

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

以共同行為為基礎之三階式Android惡意程式偵

測與分類

Three-phase Detection and Classification for Android Malware

Based on Common Behaviors

研 究 生：張育妮

指導教授：林盈達 教授

中 華 民 國 一 百 零 二 年 六 月

以共同行為為基礎之三階式 Android 惡意程式偵測與分類

Three-phase Detection and Classification for Android Malware based on

Common Behaviors

研 究 生：張育妮 Student：Yu-Ni Chang

指導教授：林盈達 Advisor：Dr. Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2013

Hsinchu, Taiwan

中華民國一百零二年六月

I

以共同行為為基礎之三階式 Android 惡意程式偵測與分類

學生: 張育妮 指導教授: 林盈達

國立交通大學資訊科學與工程研究所

摘要

Android 是目前行動裝置上最受歡迎的作業系統之一。其普及性也使得它常

常成為攻擊者攻擊的目標。為了偵測和分類惡意程式，我們提出一個高偵測效能

和高準確率之三階段行為分析法，前兩階段用於偵測惡意程式，最後階段用於分

類惡意程式。較快的第一階段中，我們利用應用程式要求的權限與貝氏定理快速

濾掉應用程式，以減少到較慢的第二階段分析的樣本數量。第二階段中，我們利

用最長共同子字串和 N元產生的系統呼叫序列偵測惡意程式。最後，我們利用行

為或權限向量的餘弦相似度將惡意程式分類成已知類型或未知類型。本文顯示在

偵測率方面，兩階段比一階段更準確，若第二階採用最長共同子字串產生系統呼

叫序列，其偵測率與誤判率分別為 97%和 3%；若採用權限向量分類，我們能正確

辨識 98%已知類型的惡意程式或新類型的惡意程式。

關鍵字: Android, 惡意程式, 行為分析, 權限, 系統呼叫, 貝氏定理, 最長共同

子字串, N 元, 餘弦相似度

II

Three-phase Detection and Classification for Android Malware

Based on Common Behaviors

Student: Yu-Ni Chang Advisor: Dr. Ying-Dar Lin

Department of Computer and Information Science

National Chiao Tung University

Abstract

Android is one of the most popular operating systems adopted in mobile devices.

The popularity also turns it an attractive target for attackers. To detect and classify

malicious Android applications, we propose an efficient and accurate behavior-based

solution with three phases. The first two phases detects malicious applications and the

last phase classifies the detected malware. The “faster” first phase quickly filters out

applications with their requested permissions judged by the Bayes model and

therefore reduces the number of samples passed to the “slower” second phase which

detects malicious applications with their system call sequences matched by the longest

common substring (LCS) or N-gram algorithm. Finally, we classify a malware into

known or unknown type based on cosine similarity of behavior or permission vectors.

Our experiments show that the two-phase detection approach works more accurately

than a single phase approach. It has a TP rate and a FP rate of 97% and 3%,

respectively, with LCS in the second phase. More than 98% of samples can be

classified correctly into known or new types based on permission vectors.

Keywords: Android, malware, behavior analysis, permissions, system call, Bayes,

longest common subsequence, N-gram, cosine similarity

III

致謝

 剛進入交大就讀研究所時，因為對環境感到陌生不適應，碩一時，總是有種

撐不下去的感覺。因為家人們的鼓勵，使我熬過這難過的關頭，時間久了也漸漸

適應了。

在碩士論文研究中，需要找與自己論文題目相關的研究，因為以前不曾讀過

如此大量的英文論文，所以剛開始總是很吃力，但長時間看英文論文也提升了自

己看英文的速度。從以前就自認為英文在聽力方面，比較差勁，但來到高速網路

實驗室後，因為我們實驗室有外籍生，老師們總會用英文與外籍生溝通，我也利

用此機會增進自己的英文聽力。

不論在修課期間或是論文研究期間，皆受到諸位師長、同學、朋友與家人的

協助與鼓勵，實有說不盡的感謝話語。

首先感謝林盈達教授、賴源正教授和黃俊穎教授的費心指導。在每次討論過

程中，他們總是耐心地指引做研究的嚴謹態度與撰寫論文所需的知識與技巧。當

遇到瓶頸時，總是提出有建設性的建議使我突破難關。對於感到疑惑不解的地方，

老師們總是不厭其煩地解釋或是舉出較易理解的例子，使我們更容易了解且記住。

萬分感謝 黃俊穎教授花費極大心力在我的論文上，不辭辛勞地指導與修訂論文

的撰寫方向，使我最終能夠完成此篇論文。在此感謝老師們的教誨與包容。

感謝高速網路實驗室的同學們，從你們身上我學到了許多，像是重灌、組裝、

拆解電腦、待人處事等。謝謝你們總是在我需要幫助時伸出援手，也讓我能夠在

歡樂的氣氛下，度過這兩年碩士生涯。

最後感謝我的家人，能夠在我遭遇到挫折時給予支持和鼓勵，讓我能夠適應

研究所生活並且無憂無慮的完成學業。

張育妮 謹致於

2013.06.06

IV

Contents

List of Figures ... V

List of Tables ... VI

Chapter 1. Introduction ... 1

Chapter 2. Background ... 4

2.1 Differences between PC Malware and Android Malware 4

2.2 Related Works .. 6

Chapter 3. Problem Statement .. 8

3.1 Notations .. 8

3.2 Problem Description .. 8

Chapter 4. Three-phase Behavioral Detection and Classification 10

4.1 Overview of Three-phase Behavioral Detection and Classification 10

4.2 Permission-based Detection (PBD) Phase ... 11

4.3 System Call-based Detection (SBD) Phase ... 12

4.4 Behavior-based Classification (BBC) Phase ... 14

4.5 Implementation .. 15

Chapter 5. Evaluation.. 17

5.1 Experiment Environment ... 17

5.2 Experimental Results ... 20

Chapter 6. Conclusions and Future Works ... 30

References .. 32

V

List of Figures

Figure 1. Overview of the proposed solution... 11

Figure 2. Procedure flowchart of SBD .. 13

Figure 3. Procedure of system call sequence comparator .. 14

Figure 4. Procedure of type classifier .. 15

Figure 5. Procedure of permissions analyzer ... 16

Figure 6. Procedure of system call recorder .. 16

Figure 7. Detailed modification of the init.rc file .. 16

Figure 8. Experiment environment .. 18

Figure 9. Distribution of the permissions requested by benign and malicious applications 21

