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觀測器基礎純加速規平面式慣性量測單元 

 

研究生：陳奕龍      指導教授：陳宗麟博士 

 

國立交通大學機械工程學系 

摘要 

本論文主要是由多顆加速規量測空間中運動物體之角速度及線性加速度，此一做

法統稱之為慣性量測單元。 

傳統上慣性樑測單元由陀螺儀量測角加速度及加速規量測線性加速度，則在求得

空間中物體位置及姿態時須經過兩次積分，此一作法會造成嚴重之誤差累積。於是

20 年前發展藉由加速規擺放位置不同求得角加速度，此種做法降低了慣性量測單元

生產成本，但未能解決兩次積分造成的嚴重誤差。無論使用陀螺儀或是加速規得到角

加速度，都是事先製作好再擺放至慣性量測單元上，這樣在擺放時會造成另外的誤差

產生。 

本論文的做法是利用微機電製程在同一平面上同時製作九顆加速規，不但降低成本也

解決擺放時造成的誤差。並且，利用觀測器之觀念直接求得物體之角速度，在求得物

體姿態上減低了一次積分的動作，對積分誤差之累積改善了不少。並在論文的最後並

以實驗佐證此一構想是可行的。 
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Observer-Based Planar Gyro-Free Inertial 

Measurement Unit 

 

Student: Yi-Long Chen           Advisor: Dr. Tony Chen 

Department of Mechanical Engineering 
National Chiao Tung University 

ABSTRACT 

IMU (Inertial Measurement Unit) is a sensor unit that can provide 

the position information (angular acceleration, angular velocity, linear 

acceleration and etc.) for an object in motion. Typical IMU uses three 

gyroscopes to sense the angular velocity and three linear accelerometers 

to sense the linear acceleration.  The output from 3 gyroscopes 

undergoes integral operation to obtain 3 rotation angles; and the output 

from 3 linear accelerometers undergoes integration operation twice to 

obtain 3 coordinates for location.  Another approach is named 

“Gyro-free IMU”, which only the linear accelerometers are utilized. The 

output of Gyro-free IMU consists of 3 angular accelerations and 3 linear 

accelerations, which need 2 consecutive integral operations to obtain 

rotation angles and 2 consecutive integral operations to obtain 3 location 
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coordinates in space. The integral operation will result in the error 

accumulation and should be avoided or minimized, if possible. 

Due to the convergence properties of Gyro-free IMU, the 

accelerometers utilized must be deployed in a 3D location manner.  As a 

consequence, the accelerometers must be fabricated in prior to the IMU 

and then mounted on the various locations of IMU. This approach 

inevitably results in misalignment error for the placement of 

accelerometers. 

In correspondence to the existing problems mentioned above, we 

proposed the brand new design “observer-base planar Gyro-Free IMU” 

to solve those problems. 
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CHAPTER 1 

INTRODUCTION 

How to obtain the 6-DOF (3 linear motion and 3 angular motion) of a moving object 

with accuracy is one of the most important things in navigation. More and more sensors, 

which stem from different principles and measuring methods, have been utilized for the 

6-DOF measurements. They include compass、INS (Inertial Navigation System) 、GPS 

(Global Positioning System) and etc.  Combining INS and GPS is one of the most popular 

methods in-use today. That is because the satellite signal of the GPS is interrupted easily in 

certain region, and its update rate is not short enough for real-time application. On the 

other hand, the accumulation of error along with integral operation in INS can be 

erroneous [11]. 

IMU (Inertial Measurement Unit) is a sensor unit that can provide the position 

information (angular acceleration, angular velocity, linear acceleration and etc.) for an 

object in motion. Typical IMU uses three gyroscopes to sense the angular velocity and 

three linear accelerometers to sense the linear acceleration.  The output from 3 gyroscopes 

undergoes one integral operation to obtain 3 rotation angles; and the output from 3 linear 

accelerometers undergoes two consecutive integration operations to obtain 3 coordinates 

for location.  This approach has an acceptable angular rate sensing resolution but it is 

often expensive since 3 gyroscopes are incorporated. Because of which, the “Gyro-free 

IMU” was proposed 20 years ago. In the Gyro-free IMU, only linear accelerometers are 

utilized.  

Recent development of Gyro-free IMU showed that workable schemes need, at least, 
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six accelerometers for a stable operation. Also, the output of these Gyro-free IMUs are 3 

angular accelerations and 3 linear accelerations, which need 2 consecutive integral 

operations to obtain the rotation angle and 2 consecutive integral operations to obtain the 3 

location coordinates in space. As compared to the IMU that is composed of 3 gyroscopes 

and 3 linear accelerometers, the gyro-free IMU needs one more integral operation and 

which would further deteriorate the sensing accuracy.   

Due to the convergence properties of Gyro-free IMU, the accelerometers utilized must 

be deployed in a 3D location manner.  As a consequence, the accelerometers must be 

fabricated in prior to the IMU and then mounted on the various locations of IMU. This 

approach inevitably results in misalignment error for the placement of accelerometers.  

In correspondence to the existing problems mentioned above, we proposed the brand 

new design “observer-based planar Gyro-Free IMU” to solve these problems. In this design 

case, we incorporate nine accelerometers in the measurement unit, the output from six 

accelerometers are formulated for the governor equation of the measurement unit and the 

output of the other 1~3 accelerometers are for the system output, which will be utilized in 

the accompanied observer design.  The key advantage of this observer-based gyro-free 

IMU operation is that the output of the IMU unit is angular rate, instead of angular 

acceleration, for the rotational motion measurement.  As a consequence, we only need 

one integral operation to obtain the rotation angle, and thus the sensing accuracy is greatly 

increased.    

In the conventional IMU approach, the accelerometers and/or gyroscopes have to be 

mounted onto the IMU cube in a 3-D manner for a stable operation. This approach 

inevitable bring upon the issues of alignment error and sensing accuracy.  The proposed 
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method allows the accelerometers incorporated in the IMU be located on the same plane, 

which enables the in-situ fabrication of the accelerometers in the IMU. This approach 

increases the sensing accuracy of the IMU by minimize the alignment error of the 

accelerometers/gyroscopes incorporated.   

The size of the gyro-free IMU is another determining factor for its sensing accuracy. 

