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BIFURCATIONS AND CHAOTIC MOTIONS IN A
RATE GYRO WITH A SINUSOIDAL VELOCITY

ABOUT THE SPIN AXIS
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An analysis is presented for a single-axis rate gyro mounted on a space vehicle
undergoing sinusoidal motion and steady rotation about its spin and output axes. By
varying the amplitude of sinusoidal motion, the periodic and chaotic responses of this
parametrically excited non-linear system are investigated using the incremental harmonic
balance (IHB) method and numerical integration. The multi-variable Floquet theory is
applied to analyze the stability of periodic attractors and the behavior of bifurcations.
Additionally, phase portraits, Poincaré maps, average power spectra, bifurcation diagrams,
parametric diagrams and Lyapunov exponents are presented to observe Hopf bifurcation,
symmetry-breaking bifurcations, period-doubling bifurcations and chaotic motions. The
cell mapping technique (MICM) is also used to study the basins of attraction of periodic
attractors.
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1. INTRODUCTION

A number of studies over the past few decades have shown that chaotic phenomena are
observed in many physical systems that possess both non-linearity and external excitation
[1, 2]. In a gyroscopic system, a single-axis rate gyro mounted on a space vehicle free to
move in various ways also exhibits complex non-linear and chaotic motions. Its stability
was broadly characterized into stable regions in which the angular velocity of a given
vehicle was measured by Singh and Ge [3, 4]. Here, we further investigate the non-linear
nature of a single-axis rate gyro when the vehicle is simultaneously spinning sinusoidally
and steadily rotating with respect to the spin and output axes of the gyro. This system
is characterized by parametric excitation and exhibits complex non-linear phenomena [1, 5]
in the presence of sinusoidal excitation, including subharmonic vibrations, Hopf
bifurcation, symmetry-breaking bifurcations, a series of period-doubling bifurcations and
chaos. In past analyses, oscillators with quadratic and/or cubic non-linearities under
external excitation or parametric excitation have been studied extensively [2, 6–11]. The
non-linearity of a system, through the various system parameters, exhibits a variety of non-
linear behaviors including jump phenomenon, multiple attractors, subharmonic vibrations,
symmetry breaking-bifurcations, period-doubling bifurcations, crisis and chaos. In
addition, a symmetry-breaking bifurcation occurring before a period-doubling bifurcation,
and the appearance of chaos amidst a cascade of period-doubling bifurcations, have been
observed in driven damped pendulums or Duffing’s oscillators by MacDonald and Räty
[6, 7]. The behaviors mentioned above occur at the boundaries of stability regions.
Therefore, an analysis of instability regions in parametric space is a critical problem.
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Recently, a number of non-linear parametrically excited oscillators have been studied
in detail by means of approximate analytical methods. Various perturbation techniques
are employed in classical weakly non-linear analyses, such as the method of averaging [8, 9]
and the method of multiple scales [6, 10]. Szemplińska-Stupnicka [2, 11] has applied the
harmonic balance (HB) method to treat strongly non-linear systems well, but its
deficiencies are that a set of complex non-linear algebraic equations is formulated and must
be solved. Other efficient tools for strongly non-linear systems are the fast Galerkin (FG)
method developed by Ling and Wu [12] and the incremental harmonic balance (IHB)
method proposed by Lau et al. [13–16], which have been successfully applied to various
types of non-linear dynamic problems. These two methods can handle strong system
non-linearities very well, and provide satisfactory results in a few harmonic terms. These
methods are ideally suited to parametric studies for the purpose of seeking parameter
diagrams by changing the system parameter in turn. In addition, the multi-variable Floquet
theory [17] is applied to analyze the stability of periodic attractors through the moduli of
eigenvalues of the associated system monodromy. In this paper, the IHB method is applied
to obtain the periodic motions of a system that has strong non-linearity and parametric
excitation. Using the multi-variable Floquet theorem, stable periodic attractors and
parameter diagrams are presented. Finally, a number of numerical techniques are used to
detect the existence of symmetry-breaking bifurcations, period-doubling bifurcations and
chaos. The nature of the periodic and chaotic motions are shown in phase plane diagrams,
Poincaré maps and average power spectra. Numerical integration results compare very well
with those of the IHB. The qualitative bifurcation diagrams, parametric diagrams and
quantitative Lyapunov exponents in parametric space are also computed to determine the
values of bifurcation points as well as the onset of chaos. Additionally, solution basins
of attraction are assessed using modified interpolated cell mapping (MICM) [18]. This
method gives more precise and unified results than those from numerical integration by
introducing the concept of refined boundary cells.

