%

] 17 58 ik

EAREE

E AT

/i

Wt X

LA e RA#EZ 2N Android E AR

R

Three-phase Detection and Classification for Android Malware

Based on Common Behaviors

FoyoA rsky R

—_—

IR HREE KR

FTERR —-BR®R-F KA

MEFF LR AR Z P Android E & AR5 R84 2
Three-phase Detection and Classification for Android Malware based on

Common Behaviors

Fopo4 iRy R Student : Yu-Ni Chang
ERE HREL Advisor : Dr. Ying-Dar Lin
Bz« F

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science

June 2013

Hsinchu, Taiwan

B-7F %= &1

s
it
(\.‘3

MERFEEA#Z =N Android & R /250 R e A %

g3 TR B B

Ri2d ~ FFRPFRIEFY A

#e

Android E_p & (F# R P X BT E k2 - cH I 2 ML RETF
¥ Goc B HoaFeanpth 30 R RS A PRS- B8 TR
fod FrEd 2 Z B 5 A 1T2 0 RAKE Y ST HRE LRSS R BREY A
BE AR o ey - PRl s NP g R R & Rl | oS g IR g
TRHE B A2 0 RS PR S R AR AR o B o FEEY o A
PEEERFFE AN AAA D ARSI BRI PR R ARN B ts o AP AF (5

& B

"=

d

T

U B PERSEAD IR BB AR 4 g S o A & KA Aesg Al A B
BRIF G oo BFE - R R TS R REERF TR A s

PR B R S B eE R o w5 9T e 3% FER Y e

]
i
Tk
5
"
b
=
=y
[
=
ey

A 980 R A e E R AR A AT A E R AR -

MeEF . Android, & & 423%, 75 447, 8', jseded LN FIL, BEER

4y

Fe, N~, 45ZipAE

Three-phase Detection and Classification for Android Malware

Based on Common Behaviors

Student: Yu-Ni Chang Advisor: Dr. Ying-Dar Lin
Department of Computer and Information Science

National Chiao Tung University

Abstract

Android is one of the most popular operating systems adopted in mobile devices.
The popularity also turns it an attractive target for attackers. To detect and classify
malicious Android applications, we propose an efficient and accurate behavior-based
solution with three phases. The first two phases detects malicious applications and the
last phase classifies the detected malware. The “faster” first phase quickly filters out
applications with their requested permissions judged by the Bayes model and
therefore reduces the number of samples passed to the “slower” second phase which
detects malicious applications with their system call sequences matched by the longest
common substring (LCS) or N-gram algorithm. Finally, we classify a malware into
known or unknown type based on cosine similarity of behavior or permission vectors.
Our experiments show that the two-phase detection approach works more accurately
than a single phase approach. It has a TP rate and a FP rate of 97% and 3%,
respectively, with LCS in the second phase. More than 98% of samples can be

classified correctly into known or new types based on permission vectors.

Keywords: Android, malware, behavior analysis, permissions, system call, Bayes,

longest common subsequence, N-gram, cosine similarity

* i

Bl » 2 S g g i TS HRRE I A R A - P R R
BT LR AL o B R RN B 0 @ A OB AR OB B 0 PR A T 4 bt
wR -

BAAL T ALY R Ep R P AN > Fla w3 g E
dept X BenE Y Y o R B AR R EPRFEYHRY S B P
g E v R owumfa WEEX AR GG o RLAT o e kP B RR
FHRELE > FIZAPAKRTF MBL > XFPREF B2 E RS H > AL)
Ot g iR e A o

PHEBERDPFREL AL DF o m X DR SRR P B RA D
PR B R 0 G T & RHREE ¢

AR PR E S FR - R ﬁkﬁ%@%ﬁ%ﬁ%wﬁgoﬁﬁﬁﬁ%@
A2 P o B P R A 3 3 5 R B e R R Y TR R T o
BIFLERERER NG ER PR R AR ¥R PR B A R 3

PR REES BN I REOREERSHF R AP E S

Pt

73) Py
ﬁ*j rC °

\J—

T
T

W

ﬁﬁlééifﬁﬁ%ﬁﬁﬁﬁ%’jfﬁ—ku% B b AR F e e
FEB S e o BARBN AR S LR o Ay R R P akEE s R

EHBERRIKR T NS PP AT AL

-

FiET e FA AT S SR PR AN RN gL) RAN A
F#DEF T BB EALAE
Bod B A RA A AN TIRATE ST A SR AR AR
VSRR - A CE AR -
R I

2013.06.06

Contents

LIST OF FIQUIES ...ttt sttt et s sbe e b \Y/
LASE OF TADIES ... VI
Chapter 1. INtrOAUCTION ..o 1
Chapter 2. BaCKQgroUNdcceiieiiiieiie et 4
2.1 Differences between PC Malware and Android Malwarecccceoveennne 4
2.2 RElAtEU WOTKS. ..o 6
Chapter 3. Problem Statement ... 8
BLL INOTALIONS ...ttt 8
3.2 ProbIem DeSCIIPLIONo.ws i fe bbb i seeeeeseeste sttt e et 8
Chapter 4. Three-phase Behavioral Detection and Classificationcc.cc.c.... 10
4.1 Overview of Three-phase Behavioral Detection and Classification.............. 10
4.2 Permission-based Detection (PBD) Phase.......ic.c.cccccvvevveie i 11
4.3 System Call-based Detection (SBD) Phaseccccoceiiiiiinininiiccen, 12
4.4 Behavior-based Classification (BBC) Phasecccccoovevveiieiieie e 14
4.5 IMPIEMENTALION ...t 15
Chapter 5. EVAlUBLION.........cooiiiiiie e 17
5.1 EXperiment ENVIFONMENTcoiiiiiiiie e 17
5.2 EXperimental RESUILSccoiiiiiiccece e 20
Chapter 6. Conclusions and FUture WOrksccccoooiinniienen e 30
RETEIBNCES ...t 32

List of Figures

Figure 1. Overview of the proposed SOIULION.............ccoviiiiiiiieiciesc e 11
Figure 2. Procedure flowchart 0f SBDcccccoiiieiiiiesee e 13
Figure 3. Procedure of system call sequence COmparator............cccoceeevererinneeennenne. 14
Figure 4. Procedure of type ClasSIfier ... 15
Figure 5. Procedure of permissions analyzer ... 16
Figure 6. Procedure of system call recordercovoveieeiicie i 16
Figure 7. Detailed modification of the init.rc file ..., 16
Figure 8. EXperiment eNVIFONMENTc.ooveiiiieieeie et 18

Figure 9. Distribution of the permissions requested by benign and malicious applications21

Figure 10. The permissions requested by benign applications and malware............... 22
Figure 11. Performance for PBD (it et 22
Figure 12. Detection performances for system-call sequences with various N 24
Figure 13. Distribution for the number.of malicious behaviors.............ccccooriiiinnn, 24
Figure 14. Accuracy comparison for one-phase and two-phase detectors................... 26