Figure 10. The permissions requested by benign applications and malware 22

Figure 11. Performance for PBD ... 22

Figure 12. Detection performances for system call sequences with various N 24

Figure 13. Distribution for the number of malicious behaviors................................... 24

Figure 14. Accuracy comparison for one-phase and two-phase detectors 26

VI

List of Tables

Table 1. Related works to detect malicious Android applications 6

Table 2. Definition of notations ... 9

Table 3. Number of training samples and detecting samples 19

Table 4. List of malware types ... 19

Table 5. Detection performance vs. time consumption ... 25

Table 6. Time consumption, FNR, and FPR .. 26

Table 7. The detail of type vectors ... 27

Table 8. Classification results for known types of malware .. 28

Table 9. Classification results for known and new types of malware 29

1

Chapter 1 Introduction

Mobile devices were used solely for making phone calls and handling short

messages in the past. However, the rapid growth on computing powers and wireless

bandwidth turns mobile devices universal devices in digital life. Activities such as

watching videos, playing games, checking e-mails, and online shopping now can be

done anywhere and anytime with an Internet-connected mobile device. As a result,

more users migrate from PCs to mobile devices and the number of mobile devices

hence grows exponentially.

Due to its openness, Android [1] is one of the most popular operating systems

adopted by modern mobile devices. Statistics collected in 2012 [2] show that there has

been more than 500 million devices running the Android operating system. The

popularity of Android also makes it an attractive target for attackers. From the

perspective of attackers, a compromised mobile device not only can be used for

launching traditional Internet attacks, but is also capable of conducting monetary

attacks such as collecting sensitive personal data, sending short messages, or making

phone calls. Consequently, solving security issues on mobile devices becomes

important and emergent.

Mobile Application Security

Mobile application security issues are much more critical than those on

traditional PCs. Traditional PC-based malware tried their best to spread themselves

and compromise as many hosts as possible. However, in addition to the behaviors of

PC-based malware, mobile malware also attempts to steal sensitive data and conducts

monetary attacks. It could read the location of a user via the built-in GPS receiver,

inspect short messages, or steal contact lists. Furthermore, it is able to send short

2

message, making phone calls, or relaying phone calls to earn economic benefits.

Compared to traditional PCs, mobile devices could be much more attractive to

attackers.

We classify solutions to mobile application security issues into two categories,

i.e., the client solutions and the server solutions. Client solutions provide hints and

software to prevent users from being compromised by attackers. For example, the list

of permission requirements and the anti-virus software [3, 4, 5] are client solutions. In

contrast, server solutions are deployed on the server. Server solution can be used to

check each application before an application is published online or even if an

application is already online. For example, an application is available on the Apple

App Store if and only if it has passed security checks done by that market. Similarly,

Google has its Bouncer [6] service to search for malicious applications hidden in its

market.

Observations and Solutions for Mobile Malware

A number of researches have provided observations and solutions for mobile

malware. In general, they can be classified into external based and internal based

solutions. A lot of external based solutions focus on the uses of Android permissions.

Statistics provided by the Stowaway project [7] showed that one-third out of 940

applications were over-privileged. Ryan et al. [8] also showed that most developers

over-requested permissions that caused security threats. PUMA [9] used

machine-learning techniques to detect malware based on permissions. Although it has

a high detection rate, its false positive rate is high as well. Zhou et al. [10] manually

analyzed essential permissions for 10 different malware families. Although it provides

good understandings for the analyzed malware, it cannot scale efficiently for handling

the explosively growing number of malware.

3

On the other hand, internal based solutions attempt to identify malicious

behaviors by monitoring and capturing system states like registers and system calls.

AAsandbox [11] observed suspicious applications based on system call counts.

Crowdroid [12] classified applications into benign and malicious by system call

clusters. Isohara et al. [13] defined signatures to detect malware by creating regular

expressions for system call names and file paths. Lin et al. [14] detected five types of

repackaged malware by using system call sequences. The above researches are able to

detect or analyzed known malware. However, to our knowledge, none of them have

been utilized to detect unknown malware.

In this work, we propose a hybrid solution that detects malicious Android

applications based on both external observations (the requested permissions) and

internal observations (the system call sequences). By combining the two types of

behaviors, the proposed solution is able to detect unknown malware in an efficient

manner. Our detector works in two-phase. In the “faster” first phase, we use the

permission information to quickly identify suspicious applications. In the “slower”

second phase, we analyze whether system call sequences generated from a suspicious

application from the first phase are malicious. Furthermore, to determine whether an

identified malware is a known or new type, we propose to establish behavior vectors

from trained malware samples and then determine new types based on similarity

between an inspected malware and the behavior vector.

The rest of this thesis is organized as follow. In Chapter 2, we give a brief survey

of related works. In Chapter 3 and Chapter 4, we give the precise problem statement

and describe the details of the proposed mechanism including the processing of

permissions and system call sequences, respectively. Chapter 5 presents the

experiment results. Finally, some concluding remarks and future work are given in

Chapter 6.

4

Chapter 2 Background

In this chapter, we discuss the differences between PC malware and Android

malware. We also introduce several related works that have inspired the design of our

proposed solution.

2.1 Differences between PC Malware and Android Malware

 We discuss the differences of malware between PC and Android in four aspects:

intention, strategies to spread, activation, and Android-specific properties.