Taking the centrifugal force of an object in circular motion for example, the acceleration 

along the centrifugal direction is of ( )rvvv ×× ωω .  Therefore, a larger size of IMU ( r ) 

implies a smaller angular velocity (ωv ) that can be detected.  

In order to obtain the equations the can describe the motion of the moving object in 

space concisely, we chose the coordinate that is fixed on the moving object and rotated 

with the object, which is often named “body frame”.  Therefore, we need a transformation 

that can transform the motion information represented in body frame into inertial frame, 

which is the coordinate fixed to the earth center.  There are many transformation methods 

that can carry on this operation, including: direction cosine, Euler’s angle and Euler’s 

parameters.  “Direction cosine” is the simplest one, but it needs nine variables and thus 

could further complicate our algorithm.  “Euler angle” method uses three variables but it 

need to calculate the trigonometric functions.  “Euler’s parameters” is the most popular 

method for navigation system because it uses only four parameters and no need to 

calculating trigonometric functions.  Here we chose the “Euler’s angle” method because it 

possessed the vivid physical meanings along the calculations. [4][5][6][7] 

This paper is organized as follows.  Chapter 2 introduces the theory and the 

algorithm of the “observer-base planar Gyro-Free IMU”.  Chapter 3 shows the simulation 

results and preliminary test of single-axis stage with one accelerometer.  Chapter 4 shows 
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our experiment setup and experimental results. Chapter 5 is the conclusion and future work. 
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CHAPTER 2 

THEORY AND ALGORITHM 

2.1 Motion of Rigid Body in Space 

Fig.2.1.1 shows motion of point P in the space between inertial frame and body frame.  

Oi is the origin point of inertial frame and it is centroid of the earth.  Ob is the origin point 

of body frame and it is centroid of aircraft.  Equ.1 had been derived and it is used to 

explain acceleration of point P between inertial frame and body frame. 

 

Fig. 2.1.1 Relation Motion between Inertial frame and Body frame 

 ( ) rrrara o
&&v&vvvvvvvvv +×+××++×= ωωωα 2  (2.1) 

where 

av       : Acceleration of point P, 

P 

 
      Oi 
            Inertial 

    Ob 
     Body 
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oav  : Acceleration of Ob, 

αv  : Angular acceleration of the body relative to inertial frame, 

ωv  : Angular rate of the body relative to inertial frame, 

rv           : Location of point P relative to body frame, 

r&v  : Velocity of point P relative to body frame, 

r&&v  : Acceleration of point P related to body frame. 

If the point P is fixed in the body frame and it is an accelerometer on the IMU, r&&v , r&v , 

r2 &vv ×ω must be zero and acceleration of the point is given by: 

 ( )bbbb
0

bbb rara vvvvvvv ××++×= ωωα  (2.2) 

where,  

bav       : Acceleration of point P, representation in body frame, 

b
0av  : Acceleration of Ob, representation in body frame, 

bαv  : Angular acceleration of the body relative to inertial frame, representation 

in body frame, 

bωv  : Angular rate of the body relative to inertial frame, representation in body 

frame, 
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2.2 Location of accelerometers and Dynamic system 

Putting an accelerometer at the point P and ηv  is the sensing direction of this 

accelerometer.  Output of the accelerometer can be written as the form (2.3). 

 

 ( ) ( )( )
( ) ( )( )bbbbb

0
bbbb

bbbbb
0

bbbb

bb

rar

rar
a

vvvvvvvvv

vvvvvvvvv

vv

××⋅+⋅+×⋅=

××⋅+⋅+×⋅=

⋅=

ωωηηηα

ωωηηαη

η

   

   
A

 (2.3) 

Because of there are six degrees of freedom, six accelerometers must be required at 

least.  Six outputs of accelerometers can be constructed by matrix form.  Formula (2.5) 

presents those on the body.  Conveniently in use, J substitutes the relation between ηv  

and rv  as shown in forming (2.4). 
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Formula (2.6) shows the relations between output signals of each accelerometer and 

dynamic properties of the body in motion and includes linear acceleration of aircraft, 

angular rate and angular acceleration that they are all represented in the rotation frame.  

There is an important issue with matrix J in Eq.2.6.  In order to estimate angular 

acceleration and linear acceleration from (2.6), matrix J must be invertible.  In other 

words, rank of J must be full rank.  Formula (2.7) shows the “governing equation” in our 

model (IMU).  Formula (2.8) presents the system output for observer to use.  Formula 

(2.7) is an unstable system and there is white noise in practical application, so state 

estimation (observer) must be used to observe the real state without this noise.  This 

question is taken up in the next section. 
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  (2.8) 

In order to ensure matrix J invertible, designing the relation between location and 

sensing direction becomes an important issue.  One way we used is that putting nine 

accelerometers in the same circular on the flat, Fig. 2 illustrates the location and sensing 

direction about all accelerometers and Table 1 shows these parameters.  Location and 

sensing direction of the first three and 7th, 8th accelerometers sense the tangential 

acceleration, the 4th to 6th accelerometers sense acceleration of Z-axis only and 9th 

accelerometer sense the centripetal acceleration.  Matrix J can be rewritten as (2.9) and 

the determinant of matrix J is not zero as shown in formula (2.10).  
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

=

1000rr
1000rr
1000rr
0100
0100
0100

J

6162

5152

4142

3231

2221

1211

ηη
ηη
ηη

 (2.9) 

Where, nmnm r,η   n : nth accelerometer, 

  M : mth coordinate base. 

 0rrrr)Jdet( 5241211261523221 ≠+−= ηηηη  (2.10) 

Table 1 Location and Sensing direction of the accelerometers 

 Location  

]z,y,x[r T
j =v  

Sensing direction 

]z,y,x[T
j =ηv  

Accelerometer 1 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 0,

9
4sin,

9
4cos ππ  ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 0,

9
17sin,

9
17cos ππ  

Accelerometer 2 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 0,

9
10sin,

9
10cos ππ  ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ − 0,

9
7sin,

9
7cos ππ  

Accelerometer 3 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 0,

9
16sin,

9
16cos ππ  ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 0,

9
5sin,

9
5cos ππ  
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Accelerometer 4 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 0,

9
2sin,

9
2cos ππ  [ ]1,0,0  

Accelerometer 5 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 0,

9
8sin,

9
8cos ππ  [ ]1,0,0  

Accelerometer 6 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 0,

9
14sin,

9
14cos ππ  [ ]1,0,0  

Accelerometer 7 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 0,

9
6sin,

9
6cos ππ  ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 0,

6
7sin,

6
7cos ππ  

Accelerometer 8 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ 0,

9
12sin,

9
12cos ππ  ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ − 0,

6
sin,

6
cos ππ  

Accelerometer 9 [ ]0,0,1  [ ]0,0,1  
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Fig.2.2.1 Location and Sensing direction of the nine accelerometers 

According to the above parameters of accelerometers, governing equation (2.7) and 

output equation (2.8) can be rewritten as (2.11) (2.12). 
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 (2.11) 
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Formula (2.11) and (2.12) present the dynamic system in the continuous time domain. 

