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以共同行為為基礎之三階式 Android 惡意程式偵測與分類 

 

學生: 張育妮                            指導教授: 林盈達 

國立交通大學資訊科學與工程研究所 

 

摘要 

Android 是目前行動裝置上最受歡迎的作業系統之一。其普及性也使得它常

常成為攻擊者攻擊的目標。為了偵測和分類惡意程式，我們提出一個高偵測效能

和高準確率之三階段行為分析法，前兩階段用於偵測惡意程式，最後階段用於分

類惡意程式。較快的第一階段中，我們利用應用程式要求的權限與貝氏定理快速

濾掉應用程式，以減少到較慢的第二階段分析的樣本數量。第二階段中，我們利

用最長共同子字串和 N元產生的系統呼叫序列偵測惡意程式。最後，我們利用行

為或權限向量的餘弦相似度將惡意程式分類成已知類型或未知類型。本文顯示在

偵測率方面，兩階段比一階段更準確，若第二階採用最長共同子字串產生系統呼

叫序列，其偵測率與誤判率分別為 97%和 3%；若採用權限向量分類，我們能正確

辨識 98%已知類型的惡意程式或新類型的惡意程式。 

 

關鍵字: Android, 惡意程式, 行為分析, 權限, 系統呼叫, 貝氏定理, 最長共同

子字串, N 元, 餘弦相似度  
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Three-phase Detection and Classification for Android Malware 

Based on Common Behaviors 

 

Student: Yu-Ni Chang                   Advisor: Dr. Ying-Dar Lin 

Department of Computer and Information Science 

National Chiao Tung University 

 

Abstract 

Android is one of the most popular operating systems adopted in mobile devices. 

The popularity also turns it an attractive target for attackers. To detect and classify 

malicious Android applications, we propose an efficient and accurate behavior-based 

solution with three phases. The first two phases detects malicious applications and the 

last phase classifies the detected malware. The “faster” first phase quickly filters out 

applications with their requested permissions judged by the Bayes model and 

therefore reduces the number of samples passed to the “slower” second phase which 

detects malicious applications with their system call sequences matched by the longest 

common substring (LCS) or N-gram algorithm. Finally, we classify a malware into 

known or unknown type based on cosine similarity of behavior or permission vectors. 

Our experiments show that the two-phase detection approach works more accurately 

than a single phase approach. It has a TP rate and a FP rate of 97% and 3%, 

respectively, with LCS in the second phase. More than 98% of samples can be 

classified correctly into known or new types based on permission vectors. 

 

Keywords: Android, malware, behavior analysis, permissions, system call, Bayes, 

longest common subsequence, N-gram, cosine similarity 
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Chapter 1 Introduction 

Mobile devices were used solely for making phone calls and handling short 

messages in the past. However, the rapid growth on computing powers and wireless 

bandwidth turns mobile devices universal devices in digital life. Activities such as 

watching videos, playing games, checking e-mails, and online shopping now can be 

done anywhere and anytime with an Internet-connected mobile device. As a result, 

more users migrate from PCs to mobile devices and the number of mobile devices 

hence grows exponentially. 

Due to its openness, Android [1] is one of the most popular operating systems 

adopted by modern mobile devices. Statistics collected in 2012 [2] show that there has 

been more than 500 million devices running the Android operating system. The 

popularity of Android also makes it an attractive target for attackers. From the 

perspective of attackers, a compromised mobile device not only can be used for 

launching traditional Internet attacks, but is also capable of conducting monetary 

attacks such as collecting sensitive personal data, sending short messages, or making 

phone calls. Consequently, solving security issues on mobile devices becomes 

important and emergent. 

Mobile Application Security 

Mobile application security issues are much more critical than those on 

traditional PCs. Traditional PC-based malware tried their best to spread themselves 

and compromise as many hosts as possible. However, in addition to the behaviors of 

PC-based malware, mobile malware also attempts to steal sensitive data and conducts 

monetary attacks. It could read the location of a user via the built-in GPS receiver, 

inspect short messages, or steal contact lists. Furthermore, it is able to send short 
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message, making phone calls, or relaying phone calls to earn economic benefits. 

Compared to traditional PCs, mobile devices could be much more attractive to 

attackers. 

We classify solutions to mobile application security issues into two categories, 

i.e., the client solutions and the server solutions. Client solutions provide hints and 

software to prevent users from being compromised by attackers. For example, the list 

of permission requirements and the anti-virus software [3, 4, 5] are client solutions. In 

contrast, server solutions are deployed on the server. Server solution can be used to 

check each application before an application is published online or even if an 

application is already online. For example, an application is available on the Apple 

App Store if and only if it has passed security checks done by that market. Similarly, 

Google has its Bouncer [6] service to search for malicious applications hidden in its 

market. 

Observations and Solutions for Mobile Malware 

A number of researches have provided observations and solutions for mobile 

malware. In general, they can be classified into external based and internal based 

solutions. A lot of external based solutions focus on the uses of Android permissions. 