Intention

 In this subsection, we describe the destructive activities for both PC and Android

malware. The intention of attackers changes from time to time. In the past, attackers

like to show their ability to compromise a large number of computers. As a result, PC

malware attempts to reduce the system performance and modify or delete system files.

In general, it conducts to paralyze the system. In contrast, Android malware focuses

on privacy and monetary attacks. Android malware attempts to steal personal

information such as user location and even eavesdrop the phone calls by sound

recording. In addition, it could launch monetary attacks by exploiting paid services

such as sending short messages, making phone calls, and visiting on-line

advertisements.

Strategy to Spread

 Modern attackers disseminate PC malware via Internet Web, E-mail, as well as

peer-to-peer file sharing. A user’s computer could be infected if he or she browses a

malicious webpage that attackers had injected malicious codes or opens an application

downloaded from web, peer-to-peer network, or E-mail. Attackers make the use of

5

various Internet media to spread malware rapidly. In contrast, Android malware is

spread through application markets. For example, the official Android market

developed by Google is a digital application distribution platform that permits a user

to download or upload applications. However, it lacks a rigorous detection mechanism

for malicious applications. Therefore, attackers are able to exploit the weakness to

spread malware by repackaging popular applications with malicious code to trap users.

Similar cases also happen on third-party markets.

Activation of Malware

 A PC user and an Android user could be trapped into launching a malicious

application directly. However, attackers have much more choices to activate malicious

applications on PC. An attacker is able to request a user to run browser add-ons when

the user visits a compromised website. Alternatively, modern PC malware also utilizes

vulnerabilities of in-browser applications such as interpreters, virtual machines, flash

players, and document viewers. By injecting itself into in-browser applications, a PC

malware can be activated immediately when a vulnerable in-browser application is

activated.

Android-specific Properties

 In addition to the above-mentioned differences, Android malware has some

specific properties. On Android, a user may exploit permissions to determine whether

an application is malicious. For instance, if phone-call permission is requested by a

game application, the user may refuse to install that application. Another property is

that Android malware is usually embedded into well-known or popular applications.

There are not too many standalone malware. Finally, most Android malware is

passively downloaded by a user instead of actively intruding into a user’s device.

6

2.2 Related Works

Table 1 shows several existing solutions to detect Android malware. Kirin [15]

used permission security rules to mitigate malware by voice, location, or short

messages. They utilized a set of security rules to judge whether an application

requests some dangerous combinations of permissions. PUMA [9] adopted

machine-learning approaches including simple logistic, naïve Bayes, J48, and random

tree to classify applications into benign or malicious applications based on

permissions. The above two solutions are simple and efficient because they only

analyzed the manifest file of an application. However, a malicious application is

possible to evade the detection of Kirin and PUMA and consequently they have high

false positive rates.

Zhou et al. [10] obtained the essential permissions and behaviors by manually

analyzing 10 different malware families. They chose the permissions to filter out

benign applications quickly and detected remaining applications by behavioral

footprint matching. However, it is not scalable because the solution cannot be

automated.

Table 1. Related works to detect malicious Android applications

Category Solution Behaviors Training Detection Cons

Static

Kirin [15] Permissions Security Rules Matching High FP

PUMA [9] Permissions Machine-learning Classification High FP

Zhou et al. [10]

Permissions

Bytecode

Structural Layout

Essential Permissions

Behavioral Footprint
Matching

Require manual

analysis

Dynamic

Crowdroid [12] System Call Count Vectors Clustering
Require a lot of

user experience

Isohara [13]
System Call Name

and Parameter
Regular Expression Matching

Limited types of

malware

Lin et al. [14]
System Call

Sequences
Sequences Matching

Can be easily

evaded / Not

efficient

Mix
The Proposed

Solution

Permissions

System Call

Sequences

Probability

Sequences

Threshold

Matching

Crowdroid [12] monitored system calls invoked by an application and utilized a

7

clustering algorithm to judge whether the application is benign or malicious. However,

it has to collect a lot of the user experiences for the same application. Otherwise, it

could make a lot false positives. The solution only detects anomalous behaviors of

analyzed applications. Isohara et al. [13] defined three categories of threats including

information leaking, jail-breaking, and destructive application detection. They

generated signatures by applying a set of regular expression rules to the name of

system calls or file paths. A malicious activity in these three categories is then

detected by signature matching. However, the system cannot detect the malicious

activities other than the three categories of threats. Lin et al. [14] extracted longest

common substrings (LCS) of system calls for malicious applications of the same type

and discriminated malicious behaviors from benign ones based on probabilities

derived from the Bayes model. They then detect repackaged malware with the

obtained LCS. However, the solution is not efficient because it has to run all

applications on emulators or real devices. In addition, the proposed Layering

Multi-Thread Comparison mechanism provides a door for malware to evade the

detection.

To achieve high detection performance and accuracy, we propose a three-phase

behavior-based solution, where the first two phases detect malicious applications and

the last phase classifies into known or new types of malware.

8

Chapter 3 Problem Statement

 Here we first describe the notations and then give the problem description.