In order to program the above system, jω&  can be discretize by ( )1kj +ω ､ ( )kjω  and 

dt as formula (2.13).  Formula (2.14) and (2.15) show the discrete system from (2.11) and 

(2.12) by (2.13).  

 

( ) ( )
dt

k1k jj
j

ωω
ω

−+
=&

 (2.13) 
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⎥

⎦

⎤

⎢
⎢
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⎥
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⎥
⎥
⎥
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⎢
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⎥
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⎢
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⎣

⎡
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2
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 (2.15) 

2.3 Kalman filter 

2.3.1 The Extended Kalman Filter 
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Consider the nonlinear system with dynamics 

 ( ) ( )[ ] ( )kvkxkf1kx +=+  (2.16) 

where, for simplicity, it is assumed that there is no control, and the noise is assumed 

additive, zero mean, and white Gaussian distribution. 

 
( )[ ] ( ) ( ) ( ) kjkR0kv δ=⎥⎦

⎤
⎢⎣
⎡ ′= jvkvE     E

 (2.17) 

The measurement is 

 ( ) ( )[ ] ( )kkxkhkz ω+=  (2.18) 

Where the measurement noise is additive, zero mean, and white 

 
( )[ ] ( ) ( ) ( ) kjkRjk0k δωωω =⎥⎦

⎤
⎢⎣
⎡ ′= E   E

 (2.19) 

Because of this is a nonlinear system, the system need to be linearization.  

Formula (2.20) uses Taylor series expansion to linearize system and measurement for 

obtaining the optima estimation of the system. 

 

( )

( ) ( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ]

( )kv

ˆˆˆˆ

++

⎥
⎦

⎤
⎢
⎣

⎡ ′++=

+

∑
=

HOT   

k|kx-kxkfk|kx-kxe
2
1k|kx-kxkfk|kxk,f  

1kx
xn

1i

i
xxix                

  (2.20) 

where 
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ie                             : thi  Cartesian basis vector, 

( ) ( ) ( )k|kxxxx |xk,f
x
fkf ˆ=

′

⎥⎦
⎤

⎢⎣
⎡ ′∇≡

∂
∂

≡       : the Jacobian of vector f, 

( ) ( ) ( )k|kx̂x
i

xx2

i2
i
xx |xk,f

x
fkf =⎥⎦

⎤
⎢⎣
⎡ ′′∇∇≡

∂
∂

≡   : the Hessian of vector f, 

HOT                             : higher-order terms. 

State prediction 

The predicted state to time 1k + from time k is obtained by taking the expectation 

of (2.20) neglecting HOT. 

 
( ) ( )[ ] ( )[ ]∑

=

+=+
xn

1i

i
xxi k|kPftre

2
1k|kxk,fk|1kx ˆˆ

 (2.21) 

 And prediction covariance is: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( )kQk|kPkfk|kPkftree
2
1                 

kfk|kPkfk|1kP
x xn

1i

n

1j

j
xx

i
xxji

xx

+′+

′=+

∑∑
= =

  (2.22) 

Measurement prediction 

Similarly, the predicted measurement is, for the second-order filter 

 
( ) ( )[ ] ( ) ( )[ ]∑

=

+++++=+
zn

1i

i
xxi k|1kP1khtre

2
1k|1kx1,khk|1kz ˆˆ

 (2.23) 
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The measurement prediction covariance or innovation covariance or residual 

covariance--really MSE matrix—is 

 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )[ ] ( )1kRk|1kP1khk|1kP1khtree
2
1      

1khk|1kP1kh    

1kS

x xn

1i

n

1j

j
xx

i
xxji

xx

++++++′+

′+++=

+

∑∑
= =

 (2.24) 

Filter gain 

 ( ) ( ) ( ) ( )-1x 1kS1kh1kP1kW +′++=+                              (2.25) 

Update 

The state estimate updated is 

 ( ) ( ) ( ) ( )1kν1kWk|1kx1k|1kx ++++=++ ˆˆ   (2.26) 

and state covariance updated is 

 ( ) ( ) ( ) ( ) ( )′++++=++ 1kW1kS1kW-k|1kP1k|1kP  (2.27) 

   The optima estimation will obtain from the above calculating repeatedly. 

Using the first-order extended Kalman filter, the higher-order term and the Hessian 

of f, and h will be neglected. For simplify to use the first order extended Kalman filter, 

Table 2 is presented the flow chat included state prediction and state update. 
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 Table 2 Flow chart of first order Extended Kalman filter 
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2.3.2 The Iterated Extended Kalman Filter 

A modified state updating approach can be obtained by an iterative procedure as 

follows.  

( )[ ]1k|1kx1,khH i
x +++≡ ˆi                                    

(2.28) 

 
( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )′++⎥⎦
⎤

⎢⎣
⎡ ++′+++′++−

+=
++

−

k|1kP1kH1kR1kHk|1kP1kH1kHk|1kP     

k|1kP     
1k|1kP

iiii

i

1

  (2.29) 

 

( )
( )
( ) ( ) ( ) ( ) ( )[ ]{ }
( ) ( ) ( ) ( )[ ]k|1kx1k|1kxk|1kP1k|1kP            

1k|1kx1,kh1kz1kR1kH1k|1kP            

1k|1kx          
1k|1kx

i1i

i1ii

i

1i

+−+++++−

+++−++′++++

++=

++

−

−

+

ˆˆ

ˆ

ˆ
ˆ

 (2.30) 

Starting the iteration for 0i = with  

( ) ( )k|1kx1k|1kx 0 +≡++ ˆˆ   

causes the last term in (2.30) to be zero and yields after the first iteration ( )1k|1kx1 ++ˆ , 

that is, the same as the first-order (no iterated) EKF. 