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

List of Tables

Related works to detect malicious Android applications............ccocveveveiennen. 6
Definition Of NOTALIONScoveiiiiiiiiicee s 9
Number of training samples and detecting samplesccocvvriniiieiennenn 19
LiSt OF MAIWAIE tYPES.....eieeiieeeciece et 19
Detection performance vs. time CONSUMPLIONcccoververierienenineseeeeeens 25
Time consumption, FNR, and FPR..........ccccco i, 26
The detail Of tyPe VECIOIS.ooviiiiiiiicee e 27
Classification results for known types of malware.............cccccooveveviiiiveennnne. 28
Classification results for known and.new types of malware 29

Vi

Chapter 1 Introduction

Mobile devices were used solely for making phone calls and handling short
messages in the past. However, the rapid growth on computing powers and wireless
bandwidth turns mobile devices universal devices in digital life. Activities such as
watching videos, playing games, checking e-mails, and online shopping now can be
done anywhere and anytime with an Internet-connected mobile device. As a result,
more users migrate from PCs to mobile devices and the number of mobile devices
hence grows exponentially.

Due to its openness, Android [1] is one of the most popular operating systems
adopted by modern mobile devices. Statistics collected in 2012 [2] show that there has
been more than 500 million devices running the Android operating system. The
popularity of Android also .makes it an attractive target for attackers. From the
perspective of attackers, a compromised-mobile device not only can be used for
launching traditional Internet attacks;. but is-also' capable of conducting monetary
attacks such as collecting sensitive personal data, sending short messages, or making
phone calls. Consequently, solving security issues on mobile devices becomes

important and emergent.

Mobile Application Security

Mobile application security issues are much more critical than those on
traditional PCs. Traditional PC-based malware tried their best to spread themselves
and compromise as many hosts as possible. However, in addition to the behaviors of
PC-based malware, mobile malware also attempts to steal sensitive data and conducts
monetary attacks. It could read the location of a user via the built-in GPS receiver,
inspect short messages, or steal contact lists. Furthermore, it is able to send short

1

message, making phone calls, or relaying phone calls to earn economic benefits.
Compared to traditional PCs, mobile devices could be much more attractive to
attackers.

We classify solutions to mobile application security issues into two categories,
i.e., the client solutions and the server solutions. Client solutions provide hints and
software to prevent users from being compromised by attackers. For example, the list
of permission requirements and the anti-virus software [3, 4, 5] are client solutions. In
contrast, server solutions are deployed on the server. Server solution can be used to
check each application before an application is published online or even if an
application is already online. For example, an application is available on the Apple
App Store if and only if it has passed security. checks done by that market. Similarly,
Google has its Bouncer [6] service to search for malicious applications hidden in its

market.

Observations and Solutions for Mobile Malware

A number of researches have provided observations and solutions for mobile
malware. In general, they can be classified into external based and internal based
solutions. A lot of external based solutions focus on the uses of Android permissions.
Statistics provided by the Stowaway project [7] showed that one-third out of 940
applications were over-privileged. Ryan et al. [8] also showed that most developers
over-requested permissions that caused security threats. PUMA [9] used
machine-learning techniques to detect malware based on permissions. Although it has
a high detection rate, its false positive rate is high as well. Zhou et al. [10] manually
analyzed essential permissions for 10 different malware families. Although it provides
good understandings for the analyzed malware, it cannot scale efficiently for handling
the explosively growing number of malware.

2

On the other hand, internal based solutions attempt to identify malicious
behaviors by monitoring and capturing system states like registers and system calls.
AAsandbox [11] observed suspicious applications based on system call counts.
Crowdroid [12] classified applications into benign and malicious by system call
clusters. Isohara et al. [13] defined signatures to detect malware by creating regular
expressions for system call names and file paths. Lin et al. [14] detected five types of
repackaged malware by using system call sequences. The above researches are able to
detect or analyzed known malware. However, to our knowledge, none of them have
been utilized to detect unknown malware.

In this work, we propose a hybrid solution that detects malicious Android
applications based on both external observations (the requested permissions) and
internal observations (the system call sequences). By combining the two types of
behaviors, the proposed solution'is able to detect unknown malware in an efficient
manner. Our detector works -in two-phase.-In-the “faster” first phase, we use the
permission information to quickly identify suspicious applications. In the “slower”
second phase, we analyze whether system call sequences generated from a suspicious
application from the first phase are malicious. Furthermore, to determine whether an
identified malware is a known or new type, we propose to establish behavior vectors
from trained malware samples and then determine new types based on similarity
between an inspected malware and the behavior vector.

The rest of this thesis is organized as follow. In Chapter 2, we give a brief survey
of related works. In Chapter 3 and Chapter 4, we give the precise problem statement
and describe the details of the proposed mechanism including the processing of
permissions and system call sequences, respectively. Chapter 5 presents the
experiment results. Finally, some concluding remarks and future work are given in

Chapter 6.

Chapter 2 Background

In this chapter, we discuss the differences between PC malware and Android
malware. We also introduce several related works that have inspired the design of our

proposed solution.

2.1 Differences between PC Malware and Android Malware
We discuss the differences of malware between PC and Android in four aspects:

intention, strategies to spread, activation, and Android-specific properties.

Intention

In this subsection, we describe the destructive activities for both PC and Android
malware. The intention of attackers changes from time to time. In the past, attackers
like to show their ability to compromise a large number of computers. As a result, PC
malware attempts to reduce the system performance and modify or delete system files.
In general, it conducts to paralyze the system.. In contrast, Android malware focuses
on privacy and monetary attacks. Android malware attempts to steal personal
information such as user location and even eavesdrop the phone calls by sound
recording. In addition, it could launch monetary attacks by exploiting paid services
such as sending short messages, making phone calls, and visiting on-line

advertisements.

Strategy to Spread

Modern attackers disseminate PC malware via Internet Web, E-mail, as well as
peer-to-peer file sharing. A user’s computer could be infected if he or she browses a
malicious webpage that attackers had injected malicious codes or opens an application

downloaded from web, peer-to-peer network, or E-mail. Attackers make the use of

various Internet media to spread malware rapidly. In contrast, Android malware is
spread through application markets. For example, the official Android market
developed by Google is a digital application distribution platform that permits a user
to download or upload applications. However, it lacks a rigorous detection mechanism
for malicious applications. Therefore, attackers are able to exploit the weakness to
spread malware by repackaging popular applications with malicious code to trap users.

Similar cases also happen on third-party markets.

Activation of Malware

A PC user and an Android user could be trapped into launching a malicious
application directly. However, attackers have much more choices to activate malicious
applications on PC. An attacker is able to request a user to run browser add-ons when
the user visits a compromised website.-Alternatively, modern PC malware also utilizes
vulnerabilities of in-browser applications such as interpreters, virtual machines, flash
players, and document viewers. By injecting itself into in-browser applications, a PC
malware can be activated immediately when a vulnerable in-browser application is

activated.

