
國立交通大學

資訊科學與工程研究所

碩 士 論 文

基於 QEMU所模擬系統與軟體之回歸測試框架

A Regression Testing Framework for QEMU-based
System and Soware Development

研 究 生 : 林伯謙

指導教授 : 黃世昆　教授

中華民國一百零二年六月

基於 QEMU所模擬系統與軟體之回歸測試框架

A Regression Testing Framework for QEMU-based
System and Soware Development

研 究 生 : 林伯謙 Student : Po-Chien Lin
指導教授 : 黃世昆 Advisor : Shin-Kun Huang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

Aesis
Submied to Department of Computer and Engineering

College of Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer and Information Science

June 2013

Hsinchu, Taiwan, Republic of China

中華民國一百零二年六月

基於 QEMU所模擬系統與軟體之回歸測試框架

學生：林伯謙 指導教授: 黃世昆教授

國立交通大學資訊科學與工程研究所碩士班

გ要

藉由軟體測試技術，我們可以檢測程式執行路徑，確認是否含有可能之缺陷與問

題，以減少程式錯誤的發生率。然而現有的技術，在處理龐大程式上，軟體測試仍

有其困難性與軟硬體資源不足的阻礙。其中，一個限制因素是目前的測試操作都還

需要人工介入。雖然大部分測試工具的執行過程已經可以自動化，但在其測試前後

的系統環境建置、餵送測試資料、判讀實驗結果以進行下一步驟，都尚未做到完全

自動化，使得難以進行大規模、完整的測試。回歸測試的概念，是讓相同的測試工

作能被重複執行，以幫助程式設計人員能在修改、調整程式細節等相關開發過程後，

再次進行測試，以檢驗功能是否正常、或效能是否有所改進。在雲端計算的概念下，

我們利用虛擬化資源的管理概念，將測試平台抽離出硬體主機的限制，藉此只要有

足夠的硬體資源，我們的平台就能在不更改架構的情形下，進行大量測資的測試。在

此論文中，我們藉由回歸測試框架的實作來管理軟體測試的過程。先試驗測試標的

為 Linux與Windows的環境，進一步將建立 Android-x86系統的環境。如此，我

們就能夠進行多適應性大規模的回歸測試。

關⾓૶：QEMU模擬、軟體測試、回歸測試、測試自動化、測試框架

i

A Regression Testing Framework for QEMU-based
System and Soware Development

Student : Po-Chien Lin Advisor : Dr. Shih-Kun Huang

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

With the help of soware testing techniques, we are able to find potential defects along the
execution path of programs, and reduce the soware quality in the soware system. However,
to handle test cases for a large scale program using current soware testing technique, it still
requiresmuch human efforts andmanual intervention to operate, manage soware and hardware
resources. We currently perform testing and experiments by QEMU-based system tools in
an automatic way. However, other processes are still in manual way, including the system
environment seing up, input data feeding, result analysis and verification. is hinders us
from performing large scale and comprehensive testing. e concept of ”regression testing”
is to perform the same testing repeatedly, which will help programmers test the integrity of
functionalities or efficiency improvements aermodifying or tuning the programs in the development
stage. By the concept of ”cloud computing”, we can abstract away the testing platform from
the hardware resources restriction by virtualization technique. Our platform is therefore able
to manage large scale testing without reorganizing the architecture if we have sufficient and
available hardware resources. We propose to manage the soware regression testing process by
the cloud implementation of a testing framework. We have first deployed the testing framework
in the environments on Linux and Windows, and then Android-x86. e process of regression
testing has been automated by performing several testing benchmarks which originally take
several days to complete, needing much human efforts. e results reveal that our framework
implementation can carry out an applicable and large scale testing in a cloud environment.

Keywords: QEMU, QEMU-based system, soware testing, regression testing, testing
automation, testing framework

ii

Contents

გ要 i

Abstract ii

Contents iii

List of Codes v

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Description . 3
1.3 Objective . 5
1.4 Background . 6

1.4.1 Automatic Exploit Generation System . 6
1.4.2 Cloud Management . 8
1.4.3 Soware Testing . 9

1.5 Overview . 10

2 Related Work 11
2.1 Cloud management tools . 11

2.1.1 libvirt . 11
2.1.2 OpenStack . 12
2.1.3 Eucalyptus . 13

2.2 Windows GUI Operation Tools . 14
2.2.1 Sikuli . 14
2.2.2 AutoHotkey . 15
2.2.3 AutoIt . 15
2.2.4 Comparison . 15

2.3 Soware Testing . 15
2.3.1 Test Automation . 16
2.3.2 Unit Testing / xUnit . 17
2.3.3 Regression Testing . 17

2.4 Related Implementations . 18
2.4.1 D-Cloud . 18

iii

2.4.2 ETICS . 19
2.4.3 Inadequacies . 19

3 Method 20
3.1 Scenarios . 20

3.1.1 Windows and Linux . 20
3.1.2 Web Application . 21
3.1.3 Android . 22
3.1.4 Fuzzer . 23
3.1.5 Malware . 23
3.1.6 Embedded System . 24

3.2 Requirements . 24
3.3 Our Method . 26

3.3.1 Host Resource Management . 26
3.3.2 Guest Machine Management . 26
3.3.3 Communication System between Host and Guest 27

3.4 Windows GUI Object Manipulation . 28
3.4.1 Symfile . 28
3.4.2 Soware Operation . 28
3.4.3 Exploit Verification . 28

4 Implementation Details 30
4.1 Implementation Language . 30
4.2 Regression Testing Framework Architecture . 31

4.2.1 Cloud-based Management . 32
4.2.2 Disk Images and Snapshots Management 33
4.2.3 Connection Channel and Shared File System 33

4.3 Regression Testing Framework . 35
4.3.1 A Workflow of a Regression Testing . 35
4.3.2 A Sample Test Case . 37
4.3.3 More Functionalities . 38

5 Results 41
5.1 Regression Testing Framework for QEMU-based System 41
5.2 Testing Branch Database . 42
5.3 Improvement . 42

5.3.1 Time and Efficiency Comparison . 43
5.3.2 Feature Comparison . 43

6 Conclusion and Further Work 45
6.1 Conclusion . 45
6.2 Further Work . 46

Reference 47

iv

List of Codes

1 A sample test case: test1.py . 39
2 Showing test cases example . 39
3 Selecting test cases example . 40
4 Showing test results example . 40
5 An example of testing wrapper . 40

v

List of Figures

1 An overview to our idea . 2
2 Current method flow . 3
3 OpenStack overview (source: OpenStack) . 12
4 Eucalyptus platform architecture . 13
5 A sample of Sikuli script (source: Sikuli.org) . 14
6 Flow of D-Cloud (source: D-Cloud paper) . 18
7 e ETICS System Architecture (source: ETICS paper) 19
8 Overall architecture for web automatic testing . 21
9 e architecture of x86-Android on top of S2E . 22
10 New testing model modified from past method . 24
11 Framework over cloud computing . 27
12 Communication channel outline . 27
13 CRAXUnit Architecture . 31
14 Hypervisor support by libvirt . 32
15 Regression testing framework on libvirt . 33
16 A workflow of single testing . 35
17 An Example of Result Output . 37

vi

List of Tables

1 Comparison between Automation Tools . 16
2 Communication channel protocol commands . 34
3 Configurations in a Test Case . 38
4 Basic type in CRAXUnit . 39
5 APIs in CRAXUnit . 40
6 Exploitable Test Case in Database . 43
7 Comparison of running one testing . 43
8 Comparison of running a testing benchmark . 43
9 Comparison between Frameworks . 44

vii

Chapter 1

Introduction

Soware testing is an important stage in the field of soware engineering, whereas it is

oen overlooked. Nowadays, we rely more and more on computer programs to make our life

going well; however, even a small unexpected error can cause enormous damage. erefore,

we need soware testing to check the codes and look into those vulnerabilities le in programs

due to negligence by programmers. Otherwise, these vulnerabilities can become the exploitable

entrance utilized by malicious users.

With the soaring importance and popularity of computers in our life, the information and

soware industry are geing more and more popular. However, we should also notice that

more and more security holes and soware vulnerabilities are leaked at the same time. e

upstream and maintainers of not only operating systems like BSD, Linux, and Windows, but

also the implementations of popular programming languages such as JAVA, Python, Ruby, and

many other soware that millions of people use every day, are releasing their patched versions

of vulnerable ones continuously.

e truth is, we are not only at the era of information life, but also at the era of information

security. Society and economic order may jump into chaos without information technology;

however, the world can not running on track without information security even if we have

excellent information technologies.

