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Observer-Based Planar Gyro-Free Inertial

Measurement Unit

Student: Yi-Long Chen Advisor: Dr. Tony Chen

Department of Mechanical Engineering
National Chiao Tung University

ABSTRACT

IMU (Inertial Measurement Unit) is a sensor unit that can provide
the position information (angular acceleration, angular velocity, linear
acceleration and etc.) for an object in motion. Typical IMU uses three
gyroscopes to sense the angular velocity and three linear accelerometers
to sense the linear acceleration. The output from 3 gyroscopes
undergoes integral operation to obtain 3 rotation angles; and the output
from 3 linear accelerometers undergoes integration operation twice to
obtain 3 coordinates for location.  Another approach is named
“Gyro-free IMU”, which only the linear accelerometers are utilized. The
output of Gyro-free IMU consists of 3 angular accelerations and 3 linear
accelerations, which need 2 consecutive integral operations to obtain

rotation angles and 2 consecutive integral operations to obtain 3 location

I



coordinates in space. The integral operation will result in the error

accumulation and should be avoided or minimized, if possible.

Due to the convergence properties of Gyro-free IMU, the
accelerometers utilized must be deployed in a 3D location manner. As a
consequence, the accelerometers must be fabricated in prior to the IMU
and then mounted on the various locations of IMU. This approach
inevitably results in misalignment error for the placement of

accelerometers.

In correspondence to the existing problems mentioned above, we
proposed the brand new design “observer-base planar Gyro-Free IMU”

to solve those problems.
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CHAPTER 1

INTRODUCTION

How to obtain the 6-DOF (3 linear motion and 3 angular motion) of a moving object
with accuracy is one of the most important things in navigation. More and more sensors,
which stem from different principles and measuring methods, have been utilized for the
6-DOF measurements. They include compass ~ INS (Inertial Navigation System) ~ GPS
(Global Positioning System) and etc. Combining INS and GPS is one of the most popular
methods in-use today. That is because the satellite signal of the GPS is interrupted easily in
certain region, and its update rate is not short enough for real-time application. On the
other hand, the accumulation of error along with integral operation in INS can be

erroneous [11].

IMU (Inertial Measurement Unit) is a sensor unit that can provide the position
information (angular acceleration, angular velocity, linear acceleration and etc.) for an
object in motion. Typical IMU uses three gyroscopes to sense the angular velocity and
three linear accelerometers to sense the linear acceleration. The output from 3 gyroscopes
undergoes one integral operation to obtain 3 rotation angles; and the output from 3 linear
accelerometers undergoes two consecutive integration operations to obtain 3 coordinates
for location. This approach has an acceptable angular rate sensing resolution but it is
often expensive since 3 gyroscopes are incorporated. Because of which, the “Gyro-free
IMU” was proposed 20 years ago. In the Gyro-free IMU, only linear accelerometers are

utilized.

Recent development of Gyro-free IMU showed that workable schemes need, at least,



six accelerometers for a stable operation. Also, the output of these Gyro-free IMUs are 3
angular accelerations and 3 linear accelerations, which need 2 consecutive integral
operations to obtain the rotation angle and 2 consecutive integral operations to obtain the 3
location coordinates in space. As compared to the IMU that is composed of 3 gyroscopes
and 3 linear accelerometers, the gyro-free IMU needs one more integral operation and

which would further deteriorate the sensing accuracy.

Due to the convergence properties of Gyro-free IMU, the accelerometers utilized must
be deployed in a 3D location manner. As a consequence, the accelerometers must be
fabricated in prior to the IMU and then mounted on the various locations of IMU. This

approach inevitably results in misalignment error for the placement of accelerometers.

In correspondence to the existing problems mentioned above, we proposed the brand
new design “observer-based planar Gyro-Free IMU” to solve these problems. In this design
case, we incorporate nine accelerometers in the measurement unit, the output from six
accelerometers are formulated for the governor equation of the measurement unit and the
output of the other 1~3 accelerometers are for the system output, which will be utilized in
the accompanied observer design. The key advantage of this observer-based gyro-free
IMU operation is that the output of the IMU unit is angular rate, instead of angular
acceleration, for the rotational motion measurement. As a consequence, we only need
one integral operation to obtain the rotation angle, and thus the sensing accuracy is greatly

increased.

In the conventional IMU approach, the accelerometers and/or gyroscopes have to be
mounted onto the IMU cube in a 3-D manner for a stable operation. This approach

inevitable bring upon the issues of alignment error and sensing accuracy. The proposed



method allows the accelerometers incorporated in the IMU be located on the same plane,
which enables the in-situ fabrication of the accelerometers in the IMU. This approach
increases the sensing accuracy of the IMU by minimize the alignment error of the

accelerometers/gyroscopes incorporated.

The size of the gyro-free IMU is another determining factor for its sensing accuracy.
Taking the centrifugal force of an object in circular motion for example, the acceleration
along the centrifugal direction is of c?)x(c?)x?). Therefore, a larger size of IMU (r)

implies a smaller angular velocity (@ ) that can be detected.

In order to obtain the equations the can describe the motion of the moving object in
space concisely, we chose the coordinate that is fixed on the moving object and rotated
with the object, which is often named “body frame”. Therefore, we need a transformation
that can transform the motion information represented in body frame into inertial frame,
which is the coordinate fixed to the earth center. There are many transformation methods
that can carry on this operation, including: direction cosine, Euler’s angle and Euler’s
parameters. “Direction cosine” is the simplest one, but it needs nine variables and thus
could further complicate our algorithm. “Euler angle” method uses three variables but it
need to calculate the trigonometric functions. “Euler’s parameters” is the most popular
method for navigation system because it uses only four parameters and no need to
calculating trigonometric functions. Here we chose the “Euler’s angle”” method because it

possessed the vivid physical meanings along the calculations. [4][5][6][7]

This paper is organized as follows. Chapter 2 introduces the theory and the
algorithm of the “observer-base planar Gyro-Free IMU”. Chapter 3 shows the simulation

results and preliminary test of single-axis stage with one accelerometer. Chapter 4 shows



our experiment setup and experimental results. Chapter 5 is the conclusion and future work.



