
ARTICLE IN PRESS

Neurocomputing 72 (2009) 2418–2432
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/neucom
Reinforcement group cooperation-based symbiotic evolution for recurrent
wavelet-based neuro-fuzzy systems
Yung-Chi Hsu, Sheng-Fuu Lin �

Department of Electrical and Control Engineering, National Chiao-Tung University, 1001 Ta Hsueh Road, Hsinchu, Taiwan 300, ROC
a r t i c l e i n f o

Article history:

Received 9 August 2007

Received in revised form

26 June 2008

Accepted 8 December 2008
Communicated by T. Heskes
cooperates with other groups to generate better chromosomes by using the proposed elite-based
Available online 23 January 2009

Keywords:

Neuro-fuzzy system

Symbiotic evolution

Control

Reinforcement learning

Recurrent network
12/$ - see front matter & 2009 Elsevier B.V. A

016/j.neucom.2008.12.027

esponding author.

ail address: sflin@mail.nctu.edu.tw (S.-F. Lin).
a b s t r a c t

This paper proposes a recurrent wavelet-based neuro-fuzzy system (RWNFS) with a reinforcement

group cooperation-based symbiotic evolution (R-GCSE) for solving various control problems. The

R-GCSE is different from the traditional symbiotic evolution. In the R-GCSE method, a population is

divided to several groups. Each group formed by a set of chromosomes represents a fuzzy rule and

compensation crossover strategy (ECCS). In this paper, the proposed R-GCSE is used to evaluate

numerical control problems. The performance of the R-GCSE in the simulations is excellent compared

with other existing models.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, fuzzy logic or artificial neural networks used to
solve control problems have become a popular research topic
[1–10]. The reason is that classical control theory usually requires
a mathematical model for designing controllers. The inaccuracy of
mathematical modeling of plants usually degrades the perfor-
mance of the controllers, especially for nonlinear and complex
control problems [11–14]. Fuzzy logic has the ability to express
the ambiguity of human thinking and to translate expert knowl-
edge into computable numerical data.

A fuzzy system consists of a set of fuzzy IF–THEN rules that
describe the input–output mapping relationship of networks.
Obviously, it is difficult for human experts to examine all the
input-output data from a complex system to find proper rules for
a fuzzy system. To cope with this difficulty, several approaches
used to generate the fuzzy IF–THEN rules from numerical data
have been proposed [2,3,6]. These methods were developed for
supervised learning; i.e., the correct ‘‘target’’ output values are
given for each input pattern to guide the learning of the network.
However, most of the supervised learning algorithms for neural
fuzzy networks require precise training data in order to tune the
networks for various applications. For some real world applica-
tions, precise training data are usually difficult and expensive, if
ll rights reserved.
not impossible, to obtain. For this reason, there has been a
growing interest in reinforcement learning algorithms for neural
controller [15–18] or fuzzy [19–21] design.

In designing a fuzzy controller, adjusting the required para-
meters is important. To do this, back-propagation (BP) training
was used in [3,6–8]. It is a powerful training technique that can be
applied to networks with a forward structure. Since the steepest
descent technique is used in BP training to minimize the error
function, the algorithms may reach the local minima very fast and
never find the global solution. To solve these problems, several
evolutionary algorithms, such as genetic algorithm (GA) [22],
genetic programming [23], evolutionary programming [24], and
evolution strategies [25], have recently been proposed. They are
parallel and global search techniques. Because they simulta-
neously evaluate many points in the search space, they are more
likely to converge toward the global solution. For this reason,
evolutionary methods, which are used for training fuzzy models,
have become an important field.

The evolutionary fuzzy model generates a fuzzy system
automatically by incorporating evolutionary learning procedures
[26–33]. The most well-known evolutionary learning procedure is
GAs. Several genetic fuzzy models have been proposed [26–31]. In
[26], Karr applied GAs to design the membership functions of a fuzzy
controller with its fuzzy rule set being assigned in advance. Since the
membership functions and rule sets are co-dependent, simultaneous
design of these two approaches is a more appropriate methodology.

Based on this concept, many researchers have applied GAs to
optimize both the parameters of the membership functions and

www.sciencedirect.com/science/journal/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2008.12.027
mailto:sflin@mail.nctu.edu.tw

ARTICLE IN PRESS

Fig. 1. Schematic diagram of RWNFS model.

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–2432 2419
the rule sets [27–29]. Lin and Jou [30] proposed GA-based fuzzy
reinforcement learning to control magnetic bearing systems.
Juang et al. [31] proposed using genetic reinforcement learning
to design fuzzy controllers. The GA adopted in [31] was based on
traditional symbiotic evolution which, when applied to fuzzy
controller design, complements the local mapping property
of a fuzzy rule. In [32] Tang proposed a hierarchical genetic
algorithm. The hierarchical GA enables the optimization of the
fuzzy system design for a particular application. Juang [33]
proposed the combination of online clustering and Q-value based
GA for reinforcement fuzzy system (CQGAF) to simultaneously
design the number of fuzzy rules and the free parameters in a
fuzzy system.

However, these approaches encounter one or more of the
following major problems: (1) all the fuzzy rules are encoded into
one chromosome; (2) the population cannot evaluate each fuzzy
rule locally.

Recently, Gomez and Schmidhuber [34,35] proposed solutions
for these problems. The proposed enforced sub-populations (ESP)
used sub-populations of neurons for the fitness evaluation and
overall control. As shown in [34,35], the sub-populations that are
used to evaluate the solution locally can obtain better perfor-
mance compared to systems of only one population which are
used to evaluate the solution.

As with [34,35], in this paper, a RWNFS with a reinforcement
group cooperation-based symbiotic evolution (R-GCSE) is pro-
posed for solving the problems mentioned above. In the proposed
R-GCSE, each chromosome represents only one fuzzy rule, and the
n-rules fuzzy system is constructed by selecting and combining
n chromosomes from several groups. The R-GCSE, which promotes
both cooperation and specialization, ensures diversity and
prevents a population from converging to suboptimal solutions.
In the R-GCSE, compared with normal symbiotic evolution, several
groups are in the population. Each group formed by a set of
chromosomes represents a fuzzy rule. Compared with [34,35] to
let the well-performing groups of individuals cooperate to create
better generations, an elite-based compensation crossover strat-
egy (ECCS) is proposed in this paper. In the ECCS, each group
cooperates to perform the crossover steps. Therefore, the better
chromosomes of each group will be selected to perform the
crossover steps in the next generation.

The advantages of the R-GCSE are summarized as follows: (1)
the R-GCSE uses group-based populations to evaluate the fuzzy
rule locally; (2) the R-GCSE uses the ECCS to allow better solutions
from different groups to cooperate in order to generate better
solutions in the next generation; (3) it indeed performs better
performance and converges more quickly than some traditional
genetic methods.

This paper is organized as follows. In Section 2, the RWNFS is
introduced. In Section 3, the proposed group cooperation-based
symbiotic evolution (GCSE) is described. In Section 4, the reinforce-
ment group cooperation-based symbiotic evolution (R-GCSE) using
for constructing the RWNFS model is introduced. In Section 5, the
simulation results are presented. The conclusions are summarized
in the last section.
2. Structure of a RWNFS

In this section, the structure of RWNFS shown in Fig. 1 will be
introduced. For TSK-type fuzzy networks [1,5], the consequence of
each rule is a function input linguistic variable. A widely adopted
function is a linear combination of input variables plus a constant
term. This study adopts a nonlinear combination of input
variables (i.e., wavelet neural network (WNN)). The advantages
of the WNN are as follows: (1) its ability to find ‘‘universal
approximation’’; (2) an explicit link between the wavelet trans-
form and the network coefficient is completed, and an initial
guess of network parameters can be derived by the decomposition
of a wavelet formula; (3) it probably obtains the same approx-
imation performance as a smaller size network; in addition,
wavelet networks are optimal approximators since the smallest
number of bits are required to obtain an arbitrary precision [36].