1

1.1 Motivation

equality of soware not only depends onwhat functionalities it provides, but also depends

how secure it is. e vulnerabilities and potential defects hidden in soware (or programs)

may led to unexpected results. By utilizing these soware vulnerabilities, malicious users can

execute any commands they want through a clever and designed input.

e development of soware is a long period process, and it involvesmore than one programmer

most of the time. As the scale of program becomes larger and larger, the existence of the

vulnerabilities caused by negligence become an inevitable result.

With the help of soware testing techniques, we are able to find potential defects along

the execution paths of a program, and reduce the soware quality in the soware system.

However, to handle test cases for a large scale program using current soware testing technique,

it still requires much human efforts and manual intervention to operate, manage soware and

hardware resources.

So we continue to look forward to finding some more efficient methods to solve these

problems.

Image Files Management

Test case Management

S2E

QEMU

APIs

Regression Testing Framework

Figure 1: An overview to our idea

We currently perform testing and experiments by QEMU-based system tools in an automatic

way. However, other processes are still in manual way, including the system environment

2

seing, data feeding, result analysis and verification. is hinders us from performing large

scale and comprehensive testing.

e concept of ”regression testing” is to perform the same testing repeatedly, whichwill help

programmers test the integrity of functionalities or efficiency improvements aer modifying or

tuning the programs in the development stage. By the concept of ”cloud computing”, we can

abstract away the testing platform from the hardware resources restriction by virtualization

technique. en we can plan a series of procedure and run it without human intervention.

As shown in Figure 1, We want to implement a host-based QEMU testing system by utilizing

current techniques like cloud management tools and libvirt API to make the soware testing

method fully automated coming from this concept. Wewill first deploy the testing framework in

the environments on Linux andWindows, and thenAndroid-x86. e goal of our implementation

is to be able to carry out an applicable and large scale testing in a cloud environment.

1.2 Problem Description

We can divide the current method of exploit generation process using QEMU-based testing

system into several stages (See Figure 2).

Boot clean
snapshot

GUI OP:
symfile

save snapshot

Boot snapshot
with
S2E-QEMU

GUI OP:
start software /
open file

Boot a clean
snapshot

GUI OP:
verify exploit

Figure 2: Current method flow

1. Set up the QEMU image (image-1) of target vulnerability environment, both operation

3

system and target soware or program installed inside may be bind to specific versions

which have vulnerability.

2. Block 1~3: Boot up the virtual machine image-1with normal version QEMU, and save the

snapshot (snapshot-1) aer doing symfile to crash input.

3. Block 4, 5: Boot up the snapshot snapshot-1 with S2E version QEMU. In guest OS, testers

should operate the target soware to open or process the crash input.

4. en host system will start to run symbolic execution and generate exploit if possible.

5. Block 6, 7: If the exploit generated successfully, we take the generated exploit to test on

the clean environment image-1 to verify if the exploit is usable.

Besides stage 4, each other stages should be operated by human manually now. is is not

practical while we want to do a large scale of soware testing.

Human intervention can be found in each stages, and moreover, we need to take a look

at each step to see how the process going and what time to go forward to next step. us, we

hope that we can integrate the testing environment and enhance the testing processes to a more

usable and less manual work.

In the testing processes described above, we can see several cons:

• Testing on host machine requires human intervention.

• GUI operations are not programmable. Testers need to interactivewithGUI environments.

• Testing procedure are not the same through different testing target OS platform.

• No reliable and efficient management method to the test cases and tested results.

And becausewe are trying to build a testing platform to integrate the different and inconvenient

testing processes, here we sort out the problems needed to be solved:

1. e image files format used by official QEMU and S2E-QEMU are not compatible *. We

may need to find amethod to convert between these two formats ormake them compatible

to each other.
*See: hps://s2e.epfl.ch/embedded/s2e/ImageInstallation.html

4

2. We need a file sharing mechanism between guest OS and host OS.

3. We need a communication method between guest OS and host OS. us host OS can

control guest OS and get information for guest OS.

4. We need a methods on host OS to take snapshots of the running guest OS, instead of

issuing commands in guest OS.

5. We need GUI automationmethod to take a series of operations underWindows and Linux.

6. We need to provide management ability to our testing.

Before implementing, we also need to survey some methods that we may need. ese

include:

1. Collect information about soware that can be tested based on an QEMU emulator. On

this basis, we can design our system to let those soware can be tested on our platform.

2. Survey cloud-based image files management method and analysis those techniques that

we can use on managing a large number of hardware resources and VMs.

3. Survey the possibility of combining S2E and cloud-based VM management.

4. Survey the cloud-init mechanism to initialize required testing environments on demand.

5. Survey the testing procedure in embedded system development, and see if it can be integrated

with our system.

1.3 Objective

Soware testing really takes an important role in soware development life cycle. It provides

the quality assurance to upcoming products, and make an early discovery of vulnerabilities in

soware that may cause huge losses.

Our goal is to build a testing framework that will provide comprehensive functionalities to

let us create, manage, and run test cases easily. With the implementation of such framework,

we can apply it to many environments to test various of soware designed for different OSes.

5

As a testing framework basis, we will require to rebuild a set of test cases that we tested

manually before. Besides, we are also planning to build test cases for CVE † environments that

can be used for later experiments. Also, Constructing the test case database is important for us

to review and improve our framework by running real data in it.

Moreover, as the soware testing and exploit generation technology improved, wemaywant

to test those test cases we have tested before again. Being a well-designed testing framework,

it will also be beer for the system to provide a flexible interface that allows testers to customize

testing factors. uswe can setup and run a bunch ofwanted testingwith changeable parameters

quickly through this framework.

1.4 Baground

In this section, we explain the terminologies that are used in the thesis. ree parts are

introduced: automatic exploit generation system, cloud management, and soware testing.

1.4.1 Automatic Exploit Generation System

In the thesis, we first develop based on the former research of automatic exploit generation

system to improve the experimental process. Here we simply explain some key points in this

field.

• Vulnerability

In computer security, vulnerability is a weakness which allows an aacker to reduce a

system’s information assurance ‡.

• Exploit

An exploit is a piece of instructions, commands or data that can take advantage of bugs

or vulnerabilities to cause an unintended behavior on computer soware. Such behavior

frequently includes such things as gaining control of a computer system or allowing

privilege escalation or a denial-of-service aack.
†Common Vulnerabilities and Exposures, see more information at: hp://cve.mitre.org. CVE® International

in scope and free for public use, CVE is a dictionary of publicly known information security vulnerabilities and
exposures.

‡Wikipedia: Vulnerability (computing)

6

• Symbolic execution

Symbolic execution [1, 2, 3, 4] is a popular technique of soware testing. In contrast

with concrete execution that treats the tested program as a black box and find next new

path without any information, symbolic execution aempts to explore all paths in the

program more systematically by transforming the path feasibility problem into Boolean

satisfiability problem §. emain idea of symbolic execution is to replace variables controlled

by external environments with symbolic values rather than actual data. e value range

of those variables represented by symbolic expressions is unlimited, i.e. any value, when

the program runs initially. With program execution, those symbolic variables will taint

other non-symbolic variables, and its value will be gradually restricted.

• symfile

When doing symbolic execution, we need first make the input data symbolical to let our

program can access those input in symbolic form. Symfile is what we call the process

to make a file symbolical and map the symbolic file into memory. e action usually

should be done on the testing target environment, i.e., in the guest OS if we are using

QEMU-based system to do testing works.

• S2E

S2E [5] is a soware analysis platform which allows running the whole operating system

in a testing environment. It uses dynamic binary translation which provided by QEMU,

selective symbolic execution and relaxed execution consistencymodels to find the execution

paths. So we can analyze not only the user-mode but also the kernel-mode binary.

• CRAX

CRAX [6] is a framework for automatically generating exploit. It is developed based

on S2E and concolic execution. An User can feed the framework with crash inputs of a

particular soware, and then the framework starts to address the exploitable point of the

soware by concolic execution. en shellcode combinations are inserted to test if any of

them can be a valid and exploitable input. If success, an exploit is generated as an output

to the user.

§For more information, see Wikipedia: Boolean satisfiability problem

7

• Input / crash input

Input is the kind of data provided by user environment to the soware or program to

let it analysis, process, or generate some different output according to different input.

According to different programs, the type of input may be a series of numbers or strings,

files, sockets, etc. When we try to generate an usable exploit in CRAX system, we need

first provide an input to the target soware (or program) we interested in that will cause

the program run into crash finally. is kind of input are called crash input.

1.4.2 Cloud Management

We want our implementation to be isolated from physical hardware resources. at is, the

scale of testings should only be restricted by computation capability but not the framework

architecture scalability. So we surveyed the cloud solution to abstract the hardware restriction.