2. EQUATIONS OF MOTION

We consider the model of a single-rate gyro mounted on a space vehicle, as shown in
Figure 1. The gimbal can turn about output X-axis with rotational angle u. Motion about
this axis is resisted by torsional spring and damping torques defined by ku and cu�

Figure 1. A rate gyro.
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respectively. Using Lagrange’s equation, the differential equation for the output deflection
angle u of a rate gyro was derived as follows [1]:

(A+Ag )u� +Cd u� +Ku+CnR (vg cos u+vZ sin u)

+(A+Bg −Cg ) (vY cos u+vZ sin u) (vY sin u−vZ cos u)

=−(A+Ag )v̇X , (1)

where

CnR =C(c� −vY sin u+vZ cos u)= constant, (2)

and vX , vY and vZ denote the angular velocity components of the platform along the
output axis X, the input axis Y and the normal axis Z, respectively. A, C and Ag , Bg and
Cg denote the moments of inertia of the rotor and gimbal respectively about the gimbal
axes j, h and z.

In this paper, we are interested in the non-linear behavior of dynamical motion when
the vehicle undergoes steady rotation about the X-axis, and the harmonic rotation with
respect to the Z-axis, i.e., v̇X =0 and vZ = f sin vf t, where f and vf are the amplitude
and the frequency of the vehicle motion about the Z-axis respectively. Now we let vY =0
in equation (1), which is divided by (A+Ag ). Then the resulting motion of the gimbal
can be simplified to

u0+2au'+ u+ g sin vt1 sin u− b(1−cos 2vt1 ) sin 2u=0, (3)

where

u'=du/dt1 , t1 =vt, v=
vf

vn
, vn =zK/(A+Ag ),

a=
Cd

2(A+Ag )vn
, g=

CnR f
(A+Ag )v2

n
, b=

(A+Bg −Cg ) f 2

4(A+Ag )v2
n

= kg2

and the values of the above gyro parameters [1] are shown in Appendix I.
If we set x= u and t=vt1 , then equation (3) becomes

v2ẍ+2avẋ+ x+ g sin t sin x− b(1−cos 2t)sin 2x=0, (4)

where ẋ=dx/dt and we let y= ẋ for plotting.

3. INCREMENTAL HARMONIC BALANCE METHOD

The steady state periodic solutions of equation (4) are obtained by the IHB method,
which can deal with strong non-linearity very well and is convenient for computer
implementation. Other advantages of this method include its efficient performance of
parametric studies and yielding of unstable solutions. The first step in this method is a
Newton–Raphson procedure. Let x0 (t) denote the current solution of equation (4)
corresponding to the excitation parameters v0 , g0 and b0 . A neighboring solution is
obtained by adding small increments to the current solution:

x= x0 +Dx, v=v0 +Dv, g= g0 +Dg, b= b0 +Db, (5)

where Db=2kg0 Dg.
For a small increment Dx, the non-linear terms sin x and sin 2x of equation (4) can be

written as first order Taylor expansions:

sin x=sin x0 + cos x0 Dx, sin 2x=sin 2x0 +2 cos 2x0 Dx. (6)
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Substituting equations (5) and (6) into equation (4) and ignoring all the non-linear terms,
the linearized incremental equation is obtained:

v2
0 Dẍ+2av0 Dẋ+(1+ g1(x0, t)) Dx=R+DvF+DgP+DbQ, (7)

where

g1(x0, t)= g0 sin t cos x0 −2b0(1−cos 2t) cos 2x0, (8)

R=−(v2
0 ẍ0 +2av0ẋ0 + x0 + g2(x0, t)), (9)

g2(x0, t)= g0 sin t sin x0 − b0(1−cos 2t) sin 2x0, (10)