Statistics provided by the Stowaway project [7] showed that one-third out of 940 

applications were over-privileged. Ryan et al. [8] also showed that most developers 

over-requested permissions that caused security threats. PUMA [9] used 

machine-learning techniques to detect malware based on permissions. Although it has 

a high detection rate, its false positive rate is high as well. Zhou et al. [10] manually 

analyzed essential permissions for 10 different malware families. Although it provides 

good understandings for the analyzed malware, it cannot scale efficiently for handling 

the explosively growing number of malware. 
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On the other hand, internal based solutions attempt to identify malicious 

behaviors by monitoring and capturing system states like registers and system calls. 

AAsandbox [11] observed suspicious applications based on system call counts. 

Crowdroid [12] classified applications into benign and malicious by system call 

clusters. Isohara et al. [13] defined signatures to detect malware by creating regular 

expressions for system call names and file paths. Lin et al. [14] detected five types of 

repackaged malware by using system call sequences. The above researches are able to 

detect or analyzed known malware. However, to our knowledge, none of them have 

been utilized to detect unknown malware. 

In this work, we propose a hybrid solution that detects malicious Android 

applications based on both external observations (the requested permissions) and 

internal observations (the system call sequences). By combining the two types of 

behaviors, the proposed solution is able to detect unknown malware in an efficient 

manner. Our detector works in two-phase. In the “faster” first phase, we use the 

permission information to quickly identify suspicious applications. In the “slower” 

second phase, we analyze whether system call sequences generated from a suspicious 

application from the first phase are malicious. Furthermore, to determine whether an 

identified malware is a known or new type, we propose to establish behavior vectors 

from trained malware samples and then determine new types based on similarity 

between an inspected malware and the behavior vector. 

The rest of this thesis is organized as follow. In Chapter 2, we give a brief survey 

of related works. In Chapter 3 and Chapter 4, we give the precise problem statement 

and describe the details of the proposed mechanism including the processing of 

permissions and system call sequences, respectively. Chapter 5 presents the 

experiment results. Finally, some concluding remarks and future work are given in 

Chapter 6.  
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Chapter 2 Background 

In this chapter, we discuss the differences between PC malware and Android 

malware. We also introduce several related works that have inspired the design of our 

proposed solution. 

2.1 Differences between PC Malware and Android Malware 

 We discuss the differences of malware between PC and Android in four aspects: 

intention, strategies to spread, activation, and Android-specific properties. 

Intention 

 In this subsection, we describe the destructive activities for both PC and Android 

malware. The intention of attackers changes from time to time. In the past, attackers 

like to show their ability to compromise a large number of computers. As a result, PC 

malware attempts to reduce the system performance and modify or delete system files. 

In general, it conducts to paralyze the system. In contrast, Android malware focuses 

on privacy and monetary attacks. Android malware attempts to steal personal 

information such as user location and even eavesdrop the phone calls by sound 

recording. In addition, it could launch monetary attacks by exploiting paid services 

such as sending short messages, making phone calls, and visiting on-line 

advertisements. 

Strategy to Spread 

 Modern attackers disseminate PC malware via Internet Web, E-mail, as well as 

peer-to-peer file sharing. A user’s computer could be infected if he or she browses a 

malicious webpage that attackers had injected malicious codes or opens an application 

downloaded from web, peer-to-peer network, or E-mail. Attackers make the use of 
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various Internet media to spread malware rapidly. In contrast, Android malware is 

spread through application markets. For example, the official Android market 

developed by Google is a digital application distribution platform that permits a user 

to download or upload applications. However, it lacks a rigorous detection mechanism 

for malicious applications. Therefore, attackers are able to exploit the weakness to 

spread malware by repackaging popular applications with malicious code to trap users. 

Similar cases also happen on third-party markets. 

Activation of Malware  

 A PC user and an Android user could be trapped into launching a malicious 

application directly. However, attackers have much more choices to activate malicious 

applications on PC. An attacker is able to request a user to run browser add-ons when 

the user visits a compromised website. Alternatively, modern PC malware also utilizes 

vulnerabilities of in-browser applications such as interpreters, virtual machines, flash 

players, and document viewers. By injecting itself into in-browser applications, a PC 

malware can be activated immediately when a vulnerable in-browser application is 

activated. 

Android-specific Properties 

 In addition to the above-mentioned differences, Android malware has some 

specific properties. On Android, a user may exploit permissions to determine whether 

an application is malicious. For instance, if phone-call permission is requested by a 

game application, the user may refuse to install that application. Another property is 

that Android malware is usually embedded into well-known or popular applications. 

There are not too many standalone malware. Finally, most Android malware is 

passively downloaded by a user instead of actively intruding into a user’s device. 
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2.2 Related Works 

Table 1 shows several existing solutions to detect Android malware. Kirin [15] 

used permission security rules to mitigate malware by voice, location, or short 

messages. They utilized a set of security rules to judge whether an application 

requests some dangerous combinations of permissions. PUMA [9] adopted 

machine-learning approaches including simple logistic, naïve Bayes, J48, and random 

tree to classify applications into benign or malicious applications based on 

permissions. The above two solutions are simple and efficient because they only 

analyzed the manifest file of an application. However, a malicious application is 

possible to evade the detection of Kirin and PUMA and consequently they have high 

false positive rates. 