Android-specific Properties

In addition to the above-mentioned differences, Android malware has some
specific properties. On Android, a user may exploit permissions to determine whether
an application is malicious. For instance, if phone-call permission is requested by a
game application, the user may refuse to install that application. Another property is
that Android malware is usually embedded into well-known or popular applications.
There are not too many standalone malware. Finally, most Android malware is

passively downloaded by a user instead of actively intruding into a user’s device.

2.2 Related Works

Table 1 shows several existing solutions to detect Android malware. Kirin [15]
used permission security rules to mitigate malware by voice, location, or short
messages. They utilized a set of security rules to judge whether an application
requests some dangerous combinations of permissions. PUMA [9] adopted
machine-learning approaches including simple logistic, natve Bayes, J48, and random
tree to classify applications into benign or malicious applications based on
permissions. The above two solutions are simple and efficient because they only
analyzed the manifest file of an application. However, a malicious application is
possible to evade the detection of Kirin and PUMA and consequently they have high
false positive rates.

Zhou et al. [10] obtained, the essential-permissions and behaviors by manually
analyzing 10 different malware ‘families. They chose the permissions to filter out
benign applications quickly “and ‘detected--remaining applications by behavioral
footprint matching. However, it i1s-not scalable because the solution cannot be

automated.

Table 1. Related works to detect malicious Android applications

Category Solution Behaviors Training Detection Cons
Kirin [15] Permissions Security Rules Matching High FP
Stat PUMA [9] Permissions Machine-learning Classification High FP
e Permissions Essential Permissions Require manual
Zhou et al. [10] Bytecode - X Matching q .
Behavioral Footprint analysis
Structural Layout
Crowdroid [12] System Call Count Vectors Clustering Require a !Ot of
user experience
) System Call Name . . Limited types of
Dynamic Isohara [13] and Parameter Regular Expression Matching malware
Can be easily
Lin et al. [14] System Call Sequences Matching evaded / Not
Sequences s
efficient
. The Proposed Permissions Probability Threshold
Mix : System Call .
Solution Sequences Matching
Sequences

Crowdroid [12] monitored system calls invoked by an application and utilized a

6

clustering algorithm to judge whether the application is benign or malicious. However,
it has to collect a lot of the user experiences for the same application. Otherwise, it
could make a lot false positives. The solution only detects anomalous behaviors of
analyzed applications. Isohara et al. [13] defined three categories of threats including
information leaking, jail-breaking, and destructive application detection. They
generated signatures by applying a set of regular expression rules to the name of
system calls or file paths. A malicious activity in these three categories is then
detected by signature matching. However, the system cannot detect the malicious
activities other than the three categories of threats. Lin et al. [14] extracted longest
common substrings (LCS) of system calls for malicious applications of the same type
and discriminated malicious behaviors: from benign ones based on probabilities
derived from the Bayes model. They then detect repackaged malware with the
obtained LCS. However, the solution is not efficient because it has to run all
applications on emulators or real devices.--In addition, the proposed Layering
Multi-Thread Comparison mechanism_provides a door for malware to evade the
detection.

To achieve high detection performance and accuracy, we propose a three-phase
behavior-based solution, where the first two phases detect malicious applications and

the last phase classifies into known or new types of malware.

Chapter 3 Problem Statement
Here we first describe the notations and then give the problem description.

3.1 Notations

Table 2 defines the notations used in our approach. We collect a set of benign
applications BP = {bp;,1 < i < Ag} and a set of malware MP = {mp; 1<) <
Ay} for training. For permission based detection, we have aset P, P ={p;, 1 <[<
N}, containing all built-in Android permissions. We calculate the probability of being
malicious for each of the N permissions and store in another set PP. For system call
based detection, we obtain a set of benign behaviors BBS = {bb,, 1 < n < Sz}, a set
of suspicious behaviors SBS ={sh,, 1 <0 <S5}, and a set of malicious
behaviors MBS = {mb,, 1 < p < Sy} For further classification, a type vector is used
to denote what malicious behaviors a malware has. We collect type vectors of V
trained malware samples to build. a set of known type vectors TV = {tv,, 1 <q <
V} where each tvq is a bit-vector <mby, mb,,..., mbs,,> to indicate the existence of
malicious behavior for sample g. The proposed solution is evaluated with a given set
of inspected applications IP = {ip,,1 < k < A;}, whose behaviors are denoted

asIBS = {ib,, 1 <r < §;}.

3.2 Problem Description

Given a set of benign applications BP, a set of malware MP, and a set of
applications to be inspected IP, design an approach to detect if an inspected
application is malicious or not based on a set of permissions probability PP and a set
of malicious behaviors MBS. MBS is obtained from BP and MP. Finally, we classify a
detected malicious application into a known type or a new type based on type

vectors TV defined from MP.

Table 2. Definition of notations

Categories Notations Descriptions
BP A set of Ag benign applications for training
Application MP A set of A, malware for training
1P A set of A; applications to be inspected
Permission p Asetof N perm!ss!ons — - —
PP A set of N permissions’ probability of being malicious
BBS A set of S benign behaviors
Behavior SBS Aset of Sg susp_ic_ious behav_iors
MBS A set of S;, malicious behaviors
IBS Aset of S; inspected behaviors
Type TV Aset of V type vectors

Chapter 4 Three-phase Behavioral Detection and Classification

In this chapter, we describe the process of three-phase behavioral detection and
classification (TPBDC) based on permissions and system call sequences. In Section
4.1, we give an overview of permissions and system call sequences. The details of our
two detection phases and one classification phase are introduced in Section 4.2,
Section 4.3, and Section 4.4, respectively. We discuss implementation issues in

Section 4.5.

4.1 Overview of Three-phase Behavioral Detection and Classification

To achieve high detection performance and accuracy, we propose a three-phase
approach. We choose to check permissions in.the first phase so that the number of
applications passed to the second phase can be reduced. To have better accuracy, we
check the system call sequence to reduce false positive rates in the second phase.

Figure 1 shows the overview of our three phases: the permission-based detection
(PBD) phase, the system call-based detection (SBD) phase, and the behavior-based
classification (BBC) phase. In the PBD phase, we extract permissions from BP, MP,
and IP. PP is obtained from BP and MP and we then utilize PP to judge whether ip is
suspicious and only a suspicious application is passed to the next phase.

In the SBD phase, we record system calls of BP and MP for training. We train a
set of system call sequences from all the applications and then utilize the trained
system call sequences to obtain MBS. For detection, we record system calls of ipx and
then match with MBS to detect whether ipx is malicious. Note that only applications
not filtered out in the previous phase are processed by this phase. In the BBC phase,
we exploit the behaviors of malware to train TV and then utilize TV to classify ipx into

a known type or a new type depending on whether its behaviors are in TV or not.