F=−(2v0ẍ0 +2aẋ0), P=−sin t sin x0, Q=(1−cos 2t)sin 2x0; (11–13)

in which R and F are the corrective and imbalance force terms respectively.
The second step of the IHB method is the Galerkin procedure: the approximate periodic

solutions x0(t) and Dx(t) may be expressed as

x0 = s
N

j=0, 1, 2, . . . 0aj/q cos
j
q

t+ bj/q sin
j
q

t1,

Dx0 = s
N

j=0, 1, 2, . . . 0Daj/q cos
j
q

t+Dbj/q sin
j
q

t1 (14)

for an unsymmetric solution with period 2qp in terms of t, and

x0 = s
2N−1

j=1, 3, 5, . . . 0aj/q cos
j
q

t+ bj/q sin
j
q

t1,

Dx0 = s
2N−1

j=1, 3, 5, . . . 0Daj/q cos
j
q

t+Dbj/q sin
j
q

t1 (15)

for a symmetric solution with period 2qp in terms of t; N is the harmonic order to be taken
into account and q is the subharmonic order. By applying the Galerkin procedure with
Dak’s and Dbk’s as the generalized co-ordinates, we obtain

g
2qp

0

(v2
0 Dẍ+2av0Dẋ+(1+g1(x0, t))Dx)d(Dx) dt

=g
2qp

0

(R+DvF+DgP+DbQ)d(Dx) dt. (16)

Substituting equation (14) (or equation (15)) into equation (16) and matching the Dak

and Dbk terms, an incremental system of 2N+1 (or 2N) linear equations in terms of the
Dak’s and Dbk’s is obtained in the form of

C Da=R+DvF+DgP+DbQ, (17)
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where

a=[aj/q , bj/q ]T,

Fig. 2a, b, c, d and e—Caption overleaf
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Figure 2. (a) A comparison between IHB (,,,,) and numerical integration (—) of a symmetry period-2T cycle
for f=15·45. (b) A comparison between IHB (,,,,) and numerical integration (—) of a dual period-2T cycle
for f=32·83. (c) A comparison between IHB (,,,,) and numerical integration (—) of a symmetry period-6T
cycle for f=34·4. (d) An average power spectrum of Figure 2(c). (e) A comparison between IHB (,,,,) and
numerical integration (—) of a symmetry period-2T cycle for f=45. (f) The time histories of the periodic solution
(x) and the external excitation (u= f sin vt) of Figure 2(c).

Da=[Daj/q , Dbj/q ]T, j=60, 1, 2, . . . , N
1, 3, . . . , 2N−1

for an unsymmetric solution,
for a symmetric solution;

(18)

C=$ [C1]ij
[C21]ij

[C12]ij
[C2]ij%, R=$R1i

R2i%, F=$F1i

F2i%, P=$P1i

P2i%, Q=$Q1i

Q2i%.

(19–23)

The expressions C, R, F, P and Q are given in detail in Appendix II.

4. STABILITY ANALYSIS

From the previous procedure, the qT-period steady state solution x0(t) has been
determined and its local stability is investigated by considering the following perturbation
solution:

x= x0 + dx. (24)

Inserting equation (24) into equation (4), and ignoring the higher order terms in dx, we
obtain a linear variational equation with periodic coefficients in the following form:

v2dẍ+2avdẋ+(1+g1(x0, t))dx=0. (25)

Equation (25) can then be arranged in matrix form as

X� =A(t)X, (26)

where

X=[dx, dẋ]T, A(t)=$ 0
A21

1
−2a/v%, A21 =−(1+ g1(x0, t))/v2. (27)
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Since x0 is a periodic function of time t with a period Tq =2qp, the coefficient matrix A(t)
has the same period Tq ; i.e., A(t+Tq )=A(t). The stability of a linear perodic system is
analyzed by the multi-variable Floquet–Lyapunov theory with an efficient numerical
scheme for computing the transition matrix at the end of one period, F(Tq , 0) [17]. Here,
the approximate transiton matrix F(Tq , 0) is given in the following form:

F(Tq , 0)= t
Nk

i=1 0I+ s
Nj

j=1

(DiBi )j

j! 1 (28)

Bk =
1
Dk g

tk

tk−1

A(z) dz, (29)

where Nk is the number of intervals in each period T; Nj is the number of terms in the
approximation of the constant matrix Bi exponential; the kth interval is denoted by tk ,
and its size by Dk = tk − tk−1; and in the kth interval the periodic coefficient matrix A(t)
is replaced by a constant matrix Bk .