Zhou et al. [10] obtained the essential permissions and behaviors by manually 

analyzing 10 different malware families. They chose the permissions to filter out 

benign applications quickly and detected remaining applications by behavioral 

footprint matching. However, it is not scalable because the solution cannot be 

automated.  

Table 1. Related works to detect malicious Android applications  

Category Solution Behaviors Training Detection Cons 

Static 

Kirin [15] Permissions Security Rules Matching High FP 

PUMA [9] Permissions Machine-learning Classification High FP 

Zhou et al. [10] 

Permissions 

Bytecode 

Structural Layout 

Essential Permissions 

Behavioral Footprint 
Matching 

Require manual 

analysis 

Dynamic 

Crowdroid [12] System Call Count Vectors Clustering 
Require a lot of 

user experience 

Isohara [13] 
System Call Name 

and Parameter 
Regular Expression Matching 

Limited types of 

malware 

Lin et al. [14] 
System Call 

Sequences 
Sequences Matching 

Can be easily 

evaded / Not 

efficient 

Mix 
The Proposed 

Solution 

Permissions 

System Call 

Sequences 

Probability 

Sequences 

Threshold 

Matching 
 

Crowdroid [12] monitored system calls invoked by an application and utilized a 
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clustering algorithm to judge whether the application is benign or malicious. However, 

it has to collect a lot of the user experiences for the same application. Otherwise, it 

could make a lot false positives. The solution only detects anomalous behaviors of 

analyzed applications. Isohara et al. [13] defined three categories of threats including 

information leaking, jail-breaking, and destructive application detection. They 

generated signatures by applying a set of regular expression rules to the name of 

system calls or file paths. A malicious activity in these three categories is then 

detected by signature matching. However, the system cannot detect the malicious 

activities other than the three categories of threats. Lin et al. [14] extracted longest 

common substrings (LCS) of system calls for malicious applications of the same type 

and discriminated malicious behaviors from benign ones based on probabilities 

derived from the Bayes model. They then detect repackaged malware with the 

obtained LCS. However, the solution is not efficient because it has to run all 

applications on emulators or real devices. In addition, the proposed Layering 

Multi-Thread Comparison mechanism provides a door for malware to evade the 

detection. 

To achieve high detection performance and accuracy, we propose a three-phase 

behavior-based solution, where the first two phases detect malicious applications and 

the last phase classifies into known or new types of malware.  
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Chapter 3 Problem Statement 

 Here we first describe the notations and then give the problem description. 

3.1 Notations  

 Table 2 defines the notations used in our approach. We collect a set of benign 

applications 𝐵𝑃 = {𝑏𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝐴𝐵} and a set of malware 𝑀𝑃 = {𝑚𝑝𝑗, 1 ≤ 𝑗 ≤

𝐴𝑀} for training. For permission based detection, we have a set P, 𝑃 = {𝑝𝑙,  1 ≤ 𝑙 ≤

𝑁}, containing all built-in Android permissions. We calculate the probability of being 

malicious for each of the N permissions and store in another set PP. For system call 

based detection, we obtain a set of benign behaviors 𝐵𝐵𝑆 =  {𝑏𝑏𝑛,  1 ≤ 𝑛 ≤ 𝑆𝐵}, a set 

of suspicious behaviors  𝑆𝐵𝑆 = {𝑠𝑏𝑜,  1 ≤ 𝑜 ≤ 𝑆𝑆} , and a set of malicious 

behaviors 𝑀𝐵𝑆 = {𝑚𝑏𝑝,  1 ≤ 𝑝 ≤ 𝑆𝑀}. For further classification, a type vector is used 

to denote what malicious behaviors a malware has. We collect type vectors of V 

trained malware samples to build a set of known type vectors 𝑇𝑉 =  {𝑡𝑣𝑞 ,  1 ≤ 𝑞 ≤

𝑉} where each 𝑡𝑣q is a bit-vector <𝑚𝑏1, 𝑚𝑏2,…, 𝑚𝑏𝑆𝑀> to indicate the existence of 

malicious behavior for sample q. The proposed solution is evaluated with a given set 

of inspected applications  𝐼𝑃 = {𝑖𝑝𝑘, 1 ≤ 𝑘 ≤ 𝐴𝐼  } , whose behaviors are denoted 

as 𝐼𝐵𝑆 = {𝑖𝑏𝑟 ,  1 ≤ 𝑟 ≤ 𝑆𝐼}. 