In RWNFS, each fuzzy rule corresponds to a sub-WNN which
consists of single-scaling wavelets [37]. The non-orthogonal and
compact wavelet functions used as the node function (wavelet
bases) are adopted in this paper. The purpose of introducing a
fuzzy model into WNN is to improve the accuracy of function
approximation based on the dilation and translation parameters
of wavelets while not increasing the number of wavelet bases. A
RWNFS is composed of fuzzy rules that can be presented in the
following general form:

Rj : If I1 is A1j and . . . Iij is Aij and . . . and Inj is Anj

Then ŷ
1
j ¼

XM
k¼1

w1
jkja:b ¼ w1

j1j0:0 þw1
j2j1:0 þw1

j3j1:1 . . .

and ŷ
2
j ¼

XM
k¼1

w2
jkja:b ¼ w2

j1j0:0 þw2
j2j1:0 þw2

j3j1:1 � � �

..

.
(1)

where Rj denotes the jth rule; (I1j,y, Iij,y,Inj) is the network input
pattern (x1,y, xi,y,xn) plus the temporal term for the linguistic
term of the precondition part Aj

¼ ðA1j; . . . ;Aij; . . . ;AnjÞ; the local
WNN model’s outputs ŷ

1
j and ŷ

2
j are calculated for outputs y1 and

y2 of rule Rj.
Next, the signal propagation is indicated, along with the

operation functions of the nodes in each layer. In the following
description, IðhÞi denotes the ith node’s input in the hth layer, and
OðhÞi denotes the ith node’s output in layer h.

In layer 1, nodes just transmit input signals to the next layer
directly, that is,

Oð1Þi ¼ Ið1Þi (2)

where Ið1Þi ¼ ðx1; . . . ; xi; . . . ; xnÞ. Each precondition part of the jth
rule Aj

¼ ðA1j; . . . ;Aij; . . . ;AnjÞ (a group of fuzzy sets) is described
here by a Gaussian-type membership function; that is, the
membership value specifying the degree of how an input value
belongs to a fuzzy set is determined in layer 2. The Gaussian

ARTICLE IN PRESS

Fig. 2. The structure of chromosomes in GCSE.

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–24322420
function is defined by

Oð2Þij ¼ exp �
ðIð2Þij �mijÞ

2

s2
ij

 !
(3)

where mij and sij are the mean and standard deviation with the ith
dimension and jth rule node, respectively. Additionally, the input
of this layer for the discrete time can be denoted by

Ið2Þij ðtÞ ¼ Oð1Þi ðtÞ þ Oðf Þij ðtÞ; Oðf Þij ðtÞ ¼ Oð2Þij ðt � 1Þyij (4)

where yij is the feedback weight. Clearly, the input of this layer
contains the memory terms Oð2Þij ðt � 1Þ, which store the past
information of the network. In RWNFS, the recurrent property is
achieved by feeding the output of each membership function back
to itself so that each membership value is influenced by its
previous value.

Although some recurrent neural fuzzy networks have been
proposed and applied to dynamic system identification and
control, there are still disadvantages to these network structures.
In [38], the order of both the control input and the network output
in the Auto Regressive with eXogenous (ARX) model needs to be
known. This problem can be solved by feeding back the output of
each membership function in the recurrent property of RWNFS.
Only the current control input and system state are fed to the
network input. The past values can be memorized by using the
feedback structure. In [39], a global feedback structure is adopted,
and the outputs of all the rule nodes, the firing strengths, are fed
back and summed. In this case, the TRFN [39] needs more
adjustable parameters.

In layer 3, defining the number and the locations of the
membership functions leads to the partition of the space
D ¼ D1 � � � � � Dn. The collection of fuzzy sets Aj

¼ ðA1j; . . . ;

Aij; . . . ;AnjÞ pertaining to the premise part of Rj formulates a fuzzy
region in D that can be regarded as a multi-dimensional fuzzy set
whose membership function is determined by

Oð3Þj ¼
Yn

i¼1

Ið3Þj ¼
Yn

i¼1

exp �
ðIð2Þij �mijÞ

2

s2
ij

 !
(5)

where n is the number of external dimensions.
Layer 4 only receives the signal ŷ

s
j from the output of the WNN

for an output Ys and the jth rule. The mathematical function of
each node j is

ŷ
s
j ¼ Oð4Þsj ¼

XM
k¼1

ws
jkja:b. (6)

The crisp ja.b can be obtained as follows:

ja:b ¼

Pn
i¼1fa;bðxiÞ

jXj
(7)

where |X| is the number of input dimensions. The fa.b(xi)
functions which are used to input vectors to fire up the wavelet
interval are calculated as follows:

fðxiÞ ¼ cosðxiÞ �0:5pxip0:5

0; otherwise

(
; fa:bðxiÞ ¼ cosðaxi � bÞ

where a ¼ 1; . . . ;m; b ¼ 1; . . . ; a. (8)

The above equation formulates the non-orthogonal wavelets in a
finite range, where b denotes a shifting parameter with its
maximum value equal to the corresponding scaling parameter a.

The final output of the model (y1,y, ys,y, yp) is calculated in
layer 5, and the node’s output together with related links acts as a
defuzzifier. The mathematical function is

ys ¼ Oð5Þs ¼

PM
j¼1Ið5Þsj Ið5ÞjPM

j¼1Ið5Þj

¼

PM
j¼1ðw

s
j1f0:0 þ � � � þws

jkfa:b � � � þws
jMfm:mÞI

ð5Þ
jPM

j¼1Ið5Þj

(9)

where Ið5Þsj ¼ Oð4Þsj denotes the output of the local model of WNN for
an output Ys and the jth rule, Ið5Þj ¼ Oð3Þj is the output of layer 3, and
ys is the sth output of RWNFS.
3. A group cooperation-based symbiotic evolution (GCSE)

In this section, the proposed GCSE method will be discussed.
Recently, there have been many studies which have tried to
enhance the traditional GAs [40–43]. One category of these
studies tries to modify the structure of a population. Examples in
this category include the distributed GA [41], the cellular GA [42],
and the symbiotic GA [43].

This study proposes using the GCSE to improve the symbiotic
GA [43]. In the GCSE, the algorithm is developed from symbiotic
evolution. The idea of symbiotic evolution was first proposed in an
implicit fitness-sharing algorithm that is used in an immune
system model [44]. The authors developed artificial antibodies to
identify artificial antigens. Because each antibody can match only
one antigen, a different population of antibodies is required to
effectively defend against a variety of antigens. As shown in
[31,43], partial solutions can be characterized as specializations.
The specialization property ensures diversity and prevents a
population from converging to suboptimal solutions. A single
partial solution cannot ‘‘take over’’ a population since it must
correspond with other specializations. Unlike the standard
evolutionary approach which always causes a given population
to converge, hopefully at the global optimum, the symbiotic
evolution finds solutions in different, unconverted populations
[31,43]. In the GCSE, compared with normal symbiotic evolution,
several groups are in the population. Each group formed by a set
of chromosomes represents a fuzzy rule.

In the GCSE, the structure of the population consists of several
groups. The structure of the chromosome in the GCSE is shown in
Fig. 2. However, to allow groups to cooperate with each other in
order to generate better solutions, the GCSE proposes an ECCS.

ARTICLE IN PRESS

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–2432 2421
In the GCSE, the coding structure of the chromosomes must be
suitable for each chromosome to represent only one fuzzy rule. A
fuzzy rule with the form introduced in Eq. (1) is shown in Fig. 3.

The learning process of the GCSE in each group involves five
major steps: initialization, fitness assignment, elite-based repro-
duction strategy (ERS), ECCS, and mutation strategy. The flowchart
Fig. 3. Coding a rule of a RWNFS into a chromosome in GCSE.

Fig. 4. The learning p
of the learning process is shown in Fig. 4. The learning process is
described step-by-step as follows:

3.1. Initialization

Before the GCSE is designed, individuals forming several initial
groups should be generated. The following formulations show
how to generate the initial chromosomes in each group:

Deviation : Chrg;c½p� ¼ random½smin;smax�

where p ¼ 2;4; . . . ;2n; g ¼ 1;2; . . . ;M; c ¼ 1;2; . . . ;NC (10)
rocess of GCSE.

ARTICLE IN PRESS

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–24322422
Mean : Chrg;c½p� ¼ random½mmin;mmax� where p ¼ 1;3; . . . ;2n� 1

(11)

Theta : Chrg;c½p� ¼ random½ymin; ymax�

where p ¼ 2nþ 1;2nþ 2; . . .2nþ 1 (12)

Weight : Chrg;c½p� ¼ random½wmin;wmax�

where p ¼ 2ðnþ 1Þ þ 1;2ðnþ 1Þ þ 2; . . . ;2ðnþ 1Þ þM (13)

where Chrg,c represents the cth chromosome in the gth group;
M represents the total number of groups; NC is the total number of
chromosomes in each group; p represents the pth gene in a Chrg,c;
and [smin, smax], [mmin, mmax],[ymin, ymax], and [wmin, wmax]
represent the predefined range.