CHAPTER 2

THEORY AND ALGORITHM

2.1 Motion of Rigid Body in Space

Fig.2.1.1 shows motion of point P in the space between inertial frame and body frame.
O; is the origin point of inertial frame and it is centroid of the earth. Oy, is the origin point
of body frame and it is centroid of aircraft. Equ.l had been derived and it is used to

explain acceleration of point P between inertial frame and body frame.

>

O
Inertial

Fig. 2.1.1 Relation Motion between Inertial frame and Body frame

a=axr+a,+odx(@xF)+20xF +7 (2.1)

where

: Acceleration of point P,

QY



a : Acceleration of Oy,

a : Angular acceleration of the body relative to inertial frame,
@ : Angular rate of the body relative to inertial frame,

r : Location of point P relative to body frame,

Iz : Velocity of point P relative to body frame,

: Acceleration of point P related to body frame.

N

If the point P is fixed in the body frame and it is an accelerometer on the IMU, 7 , 7,

2&x 7 must be zero and acceleration of the point is given by:

@’ =a" x7’ +al +a" x(@" x7") 2.2)
where,
a’ : Acceleration of point P, representation in body frame,
a, : Acceleration of Oy, representation in body frame,
a’ : Angular acceleration of the body relative to inertial frame, representation

in body frame,

@ : Angular rate of the body relative to inertial frame, representation in body

frame,



2.2 Location of accelerometers and Dynamic system

Putting an accelerometer at the point P and 7 is the sensing direction of this

accelerometer, Output of the accelerometer can be written as the form (2.3).

A:ﬁb .G°
(o et (<) 23)
o e b oo (o)

Because of there are six degrees of freedom, six accelerometers must be required at
least. Six outputs of accelerometers can be constructed by matrix form. Formula (2.5)

presents those on the body. Conveniently in use, J substitutes the relation between 7

and 7 asshown in forming (2.4).
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Formula (2.6) shows the relations between output signals of each accelerometer and
dynamic properties of the body in motion and includes linear acceleration of aircraft,
angular rate and angular acceleration that they are all represented in the rotation frame.
There is an important issue with matrix J in Eq.2.6. In order to estimate angular
acceleration and linear acceleration from (2.6), matrix J must be invertible. In other
words, rank of J must be full rank. Formula (2.7) shows the “governing equation” in our
model (IMU). Formula (2.8) presents the system output for observer to use. Formula
(2.7) is an unstable system and there is white noise in practical application, so state
estimation (observer) must be used to observe the real state without this noise. This

question is taken up in the next section.
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v || e )
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(2.8)

In order to ensure matrix J invertible, designing the relation between location and
sensing direction becomes an important issue. One way we used is that putting nine
accelerometers in the same circular on the flat, Fig. 2 illustrates the location and sensing
direction about all accelerometers and Table 1 shows these parameters. Location and

th gth -
, 8" accelerometers sense the tangential

sensing direction of the first three and 7
acceleration, the 4™ to 6™ accelerometers sense acceleration of Z-axis only and 9™

accelerometer sense the centripetal acceleration. Matrix J can be rewritten as (2.9) and

the determinant of matrix J is not zero as shown in formula (2.10).



0 0 1 mny 1, 0
0 0 I ny ny 0
0 0 1 0
J- M1 M2 (2.9)
v, —r,; 0 0 1
r, —rt5 0 0 1
[Ty —Ty 0 0 1]
Where, 7, ,r,  n:nthaccelerometer,
M : mth coordinate base.
det(J ) ==1,15,75;75; + 112705, 7 51752 # 0 (2.10)
Table 1 Location and Sensing direction of the accelerometers
Location Sensing direction
T
n, =[xyz]
7l=[xy.z]

Accelerometer 1

Accelerometer 2

Accelerometer 3

10




Accelerometer 4 cos(2—ﬂj, sin(2—ﬂj,0 [0.0.1]
9 9

Accelerometer 5 cos(g—ﬂj, sin(g—ﬂj,O [0.0.1]
9 9

Accelerometer 6 [0,0.1]

Accelerometer 7

Accelerometer 8

Accelerometer 9

11




Fig.2.2.1 Location and Sensing direction of the nine accelerometers

According to the above parameters of accelerometers, governing equation (2.7) and

output equation (2.8) can be rewritten as (2.11) (2.12).

e
A
@’ N - 0,0,
@b |=J7(1:3,:)- A3 + o o (2.11)
@, | Lalel) rafol) +a,+a,Nor | +as0fo)
5
_A6_
A
A
4, N (7] +(w
4, |= ACoef I| " |+ ACoef 2 (@) +(@) 2.12)
4, ) o] @]
AS
_A6_
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Formula (2.11) and (2.12) present the dynamic system in the continuous time domain.
In order to program the above system,®, can be discretize by o, (k+1). o, (k) and

dt as formula (2.13). Formula (2.14) and (2.15) show the discrete system from (2.11) and

(2.12) by (2.13).