3.2 Problem Description 

Given a set of benign applications BP, a set of malware MP, and a set of 

applications to be inspected IP, design an approach to detect if an inspected 

application is malicious or not based on a set of permissions probability PP and a set 

of malicious behaviors MBS. MBS is obtained from BP and MP. Finally, we classify a 

detected malicious application into a known type or a new type based on type 

vectors 𝑇𝑉 defined from MP. 
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 Table 2. Definition of notations 

Categories Notations Descriptions 

Application 

𝐵𝑃 A set of 𝐴𝐵 benign applications for training 

𝑀𝑃 A set of 𝐴𝑀 malware for training 

𝐼𝑃 A set of 𝐴𝐼 applications to be inspected 

Permission 
𝑃 A set of N permissions 

𝑃𝑃 A set of N permissions’ probability of being malicious 

Behavior 

𝐵𝐵𝑆 A set of 𝑆𝐵 benign behaviors 

𝑆𝐵𝑆 A set of 𝑆𝑆 suspicious behaviors 

𝑀𝐵𝑆 A set of 𝑆𝑀 malicious behaviors 

𝐼𝐵𝑆 A set of 𝑆𝐼 inspected behaviors 

Type 𝑇𝑉 A set of V type vectors 
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Chapter 4 Three-phase Behavioral Detection and Classification 

 In this chapter, we describe the process of three-phase behavioral detection and 

classification (TPBDC) based on permissions and system call sequences. In Section 

4.1, we give an overview of permissions and system call sequences. The details of our 

two detection phases and one classification phase are introduced in Section 4.2, 

Section 4.3, and Section 4.4, respectively. We discuss implementation issues in 

Section 4.5. 

4.1 Overview of Three-phase Behavioral Detection and Classification 

 To achieve high detection performance and accuracy, we propose a three-phase 

approach. We choose to check permissions in the first phase so that the number of 

applications passed to the second phase can be reduced. To have better accuracy, we 

check the system call sequence to reduce false positive rates in the second phase. 

Figure 1 shows the overview of our three phases: the permission-based detection 

(PBD) phase, the system call-based detection (SBD) phase, and the behavior-based 

classification (BBC) phase. In the PBD phase, we extract permissions from BP, MP, 

and IP. PP is obtained from BP and MP and we then utilize PP to judge whether ipk is 

suspicious and only a suspicious application is passed to the next phase. 

In the SBD phase, we record system calls of BP and MP for training. We train a 

set of system call sequences from all the applications and then utilize the trained 

system call sequences to obtain MBS. For detection, we record system calls of ipk and 

then match with MBS to detect whether ipk is malicious. Note that only applications 

not filtered out in the previous phase are processed by this phase. In the BBC phase, 

we exploit the behaviors of malware to train TV and then utilize TV to classify ipk into 

a known type or a new type depending on whether its behaviors are in TV or not.  
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Figure 1. Overview of the proposed solution 

4.2 Permission-based Detection (PBD) Phase 

In this section, we introduce the PBD phase, which is composed of a permission 

extractor, a Bayes analyzer, and a permission comparator. 

Permission Extractor 

The permission extractor is used to retrieve built-in permissions requested by 

each application. Android has 139 built-in permissions. We extract permissions from 

BP and MP for training and then extract permissions from IP for detecting. 

Bayes Analyzer 

We evaluate the probability of being malicious for each built-in permission. 

Requested permissions are retrieved from both BP and MP and then probabilities are 

obtained using the Bayes theorem. To simplify the evaluation, we only count 

Android’s built-in permissions. The formula to evaluate the probabilities is 
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𝑃(𝑀|𝑝𝑙) =
𝑃(𝑝𝑙|𝑀)  𝑃(𝑀)

𝑃(𝑝𝑙|𝑀)  𝑃(𝑀)  𝑃(𝑝𝑙|𝐵)  𝑃(𝐵)
  , (1) 

where pl is one of 139 built-in permissions to be evaluated. P(B) denotes the ratio of 

BP while P(M) denotes the ratio for MP. P(pl|B) and P(pl|M) represent the probability 

that pl is requested by BP and MP, respectively. We then get the probability P(M|pl), 

which indicates the probability to be malicious on the condition that ipk requested 

permission pl. The permission probability set PP is obtained by using formula (1) for 

all the 139 built-in permissions. 

Permission Comparator 

We also extract the requested permissions of ipk and calculate the product of 

probabilities of all requested permissions using probabilities from PP. If the product 

is larger than the upper bound, ipk will be judged as malware. If the product is lower 

than the lower bound, ipk will be judged as benign. If the product of probabilities of 

ipk is between the upper bound and the lower bound, it is marked as a suspicious 

application and passed to the next phase. 

4.3 System Call-based Detection (SBD) Phase 

The SBD phase is composed of four components. They are system call recorder, 

system call sequence trainer, system call sequence analyzer, and system call sequence 

comparator, as shown in Figure 2. 

System Call Recorder 

The system call recorder records the system calls triggered by applications. First, 

we install bpi, mpj, or ipk into the Android 2.1 emulator and launch the application. 

After it has been launched, we emulate several system events such as rebooting, 

receiving short messages, and answering phone calls. We record system calls of the 

application for a period of time. 
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  Figure 2. Procedure flowchart of SBD 

System Call Sequence Trainer 

The goal of the system call sequence trainer is to generate BBS, SBS, and IBS 

using the N-gram and the LCS algorithm. We consolidate successive system calls 

before computing system call sequences because a system call could be issued 

repeatedly in loops. For instance, a raw system calls sequence of “open, read, read, 

read, close” would become “open, read, close”. 