3.1 Notations

 Table 2 defines the notations used in our approach. We collect a set of benign

applications 𝐵𝑃 = {𝑏𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝐴𝐵} and a set of malware 𝑀𝑃 = {𝑚𝑝𝑗, 1 ≤ 𝑗 ≤

𝐴𝑀} for training. For permission based detection, we have a set P, 𝑃 = {𝑝𝑙, 1 ≤ 𝑙 ≤

𝑁}, containing all built-in Android permissions. We calculate the probability of being

malicious for each of the N permissions and store in another set PP. For system call

based detection, we obtain a set of benign behaviors 𝐵𝐵𝑆 = {𝑏𝑏𝑛, 1 ≤ 𝑛 ≤ 𝑆𝐵}, a set

of suspicious behaviors 𝑆𝐵𝑆 = {𝑠𝑏𝑜, 1 ≤ 𝑜 ≤ 𝑆𝑆} , and a set of malicious

behaviors 𝑀𝐵𝑆 = {𝑚𝑏𝑝, 1 ≤ 𝑝 ≤ 𝑆𝑀}. For further classification, a type vector is used

to denote what malicious behaviors a malware has. We collect type vectors of V

trained malware samples to build a set of known type vectors 𝑇𝑉 = {𝑡𝑣𝑞 , 1 ≤ 𝑞 ≤

𝑉} where each 𝑡𝑣q is a bit-vector <𝑚𝑏1, 𝑚𝑏2,…, 𝑚𝑏𝑆𝑀> to indicate the existence of

malicious behavior for sample q. The proposed solution is evaluated with a given set

of inspected applications 𝐼𝑃 = {𝑖𝑝𝑘, 1 ≤ 𝑘 ≤ 𝐴𝐼 } , whose behaviors are denoted

as 𝐼𝐵𝑆 = {𝑖𝑏𝑟 , 1 ≤ 𝑟 ≤ 𝑆𝐼}.

3.2 Problem Description

Given a set of benign applications BP, a set of malware MP, and a set of

applications to be inspected IP, design an approach to detect if an inspected

application is malicious or not based on a set of permissions probability PP and a set

of malicious behaviors MBS. MBS is obtained from BP and MP. Finally, we classify a

detected malicious application into a known type or a new type based on type

vectors 𝑇𝑉 defined from MP.

9

 Table 2. Definition of notations

Categories Notations Descriptions

Application

𝐵𝑃 A set of 𝐴𝐵 benign applications for training

𝑀𝑃 A set of 𝐴𝑀 malware for training

𝐼𝑃 A set of 𝐴𝐼 applications to be inspected

Permission
𝑃 A set of N permissions

𝑃𝑃 A set of N permissions’ probability of being malicious

Behavior

𝐵𝐵𝑆 A set of 𝑆𝐵 benign behaviors

𝑆𝐵𝑆 A set of 𝑆𝑆 suspicious behaviors

𝑀𝐵𝑆 A set of 𝑆𝑀 malicious behaviors

𝐼𝐵𝑆 A set of 𝑆𝐼 inspected behaviors

Type 𝑇𝑉 A set of V type vectors

10

Chapter 4 Three-phase Behavioral Detection and Classification

 In this chapter, we describe the process of three-phase behavioral detection and

classification (TPBDC) based on permissions and system call sequences. In Section

4.1, we give an overview of permissions and system call sequences. The details of our

two detection phases and one classification phase are introduced in Section 4.2,

Section 4.3, and Section 4.4, respectively. We discuss implementation issues in

Section 4.5.

4.1 Overview of Three-phase Behavioral Detection and Classification

 To achieve high detection performance and accuracy, we propose a three-phase

approach. We choose to check permissions in the first phase so that the number of

applications passed to the second phase can be reduced. To have better accuracy, we

check the system call sequence to reduce false positive rates in the second phase.

Figure 1 shows the overview of our three phases: the permission-based detection

(PBD) phase, the system call-based detection (SBD) phase, and the behavior-based

classification (BBC) phase. In the PBD phase, we extract permissions from BP, MP,

and IP. PP is obtained from BP and MP and we then utilize PP to judge whether ipk is

suspicious and only a suspicious application is passed to the next phase.

In the SBD phase, we record system calls of BP and MP for training. We train a

set of system call sequences from all the applications and then utilize the trained

system call sequences to obtain MBS. For detection, we record system calls of ipk and

then match with MBS to detect whether ipk is malicious. Note that only applications

not filtered out in the previous phase are processed by this phase. In the BBC phase,

we exploit the behaviors of malware to train TV and then utilize TV to classify ipk into

a known type or a new type depending on whether its behaviors are in TV or not.

11

Figure 1. Overview of the proposed solution

4.2 Permission-based Detection (PBD) Phase

In this section, we introduce the PBD phase, which is composed of a permission

extractor, a Bayes analyzer, and a permission comparator.

Permission Extractor

The permission extractor is used to retrieve built-in permissions requested by

each application. Android has 139 built-in permissions. We extract permissions from

BP and MP for training and then extract permissions from IP for detecting.

Bayes Analyzer

We evaluate the probability of being malicious for each built-in permission.

Requested permissions are retrieved from both BP and MP and then probabilities are

obtained using the Bayes theorem. To simplify the evaluation, we only count

Android’s built-in permissions. The formula to evaluate the probabilities is

12

𝑃(𝑀|𝑝𝑙) =
𝑃(𝑝𝑙|𝑀) 𝑃(𝑀)

𝑃(𝑝𝑙|𝑀) 𝑃(𝑀) 𝑃(𝑝𝑙|𝐵) 𝑃(𝐵)
 , (1)

where pl is one of 139 built-in permissions to be evaluated. P(B) denotes the ratio of

BP while P(M) denotes the ratio for MP. P(pl|B) and P(pl|M) represent the probability

that pl is requested by BP and MP, respectively. We then get the probability P(M|pl),

which indicates the probability to be malicious on the condition that ipk requested

permission pl. The permission probability set PP is obtained by using formula (1) for

all the 139 built-in permissions.

Permission Comparator

We also extract the requested permissions of ipk and calculate the product of

probabilities of all requested permissions using probabilities from PP. If the product

is larger than the upper bound, ipk will be judged as malware. If the product is lower

than the lower bound, ipk will be judged as benign. If the product of probabilities of

ipk is between the upper bound and the lower bound, it is marked as a suspicious

application and passed to the next phase.

4.3 System Call-based Detection (SBD) Phase

The SBD phase is composed of four components. They are system call recorder,

system call sequence trainer, system call sequence analyzer, and system call sequence

comparator, as shown in Figure 2.