. a)j(k+1)—a)j(k)

. =

! dt (2.13)
A, (k)]
o’ (k+1) A, (k)
ol (k+1)|=J7"(1:3,) As(k) -dt
! (k+1) Ak)
A, ()
A (k)]
~ 3 (k) (k) o] (k)
+ ! (k)" (k) dt+| @’ (k)
az(a)zb(k) +a, a)zb(k) +(a1 ta, )(a)?(k) i +a3a)1b(k)a)§(k) a)é’(k)
(2.14)
A, (k)]
e i o} 1) o 0)
A,(k) |= 4Coef I ()| 402 (0} (6)) +(e? (k)Y (2.15)
A9(k) A:(k) a)zb (k 0’? (k)
A (k)]

2.3 Kalman filter

2.3.1 The Extended Kalman Filter

13



Consider the nonlinear system with dynamics
x(ke+1)= sl x(k)]+v(k) (2.16)

where, for simplicity, it is assumed that there is no control, and the noise is assumed

additive, zero mean, and white Gaussian distribution.

EBE]-0 B VW) | =R,

(2.17)
The measurement is
Z(k)=hlk  x(k)]+ w(k) (2.18)
Where the measurement noise is additive, zero mean, and white
Elo(k)]-0 Eolklo() |- R0,
(2.19)

Because of this is a nonlinear system, the system need to be linearization.
Formula (2.20) uses Taylor series expansion to linearize system and measurement for

obtaining the optima estimation of the system.

x(k+1)
= )+ 00 10 e )5 )] 1 (00 ]
+HOT +v(k)
(2.20)
where

14



e :i™ Cartesian basis vector,

!

f (k)= % = [fo(k,x)’} |t (kk) : the Jacobian of vector f,
X
i o°f'! i ' .
f, (k)z v =|V.V f (k,x) liz(q) © the Hessian of vector f,
X

HOT : higher-order terms.

State prediction

The predicted state to time k +1from time k is obtained by taking the expectation

of (2.20) neglecting HOT.
2(k+1]k) =k, 2(k | k)] + Zetr[ P(k | k)]
(2.21)
And prediction covariance is:
P(k+1|k)= KP(k | F, (k)
(2.22)
+ > S ee, uffl, (P(k [ K)E (k)P(k | K)]+ Q(k)
i=l j=1
Measurement prediction
Similarly, the predicted measurement is, for the second-order filter
S(k+11K)=hlk+1,2(k+1]K)]+~ Ze trfh’ (k+1)P(k+1] k)]
(2.23)

15



The measurement prediction covariance or innovation covariance or residual

covariance--really MSE matrix—is

S(k+1)
—h (k+)P(k+1]K)h, (k+1) (2.24)

%iieiej'tr[hlx (k+1P(k+1[K)h!, (k+1)P(k+1]K)]+ R(k +1)

i=l j=1
Filter gain

W(k+1)=P(k +1)h (k+1) S(k+1)" (2.25)
Update

The state estimate updated is

Rk +11k+1)=x(k+1]k)+W(k+1)v(k+1) (2.26)

and state covariance updated is
P(k+1[k+1)=P(k+1]k)- W(k +1)S(k + )W(k +1) 2.27)

The optima estimation will obtain from the above calculating repeatedly.

Using the first-order extended Kalman filter, the higher-order term and the Hessian
of f, and h will be neglected. For simplify to use the first order extended Kalman filter,

Table 2 is presented the flow chat included state prediction and state update.

16



Known input

Evolution (control or
of the system Sensor Estimation State covariance
(true state) motion) of the state computation
State at t; Input at t, State estimate at t; State covariance at t;
X(K) U(k) X (k) P(k[k)
y
Evaluation of Jacobians & Hessian
of (k)
Fx(k) = a— |x:.?c(k\k)
i o' f'(k)
Fxx(k) = 8x—2 |x=£(k\k)
Oh(k+1)
H (k+1)= T ‘x:ff(k\ku)
; o'h'(k+1)
H.xx(k + 1) = 8)6—2 |x:.?c(k\k+1)
y
y
Transition v
State prediction
Uk k+1)= Vo ) State prediction covariance
*(k+1) O ikt lk)=
Sk, x(k),u(k)] Lk Rk u(k)] Plk+1k)=
+u(k) ’ ’ F(k)P(k| k)E,(k)’
v +dk)
Measurement prediction
R v
Z(k+1|k)= ' ‘
. Residual covariance
Wk +1, 2k +1] k)]
Stk+1)=
v H (k+ DR+ 1 H (k+ 1)’
Measurement residual +R(k)
vk +1)=z(k + 1) v
—z(k +1k) Filter gain
A 4 W(k+1)=
Measurement at ti; LA 4 P(k+1|k)H(k+1)S(k+1)"
_ Update state estimate v
W(k+1 z(k+1)=
i hfk+1x(k+1)] Sk +1k+1) = Update state covariance
+w(k+1)

X(k+11K)+W (k+Dv(k+1)

Table 2 Flow chart of first order Extended Kalman filter
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2.3.2 The Iterated Extended Kalman Filter

A modified state updating approach can be obtained by an iterative procedure as

follows.

H =h [k+1,8 (k+1]k+1)]

(2.28)

Pi(k+1]k+1)
=P(k+1|k)

—P(k+1| k)Hi(k+1)'[Hi(k F)P(k+1]K)H (k+1) +R(k+1)]IHi(k+1)P(k+1|k)'
(2.29)
X (k+11k+1)
=x'(k+1|k+1)
+Pi(k+1|k+1)Hi(k+1)lR(k+1)_1 {z(k+1)—h[k+l,§<i(k+l|k+1)]}
—P(k+1k+DP(k+1]K) [& (k+1]k+1)-k(k+1]K)]

(2.30)

Starting the iteration for i=0 with
x(k+1]k+1)=x(k+1]k)

causes the last term in (2.30) to be zero and yields after the first iteration X' (k +1]k+1),

that is, the same as the first-order (no iterated) EKF.

Overview of the Iteration Sequence

18



For i=(0:N-1)

(2.28)

(2.29)

(2.30)

For i=N

(2.30)

with N decided either a prior or based on a convergence criterion.