After consolidating successive system calls, BBS, SBS, and IBS are generated by 

either the N-gram or the LCS algorithm. The purpose of system call sequence trainer 

is to find out common sub-sequences. Since a common malicious behavior is the great 

resemblance of malware, the system call sequences recorded from the malware should 

share the system call subsequences considerably. The system call sequences for BP 

are stored in BBS, the common system call subsequences for MP are stored in SBS, 

and the system call sequences for IP are stored in IBS. 

System Call Sequence Analyzer 

 The system call sequence analyzer finds out malicious system call sequences. 

We obtain MBS from SBS and BBS in this module. We filter out a system call 

sequence if it appears in both SBS and BBS. After the filtering, the malicious behavior 
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set (MBS), which contains only system call sequences appeared in MP, is obtained. 

System Call Sequence Comparator 

 To inspect ipk, the system call recorder and the system call sequence trainer are 

used to record system calls and generate system call sub-sequences. Figure 3 shows 

how the system call sequence comparator compares the system call sequences 𝑖𝑏𝑟 of 

ipk against all malicious behaviors listed in MBS. The ipk is classified as malicious if a 

malicious behavior is matched. 

  

  Figure 3. Procedure of system call sequence comparator 

4.4 Behavior-based Classification (BBC) Phase 

If a malicious application is detected, we propose another technique to classify 

the detected malware into a known type or a new type of malware. In this subsection, 

we explain the detailed design of BBC, which is composed of a type vector extractor 

and a type classifier. 

Type Vector Extractor 

We utilize a bit vector to denote what behaviors malware has. Suppose all 

identified behaviors are indexed from 1 to 500 and malware has the first, the third, 

and the 499
th

 behaviors. The corresponding bit vector tv1 would be {1, 0, 1, 0, …, 1, 

0}. We build bit vectors for MP and use the bit vectors to detect whether ipk is a 

known type or a new type. All the obtained bit vectors for MP are stored in a set TV. 
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Type Classifier 

Figure 4 shows the procedure of the type classifier. We construct a bit vector ipv 

for ipk and calculate the similarity between ipv and all bit vectors of MP by cosine 

similarity [16]. The cosine similarity is obtained by 

∑       𝑖𝑝  
 𝑀
   

√∑ (   )
  𝑀

   
   √∑ (𝑖𝑝  )

  𝑀
   

 ,   (2) 

where tv is one of available MP bit vectors in TV and ipv is the bit vector of ipk. We 

define a threshold as the lower bound for the cosine similarity to classify ipv into a 

known type or a new type. If the similarity is greater than the threshold, we classify 

ipv into the same type of the bit victor having the maximum cosine similarity value. 

  

Figure 4. Procedure of type classifier 

4.5 Implementation 

 We have developed tools to automatically retrieve permissions and system call 

sequences of Android applications. 

Permission Analyzer 

Figure 5 shows the procedure of the permission analyzer. Because an APK file is 

basically a ZIP archive file with an APK file extension, we decompress an application 
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to retrieve permissions of the application by apktool [17]. After decompressing, we 

get assets, resources, application’s source codes (via disassemble), and the manifest 

file. To retrieve permissions, we only parse the manifest file because a developer 

declares requested permissions in this file.  

 

Figure 5. Procedure of permissions analyzer 

System Call Recorder 

 Figure 6 shows the procedure of the system call recorder. In order to record the 

system calls of an application, we need to modify the system ramdisk.img and install 

strace [18] into the emulator. First, we decompress the ramdisk.img, install the strace 

tool into the system, and modify the init.rc file to launch the strace tool. The strace 

tool is placed in the /data directory. For the init.rc file, we insert the strace command 

“/data/strace –F –ff –tt –o /data/tracefile/zygote” into this file as shown in Figure 7. 

With the above modifications, strace is launched to record system calls right after the 

emulator boots. The output of the strace tool is placed in /data/tracefile/zygote file. 

 

Figure 6. Procedure of system call recorder 

 

Figure 7. Detailed modification of the init.rc file 
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Chapter 5 Evaluation 

 To evaluate the effectiveness of the proposed solution, we conduct experiments 

with diverse types of repackaged applications. We describe the experiment 

environment and the number of trained and inspected applications in Section 5.1. We 

then present the effectiveness in detection and classification based on permissions and 

system call sequences in Section 5.2. 

5.1 Experiment Environment 

 We introduce the experiment environment from two aspects: The training and the 

detection and then summarize the samples used in the experiments. 

Training 

Figure 8 illustrates the experiment environment of training which includes four 

programs, i.e., the system call recorder, the trainer of PBD, the trainer of SBD, and 

the trainer of BBC. There are four databases involved, including the permission 

probability database, the system call sequence database, the malicious behaviors set 

database, and the type vector database. 

To obtain the permissions probability, we parse all benign applications and 

malware first and calculate the permission probabilities using formula (1). We utilize 

the system call recorder implemented in the emulator to record system call sequences 

of training applications for 3 minutes, as suggested by [14], and then use the SBD 

trainer to acquire the malicious behaviors set. Finally, the BBC obtains the type 

vectors from behaviors of training malware. 