• Host-guest VM architecture

A virtual machine (VM), typically has two components: the host and the guest. ehost is

the virtual machine host server; the underlying hardware provides computing resources,

such as processing power, memory, disk and network I/O, and so on. e guest is a

completely separate and independent instance of an operating system and application

soware. Guests are the virtual workloads that reside on a host virtual machine and

share in that server’s computing resources.

• QEMU

QEMU [7, 8] is a free and open-source soware product that performs hardware virtualization.

QEMU is a hosted virtual machine monitor: It emulates central processing units through

dynamic binary translation and provides a set of devicemodels, enabling it to run a variety

of unmodified guest operating systems.

• Image / Snapshot

An image file is used to boot a virtual machine by QEMU. It likes the hard disk saving

the operating system files and user data in a physical machine. A snapshot is a special

format in a QEMU image file. It saves a runtime status of the virtual machine (i.e., via

savevm command) and could be reloading at any time (via loadvm command) with user’s

8

intention. e snapshot information is saved within the same image file of the VM image

that used to boot the machine when doing savevm action.

• libvirt

libvirt [9] is an open source API, daemon and management tool for managing platform

virtualization. It can be used to manage Linux KVM, Xen, VMware ESX, QEMU and

other virtualization technologies. ese APIs are widely used in the orchestration layer

of hypervisors in the development of a cloud based solution.

1.4.3 Soware Testing

Soware testing techniques can assure the quality of a soware. By looking into the various

testing methods, we can make our implementation to achieve the goal of soware testing more

closely.

• Unit Testing

Unit testing is a method by which individual units of source code, sets of one or more

computer program modules together with associated control data, usage procedures, and

operating procedures, are tested to determine if they are fit for use. Unit tests are typically

wrien and run by soware developers to ensure that code meets its design and behaves

as intended. Its implementation can vary from being very manual to being formalized as

part of build automation.

• Unit Testing Framework

Unit testing frameworks help simplify the process of unit testing. It is generally possible

to perform unit testing without the support of a specific framework, whereas once a

framework is in place, adding unit tests becomes relatively easy.

• Regression Testing

Regression testing is any type of soware testing that seeks to uncover new soware

bugs, or regressions, in existing functional and non-functional areas of a system aer

changes, such as enhancements, patches or configuration changes, have been made to

them. e intent of regression testing is to ensure that a change such as those mentioned

9

above has not introduced new faults. One of the main reasons for regression testing is to

determine whether a change in one part of the soware affects other parts of the soware.

1.5 Overview

e structure of this thesis is shown as follows. Chapter 2 describes the related work about

cloud managements and soware testing. Chapter 3 and Chapter 4 explain our method and

implementation. Chapter 5 shows the experimental results. Finally, Chapter 6 concludes our

achievements with further work that may enhance our results.

10

Chapter 2

Related Work

Before implementation, we first collect and survey the materials that are related to the

testing framework. Cloud managements tools are the techniques that can make our framework

scalable; Windows GUI operation tools are used to solve the human intervention problem in

the experiments, and soware testing surveys make out implementation more complete. In the

end of this chapter, we also introduce two soware testing frameworks whose goals are similar

to ours, and compare them to our design.

2.1 Cloud management tools

With the concept of ”Cloud”, the hardware and soware resources on host are virtualized

to the guest machines running on host. We will benefit from it while we are going to design a

testing framework targeted for large scale testing.

We survey some cloud management tools to help us manage the resources on our testing

platform.

2.1.1 libvirt

Libvirt provides awide range of API formanaging platform virtualization. As the development

team announced *, the goal of libvirt is to provide a common and stable layer sufficient to

*Project goals: hp://libvirt.org/goals.html

11

securely manage domains † on a node ‡.

erefore, libvirt is designed to provide all APIs needed to do the management, such as

provision, create, modify, monitor, control, migrate, and stop the domains. So libvirt is intended

to be a building block for higher level management tools and for applications focusing on

virtualization of a single node. We users don’t need toworry aboutwhich underlying hypervisor

is used, and almost all of the managements will be handled by libvirt through its APIs.

e internals of libvirt is a C library, but it also supports a variety of bindings in common

languages, such as Python, Perl, Ruby, Java, and PHP. Also, it provides command line interface

virsh to allow administrators can easily do management affairs.

2.1.2 OpenSta

OpenStack [10] is an Infrastructure as a Service (IaaS) cloud computing project. e project

aims to deliver solutions for all types of clouds by being simple to implement, massively scalable,

and feature rich. OpenStack is a cloud operating system that controls large pools of compute,

storage, and networking resources throughout a data center, all managed through a dashboard

that gives administrators control while empowering their users to provision resources through

a web interface (Figure 3).

Figure 3: OpenStack overview (source: OpenStack)

e OpenStack Dashboard provides administrators and users a graphical interface to access,

provision and automate cloud-based resources. OpenStack APIs are compatible with Amazon

†domain: An instance of an operating system (or subsystem in the case of container virtualization) running on
a virtualized machine provided by the hypervisor

‡node: A single physical machine

12

EC2 § and Amazon S3 ¶ and thus client applications wrien for Amazon Web Services can be

used with OpenStack with minimal porting effort. Developers can automate access or build

tools to manage their resources using the native OpenStack API or the EC2 compatibility API.

2.1.3 Eucalyptus

Eucalyptus [11, 12] is an open source soware for buildingAmazonWeb Services (AWS)-compatible

private and hybrid clouds.

As shown in Figure 4, Eucalyptus is designed to be compatible with AWS APIs so that

users can leverage Eucalyptus commands to manage either Amazon or Eucalyptus instances.

Cloud users can also move instances between a Eucalyptus private cloud and the Amazon

public cloud to create a hybrid cloud. Eucalyptus leverages operating system virtualization

to achieve isolation between applications and stacks. Operating system virtualization dedicates

CPU, RAM, disk, and network resources to systems and applications so that they don’t interfere

with each other.

Data Center

Physical Infrastructure

Virtualization

Eucalyptus

AWS Compatible API

Management Interface

Compute Storage Network

Admins

Developers

Users
User Console Applications AWS

Figure 4: Eucalyptus platform architecture

Both OpenStack and Eucalyptus are Cloud Management Platforms (CMPs), and they meet

§Amazon Elastic Compute Cloud (Amazon EC2): A web service that provides resizable compute capacity in the
cloud, see hp://aws.amazon.com/ec2/.

¶Amazon Simple Storage Service (Amazon S3): An online file storage web service offered by Amazon Web
Services, see hp://aws.amazon.com/s3/.

13

the same need in cloud management field ‖.

2.2 Windows GUI Operation Tools

One of the biggest inconvenient things in the past testing methods is that testers need to

involve in the manual operations in the guest OS to interactive with the target soware or OS

itself either using CLI (command line interface) or GUI (graphical user interface).

To achieve the goal of automatic testing, we are not willing to step into the testing process

humanly. Hence we need some automation and programmable methods to handle the series of

operations in guest OS.

2.2.1 Sikuli

Sikuli** [13] is a visual technology to automate and test GUI environment. Moreover, Sikuli

is cross-platform, wrien in Jython, so users can use Python syntax and modules to extend

when writing Sikuli scripts to identify and control GUI components either in Windows, OS X,

or Linux.

Figure 5: A sample of Sikuli script (source: Sikuli.org)

emost impressive feature of Sikuli is that it is triggered by image recognition (See Figure 5).

So even if the resolution changes or GUI elements moves, Sikuli will work fine as well. On the

other hand, Sikuli is said that it is slower than other similar toolswhich are triggered by elements

‖e comparison between CMSs could be seen at: hp://blog.opennebula.org/?p=4042
**Sikuli Script: hp://www.sikuli.org/

14

position or element ID cause it need to recognize image paerns on screen. Scripts will also not

work if the theme style of OS or soware changes.

2.2.2 AutoHotkey

AutoHotkey†† is an automation soware utility that allows users to automate repetitive

tasks in Microso Windows. AutoHotkey scripts can be used to send keystrokes and send

mouse clicks and movements. It is well designed for Windows environments and has very nice

APIs to control Windows specific programs.

e cons of AutoHotkey are that itsmousemoving is implemented by coordinate positioning.

is sometimes causes the script fail since the windows size and appearance model are not

always the same.

2.2.3 AutoIt

AutoIt‡‡ [14] is an automation language forMicrosoWindows. It supports COM (Component

Object Model) objects and Win32 DLLs functional calls, so users can precisely locate Windows

objects without concerning about coordinates position and the change of theme styles.

2.2.4 Comparison

Sikuli is convenient with its image recognition system, and users can simply focus on the

GUI operations and make a quick scripting on what they want to do. AutoHotkey has very nice

support to keystrokes related operations, but AutoIt is more focus on GUI interactions than

AutoHotkey.

We summarize the comparison between these tools in Table 1.