10

—> Training —--—--= > Detecting

1t Phase P
Permission- P P2, - P}
based . J
. ., m
Detection Pi f‘;J ﬁ Permission Extractor H Bayes Analyzer
Kk TTTC .

- PP
‘ Permission Comparator }(-- {PP1, PPy s PP}

Suspicious application

2" Phase E BBS

v bby, bb,, ..., bb
System Call SystemCall | System Call {bby, b ., Sz} System Call
-based Recorder [Sequences Trainer SBS Sequences Analyzer

Detection

v {sby, shs, ..., sb_}
IBS -
bp;, mp; {iby, by, ..., b, } MBS
e R System Call {mby, mb,, .., mb_ }
Sequences Comparator Su
3rd Phase ! if malware TV
System Call mp Type Vector]
i > H —_—
-based Extractor b, [v :<L1L,.,00 |
Classification T Type Classifier [&------- [tvy:<01,.,1> |
: C -
\L, I tv, :<.,1,..,1>]
New Type

Figure 1. Overview of the proposed solution

4.2 Permission-based Detection (PBD) Phase
In this section, we introduce the PBD phase, which is composed of a permission

extractor, a Bayes analyzer, and a permission comparator.

Permission Extractor
The permission extractor is used to retrieve built-in permissions requested by
each application. Android has 139 built-in permissions. We extract permissions from

BP and MP for training and then extract permissions from IP for detecting.

Bayes Analyzer

We evaluate the probability of being malicious for each built-in permission.
Requested permissions are retrieved from both BP and MP and then probabilities are
obtained using the Bayes theorem. To simplify the evaluation, we only count

Android’s built-in permissions. The formula to evaluate the probabilities is

11

P(p,|M) = P(M)
P(p;IM) * P(M) + P(p,|B) * P(B) '

P(Mlp,) = D

where p; is one of 139 built-in permissions to be evaluated. P(B) denotes the ratio of
BP while P(M) denotes the ratio for MP. P(p,|B) and P(p;|M) represent the probability
that p, is requested by BP and MP, respectively. We then get the probability P(M|p)),
which indicates the probability to be malicious on the condition that ipx requested

permission p;. The permission probability set PP is obtained by using formula (1) for

all the 139 built-in permissions.

Permission Comparator

We also extract the requested permissions of ipx and calculate the product of
probabilities of all requested permissions using probabilities from PP. If the product
is larger than the upper bound, ipx will be judged as malware. If the product is lower
than the lower bound, ipx will-be judged as benign. If-the product of probabilities of
ipk is between the upper bound and the lower bound, it is marked as a suspicious

application and passed to the next phase.

4.3 System Call-based Detection (SBD) Phase
The SBD phase is composed of four components. They are system call recorder,
system call sequence trainer, system call sequence analyzer, and system call sequence

comparator, as shown in Figure 2.

System Call Recorder

The system call recorder records the system calls triggered by applications. First,
we install bp;, mp;, or ipx into the Android 2.1 emulator and launch the application.
After it has been launched, we emulate several system events such as rebooting,
receiving short messages, and answering phone calls. We record system calls of the

application for a period of time.

12

————> Training - ----= > Detecting

System Call Recorder

Execute the Extract
application > rac

bp;, mp; Install the l—s| Launch the Trigger
for a period time - > Systemcall

ip. ==+1> application | ->| application |- =] Events L -3

System Call
Sequences Trainer
_____ BBS
2 {bb,, bb,, ..., bbSE } System Call

1BS
(iby, iby, ..., b_} <= ‘I N-gram (N=2~150) / LCS |— Sequences
1 5 SBS Analyzer

STTTTTmommmmm ety [Sbj,sz,---,Sbss} ¢
Systern Call MBS
Benign application or Malware < === ===+ Sequences |- - - - - - - - ---------— {mb,, mb,, .., mb_ }
Comparator 2

Figure 2. Procedure flowchart of SBD

System Call Sequence Trainer

The goal of the system call sequence trainer is to generate BBS, SBS, and IBS
using the N-gram and the LCS algorithm. We consolidate successive system calls
before computing system call. sequences because a system call could be issued
repeatedly in loops. For instance, a raw system calls sequence of “open, read, read,
read, close” would become “open, read, close”.

After consolidating successive system.calls, BBS, SBS, and IBS are generated by
either the N-gram or the LCS algorithm. The purpose of system call sequence trainer
is to find out common sub-sequences. Since a common malicious behavior is the great
resemblance of malware, the system call sequences recorded from the malware should
share the system call subsequences considerably. The system call sequences for BP
are stored in BBS, the common system call subsequences for MP are stored in SBS,

and the system call sequences for IP are stored in IBS.

System Call Sequence Analyzer
The system call sequence analyzer finds out malicious system call sequences.
We obtain MBS from SBS and BBS in this module. We filter out a system call

sequence if it appears in both SBS and BBS. After the filtering, the malicious behavior

13

set (MBS), which contains only system call sequences appeared in MP, is obtained.

System Call Sequence Comparator

To inspect ipy, the system call recorder and the system call sequence trainer are
used to record system calls and generate system call sub-sequences. Figure 3 shows
how the system call sequence comparator compares the system call sequences ib,. of
ipk against all malicious behaviors listed in MBS. The ipy is classified as malicious if a

malicious behavior is matched.

Start
Initialize r to one
Yes
ib, in MBS? T+ —>
No

Figure 3. Procedure of system call sequence comparator

4.4 Behavior-based Classification (BBC) Phase

If a malicious application is detected, we propose another technique to classify
the detected malware into a known type or a new type of malware. In this subsection,
we explain the detailed design of BBC, which is composed of a type vector extractor

and a type classifier.

Type Vector Extractor

We utilize a bit vector to denote what behaviors malware has. Suppose all
identified behaviors are indexed from 1 to 500 and malware has the first, the third,
and the 499" behaviors. The corresponding bit vector tv; would be {1, 0, 1, 0, ..., 1,
0}. We build bit vectors for MP and use the bit vectors to detect whether ipy is a

known type or a new type. All the obtained bit vectors for MP are stored ina set TV.

14

Type Classifier

Figure 4 shows the procedure of the type classifier. We construct a bit vector ipv
for ipx and calculate the similarity between ipv and all bit vectors of MP by cosine
similarity [16]. The cosine similarity is obtained by

S .
Ziﬁ tv; * ipv;

szf{(tvi)z . szﬁ(ipvi)z

.

where tv is one of available MP bit vectors in TV and ipv is the bit vector of ipx. We
define a threshold as the lower bound for the cosine similarity to classify ipv into a
known type or a new type. If the similarity is greater than the threshold, we classify

ipv into the same type of the bit victor having the maximum cosine similarity value.