Detection 

 Figure 8 also illustrates the experiment environment of detection with the same 

four programs. There are three involved databases including the permission 
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probability database, the malicious behavior set database, and the type vector 

database. 

 

Figure 8. Experiment environment 

(b) Detection 

(a) Training 
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In order to judge whether an inspected application is benign or suspicious, we 

parse permissions of the inspected application first and then load previously evaluated 

permission probabilities for the detector of PBD. If PBD alerts, the inspected 

application is installed to the emulator to further record system call sequences also for 

3 minutes by the system call recorder. The SBD will alert if the system call sequences 

of the inspected application matches one of available malicious behaviors. We 

classify the inspected application detected by SBD into a known type or a new type 

based on the type vector. 

Samples 

To conduct the experiments, we prepare 1198 sample applications. Table 3 

shows the 1198 applications composed of 933 benign applications and 265 malware. 

We use 863 applications (700 benign applications and 163 malware) for training and 

335 applications (233 benign applications and 102 malware) for detection. Table 4 

shows that we adopt the malware types for known types and new types. 

The benign applications are collected from third-party markets and malware is 

collected from Zhou et al. [19] which uses manual or automated crawling from a variety 

of Android Markets. We utilize several anti-virus tools [20] to ensure the benign 

applications are virus-free. 

Table 3. Number of training samples and detecting samples 

Category Benign Samples Malicious Samples 

Training 700 163 

Detection 233 102 

Table 4. List of malware types 

Category Malware Type 

Known Type 

Adrd, AnserverBot, Asroot, BaseBridge, Bgserv, Geimini, 

GingerMaster, GoneSixty, jSMSHider, Kmin, Lightdd, 

Plankton, RogueSPPush, SndApps, YZHC, zHash, Zsone 

New Type DroidKungFu, GGTracker, GoldDream, PJAPPS.G, Smspacem 
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5.2 Experimental Results 

We discuss the performance numbers from seven issues: impact on permissions, 

impact of the value N for N-gram on system call sequences, impact of the number of 

malicious behaviors for LCS on system call sequences, detection performance vs. 

time consumption, effectiveness on the order of applied detection phases, 

performance comparison for one-phase and two-phase detectors, and evaluation for 

type vector based classification. 

Impact on Permissions 

We first evaluate the PBD. First we made preliminary statistics on the number of 

permissions appearance in benign applications and malware. Figure 9(a) and 9(b) 

show the distribution of permissions for benign and malicious applications, 

respectively. We can find that the popular permissions requested by benign and 

malicious applications are different. In Figure 9 (a), we also observe that some 

permissions such as SEND_SMS, READ_SMS, READ_CONTACTS, 

RECEIVE_SMS, WRITE_SMS, and RECEIVE_BOOT_COMPLETED has much 

higher frequency being requested by malware than benign applications. Figure 10(a) 

and 10(b) show the permissions requested by benign applications and malware, 

respectively. 

 We calculate the probabilities of 139 permissions by the Bayes theorem. To 

judge the inspected application, we calculate the product of permission probabilities. 

If the product is in the predefined ranges, the application is judged as suspicious. 

Figure 11 shows the accuracy of different thresholds. There are more benign 

applications and malware filtered out if the threshold is increased. Since we use this 

phase to reduce the number of applications, the upper bound of 0.9 and the lower 

bound of 0.1 would be a good choice based on our experiments.  
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Impact of the value N for N-gram on System Call Sequences 

 We evaluate SBD with the N-gram and the LCS algorithm in this experiment. 

The length of system call sequences means how many system calls every system call  

Figure 9. Distribution of the permissions requested by benign and malicious applications 

(a) The top 20 of requested permissions by malware 

(b)  

(b) The top 20 of requested permissions by benign applications 
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sequence contains. For LCS, the length of system call sub-sequences is so dynamic 

that we do not have to predefine the length. However, the length of system call 

sequences for N-gram can be configured so we vary the value N to see its effectiveness. 

 

Figure 10. The permissions requested by benign applications and malware 

 

Figure 11. Performance for PBD 

 

(b) The requested permissions by malware 

 

(a) The requested permissions by benign applications 
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The value N for N-gram means the unit length of system call sequence retrieved from 

all system call sequences. Different lengths could lead to different performance. A 

small N would filter out malicious system call sequences. If a system provides only 

200 different system calls, a value N of two would have only 19900 combinations of 

sequences and therefore it can be easily filtered out by a relatively large number of 

benign system call sequences. In contrast, a large N would preserve too many benign 

behaviors within a malicious system sequence. Consequently, it is important to 

choose a good value for N. 

Figure 12 shows the detection performance with various N. We divide Figure 12 

into three areas by N. In the first area (N ranges from 2 to 4), the FN curve is 

descending but the FP curve is ascending. In the second area (N ranges from 5 to 15), 

the FN curve reaches 0% and the FP curve is kept smooth. In the third area (N ranges 

from 20 to 150), the FP curve is descending but the FN curve is ascending. 