3.2. Fitness assignment

As discussed previously, in the GCSE, the fitness value of a
single rule (an individual) is calculated by summing up the fitness
values of all the possible combinations which contain that single
rule. The details for assigning the fitness value are described step-
by-step as follows:
�
 Step 1. Randomly choose M fuzzy rules from the M groups with
size NC.

�
 Step 2. Evaluate every RWNFS, which is generated from step 1,

to obtain a fitness value.

�
 Step 3. Divide the fitness value by M and accumulate the

divided fitness values to the selected rules with their fitness
value records initially set to zero.

�
 Step 4. Repeat the above steps until each rule (an individual) in

each group has been selected a sufficiently large number of
times, and record the number of RWNFS models in which each
individual has participated.

�
 Step 5. Divide the accumulated fitness value of each chromo-

some by the number of times it has been selected. The average
fitness value represents the performance of a single rule.

3.3. Elite-based reproduction strategy (ERS)

Reproduction is a process in which individuals are copied
according to their fitness values. A fitness value is assigned to each
chromosome according to a fitness assignment step in which high
values denote a good fit. The goal of the GCSE is to maximize the
fitness value. For stability, this study proposes an ERS to allow the
best combination of chromosomes to be kept in the next
generation. In the GCSE, the chromosome with the best fitness
value may not be in the best combination. Therefore, every
chromosome in the best combination must be kept by applying
ERS. Other chromosomes in each group are selected by the
roulette-wheel selection method [45]—a simulated roulette is
spun—in this study. The best performing chromosomes in the top
half of each group [31] advance to the next generation. The other
half is generated by applying the crossover and mutation
operations on the chromosomes in the top half of the parent
generation. In the reproduction step, the top half of each group
must keep the same number of chromosomes.

3.4. Elite-based compensation crossover strategy (ECCS)

Although the ERS can search for the best existing individuals, it
does not create any new individuals. In nature, an offspring has
two parents and inherits genes from both. The main step which
works on the parents is the crossover step, which occurs on a
selected pair under a crossover rate. In this paper, an ECCS is
proposed to improve the crossover operation. The ECCS mimics
the cooperation phenomenon in society, in which individuals
become more suitable for the environment as they acquire and
share more knowledge of their surroundings. The best performing
individuals in the top half of each group that are called elites are
used to select the parents so that the ECCS can be applied. Details
of the ECCS are shown below.

Step 1. The first of the parents that is used in the crossover
operation is selected from the original group by using the
following equations:

Fitness_Ratiog;t ¼

Pt
u¼1fitnessg;uPNc

c¼1fitnessg;u

; where t ¼ 1;2; . . . ;Nc (14)

Rand_Value½g� ¼ Random½0;1�; where g ¼ 1;2; . . . ;M; (15)

Parent_SiteA½g� ¼ t; if

Fitness_Ratiog;t�1oRand_Value½g�pFitness_Ratiog;t , (16)

where Fitness_Ratiog;t is the fitness ratio of the tth chromosome
in the gth group; Rand_Value½g� 2 ½0;1� is a random value in the
gth group; and Parent_SiteA½g� is the site of the first parent.
According to Eq. (16), if the Rand_Value½g� is greater than the fitness
ratio at the (t�1)th chromosome in the gth group and equal to or
smaller than the fitness ratio at the tth chromosome in the gth
group, the site of the first parent of the gth group is assigned to t.

Step 2. After the first parent is determined, the best performing
elites in every group are used to determine the other parent.
In this step, the total fitness ratio of every group is computed
as follows:

Total_Fitnessg ¼
XNc

c¼1

fitnessg;c ; where g ¼ 1;2; . . . ;M; (17)

Total_Fitness_Ratiow ¼

Pw
u¼1Total_FitnessuPM
g¼1Total_Fitnessg

where w ¼ 1;2; . . . ;M; (18)

where Total_Fitnessg represents the summation of all the chromo-
somes’ fitness values in the gth group and Total_Fitness_Ratiow is
the total fitness ratio of the wth group.

Step 3. Determine the other parental group for applying
crossover with the Parent_SiteA½g�th chromosome in the gth group
according to the following equations:

Group_Rand_Value½g� ¼ Random½0;1� where g ¼ 1;2; . . . ;M;

(19)

Parent_Group_SiteB½g� ¼ w; if Total_Fitness_Ratiow�1

oGroup_Rand_Value½g�pTotal_Fitness_Ratiow. (20)

where Group_Rand_Value½g� 2 ½0;1� is a random value in the gth
group and Parent_Group_SiteB½g� represents the site of the group
where the second parent is selected from.

Step 4. After the Parent_Group_SiteB½g�th group is selected, the
other parent which is selected from the Parent_Group_SiteB½g�th
group is determined by the ECCS according to the following
equations:

Fitness_RatioSelected_g;t ¼

Pt
u¼1fitnessSelected_g;uPNc
c¼1fitnessSelected_g;c

, (21)

where t ¼ 1;2; . . . ;Nc; Selected_g ¼ Parent_Group_SiteB½g�;

Rand_Value½g� ¼ Random½0;1�; where g ¼ 1;2; . . . ;M; (22)

Parent_SiteB½g� ¼ l; if Fitness_RatioSelected_g;l�1

oRand_Value½g�pFitness_RatioSelected_g;l, (23)

ARTICLE IN PRESS

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–2432 2423
where Fitness_RatioSelected_g;t is a fitness ratio of tth chromosome in
the Parent_Group_SiteB½g�th group and Parent_SiteB½g� is the site of
the second parent. The pseudo code of the ECCS is listed in Fig. 5.

After the parents from the gth group and the Parent_Group_
SiteB½g�th group are selected using ECCS, the individuals (the
Parent_SiteA½g�th chromosome and the Parent_SiteB½g�th chromo-
some) are crossed and separated by using a two-point crossover in
the gth group, as shown in Fig. 6. In Fig. 6, exchanging the site’s
values between the selected sites of the parents’ individuals
creates new individuals. After this operation, the individuals with
poor performances are replaced by the newly produced offspring.
Fig. 5. The pseudo code of the ECCS method.

Fig. 6. Two-poin
3.5. Mutation strategy

Although the ERS and ECCS would produce many new strings,
they do not introduce any new information to the population at
the site of an individual. Mutation can randomly alter the allele of
a gene. In this paper, to emphasize the capability of the ECCS, the
GCSE tries to simplify the mutation operation. Therefore, a
uniform mutation [45] is adopted, and the mutated gene is
generated randomly from the domain of the corresponding
variable.

The aforementioned steps are done repeatedly and stopped
when the predetermined condition is achieved.
4. Reinforcement learning for a RWNFS

Unlike the supervised learning problem, in which the correct
‘‘target’’ output values are given for each input pattern, the
reinforcement learning problem has only very simple ‘‘evaluative’’
or ‘‘critical’’ information rather than ‘‘instructive’’ information. In
the extreme case, there is only a single bit of information to
indicate whether the output is right or wrong. The training
environment of reinforcement group cooperation-based symbiotic
evolution (R-GCSE), which interacts with reinforcement learning
problems, is shown in Fig. 7. In this paper, the reinforcement
signal indicates whether a success or a failure occurs.

As shown in Fig. 7, the R-GCSE consists of a RWNFS in order to
determine a proper action according to the current input vector
(environment state). The structure of the R-GCSE is different from
Barto and his colleagues’ actor-critic architecture [17], which
consists of a control network and a critic network. The input of the
RWNFS is the state of the plant, and the output is a control action
of the state denoted by f. The only available feedback is a
reinforcement signal that notifies the RWNFS only when a failure
occurs. An accumulator plays the role of a relative performance
measure. It is shown in Fig. 7. It accumulates the number of time
steps before a failure occurs. In this paper, the feedback is decided
by an accumulator that determines how long the experiment is
still a ‘‘success.’’ The accumulator is used as a relative measure of
the fitness in the R-GCSE. The key to the R-GCSE is formulating a
number of time steps before a failure occurs and using this
formulation as the fitness function of the R-GCSE. It will be
observed that the advantage of the R-GCSE is that it can meet
global optimization capability.