Start
Initialize g to one and Max to zero

Calculate the cosine
similarity value with tv,

The cosine similarity No
value > Max? No
Max z Threshold?
Yes
Set Max to the cosine ves
similarity value Extract the type
of Max
End

Figure 4. Procedure of type classifier

4.5 Implementation
We have developed tools to automatically retrieve permissions and system call

sequences of Android applications.

Permission Analyzer
Figure 5 shows the procedure of the permission analyzer. Because an APK file is

basically a ZIP archive file with an APK file extension, we decompress an application

15

to retrieve permissions of the application by apktool [17]. After decompressing, we

get assets, resources, application’s source codes (via disassemble), and the manifest

file. To retrieve permissions, we only parse the manifest file because a developer

declares requested permissions in this file.

Applications —>

apktool |—=> AndroidManifest.xm|l —>

Parserxml

—> Permissions

Figure 5. Procedure of permissions analyzer

System Call Recorder

Figure 6 shows the procedure of the system call recorder. In order to record the

system calls of an application, we need to modify the system ramdisk.img and install

strace [18] into the emulator. First; we decompress the ramdisk.img, install the strace

tool into the system, and modify the init.rc file to launch the strace tool. The strace

tool is placed in the /data directory. For the init.rc file,.we insert the strace command

“/data/strace —F —ff —tt —o /data/tracefile/zygote” into this file as shown in Figure 7.

With the above modifications, strace‘is launched to record system calls right after the

emulator boots. The output of the strace tool is placed in /data/tracefile/zygote file.

Host (Ubuntu 8.04)

Decompress Modify | Compress
ramdisk.img init.rc ramdisk.img

Emulator (Android 2.1)

Put “strace” Createa
to /data/ > folder "tracefile”
at /data/

Figure 6. Procedure of system call recorder

Insert

/data/strace —F —ff —tt —o /data/tracefile/zygote

Service zygote /system/bin/app-process —Xzygote /system/bin—zygote —start-system-server

Figure 7. Detailed modification of the init.rc file

16

Chapter 5 Evaluation

To evaluate the effectiveness of the proposed solution, we conduct experiments
with diverse types of repackaged applications. We describe the experiment
environment and the number of trained and inspected applications in Section 5.1. We
then present the effectiveness in detection and classification based on permissions and

system call sequences in Section 5.2.

5.1 Experiment Environment
We introduce the experiment environment from two aspects: The training and the

detection and then summarize the samples used in the experiments.

Training

Figure 8 illustrates the experiment environment of training which includes four
programs, i.e., the system call recorder, the trainer of PBD, the trainer of SBD, and
the trainer of BBC. There are four databases involved, including the permission
probability database, the system call sequence database, the malicious behaviors set
database, and the type vector database.

To obtain the permissions probability, we parse all benign applications and
malware first and calculate the permission probabilities using formula (1). We utilize
the system call recorder implemented in the emulator to record system call sequences
of training applications for 3 minutes, as suggested by [14], and then use the SBD
trainer to acquire the malicious behaviors set. Finally, the BBC obtains the type

vectors from behaviors of training malware.

Detection
Figure 8 also illustrates the experiment environment of detection with the same

four programs. There are three involved databases including the permission
17

probability database, the malicious behavior set database, and the type

database.

Host1 (Ubuntu 8.04)

Emulator (Android 2.1)

vector

1. Parsing Applications 3. Installing System Call
(APK files) Recorder
4. Storing System Call Sequences
- Database -
— 1 I
Permissions System Call Malicious
Probability Sequences Behaviors Set L LT
——) e ——
2. F’:‘;toring el 5. Training 6. Storing 7. St:)_lt'ln.g BESl::—HS
arsing Results TrainingResults of Training Types
PBD SBD BBC
> Trainer Detector —> Trainer Detector Trainer Classifier
A
Host2 (Windows 7)
Malware (APK files)
(@) Training
Host1 (Ubuntu 8.04)
3. Installing Suspicigus applications Emulator (Android 2.1)
: lParsing | _ Applications SystemCall || | _4.Detecting _ _ _ _
Pl (APK files) Recorder 1
1! |
! I
(. N 1
| : — Database e :
1 - === -
1! |
! Permissions System Call Malicious 1
[Probability Sequences Behaviors Set U A G sete |
! . 1 — — !
I 1
: I 2. Loading ") : : . |
D Permissions I 5. loading | I 7. Loading I
Pl Probability = Subsequences | L _Tips\ffctors |
| 1 } 1 1
1! PBD : SBD I BBC | :
L S v — " — ¥ 1
[1 8.Type
! Trainer Detector Trainer Detector Trainer Classifier = |+ — — =>
I 1
o Al Al A |
¥ LI
I | Host2(Windows?) 1| : ! + ----------- r==-=1
[. E e - — -
| 6. Malware

(b) Detection

Figure 8. Experiment environment

18

In order to judge whether an inspected application is benign or suspicious, we
parse permissions of the inspected application first and then load previously evaluated
permission probabilities for the detector of PBD. If PBD alerts, the inspected
application is installed to the emulator to further record system call sequences also for
3 minutes by the system call recorder. The SBD will alert if the system call sequences
of the inspected application matches one of available malicious behaviors. We
classify the inspected application detected by SBD into a known type or a new type

based on the type vector.

Samples

To conduct the experiments, we prepare 1198 sample applications. Table 3
shows the 1198 applications composed-of 933 benign applications and 265 malware.
We use 863 applications (700 benign-applications and 163 malware) for training and
335 applications (233 benign-applications and 102 malware) for detection. Table 4
shows that we adopt the malware types for-known types and new types.

The benign applications are collected from third-party markets and malware is
collected from zhou et al. [19] which uses manual or automated crawling from a variety
of Android Markets. We utilize several anti-virus tools [20] to ensure the benign
applications are virus-free.

Table 3. Number of training samples and detecting samples

Category | Benign Samples | Malicious Samples
Training 700 163
Detection 233 102

Table 4. List of malware types

Category Malware Type

Adrd, AnserverBot, Asroot, BaseBridge, Bgserv, Geimini,
Known Type | GingerMaster, GoneSixty, jSMSHider, Kmin, Lightdd,
Plankton, RogueSPPush, SndApps, YZHC, zHash, Zsone

New Type DroidKungFu, GGTracker, GoldDream, PJAPPS.G, Smspacem

19

5.2 Experimental Results

We discuss the performance numbers from seven issues: impact on permissions,
impact of the value N for N-gram on system call sequences, impact of the number of
malicious behaviors for LCS on system call sequences, detection performance vs.
time consumption, effectiveness on the order of applied detection phases,
performance comparison for one-phase and two-phase detectors, and evaluation for

type vector based classification.

Impact on Permissions

We first evaluate the PBD. First we made preliminary statistics on the number of
permissions appearance in benign applications and malware. Figure 9(a) and 9(b)
show the distribution of permissions for benign and malicious applications,
respectively. We can find that the popular permissions requested by benign and
malicious applications are different. In Figure 9' (a), we also observe that some
permissions such as SEND SMS, READ SMS, READ_CONTACTS,
RECEIVE_SMS, WRITE_SMS, and RECEIVE_BOOT_COMPLETED has much
higher frequency being requested by malware than benign applications. Figure 10(a)
and 10(b) show the permissions requested by benign applications and malware,
respectively.