System Call Recorder

The system call recorder records the system calls triggered by applications. First,

we install bpi, mpj, or ipk into the Android 2.1 emulator and launch the application.

After it has been launched, we emulate several system events such as rebooting,

receiving short messages, and answering phone calls. We record system calls of the

application for a period of time.

13

 Figure 2. Procedure flowchart of SBD

System Call Sequence Trainer

The goal of the system call sequence trainer is to generate BBS, SBS, and IBS

using the N-gram and the LCS algorithm. We consolidate successive system calls

before computing system call sequences because a system call could be issued

repeatedly in loops. For instance, a raw system calls sequence of “open, read, read,

read, close” would become “open, read, close”.

After consolidating successive system calls, BBS, SBS, and IBS are generated by

either the N-gram or the LCS algorithm. The purpose of system call sequence trainer

is to find out common sub-sequences. Since a common malicious behavior is the great

resemblance of malware, the system call sequences recorded from the malware should

share the system call subsequences considerably. The system call sequences for BP

are stored in BBS, the common system call subsequences for MP are stored in SBS,

and the system call sequences for IP are stored in IBS.

System Call Sequence Analyzer

 The system call sequence analyzer finds out malicious system call sequences.

We obtain MBS from SBS and BBS in this module. We filter out a system call

sequence if it appears in both SBS and BBS. After the filtering, the malicious behavior

14

set (MBS), which contains only system call sequences appeared in MP, is obtained.

System Call Sequence Comparator

 To inspect ipk, the system call recorder and the system call sequence trainer are

used to record system calls and generate system call sub-sequences. Figure 3 shows

how the system call sequence comparator compares the system call sequences 𝑖𝑏𝑟 of

ipk against all malicious behaviors listed in MBS. The ipk is classified as malicious if a

malicious behavior is matched.

 Figure 3. Procedure of system call sequence comparator

4.4 Behavior-based Classification (BBC) Phase

If a malicious application is detected, we propose another technique to classify

the detected malware into a known type or a new type of malware. In this subsection,

we explain the detailed design of BBC, which is composed of a type vector extractor

and a type classifier.

Type Vector Extractor

We utilize a bit vector to denote what behaviors malware has. Suppose all

identified behaviors are indexed from 1 to 500 and malware has the first, the third,

and the 499
th

 behaviors. The corresponding bit vector tv1 would be {1, 0, 1, 0, …, 1,

0}. We build bit vectors for MP and use the bit vectors to detect whether ipk is a

known type or a new type. All the obtained bit vectors for MP are stored in a set TV.

15

Type Classifier

Figure 4 shows the procedure of the type classifier. We construct a bit vector ipv

for ipk and calculate the similarity between ipv and all bit vectors of MP by cosine

similarity [16]. The cosine similarity is obtained by

∑ 𝑖𝑝
 𝑀

√∑ ()
 𝑀

 √∑ (𝑖𝑝)

 𝑀

 , (2)

where tv is one of available MP bit vectors in TV and ipv is the bit vector of ipk. We

define a threshold as the lower bound for the cosine similarity to classify ipv into a

known type or a new type. If the similarity is greater than the threshold, we classify

ipv into the same type of the bit victor having the maximum cosine similarity value.

Figure 4. Procedure of type classifier

4.5 Implementation

 We have developed tools to automatically retrieve permissions and system call

sequences of Android applications.

Permission Analyzer

Figure 5 shows the procedure of the permission analyzer. Because an APK file is

basically a ZIP archive file with an APK file extension, we decompress an application

16

to retrieve permissions of the application by apktool [17]. After decompressing, we

get assets, resources, application’s source codes (via disassemble), and the manifest

file. To retrieve permissions, we only parse the manifest file because a developer

declares requested permissions in this file.

Figure 5. Procedure of permissions analyzer

System Call Recorder

 Figure 6 shows the procedure of the system call recorder. In order to record the

system calls of an application, we need to modify the system ramdisk.img and install

strace [18] into the emulator. First, we decompress the ramdisk.img, install the strace

tool into the system, and modify the init.rc file to launch the strace tool. The strace

tool is placed in the /data directory. For the init.rc file, we insert the strace command

“/data/strace –F –ff –tt –o /data/tracefile/zygote” into this file as shown in Figure 7.

With the above modifications, strace is launched to record system calls right after the

emulator boots. The output of the strace tool is placed in /data/tracefile/zygote file.

Figure 6. Procedure of system call recorder

Figure 7. Detailed modification of the init.rc file

17

Chapter 5 Evaluation

 To evaluate the effectiveness of the proposed solution, we conduct experiments

with diverse types of repackaged applications. We describe the experiment

environment and the number of trained and inspected applications in Section 5.1. We

then present the effectiveness in detection and classification based on permissions and

system call sequences in Section 5.2.

5.1 Experiment Environment

 We introduce the experiment environment from two aspects: The training and the

detection and then summarize the samples used in the experiments.

Training

Figure 8 illustrates the experiment environment of training which includes four

programs, i.e., the system call recorder, the trainer of PBD, the trainer of SBD, and

the trainer of BBC. There are four databases involved, including the permission

probability database, the system call sequence database, the malicious behaviors set

database, and the type vector database.

To obtain the permissions probability, we parse all benign applications and

malware first and calculate the permission probabilities using formula (1). We utilize

the system call recorder implemented in the emulator to record system call sequences

of training applications for 3 minutes, as suggested by [14], and then use the SBD

trainer to acquire the malicious behaviors set. Finally, the BBC obtains the type

vectors from behaviors of training malware.

Detection

 Figure 8 also illustrates the experiment environment of detection with the same

four programs. There are three involved databases including the permission

18

probability database, the malicious behavior set database, and the type vector

database.