A flowchart of the R-GCSE is shown in Fig. 8. The R-GCSE runs
in a feed forward fashion to control the environment (plant) until
a failure occurs. In this paper, the fitness function is defined as a
number of time steps before a failure occurs. The goal of the
R-GCSE is to maximize the fitness value. The fitness function is
defined by:

Fitness Value ¼ TIME-STEP (24)

where TIME-STEP represents how long the experiment is still a
‘‘success.’’ Eq. (24) indicates that long-time steps before a failure
t crossover.

ARTICLE IN PRESS

Fig. 8. Flowchart of the R-GCSE.

Fig. 7. Schematic diagram of the R-GCSE for the RWNFS model.

Table 1
The initial parameters before training.

Parameters Value

[smin, smax] [0, 2]

[mmin, mmax] [0, 2]

[ymin, ymax] [�2, 2]

[wmin, wmax] [�20, 20]

Fig. 9. The cart-pole balancing system.

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–24322424
occurs (to keep the desired control goal longer) means a higher
fitness of the R-GCSE.
5. Illustrative examples

Two applications are discussed in this section. The first
simulation simulated balance a cart-pole system that was
described in [46–48]. The second simulation simulated the
balancing of a ball and beam system that was described in
[49,50]. The initial parameters for these two examples are given in
Table 1. The initial parameters were determined by practical
experimentation or trial-and-error tests.

5.1. Example 1: Control of a cart-pole balancing system

In this example, the R-GCSE was applied to the classic control
problem of a cart-pole balancing system. This problem is often used as
an example of inherently unstable and dynamic systems to
demonstrate both modern and classic control techniques [46–48] or
reinforcement learning schemes [15–21], and is now used as a control
benchmark. As shown in Fig. 9, a cart-pole balancing problem is the
problem of learning how to balance an upright pole. The bottom of
the pole is hinged to a cart that travels along a finite-length track to its
right or left. Both the cart and the pole can move only in the vertical
plane; that is, each has only one degree of freedom.

There are four state variables in the system: y, the angle of the
pole from an upright position (in degrees); _y, the angular velocity
of the pole (in degrees/seconds); x, the horizontal position of the
cart’s center (in meters); and _x, the velocity of the cart (in meters/
seconds). The only control action is f, which is the amount of force
(in Newtons) applied to a cart to move it left or right. The system
fails when the pole falls past a certain angle (7121 is used here)
or when the cart runs into the bounds of its track (the distance
is 2.4 m from the center to each bound of the track). The goal of
this control problem is to determine a sequence of forces that is
applied to the cart to balance the pole upright. The equations of
motion are as follows:

yðt þ 1Þ ¼ yðtÞ þ D _yðtÞ, (25)

_yðt þ 1Þ ¼ _yðtÞ þ DððmþmpÞg sin yðtÞÞ=ðð4=3ÞðmþmpÞl�mpl cos2 yðtÞÞ

�
cos yðtÞ f ðtÞ þmpl _yðtÞ2 sin yðtÞ � mc sgnð_xðtÞÞ

h i
ð4=3ÞðmþmpÞl�mpl cos2 yðtÞ

�
ðmpðmþmpÞ

_yðtÞ=mplÞ

ð4=3ÞðmþmpÞl�mplcos2yðtÞ
, (26)

xðt þ 1Þ ¼ xðtÞ þD_xðtÞ, (27)

_xðt þ 1Þ ¼ _xðtÞ þD
f ðtÞ þmpl½ _yðtÞ2 sin yðtÞ � €yðtÞ cos yðtÞ�

ðmþmpÞ

�
mc sgnð_xðtÞÞ

ðmþmpÞ
, (28)

where

l ¼ 0:5 m; the length of the pole;

m ¼ 1:1 kg; combined mass of the pole and the cart;

mp ¼ 0:1 kg; mass of the pole;

g ¼ 9:8 m=s; acceleration due to the gravity;

mc ¼ 0:0005; coefficient of friction of the cart on the track,

mp ¼ 0:000002; coefficient of friction of the pole on the cart,

D ¼ 0:02ðsÞ; sampling interval. (29)

ARTICLE IN PRESS

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–2432 2425
The constraints on the variables were �12�pyp12�, �2.4
mpxp2.4 m, and �10 Npfp10 N. A control strategy is deemed
successful if it can balance a pole for 100,000 time steps.

The four input variables ðy; _y; x; _xÞ and the output f(t) were
normalized between 0 and 1 over the following ranges: y: [�12,12],
_y: [�240,240],: [�2.4, 2.4], _x: [�2.4, 2.4], and f(t): [�10,10]. The
ranges of _y and _x were calculated by experiments with extreme
boundary conditions. The car was placed at the location of 2.4 m
(or �2.4 m) with the pole angle set at �121 (or 121), respectively.
Then the maximum force of �10N (or 10N) was applied to the
cart. When the system failed, the observed _y and _x were the
boundaries.

The four normalized state variables were used as inputs to the
RWNFS. The coding of a rule in a chromosome is the form shown
in Fig. 5. The values are floating-point numbers initially assigned
to the R-GCSE. The fitness function in this example is defined in
Eq. (24) to train the RWNFS and represents how long before the
Table 2
The initial parameters before training.

Parameters Value

Fuzzy rules 4

Group size 30

Crossover rate 0.4

Mutation rate 0.15

Fig. 10. The performance of (a) the R-GCSE method; (b) R-SE method
pole falls past a certain angle ðjyj412�Þ or before the cart runs into
the bounds of its track ðjxj42:4 mÞ.

The initial parameters of the R-GCSE were determined by
parameter exploration. The first study in parameter exploration
was proposed by De Jong [51]. As shown in [51], a small
population size is good for the initial performance, and a large
population size is good for long-term performance. Moreover, a
low mutation rate is good for on-line performance, and a high
mutation rate is good for off-line performance. In [52], the author
found from his simulation that the best population size and
mutation rate were 30 and 0.01, respectively.

In this study, the parameters were found using the method
given in [52]. Therefore, the number of fuzzy rules was from
2 to 20 in increments of 1, the group size was from 10 to 100
in increments of 10, the crossover rate was from 0.25 to 1 in
increments of 0.05, and the mutation rate was from 0 to 0.3 in
exponential increments. The parameters set for the R-GCSE are
shown in Table 2.

There were four rules that were used to construct the RWNFS.
A total of 30 runs were performed. Each run started at different
initial states (_y and _x were set to 0, and y and x were set randomly
according to the predefined ranges). The learning curve of the
R-GCSE after 30 runs is shown in Fig. 10(a). The learning curve
represents how long before the cart-pole balancing system failed.
As shown in this figure, the RWNFS learned to balance the pole
in the 198th generation on average. The standard deviation in
Fig. 10(a) is 72.43. When the R-GCSE was stopped, the best
combination of strings from the groups in the final generation was
[49]; (c) R-GA method [26] on the cart pole balancing system.

ARTICLE IN PRESS

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–24322426
selected and tested on the cart-pole balancing system. The
obtained fuzzy rules of the RWNFS are as follows:

R1 : If I11 is A1;1ð0:134;0:038Þ and I12 is A2;1ð0:61;1:12Þ

and I13 is A3;1ð1:02;0:71Þ and I14 is A4;1ð0:83;0:12Þ

Then ŷ
1
1 ¼ 1:533j0:0 � 0:147j1:0 þ 0:011j1:1 þ 0:147j2:0

R2 : If I21 is A1;2ð0:43;0:93Þ and I22 is A2;2ð0:28;0:81Þ

and I23 is A3;2ð0:32;0:18Þ and I24 is A4;2ð0:61;0:87Þ

Then ŷ
1
2 ¼ �0:45j0:0 þ 0:42j1:0 þ 0:013j1:1 � 0:783j2:0

R3 : If I31 is A1;3ð0:96;0:21Þ and I32 is A2;3ð0:56;0:14Þ

and I33 is A3;3ð1:01;0:46Þ and I34 is A4;3ð0:38;0:39Þ

Then ŷ
1
2 ¼ 0:074j0:0 þ 0:23j1:0 � 0:17j1:1 � 0:38j2:0
Fig. 11. Control results of the cart and pole balancing system using the R-GCSE i
R4 : If I41 is A1;4ð0:64;0:58Þ and I42 is A2;4ð0:21;0:34Þ

and I43 is A3;4ð0:56;0:31Þ and I44 is A4;4ð0:82;0:58Þ

Then ŷ
1
4 ¼ 0:183j0:0 � 0:193j1:0 þ 0:412j1:1 þ 0:039j2:0

The simulation was carried out for 30 runs. The results, which
consisted of the pole angle, cart position and controller output, are
shown in Fig. 11. Each line in Fig. 11 represents each run with a
different initial state. The results shown in this figure are the first
1,000 time steps in the 100,000 control time steps. As shown in
Fig. 11, the R-GCSE successfully controlled the cart-pole balancing
system in 30 runs.