Through the above procedure to calculate angular rate and linear acceleration

represented in body frame repeatedly, we can obtain the optima estimation at timek +1.

2.4 Orthogonal Transfer Matrix

In order to consider the angular rate and linear represented in inertial frame, the
orthogonal matrix should be used to transfer the representation to another base which

interests us. Formula (2.31) shows the relation between two different bases.

X" = AX' (2.31)

Where

X" : Representation in body frame,
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A : Orthogonal transfer matrix,

X! : Representation in inertial frame.

The Euler angles@, @andgare an orthogonal transform to transfer the quantities

in the rotation frame into those in the inertial frame.

Fig.2.4.1 shows the sequence that is started by rotating the initial system of axes,

XYZ, by an angle ¢ counterclockwise about the Z axis, and the resultant coordinate
system is labeled the ¢ axes. In the second step, the intermediate axes,&nd , are
rotated about the 7 axis counterclockwise by the angle € to produce another
intermediate set, the £'n'¢"axes. Finally, the &'n'd"axes are rotated counterclockwise
by an angle ¢ about the ¢’ axis to produce the desired X'Y'Z' system of axes.
Follow the above three separate rotation is called Y-Convention. Formulas (2.32) to
(2.34) show the relation like (2.31) in the three rotations. Formula (2.35) shows the
result of the three separate rotations, and A is the orthogonal transfer matrix defined in
formula (2.31). Formula (2.36) shows inverse A to transfer representation from the

body frame to the inertial frame.

£=DX' (2.32)
E=C¢& (2.33)
X" =B¢&' (2.34)
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A =BCD
cosp sing Ofcosf O —sinf| cosg sing O
=|-singp cosp Of O 1 0 —sing cos¢g O
0 0 1|sind O cos6 0 0 1

(2.35)
Xi =A—]Xb =A’Xb
A'=D'C'B’
[cosp -singp 0] cos@ 0 sinf | cosp -sing 0
=| sin cos 0 0 I 0 | sin cosp 0
®» 4 ' 4 4 (2.36)
| 0 0 1| -sin@ 0 cosO| 0 0 1
[-singsingp+cos@cospcosp —singcosp—cosOsinpcosd cossind
=| cos@sinp+cos@cospsing  cospcosp—cosOsinpsing  sinsind
| sin@cos @ sin@sin @ cos@
V4 V4
V4 Y'
B n
Y B Y +
X' Z Z
X X ¢ :
Z
* Y

Fig.2.4.1 Eular’ angle

It is often convenient to express the angular rate vector in terms of Euler angles and
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their time derivatives as (2.37). In consequence of the vector property of infinitesimal
rotations, the vector Euler angles time derivatives can be obtained as the sum of the
three separate angular rate vectors and @. The angle @ must avoid being zero

carefully, or make the element in the (2.37) singular.

. —CosQ sin @
é siné siné @
0 |= sing cos@ 0] @, (2.37)
@ cosfdcosp —cosdsing 1 @

sin @ sin @

2.5 Flow chart

Fig.2.5.1 shows the procedure how to use these accelerometers to obtain all

information in the body frame or inertial frame.

A1~As

AAc System(algorithm)

v
Iterate EKF
o’,a"
4
Eular angle

9.0,

A
A\ 4
S
'a

A\ 4

A

0,0,¢

Fig.2.5.1 The flow chart of all algorithms
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CHAPTER 3

SIMULATION AND PRELIMINARY TEST

The algorithm introduced in Chapter 2 will be proved by simulating with Matlab
package. In this proof, consider about the random noise with accelerometer output will
be measured from static-tested of an accelerometer on a stage. In order to make sure that
the experiments are accurate, we test the response of one axis with one accelerometer at
first. The structure of test will be presented in section 3.2. Section 3.3 shows that how
to simulate the motion and define the suitable accelerometer output signal. Section 3.4
shows that preliminary tested from an accelerometer in the above motion we defined.

Section 3.5 shows Matlab simulation to ensure the algorithm we derived in Chapter 2.

3.1 Test structure

In order to get pure sine wave acceleration, the function generator employs to provide
PWM servo amplifiers command and those drives the DC motor on the stage. The stage
is driven by Dc motor and generates a sinusoidal acceleration which is less than 1g. And
the output of accelerometer (ADXL105) is set to a nominal scale factor of 250 mV/g.
However, in order to reduce SNR and increase accuracy, the circuits used to amplify output

voltage must be needed.

Information of encoder of the DC motor is measured by motion card (ADLINK
PCI-8133) and the accelerometer output signals are measured by DAQ card (ADLINK
PCI-9114). Then, we need 2 consecutive integral operations to obtained displacement of
stage and compare those with encoder information. Fig.3.2.1 shows the block diagram of

the test system.
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Function generator

A 4

PWM servo amplifiers

\ 4

Stage (ILS100CC) Motion card (ADLINK PCI-8133)

Compare
DAQ card (ADLINK PCI-9114)
v error
Accelerometer (ADXL105)

output signal

position

A 4

A 4

j dtdt

Fig.3.2.1 Structure of uni-axis test

3.2 Generate Motion

Pure sine wave assists us to analysis the signal easily. It is different between the
input commands of the DC motor from the output of accelerometer, because it loses the
energy on stage. In order to make sure that the signal is the pure sin wave, tuning the
frequency of the function generator until the differential data of encoder twice to be like

the pure sinusoidal response. Fig.3.3.1 to Fig.3.3.3 shows the result of these procedures.

a

VWA ]

O

s

L L
2 3 10

0 ittt e

2 3 4 5 (=3 7 =3 =] 10

s
N O N &

Fig.3.3.1 1HZ sin wave of function generator
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Fig.3.3.3 18HZ sin wave of function generator

We can obtain the result that we increase the frequency of the function generator and
the acceleration becomes pure sine wave. If we increase the frequency of the function
generator over than about 20HZ, we will get the smaller amplitude of the acceleration than
before. Finally, I8HZ of the function generator is employed to be the input command in

this one axis tested.