2.3 Soware Testing

e past testing method is manual, and isn’t repeatable efficiently. If an user wants to run

the same test again, the user needs to do all the repetitive processes ones more. is is not
††AutoHotkey: hp://www.autohotkey.com/
‡‡AutoIt, AutoItScript: hp://www.autoitscript.com/site/autoit/

15

Table 1: Comparison between Automation Tools

Tool Sikuli AutoHotkey AutoIt
Windows element recognition image - COM object

Mouse movement image coordinate coordinate
Resolution portable yes - yes∗

eme style portable - - yes∗
Standalone executable support - yes yes
Suitable environment to apply Android emulator /

Linux
Windows Windows

∗ Note: Support of ”resolution” and ”theme style” portable for AutoIt are only restricted in those
scripts using COM object positioning.

reliable since we human may make mistakes and the environment between two runs may be

different.

In soware engineering, we need to test our product in a reliable way to decide if the result

is the same as what we expect. rough a well-designed routine of the testing process, we

can focus more on our core jobs, says, soware quality and functionalities. To make the testing

process efficient and repeatable, we need to construct a testing framework towrapper the details

of testing processes, including those works done by human in the past.

We survey the test automation techniques, build a system that can control the execution of

tests and compare actual outcomes to predicted outcomes [15].

2.3.1 Test Automation

Some soware testing tasks, such as extensive low-level interface operations, can be laborious

and time consuming to do manually. In addition, a manual approach might not always be

effective in repetitive tasks. Once tests have been automated, they can be run quickly and

repeatedly if needed.

In our cases, we use QEMU-based environments to test our targets. In most situations, we

need to operate the guest VM to let it run some commands or take GUI actions. Aer that,

we then need to take a look on host OS and to do something corresponding to the guest VM.

Actually, the testing processes are always switching between the guest VM and host OS to and

fro manually.

16

erefore, we are truly required to make the process automated to reduce time and labor

consuming. en we note that we must make the test cases runnable first. Not running by

human operation, not determined what to do next by human, but keep the test cases in a

runnable format either through scripts or other ways.

rough test automation, we can automate previous repetitive but necessary testings in a

formalized process, or add additional testing that would be difficult to perform manually.

2.3.2 Unit Testing / xUnit

Unit testing is one type of testing methods. It involves testing the fundamental units of the

soware, and usually carried out by writing code that tries out the target unit, checking inputs

and outputs, one detailed factor at a time [16, 17].

By keeping such automated testing code, programmers can verify the correctness of their

code. Soware to manage these tests are oen called code-driven testing frameworks, and

various such frameworks have come to be known collectively as xUnit. e main advantage of

xUnit frameworks is that they provide an automated solution with no need to write the same

tests many times, and no need to remember what should be the result of each test.

ese frameworks are based on a design byKent Beck [18]. e design is originally implemented

for Smalltalk as SUnit [19], and later, Erich Gamma and Kent Beck ported SUnit to Java, creating

JUnit [20, 21]. From there, the framework was also ported to other programming languages.

2.3.3 Regression Testing

To shorten the soware development cycle, making the test cases reusable is necessary. In a

soware development cycle, we may change testing parameters, improve algorithms, tune the

environment seings, etc. To make sure the changes do not break the soware functionalities,

we are required to run a test on those testing cases we have used.

It is the target of regression testing. Regression testing is an integral part of the extreme

programming soware development method. e intents are to ensure that a change such as

those mentioned above has not introduced new faults and to determine whether a change in one

part of the soware affects other parts of the soware. Furthermore, we are not only concern

17

about the correctness, but we also interested in the improvement of the soware aer some

changes have made.

rough a runnable testing case and well-formed testing framework, we can easily achieve

these requirements by simply replace what we want to make changes of.

2.4 Related Implementations

Herewe introduce two implementations of soware testing framework: D-Cloud and ETICS.

ey are both designed for automatic testing, and want to give a solution for developers to

figure out if there are some defects in soware systems. We also summarize the cons of these

two implementations, and try to solve these inadequacies in our design.

2.4.1 D-Cloud

D-Cloud [22] is a soware testing environment using cloud computing technology and

virtual machines, proposed in 2010. As shown in Figure 6, D-Cloud takes a pre-defined scenario

as input. e testing environments such as hardware, soware, or network are set through

structured configurations. D-Cloud sets up a test environment on the cloud resources and

executes tests automatically according to a given scenario. It provides fault injection facility

to test the system working status and performance.

Figure 6: Flow of D-Cloud (source: D-Cloud paper)

18

2.4.2 ETICS

ETICS [23, 24] is an integrated infrastructure for the automated configuration, build and

testing of Grid and distributed soware, proposed in 2007. e architecture of ETICS is shown

in Figure 7. It provides a service for soware projects by integratingwell-established procedures,

tools and resources in a coherent framework and adapting them to the special needs of distributed

projects.

Figure 7: e ETICS System Architecture (source: ETICS paper)

2.4.3 Inadequacies

Both the designs of D-Cloud and ETICS have following cons.

• Applicable testing platforms are restricted to Windows and Linux systems.

• Testing targets are restricted to non-interactive soware that don’t need humanmanipulations,

such as web or database servers.

• Do not support GUI soware testing since it usually needs interaction.

• Cannot accept parameterizable inputs, so users need to make another test case when they

just want to change some factors.

• Testing functionalities are non-extensible or hard to extend.

19

Chapter 3

Method

In order to build a regression testing framework meeting our needs, we first illustrate the

scenarios. By conceived the scenarios, we can know what requirements are needed to be

provided in our system, such aswhat factors should be parameterized for flexibility and extensibility,

what procedure should be designed differently for different testing targets, and what material

should be provided to build a new test case.

With comparison to the current method, we also know what processes are needed as well

as what processes could be pruned to save costs. And then we can start to build our system,

design the architecture of the regression testing framework, and choose the techniques to be

used.

3.1 Scenarios

For future extensibility, the applicability of the regression testing framework not only focus

on current testing targets like Windows and Linux, but we hope it can also apply to more

targets that use QEMU as a testing environment. We enumerate several testing targets here

to demonstrate the using context but not limited to these scenarios.

3.1.1 Windows and Linux

We test vulnerable soware on Windows and Linux, and trying to find usable exploit by

feeding crash inputs to them.

20

On the whole, the testing processes taken in Windows and Linux are describe in section 1.2.

At stage 3, we need to take operations in guest OS, through Linux command line via SSH login

session or via VNC [25] (Virtual Network Computing) session if we are required to operate GUI

environment.

In the soware development cycle, we may change our symbolic or exploit generation

tools to make it works efficiently, or we want to change the crash input file, GUI operation

order, soware startup parameters, etc. We will make these factors to be parameterized in our

framework design.

3.1.2 Web Application

Automatic web testing method is also mainly based on symbolic execution to automate the

web exploit generation process. Symbolic socket [26] is used to propagate symbolic execution

through socket between applications. In QEMU, we set up web and database (DB) server with

target web application running on it. Symbolic socket is implemented by replacing each crawled

HTTP request with symbolic data which will be sent to web and DB server. In the other hand,

there are also corresponding handlers for HTTP and DB query response to transferring received

data to exploit generator at host OS. e overall architecture is shown in Figure 8.

QEMU

Web
Server

DB
handler

HTTP
response
handler

Exploit
generator

Symbolic
request
sender

Web
Server

Sym.
socket

Sym.
socket

Sym.
socket

S2E
Web client

Report

Figure 8: Overall architecture for web automatic testing

In web automatic testing, we will change the input query from web client, and the handler

behavior may be changed, too. So make these part tunable in the framework will let the testing

process reusable.

21

3.1.3 Android

As the smartphone market arising, there are more and more mobile applications (mobile

apps) appear every day. is booming industry indicates the necessity of soware testing.

e app developers need to test their product work normally no maer what version of

mobile OS * or apps are. Also, mobile soware distribution platforms providers need to know

whether the apps uploaded by developers are vulnerable or risky.

S2E QEMU (x86)

Android (x86)

App
(dalvikVM)

App
(dalvikVM)

App
(dalvikVM) ...

Figure 9: e architecture of x86-Android on top of S2E

In Figure 9we can see, by symbolic execution and fuzz testing, we can satisfy these requirements.

To run test on all versions of mobile OS and for each release of apps is nearly impossible in the

past. Developers can only choose some popular combination to test if their product may work

well. But with a regression testing framework, the problem are solved.

We can build the test cases one time, and run them easily whenever we make changes

in a mobile system, either OS version, apps version, or other factors. e regression testing

framework will be great beneficial to the mobile apps industry.

Since Android is an open source system and its marketing policy is open too, we will take

Android apps as our testing target. By verifying apps not harm to us, users can get more

protection.

*Mobile OS: i.e., mobile operating system. e most common mobile OS are Android, BlackBerry 10, iOS, etc.

