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Abstract. Kaklamanis, Krizanc, and Tsantilas (1991) gave an asymptotically op-
timal oblivious algorithm for many–one routing in hypercubes. It is shown that
their argument needs to be modified in order for the algorithm to attain the asymp-
totic lower bound. They also applied the algorithm to permutation routing via the
many–one and one–many routing phases. They claimed to save a factor of two by
proposing to divide the packets into halves, routing the first half forward and the
second half backward in the bit sequence. It is shown that this idea cannot reduce
the total number of steps by a factor of two.

Let V = {0, 1}d be the set of nodes of ad-dimensional hypercube where there is a link
from a nodeu to another nodev if their Hamming distance equals one (hence also a link
from v to u). At the beginning, each nodev contains a packet with destinationπ(v).
The problem is to route theN = 2d packets to their destinations. Under the multiport
model, a node can send and receive up tod packets simultaneously, but a link can carry
only one packet at a time. A routing algorithm is calledobliviousif the path of a packet
depends only on its origin and destination. When all theN destinationsπ(v), v ∈ V ,
are distinct, the routing is apermutation routing; otherwise, it is amany–one routing. In
this note we are only concerned with oblivious routing algorithms, and omit the word
“oblivious” hereafter.

It is easily seen thatd(N − 1)/de is a (worst-case) lower bound on the number of
steps for many–one routing. Kaklamanis, Krizanc, and Tsantilas [2] (to be referred to
as KKT hereafter) gave an asymptotically optimal algorithm based on the result that a
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d-cube with evend can be decomposed intod Hamiltonian circuits (or, more precisely,
d/2 pairs of Hamiltonian circuits). Their idea is to break up thed-cube routing into a
k-cube routing and a(d − k)-cube routing withk an even number≤ d. By choosing
k = logd (log= log2), they argued that the number of steps required for their algorithm
is (1+ o(1))N/d asd → ∞ (hence attaining the lower bound asymptotically). More
precisely, for an even dimensiond, KKT’s many–one routing algorithm consists of two
phases: In phase (i) a many–one routing is performed in each sub-k-cube (with the last
d−k bits fixed) for a suitably chosen even numberk. Such a routing can be done in 2k−1

steps by traversing a Hamiltonian circuit. At the end of phase (i), as many as 2k packets
can cohabit at a node. In phase (ii) a routing is performed in each sub-(d − k)-cube
(with the firstk bits fixed) by evenly distributing the packets at each node to thed − k
Hamiltonian circuits and then running each Hamiltonian circuit at mostd2k/(d − k)e
times. The total number of steps equalsfd(k) = 2k−1 + d2k/(d − k)e2d−k. It is readily
seen thatfd(logd)does not attain the asymptotic lower bound(1+o(1))N/d asd→∞,
as claimed by KKT. However, observe that

2k−1+ 2k

d − k
2d−k ≤ fd(k) ≤ 2k−1+

(
2k

d − k
+ 1

)
2d−k.

If k = k(d) is chosen in such a way thatk − logd → ∞ andk/d → 0 asd → ∞
(e.g., k = 2blogdc), then both the lower bound and the upper bound offd(k) are
(1+ o(1))2d/d, so that fd(k) = (1+ o(1))N/d (asd→∞).

Borodin and Hopcroft [1] introduced the idea of a two-phase permutation routing
on thed-cube: Letd = d1+d2, d1, d2 > 0. In the first phase perform many–one routing
in each of the 2d2 d1-cubes where the nodes of eachd1-cube have the same lastd2 bits;
in the second phase perform one–many routing in each of the 2d1 d2-cubes. In general,
d1 andd2 should be about equal so as to minimize the number of steps. Applying KKT’s
many–one routing algorithm to the two-phase permutation routing in thed-cube, the
number of steps required equals(4+ o(1))

√
N/d. KKT argued that “we can save a

factor of two in the running time for permutation routing by dividing the packets into
halves, where, in the many–one routing phase, the first half is routed using the first
collection of subhypercubes while, simultaneously, the second half is routed using the
second collection; and similarly for the one–many routing phase.” It is shown below that
this idea cannot reduce the running time by a factor of two. (However, it does save a
factor of two in the many–one routing phase, so that the total number of steps required
equals(3+ o(1))

√
N/d.)