3.3 One Axis Tested
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In the above condition, the acceleration output will be measured by DAQ card.
Fig.3.4.1 shows the acceleration output, the data which is obtained by integrating the
output of accelerometer once or twice, and we compare those with the information of the
encoder. The accumulation of integral error can be indicated clearly as shown in
The source of this error is the drift of the accelerometer output and the

Fig.3.4.1.

vibration of optical table. This question is taken up in the chapter.5.

compare encoder and measurement

lo T T T T T T T T T
—— encoder
c 5+ —— accelerometer ~
£ 0 |
_5 L L L L L L L L L
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
15F =
il encoder
c —— accelerometer
e 05
ol
L L L L L L L L L L L
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
T T T T
20 velocny from accelerometer ‘
o
€ 0 B
S
-20 L L L L
1. 15 1.6 1.7 1.8 1.9
2000 ‘ — accelerat|on from accelerometer
o~
2
= O
IS
-2000

Fig.3.4.1 Compare encoder and accelerometer output

The sampling rate of encoder is 500 HZ and the sampling rate of DAQ card is 2000
HZ. When the DC motor is static, the standard deviation is 21.9416 mm/s>. The
amplify scale is 1000/39, the operator voltage is OV and 5V and the accelerometer

output scale is 250 mV/g, so acceleration must be smaller than 0.39g (3900mm/ s*) with
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these conditions. Formula 3.1 shows the result.

(5V/2)*(39/1000)/(0.25)=0.39 (3.1)
3.4 Simulation and Resolution

We define the path of the angular acceleration of the Euler’s angles and linear
accelerations in the inertial frame as formula(3.2). We assume that sampling rate of DAQ

card is 1000HZ, I=50mm and the standard deviation is 25mm/ $%.

2x 73
2x 73 (rad/s)
2x 73

2000 % sin(2 x pix18xt)
2000 xsin(2x pix18xt) | (mm/s?)

A, 2000 xsin(2x pix18xt) (3.2)

Fig.3.5.1 shows the state of the algorithm we derived and Fig.3.5.2 shows the angular

rate in the inertial frame.
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Fig.3.5.1 angular rate representation in Body frame

wl in Inertial frame
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w3 in Inertial frame
5
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3
0
E 2
1
o}
-1

w2 in Inertial frame

Fig.3.5.2 angular rate representation in the Inertial frame

Fig.3.5.3 shows the Euler’s angular rate and Fig.3.5.4 shows the Euler’s angle.

There is pulse at 1.5, 3 and 4 seconds, because the matrix in formula (2.37) is singular.
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Fig.3.5.4 Euler angles

The iterative time is 40 for initial to 0.1 second and 20 for 0.1 second to 1 second.

Fig.3.5.5 shows the result of iteration.
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Fig.3.5.5 Iterative convergence of angular rate representation in body frame

Fig.3.5.6 shows the linear accelerations in the body frame and Fig.3.5.7 shows the

linear accelerations in the inertial frame.
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Fig.3.5.6 Linear acceleration representation in Body frame
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Fig.3.5.7 Linear acceleration representation in Inertial frame
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Fig.3.5.8 Angular rate in the rotation frame (R=50mm, std=0.1mm/s”)

Fig.3.5.8 shows the angular rate in the rotation frame with R=50mm, stander

deviation (std)=0.1mm/s* and resolution is 12
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We assume that the angular



acceleration and linear acceleration is zero, and rewrite Eq.2.3 as Eq.3.3.  'We can find out
the relationship between resolution of accelerometer and angular rate of our algorithm
shown as Eq.3.4.

Azﬁb_ab
=@ =)+ -al + 77 (@ x (@ x 7))

ol )
= A < ro’ (3.3)

/A
> @ C  [—
r (3.4)
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CHAPTER 4

TEST OF THE IMU DESIGN

To verify the feasibility and reliability of the method for computing angular rate, it is
necessary to perform a two-step validation procedure, i.e., the method has to yield
consistent and accurate results while acquiring data both from hypothetical and

experimental systems.

To check if our method is feasible for any arbitrary motion, some experiments with
different configurations should be done. According to the type of Euler’ s angle (ZYZ
convention), we design three different experiments and simulations. First, Z axis in the
body frame is parallel to the axis of rotation and the other two linear motions are parallel to
the inertial frame. Secondly, initial condition is changed in order to verify the observer
method is practical when acceleration of gravity effect on the output of accelerometer.
Thirdly, Y axis in body frame is parallel to the axis of rotation and the other two linear

motions are parallel to the inertial frame.

Section 4.1 describes the procedures for these experiments with the designed motion,
analog amplifier, and Butterworth filter. Section4.2, 4.3 and 4.4 describes the first,

second and third experiment and simulation, respectively.