In this example, in order to demonstrate the effectiveness and
efficiency of the R-GCSE, the reinforcement symbiotic evolution
(R-SE) [49] and reinforcement genetic algorithm (R-GA) [26] were
applied to the same problem. In the R-SE and R-GA, the
parameters were set according to [52]. Therefore, the number of
fuzzy rules was from 2 to 20 in increments of 1, the population
n Example 1. (a) Angle of the pole; (b) position of the cart; (c) control face.

ARTICLE IN PRESS

Table 3
Comparison of time steps and CPU time for various existing models in Example 1.

Method Mean Best Worst Standard deviation

Steps Seconds Steps Seconds Steps Seconds Steps Seconds

GENITOR [48] 1981 69.65 519 20.54 3143 185.51 598.78 62.54

SANE [43] 879 34.25 89 11.15 1541 75.34 337.91 24.97

R-GA [26] 514 25.34 78 8.23 887 64.75 199.12 23.88

R-SE [49] 346 21.37 56 7.87 658 61.39 141.37 23.67

TDGAR [30] 327 31.34 23 10.84 469 69.91 124.77 24.28

ESP [34] 294 18.92 14 3.08 401 34.74 91.56 8.37

CQGAF [33] 264 28.77 15 6.24 376 57.49 95.82 14.67

R-GCSE 198 11.64 12 2.34 314 26.54 72.43 7.29

Table 4
Comparison of time steps and CPU time for two different networks in Example 1.

Method Mean Best Worst Standard deviation

Steps Seconds Steps Seconds Steps Seconds Steps Seconds

RWNFS 198 12.64 12 2.34 314 28.54 72.43 7.29

RTNFN 232 15.83 14 3.43 331 31.45 81.58 7.93

Table 5
Comparison of time steps and CPU time for two different methods.

Method Mean Best Worst Standard deviation

Steps Seconds Steps Seconds Steps Seconds Steps Seconds

Type I 257 15.34 13 2.94 371 31.58 89.67 8.19

Type II 346 21.37 56 7.87 658 61.39 141.37 23.67

Type III 198 11.64 12 2.34 314 27.54 72.43 7.29

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–2432 2427
size was from 10 to 250 in increments of 10, the crossover rate was
from 0.25 to 1 in increments of 0.05, and the mutation rate was
from 0 to 0.3 in exponential increments. The parameters set for
two methods (the R-SE and R-GA) were as follows: (1) the
numbers of fuzzy rules were both set to 4; (2) the population sizes
of the R-SE and R-GA were 170 and 70, respectively; (3) the
crossover rates of the R-SE and R-GA were 0.55 and 0.6,
respectively; (4) the mutation rate of the R-SE and R-GA were
0.08 and 0.12, respectively.

A total of 30 runs were performed. Each run started at different
initial states. The fitness is defined in Eq. (24). The learning curves
of the R-SE and R-GA after 30 runs are shown in Fig. 10(b) and (c).
The R-SE and R-GA learned to balance the pole in the 346th
and 514th generations on average. The standard deviations in
Fig. 10(b) and (c) are 141.37 and 199.12. The R-GCSE only compares
the performance of the fitness value with the R-SE and R-GA. This
is because, in the reinforcement learning signal design that is
adopted in this study, a well-performing controller is defined as a
controller that does not exceed the predefined boundaries. As
shown in Fig. 11, the control capabilities of the R-GCSE are better
than those of [26,49].

Genetic reinforcement learning for neuro control (GENITOR)
[48], symbiotic adaptive neuro-evolution (SANE) [43], temporal
difference and genetic algorithm-based reinforcement learning
(TDGAR) [30], combination of online clustering and Q-value based
GA for reinforcement fuzzy system (CQGAF) [33], and enforce sub-
population (ESP) [34] methods were applied to the same control
problem. The simulation results are listed in Table 3. The number
of pole-balance trials (which reflects the number of training
episodes required) and the CPU time are shown in Table 3. This
experiment used a Pentium III chip with a 400 MHz CPU, a 512 MB
memory, and the visual C++ 6.0 simulation software.

A total of 30 runs were performed. Each run started at different
initial states. The initial parameters of these methods [30,33,34,
43,48] were determined according to [52]. In [48], the normal
evolution algorithm was used to evolve the weights of a fully-
connected two-layer neural network, with additional connections
from each input unit to the output layer. After trial-and-error
tests, the network size was 10 in [48]. In [43], the symbiotic
evolution algorithm was used to evolve a two-layer neural
network. In [43], the network size was 10.

The TDGAR [30] consists of the critic network and action
network to the learning system. The critic network is a standard
three-layer feedforward network that uses sigmoid functions in
the hidden layer and output layer. The action network is a fuzzy
neural network with five layers of nodes, and each layer performs
one stage of the fuzzy inference process. There are five hidden
nodes and five rules in the critic network and the action network.

In CQGAF [33], the fuzzy controller with Q-value based GA was
proposed to solve controller problems. After trial-and-error tests,
the final average number of rules in CQGAF from 30 runs was 8
using the on-line clustering algorithm.

In the ESP [34], the author proposed using ESP to evaluate the
solution locally. There are five sub-populations in the ESP. The
other parameters set for five methods [30,33,34,43,48] were as
follows: (1) the population sizes of the five methods were 130,
170, 100, 130 and 40, respectively; (2) the crossover rates of the
five methods were 0.45, 0.55, 0.35, 0.45 and 0.5, respectively;
(3) the mutation rate of the five methods were 0.21, 0.17, 0.16, 0.24
and 0.18, respectively.

As shown in Table 3, the proposed R-GCSE method is feasible
and effective and obtains smaller CPU times than other existing
methods.

To demonstrate the efficiency of the RWNFS, two different
networks are introduced in this example: the RWNFS and the TSK-
type recurrent neuro-fuzzy network (TRFN) [39]. There are four
rules that are used to construct the TRFN. The parameters of the
R-GCSE used to train the TRFN are the same as the parameters of
the R-GCSE used to train the RWNFS. A performance (time steps
and CPU time) comparison of the two models is shown in Table 4.

To demonstrate the efficiency of the proposed GSE and ECCS, in
this example, three different methods, the R-GCSE without the
ECCS (Type I), the R-SE method (Type II), and the R-GCSE (Type III),
were used. In the Type I method, each group performed the two-
point crossover strategy independently. In the Type II method, the
R-SE [49] was adopted. In the Type III method, the R-GCSE used
the ECCS to perform crossover strategy. In the Type I method, the
parameters were set according to [52]. The parameters set for
Type I method were as follows: (1) the number of fuzzy rules was
4; (2) the population size was 40; (3) the crossover rate was 0.45;
(4) the mutation rate was 0.07. The performance (time steps and
CPU time) of the three types of methods is shown in Table 5. The
R-GCSE (Type III) performs better than the other two types of
methods. In Table 5, a comparison of the Type III and Type I
methods is given, from which it can be observed that the ECCS can
reduce time steps and the CPU time.

Although the R-GCSE performs better than other methods in
the cart-pole balancing problem, it is too easy to find solutions
quickly for this problem. With regards to this, extensions of a basic
cart-pole balancing problem have been used. In [53], the author
proposed several variations of the cart-pole balancing problem.
The most challenging extension of the cart-pole balancing
problem in [53] was a double pole balancing problem, where
two poles of different lengths must be balanced synchronously.

