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Abstract. Kaklamanis, Krizanc, and Tsantilas (1991) gave an asymptotically op-
timal oblivious algorithm for many—one routing in hypercubes. It is shown that
their argument needs to be modified in order for the algorithm to attain the asymp-
totic lower bound. They also applied the algorithm to permutation routing via the
many—one and one—many routing phases. They claimed to save a factor of two by
proposing to divide the packets into halves, routing the first half forward and the
second half backward in the bit sequence. It is shown that this idea cannot reduce
the total number of steps by a factor of two.

LetV = {0, 1}9 be the set of nodes ofdrdimensional hypercube where there is a link
from a nodeu to another node if their Hamming distance equals one (hence also a link
from v to u). At the beginning, each nodecontains a packet with destinatiarn(v).
The problem is to route th = 29 packets to their destinations. Under the multiport
model, a node can send and receive ug packets simultaneously, but a link can carry
only one packet at a time. A routing algorithm is caltdaliviousif the path of a packet
depends only on its origin and destination. When all khedestinationsr (v), v € V,
are distinct, the routing isermutation routingotherwise, it is anany—one routingn
this note we are only concerned with oblivious routing algorithms, and omit the word
“oblivious” hereafter.

It is easily seen that(N — 1)/d] is a (worst-case) lower bound on the number of
steps for many—one routing. Kaklamanis, Krizanc, and Tsantilas [2] (to be referred to
as KKT hereafter) gave an asymptotically optimal algorithm based on the result that a
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d-cube with everd can be decomposed intbHamiltonian circuits (or, more precisely,
d/2 pairs of Hamiltonian circuits). Their idea is to break up theube routing into a
k-cube routing and & — k)-cube routing withk an even numbex d. By choosing

k = logd (log = log,), they argued that the number of steps required for their algorithm
is (14 0o(1))N/d asd — oo (hence attaining the lower bound asymptotically). More
precisely, for an even dimensialh) KKT’s many—one routing algorithm consists of two
phases: In phase (i) a many—one routing is performed in eack-sube (with the last

d — k bits fixed) for a suitably chosen even numkeSuch a routing can be done itr2
steps by traversing a Hamiltonian circuit. At the end of phase (i), as marygRets
can cohabit at a node. In phase (ii) a routing is performed in eaclidsubk)-cube
(with the firstk bits fixed) by evenly distributing the packets at each node talthek
Hamiltonian circuits and then running each Hamiltonian circuit at nmigst(d — k)1
times. The total number of steps equéigk) = 21 + [2¢/(d — k)129-K. It is readily
seen thaffy(log d) does not attain the asymptotic lower boutd-o(1))N/d asd — oo,

as claimed by KKT. However, observe that

2k,1 2k 2d7k < f4(K) < 2k,1 2k 1 2d7k
+ m = d( ) = + (m + ) .
If k = k(d) is chosen in such a way thiat— logd — oo andk/d — 0 asd — oo
(e.g.,k = 2|logd]), then both the lower bound and the upper boundfgk) are
(14 0(1))24/d, so thatfg(k) = (14 0o(1))N/d (asd — o).

Borodin and Hopcroft [1] introduced the idea of a two-phase permutation routing
on thed-cube: Letd = d; +d,, di, d, > 0. In the first phase perform many—one routing
in each of the 2 d;-cubes where the nodes of eatihcube have the same ladt bits;
in the second phase perform one—many routing in each ofth#&yZubes. In general,
d; andd, should be about equal so as to minimize the number of steps. Applying KKT’s
many-one routing algorithm to the two-phase permutation routing irdibgbe, the
number of steps required equak+ o(1))~/N/d. KKT argued that “we can save a
factor of two in the running time for permutation routing by dividing the packets into
halves, where, in the many—one routing phase, the first half is routed using the first
collection of subhypercubes while, simultaneously, the second half is routed using the
second collection; and similarly for the one—many routing phase.” It is shown below that
this idea cannot reduce the running time by a factor of two. (However, it does save a
factor of two in the many—one routing phase, so that the total number of steps required
equals(3 + 0(1))v/N/d.)

Let the packets be divided into two paHg andH;, and correct each packet ki
(Hy) “forward” (“backward”) as follows. Fix (evendl andk < d/2. In the many—one
routing phase, each packet ky (Hi) corrects the first (last)l/2 bits using KKT’s
many-one routing algorithm (which consists of two subphases (i) and (ii)); and in the
one—many routing phase, each packetin(H;) corrects the last (firsfj /2 bits using
the reverse of KKT's many—one routing algorithm (which also consists of two subphases
(i) and (ii)). Then at the end of subphase (i) of the many—one routing phase, attmbst 2
Ho-packets H;-packets) can cohabit at a node (if, for examptg, consists of those
packets with originai = (uqy, ..., Uq)) satisfyingucy + --- + U@ = 0 (mod 2).
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Thus, the number of steps for the many—one routing phase equals
k—1

k—1
Z [d/Z— k

W 202k — (14 o(1))‘/d—N (as d— o0)
if kis suitably chosen (e.&k,= 2 logd). Should we correct all the packets forward, then
the number of steps for the many—one routing phase would é2wal(1))+/N/d. Thus,
afactor of two is saved. However, a division which works for the many—one routing phase
may not work for the one—many routing phase, i.e., at the end of subphase (i) there may
be more than'2! Hy-packets Hi-packets) at some node. Indeed, in the following we
show that for any (oblivious) division of the packets into two paigsand Hy, it cannot
happen that, at the end of subphase (i) in both the many—one and one—many routing
phases, there are at mo$t 2 Hq-packets H;-packets) at each node.