Let the packets be divided into two partsH0 andH1, and correct each packet inH0

(H1) “forward” (“backward”) as follows. Fix (even)d andk < d/2. In the many–one
routing phase, each packet inH0 (H1) corrects the first (last)d/2 bits using KKT’s
many–one routing algorithm (which consists of two subphases (i) and (ii)); and in the
one–many routing phase, each packet inH0 (H1) corrects the last (first)d/2 bits using
the reverse of KKT’s many–one routing algorithm (which also consists of two subphases
(i) and (ii)). Then at the end of subphase (i) of the many–one routing phase, at most 2k−1

H0-packets (H1-packets) can cohabit at a node (if, for example,H0 consists of those
packets with originsu = (u(1), . . . ,u(d)) satisfyingu(1) + · · · + u(d) = 0 (mod 2)).
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Thus, the number of steps for the many–one routing phase equals

2k−1+
⌈

2k−1

d/2− k

⌉
2d/2−k = (1+ o(1))

√
N

d
(as d→∞)

if k is suitably chosen (e.g.,k = 2 logd). Should we correct all the packets forward, then
the number of steps for the many–one routing phase would equal(2+o(1))

√
N/d. Thus,

a factor of two is saved. However, a division which works for the many–one routing phase
may not work for the one–many routing phase, i.e., at the end of subphase (i) there may
be more than 2k−1 H0-packets (H1-packets) at some node. Indeed, in the following we
show that for any (oblivious) division of the packets into two partsH0 andH1, it cannot
happen that, at the end of subphase (i) in both the many–one and one–many routing
phases, there are at most 2k−1 H0-packets (H1-packets) at each node.

An oblivious division of packets into two parts is determined by a setS⊂ {(u, v) :
u, v ∈ {0, 1}d} in the following sense. For a given permutationπ (i.e., π(u) denotes
the destination of the packet with originu), those packets satisfying(u, π(u)) ∈ S are
corrected forward while the others are corrected backward (i.e.,H0 consists of those
packets satisfying(u, π(u)) ∈ S). Foru ∈ {0, 1}d, write u = (u1, u2, u3) whereu1, u2,
u3 consist, respectively, of the firstk bits, the middled − 2k bits, and the lastk bits of
u. We say thatS is (d, k)-goodif, for every permutationπ and every nodew ∈ {0, 1}d,
we have

(1) |{(u, π(u)) ∈ S : u2 = w2, u3 = w3, π(u)1 = w1}| ≤ 2k−1,
(2) |{(u, π(u)) ∈ S : u3 = w3, π(u)1 = w1, π(u)2 = w2}| ≤ 2k−1,
(3) |{(u, π(u)) ∈ Sc : u1 = w1, u2 = w2, π(u)3 = w3}| ≤ 2k−1,
(4) |{(u, π(u)) ∈ Sc : u1 = w1, π(u)2 = w2, π(u)3 = w3}| ≤ 2k−1.

Note that the cardinality of the set on the left side of (1) (resp. (3)) is the number of
H0-packets (resp.H1-packets) at nodew at the end of subphase (i) of the many–one
routing phase, while the cardinality of the set on the left side of (2) (resp. (4)) is the
number ofH0-packets (resp.H1-packets) at nodew at the end of subphase (i) of the
one–many routing phase.

Proposition 1. For d even and k< d/2, there is no(d, k)-good S.

To establish the proposition, we need the following lemma, the proof of which is
straightforward and is omitted.

Lemma.

(i) For an n×n bipartite graph with more than n2/2 edges, there exists a matching
of size> n/2.

(ii) For an n× n bipartite graph with exactly n2/2 edges, there exists a matching
of size≥ n/2.

Proof of the Proposition. SupposeSis(d, k)-good. Fora2, b2 ∈ {0, 1}d−2k anda3, b1 ∈
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{0, 1}k, let

S(a2,a3, b1, b2) = {(u, v) ∈ S : u2 = a2, u3 = a3, v1 = b1, v2 = b2},
S∗(a2,a3, b1, b2) = {(u1, v3) ∈ {0, 1}k × {0, 1}k : ((u1,a2,a3), (b1, b2, v3)) ∈ S}.