Therefore, a double pole balancing problem was used to
evaluate the R-GCSE. There are six state variables in the system:

ARTICLE IN PRESS

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–24322428
yi, the angle of the ith pole; _yi, the angular velocity of the ith pole;
x, the position of the cart; and _x, the velocity of the cart. The only
control action is f, which is the amount of force applied to the cart
to move it left or right. The system fails when the pole falls past a
certain angle (7361 was used here) or when the cart runs into the
bounds of its track (the distance is 2.4 m from the center to each
bound of the track). The equations of motion for N poles balanced
on a single cart are as follows:

€x ¼
F � mc sgnð_xÞ þ

PN
i¼1F̃ i

M þ
PN

i¼1m̃i

, (30)

€yi ¼ �
3

4li

� �
€x cos yi þ g sin yi þ

mpi

_yi

mili

 !
, (31)

where F̃ i is the effective force from ith pole, the equation of F̃ i if

F̃ i ¼ mili
_y

2

i sin yi þ
3

4
mi cos yi

mpi

_yi

mili
þ g sin yi

 !
, (32)

where m̃i is the effective mass ot the ith pole, the equation of m̃i is

m̃i ¼ mið1�
3
4 cos2 yiÞ. (33)

The parameters used for the double pole problem are shown in
Table 6. The parameters set for the R-GCSE are shown in Table 7. A
total of 30 runs were performed. Each run started at different
initial states.
Table 6
The parameters for the double pole balancing problem.

Parameters Description Value

x Position of the cart [�2.4,2.4] m

y Angle of the pole [�36,36] deg.

F Force applied to cart [�10,10] N

l1 Half length of 1st pole 0.5 m

l2 Half length of 2nd pole 0.05 m

M Mass of cart 1.0 kg

m1 Mass of the 1st pole 0.1 kg

m2 Mass of the 2nd pole 0.01 kg

mc Coefficient of friction of cart on track 0.0005

mP Coefficient of friction if ith pole’s hinge 0.000002

Table 7
The initial parameters before training.

Parameters Value

Fuzzy rules 6

Group size 60

Crossover rate 0.5

Mutation rate 0.18

Table 8
Comparison of time steps and CPU time in a double pole balancing problem.

Method Mean Best

Steps Seconds Steps Sec

GENITOR [48] 31.760 412.49 6.560 91.

SANE [43] 14800 225.73 3140 63.

R-GA [26] 12250 218.34 2870 49.

R-SE [49] 9790 192.67 2150 47.

TDGAR [30] 8970 231.45 1987 56.

CQGAF [33] 6790 187.96 1230 39.

ESP [34] 4120 123.73 396 26.

R-GCSE 3380 98.47 267 21.
The R-SE [49], R-GA [26], GENITOR [48], SANE [43], TDGAR
[30], CQGAF [33], and ESP [34] were also applied to the same
problem. In these seven methods, the parameters were set
according to [52]. A total of 30 runs were performed. Each run
started at different initial states. In [26,49], the numbers of fuzzy
rules were both set to 6. In [48], the network size was eighteen. In
[43], the network size was sixteen. In TDGAR [30], there were
10 hidden nodes in the critic network and 10 rules in the action
network. In the CQGAF [33], the final average number of rules in
CQGAF of 30 runs was 13. In the ESP [34], there were eight sub-
populations. The parameters set for seven methods [26,30,33,
34,43,48,49] were as follows: (1) the population sizes of the seven
methods were 210, 120, 180, 240, 160, 200 and 60, respectively; (2)
the crossover rates of the seven methods were 0.5, 0.6, 0.40, 0.55,
0.45, 0.35 and 0.45, respectively; (3) the mutation rate of the five
methods were 0.12, 0.22, 0.21, 0.15, 0.26, 0.14 and 0.16,
respectively.

This paper compares time steps and the CPU time with those of
other existing methods [26,30,33,34,43,48,49] in a double pole
balancing problem in Table 8. A comparison shows that the
R-GCSE is feasible and effective and requires less CPU time than
other existing models in the double pole balancing problem.

5.2. Example 2: Control of a ball and beam system

The ball and beam system [49,50] is shown in Fig. 12. The beam
is made to rotate in vertical plane by applying a torque at the
center of rotation, and the ball is free to roll along the beam. The
goal is for the ball to remain in contact with the beam. The ball
and beam system can be written in state space form as

_x1

_x2

_x3

_x4

2
666664

3
777775 ¼

x2

Bðx1x2
4 � G sin x3Þ

x4

0

2
666664

3
777775þ

0

0

0

1

2
666664

3
777775u,

y ¼ x1, (34)

where x ¼ ðx1; x2; x3; x4Þ
T
� ðr; _r; y; _yÞT is the state of the system and

y ¼ x1 � r is the output of the system. The control u is the angular
acceleration (€y), and the parameters B ¼ 0.7143 and G ¼ 9.81
were chosen in this system. The purpose of control is to determine
u(x) such that the closed-loop system output y will converge to
zero from different initial conditions.

According to the input/output-linearization algorithm [54],
the control law u(x) is determined as follows: in state x,
vðxÞ ¼ �a3f4ðxÞ � a2f3ðxÞ � a1f2ðxÞ � a0f1ðxÞ, where f1ðxÞ ¼ x1,
f2ðxÞ ¼ x2, f3ðxÞ ¼ �BG sin x3, f4ðxÞ ¼ �BGx4 cos x3, and the ai is
chosen so that s4 þ a3s3 þ a2s2 þ a1sþ a0 is the Hurwitz poly-
nomial. We compute aðxÞ ¼ �BG cos x3 and bðxÞ ¼ BGx2

4 sin x3;
then uðxÞ ¼ ½vðxÞ � bðxÞ�=aðxÞ.
Worst Standard deviation

onds Steps Seconds Steps Seconds

85 60.120 572.54 14892.45 109.69

87 25.560 276.54 4589.87 60.23

56 21.150 251.68 3404.33 52.97

49 16.870 241.67 2943.62 47.38

37 15.230 258.74 2314.24 54.05

54 9870 238.95 1691.38 46.32

18 7190 214.51 1186.73 37.89

48 6390 191.78 1056.54 32.45

ARTICLE IN PRESS

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–2432 2429
The four input variables ðr; _r; y; _yÞ and the output u(x) were
normalized between 0 and 1. The values were floating-point
numbers initially assigned to the R-GCSE. In the R-GCSE, the
fitness function is also defined in Eq. (24) to train the RWNFS, and
represents how long before the beam deviates beyond a certain
angle (jyj412�) or before the ball reaches the end of the beam
(jrj42 m). In this example, the parameters were set according to
[52]. The parameters set for the R-GCSE are shown in Table 9.
Fig. 12. The ball and beam system.

Table 9
The initial parameters before training.

Parameters Value

Fuzzy rules 5

Group size 40

Crossover rate 0.45

Mutation rate 0.18

Fig. 13. The performance of (a) The R-GCSE method; (b) R-SE method [49
There are five rules that were used to construct the RWNFS.
A total of 30 runs were performed. Each run started at the
same initial state. The learning curve of the RWNFS is shown in
Fig. 13(a). The RWNFS learned to balance the ball in the 121st
generation on average. The standard deviation in Fig. 13(a) is
37.21. When the learning process was stopped, the best combina-
tion of strings from groups at the final generation was selected
and tested on the ball and beam system. The obtained fuzzy rules
of the RWNFS are as follows:

R1 : If I11 is A1;1ð0:37;0:42Þ and I12 is A2;1ð0:51;0:21Þ

and I13 is A3;1ð0:66;0:18Þ and I14 is A4;1ð0:13;0:31Þ

Then ŷ
1
1 ¼ �1:06j0:0 þ 2:41j1:0 � 0:31j1:1

� 5:06j2:0 þ 0:36j2:1

R2 : If I21 is A1;2ð0:81;0:37Þ and I22 is A2;2ð0:63;0:63Þ

and I23 is A3;2ð0:57;0:23Þ and I24 is A4;2ð0:33;0:011Þ

Then ŷ
1
2 ¼ �3:11j0:0 þ 1:01j1:0 þ 0:07j1:1

þ 0:29j2:0 � 1:33j2:1

R3 : If I31 is A1;3ð0:37;0:61Þ and I32 is A2;3ð0:72;0:22Þ

and I33 is A3;3ð0:93;0:35Þ and I34 is A4;3ð0:89;0:17Þ

Then ŷ
1
3 ¼ 0:23j0:0 � 0:28j1:0 � 1:19j1:1

þ 0:38j2:0 � 0:04j2:1
]; and (c) R-GA method [26] on the ball and beam balancing system.