We calculate the probabilities of 139 permissions by the Bayes theorem. To
judge the inspected application, we calculate the product of permission probabilities.
If the product is in the predefined ranges, the application is judged as suspicious.
Figure 11 shows the accuracy of different thresholds. There are more benign
applications and malware filtered out if the threshold is increased. Since we use this
phase to reduce the number of applications, the upper bound of 0.9 and the lower
bound of 0.1 would be a good choice based on our experiments.

20

Impact of the value N for N-gram on System Call Sequences
We evaluate SBD with the N-gram and the LCS algorithm in this experiment.

The length of system call sequences means how many system calls every system call

B Malware = Benign

INTERNET |
READ_PHONE_STATE
ACCESS_NETWORK_STATE
SEND_SMS

[HEAD_SMS]
WRITE_EXTERNAL_STORAGE
READ_CONTACT
RECEIVE_SMS
RECEIVE_BOOT_COMPLETED
WRITE_SMS
ACCESS_COARSE_LOCATION
WRITE_SETTINGS
ACCESS_WIFI_STATE
CALL_PHONE
READ_HISTORY_BOOKMARKS
ACCESS_FINE_LOCATION
WRITE_APN_SETTINGS
RESTART_PACKAGES

VIBRATE
MOUNT_UNMOUNT_FILESYSTEMS

Sd%

Name of permissions

0% 20% 40% 60% 80% 100%
Frequency of permissions

(@) The top 20 of requested permissions by malware

™ Benign ® Malware

INTERNET |

ACCESS NETWORK_STATE
WRITE_EXTERNAL_STORAGE
READ_PHONE_STATE
VIBRATE
ACCESS_FINE_LOCATION
ACCESS_COARSE_LOCATION
WAKE_LOCK
ACCESS_WIFI_STATE
READ_CONTACTS
CALL_PHONE
RECEIVE_BOOT_COMPLETED
GET_TASKS
WRITE_SETTINGS

CAMERA

SET_WALLPAPER
RECORD_AUDIO
WRITE_CONTACTS
SEND_SMS

GET_ACCOUNTS

69%

94%

Name of permissions

0% 20% 40% 60% 80% 100%
Frequency of permissions

(b) The top 20 of requested permissions by benign applications

Figure 9. Distribution of the permissions requested by benign and malicious applications

21

sequence contains. For LCS, the length of system call sub-sequences is so dynamic
that we do not have to predefine the length. However, the length of system call

sequences for N-gram can be configured so we vary the value N to see its effectiveness.

[AudicalMasidest sl |
1 <2xml versior

="1 enc ng="utf-8"7>

<manifest andro v] de="1" android:versionName="1.0" android:installlocation="auto"
3 @ xmlns:android="http://schemas.android.com/apk/res/android">
4 <uses-sdk android:minSdkl ion="7" />
————————————

"android.permission.INTERNET" />
"android.permission.READ PHONE STATE" />
"android.permission.ACCESS NETWORK STATE" />
@string/app name" android:icon=" eficen" an
theme="@android: style,"ThEme .NoTitleBar" android: '_—.].\».J.:"@s':.r:i.ng,"a'E

E <uses-permission an
<uses-permission and
7 <uses-permission an
G| <application android
activity androi
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android "android.intent.category.LAUNCHER" />
13 </intent-filter>
4 </activity>
15 <activity android:the

oid:na

d:ina

1="Favorites

'="@android:style/Theme.NoTitleBar" anclr:

¥ android:theme="@android: st.yle,"The .NoTitleBar" android:label="USA Newsp

7 androi "@android:style/Theme.Translucent .NoTitleBar" android:name

18 androi me="@android:style/Theme.NoTitleBar" android: 1="Favoritos
theme="@android:style/Theme.NoTitleBar.Fullscreen" id:nar

19 <activity android:

(&) The requested permissions by benign applications

1 </recelver>

17 & <receiver andre
3 B <intent-filter:>

19 <action andr

I:name="com.xxx.yyy.MyAlarmReceiver">

id:name="com.lz .myservicestart" />

</receiver>

22 <service android:name="com.XXX.yyy.MyService" android:enablecd="true" />
| </application>
24 <uses-sdk android:iminSdkVersion="3" />

—
"android.permission.RECEIVE_BOOT COMPLETED"
android.permission. INTERNET" />
=="android.permission.ACCESS NETWORK_ STATE" />
"android.permission.READ PHONE_ STATE" />
liname="android.permission.SEND SMS" />
.permission.RECEIVE_SMS" />

3 <uses-permission a />
<uses-permission anc
<uses-permissiocn an
<uses-permission a
29 <uses-permission andr
1] <uses-permissiocn an

31 <uses-permission a .permission.READ SMS" />
32 <uses-permission .permission.WRITE SMS" />
33 </manifest>

(b) The requested permissions by malware

Figure 10. The permissions requested by benign applications and malware

——FN =[P
100% 5355
80% \
o 60%
k)
=
g
& 10%
24%
13% 22‘;___..-‘
20%
L 12% 12% 12% 11% 10% 9%
o 1% 1% 1% 1% 2% BT 2%
0% & T : : s : i T 1
1 0.9 0.8 0.7 0.6 05 0.4 0.3 0.2 0.1
Threshold

Figure 11. Performance for PBD

22

The value N for N-gram means the unit length of system call sequence retrieved from
all system call sequences. Different lengths could lead to different performance. A
small N would filter out malicious system call sequences. If a system provides only
200 different system calls, a value N of two would have only 19900 combinations of
sequences and therefore it can be easily filtered out by a relatively large number of
benign system call sequences. In contrast, a large N would preserve too many benign
behaviors within a malicious system sequence. Consequently, it is important to
choose a good value for N.

Figure 12 shows the detection performance with various N. We divide Figure 12
into three areas by N. In the first area (N ranges from 2 to 4), the FN curve is
descending but the FP curve is ascending. In.the second area (N ranges from 5 to 15),
the FN curve reaches 0% and the FP curve is kept smooth. In the third area (N ranges
from 20 to 150), the FP curve.is descending but the FN-curve is ascending.

The higher FN rate in the first area is-because N is so small that significant
system call sequences are filtered-out.-In contrast, the higher FN rates in the third area
are because N is too large so that the system call sequences are mixed with benign
system call sequence. If we want a lower FN rate, a good value of N would be in the
second area. Based on the experiment, we choose a value of 15 for N. Although we

get a higher FP rate when N is 15, we can reduce the FP rate with the help of PBO.