4.1 Experimental procedure

Basic procedure of experiment, analog low-pass amplifier, Butterworth filter and
designed motion will be introduced in this section, and variation of tri-axial setup will be

present in the flowing section.
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Basic procedure of experiment

Three different function generators output sinusoidal voltage to three different PWM
servo amplifiers. These servo amplifiers output sinusoidal current to three different
stages. Sinusoidal current excite sinusoidal acceleration on the stage and we put our IMU
on the stage to sense the sinusoidal acceleration and read the encoder information by
motion card (ADLINK PCI-8133). System noise or disturbance will be generated when
three stages create the sinusoidal. And the acceleration output of the ADXLI10S is
nominally 250mV/g. This scale factor is not appreciated for our applications. An
amplifier is need to set an appreciate scale ratio and a low-pass filter is needed to filter
accelerometer’s internal or circuit high-frequency noise, so analog 1-pole low-pass filter
will be employed to filter those between accelerometer and DAQ card (ADLINK
PCI-9114). But other high-frequency noise will be excited when data of acceleration are
transferred between the output of 1-pole low-pass filter and DAQ card. The digital filter
(4™ order Butterworth filter) must be needed to filter this noise by computer. Let the
result of digital filter be as acceleration output (A;~Ag) shown as in algorithm, and
physical quantities can be calculated by our observer base IMU. To compare these
quantities and encoder’s information, and we will know our algorithm be practical or not.
We will discuss every physical quantities which interest us to be practical or not in the
following sections. Fig.4.1.1 and Fig.4.1.2 show the process of experiment and the flow

chart of algorithm respectively.
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Route of motion

Because sinusoidal current excited sinusoidal acceleration on the stage, Eq.4.1

describes the relationship about displacement, velocity and acceleration. Fig.3.4.1 shows

tendency of Eq.4.1.

Accelaration = sin(27;ft)

1 1
Velocity = ———cos(2xft )+ —
V=% (27ft) o

Displacement = —#sin(27;ft)+ Lt

(277 ) 27f
4.1)

Low-pass analog amplifier (single pole)

- Q0

R1

R2

ouT

Vmip +

Fig.4.1.3 Circuit of low-pass analog amplifier (single pole)

Fig.4.1.3 presents the circuit of low-pass filter and Fig.4.1.4 shows the Bode plot of

low-pass filter. Eq.4.2 describes the gain is 5.1282 and Eq.4.3 shows the transfer function

when the cutoff frequency is 117.0257 HZ, and.
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R1=200KQ R2 =39KQ
C=6.8x10"F
_ 5.128 4.3)
0.00136s +1
analog low pass filter
g -45 1 —

Frequency (rad/sec)

Fig.4.1.4 Low-pass analog amplifier (single pole)

Butterworth filter

Butterworth filters are characterized by a magnitude response that is maximally flat in
the pass-band and monotonic overall. Butterworth filters sacrifice roll-off steepness for

monotonic in the pass- and stop-bands. Unless the smoothness of the Butterworth filter is
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needed, an elliptic or Chebysheyv filter can generally provide steeper roll-off characteristics
with a lower filter order. Eq.4.4 shows the Z-transform and Fig.4.1.5 shows frequency
response when data sampled at 2000 Hz and design a 4th-order low-pass Butterworth filter

with cutoff frequency of 50 Hz.

C3.12x107° +1.25x10Z 7 +1.87x10* Z 72 +1.25x10*Z 7 +3.12x107° 2"

H(Z) -1 -2 -3 S —
1-3.5897Z7 +438513Z° —-2.9241Z - 6.6301x10" Z

(4.4)

Butterworth
100

-100

-200

Magnitude (dB)

-300

-400
0

-100

-200

Phase (degrees)

-300

-400
0

Frequency (Hz)

Fig.4.1.5 Butterworth low-pass filter (fourth order)

There is invariably a time delay between a demodulated signal and the original

received signal. The Butterworth filter parameters directly affect the length of this delay.

4.2 Z-axis rotation with biaxial linear acceleration
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In this experiment, Z axis in body frame is parallel to the axis of rotation and the
other two linear motions are parallel to X axis and Y axis in the inertial frame respectively.
Fig.4.2.1 shows this experiment setup. Eq.4.5 presents Euler’ s transform in these
condition. Generally speaking, whether the quantity of Z-axis in the rotation frame or in
the inertial frame must be equal to the Euler’ s angle (¢ + go), and the quantities of X-axis,
Y-axis and Euler’ s anglef must be zero. But that is not exact correct in practical
experiment. ~ We shall now look more carefully into Eq.4.5, the quantity of Z-axis must
be equal to the Euler' s angle (¢+¢)) when the disturbance or noise in the Euler s
angle@ is close to zero, and the quantity of Z-axis is equal to ¢ when the disturbance or
noise in the Euler’ s angle# is larger then a value which is over than 0.06 radian after 0.2
seconds in this experiment. Compared Fig.4.2.7 with Fig.4.2.8, and we can clearly
understand this question. Fig.4.2.2 shows accelerations which are through analog
low-pass filter and Fig.4.2.3 shows accelerations which are through analog low-pass filter
and then are through digital Butterworth low-pass filter. The curve in Fig.4.2.3 is
smoother then in Fig.4.2.2 and in Fig.4.2.3; there is invariably a time delay which is
introduced in the above section. In Fig.4.2.4 and Fig.4.2.6~4.2.13, the information of
encoder shown by solid line, result of estimated shown by dotted line and subtracting time

delay shown by dash-dot line. The rule holds in the flowing two sections.
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Fig.4.2.1 Experimental set up
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Fig.4.2.3 Signals after Butterworth low-pass filter
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Fig.4.2.4 shows the angular rate which is estimated from observer and obtained
from differentiating the data of encoder in the rotation frame, Fig.4.2.10 shows that those
are in the inertial frame and Fig.4.2.7 shows the Euler’ s angular rate. These quantities
in X-axis and Y-axis should converge to zero, and in Z-axis should be the sinusoidal wave
which is according Eq.4.1. But zero is smaller then resolution in our algorithm, these two
curves will not converge to zero. We simulate the same condition as shown in Fig.4.2.5,
and angular rate don’t converge to zero in X-axis and Y-axis. Because quantity in Z-axis
in the rotation frame is equal to it in the inertial frame and (¢+(p), angular displacement
can be obtained by integrating from angular rate directly whether it is in the rotation or
inertial frame as shown in Fig.4.2.6 and Fig.4.2.11 respectively. Euler’ s angular
displacement is obtained from solving differential equation (Eq.2.37) directly and shown in
Fig.4.2.9. The integral method will accumulate the error and make serious mistake when

using Euler’ s transform as shown in Fig.4.2.13.
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Fig.4.2.4 Angular rate in the rotation frame
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We rewrite Eq.2.6 as Eq.4.6 to obtain linear acceleration in the rotation frame and use