Overview of the Iteration Sequence 
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For i=(0:N-1) 

(2.28) 

(2.29) 

(2.30) 

For i=N 

(2.30) 

with N decided either a prior or based on a convergence criterion. 

Through the above procedure to calculate angular rate and linear acceleration 

represented in body frame repeatedly, we can obtain the optima estimation at time 1k + . 

2.4 Orthogonal Transfer Matrix  

In order to consider the angular rate and linear represented in inertial frame, the 

orthogonal matrix should be used to transfer the representation to another base which 

interests us.  Formula (2.31) shows the relation between two different bases. 

ib AXX =                                            (2.31) 

Where  

bX  : Representation in body frame, 
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A     : Orthogonal transfer matrix, 

iX     : Representation in inertial frame. 

The Euler anglesθ , φ andϕ are an orthogonal transform to transfer the quantities 

in the rotation frame into those in the inertial frame. 

Fig.2.4.1 shows the sequence that is started by rotating the initial system of axes, 

XYZ, by an angleφ counterclockwise about the Z axis, and the resultant coordinate 

system is labeled theξηζ axes.  In the second step, the intermediate axes,ξηζ , are 

rotated about the η axis counterclockwise by the angle θ to produce another 

intermediate set, the ζηξ ′′′ axes.  Finally, the ζηξ ′′′ axes are rotated counterclockwise 

by an angle ϕ about the ζ ′ axis to produce the desired ZYX ′′′  system of axes.  

Follow the above three separate rotation is called Y-Convention. Formulas (2.32) to 

(2.34) show the relation like (2.31) in the three rotations.  Formula (2.35) shows the 

result of the three separate rotations, and A is the orthogonal transfer matrix defined in 

formula (2.31).  Formula (2.36) shows inverse A to transfer representation from the 

body frame to the inertial frame. 

iDX=ξ                                                    (2.32) 

ξξ C=′                                                     (2.33) 

ξ ′= BXb                                                   (2.34) 
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Fig.2.4.1 Eular’ angle  
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their time derivatives as (2.37).  In consequence of the vector property of infinitesimal 

rotations, the vector Euler angles time derivatives can be obtained as the sum of the 

three separate angular rate vectors and ω .  The angle θ  must avoid being zero 

carefully, or make the element in the (2.37) singular. 
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2.5 Flow chart 

Fig.2.5.1 shows the procedure how to use these accelerometers to obtain all 

information in the body frame or inertial frame.   

 
Fig.2.5.1 The flow chart of all algorithms  
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CHAPTER 3 

SIMULATION AND PRELIMINARY TEST 

The algorithm introduced in Chapter 2 will be proved by simulating with Matlab 

package.  In this proof, consider about the random noise with accelerometer output will 

be measured from static-tested of an accelerometer on a stage.  In order to make sure that 

the experiments are accurate, we test the response of one axis with one accelerometer at 

first.  The structure of test will be presented in section 3.2.  Section 3.3 shows that how 

to simulate the motion and define the suitable accelerometer output signal.  Section 3.4 

shows that preliminary tested from an accelerometer in the above motion we defined.  

Section 3.5 shows Matlab simulation to ensure the algorithm we derived in Chapter 2.  

3.1 Test structure  

In order to get pure sine wave acceleration, the function generator employs to provide 

PWM servo amplifiers command and those drives the DC motor on the stage.  The stage 

is driven by Dc motor and generates a sinusoidal acceleration which is less than 1g.  And 

the output of accelerometer (ADXL105) is set to a nominal scale factor of 250 mV/g.  

However, in order to reduce SNR and increase accuracy, the circuits used to amplify output 

voltage must be needed. 

Information of encoder of the DC motor is measured by motion card (ADLINK 

PCI-8133) and the accelerometer output signals are measured by DAQ card (ADLINK 

PCI-9114).  Then, we need 2 consecutive integral operations to obtained displacement of 

stage and compare those with encoder information.  Fig.3.2.1 shows the block diagram of 

the test system. 
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Fig.3.2.1 Structure of uni-axis test 

3.2 Generate Motion 

Pure sine wave assists us to analysis the signal easily.  It is different between the 

input commands of the DC motor from the output of accelerometer, because it loses the 

energy on stage.  In order to make sure that the signal is the pure sin wave, tuning the 

frequency of the function generator until the differential data of encoder twice to be like 

the pure sinusoidal response.  Fig.3.3.1 to Fig.3.3.3 shows the result of these procedures.  

 
Fig.3.3.1 1HZ sin wave of function generator 

Motion card (ADLINK PCI-8133) 

Function generator 
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Compare 
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Fig.3.3.2 11HZ sin wave of function generator 

 

Fig.3.3.3 18HZ sin wave of function generator 

We can obtain the result that we increase the frequency of the function generator and 

the acceleration becomes pure sine wave.  If we increase the frequency of the function 

generator over than about 20HZ, we will get the smaller amplitude of the acceleration than 

before.  Finally, 18HZ of the function generator is employed to be the input command in 

this one axis tested. 

3.3 One Axis Tested 
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In the above condition, the acceleration output will be measured by DAQ card.  

Fig.3.4.1 shows the acceleration output, the data which is obtained by integrating the 

output of accelerometer once or twice, and we compare those with the information of the 

encoder.  The accumulation of integral error can be indicated clearly as shown in 

Fig.3.4.1.  The source of this error is the drift of the accelerometer output and the 

vibration of optical table.  This question is taken up in the chapter.5. 
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Fig.3.4.1 Compare encoder and accelerometer output 

The sampling rate of encoder is 500 HZ and the sampling rate of DAQ card is 2000 

HZ. When the DC motor is static, the standard deviation is 21.9416 mm/s2.  The 

amplify scale is 1000/39, the operator voltage is 0V and 5V and the accelerometer 

output scale is 250 mV/g, so acceleration must be smaller than 0.39g (3900mm/ s2) with 
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these conditions. Formula 3.1 shows the result. 