Impact of the number of malicious behaviors for LCS on System Call Sequences
Figure 13 presents the percentage of samples versus the number of malicious
behaviors. We can observe that some malicious behaviors are also performed by
benign applications and there are less FPs if the number of malicious behaviors gets
increasing. If LCS-based SBD works with PBD, the number of malicious behaviors
with 1 would be a good choice. If LCS-based SBD works alone, the number of

23

malicious behaviors with 2 would be much suitable.

Percentage

g

Percentage of Samples

g

~—FN —a—FP

86%

42%
0 35% &

329 33%
28% 359 28% 3% 37
27% g 33% 3% 345
22% 300, 019 59, 219 21%
56 o 20%21% 0%
27%27%28% __ ", 18%18% 1, 18% 189 19%19% g TP
B ol

23% 10% 145
9% g3 9% w%

7% 206 % 4% 4z 9%
1% 0% 1%

%12%
12% 1095 11%11% 11%11% 11% 1 5o, 10% 9% 9% 10% 9% g3 o, ?%

T T T T T T T T T T T L T T L T T L T T LI — L

2 3 4 5 6 7 & 5 1015 20 25 30 35 40 45 50 55 60 65 70 75 80 85 80 95 100 105 110 115 120 125 130 135 140 145 150
N-gram

Figure 12. Detection performances for system call sequences with various N

1.0% 1.0% 1.0%

Number of Malicious Behaviors

—+—Benign ——Malware

Figure 13. Distribution for the number of malicious behaviors

Detection Performance vs. Time Consumption

Malware detection mechanisms can be categorized into static analysis or

dynamic analysis techniques. Static analysis is simple and efficient but dynamic

24

analysis is complex and time-consuming. In our approach, PBD is static and SBD is
dynamic. Here we discuss the tradeoff between accuracy and time requirement. All
the experiments are conducted with a machine equipped with an Intel Core i3 3.1GHz
CPU and 16GB of RAM running on a 64-bit Windows 7 operating system. The
summary of the experiment results is shown in Table 5.

We first compare accuracy and time for LCS-based and N-gram-based SBD.
Although it requires more time, LCS-based detector gets a better accuracy. We also
compare accuracy and time between PBD and LCS-based SBD. Although PBD runs
faster, it gets a poor accuracy.

Table 5. Detection performance vs. time consumption

. Time Consumption
Category | Algorithm | FN | FP | Accuracy (sec/application)
Bayes 3 0 4
PBD Probability 2% | 24% 87% 2.57
SBD LCS 3% [-14% | 91.5% 601.38
N-gram 0% | 35% | 82.5% 600.87

Effectiveness on the Order of Applied Detection Phases

We also consider the order of applying different detection phases, i.e. PBD and
SBD. The measured detection time and detection performance is shown in Table 6.

For the time consumption, if the PBD is applied first, it takes 599 seconds and
262 seconds to analyze permissions for all benign applications and malware, and then
the LCS-based SBD spends 32,228 seconds and 6,747 seconds to analyze system call
sequences for the remaining 23% of benign applications and 11% of malware. In
contrast, if we swap the order, the LCS-based SBD takes 140,122 seconds and 61,341
seconds to analyze system call sequences for all benign applications and malware, and
then the PBD spends 84 seconds and 8 seconds to analyze permissions for the
remaining 14% of benign applications and 3% of malware. If we want a lower FNR

and a lower FPR, running the PBD first would be a better choice as PBD consumes

25

much less time than SBD. Based on the experiments, we choose PBD as the first

phase detector and SBD as the second phase detector.

Table 6. Time consumption, FNR, and FPR

Strategy Procedure Time Consumptions Fslt\lR FSFR
1" Phase | 2" Phase | 1Phase | 2™ Phase | Total | for1” Phase | for 1” Phase
PBD — SBD Benign 100% 23% 599s 32,228s 32,827s - 1%
Malware 100% 11% 262s 6,747s 7,009s 2% -
SBD — PBD Benign 100% 14% 140,122s 84s 140,206s - 14%
Malware 100% 3% 61,341s 8s 61,349s 3% -

Performance Comparison for One-phase and Two-phase Detectors

From the above experiment, we know that PBD is able to filter out 76% of

benign applications with the lower bound of 0.1 and filter out 87% of malware with

the upper bound of 0.9 and LCS-based SBD has a better accuracy than PBD. Figure

14 compares the accuracy of one=phase detectors and two-phase detectors (PBD first

and then SBD). The two-phase detectors have a lower FPR than one-phase detectors.

We can see that although one-phase detectors could have poor performance, the

combined detectors always have a good performance. This also shows that PBD and

SBD complement each other.

detectors.

100%

80%

60%

Percentage

40%

20%

0%

3%

2% 2%

N

3%

0%

2 PBD+SBD(LCS)

FN

= PBD+SBD(N-gram)

=PBD = SBD(LCS)

FP

SBD(N-gram)

Figure 14. Accuracy comparison for one-phase and two-phase detectors

Now we examine the reasons which cause false negatives for two-phase

26

In PBD, we filtered out 2% of malware because some malicious

applications request only a few non-critical permissions. In SBD, we missed 1% of
malware because some malicious behaviors would be triggered only after we agree
the update option. We also discuss the reasons that cause false positives for two-phase
detectors. Since most Android malware are repackaged applications, the recorded
system call sequences are mixed with both benign and malicious behaviors. It may
cause false positives if we do not completely filter out benign behaviors. In addition,
the noise from Dalvik VM that runs the applications on Android devices may incur
both false positives and false negatives. This is because the system call sequences
originated from Dalvik VM itself are recorded as well and it is not able to tell the real

origin of system calls.

Evaluation for Type Vector Based Classification

Table 7 shows the details of type vectors. For system call sequences, we get 149
system call sequence vectors to denote 17 types, and the length of system call
sequence vectors is 1460. For permissions, we get 68 permission vectors to denote 17
types, and the length of permission vectors is 139. If we mix system call sequences
and permissions, we get 156 mix vectors to denote 17 types, and the length of mix

vectors is 1599.
Table 7. The detail of type vectors

Category Number of Number of Length of
Types Type Vectors | Type Vectors
System Call 149 1460
Sequence Vectors 17
Permission Vectors 68 139
Mix Vectors 156 1599

Finally, we evaluate the performance of BBC which recognizes the type (known
or new) of a detected malware. We classify a detected malware based on permissions,
system call sequences, or mix. To show that type vector is good at classifying type of

malware, we attempt to classify all identified malicious applications into a malware

27

type. We use the PBD detector followed by the LCS-based SBD detector. The
classification result for known types using LCS-based type vectors, permission-based
type vectors, and mix-based type vectors is shown in Table 8. We show that 93%,
99%, and 96% of malicious applications can be classified into a correct type based on
LCS-based type vectors, permissions-based type vectors, and mix-based type vectors,

respectively. It shows that permission-based type vectors can be a better choice than

LCS-based type vectors or mix vectors.