The higher FN rate in the first area is because N is so small that significant 

system call sequences are filtered out. In contrast, the higher FN rates in the third area 

are because N is too large so that the system call sequences are mixed with benign 

system call sequence. If we want a lower FN rate, a good value of N would be in the 

second area. Based on the experiment, we choose a value of 15 for N. Although we 

get a higher FP rate when N is 15, we can reduce the FP rate with the help of PBO. 

Impact of the number of malicious behaviors for LCS on System Call Sequences 

Figure 13 presents the percentage of samples versus the number of malicious 

behaviors. We can observe that some malicious behaviors are also performed by 

benign applications and there are less FPs if the number of malicious behaviors gets 

increasing. If LCS-based SBD works with PBD, the number of malicious behaviors 

with 1 would be a good choice. If LCS-based SBD works alone, the number of 
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malicious behaviors with 2 would be much suitable. 

 

Figure 12. Detection performances for system call sequences with various N 

 

Figure 13. Distribution for the number of malicious behaviors 

Detection Performance vs. Time Consumption 

Malware detection mechanisms can be categorized into static analysis or 

dynamic analysis techniques. Static analysis is simple and efficient but dynamic 
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analysis is complex and time-consuming. In our approach, PBD is static and SBD is 

dynamic. Here we discuss the tradeoff between accuracy and time requirement. All 

the experiments are conducted with a machine equipped with an Intel Core i3 3.1GHz 

CPU and 16GB of RAM running on a 64-bit Windows 7 operating system. The 

summary of the experiment results is shown in Table 5. 

We first compare accuracy and time for LCS-based and N-gram-based SBD. 

Although it requires more time, LCS-based detector gets a better accuracy. We also 

compare accuracy and time between PBD and LCS-based SBD. Although PBD runs 

faster, it gets a poor accuracy. 

Table 5. Detection performance vs. time consumption 

Category Algorithm FN FP Accuracy 
Time Consumption 

(sec/application) 

PBD 
Bayes 

Probability 
2% 24% 87% 2.57 

SBD 
LCS 3% 14% 91.5% 601.38 

N-gram 0% 35% 82.5% 600.87 

Effectiveness on the Order of Applied Detection Phases 

 We also consider the order of applying different detection phases, i.e. PBD and 

SBD. The measured detection time and detection performance is shown in Table 6.  

For the time consumption, if the PBD is applied first, it takes 599 seconds and 

262 seconds to analyze permissions for all benign applications and malware, and then 

the LCS-based SBD spends 32,228 seconds and 6,747 seconds to analyze system call 

sequences for the remaining 23% of benign applications and 11% of malware. In 

contrast, if we swap the order, the LCS-based SBD takes 140,122 seconds and 61,341 

seconds to analyze system call sequences for all benign applications and malware, and 

then the PBD spends 84 seconds and 8 seconds to analyze permissions for the 

remaining 14% of benign applications and 3% of malware. If we want a lower FNR 

and a lower FPR, running the PBD first would be a better choice as PBD consumes 
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much less time than SBD. Based on the experiments, we choose PBD as the first 

phase detector and SBD as the second phase detector.  

Table 6. Time consumption, FNR, and FPR 

Strategy 
Procedure Time Consumptions FNR 

for 1
st
 Phase 

FPR 

for 1
st
 Phase 1

st
 Phase 2

nd
 Phase 1

st 
Phase 2

nd
 Phase Total 

PBD → SBD 
Benign 100% 23% 599s 32,228s 32,827s - 1% 

Malware 100% 11% 262s 6,747s 7,009s 2% - 

SBD → PBD 
Benign 100% 14% 140,122s 84s 140,206s - 14% 

Malware 100% 3% 61,341s 8s 61,349s 3% - 

Performance Comparison for One-phase and Two-phase Detectors 

From the above experiment, we know that PBD is able to filter out 76% of 

benign applications with the lower bound of 0.1 and filter out 87% of malware with 

the upper bound of 0.9 and LCS-based SBD has a better accuracy than PBD. Figure 

14 compares the accuracy of one-phase detectors and two-phase detectors (PBD first 

and then SBD). The two-phase detectors have a lower FPR than one-phase detectors. 

We can see that although one-phase detectors could have poor performance, the 

combined detectors always have a good performance. This also shows that PBD and 

SBD complement each other. 

 

Figure 14. Accuracy comparison for one-phase and two-phase detectors 

Now we examine the reasons which cause false negatives for two-phase 

detectors. In PBD, we filtered out 2% of malware because some malicious 
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applications request only a few non-critical permissions. In SBD, we missed 1% of 

malware because some malicious behaviors would be triggered only after we agree 

the update option. We also discuss the reasons that cause false positives for two-phase 

detectors. Since most Android malware are repackaged applications, the recorded 

system call sequences are mixed with both benign and malicious behaviors. It may 

cause false positives if we do not completely filter out benign behaviors. In addition, 

the noise from Dalvik VM that runs the applications on Android devices may incur 

both false positives and false negatives. This is because the system call sequences 

originated from Dalvik VM itself are recorded as well and it is not able to tell the real 

origin of system calls. 