Figure 8. Experiment environment

(b) Detection

(a) Training

19

In order to judge whether an inspected application is benign or suspicious, we

parse permissions of the inspected application first and then load previously evaluated

permission probabilities for the detector of PBD. If PBD alerts, the inspected

application is installed to the emulator to further record system call sequences also for

3 minutes by the system call recorder. The SBD will alert if the system call sequences

of the inspected application matches one of available malicious behaviors. We

classify the inspected application detected by SBD into a known type or a new type

based on the type vector.

Samples

To conduct the experiments, we prepare 1198 sample applications. Table 3

shows the 1198 applications composed of 933 benign applications and 265 malware.

We use 863 applications (700 benign applications and 163 malware) for training and

335 applications (233 benign applications and 102 malware) for detection. Table 4

shows that we adopt the malware types for known types and new types.

The benign applications are collected from third-party markets and malware is

collected from Zhou et al. [19] which uses manual or automated crawling from a variety

of Android Markets. We utilize several anti-virus tools [20] to ensure the benign

applications are virus-free.

Table 3. Number of training samples and detecting samples

Category Benign Samples Malicious Samples

Training 700 163

Detection 233 102

Table 4. List of malware types

Category Malware Type

Known Type

Adrd, AnserverBot, Asroot, BaseBridge, Bgserv, Geimini,

GingerMaster, GoneSixty, jSMSHider, Kmin, Lightdd,

Plankton, RogueSPPush, SndApps, YZHC, zHash, Zsone

New Type DroidKungFu, GGTracker, GoldDream, PJAPPS.G, Smspacem

20

5.2 Experimental Results

We discuss the performance numbers from seven issues: impact on permissions,

impact of the value N for N-gram on system call sequences, impact of the number of

malicious behaviors for LCS on system call sequences, detection performance vs.

time consumption, effectiveness on the order of applied detection phases,

performance comparison for one-phase and two-phase detectors, and evaluation for

type vector based classification.

Impact on Permissions

We first evaluate the PBD. First we made preliminary statistics on the number of

permissions appearance in benign applications and malware. Figure 9(a) and 9(b)

show the distribution of permissions for benign and malicious applications,

respectively. We can find that the popular permissions requested by benign and

malicious applications are different. In Figure 9 (a), we also observe that some

permissions such as SEND_SMS, READ_SMS, READ_CONTACTS,

RECEIVE_SMS, WRITE_SMS, and RECEIVE_BOOT_COMPLETED has much

higher frequency being requested by malware than benign applications. Figure 10(a)

and 10(b) show the permissions requested by benign applications and malware,

respectively.

 We calculate the probabilities of 139 permissions by the Bayes theorem. To

judge the inspected application, we calculate the product of permission probabilities.

If the product is in the predefined ranges, the application is judged as suspicious.

Figure 11 shows the accuracy of different thresholds. There are more benign

applications and malware filtered out if the threshold is increased. Since we use this

phase to reduce the number of applications, the upper bound of 0.9 and the lower

bound of 0.1 would be a good choice based on our experiments.

21

Impact of the value N for N-gram on System Call Sequences

 We evaluate SBD with the N-gram and the LCS algorithm in this experiment.

The length of system call sequences means how many system calls every system call

Figure 9. Distribution of the permissions requested by benign and malicious applications

(a) The top 20 of requested permissions by malware

(b)

(b) The top 20 of requested permissions by benign applications

22

sequence contains. For LCS, the length of system call sub-sequences is so dynamic

that we do not have to predefine the length. However, the length of system call

sequences for N-gram can be configured so we vary the value N to see its effectiveness.

Figure 10. The permissions requested by benign applications and malware

Figure 11. Performance for PBD

(b) The requested permissions by malware

(a) The requested permissions by benign applications

23

The value N for N-gram means the unit length of system call sequence retrieved from

all system call sequences. Different lengths could lead to different performance. A

small N would filter out malicious system call sequences. If a system provides only

200 different system calls, a value N of two would have only 19900 combinations of

sequences and therefore it can be easily filtered out by a relatively large number of

benign system call sequences. In contrast, a large N would preserve too many benign

behaviors within a malicious system sequence. Consequently, it is important to

choose a good value for N.

Figure 12 shows the detection performance with various N. We divide Figure 12

into three areas by N. In the first area (N ranges from 2 to 4), the FN curve is

descending but the FP curve is ascending. In the second area (N ranges from 5 to 15),

the FN curve reaches 0% and the FP curve is kept smooth. In the third area (N ranges

from 20 to 150), the FP curve is descending but the FN curve is ascending.

The higher FN rate in the first area is because N is so small that significant

system call sequences are filtered out. In contrast, the higher FN rates in the third area

are because N is too large so that the system call sequences are mixed with benign

system call sequence. If we want a lower FN rate, a good value of N would be in the

second area. Based on the experiment, we choose a value of 15 for N. Although we

get a higher FP rate when N is 15, we can reduce the FP rate with the help of PBO.

Impact of the number of malicious behaviors for LCS on System Call Sequences

Figure 13 presents the percentage of samples versus the number of malicious

behaviors. We can observe that some malicious behaviors are also performed by

benign applications and there are less FPs if the number of malicious behaviors gets

increasing. If LCS-based SBD works with PBD, the number of malicious behaviors

with 1 would be a good choice. If LCS-based SBD works alone, the number of

24

malicious behaviors with 2 would be much suitable.

Figure 12. Detection performances for system call sequences with various N

Figure 13. Distribution for the number of malicious behaviors

Detection Performance vs. Time Consumption

Malware detection mechanisms can be categorized into static analysis or

dynamic analysis techniques. Static analysis is simple and efficient but dynamic

25

analysis is complex and time-consuming. In our approach, PBD is static and SBD is

dynamic. Here we discuss the tradeoff between accuracy and time requirement. All

the experiments are conducted with a machine equipped with an Intel Core i3 3.1GHz

CPU and 16GB of RAM running on a 64-bit Windows 7 operating system. The

summary of the experiment results is shown in Table 5.