Table 8. Classification results for known types of malware

Malware Type Category Number of Malware | Classification Result | Percentage
System Call 99 Correct 93%
Sequence Vectors Incorrect 7%
. Correct 99%
Known Type Permission Vectors 99 Incorrect 1%
. Correct 96%
Mix Vectors 99 Incorrect 1%

We also attempt to classify known and new types of malware with LCS-based
type vectors, permission-based type vectors, and ‘mix-based type vectors. To show
that type vectors can be used to.identify new types of malware, we prepare both
known types and new types of malware, as shown in Table 4. We use a threshold of
0.5 for cosine similarities with LCS-based type vectors, a threshold of 0.8 for cosine
similarities with permission-based type vectors, and a threshold of 0.65 for cosine
similarities with mix-based type vectors. Table 9 shows the classification results.
With LCS-based type vectors, although the correct classification rate is decreased by
10% for known types, more than 81% of new type of malware can be classified
correctly. It is worth noting that with permission-based type vectors, the correct
classification rate is only decreased by 1% for known types and the correct
classification rate is more than 98%. With mix-based type vectors, more than 99% of
new type of malware can be classified correctly but the correct classification rate is
decreased by 3% for known types. We conclude that permission-based type vector

28

classifier performs better on classifying malware types.

Table 9. Classification results for known and new types of malware

Category Malware Type | Number of Malware | Classification Result | Percentage
Known Tvpe 99 Correct 83%
System Call P Incorrect 17%
Sequence Vectors Correct 81%
New Type 42 Incorrect 19%
0
Known Type 99 Correct 98%
. Incorrect 2%
Permission Vectors 0
New Type 42 Correct 98%
Incorrect 2%
0
Known Type 99 Correct 93%
. Incorrect 7%
Mix Vectors
New Tvpe 42 Correct 99%
P Incorrect 1%

29

Chapter 6 Conclusions and Future Works

To achieve high detection performance and accuracy, we propose a three-phase
behavior-based approach, where the first two phases act as detection mechanisms and
the last phase acts as a classification mechanism. We observe application behaviors
from two aspects, i.e., permissions and system call sequences. We consider time
consumption, false negative rate, and false positive rate to determine the order of the
two detection phases. We also evaluate the accuracy of malware type classification.

We adopt various techniques in the design of the proposed detection and
classification phases. We use the Bayes theorem to evaluate permission probabilities
of being malicious; we use the N-gram and the LCS algorithm to define malicious
behaviors from recorded system call sequences. Finally, with LCS-based and
permission-based type vectors, we adopt cosine similarity to classify malware into
known and new types.

To evaluate effectiveness ‘and. efficiency of our approach, we conduct several
experiments. The required time for processing a sample with permission based and
system call sequence based detector is 2.57 seconds and approximately 600 seconds,
respectively. It achieves a good performance of more than 97% true positive rates and
less than 3% false positive rates. For malware type classification, with
permission-based type vectors, more than 98% of detected malicious applications can
be correctly classified into both known and new types.

Although the proposed solution already performs well in several aspects, we
think it could be further improved by considering the following information. For
system call sequences, we did not consider the parameters of system calls. In addition,
currently we only trigger three system events including system rebooting, SMS

receiving, and phone calls. More system events could be considered. Furthermore, we

30

did not interpret the malicious behaviors from system call sequences. If exact
malicious behaviors can be interpreted, we believe it could help to better classify the

type of malware.

31

References

[1] Android. [online], available from World Wide Web;

http://www.android.com/

[2] Android (operating system). [online], available from World Wide Web;
http://developer.android.com/about/index.html

[3] Trendmicro. [online], available from World Wide Web;

http://tw.trendmicro.com

[4] Kaspersky. [online], available from World Wide Web;

http://www.kaspersky.com
[5] Lookout. [online], available from World Wide Web;

https://www.lookout.com/
[6] Bouncer. [online], available from World Wide Web;

http://googlemobile.blogspot.tw/2012/02/android-and-security.html

[7] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. “Android Permissions Demystified,”
Proceedings of the 18th ACM Conference-on Computer and Communications Securit, Chicago,
Illinois, USA, pp. 627-638, October, 2011.

[8] J. Ryan, W. Zhaohui, G. Corey,-and.S. Angelos, “Analysis of-Android Applications' Permissions,”
Proceedings of the 6th IEEE-International” Conference on: Software Security and Reliability
Companion (SERE-C), pp.45-46,June, 2012.

[9] B. Sanz, I. Santos, P. Galan-Garcia; C. Laorden, X. Ugarte-Pedrero, P.G. Bringas, and G. Alvarez,
“PUMA: Permission usage to detect malware in android,” Proceedings of the 5th International
Conference on Computational Intelligence in Security for Information Systems, Ostrava (Czech
Republic), pp. 5-7, September, 2012.

[10] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “ Hey, You, Get off of My Market: Detecting Malicious
Apps in Official and Alternative Android Markets,” Proceedings of the 19th Annual Network and
Distributed System Security Symposium, San Diego, CA, February 2012

[11] T. Blasing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak, “An android application
sandbox system for suspicious software detection,” Proceedings of the 5th International
Conference on Malicious and Unwanted Software, Nancy, France, pp. 55-62, 2010.

[12] I. Burguera, U. Zurutuza, and N. T. Simin, “Crowdroid: Behavior-based malware detection system
for Android,” Proceedings of the 1% ACM workshop on Security and privacy in smartphones and
mobile devices, Chicago, IL, USA, pp. 15-25, October 2011.

[13] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis for android malware
detection,” Proceedings of the 7" International Conference on Computational Intelligence and
Security, Sanya, Hainan, China, pp. 1011-1015, December 2011.

[14] Y. D. Lin, Y. C. Lai, C. H. Chen, and H. C. Tsai, “ldentifying Android Malicious Repackaged

32

http://tw.trendmicro.com/
http://www.kaspersky.com/
https://www.lookout.com/
http://googlemobile.blogspot.tw/2012/02/android-and-security.html

Applications by Thread-grained System Call Sequences,” Computers & Security, in revision.

[15] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone application certification,”
Proceedings of the 16th ACM conference on Computer and communications security, Chicago,
Illinois, USA, pp. 235-245, November 2009.

[16] C. Manning, P. Raghavan, and H. Schutze. “Introduction to Information Retrieval,” Cambridge
Univ Press, 2008.

[17] apktool. [online], available from World Wide Web;
http://code.google.com/p/android-apktool/

[18] strace. [online], available from World Wide Web;

http://sourceforge.net/projects/strace

[19] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization and evolution,”
Proceedings of the 33rd IEEE Symposium on Security and Privacy, Oakland, CA, U.S.A, pp.
95-109, May 2012

[20] VirusTotal. [online], available from World Wide Web;

http://www.virustotal.com/

33

http://code.google.com/p/android-apktool/
http://sourceforge.net/projects/strace
http://www/