The eigenvalues of the monodromy matrix F(Tq , 0) are also called the Floquet
multipliers (r1, r2) and can determine the stability of a steady state solution. If all of the
moduli of the eigenvalues rk are smaller than unity, the solution is stable. If the moduli
of one of the eigenvalues rk is larger than unity, the solution is unstable. Bifurcation occurs
when an eigenvalue rk passes through the unit circle.

5. NUMERICAL SIMULATIONS AND DISCUSSION

Varying the system parameter f, the system results obtained by the IHB method were
compared with the results obtained by numerical integration in the phase planes. There

Figure 3. Floquet multipliers as a function of f.



.-.   .-. 128

Figure 4. The response in a Poincaré section by IHB.

was good agreement between IHB and numerical integration as shown in Figures 2(a)–(e),
where the symbols ‘‘W’’ and ‘‘×’’ indicate the results obtained by the IHB method and
one period T of sinusoidal motion, respectively. The attractor of the system is a hyperbolic

Figure 5. The bifurcation diagram.
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T 1

Limit points for various parametric studies

Parametric Lyapunov Bifurcation Floquet Floquet
study diagram diagram diagram multiplier

ZxxxxxCxxxxV
Figure Figure 9 Figure 5 Figure 4 Figure 3

ZxxxCxxxV
Method RK4 IHB

ZxxxxCxxxV ZxxxxxxCxxxxxxxV
Parameter f r

ZxxxxxxxxxxxCxxxxxxxxxxV

A 15·57 15·45 15·43 15·43 0·998
B 31·24 31·25 31·35 31·33 0·982
C 32·89 32·95 32·85 32·8 0·939
D 33·34 33·35 — — —
E 34·33 34·35 34·35 34·35 —
F 35·85 36·00 35·7 35·7 —
G 43·88 43·85 — — —

A: a fixed point bifurcates to a symmetry period-2T cycle. B: a symmetry period-2T bifurcates to an
asymmetry period-2T cycle. C: an asymmetry period-2T bifurcates to an asymmetry period-4T cycle. D:
the first chaotic attractor appears. E: a chaotic attractor disappears and a symmetry period-6T cycle
appears. F: a symmetry period-6 T cycle disappears and a chaotic attractor appears. G: a chaotic attractor
disappears and a symmetry period-2T cycle appears.

fixed point at the origin before the parameter f=15·43. In the neighborhood of f=15·43,
one of the Floquet multipliers leaves the unit circle through −1 for the fixed point and
jumps to the +1 boundary of the unit circle for the periodic solution, as shown in Figure 3.
Hopf bifurcation of an equilibrium point and a period-2T stable symmetric cycle occurring

Figure 6. Two inverse chaotic attractors for f=33·4.
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are shown in Figure 2(a), where T=2p/v. A system with a symmetric non-linear function,
i.e., g1(x(t), t)=−g1(−x(t), t), can undergo either a symmetry-breaking bifurcation
at the Floquet multiplier r=+1 for the symmetric solution of the system or a
period-doubling bifurcation at the Floquet multiplier r=−1 for the asymmetric solution
of the system. When f=31·35, a multiplier touches the +1 boundary of the unit circle
and a symmetry-breaking bifurcation occurs. After this bifurcation, the original
stable period-2T attractor becomes unstable, and a pair of stable period-2T attractors arise
and invert each other, as shown in Figure 2(b) where f=32·83, with nine harmonic terms
in the IHB method. As the parameter f increases further across 32·95, the multiplier leaves
the unit circle through the −1 boundary and a stable periodic orbit appears with double
the period of the original orbit, thereby indicating a period-doubling (flip) bifurcation.
When the parameter is increased, a cascade of flip bifurcations occurs and leads to the
onset of chaos. At f=34·4, the chaotic attractor abruptly disappears and a period-6T
symmetric orbit appears, as shown in the phase plane and average power spectrum
(Figures 2(c) and (d)), from which 15 odd harmonic terms are employed in the
computation. Indeed, for the large parameter f=45, an accurate period-2T attractor is
also obtained with only seven odd harmonic terms considered, as shown in Figure 2(e).
The above-mentioned phase planes show that the attractors obtained by the IHB method
with a few harmonic terms retained are in excellent agreement with those obtained by
numerical integration. Additionally, the time histories of periodic solutions of Figure 2(c),
as well as the external excitation, are presented in Figure 2(f).