We first compare accuracy and time for LCS-based and N-gram-based SBD.

Although it requires more time, LCS-based detector gets a better accuracy. We also

compare accuracy and time between PBD and LCS-based SBD. Although PBD runs

faster, it gets a poor accuracy.

Table 5. Detection performance vs. time consumption

Category Algorithm FN FP Accuracy
Time Consumption

(sec/application)

PBD
Bayes

Probability
2% 24% 87% 2.57

SBD
LCS 3% 14% 91.5% 601.38

N-gram 0% 35% 82.5% 600.87

Effectiveness on the Order of Applied Detection Phases

 We also consider the order of applying different detection phases, i.e. PBD and

SBD. The measured detection time and detection performance is shown in Table 6.

For the time consumption, if the PBD is applied first, it takes 599 seconds and

262 seconds to analyze permissions for all benign applications and malware, and then

the LCS-based SBD spends 32,228 seconds and 6,747 seconds to analyze system call

sequences for the remaining 23% of benign applications and 11% of malware. In

contrast, if we swap the order, the LCS-based SBD takes 140,122 seconds and 61,341

seconds to analyze system call sequences for all benign applications and malware, and

then the PBD spends 84 seconds and 8 seconds to analyze permissions for the

remaining 14% of benign applications and 3% of malware. If we want a lower FNR

and a lower FPR, running the PBD first would be a better choice as PBD consumes

26

much less time than SBD. Based on the experiments, we choose PBD as the first

phase detector and SBD as the second phase detector.

Table 6. Time consumption, FNR, and FPR

Strategy
Procedure Time Consumptions FNR

for 1
st
 Phase

FPR

for 1
st
 Phase 1

st
 Phase 2

nd
 Phase 1

st
Phase 2

nd
 Phase Total

PBD → SBD
Benign 100% 23% 599s 32,228s 32,827s - 1%

Malware 100% 11% 262s 6,747s 7,009s 2% -

SBD → PBD
Benign 100% 14% 140,122s 84s 140,206s - 14%

Malware 100% 3% 61,341s 8s 61,349s 3% -

Performance Comparison for One-phase and Two-phase Detectors

From the above experiment, we know that PBD is able to filter out 76% of

benign applications with the lower bound of 0.1 and filter out 87% of malware with

the upper bound of 0.9 and LCS-based SBD has a better accuracy than PBD. Figure

14 compares the accuracy of one-phase detectors and two-phase detectors (PBD first

and then SBD). The two-phase detectors have a lower FPR than one-phase detectors.

We can see that although one-phase detectors could have poor performance, the

combined detectors always have a good performance. This also shows that PBD and

SBD complement each other.

Figure 14. Accuracy comparison for one-phase and two-phase detectors

Now we examine the reasons which cause false negatives for two-phase

detectors. In PBD, we filtered out 2% of malware because some malicious

27

applications request only a few non-critical permissions. In SBD, we missed 1% of

malware because some malicious behaviors would be triggered only after we agree

the update option. We also discuss the reasons that cause false positives for two-phase

detectors. Since most Android malware are repackaged applications, the recorded

system call sequences are mixed with both benign and malicious behaviors. It may

cause false positives if we do not completely filter out benign behaviors. In addition,

the noise from Dalvik VM that runs the applications on Android devices may incur

both false positives and false negatives. This is because the system call sequences

originated from Dalvik VM itself are recorded as well and it is not able to tell the real

origin of system calls.

Evaluation for Type Vector Based Classification

Table 7 shows the details of type vectors. For system call sequences, we get 149

system call sequence vectors to denote 17 types, and the length of system call

sequence vectors is 1460. For permissions, we get 68 permission vectors to denote 17

types, and the length of permission vectors is 139. If we mix system call sequences

and permissions, we get 156 mix vectors to denote 17 types, and the length of mix

vectors is 1599.

Table 7. The detail of type vectors

Category
Number of

Types

Number of

Type Vectors

Length of

Type Vectors

System Call

Sequence Vectors
17

149 1460

Permission Vectors 68 139

Mix Vectors 156 1599

Finally, we evaluate the performance of BBC which recognizes the type (known

or new) of a detected malware. We classify a detected malware based on permissions,

system call sequences, or mix. To show that type vector is good at classifying type of

malware, we attempt to classify all identified malicious applications into a malware

28

type. We use the PBD detector followed by the LCS-based SBD detector. The

classification result for known types using LCS-based type vectors, permission-based

type vectors, and mix-based type vectors is shown in Table 8. We show that 93%,

99%, and 96% of malicious applications can be classified into a correct type based on

LCS-based type vectors, permissions-based type vectors, and mix-based type vectors,

respectively. It shows that permission-based type vectors can be a better choice than

LCS-based type vectors or mix vectors.

Table 8. Classification results for known types of malware

Malware Type Category Number of Malware Classification Result Percentage

Known Type

System Call

Sequence Vectors
99

Correct 93%

Incorrect 7%

Permission Vectors 99
Correct 99%

Incorrect 1%

Mix Vectors 99
Correct 96%

Incorrect 4%

We also attempt to classify known and new types of malware with LCS-based

type vectors, permission-based type vectors, and mix-based type vectors. To show

that type vectors can be used to identify new types of malware, we prepare both

known types and new types of malware, as shown in Table 4. We use a threshold of

0.5 for cosine similarities with LCS-based type vectors, a threshold of 0.8 for cosine

similarities with permission-based type vectors, and a threshold of 0.65 for cosine

similarities with mix-based type vectors. Table 9 shows the classification results.

With LCS-based type vectors, although the correct classification rate is decreased by

10% for known types, more than 81% of new type of malware can be classified

correctly. It is worth noting that with permission-based type vectors, the correct

classification rate is only decreased by 1% for known types and the correct

classification rate is more than 98%. With mix-based type vectors, more than 99% of

new type of malware can be classified correctly but the correct classification rate is

decreased by 3% for known types. We conclude that permission-based type vector

29

classifier performs better on classifying malware types.