Evaluation for Type Vector Based Classification 

Table 7 shows the details of type vectors. For system call sequences, we get 149 

system call sequence vectors to denote 17 types, and the length of system call 

sequence vectors is 1460. For permissions, we get 68 permission vectors to denote 17 

types, and the length of permission vectors is 139. If we mix system call sequences 

and permissions, we get 156 mix vectors to denote 17 types, and the length of mix 

vectors is 1599. 

Table 7. The detail of type vectors 

Category 
Number of 

Types 

Number of 

Type Vectors 

Length of 

Type Vectors 

System Call 

Sequence Vectors 
17 

149 1460 

Permission Vectors 68 139 

Mix Vectors 156 1599 

Finally, we evaluate the performance of BBC which recognizes the type (known 

or new) of a detected malware. We classify a detected malware based on permissions, 

system call sequences, or mix. To show that type vector is good at classifying type of 

malware, we attempt to classify all identified malicious applications into a malware 
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type. We use the PBD detector followed by the LCS-based SBD detector. The 

classification result for known types using LCS-based type vectors, permission-based 

type vectors, and mix-based type vectors is shown in Table 8. We show that 93%, 

99%, and 96% of malicious applications can be classified into a correct type based on 

LCS-based type vectors, permissions-based type vectors, and mix-based type vectors, 

respectively. It shows that permission-based type vectors can be a better choice than 

LCS-based type vectors or mix vectors. 

Table 8. Classification results for known types of malware 

Malware Type Category Number of Malware Classification Result Percentage 

Known Type 

System Call 

Sequence Vectors 
99 

Correct 93% 

Incorrect 7% 

Permission Vectors 99 
Correct 99% 

Incorrect 1% 

Mix Vectors 99 
Correct 96% 

Incorrect 4% 

We also attempt to classify known and new types of malware with LCS-based 

type vectors, permission-based type vectors, and mix-based type vectors. To show 

that type vectors can be used to identify new types of malware, we prepare both 

known types and new types of malware, as shown in Table 4. We use a threshold of 

0.5 for cosine similarities with LCS-based type vectors, a threshold of 0.8 for cosine 

similarities with permission-based type vectors, and a threshold of 0.65 for cosine 

similarities with mix-based type vectors. Table 9 shows the classification results. 

With LCS-based type vectors, although the correct classification rate is decreased by 

10% for known types, more than 81% of new type of malware can be classified 

correctly. It is worth noting that with permission-based type vectors, the correct 

classification rate is only decreased by 1% for known types and the correct 

classification rate is more than 98%. With mix-based type vectors, more than 99% of 

new type of malware can be classified correctly but the correct classification rate is 

decreased by 3% for known types. We conclude that permission-based type vector 
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classifier performs better on classifying malware types. 

Table 9. Classification results for known and new types of malware 

Category Malware Type Number of Malware Classification Result Percentage 

System Call 

Sequence Vectors 

Known Type 99 
Correct 83% 

Incorrect 17% 

New Type 42 
Correct 81% 

Incorrect 19% 

Permission Vectors 

Known Type 99 
Correct 98% 

Incorrect 2% 

New Type 42 
Correct 98% 

Incorrect 2% 

Mix Vectors 

Known Type 99 
Correct 93% 

Incorrect 7% 

New Type 42 
Correct 99% 

Incorrect 1% 
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Chapter 6 Conclusions and Future Works 

 To achieve high detection performance and accuracy, we propose a three-phase 

behavior-based approach, where the first two phases act as detection mechanisms and 

the last phase acts as a classification mechanism. We observe application behaviors 

from two aspects, i.e., permissions and system call sequences. We consider time 

consumption, false negative rate, and false positive rate to determine the order of the 

two detection phases. We also evaluate the accuracy of malware type classification. 

We adopt various techniques in the design of the proposed detection and 

classification phases. We use the Bayes theorem to evaluate permission probabilities 

of being malicious; we use the N-gram and the LCS algorithm to define malicious 

behaviors from recorded system call sequences. Finally, with LCS-based and 

permission-based type vectors, we adopt cosine similarity to classify malware into 

known and new types. 

 To evaluate effectiveness and efficiency of our approach, we conduct several 

experiments. The required time for processing a sample with permission based and 

system call sequence based detector is 2.57 seconds and approximately 600 seconds, 

respectively. It achieves a good performance of more than 97% true positive rates and 

less than 3% false positive rates. For malware type classification, with 

permission-based type vectors, more than 98% of detected malicious applications can 

be correctly classified into both known and new types. 

Although the proposed solution already performs well in several aspects, we 

think it could be further improved by considering the following information. For 

system call sequences, we did not consider the parameters of system calls. In addition, 

currently we only trigger three system events including system rebooting, SMS 

receiving, and phone calls. More system events could be considered. Furthermore, we 
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did not interpret the malicious behaviors from system call sequences. If exact 

malicious behaviors can be interpreted, we believe it could help to better classify the 

type of malware. 
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