The different types of bifurcations can be verified by calculating the Floquet multipliers
of the monodromy matrix as a function of the parameter f, as shown in Figure 3. To
investigate bifurcation further, a Poincaré plane was used to display the bifurcation
diagram in Figure 4, which shows Poincaré fixed points xp plotted against the system
parameter f. The Hopf bifurcation, symmetry-breaking bifurcation and period-doubling
bifurcation are clearly shown. This bifurcation diagram also shows good agreement

Figure 7. A chaotic attractor in conjunction with two inverse chaotic attractors for f=33·7.
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between the IHB method and numerical integration. The IHB method is ideally suited to
parametric studies for obtaining solution diagrams, and can find all possible solutions,
including unstable solutions which cannot be obtained by numerical integration. In
addition, the method can obtain accurate results directly in the frequency domain.
However, to obtain the higher qT-period solutions, a number of harmonics must be
considered and a set of good initial conditions needs to be specified that will converge to
the predicted stable attractors. Another disadvantage of the IHB method is that the
computation time required increases geometrically with the number of harmonic terms
considered. Hence, the higher periodic and chaotic attractors were analyzed by fourth
order Runge–Kutta numerical integration. The results are shown in a number of phase
plane diagrams, Poincaré maps, average power spectra, bifurcations and Lyapunov
exponents.

As the system parameter f is gradually increased through the parametric space, the
bifurcation diagram obtained shows different types of bifurcations and chaos (see
Figure 5). The values of the main limit points are shown in Table 1. As observed earlier,
the Hopf bifurcation at f=15·45, the symmetry-breaking bifurcation at f=31·25 and the

Figure 8. A symmetric chaotic attractor plotted: (a) in the phase plane and (b) on Poincaré maps. (c) The
average power spectrum for f=36·5.
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Figure 9. The parametric diagram in the f–a plane; v=2·0.

period-doubling bifurcation at f=32·95 are also predicted accurately by the IHB method.
To investigate the periodic and chaotic motions in the bifurcation diagram further, the
phase planes, Poincaré maps and power spectra are used. After a cascade of
period-doubling bifurcations, the dual response becomes chaotic rather than periodic for
f=33·4, as shown in Figure 6. When f=33·7, conjunction of the two inverse chaotic

Figure 10. The parametric diagram in the f–v plane; a=0·7.
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attractors creates a larger attractor, as shown in Figure 7. With the parameter increased,
a large amplitude chaotic motion appears in the phase plane, Poincaré map and power
spectrum, as shown in Figure 8, where f=36·5. In addition, parametric diagrams were
constructed in which the boundaries of Hopf bifurcation (H.B.), symmetry-breaking
bifurcation (S.B.) and period-doubling bifurcation (P.B.) were shown, as in Figures 9 and
10. The symbol 2T refers to a limit cycle of period-2T, where T=2p/v and the fixed point
is at the origin.

To confirm the chaotic dynamics, a qualitative and quantitative Lyapunov exponent
spectrum was performed. The algorithm for calculating the Lyapunov exponents was
developed by Wolf et al. [19]. A spectrum of the largest Lyapunov exponent as a function
of the parameter f is shown in Figure 11. As one of the Lyapunov exponent is positive,
the motion is characterized as chaotic. When at least one Lyapunov exponent l1 =0 exists,
the motions are not stationary. For periodic motions, the Lyapunov exponents are
non-positive and include only one zero Lyapunov exponent, while one negative exponent
becomes zero when one type of periodic motion bifurcates to another.

In this case the sum of all three Lyapunov exponents, l1 + l2 + l3 = −1·399, is
equivalent to the negative damping coefficient of the system, independent of position and
time. For f=33·7 the Lyapunov exponents were found to be l1 =0·119, l2 =0 and
l3 =−1·518, and the Lyapunov dimension dL =2·0784 was also calculated using the
relation proposed by Frederickson et al. [20]:

dL = j+ s
j

i=1

li/=lj+1 =,

where l1 is the largest Lyapunov exponent and j is the index of the smallest non-negative
Lyapunov exponents. From the above discussion, it is evident that Lyapunov exponents
are a measure of the fractal geometry of the attractor and the property of sensitivity
dependence on initial conditions.

Figure 11. The largest Lyapunov exponents as a function of f.
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Figure 12. The attracting basins of two inverse period-2T attractors with a magnification sequence for f=32·5.