ARTICLE IN PRESS

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–24322430
R4 : If I41 is A1;4ð0:46;0:33Þ and I42 is A2;4ð0:12;0:94Þ

and I43 is A3;4ð0:39;0:77Þ and I44 is A4;4ð0:07;0:83Þ

Then ŷ
1
4 ¼ 0:06j0:0 þ 0:17j1:0 þ 0:35j1:1 þ 0:15j2:0

� 1:46j2:1

R5 : If I51 is A1;5ð0:68;0:03Þ and I52 is A2;5ð0:33;0:24Þ

and I53 is A3;5ð0:87;0:41Þ and I54 is A4;5ð0:94;0:06Þ

Then ŷ
1
5 ¼ � 0:74j0:0 � 0:63j1:0 þ 1:24j1:1 þ 0:91j2:0

þ 0:04j2:1

The simulation was run 30 times. The results, which consist of
the beam angle, ball position, and controller output, are shown in
Fig. 14. The results shown in this figure is from the first 1000 time
steps in the 100,000 control time steps. As shown in Fig. 14, the
R-GCSE in 30 runs successfully controlled the ball and beam
system. The results show that the trained RWNFS has good ability
in controlling the ball and beam balancing system.
Fig. 14. Control results of the ball and beam balancing system using the R-GCSE i
In this example, as with Example 1, the performance of the
R-GCSE was also compared with the performance of other
methods (the R-SE [49] and R-GA [26]). In [26,49] the parameters
were set according to [52]. The parameters set for the R-SE and
R-GA were as follows: (1) the numbers of fuzzy rules were both
set to 5; (2) the population sizes of the R-SE and R-GA were 180
and 100, respectively; (3) the crossover rates of the R-SE and R-GA
were 0.4 and 0.5, respectively; (4) the mutation rates of the R-SE
and R-GA were 0.10 and 0.05, respectively. A total of 30 runs were
performed. Each run started at the same initial state. The learning
curves of the R-SE and R-GA are shown in Fig. 13(b) and (c). The
R-SE [49] and R-GA [26] learned to balance the ball in the 217th
generation and 386th generation, on average. The standard
deviations in Fig. 13(b) and (c) are 74.21 and 132.68.

The performance (time steps and CPU time) in this example
compared with various existing models [26,30,33,34,43,48,49] is
shown in Table 10. In [48], the network size was eleven. In [43],
the network size was 10. In the TDGAR, there were six hidden
nodes in the critic network and six rules in the action network. In
n Example 2. (a) Angle of the beam; (b) position of the ball; (c) control force.

ARTICLE IN PRESS

Table 10
Comparison of time steps and CPU time for various existing models in Example 2.

Method Mean Best Worst Standard deviation

Steps Seconds Steps Seconds Steps Seconds Steps Seconds

GENTOR [48] 914 78.43 79 13.04 1531 98.64 334.37 23.80

SANE [43] 697 50.26 52 10.73 912 74.52 218.39 15.19

R-GA [26] 386 30.21 37 8.05 536 42.36 132.68 8.04

R-SE [49] 217 28.51 21 6.87 358 39.91 74.21 7.12

TDGAR [30] 194 31.25 24 9.23 347 46.43 67.36 8.45

ESP [34] 167 17.46 60 3.51 276 31.24 51.91 5.37

CQGAF [33] 148 21.51 18 5.27 264 34.21 48.67 5.91

R-CGSE 121 14.29 14 3.04 218 26.71 37.21 4.64

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–2432 2431
the CQGAF, the final average number of rules in the CQGAF from
30 runs was 8. In the ESP, there were five sub-populations. The
parameters set for five methods [30,33,34,43,48] were as follows:
(1) the population sizes of the five methods were 140, 170, 120,
150 and 60, respectively; (2) the crossover rates of the five
methods were 0.45, 0.45, 0.35, 0.4 and 0.5, respectively; and (3)
the mutation rate of the five methods were 0.16, 0.24, 0.18, 0.12
and 0.21, respectively. A total of 30 runs were performed. Each run
started at the same initial state. As shown in Table 10, the R-GCSE
has shorter time steps and CPU times than the existing models.
6. Conclusion

In this paper, a recurrent wavelet-based neuro-fuzzy system
(RWNFS) with the reinforcement group cooperation-based sym-
biotic evolution method (R-GCSE) was proposed. The R-GCSE can
evaluate fuzzy rules locally and make groups cooperate with each
other to generate better chromosomes by using an elite-based
compensation crossover strategy (ECCS). The advantages of the
R-GCSE are summarized as follows: (1) the R-GCSE uses group-
based population to evaluate fuzzy rules locally; (2) the R-GCSE
uses the ECCS to let the better solutions from different groups
cooperate in order to generate better solutions in the next
generation; and (3) the R-GCSE indeed performs better and
converges more quickly than some genetic methods. Computer
simulations show that the R-GCSE performs better than the other
methods.
Acknowledgment

This work is supported in part by the National Science Council,
Taiwan. ROC under Grant NSC 95-2221-E-009-214 and NSC 95-
2752-E-009-011-PAE.

References

[1] C.T. Lin, C.S.G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to
Intelligent System, Prentice-Hall, NJ, 1996.

[2] G.G. Towell, J.W. Shavlik, Extracting refined rules from knowledge-based
neural networks, Mach. Learn. 13 (1993) 71–101.

[3] C.J. Lin, C.T. Lin, An ART-based fuzzy adaptive learning control network, IEEE
Trans. Fuzzy Syst. 5 (4) (1997) 477–496.

[4] L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning from examples,
IEEE Trans. Syst. Man Cybern. 22 (6) (1992) 1414–1427.

[5] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to
modeling and control, IEEE Trans. Syst. Man Cybern. 15 (1985) 116–132.

[6] C.F. Juang, C.T. Lin, An on-line self-constructing neural fuzzy inference
network and its applications, IEEE Trans. Fuzzy Syst. 6 (1) (1998) 12–31.

[7] J.S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans.
Syst. Man Cybern. 23 (3) (1993) 665–685.

[8] F.J. Lin, C.H. Lin, P.H. Shen, Self-constructing fuzzy neural network speed
controller for permanent-magnet synchronous motor drive, IEEE Trans. Fuzzy
Syst. 9 (5) (2001) 751–759.
[9] H. Takagi, N. Suzuki, T. Koda, Y. Kojima, Neural networks designed on
approximate reasoning architecture and their application, IEEE Trans. Neural
Networks 3 (5) (1992) 752–759.

[10] E. Mizutani, J.S.R. Jang, Coactive neural fuzzy modeling, in: Proceedings of
International Conference on Neural Networks, 1995, pp. 760–765.

[11] C.J. Lin, C.C. Chin, Prediction and identification using wavelet-based recurrent
fuzzy neural networks, IEEE Trans. Syst. Man Cybern. Part B 34 (5) (2004)
2144–2154.

[12] K.S. Narendra, K. Parthasarathy, Identification and control of dynamical
systems using neural networks, IEEE Trans. Neural Networks 1 (1) (1990)
4–27.

[13] C.F. Juang, C.T. Lin, A recurrent self-organizing neural fuzzy inference
network, IEEE Trans. Neural Networks 10 (4) (1999) 828–845.

[14] P.A. Mastorocostas, J.B. Theocharis, A recurrent fuzzy-neural model for
dynamic system identification, IEEE Trans. Syst. Man Cybern. Part B 32 (2)
(2002) 176–190.

[15] X. Xu, H.G. He, Residual-gradient-based neural reinforcement learning for the
optimal control of an acrobat, in: Proceedings of IEEE International
Conference on Intelligent Control, 2002, pp. 27–30.

[16] O. Grigore, Reinforcement learning neural network used in control of
nonlinear systems, in: Proceedings of IEEE International Conference on
Industrial Technology, vol. 1, 2000, pp. 19–22.

[17] A.G. Barto, R.S. Sutton, C.W. Anderson, Neuron like adaptive elements that can
solve difficult learning control problem, IEEE Trans. Syst. Man Cybern. 13 (5)
(1983) 834–847.

[18] C.J. Lin, A GA-based neural network with supervised and reinforcement
learning, J. Chin. Inst. Electr. Eng. 9 (1) (2002) 11–25.

[19] X.W. Yan, Z.D. Deng, Z.Q. Sun, Competitive Takagi–Sugeno fuzzy reinforce-
ment learning, in: Proceedings of IEEE International Conference on Control
Applications, 2001, pp. 878–883.

[20] C.T. Lin, C.P. Jou, GA-based fuzzy reinforcement learning for control of a
magnetic bearing system, IEEE Trans. Syst. Man Cybern. Part B 30 (2) (2000)
276–289.