22

3.1.4 Fuzzer

Fuzz testing is one of the common techniques of soware testing. It oen threats the

tested applications under test as a black box, so it’s especially useful in analyzing closed source

soware and proprietary systems since in most cases it does not require any access to the source

code.

Fuzzer is a kind of fuzz testing tools, which will generate data or events to repeatedly feed

the application with random input. e fuzzing result will be a valid input to the application,

but will cause the application work improperly or even terminate unexpectedly. If the soware

crashes, we can use the input, i.e., crash input as material in automatic exploit generation. By

feeding appropriate data as input instead of using truly random sequence, we are more likely

to find soware oversights or vulnerabilities. Improving fuzzing method is what the fuzzing

technique are dedicated to.

We would be pleased if there is a testing framework that can help us test the efficacy and

usability of new fuzzing method. If we run fuzzer in QEMU environment, we can achieve this.

3.1.5 Malware

Malware is soware used by aackers to disrupt computer operation, gather sensitive information,

or gain access to private computer systems. eymay have bugs because they are also soware,

but current researches rarely focus on this field.

We are interested in find malware vulnerabilities and usable exploits cause that most of the

malware users only focus on ”aack” but not ”defense”. If we successfully find exploit worked

on malware, we may have the ability to anti-aack.

On the other hand, one commonway of anti-malware strategies is using anti-virus or anti-malware

soware. e method of detecting malware aacking is oen by some specific behavior or

functioning paern. e detecting technique may also need regression testing aer applying

new method.

23

3.1.6 Embedded System

Embedded system is the most commonly present forms of computers in the world. e

method of factory and acceptance testing in development period is usually black box testing

by human or component unit testing on specific functions. If we can run embedded system

soware on QEMU-based emulator, we can have a reusable and quick testing method through

our regression testing framework.

3.2 Requirements

As a summary of previous section, we can modify our past testing method in Figure 2, and

transfer it to a new testing model as shown in Figure 10.

Boot clean
snapshot

GUI operations
(execution)

Save
< snapshot >

Boot
< snapshot >
with
< QEMU >

Boot
< snapshot >

GUI operations
(verification)

Figure 10: New testing model modified from past method

en we can digest the requirements of our regression testing framework from this model

and the scenarios described in previous section here:

• Seing up testing environment

Before each testing, the host-guest VM environment should be set up first. e testing

target need to be installed in the guest OS, as well as the S2E tools to do symfile works.

Furthermore, the network environment should also be set up to so that the framework

could access to it.

• Operating QEMU via host

Framework should have the ability to operate guest OS through QEMU, including guest

OS booting, savevm and loadvm of snapshots, guest OS statusmonitoring, symbolic execution,

24

etc.

• Building shared file system

Basically, guest OS need get crash input to run symbolic execution and generated exploit

to do verification from host OS. erefore, a shared file system needs to be provided in

the framework to exchange files between host and guest OS.

• Building communication channel

Guest OS and host need a method to communicate to each other within a test running.

Without a communication channel, guest OS will not know when to do next step cause it

doesn’t know when host OS has done preparing those required works and vice versa.

• Recording output and errors in each testing

As a regression testing framework, well-formed results and report are required undoubtedly.

It is also hoped that the result of each testing can be easily found and viewed at any time.

• Automating operations in guest OS

To automate the testing processes, human operations in guest OS should be avoided.

So the operations in guest OS need to be transferred into programmable and automated

methods through the GUI automation tools and scripts described in section 2.2

• Parameterizing tunable factors

To keep flexibility, the regression testing framework is required to abstract as more as

factors from core, and use the parameters got from test cases configurations.

• Providing API for creating test cases

Creating a test case easily to run testing is one of the most important functionalities of a

regression testing framework. In the design, appropriate APIs should be provided to let

users can create their test cases through giving required material. e generated test case

will be runnable and reusable once it is created.

• Managing running tests

e regression testing framework is required to have ability to manage the tests running

on it. Users may add new testing or deleting unwanted testing in queue through the

25

management interface. Also, viewing the progress of current running testing will be a

nice feature in the framework.

• Verifying exploit

Aer generating exploit, the regression testing framework needs to verify it to see if it is

usable. To achieve this, the verifying procedure is required to be automated.

• Generating readable report

Aer testing is done, users may want to get a detail report about the testing. A report that

is well formed and easy to analyze will benefit users if they run a large scale of testing.

3.3 Our Method

In this section, we propose our design on the implementation of the testing framework.

First, we introduce a hardware resource management layer on the boom of the framework.

en we provide a management structure to handle various testing environments. Finally a

communication method to let host and guest co-work to each other is designed.

3.3.1 Host Resource Management

We want to abstract the host resources from testing environment, thus we can do a large

scale of soware testing if we increase the computing power by adding hardware.

erefore, we think of the concept of ”cloud computing”. rough cloud computing, the

hardware resourcees will be virtualized, and the testing nodes running on the framework can

share the computing resource. (See Figure 11)

3.3.2 Guest Maine Management

On the other side of guest machine management, we want a structured configuration of

guest machine for each test case. In this case, we can boot up and run any prepared test case at

any time if we want, and no need to worry about what combination of images, shellcode †, or

S2E configurations should be used.
†A shellcode is a small piece of code used as the payload in the exploitation of a soware vulnerability.

26

CPU
Storage
Memory
...

hardware
resource

Cloud management layer

Regression testing framework

Testing nodes shares the resource

Figure 11: Framework over cloud computing

Furthermore, we want an overview of current running testing to monitor the test status.

3.3.3 Communication System between Host and Guest

To solve themanual operations problem on guest OS, we need amethod to take responsibility

of communications between host and guest. ereforewe testers don’t need to copy themessages

of one side to another or decide what the next action should be done according to the responses

from either side.

In this situation, we have some choices to solve the problem, such as modifying QEMU to

embed customOP codes, or seing up a central sever to take responsible of delivering messages.

Here we choose option of designing a simple protocol to let guest and host OS communicate to

each other through network socket (Figure 12).

Host send command to Guest

Guest response result to Host

Host OS Guest OS

Figure 12: Communication channel outline

27

3.4 Windows GUI Object Manipulation

ere are three parts in the past testing method that need manual operations in guest OS.

Each part requires an alternative automation method to make the automatic testing work. In

section 2.2, we have survey several tools that can be used in GUI operation automation, and here

we summarize the method that will be used to solve the problem in each part.

3.4.1 Symfile

Before symbolic execution, we need to make the input symbolic through our own program

in guest OS. e programs need to take input as a command line parameter and feed the data

in S2E mode aer processing them. is procedure can simply completed by using the cmd.exe

utility built-in in Windows with command of the full program and input path.

3.4.2 Soware Operation

is part is more complicated than previous. ere are great differences in types of soware

operations. e interfaces, the menu and theme styles, and even the methods of opening a file

are all different.

Hence we need to use separate procedure for different target soware according to actual

circumstances. In this stage, we will use automation script corresponding to each target, to

operate soware acting as what we users will do on them. e script for each soware is best

able to adapt to variety of environments such as different OS version, different resolution or

theme style, etc., thus we don’t need to worry the script won’t work if the environment changes.

3.4.3 Exploit Verification

At the last stage of regression testing, we need to verify if the generated exploit is usable.

e most intuitive way is using the exploit on the target soware to see the shellcode will run

or not. Mostly, we set up the shellcode to run a calc.exe program. So if the exploit is usable,

the target soware using the exploit as an input will trigger a calc.exe process aer opening

or processing the exploit file as input.

28

In this step, we need a clean environment installedwith the target soware, and automatically

operate the soware to process the generated exploit. enwe also need to check if the calc.exe

process has been triggered to run on system. If the answer is yes, the exploit pass verification.

Otherwise, the testing result may be failed.

29

Chapter 4

Implementation Details

We separate the implementation of our regression testing framework into four parts. First

of all, we handle the cloud-based architecture of managing hardware resources. en we will

implement the guest machine and QEMU images management, as well as the communication

protocol between guest and host OS. Finally, we will collect the testing result of each run.

Besides, we will show how to build a runnable and reusable test case for the regression testing

framework in the end of this chapter.

4.1 Implementation Language

We choose Python as our implementation language. e considerations of choosing it to

implement our regression testing framework are:

1. Portable

If the code base is portable, we can share some common library to use onWindows, Linux,

and other OS on any architecture without handling the cross-platform problem.

2. Native bidding library support

In the regression testing framework design, we are going to use libvirt and maybe some

cloud management tools. If these tools or library have native bidding for the language we

chosen, we can directly use it in our implementation, and don’t need to consider about

the compatible problem if the low level library changes.