Clearly, (u1, v3) ∈ S∗(a2,a3, b1, b2) if and only if ((u1,a2,a3), (b1, b2, v3)) ∈
S(a2,a3, b1, b2). Noting thatS∗(a2,a3, b1, b2) can be naturally identified with the edge
set of a 2k × 2k bipartite graph, if|S∗(a2,a3, b1, b2)| > 22k−1, then, by the lemma,
there exist 2k−1 + 1 pairs (u(i )1 , v

(i )
3 ) ∈ S∗(a2,a3, b1, b2) such that theu(i )1 ’s are all

distinct and thev(i )3 ’s are all distinct. For a permutationπ satisfyingπ(u(i )1 ,a2,a3) =
(b1, b2, v

(i )
3 ), i = 1, . . . ,2k−1 + 1, condition (1) is violated withw = (b1,a2,a3).

Thus |S(a2,a3, b1, b2)| = |S∗(a2,a3, b1, b2)| ≤ 22k−1 for all a2, b2 ∈ {0, 1}d−2k and
a3, b1 ∈ {0, 1}k, from which it follows that|S| ≤ 22k−1 · (2d−2k)2 · (2k)2 = 22d−1. The
same argument can be applied to show|Sc| ≤ 22d−1. However,|S∪Sc| = 22d, implying
|S| = |Sc| = 22d−1 and hence|S∗(a2,a3, b1, b2)| = 22k−1 for all a2, b2 ∈ {0, 1}d−2k

anda3, b1 ∈ {0, 1}k. ConsiderS∗(0, 0, 0, 0). By part (ii) of the lemma, there exist 2k−1

pairs(u(i )1 , v
(i )
3 ) ∈ S∗(0, 0, 0, 0) such that theu(i )1 ’s are all distinct and thev(i )3 ’s are all

distinct. SinceS∗(0, 0, 0, 0) = 22k−1 > 2k−1 × 2k−1, there must exist a pair(u∗1, v
∗
3) ∈

S∗(0, 0, 0, 0) such that eitheru∗1 6∈ {u(1)1 , . . . ,u
(2k−1)
1 } or v∗3 6∈ {v(1)3 , . . . , v

(2k−1)
3 }. We

consider these two cases separately.

Case(i): u∗1 6∈ {u(1)1 , . . . ,u
(2k−1)
1 }. Write u(2

k−1+1)
1 = u∗1 andv(2

k−1+1)
3 = v∗3, so thatu(i )1 ,

i = 1, . . . ,2k−1 + 1, are all distinct. ConsiderS∗(0, 0, 0, 1), which, by part (ii) of the
lemma, contains 2k−1 pairs(u′(i )1 , v

′(i )
3 ), i = 1, . . . ,2k−1, such that theu′(i )1 ’s are all dis-

tinct and thev′(i )3 ’s are all distinct. Pick au( j )
1 ∈ {u(1)1 , . . . ,u

(2k−1+1)
1 }\{u′(1)1 , . . . ,u′(2

k−1)
1 }.

Consider a permutationπ satisfyingπ(u′(i )1 , 0, 0) = (0, 1, v′(i )3 ), i = 1, . . . ,2k−1,
andπ(u( j )

1 , 0, 0) = (0, 0, v( j )
3 ). It is easily checked that condition (1) is violated with

w = (0, 0, 0).
Case(ii): v∗3 6∈ {v(1)3 , . . . , v

(2k−1)
3 }. Write v(2

k−1+1)
3 = v∗3 andu(2

k−1+1)
1 = u∗1, so thatv(i )3 ,

i = 1, . . . ,2k−1 + 1, are all distinct. ConsiderS∗(1, 0, 0, 0), which, by part (ii) of the
lemma, contains 2k−1 pairs(u′(i )1 , v

′(i )
3 ), i = 1, . . . ,2k−1, such that theu′(i )1 ’s are all dis-

tinct and thev′(i )3 ’s are all distinct. Pick av( j )
3 ∈ {v(1)3 , . . . , v

(2k−1+1)
3 }\{v′(1)3 , . . . , v

′(2k−1)
3 }.

Consider a permutationπ satisfyingπ(u′(i )1 , 1, 0) = (0, 0, v′(i )3 ), i = 1, . . . ,2k−1, and
π(u( j )

1 , 0, 0) = (0, 0, v( j )
3 ). Now, condition (2) is violated withw = (0, 0, 0). This

completes the proof.
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