[21] H.R. Berenji, P. Khedkar, Learning and tuning fuzzy logic controllers through
reinforcements, IEEE Trans. Neural Networks 3 (5) (1992) 724–740.

[22] D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine
Learning, Addison-Wesley, Reading, MA, 1989.

[23] J.K. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection, MIT Press, Cambridge, MA, 1992.

[24] L.J. Fogel, Evolutionary programming in perspective: the top-down view, in:
J.M. Zurada, R.J. Marks II, C. Goldberg (Eds.), Computational Intelligence:
Imitating Life, IEEE Press, Piscataway, NJ, 1994.

[25] I. Rechenberg, Evolution strategy, in: J.M. Zurada, R.J. Marks II, C. Goldberg
(Eds.), Computational Intelligence: Imitating Life, IEEE Press, Piscataway, NJ,
1994.

[26] C.L. Karr, Design of an adaptive fuzzy logic controller using a genetic
algorithm, in: Proceedings of the Fourth International Conference on Genetic
Algorithms, 1991, pp. 450–457.

[27] M. Lee, H. Takagi, Integrating design stages of fuzzy systems using genetic
algorithms, in: Proceedings of the Second IEEE International Conference on
Fuzzy Systems, San Francisco, CA, 1993, pp. 612–617.

[28] K. Belarbi, F. Titel, Genetic algorithm for the design of a class of fuzzy
controllers: an alternative approach, IEEE Trans. Fuzzy Syst. 8 (4) (2000)
398–405.

[29] C.F. Juang, A hybrid of genetic algorithm and particle swarm optimization for
recurrent network design, IEEE Trans. Syst. Man Cybern. Part B 34 (2) (2004)
997–1006.

[30] C.T. Lin, C.P. Jou, GA-based fuzzy reinforcement learning for control of a
magnetic bearing system, IEEE Trans. Syst. Man Cybern. Part B 30 (2) (2000)
276–289.

[31] C.F. Juang, J.Y. Lin, C.T. Lin, Genetic reinforcement learning through symbiotic
evolution for fuzzy controller design, IEEE Trans. Syst. Man Cybern. Part B 30
(2) (2000) 290–302.

[32] K.S. Tang, Genetic algorithms in modeling and optimization, Ph.D. Disserta-
tion, Department of Electronic Engineering, City University Hong Kong, Hong
Kong, 1996.

ARTICLE IN PRESS

Y.-C. Hsu, S.-F. Lin / Neurocomputing 72 (2009) 2418–24322432
[33] C.F. Juang, Combination of online clustering and Q-value based GA for
reinforcement fuzzy system design, IEEE Trans. Fuzzy Syst. 13 (3) (2005) 289–302.

[34] F.J. Gomez, Robust non-linear control through neuroevolution, Ph.D. Dissera-
tion, The University of Texas at Austin, 2003.

[35] F. Gomez, J. Schmidhuber, Co-evolving recurrent neurons learn deep memory
POMDPs, in: Proceedings of Conference on Genetic and Evolutionary
Computation, 2005, pp. 491–498.

[36] V. Kreinovich, O. Sirisaengtaksin, S. Cabrera, Wavelet neural networks are
asymptotically optimal approximators for functions of one variable, in:
Proceedings of IEEE Conference on Neural Networks, vol. 1, 1994, pp. 299–304.

[37] D.W.C. Ho, P.A. Zhang, J. Xu, Fuzzy wavelet networks for function learning,
IEEE Trans. Fuzzy Syst. 9 (1) (2001) 200–211.

[38] J. Zhang, A.J. Morris, Recurrent neuro-fuzzy networks for nonlinear process
modeling, IEEE Trans. Neural Networks 10 (2) (1999) 313–326.

[39] S.F. Su, F.Y. Yang, On the dynamical modeling with neural fuzzy networks,
IEEE Trans. Neural Networks 13 (6) (2002) 1548–1553.

[40] Z. Michalewicz, Genetic Algorithms+Data Structures ¼ Evolution Programs,
Springer, New York, 1999.

[41] R. Tanese, Distributed genetic algorithm, in: Proceedings of International
Conference on Genetic Algorithms, 1989, pp. 434–439.

[42] J. Arabas, Z. Michalewicz, J. Mulawka, GAVaPS—A genetic algorithm with
varying population size, in: Proceedings of IEEE International Conference on
Evolutionary Computation, Orlando, 1994, pp. 73–78.

[43] D.E. Moriarty, R. Miikkulainen, Efficient reinforcement learning through
symbiotic evolution, Mach. Learn. 22 (1996) 11–32.

[44] R.E. Smith, S. Forrest, A.S. Perelson, Searching for diverse, cooperative
populations with genetic algorithms, Evol. Comput. 1 (2) (1993) 127–149.

[45] O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena, Genetic fuzzy systems
evolutionary tuning and learning of fuzzy knowledge bases. Advances in Fuzzy
Systems—Applications and Theory, vol. 19, World Scientific Publishing, NJ, 2001.

[46] C.J. Lin, Y.J. Xu, The design of TSK-type fuzzy controllers using a new hybrid
learning approach, Int. J. Adaptive Control Signal Process. 20 (2006) 1–25.

[47] K.C. Cheok, N.K. Loh, A ball-balancing demonstration of optimal and
disturbance-accommodating control, IEEE Control Syst. Mag. (1987) 54–57.

[48] D. Whitley, S. Dominic, R. Das, C.W. Anderson, Genetic reinforcement learning
for neuro control problems, Mach. Learn. 13 (1993) 259–284.

[49] C.J. Lin, Y.J. Xu, Efficient reinforcement learning through dynamical symbiotic
evolution for TSK-type fuzzy controller design, Int. J. Gen. Syst. 34 (5) (2005)
559–578.

[50] J. Hauser, S. Sastry, P. Kokotovic, Nonlinear control via approximate
input–output linearization: the ball and beam example, IEEE Trans. Autom.
Control 37 (3) (1992) 392–398.
[51] K.A. De Jong, Analysis of the behavior of a class of genetic adaptive systems,
Ph.D. Disseration, The University of Michigan, Ann Arbor, MI, 1975.

[52] J.J. Grefenstette, Optimization of control parameters for genetic algorithms,
IEEE Trans. Syst. Man Cybern. 6 (1) (1986) 122–128.

[53] A. Wieland, Evolving neural network controllers for unstable systems,
in: Proceedings of IEEE Conference on Neural Networks, vol. 2, 1991,
pp. 667–673.
Yung-Chi Hsu received the B.S. degree in Information
Management from Ming-Hsin University of Science
and Technology, Taiwan, ROC, in 2002 and the M.S.
degree in Computer Science and Information Engineer-
ing from Chaoyang University of Technology, Taiwan,
ROC. He is currently pursuing the Ph.D. degree at the
Department of Electrical and Control Engineering from
the National Chiao Tung University, Taiwan, ROC. He is
a member of the Phi Tau Phi. He is also a member of
the Taiwanese Association for Artificial Intelligence
(TAAI). His research interests include neural networks,
fuzzy systems, and genetic algorithms.
Sheng-Fuu Lin was born in Tainan, the Republic
of China, in 1954. He received the B.S. and M.S.
degree in Mathematics from National Normal Univer-
sity in 1976 and 1979, respectively, the M.S. degree
in Computer Science from the University of
Maryland in 1985, and the Ph.D. degree in Electrical
Engineering from the University of Illinois, Champaign,
in 1988.

Since 1988, he has been on the faculty of the
Department of Electrical and Control Engineering at
National Chiao Tung University, Hsinchu, Taiwan,
where he is currently a professor.
His research interests include fuzzy systems, genetic
algorithms, neural networks automatic target recognition, scheduling, image
processing, and image recognition.

	Reinforcement group cooperation-based symbiotic evolution for recurrent wavelet-based neuro-fuzzy systems
	Introduction
	Structure of a RWNFS
	A group cooperation-based symbiotic evolution (GCSE)
	Initialization
	Fitness assignment
	Elite-based reproduction strategy (ERS)
	Elite-based compensation crossover strategy (ECCS)
	Mutation strategy

	Reinforcement learning for a RWNFS
	Illustrative examples
	Example 1: Control of a cart-pole balancing system
	Example 2: Control of a ball and beam system

	Conclusion
	Acknowledgment
	References