3. Scriptable

30

A programming language is scriptable means the source code wrien by the language can

be run directly without compiling it. ere are two advantages at least if our selecting

is scriptable. First, we need to simplify the complicity of deployment. Once the codes

are modified, we can directly deploy them without compiling them according to platform

differences. Second reason is for creating test cases easily. Make the process of creating

a test case as easy as possible, we can easily refine or tune it.

4. Easy maintenance

e language chosen is beer to have good syntax specification. erefore themaintenance

and future extensibility will be less pain.

4.2 Regression Testing Framework Aritecture

In this section, wewill describe the implementation detail of our regression testing framework

from boom to top.

APIs

CRAXUnit Framework

Linux Host

libvirt Library

Guest OSes

Hypervisor Layer (QEMU)

Communication Channel

Database Test Cases
Image Files
Running ResultsWrite / Manage / Run

Users

Hardware Resources

Figure 13: CRAXUnit Architecture

e architecture of our platform is shown in Figure 13, we named it CRAXUnit. We will

introduce how we abstract the hardware resources, how we manage the environment seings,

and how we control the guest and host OS to communicate to each other.

31

4.2.1 Cloud-based Management

Wewant to abstract the physical infrastructure fromour framework by using cloudmanagement

concept. Libvirt has very comprehensive APIs for manipulating platform virtualization. It

can be used to manage Linux KVM, XEN, VMware ESX *, QEMU, and other virtualization

technologies.

libvirt API
Linux host

Physical Hardware

Hypervisors
Driver

VMs

Hypervisors
XEN, QEMU, etc.

Figure 14: Hypervisor support by libvirt

As shown in Figure 14, libvirt implements a driver-based architecture, which allows a common

API to service a large number of underlying hypervisors in a general way. is means we

don’t need to worry about what functionality one hypervisor have implemented. We can just

use libvirt API to write our own applications, and the hypervisor could be switch from one to

another in the future with few costs.

In the beginning, we use libvirt to control QEMU and the testing nodes to replace themanual

management in our past testing method.

Figure 15 shows how our implementation will work based on libvirt. Libvirt implements

a special daemon called libvirtd which runs on host. libvirtd provides the means to access

local hosts resources if we need to integrate several hosts via network. e regression testing

framework plays the role of management application, and communicates through the local

libvirt to the remote libvirtd via a custom protocol. If we only have one host, the framework

will directly control the local resource through libvirt API.

*VMware ESX is an enterprise-level computer virtualization product offered by VMware, Inc.
See hp://www.vmware.com/products/vi/esx/

32

libvirt API

Linux host

Physical Hardware

Hypervisors
Driver

VMs

Hypervisors
XEN, QEMU, etc.

Regression Testing
Framework

libvirt API

Linux host

Physical Hardware

VMs

Hypervisors
XEN, QEMU, etc.

libvirtd
Hypervisors

Driver
Hypervisors Driver

Network

Figure 15: Regression testing framework on libvirt

4.2.2 Disk Images and Snapshots Management

QEMU disk images keep the hardware and soware information of specific environments.

For each independent test, the required image will be different. And the saved snapshots during

the testing will also be saved in the same image file that used to boot the guest OS.

We save the images file collection information in our own configurations.In each testing, we

can assign an existing image to be the environment to do the testing. Testing using the same

specific image cannot be run simultaneously because of the file lock control policy.

And also, we keep the flexibility in our framework to switch fromour own imagemanagement

system to another one. We implement this by provide an aribute named get_image_method

to indicate how to get the real image file path to use in one testing. Users can assign this aribute

to another function which will use their own image management system to get the image file.

4.2.3 Connection Channel and Shared File System

We design a simple protocol for interchanging information between host and guest OS. Host

need to signal guest in the following points:

• When booting, sending testing specific ID to guest that shared between guest and host

33

• Starting savevm

• Finishing savevm

• Starting Running in S2E mode

• Starting verifying

And guest also need to send signal to host:

• Aer symfile

• Guest is in static state, signaling host to start savevm

• Verifying result

e implemented protocol commands are shown in Table 2. Command started with a H

means it is used for host sending to guest; command started with a G means it is used for guest

sending to host.

Table 2: Communication channel protocol commands

Commands Description
HUID Send testing unique ID
Hsavevm Host start to savevm
Hsavevmdone Host done savevm
HS2Emode Host run as S2E mode
Hverify Host run as verify mode
Gstatic Guest system is static
Gsymfile Guest start to symfile
Gsymfiledone Guest done symfile
Gverifying Guest return verifying result

On the other side, we provide shared file system between guest and host OS using NFS [27].

It will be used to share files such as crash inputs, exploit, scripts, etc. since their size may be

too big to send through a simple network socket protocol.

34

4.3 Regression Testing Framework

Till now, the components of the regression testing framework are well prepared. We can

combine them and go through a scenario to see how the testing framework is working.

4.3.1 A Workflow of a Regression Testing

Herewe describe howour regression testing framework (belowwe just call it ”the framework”)

works.

Snapshot
 - initial

Host Guest

1. get unique ID from host
2. take a clean snapshot

Snapshot
 - clean 1. make symbolic to crash

input
2. take a clean snapshot
3. terminate QEMU session

Snapshot
 - symbolic

1. GUI automation to trigger
symbolic execution

2. terminated if exploit
generated or time-out

Snapshot
 - clean

1. verify exploit
2. terminate QEMU session

boot with normal-qemu

boot with S2E-qemu

boot with normal-qemu

Figure 16: A workflow of single testing

First, when an user starts running a test case, the framework gets the configuration from

test case about image file to use, crash input file, testing target, machine hardware seings, and

other required aributes. (We will explain the detail of these information later in section 4.3.2.)

en the host boots the guest OS.

See Figure 16, e guest OS is prepared previously running a daemon that interactives with

host, so aer it finishing booting, it gets the testing unique ID from host as a key that is used

during this testing.

35

First, the guest signals host to start making a first snapshot by savevm action to keep a clean

environment that is used to verify generated exploit in the last step. en the guest signals host

again to make a snapshot aer doing symfile to the crash input received from host. Aer the

two snapshots taken, this booting session is terminated by QEMU.

Next, we go for the symbolic execution stage. e framework boots the snapshot with

symfile state using S2E version QEMU, and guest is signaled by host telling that it’s S2E mode,

and start to run a GUI automation procedure to trigger the symbolic execution.

e host continues monitoring the state of symbolic execution and recording the output.

is booting session is terminated in two situations. First, the exploit successfully generated and

host receive a kill-state from S2E. Second, the time lasting for symbolic execution has exceeded

the time-out configuration in the test case. If the laer happens, the testing is terminated and

the framework throws a SymExecTimeout exception.

If the exploit successfully generated, we can go through to the verification stage. e

framework boots the snapshot with clean state using normal version QEMU, and send the

exploit into guest. en the guest starts running GUI automation procedure to verify if the

exploit is usable or not.

If the guest system detects that a calc.exe process have been triggered aer opening the

exploit using the target soware, it notifies host with successful signal. Otherwise, if the

guest doesn’t detect such process running within the time limitation, it signals host with an

ExploitRunTimeout exception. e booting session is terminated in both case.

Finally, we are prepared to yield a general report about this testing. e testing report at

least contains the following information:

• e basic configuration of this testing

• e success or failure of this testing

• If failure, the failure type or reason; if success, the time spent in each stage

• e detail output of the symbolic execution

Figure 17 shows an example of result output. It provides the basic information of a particular

testing to the user, and can be reviewed in the future at any time.

36

Figure 17: An Example of Result Output

4.3.2 A Sample Test Case

e required and optional aributes configurations in a test case are shown in Table 3.

First, we need to provide the configuration for the testing environment seing, i.e., image,

testing target, and connection channel. en we need to provide the crash input and shellcode

required for the exploit generation process. Besides, we can set optional values to overwrite the

default aributes that will be used during testing process, such as the information about offset,

size, and timeout.

And a sample of test case to test exploit generation under Windows is shown in Code 1.

At line 5, we create a test case by using CRF.test.Test() method. It needs two arguments.

e first one is the naming of this test case; the second is a Python Dictionary type object that

indicates the aributes of this test case. Usable aributes are already described in Table 3.

We can run a test on the command line. Just use something like this:

$ python2 -m CRF -c 'CRF.test.run("test1")'

e framework will search the test case named test1 under current directory, run a testing

with it, and generate a readble result.