 (5V/2)*(39/1000)/(0.25)=0.39 (3.1) 

3.4 Simulation and Resolution 

We define the path of the angular acceleration of the Euler’s angles and linear 

accelerations in the inertial frame as formula(3.2).  We assume that sampling rate of DAQ 

card is 1000HZ, l=50mm and the standard deviation is 25mm/ s2.   
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Fig.3.5.1 shows the state of the algorithm we derived and Fig.3.5.2 shows the angular 

rate in the inertial frame.   
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Fig.3.5.1 angular rate representation in Body frame 
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Fig.3.5.2 angular rate representation in the Inertial frame 

Fig.3.5.3 shows the Euler’s angular rate and Fig.3.5.4 shows the Euler’s angle.  

There is pulse at 1.5, 3 and 4 seconds, because the matrix in formula (2.37) is singular. 
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Fig.3.5.3 angular rate of Euler angles 
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Fig.3.5.4 Euler angles 

The iterative time is 40 for initial to 0.1 second and 20 for 0.1 second to 1 second.  

Fig.3.5.5 shows the result of iteration. 
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Fig.3.5.5 Iterative convergence of angular rate representation in body frame 

Fig.3.5.6 shows the linear accelerations in the body frame and Fig.3.5.7 shows the 

linear accelerations in the inertial frame. 
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Fig.3.5.6 Linear acceleration representation in Body frame 
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Fig.3.5.7 Linear acceleration representation in Inertial frame 

Resolution 

0 50 100 150
-0.06

-0.04

-0.02

0

0.02

0.04

ra
d/

s

w1 in rotated frame

measured
real

0 50 100 150
-0.04

-0.02

0

0.02

0.04

0.06

ra
d/

s

w2 in rotated frame

measured
real

0 50 100 150
-0.02

0

0.02

0.04

0.06

0.08

ra
d/

s

w3 in rotated frame

measured
real

 
Fig.3.5.8 Angular rate in the rotation frame (R=50mm, std=0.1mm/s2) 

Fig.3.5.8 shows the angular rate in the rotation frame with R=50mm, stander 
deviation (std)=0.1mm/s2 and resolution is 12 ∘/s .  We assume that the angular 
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acceleration and linear acceleration is zero, and rewrite Eq.2.3 as Eq.3.3.  We can find out 
the relationship between resolution of accelerometer and angular rate of our algorithm 
shown as Eq.3.4.   
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CHAPTER 4 

TEST OF THE IMU DESIGN 

To verify the feasibility and reliability of the method for computing angular rate, it is 

necessary to perform a two-step validation procedure, i.e., the method has to yield 

consistent and accurate results while acquiring data both from hypothetical and 

experimental systems. 

To check if our method is feasible for any arbitrary motion, some experiments with 

different configurations should be done.  According to the type of Euler＇s angle (ZYZ 

convention), we design three different experiments and simulations.  First, Z axis in the 

body frame is parallel to the axis of rotation and the other two linear motions are parallel to 

the inertial frame.  Secondly, initial condition is changed in order to verify the observer 

method is practical when acceleration of gravity effect on the output of accelerometer.  

Thirdly, Y axis in body frame is parallel to the axis of rotation and the other two linear 

motions are parallel to the inertial frame. 

Section 4.1 describes the procedures for these experiments with the designed motion, 

analog amplifier, and Butterworth filter.  Section4.2, 4.3 and 4.4 describes the first, 

second and third experiment and simulation, respectively. 

4.1 Experimental procedure 

Basic procedure of experiment, analog low-pass amplifier, Butterworth filter and 

designed motion will be introduced in this section, and variation of tri-axial setup will be 

present in the flowing section.  
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Basic procedure of experiment 

Three different function generators output sinusoidal voltage to three different PWM 

servo amplifiers.  These servo amplifiers output sinusoidal current to three different 

stages.  Sinusoidal current excite sinusoidal acceleration on the stage and we put our IMU 

on the stage to sense the sinusoidal acceleration and read the encoder information by 

motion card (ADLINK PCI-8133).  System noise or disturbance will be generated when 

three stages create the sinusoidal.  And the acceleration output of the ADXL105 is 

nominally 250mV/g.  This scale factor is not appreciated for our applications.  An 

amplifier is need to set an appreciate scale ratio and a low-pass filter is needed to filter 

accelerometer’s internal or circuit high-frequency noise, so analog 1-pole low-pass filter 

will be employed to filter those between accelerometer and DAQ card (ADLINK 

PCI-9114).  But other high-frequency noise will be excited when data of acceleration are 

transferred between the output of 1-pole low-pass filter and DAQ card.  The digital filter 

(4th order Butterworth filter) must be needed to filter this noise by computer.  Let the 

result of digital filter be as acceleration output (A1~A9) shown as in algorithm, and 

physical quantities can be calculated by our observer base IMU.  To compare these 

quantities and encoder’s information, and we will know our algorithm be practical or not.  

We will discuss every physical quantities which interest us to be practical or not in the 

following sections.  Fig.4.1.1 and Fig.4.1.2 show the process of experiment and the flow 

chart of algorithm respectively.   
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Fig.4.1.1 Experimental procedure 

 

Fig. 4.1.2 Algorithm flow 
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Route of motion 

Because sinusoidal current excited sinusoidal acceleration on the stage, Eq.4.1 

describes the relationship about displacement, velocity and acceleration.  Fig.3.4.1 shows 

tendency of Eq.4.1.   
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Fig.4.1.3 Circuit of low-pass analog amplifier (single pole) 

Fig.4.1.3 presents the circuit of low-pass filter and Fig.4.1.4 shows the Bode plot of 

low-pass filter.  Eq.4.2 describes the gain is 5.1282 and Eq.4.3 shows the transfer function 

when the cutoff frequency is 117.0257 HZ, and. 