Euler’ s transform (Eq.2.36) to transfer it in the rotation frame into it in the inertial frame
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Fig.4.2.11 Angular displacement in the inertial frame

Fig.4.2.12 and Fig.4.2.13 indicate the result.

of Euler’ s angle, acceleration diverges in the Z-axis in the inertial frame.
encoder is regard as Euler’s angle and put it into Eq.2.37 ; and we can get convergent

acceleration in the inertial frame by using Euler’s angle.

acceleration in the inertial frame.
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With accumulation of the integration error

Here, data of

Fig.4.2.14 shows the convergent
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Fig.4.2.14 Linear acceleration in the inertial frame (with encoder information)
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4.3 Z-axis rotation with biaxial linear acceleration and non-zero initial

condition

Fig4.3.1 Experimental set up

The difference between this experiment and the above experiment is initial condition
of angle of Y-axis and Z-axis as shown in Fig.4.3.1, angle of Y axis is 90 degree and Z axis
is -90 degree as shown in Fig.4.3.1. Fig.4.3.1 presents the set up of this experiment.
Because initial condition in Y axis is not zero, equ.2.35 can not be rewritten as equ.4.5.
Quantities of Y axis and Z axis in the rotation frame are similar to -X axis and -Y axis in
the inertial frame respectively when ¢ is still changed small enough. Quantities of X
axis in the rotation frame are equal to Z axis in the inertial frame. The influence of
acceleration of gravity on each accelerometer is time-varying, so we should separate
acceleration of gravity from accelerometer output. This result is shown in

Fig4.3.8~Fig4.3.10.
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Algorithm flow (Fig.4.2.2) indicated that the influence of integral error of Euler’s
angle on linear acceleration in the inertial frame is the most serious. Because linear
acceleration in the rotation frame is obtained by Eq.4.6 and it carry about a lot of white
noise, it is inaccuracy when we transfer it into linear acceleration in the inertial frame with
Euler’s angle. There is the same circumstance when we transfer the angular rate in the
rotation frame into it in the inertial frame. The angular rate in the rotation frame is
obtained by Iterated Extended Kalman filter without white noise, so it is more accuracy
than linear acceleration. In this experiment, because the angular rate in the rotation frame
converges after 0.3 second, the angular rate in the inertial frame is divergent shown as
Figd.3.4 and Fig.4.3.6. If accuracy Euler’s angle as encoder information is being
substituted Euler’s angle calculated by Eq.2.37 shown as Fig.4.3.5 and Fig.4.3.7, the
angular rate will not be divergence in X-axis in the inertial frame. Fig.4.3.4 and Fig.4.3.5
show the angular rate between 0 and 0.4 second, Fig.4.3.6 and Fig.4.3.7 show the angular

rate between 0 and 4 second.

Linear acceleration in the inertial frame is also divergence as the above experiment.
Encoder information is being substituted Euler’s angle shown to obtained linear
acceleration in the inertial frame as Fig.4.3.10. Fig.4.3.8 presents linear acceleration in
the rotation frame and Fig.4.3.9 shows linear acceleration transferred by Euler’s angle

which is calculated by Eq.2.37 in the rotation frame and it will be divergence.
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Fig4.3.10 Linear acceleration in the inertial frame (with encoder information)

4.4 Y-axis rotation with biaxial linear acceleration

The difference between this experiment and the above experiments is initial condition
and the rotational axis. Initial condition of angle is zero whether it is in any axes and the
axis of rotation is parallel to Y axis in the rotation frame shown in Fig.4.4.1. We rewrite
Eq.2.36 as Eq.4.7 with these initial conditions. According to Eq.4.7, quantities in the
Euler’s angle 6 are the same as quantities of Y axis in the rotation or inertial frame.
Fig.4.4.2, Fig.4.4.6 and Fig.4.4.4 show the angular rate in the rotation frame, inertial frame
and Euler’s angular rate respectively, there are only sine wave in the Y axis whether the

quantities are shown in any Figure.

55



¢=0¢=0
cosp -sing 0]
X'=|sing cosp O
0 0 1

cosf 0 sinf]
= 0 1 0

[cos® 0 sinf|cosp -sing 0
0 1 0 |sing cosp 0[X° 4.7)
|-sinf 0 cos6| O 0 1

Xb

-sinf 0 cos 0_

Fig4.4.1 Experimental set up

Because accumulation of integral error is more serious in this experiment, Euler’s

angular rate which is calculated by Eq.2.37 is divergent. We transfer quantities (angular
rate or linear acceleration) in the rotation frame into inertial frame and those are divergent
more easily in the inertial frame. Accuracy Euler’s angle as encoder information is

substituted Euler’s angle calculated by Eq.2.37 shown as Fig.4.4.3, Fig.4.4.5 and Fig.4.4.8,
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the angular rate in the inertial frame, Euler’s angular rate and linear acceleration in the

inertial frame will not be divergence in Y-axis.
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Fig.4.4.7 Linear acceleration in the rotation frame
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Fig.4.4.8 Linear acceleration in the inertial frame (with encoder information)
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4.5 Discussion