37

Table 3: Configurations in a Test Case

Configuration Entry Description Type Required Default Value
get_image_method function to get image file String Optional pget_image
image_id QEMU disk image file ID String yes
crash_id crash input file ID String yes
target_id testing target soware ID String yes
machine_id machine hardware configuration ID String Optional default
autoit_id AutoIt script ID to manipulate GUI String yes
channel_port connection channel port Integer yes
symexec_timeout timeout limit for symbolic execution Integer Optional 600
verify_timeout timeout limit for verifying stage Integer Optional 60
symbolic_offset offset for making symbolic on file Integer Optional 0
symbolic_size length for making symbolic on file Integer Optional (full file)
symexec_offset offset for symbolic execution Integer yes
symexec_size length for symbolic execution Integer Optional 100
symexec_jmp_offset jump offset for symbolic execution Integer Optional 200
symexec_jmp_size jump length for symbolic execution Integer Optional 100
symexec_eip_offset EIP offset for symbolic execution Integer Optional 100
symexec_eip_size EIP length for symbolic execution Integer Optional 200
shellcode_id shellcode ID to generate exploit Integer yes
exploit_target target process triggered by exploit String Optional calc.exe

4.3.3 More Functionalities

Being a regression testing framework, our platform tries to provide useful functionalities as

many as possible.

• Showing useable test cases: We can list the built test cases in our system (Code 2).

• Selecting specific test cases: When building a test case, we can tag it with aributes.

en we can select a bunch of test cases by these aributes and do some actions on them

(Code 3).

• Showing tested results: We can review the test results of any test case which we have

tested before (Code 4).

• Regression testing wrapper: When some parts in the system are being modified, we may

want to take a test to see what will be impacted by this change. uswe can use a wrapper

code to handle this situation (Code 5).

38

Code 1: A sample test case: test1.py

1 # Import required module
2 import CRF
3
4 # New a CRF testing and give required attributes for this testing
5 test1 = CRF.test.Test('test1',
6 {
7 'test_type': 'exploitgen',
8 'image_id': 'Windows_XP_0',
9 'crash_id': 'CVE -2010 -3333 _DOC_2011 -01-06.doc',
10 'target_id': 'Office_2003',
11 'autoit_id': 'office_1',
12 'channel_port': 10354,
13 'symexec_offset': 35650,
14 'shellcode_id': 7
15 })
16
17 test1.setTag([
18 'Windows', 'Office', 'Windows_XP', 'Office_2003', 'CVE_2010',
19])

Code 2: Showing test cases example

1 # list all test cases under a directory
2 CRF.admin.listAllCase('/home/data/tests/windows')

We list the basic types in CRAXUnit in Table 4, and the APIs currently provided in CRAXUnit

are listed in Table 5.

Table 4: Basic type in CRAXUnit

Type name Description
Test A runnable test case including required information
Set A collection of Test, but not runnable
TestSet A runnable test set composed of a Set including required information

39

Code 3: Selecting test cases example

1 set0 = CRF.test.selectAll('/home/data/tests/windows')
2 set1 = set0.selectByTagAnd('Windows', 'Office')
3 set2 = set1.selectByTagOr('Windows', 'Office')

Code 4: Showing test results example

1 date1 = time.mktime((2012, 12, 21, 0, 0, 0, 0, 0, 0))
2 date2 = time.mktime((2013, 2, 1, 0, 0, 0, 0, 0, 0))
3
4 # Show all results for specific test
5 CRF.admin.showTestResults('test1')
6 # Restrict the result between a date range
7 CRF.admin.showTestResults('test1', date1 , date2)

Code 5: An example of testing wrapper

1 set0 = CRF.test.selectAll('/home/data/tests/windows')
2 set1 = set0.selectByTagAnd('Windows', 'Office')
3
4 test2 = CRF.test.TestSet(set1 ,
5 {
6 'symexec_offset': 21480,
7 'shellcode_id': 7 }
8).run()

Table 5: APIs in CRAXUnit

Class Method Description
test Test Create a new test case
test TestSet Create a new test set with a set
test selectAll Select all test case as a set
test.set selectByTagAnd Select a set by tag using AND logic
test.set selectByTagOr Select a set by tag using OR logic
test.testCase run Run a test case
test.testCase setTag Set tags to test case
test.testSet run Run each tset case in a test set
admin listAllCase List all test cases
admin showTestResults Show tested results

40

Chapter 5

Results

Building a reusable soware testingmethod onQEMU-based system as the goal, we implement

the regression testing framework that can easily create, manage, and run tests. We also create

an exploitable test case database for the framework using. us, we can do soware testing and

verify our modification to the exploit generation method efficiently.

In this chapter, we will show the experimental result of our implementation and compare it

to some similar works.

5.1 Regression Testing Framework for QEMU-based System

e regression testing framework can provide the following functionalities:

• Test cases creation, managing, and running

We provide a series of API to let testers to manipulate test cases. rough these APIs, one

can create tests easily with providing required entries. Later, she or he can classify these

tests into different tags according to one’s purpose. Test cases maintainers can choose to

list these tests by their tags or other aributes, or choose to view previous tests result by

constraints. e last, as the most important part of the regression testing framework, one

can efficiently run a batch of test cases on demand, and providing different arguments to

change the testing method is also acceptable.

• Automation testing procedure

e past method used on QEMU-based system testing need human intervention in guest

41

OS. We replace the manual GUI operations with programmable GUI automation scripts

and communication channel that can send control message from host to guest. As a

result, we can now run through the whole testing procedure without geing into guest

OS manually. It’s a more efficient and innovation way to do the testing.

• Regression testing ability: parameterizable

Our framework reserve flexibility for testers to customize their wanted testing. Either

testing target, testing environment, S2E version, shellcode, or symbolic offset are all parameterizable.

is feature makes the framework have the ability to do regression testing, both for

previous test cases verification and future development testing.

• Flexible extensibility: extending connection channel commands

We use a connection channel with self-defined communication protocol to handle the

actions taken on guest OS and host OS. We provide a series of commands to control

some common actions. Developers can extend the protocol by simply adding their own

commands and corresponding actions to guest OS by themselves, then the framework

will be able to do more extensive testing.

5.2 Testing Bran Database

In our framework, we have rebuilt a test case database from the existed exploitable testing.

ose messes such as images files, configurations, and crash inputs we need to handle manually

are not needed any more. We can run a test case just using the database to select out what need

to be tested.

e built exploitable test cases in our database are shown in Table 6.

5.3 Improvement

In order to test our method, we compare our testing framework with others’ and the past

method to show what functionalities our platform can provide.

42

Table 6: Exploitable Test Case in Database

OS Soware Crash Input Image
1 Windows XP Office 2003 CVE-2010-3333_DOC_2011-01-06.doc Windows_XP_0
2 Windows XP Coolplayer CVE-2008-3408.mp3 Windows_XP_1
3 Windows XP Distiny CVE-2009-3429.mp3 Windows_XP_2
4 Windows XP Dizzy EDB-ID-15566.mp3 Windows_XP_2
5 Windows XP GAlan OSVDB-ID-60897.galan Windows_XP_2
6 Windows XP GSPlayer OSVDB-ID-69006.mp3 Windows_XP_1
7 Windows XP MPlayer EDB-ID-17013.mp3 Windows_XP_1
8 Windows XP Foxit Reader OSVDB-ID-68648.pdf Windows_XP_3

5.3.1 Time and Efficiency Comparison

e beginning motivation of our work is to build a framework that provides automatic

regression testing without human intervention. Here we list the comparison of testing work

using the past method and our CRAXUnit framework in Table 7 and Table 8.

Table 7: Comparison of running one testing

method past method using CRAXUnit
time consuming 10 minutes 8 minutes
operation type human monitoring / operation all the time just one command
tunable factors manual parameterizable input

Table 8: Comparison of running a testing benchmark

method past method using CRAXUnit
test case numbers 7 7
time consuming 1 hour 23 minutes 45 minutes
operation type human monitoring / operation all the time just one command
involved configurations 7 none (set in test cases)
tunable factors manual parameterizable input

5.3.2 Feature Comparison

Table 9 shows the comparison between the related implementations mentioned previously

and our framework. Our platform, CRAXUnit supports almost all QEMU-based system testing,

and extending the functionalities of the framework is an easywork just throughwriting plug-ins

43

Table 9: Comparison between Frameworks

Framework D-Cloud ETICS CRAXUnit
Image Mgmt. yes - yes
Test case Mgmt. yes yes yes
Parameterizable input - - yes
Target type Windows/Linux Windows/Linux QEMU-based system
Guest operations - - yes
Distributed testing yes yes yes∗
Test application type fault testing fault testing fault, security, benchmark testing
Extensibility modify QEMU - Python plug-in

∗ Note: S2E only supports one host testing currently.

in Python. erefore, by extensibility features, we can use CRAXUnit to execute not only

fault testing but also security, benchmark testing, etc. Moreover, our framework can accept

parameterizable inputs so that users don’t need to generate another test case when they just

want to tune some factors.

44

Chapter 6

Conclusion and Further Work

In this final chapter, we summarize our work and list some further work to refine our

method.

