee, “A low overhead DPA countermeasure

circuit based on ring oscillators,” IEEE Trans. Circuits Syst. II, vol. 57, no. 7, pp.

546–550, Jul. 2010.

[79] J. S. Coron, “Resistance against differential power analysis for elliptic curve

cryptosystems,” in Workshop on Cryptographic Hardware and Embedded Systems

(CHES), vol. 1717, Aug. 1999, pp. 725–725.

133

[80] M. Joye and C. Tymen, “Protections against differential analysis for elliptic curve

cryptography – an algebraic approach,” in Workshop on Cryptographic Hardware

and Embedded Systems (CHES), vol. 2162, May 2001, pp. 377–390.

[81] L. Goubin, “A refined power-analysis attack on elliptic curve cryptosystems,” in

Workshop on Theory and Practice in Public Key Cryptography, vol. 2567, 2003.

[82] B. S. Kaliski, “The Montgomery inverse and its applications,” IEEE Trans. Com-

put., vol. 44, no. 8, pp. 1064–1065, Aug. 1995.

[83] H. Wang and H. Zhang, “A fast pseudorandom number generator with BLAKE

hash function,” Wuhan University Journal of Natural Sciences, vol. 15, no. 5, pp.

393–397, 2010.

[84] P.-C. Liu, H.-C. Chang, and C.-Y. Lee, “A true random-based differential power

analysis countermeasure circuit for an AES engine,” IEEE Trans. Circuits Syst. II,

vol. 59, no. 2, pp. 103–107, Feb. 2012.

[85] C. S. Petrie and J. A. Connelly, “A noise-based IC random number generator for

applications in cryptography,” IEEE Trans. Circuits Syst. I, vol. 47, pp. 615–621,

May 2000.

[86] J. Golic, “New methods for digital generation and postprocessing of random data,”

IEEE Trans. Comput., vol. 55, no. 10, pp. 1217–1229, Oct. 2006.

[87] M. Bucci and R. Luzzi, “Fully digital random bit generators for cryptographic

applications,” IEEE Trans. Circuits Syst. I, vol. 55, no. 3, pp. 861–875, Apr. 2008.

[88] National Institute of Standards and Technology (NIST), A statistical test suite for

the validation of random number generators and pseudorandom number generators

for cryptographic applications, NIST Std. 800-22, May 2001. [Online]. Available:

http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf

[89] J.-W. Lee, S.-C. Chung, H.-C. Chang, and C.-Y. Lee, “A 3.40ms/GF (p521) and

2.77ms/GF (2521) DF-ECC processor with side-channel attack resistance,” in ISSCC

Dig. Tech. Papers, Feb. 2013, pp. 50–52.

134

[90] H. Bock, M. Bucci, and R. Luzzi, “An offset-compensated oscillator-based random

bit source for security applications,” in Workshop on Cryptographic Hardware and

Embedded Systems (CHES), vol. 3156, Aug. 2004, pp. 268–281.

[91] C.-Y. Yu, C.-C. Chung, C.-J. Yu, and C.-Y. Lee, “A low-power DCO using interlaced

hysteresis delay cells,” IEEE Trans. Circuits Syst. II, vol. 59, no. 10, pp. 673–677,

Oct. 2012.

[92] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “Petrel: power and timing

attack resistant elliptic curve scalar multiplier based on programmable GF (p) arith-

metic unit,” IEEE Trans. Circuits Syst. I, vol. 58, no. 8, pp. 1798–1812, Aug. 2011.

[93] A. Daly, W. Marnane, T. Kerins, and E. Popovici, “An FPGA implementation

of a GF (p) ALU for encryption processors,” Microprocess. Microsyst., vol. 28, pp.

253–260, 2004.

[94] J.-W. Lee, S.-C. Chung, H.-C. Chang, and C.-Y. Lee, “Efficient power-analysis-

resistant dual-field elliptic curve cryptographic processor using heterogeneous dual-

processing-element architecture,” IEEE Trans. VLSI Syst., 2013.