+ 

- 

R1 

R2 

C 

OUT 
IN 

VMID 



 37

F108.6C
K39R2  K200R1

R2
R1GAIN

2ππCR
1f

9

3

−

−

×=

Ω=Ω=

−=

=dB

 (4.2) 

100136.0
128.5T

+
=

s
 (4.3) 

-30

-20

-10

0

10

20

M
ag

ni
tu

de
 (d

B)

10
1

10
2

10
3

10
4

10
5

-90

-45

0

Ph
as

e 
(d

eg
)

analog low pass f ilter

Frequency  (rad/sec)

 

Fig.4.1.4 Low-pass analog amplifier (single pole) 

Butterworth filter 

Butterworth filters are characterized by a magnitude response that is maximally flat in 

the pass-band and monotonic overall.  Butterworth filters sacrifice roll-off steepness for 

monotonic in the pass- and stop-bands.  Unless the smoothness of the Butterworth filter is 
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needed, an elliptic or Chebyshev filter can generally provide steeper roll-off characteristics 

with a lower filter order.  Eq.4.4 shows the Z-transform and Fig.4.1.5 shows frequency 

response when data sampled at 2000 Hz and design a 4th-order low-pass Butterworth filter 

with cutoff frequency of 50 Hz. 
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Fig.4.1.5 Butterworth low-pass filter (fourth order) 

There is invariably a time delay between a demodulated signal and the original 

received signal.  The Butterworth filter parameters directly affect the length of this delay. 

4.2 Z-axis rotation with biaxial linear acceleration 
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In this experiment, Z axis in body frame is parallel to the axis of rotation and the 

other two linear motions are parallel to X axis and Y axis in the inertial frame respectively.  

Fig.4.2.1 shows this experiment setup. Eq.4.5 presents Euler＇s transform in these 

condition.  Generally speaking, whether the quantity of Z-axis in the rotation frame or in 

the inertial frame must be equal to the Euler＇s angle ( )ϕφ + , and the quantities of X-axis, 

Y-axis and Euler＇s angleθ  must be zero.  But that is not exact correct in practical 

experiment.   We shall now look more carefully into Eq.4.5, the quantity of Z-axis must 

be equal to the Euler＇s angle ( )ϕφ +  when the disturbance or noise in the Euler＇s 

angleθ  is close to zero, and the quantity of Z-axis is equal to ϕ  when the disturbance or 

noise in the Euler＇s angleθ  is larger then a value which is over than 0.06 radian after 0.2 

seconds in this experiment.  Compared Fig.4.2.7 with Fig.4.2.8, and we can clearly 

understand this question.  Fig.4.2.2 shows accelerations which are through analog 

low-pass filter and Fig.4.2.3 shows accelerations which are through analog low-pass filter 

and then are through digital Butterworth low-pass filter.  The curve in Fig.4.2.3 is 

smoother then in Fig.4.2.2 and in Fig.4.2.3; there is invariably a time delay which is 

introduced in the above section.  In Fig.4.2.4 and Fig.4.2.6~4.2.13, the information of 

encoder shown by solid line, result of estimated shown by dotted line and subtracting time 

delay shown by dash-dot line.  The rule holds in the flowing two sections. 
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Fig.4.2.1 Experimental set up 
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Fig.4.2.2 Nine accelerometers output 
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Fig.4.2.3 Signals after Butterworth low-pass filter 
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  Fig.4.2.4 shows the angular rate which is estimated from observer and obtained 

from differentiating the data of encoder in the rotation frame, Fig.4.2.10 shows that those 

are in the inertial frame and Fig.4.2.7 shows the Euler＇s angular rate.  These quantities 

in X-axis and Y-axis should converge to zero, and in Z-axis should be the sinusoidal wave 

which is according Eq.4.1.  But zero is smaller then resolution in our algorithm, these two 

curves will not converge to zero.  We simulate the same condition as shown in Fig.4.2.5, 

and angular rate don’t converge to zero in X-axis and Y-axis.  Because quantity in Z-axis 

in the rotation frame is equal to it in the inertial frame and ( )ϕφ + , angular displacement 

can be obtained by integrating from angular rate directly whether it is in the rotation or 

inertial frame as shown in Fig.4.2.6 and Fig.4.2.11 respectively.  Euler＇s angular 

displacement is obtained from solving differential equation (Eq.2.37) directly and shown in 

Fig.4.2.9.  The integral method will accumulate the error and make serious mistake when 

using Euler＇s transform as shown in Fig.4.2.13. 
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Fig.4.2.4 Angular rate in the rotation frame 
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Fig.4.2.5 Angular rate in the rotation frame (simulation) 
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Fig.4.2.6 Angular displacement in the rotation frame 
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Fig.4.2.7 Euler’s angular rate 
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Fig.4.2.8 Euler’s angular rate ( ( )ϕφ ωω +  in the third sub-figure) 
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Fig.4.2.9 Euler’s angular displacement ( ( )ϕφ +  in the third sub-figure) 
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Fig.4.2.10 Angular rate in the inertial frame 
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Fig.4.2.11 Angular displacement in the inertial frame 

We rewrite Eq.2.6 as Eq.4.6 to obtain linear acceleration in the rotation frame and use 

Euler＇s transform (Eq.2.36) to transfer it in the rotation frame into it in the inertial frame 

Fig.4.2.12 and Fig.4.2.13 indicate the result.  With accumulation of the integration error 

of Euler＇s angle, acceleration diverges in the Z-axis in the inertial frame.  Here, data of 

encoder is regard as Euler’s angle and put it into Eq.2.37 ; and we can get convergent 

acceleration in the inertial frame by using Euler’s angle.  Fig.4.2.14 shows the convergent 

acceleration in the inertial frame. 
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Fig.4.2.12 Linear acceleration in the rotation frame 
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Fig.4.2.13 Linear acceleration in the inertial frame 
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Fig.4.2.14 Linear acceleration in the inertial frame (with encoder information) 
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4.3 Z-axis rotation with biaxial linear acceleration and non-zero initial 

condition 

 
Fig4.3.1 Experimental set up 

The difference between this experiment and the above experiment is initial condition 

of angle of Y-axis and Z-axis as shown in Fig.4.3.1, angle of Y axis is 90 degree and Z axis 

is -90 degree as shown in Fig.4.3.1.  Fig.4.3.1 presents the set up of this experiment.  

Because initial condition in Y axis is not zero, equ.2.35 can not be rewritten as equ.4.5.  