6.1 Conclusion

In this thesis, we implemented a regression testing framework for soware testing onQEMU-based

system, which is applicable for testingwork onWindows, Unix-like system, Android and testing

target as fuzzer, malware, embedded system and so on.

Our framework provides an innovative method for soware testing. Usually those testing

involve GUI operations need human intervention using past methods, and testing based on

QEMU also need human to jump into guest OS to manipulate in guest environments. Our

method makes the whole testing automatically without any manual operations by establishing

a channel to take control between guest and host OS.

As a well-formed framework, we also provide APIs for creation, managing, and running test

cases. Tests can easily be operated and repeated through these APIs, and testing results are also

managed properly that can be selected and reviewed at any time. Our framework architecture

also allows users to do more type of testing by simply extending its functionalities if the built-in

ones are not sufficient.

In order to run experiments on our framework, we also rebuild an exploitable test case

database transformed from previous manual test cases. Some scenarios that have not been

exploited successfully yet have also been created as test cases in our databasewaiting formethod

45

improving in the future.

6.2 Further Work

Here we propose some further work to implement or to improve that can refine our work:

• Environments seing up and GUI automation method improvements

e initial disk image files used by our framework require users to customize the environments

and install a daemon for the framework. Since these procedures take really a long time

in test case preparing stage, it will be beer to have an automatic initializing method.

On the other hand, the GUI automation scripts we use now are made case by case. To

quickly build large amount of test cases, we can take one basic script and modify from it

to adapt to dedicated cases, but this is still not efficient. For long-term considerations, we

are beer to propose a more efficient method to solve the GUI automation problem.

• Running queue management

ough thatwe use cloudmanagement techniques to handle underlying hardware resources,

the framework still can deploy only one testing instance at a time. is is because our

framework doesn’t provide parallel APIs. A test will be deployed only when the previous

one terminated. If users want to run several tests in parallel, they need to handle the

simultaneous problem by using fork system call or issue several commands successively.

It will be a good enhancement if the framework supports running queue management.

Users can add test tasks into queue, and the tasks can be issued depending on hardware

resources automatically or by users’ decision.

• Testing ability for distributed computing

e current architecture of S2E is only support single-machine soware testing. Since

we are using S2E as our core element, the range of testable target is restricted as well.

To achieve this goal, our framework should have the ability of booting several testing

instances at once and communication between co-working guests. e trend of information

industry is toward to distributed computing, and more and more soware are starting to

support distributed co-working. So if our system can support real distributed system

testing, the testing coverage will be raise up and comprehensive.

46

Reference

[1] James C King. Symbolic execution and program testing. Communications of the ACM,
19(7):385–394, 1976.

[2] Corina S Păsăreanu and Willem Visser. A survey of new trends in symbolic execution for
soware testing and analysis. International journal on soware tools for technology transfer,
11(4):339–353, 2009.

[3] Edward J Schwartz, anassis Avgerinos, and David Brumley. All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but might have been
afraid to ask). In Security and Privacy (SP), 2010 IEEE Symposium on, pages 317–331. IEEE,
2010.

[4] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S Păsăreanu, Koushik Sen,
Nikolai Tillmann, and Willem Visser. Symbolic execution for soware testing in practice:
preliminary assessment. In Proceedings of the 33rd International Conference on Soware
Engineering, pages 1066–1071. ACM, 2011.

[5] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: A platform for in-vivo
multi-path analysis of soware systems. ACMSIGARCHComputer Architecture News, 39(1):
265–278, 2011.

[6] Shih-Kun Huang, Min-Hsiang Huang, Po-Yen Huang, Chung-Wei Lai, Han-Lin Lu, and
Wai-Meng Leong. CRAX: Soware crash analysis for automatic exploit generation by
modeling aacks as symbolic continuations. In Soware Security and Reliability (SERE),
2012 IEEE Sixth International Conference on, pages 78–87. IEEE, 2012.

[7] QEMU - open source processor emulator. http://qemu.org/.

[8] Fabrice Bellard. QEMU, a fast and portable dynamic translator. USENIX, 2005.

[9] libvirt: e virtualization API. http://libvirt.org/.

[10] OpenStack open source cloud computing soware. http://www.openstack.org/.

[11] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia
Youseff, and Dmitrii Zagorodnov. e eucalyptus open-source cloud-computing system. In
Cluster Computing and the Grid, 2009. CCGRID’09. 9th IEEE/ACM International Symposium
on, pages 124–131. IEEE, 2009.

[12] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia
Youseff, and Dmitrii Zagorodnov. Eucalyptus: A technical report on an elastic utility
computing architecture linking your programs to useful systems. In UCSB TECHNICAL
REPORT. Citeseer, 2008.

47

http://qemu.org/
http://libvirt.org/
http://www.openstack.org/

[13] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. Sikuli: using GUI screenshots for
search and automation. In Proceedings of the 22nd annual ACM symposium on User interface
soware and technology, pages 183–192. ACM, 2009.

[14] Jason Brand and Jeff Balvanz. Automation is a breeze with AutoIt. In Proceedings of the
33rd annual ACM SIGUCCS fall conference, pages 12–15. ACM, 2005.

[15] Dorota Huizinga and Adam Kolawa. Automated defect prevention: best practices in soware
management. Wiley-IEEE Computer Society Press, 2007.

[16] Kent Beck. Embracing change with extreme programming. Computer, 32(10):70–77, 1999.

[17] Kent Beck and Cynthia Andres. Extreme programming explained: embrace change.
Addison-Wesley Professional, 2004.

[18] Kent Beck. Simple smalltalk testing: With paerns, 1999.

[19] SUnit - the mother of all unit testing frameworks. http://sunit.sourceforge.net/.

[20] Kent Beck and Erich Gamma. Test infected: Programmers love writing tests. Java Report,
3(7):37–50, 1998.

[21] Erich Gamma and Kent Beck. JUnit: A cook’s tour. Java Report, 4(5):27–38, 1999.

[22] Takayuki Banzai, Hitoshi Koizumi, Ryo Kanbayashi, Takayuki Imada, Toshihiro Hanawa,
and Mitsuhisa Sato. D-Cloud: Design of a soware testing environment for reliable
distributed systems using cloud computing technology. In Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, pages 631–636.
IEEE Computer Society, 2010.

[23] Marc-Elian Bégin, Guillermo Diez-Andino Sancho, Alberto Di Meglio, Enrico Ferro,
Elisabea Ronchieri, Maeo Selmi, and Marian Żurek. Build, configuration, integration
and testing tools for large soware projects: ETICS. In Rapid Integration of Soware
Engineering Techniques, pages 81–97. Springer, 2007.

[24] Francisco J González-Castaño, Javier Vales-Alonso, Miron Livny, Enrique
Costa-Montenegro, and Luis Anido-Rifón. Condor grid computing from mobile
handheld devices. ACM SIGMOBILE Mobile Computing and Communications Review, 6(2):
18–27, 2002.

[25] Tristan Richardson,entin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper. Virtual
network computing. Internet Computing, IEEE, 2(1):33–38, 1998.

[26] David Brumley, Sang Kil Cha, and anassis Avgerinos. Automated exploit generation,
December 13 2012. US Patent 20,120,317,647.

[27] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and
implementation of the Sun network filesystem. In Proceedings of the Summer USENIX
conference, pages 119–130, 1985.

48

http://sunit.sourceforge.net/

	摘要
	Abstract
	Contents
	List of Codes
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Description
	Objective
	Background
	Automatic Exploit Generation System
	Cloud Management
	Software Testing

	Overview

	Related Work
	Cloud management tools
	libvirt
	OpenStack
	Eucalyptus

	Windows GUI Operation Tools
	Sikuli
	AutoHotkey
	AutoIt
	Comparison

	Software Testing
	Test Automation
	Unit Testing / xUnit
	Regression Testing

	Related Implementations
	D-Cloud
	ETICS
	Inadequacies

	Method
	Scenarios
	Windows and Linux
	Web Application
	Android
	Fuzzer
	Malware
	Embedded System

	Requirements
	Our Method
	Host Resource Management
	Guest Machine Management
	Communication System between Host and Guest

	Windows GUI Object Manipulation
	Symfile
	Software Operation
	Exploit Verification

	Implementation Details
	Implementation Language
	Regression Testing Framework Architecture
	Cloud-based Management
	Disk Images and Snapshots Management
	Connection Channel and Shared File System

	Regression Testing Framework
	A Workflow of a Regression Testing
	A Sample Test Case
	More Functionalities

	Results
	Regression Testing Framework for QEMU-based System
	Testing Branch Database
	Improvement
	Time and Efficiency Comparison
	Feature Comparison

	Conclusion and Further Work
	Conclusion
	Further Work

	Reference