The uncertainties of experiment scheme may cause the difference between
information from encoder and states of algorithm. The discussion of experimental error
below will be shown to emphasize the importance of three features; linear vibration of the
optical table, rotational vibration of the optical table and DC-drift of accelerometer output

or other noise.
Linear vibrations of the optical table

The first question to be discussed is linear vibration of the optical table. Fig4.5.1
illustrates that the frequency of linear vibration is the same as the motion in the experiment.
Amplitude of this vibration is almost 200mm/s” in the X-axis and Y-axis, and 50mm/s” in
the Z-axis as shown in Fig.4.5.2. According these conditions, we simulate how this error

influences physical quantities in our algorithm.
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Fig.4.5.1 Vibration of tri-axes in the frequency domain
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Fig.4.5.2 Vibration of tri-axes

Fig.4.5.3 shows that the vibration makes converging rate of the angular rate to be slow,
but it does not change the accuracy when it converges. The amplitude will increase by
200mmy/s” in the X-axis and Y-axis, as shown in the Fig.4.5.4. It follows from what has
been said that the error of linear vibration affects only the accuracy in the linear

acceleration and converging rate of the angular rate in the rotation frame.
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Fig.4.5.4 Linear accelerations in the rotation frame (with linear vibration)
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Rotational vibration of the optical table

Because the angular rate can not be sensed by our experiments, we just discuss this
question without experimental verification. We assumed that frequency of rotational
vibration is equal to actual motion and the amplitude is about 0.1rad/s>. Fig.4.5.5 and
Fig.4.5.6 show that the result of this simulation is contrary to the above simulation.
Rotational vibration affects the accuracy of angular rate in the rotation frame and it
doesn’t affect linear acceleration. The influence is the same to rotational vibration we
designed. Thus, we see that linear vibration affects linear acceleration and rotational

vibration affects angular rate respectively.
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Fig.4.5.5 Angular rate in the rotation frame (with rotational vibration)
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Fig.4.5.6 Linear accelerations in the rotation frame (with rotational vibration)

DC-drift or other noise

We assumed that there is 5Hz, 100mm/s*> DC-drift in the nine output signals of
accelerometers. Fig.4.5.7 gives a good account of the most serious error in transient
time. To put it more precisely, DC-drift affects the converging rate more seriously than
we discussed above. This kind of error doesn’t affect linear acceleration seriously, as
shown in Fig.4.5.8. Fig.4.5.9 shows that the influence of random frequency (1~17HZ)
of other noises (backlash of screw, vibration of stage and etc.) on converging rate of
angular rate in the rotation frame has slight variations in this two simulations.
Fig.4.5.10 shows that the influence on linear acceleration in the rotation frame is very
slight. We can not say for certain whether this condition (frequency and amplitude) is
fit or not, but we can know that these errors affect the convergent rate more seriously

than what we discussed above.
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Fig.4.5.7 Angular rate in the rotation frame (with 5Hz 100mm/s> DC-drift)
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Fig.4.5.8 Linear accelerations in the rotation frame (with 5Hz 100mm/s” DC-drift)
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Fig.4.5.9 Angular rate in the rotation frame (with 1~17Hz 100mm/s” other noise)
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Fig.4.5.10 Linear accelerations in the rotation frame (with 5Hz 100mm/s” other noise)
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According to Fig.4.1.2, the experiments error influence directly converging rate and
resolution of angular rate, and resolution of linear acceleration in the rotation frame. It
follows from what has been said that linear vibration affects linear acceleration, rotational
vibration affects angular rate and DC-drift or other noises affect the converging rate more

seriously than that we discuss above.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

The observer-based planar Gyro-free IMU has been proven to be feasible for deriving
position information (angular acceleration, angular velocity, linear acceleration and etc.) of
an object moving in space by simulation. For the algorithm proposed in this thesis,
outputs of 6 linear accelerometers were employed in the state equation and outputs of the
other redundant linear accelerometers were used for the output equation; furthermore,
Iterated Extended Kalman filter was treated as a nonlinear observer in order to stabilize the
nonlinear dynamic equation and estimate precise state (angular rate in the rotation frame).
Euler’s transform is employed to transfer the physical quantities from the basis of rotation
frame to the inertial frame. The result (angular rate in the inertial frame) from algorithm
undergoes single integration to obtain 3 rotation angles; and result (linear acceleration in

the inertial frame) undergoes double integration to obtain 3 coordinates for location.

Because Euler’s angular displacement is obtained from solving differential equation
(2.37), this integral operation would accumulate the error and make serious mistake by
using Euler’s transform. Algorithm flow (Fig.4.1.2) indicated that the influence of the
error due to integration (Euler’s angle) on linear acceleration in the inertial frame is the
most serious. For the linear acceleration in the rotation frame obtained by (4.6) carries
about a lot of white noise, it must be incorrect when we transfer it into linear acceleration
in the inertial frame with Euler’s transformation. The same problem would come out

while transferring the angular rate from that on the basis of rotation frame to inertial frame.
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It has to be mentioned that the angular rate in the rotation frame is obtained by Kalman

filter without white noise, and it is more accurate than the linear acceleration.

Some experimental errors would cause the difference between encoder information
and outputs/states of the algorithm. In this thesis, we pointed out that linear vibration
affects linear acceleration, rotational vibration affects angular rate respectively, and
DC-drift or other noises affect the convergent rate more seriously than the vibrations we

discuss above.

5.2 Future works

Although the preliminary simulation/experiment of observer-base planar Gyro-Free
IMU is proposed in this work, more complete simulation, experiment and fabrication have

to be done in the future, as listed below:

l. To implement observer-base planar Gyro-Free IMU with control circuitry by
MEMS process.
2. To improve the resolution for further reducing the restrictions on the distance

between accelerometers and origin point in the rotation frame.

3. Replace Euler’s angle by Euler’s parameters in order to reduce the

accumulation of error due to integration.

4. To complete the 6-axes experiment and reduce experimental error.
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