Table 9. Classification results for known and new types of malware

Category Malware Type Number of Malware Classification Result Percentage

System Call

Sequence Vectors

Known Type 99
Correct 83%

Incorrect 17%

New Type 42
Correct 81%

Incorrect 19%

Permission Vectors

Known Type 99
Correct 98%

Incorrect 2%

New Type 42
Correct 98%

Incorrect 2%

Mix Vectors

Known Type 99
Correct 93%

Incorrect 7%

New Type 42
Correct 99%

Incorrect 1%

30

Chapter 6 Conclusions and Future Works

 To achieve high detection performance and accuracy, we propose a three-phase

behavior-based approach, where the first two phases act as detection mechanisms and

the last phase acts as a classification mechanism. We observe application behaviors

from two aspects, i.e., permissions and system call sequences. We consider time

consumption, false negative rate, and false positive rate to determine the order of the

two detection phases. We also evaluate the accuracy of malware type classification.

We adopt various techniques in the design of the proposed detection and

classification phases. We use the Bayes theorem to evaluate permission probabilities

of being malicious; we use the N-gram and the LCS algorithm to define malicious

behaviors from recorded system call sequences. Finally, with LCS-based and

permission-based type vectors, we adopt cosine similarity to classify malware into

known and new types.

 To evaluate effectiveness and efficiency of our approach, we conduct several

experiments. The required time for processing a sample with permission based and

system call sequence based detector is 2.57 seconds and approximately 600 seconds,

respectively. It achieves a good performance of more than 97% true positive rates and

less than 3% false positive rates. For malware type classification, with

permission-based type vectors, more than 98% of detected malicious applications can

be correctly classified into both known and new types.

Although the proposed solution already performs well in several aspects, we

think it could be further improved by considering the following information. For

system call sequences, we did not consider the parameters of system calls. In addition,

currently we only trigger three system events including system rebooting, SMS

receiving, and phone calls. More system events could be considered. Furthermore, we

31

did not interpret the malicious behaviors from system call sequences. If exact

malicious behaviors can be interpreted, we believe it could help to better classify the

type of malware.

32

References

[1] Android. [online], available from World Wide Web;

http://www.android.com/

[2] Android (operating system). [online], available from World Wide Web;

http://developer.android.com/about/index.html

[3] Trendmicro. [online], available from World Wide Web;

http://tw.trendmicro.com

[4] Kaspersky. [online], available from World Wide Web;

http://www.kaspersky.com

[5] Lookout. [online], available from World Wide Web;

https://www.lookout.com/

[6] Bouncer. [online], available from World Wide Web;

http://googlemobile.blogspot.tw/2012/02/android-and-security.html

[7] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. “Android Permissions Demystified,”

Proceedings of the 18th ACM Conference on Computer and Communications Securit, Chicago,

Illinois, USA, pp. 627-638, October, 2011.

[8] J. Ryan, W. Zhaohui, G. Corey, and S. Angelos, “Analysis of Android Applications' Permissions,”

Proceedings of the 6th IEEE International Conference on Software Security and Reliability

Companion (SERE-C), pp.45-46, June, 2012.

[9] B. Sanz, I. Santos, P. Galán-García, C. Laorden, X. Ugarte-Pedrero, P.G. Bringas, and G. Alvarez,

“PUMA: Permission usage to detect malware in android,” Proceedings of the 5th International

Conference on Computational Intelligence in Security for Information Systems, Ostrava (Czech

Republic), pp. 5-7, September, 2012.

[10] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “ Hey, You, Get off of My Market: Detecting Malicious

Apps in Official and Alternative Android Markets,” Proceedings of the 19th Annual Network and

Distributed System Security Symposium, San Diego, CA, February 2012

[11] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak, “An android application

sandbox system for suspicious software detection,” Proceedings of the 5th International

Conference on Malicious and Unwanted Software, Nancy, France, pp. 55–62, 2010.

[12] I. Burguera, U. Zurutuza, and N. T. Simin, “Crowdroid: Behavior-based malware detection system

for Android,” Proceedings of the 1
st
 ACM workshop on Security and privacy in smartphones and

mobile devices, Chicago, IL, USA, pp. 15–25, October 2011.

[13] T. Isohara, K. Takemori, and A. Kubota, “Kernel-based behavior analysis for android malware

detection,” Proceedings of the 7
th

 International Conference on Computational Intelligence and

Security, Sanya, Hainan, China, pp. 1011–1015, December 2011.

[14] Y. D. Lin, Y. C. Lai, C. H. Chen, and H. C. Tsai, “Identifying Android Malicious Repackaged

http://tw.trendmicro.com/
http://www.kaspersky.com/
https://www.lookout.com/
http://googlemobile.blogspot.tw/2012/02/android-and-security.html

33

Applications by Thread-grained System Call Sequences,” Computers & Security, in revision.

[15] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone application certification,”

Proceedings of the 16th ACM conference on Computer and communications security, Chicago,

Illinois, USA, pp. 235-245, November 2009.

[16] C. Manning, P. Raghavan, and H. Schütze. “Introduction to Information Retrieval,” Cambridge

Univ Press, 2008.

[17] apktool. [online], available from World Wide Web;

http://code.google.com/p/android-apktool/

[18] strace. [online], available from World Wide Web;

 http://sourceforge.net/projects/strace

[19] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization and evolution,”

Proceedings of the 33rd IEEE Symposium on Security and Privacy, Oakland, CA, U.S.A, pp.

95–109, May 2012

[20] VirusTotal. [online], available from World Wide Web;

http://www.virustotal.com/

http://code.google.com/p/android-apktool/
http://sourceforge.net/projects/strace
http://www/