[95] S. Müller, “On the computation of square roots in finite fields,” Designs, Codes and

Cryptography, vol. 31, no. 3, pp. 301–312, 2004.

[96] ARM, “AMBA Design Kit,” 2007. [Online]. Available:

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0243c/DDI0243C adk r3p0 trm.pdf

[97] J.-W. Lee, S.-C. Chung, H.-C. Chang, and C.-Y. Lee, “An efficient countermeasure

against correlation power-analysis attacks with randomized Montgomery operations

for DF-ECC processor,” in Workshop on Cryptographic Hardware and Embedded

Systems (CHES), vol. 7428, Sep. 2012, pp. 548–564.

[98] S.-Y. Hsu, Y.-C. Ho, Y.-W. Tseng, T.-Y. Lin, P.-Y. Chang, J.-W. Lee, J.-H. Hsiao,

S.-M. Chuang, T.-Z. Yang, P.-C. Liu, T.-F. Yang, R.-J. Chen, C.-C. Su, and C.-Y.

Lee, “A sub-100µW multi-functional cardiac signal processor for mobile healthcare

applications,” in Symposium on VLSI Circuits (VLSIC), Jun. 2012, pp. 156–157.

135

[99] Andes, Andes, Tech. Rep. [Online]. Available: http://www.andestech.com/p2-

3.htm

[100] T.-W. Chen, J.-Y. Yu, C.-Y. Yu, and C.-Y. Lee, “A 0.5V 4.85 Mbps dual-mode

baseband transceiver with extended frequency calibration for biotelemetry applica-

tions,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 2966–2976, Nov. 2009.

[101] H.-Y. Hsu, A.-Y. Wu, and J.-C. Yeo, “Area-efficient VLSI design of Reed-Solomon

decoder for 10GBase-LX4 optical communication systems,” IEEE Trans. Circuits

Syst. II, vol. 43, no. 4, pp. 1019–1027, Nov. 2006.

[102] C.-C. Wong and H.-C. Chang, “High-efficiency processing schedule for parallel turbo

decoders using QPP interleaver,” IEEE Trans. Circuits Syst. I, vol. 58, no. 6, pp.

1412–1420, Jun. 2011.

[103] J. Park, J.-T. Hwang, and Y.-C. Kim, “FPGA and ASIC implementation of ECC

processor for security on medical embedded system,” in Proc. IEEE Int. Conf. Inf.

Technol. Appl., vol. 2, 2005, pp. 547–551.

[104] S. K. Mathew, F. Sheikh, M. Kounavis, S. Gueron, A. Agarwal, S. K. Hsu, H. Kaul,

M. A. Anders, and R. K. Krishnamurthy, “53 Gbps native GF (24)2 composite-field

AES-encrypt/decrypt accelerator for content-protection in 45 nm high-performance

microprocessors,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 767–776, Apr.

2011.

[105] P.-C. Liu, J.-H. Hsiao, H.-C. Chang, and C.-Y. Lee, “A 2.97 Gb/s DPA-resistant

AES engine with self-Generated random sequence,” in European Solid-State Circuits

Conference (ESSCIRC), Sep. 2011, pp. 71–74.

[106] C. Tokunaga and D. Blaauw, “Securing encryption systems with a switched capac-

itor current equalizer,” vol. 45, no. 1, pp. 23–31, Jan. 2010.

[107] T. Good and M. Benaissa, “692-nW advanced encryption standard (AES) on a

0.13-µm CMOS,” IEEE Trans. VLSI Syst., vol. 18, no. 12, pp. 1753–1757, Dec.

2010.

136

[108] F. Rodriguez-Henriquez, N. A. Saqib, A. Diaz-Pérez, and Çetin Kaya Koç, “Crypto-

graphic algorithms on reconfigurable hardware,” in Springer Series on Signals and

Communication Technology, 2006.

[109] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stanford

University, 2009. [Online]. Available: http://crypto.stanford.edu/craig/

137