An oblivious division of packets into two parts is determined by &set{(u, v) :
u,v € {0, 1}%} in the following sense. For a given permutation(i.e., 7 (u) denotes
the destination of the packet with origir), those packets satisfying, = (u)) € Sare
corrected forward while the others are corrected backward Hggonsists of those
packets satisfyingu, 7 (u)) € S). Foru e {0, 1}9, write u = (us, Uy, uz) whereus, u,,
U3z consist, respectively, of the firktbits, the middled — 2k bits, and the lask bits of
u. We say thaSis (d, k)-goodif, for every permutationr and every node € {0, 1}¢,
we have

(1) H(u, m(u)) € S: Uz = wp, Uz = wg, T(U)y = wi}] < 2¢7L,
(2) {(u,r(u) € S:uz = wa, T(U)1 = w1, T(U)2 = wp}| < 271,
(3) (U, m(w) € S 1 Uy = w1, Up = wp, T(U)3 = wa}| < 2¢7L,
(4) {(u, 7(u) € S°: U = wy, T(U)2 = wa, m(U)3 = wg)| < 2671,

Note that the cardinality of the set on the left side of (1) (resp. (3)) is the number of
Ho-packets (respH;-packets) at node at the end of subphase (i) of the many—one
routing phase, while the cardinality of the set on the left side of (2) (resp. (4)) is the
number ofHgp-packets (respH;-packets) at noda at the end of subphase (i) of the
one—many routing phase.

Proposition 1. For d even and k d/2, there is no(d, k)-good S

To establish the proposition, we need the following lemma, the proof of which is
straightforward and is omitted.

Lemma.

(i) Foran nx n bipartite graph with more than’i2 edgesthere exists a matching
of size> n/2.

(i) For an nx n bipartite graph with exactly 4Y2 edgesthere exists a matching
of size> n/2.

Proof of the Proposition Suppos&is (d, k)-good. Fomy, b, € {0, 1}9-%¢andags, by €
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{0, 1}, let
S(ap, ag, b1, by) = {(U, v) € S: up = ay, uz = az, v1 = by, vp = by},
S* (@, as, by, bp) = {(ug, v3) € {0, 1} x {0, 1}* : ((uy, @, &), (b1, by, v3)) € S).

Clearly, (U, v3) € S'(ap, as, by, bg) if and only if ((ug, &, a3), (b]_, b,, v3)) €
S(ay, ag, b1, by). Noting thatS*(a,, ag, by, by) can be naturally identified with the edge
set of a # x 2X bipartite graph, |f|S*(a2, as, by, bp)| > 2%-1 then, by the lemma,
there exist 1 + 1 pairs(ul”, v’) € S*(az, as, by, by) such that thaJ(')’s are all
distinct and thev§’s are all distinct. For a permutation sansfylngn(u(l'), A, ag) =
(b1, by, v )), i = 1,...,2¢1 41, condition (1) is violated withw = (b, ay, a3).
Thus|S(a2, a3, b1, bp)| = |S*(az, ag, by, by)| < 2% for all ap, b, € {0, 1}9-% and
as, by € {0, 1}%, from which it follows that|S| < 2%-1. (2d-2)2. (2%)2 = 22d-1 The
same argument can be applied to sh&% < 229-1. However,SU S| = 22 implying
IS = |S°| = 229-1 and hencdS*(ay, az, b1, by)| = 221 for all ap, b, € {0, 1}9-%
andag, by € {0, 1}*. ConsiderS*(0, 0, 0, 0). By part (ii) of the lemma, there exist2!
pairs(ul’, v{’) € $*(0,0,0,0) such that the1{’s are all distinct and the{"’s are all
distinct. SinceS*(0, 0, 0, 0) = 2%~1 5 2k-1 » 2k 1 there must exist a pa(ul, v}) €

$(0,0,0,0) such that eithett ¢ (ul’, ..., u® )} orvi ¢ i ... @) we
consider these two cases separately

Case(): ut ¢ (U, ... u® ). writeu® Y = ur andv® Y = v}, so thaw”,

i =1,...,2¢1 41, are all distinct. ConS|deB*(0 0,0,1), Wh|ch by part (ii) of the
lemma, contains'2’ pairs(U;”, vi"),i = 1,..., 2% such that ther,"’s are all dis-
tinct and thev’s are all distinct. Pick a\ ¢ {u(l) ...,u(l2k R V(TN Ul
Consider a permutation satisfying n(u/(') 0,00 = (0,1, v’(')), i =1,..., 2«1
andz(u{’,0,0) = (0,0, v{"). It is easily checked that condition (1) is violated with
w = (0,0, 0).

(21+1) (l)

Case(ii): vi & (P, ... vZ ). Write v Y = 3 anduf = u%, so that

i =1,...,2¢1 41, are all distinct. Conside®*(1, 0, 0, 0), wh|ch by part (ii) of the
lemma, contains'2? pairs(u;”, vi"),i = 1,..., 2% such that ther,"’s are all dis-
tinct and thev,"’s are all distinct. Pick @y’ ¢ {v(l) o A1+1>}\{ ooy
Consider a permutation satlsfylngn(u’(') 1,0) = (0,0,v3"),i =1,...,2¢% and
7, 0,00 = (0,0, v{"). Now, condition (2) is violated withv = (0,0, 0). This
completes the proof. O
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