It is well known that attractors and basins of attraction may be obtained in regions of
interest using cell mapping techniques. Various cell mapping algorithm exists that allow
efficient evaluation of attracting basins. Here the modified interpolated cell mapping
(MICM) algorithm [18] is considered to identify the periodic attractor basins of attraction
and their dual attractors, for f=32, which corresponds to the period-2T. In Figure 12,
the basins of attraction of two inverse attractors are inverse to each other with respect to
the shaded and unshaded regions because the non-linearity of the system is symmetric. The
initial conditions in each region generate orbits that generally approach a period-2T
attractor (labeled by two dots in the figure). Another dot (x, ẋ)= (0, 0) on the basin
boundary is the saddle. In fact, the saddle manifold of the saddle is the basin boundary.
For different diagrams of previous parametric studies, the limit points are consistent with
each other, as shown in Table 1.

6. CONCLUSIONS

In this paper, a single-axis rate gyro with sinusoidal velocity about its spin axis exhibits
the non-linear characteristic of both sine function and parametric excitations when the
parameter is varied. A variety of parametric studies were performed to analyze the
behavior of bifurcations and chaos using the IHB method and numerical integration. In
the parametric studies, the periodic attractors can be clearly seen in these diagrams and
their stability was analyzed by applying the Floquet multi-variable theory. The behaviors
of a symmetry-breaking precursor to period-doubling bifurcations and a cascade of
period-doubling routes to chaos occurred in this system. The chaotic motion was
confirmed by the Poincaré map, a continuous board power spectral diagram and the
existence of a positive Lyapunov exponent. The attracting basins of the periodic responses
were also assessed by MICM, which provided information about large scale stability
regions.
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APPENDIX I

The values of the gyro parameters are as follows:

(A+Ag )=54 dyne cm s2, CnR =10·8×104 dyne cm s,

K=54×104 dyne cm rad−1, Cd =7560 dyne cm rad−1 s,

Cd

(A+Ag )
=140 rad−1 s−1,

K
(A+Ag )

=104 rad−1 s−2,
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CnR

(A+Ag )
=2000 s−1,

(A+Bg −Cg )
(A+Ag )

=1,

vn =100 rad s−1, v=
vf

vn
=2, a=0·7, b=2·5×10−5f 2, g=0·2f.

APPENDIX II

The elements of matrix C are as follows:

[C1]ij = mjdijqp01−0jv0

q 1
2

1+[C1]NL
ij , i, j=0, 1, . . . , N;

[C12]ij =2dijqp0jv0

q 1+[C12]NL
ij , i=0, 1, . . . , N, j=1, . . . N;

[C12]ij =−2dijqp0jv0

q 1+[C21]NL
ij , i=1, . . . , N, j=0, 1, . . . N;

[C2]ij = dijqp01−0jv0

q 1
2

1+[C2]NL
ij , i, j=1, . . . , N,

where

mj =621 for j=0,
for j$ 0,

dij =610 for i= j,
for i$ j,

[C1]NL
ij =g

2qp

0

g1(x0, t) cos
it
q

cos
jt
q

dt,

[C12]NL
ij =g

2qp

0

g1(x0, t) cos
it
q

sin
jt
q

dt,

[C21]NL
ij =g

2qp

0

g1(x0, t) sin
it
q

cos
jt
q

dt,

and

[C2]NL
ij =g

2qp

0

g1(x0, t)sin
it
q

sin
jt
q

dt.

The elements of vectors R, F, P and Q are as follows:

R1i =−mi 0 01−0iv0

q 1
2

1ai +2a0iv0

q 1bi1qp+RNL
1i , i=0, 1, . . . , N;
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R2i =−001−0iv0

q 1
2

1bi −2a 0iv0

q 1ai1qp+RNL
2i , i=1, 2, . . . , N;

F1i =2qpmi 0v00 i
q1

2

ai − a
i
q

bi1, i=0, 1, . . . , N;

F2i =2qp0v00 i
q1

2

bi + a
i
q

ai1, i=1, 2, . . . , N;

6P1i

P2i7=g
2qp

0

−sin x06cos (ip/q)
sin (ip/q)7 dt;

6Q1i

Q2i7=g
2qp

0

(1−cos t) sin 2x06cos (ip/q)
sin (ip/q)7 dt;

where

RNL
1i =−g

2qp

0

g2(x0, t) cos
it
q

dt and RNL
2i =−g

2qp

0

g2(x0, t) sin
it
q

dt.