Quantities of Y axis and Z axis in the rotation frame are similar to -X axis and -Y axis in 

the inertial frame respectively when ϕ  is still changed small enough.  Quantities of X 

axis in the rotation frame are equal to Z axis in the inertial frame.  The influence of 

acceleration of gravity on each accelerometer is time-varying, so we should separate 

acceleration of gravity from accelerometer output.  This result is shown in 

Fig4.3.8~Fig4.3.10.   
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Fig4.3.2 Angular rate in the rotation frame 
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Fig4.3.3 Euler’s angular rate 
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Algorithm flow (Fig.4.2.2) indicated that the influence of integral error of Euler’s 

angle on linear acceleration in the inertial frame is the most serious.  Because linear 

acceleration in the rotation frame is obtained by Eq.4.6 and it carry about a lot of white 

noise, it is inaccuracy when we transfer it into linear acceleration in the inertial frame with 

Euler’s angle.  There is the same circumstance when we transfer the angular rate in the 

rotation frame into it in the inertial frame.  The angular rate in the rotation frame is 

obtained by Iterated Extended Kalman filter without white noise, so it is more accuracy 

than linear acceleration.  In this experiment, because the angular rate in the rotation frame 

converges after 0.3 second, the angular rate in the inertial frame is divergent shown as 

Fig4.3.4 and Fig.4.3.6.  If accuracy Euler’s angle as encoder information is being 

substituted Euler’s angle calculated by Eq.2.37 shown as Fig.4.3.5 and Fig.4.3.7, the 

angular rate will not be divergence in X-axis in the inertial frame.  Fig.4.3.4 and Fig.4.3.5 

show the angular rate between 0 and 0.4 second, Fig.4.3.6 and Fig.4.3.7 show the angular 

rate between 0 and 4 second. 

Linear acceleration in the inertial frame is also divergence as the above experiment.  

Encoder information is being substituted Euler’s angle shown to obtained linear 

acceleration in the inertial frame as Fig.4.3.10.  Fig.4.3.8 presents linear acceleration in 

the rotation frame and Fig.4.3.9 shows linear acceleration transferred by Euler’s angle 

which is calculated by Eq.2.37 in the rotation frame and it will be divergence. 
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Fig4.3.4 Angular rate in the inertial frame 
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Fig4.3.5 Angular rate in the inertial frame (with encoder information) 
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Fig4.3.6 Angular rate in the inertial frame (with encoder information) 
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Fig4.3.7 Angular rate in the inertial frame (with encoder information) 
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Fig4.3.8 Linear acceleration in the rotation frame 
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Fig4.3.9 Linear acceleration in the inertial frame 
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Fig4.3.10 Linear acceleration in the inertial frame (with encoder information) 

4.4 Y-axis rotation with biaxial linear acceleration 

The difference between this experiment and the above experiments is initial condition 

and the rotational axis.  Initial condition of angle is zero whether it is in any axes and the 

axis of rotation is parallel to Y axis in the rotation frame shown in Fig.4.4.1.  We rewrite 

Eq.2.36 as Eq.4.7 with these initial conditions.  According to Eq.4.7, quantities in the 

Euler’s angle θ  are the same as quantities of Y axis in the rotation or inertial frame.  

Fig.4.4.2, Fig.4.4.6 and Fig.4.4.4 show the angular rate in the rotation frame, inertial frame 

and Euler’s angular rate respectively, there are only sine wave in the Y axis whether the 

quantities are shown in any Figure.   
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Fig4.4.1 Experimental set up 

Because accumulation of integral error is more serious in this experiment, Euler’s 

angular rate which is calculated by Eq.2.37 is divergent.  We transfer quantities (angular 

rate or linear acceleration) in the rotation frame into inertial frame and those are divergent 

more easily in the inertial frame.  Accuracy Euler’s angle as encoder information is 

substituted Euler’s angle calculated by Eq.2.37 shown as Fig.4.4.3, Fig.4.4.5 and Fig.4.4.8, 
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the angular rate in the inertial frame, Euler’s angular rate and linear acceleration in the 

inertial frame will not be divergence in Y-axis.   
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Fig.4.4.2 Angular rate in the rotation frame 
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Fig.4.4.3 Euler’s angular rate 
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Fig.4.4.4 Euler’s angular rate (with encoder information) 
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Fig.4.4.5 Angular rate in the inertial frame 
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Fig.4.4.6 Angular rate in the inertial frame (with encoder information) 
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Fig.4.4.7 Linear acceleration in the rotation frame 
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Fig.4.4.8 Linear acceleration in the inertial frame (with encoder information) 
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4.5 Discussion  

The uncertainties of experiment scheme may cause the difference between 

information from encoder and states of algorithm.  The discussion of experimental error 

below will be shown to emphasize the importance of three features; linear vibration of the 

optical table, rotational vibration of the optical table and DC-drift of accelerometer output 

or other noise. 

Linear vibrations of the optical table 

The first question to be discussed is linear vibration of the optical table.  Fig4.5.1 

illustrates that the frequency of linear vibration is the same as the motion in the experiment.  

Amplitude of this vibration is almost 200mm/s2 in the X-axis and Y-axis, and 50mm/s2 in 

the Z-axis as shown in Fig.4.5.2.  According these conditions, we simulate how this error 

influences physical quantities in our algorithm.  

 
Fig.4.5.1 Vibration of tri-axes in the frequency domain 
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Fig.4.5.2 Vibration of tri-axes 

Fig.4.5.3 shows that the vibration makes converging rate of the angular rate to be slow, 

but it does not change the accuracy when it converges.  The amplitude will increase by 

200mm/s2 in the X-axis and Y-axis, as shown in the Fig.4.5.4.  It follows from what has 

been said that the error of linear vibration affects only the accuracy in the linear 

acceleration and converging rate of the angular rate in the rotation frame. 
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Fig.4.5.3 Angular rate in the rotation frame (with linear vibration) 
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Fig.4.5.4 Linear accelerations in the rotation frame (with linear vibration) 
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Rotational vibration of the optical table 

Because the angular rate can not be sensed by our experiments, we just discuss this 

question without experimental verification.  We assumed that frequency of rotational 

vibration is equal to actual motion and the amplitude is about 0.1rad/s2.  Fig.4.5.5 and 

Fig.4.5.6 show that the result of this simulation is contrary to the above simulation.  

Rotational vibration affects the accuracy of angular rate in the rotation frame and it 

doesn’t affect linear acceleration.  The influence is the same to rotational vibration we 

designed.  Thus, we see that linear vibration affects linear acceleration and rotational 

vibration affects angular rate respectively.  
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Fig.4.5.5 Angular rate in the rotation frame (with rotational vibration) 
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Fig.4.5.6 Linear accelerations in the rotation frame (with rotational vibration) 

DC-drift or other noise 

We assumed that there is 5Hz, 100mm/s2 DC-drift in the nine output signals of 

accelerometers.  Fig.4.5.7 gives a good account of the most serious error in transient 

time.  To put it more precisely, DC-drift affects the converging rate more seriously than 

we discussed above.  This kind of error doesn’t affect linear acceleration seriously, as 

shown in Fig.4.5.8.  Fig.4.5.9 shows that the influence of random frequency (1~17HZ) 

of other noises (backlash of screw, vibration of stage and etc.) on converging rate of 

angular rate in the rotation frame has slight variations in this two simulations.  

Fig.4.5.10 shows that the influence on linear acceleration in the rotation frame is very 

slight.  We can not say for certain whether this condition (frequency and amplitude) is 

fit or not, but we can know that these errors affect the convergent rate more seriously 

than what we discussed above. 
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Fig.4.5.7 Angular rate in the rotation frame (with 5Hz 100mm/s2 DC-drift) 
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Fig.4.5.8 Linear accelerations in the rotation frame (with 5Hz 100mm/s2 DC-drift) 
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Fig.4.5.9 Angular rate in the rotation frame (with 1~17Hz 100mm/s2 other noise) 
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Fig.4.5.10 Linear accelerations in the rotation frame (with 5Hz 100mm/s2 other noise) 
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According to Fig.4.1.2, the experiments error influence directly converging rate and 

resolution of angular rate, and resolution of linear acceleration in the rotation frame.  It 

follows from what has been said that linear vibration affects linear acceleration, rotational 

vibration affects angular rate and DC-drift or other noises affect the converging rate more 

seriously than that we discuss above.   
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CHAPTER 5 

CONCLUSION AND FUTURE WORKS 

5.1 Conclusion 

The observer-based planar Gyro-free IMU has been proven to be feasible for deriving 

position information (angular acceleration, angular velocity, linear acceleration and etc.) of 

an object moving in space by simulation.  For the algorithm proposed in this thesis, 

outputs of 6 linear accelerometers were employed in the state equation and outputs of the 

other redundant linear accelerometers were used for the output equation; furthermore, 

Iterated Extended Kalman filter was treated as a nonlinear observer in order to stabilize the 

nonlinear dynamic equation and estimate precise state (angular rate in the rotation frame).  

Euler’s transform is employed to transfer the physical quantities from the basis of rotation 

frame to the inertial frame.  The result (angular rate in the inertial frame) from algorithm 

undergoes single integration to obtain 3 rotation angles; and result (linear acceleration in 

the inertial frame) undergoes double integration to obtain 3 coordinates for location.  

Because Euler’s angular displacement is obtained from solving differential equation 

(2.37), this integral operation would accumulate the error and make serious mistake by 

using Euler’s transform.  Algorithm flow (Fig.4.1.2) indicated that the influence of the 

error due to integration (Euler’s angle) on linear acceleration in the inertial frame is the 

most serious.  For the linear acceleration in the rotation frame obtained by (4.6) carries 

about a lot of white noise, it must be incorrect when we transfer it into linear acceleration 

in the inertial frame with Euler’s transformation.  The same problem would come out 

while transferring the angular rate from that on the basis of rotation frame to inertial frame.  
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It has to be mentioned that the angular rate in the rotation frame is obtained by Kalman 

filter without white noise, and it is more accurate than the linear acceleration. 

Some experimental errors would cause the difference between encoder information 

and outputs/states of the algorithm.  In this thesis, we pointed out that linear vibration 

affects linear acceleration, rotational vibration affects angular rate respectively, and 

DC-drift or other noises affect the convergent rate more seriously than the vibrations we 

discuss above. 

5.2 Future works 

Although the preliminary simulation/experiment of observer-base planar Gyro-Free 

IMU is proposed in this work, more complete simulation, experiment and fabrication have 

to be done in the future, as listed below: 

1. To implement observer-base planar Gyro-Free IMU with control circuitry by 

MEMS process. 

2. To improve the resolution for further reducing the restrictions on the distance 

between accelerometers and origin point in the rotation frame. 

3. Replace Euler’s angle by Euler’s parameters in order to reduce the 

accumulation of error due to integration. 

4. To complete the 6-axes experiment and reduce experimental error. 

  



 71

References 

[1] A. J. Padgaonkar and K. W. Krieger and A. I. King,” Measurement of Angular 
Acceleration of Rigid Body Using Linear Accelerometers”, Journal of applied Mechanics, 
Transactions of the American Society of Mechanical Engineers, Vol.42, pp.552-556, 
September 1975 
[2] Jeng-Heng Chen and Sou-Chen Lee and Daniel B. DeBra,” Gyroscope Free 
Strapdown Inertial Measurement Unit by Six Linear Accelerometers”, Journal of Guidance, 
Control and Dynamics, Vol.17, No.2, March-April 1994  
[3] A. R. Schuler and A. Grammatikos and K. A. Fegley, “Measuring Rotational Motion 
with Linear Accelerometers”, IEEE Transactions on Aerospace and Electronic Systems, 
Vol. AES-3, No.3, pp.465-471, May 1967  
[4] T. R. Kane and P. W. Linkins and D. A. Levinson, Spacecraft Dynamics, 
McGraw-Hill, 1983 
[5] P. C. Hughes, Spacecraft Attitude Dynamics, Wiley, 1986 
[6] F. F. Ling, Introductory Attitude Dynamics, Springer-Verlag, 1988 
[7] H.Goldstein and C. Poole and J. Safko, Classical Mechanics, Addison Wesley, 2001 
[8] Alberto Leon-Garcia, Probability and Random Processes for Electrical Engineering, 
Addison Wesley, 1994 
[9] A. Papoulis, Probability Random Variables and Stochastic Processes, McGraw-Hill, 
1991 
[10]Yaakov Bar-Shalom and X.-Rong Li and Thiagalingam Kirubarajan, Estimation 
with Applications To Tracking and Navigation, Wiley, 2001 
[11] 謝銘峰, GPS/DGPS 與慣性導航系統之整合研究, 國立交通大學控制工程研究 
[12] 黃國興, 慣性導航系統原理與應用, 全華科技圖書股份有限公司, 中華民國 80
年 

 

 


