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Abstract

We propose an optimal bit-length of measurements for devices that lever-
ages the theory of compressive sensing (CS) to achieve high efficiency and
save the energy. of devices. Beyond the 4G communication, the CS is one of
the potential techniques to further enhance sensor network performance. The
proposed optimal measurements of CS exploit the sparse property and [,-min-
imization decoding operation that only a relatively small number of measure-
ments are required to be received and no retransmission is necessary. With the
target probability of averflow, those optimal measurements are able to be
transmitted in fewer bits than full-precision measurements, and they can be
recovered by receiving more redundant measurements. This results in an effi-
cient transmission method that decides the number of measurements and num-
ber of bits per measurement at transmission side to minimize the expected
transmission bits in the air. Besides, the adaptive link is applied to the trans-
mission that uses proper modulation, channel coding scheme (MCS) and rep-

etition according to the signal-to-noise ratio (SNR) and the target outage rate.
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Chapter 1
Introduction

Compressive sensing [1] [2] [3] [4] is one of potential key techniques to further improve
the performance of wireless communication system in the future. It has been widely studied
in various fields of research recently such as medical image, sensor network and signal
process. The raw data is compressed or transformed into the “measurements” with proper
basis, and the raw data can be reconstructed by capturing a small number of compressive
measurements even sampling lower than Nyquist rate. Therefore, it is suitable to apply CS
to a large amount of raw data that results in shorter duration of transmission and higher
bandwidth-efficiency. In addition, CS provides a higher secure link due to the encoding
process that data is encoded by special weighting and a part of information can’t obtain the
raw data. For the wireless transmission, it means that the transmitted data wouldn’t be seen
easily without the enough complete packets and the information of encoding weighting.
And the targets of compression and higher level of security both can be achieved concur-
rently by the process of encoding with proper matrix. Moreover, it is possible to provide
flexible CS for the users to set the special encoding transform or weighting by themselves
if they only want to share something with someone.

In [5], the authors considered the massive MIMO system that channel quality infor-
mation (CQI) is sparse and capable to be compressed through some transform of appropri-
ate basis. Reference [6] proposed a random access compressive sensing for underwater
sensor networks expecting to recover every sensors’ data by receiving a small amount of
compressed information to achieve fewer collisions and save energy of sensors. In [7] [8],
the posterior probability was included, it resulted in decoding correctly with fewer meas-
urements than blind decoding. Some references [9] investigated adaptive compressive
sensing to optimize information gain per unit energy by determining the projection vector,
but it was difficult to implement in wireless system that the projection weighting must be
known for receiver.

Although many applications of CS are proposed in the research area of wireless networks,
there is no special transmission mechanism applied to the CS-based data or the measure-

ments to further enhance the efficiency. We wish to build a new system model including



the signal process of the CS measurements and the adaptive link with non-retransmission
mechanism. Despite the assumption and the environment are simple in this thesis, it is easy
to extend our system to more complicated system by the similar process.

We focus on the work of transmission in the air for the devices using CS, and present
MAC and PHY layer design selecting the optimal parameters based on CS’s characteristic.
For the CS-based signal, we can adjust the bit-length lower than minimal sufficient bit-
length expressing the CS measurements to further reduce the total required bits of trans-
mission data in spite of it would make some measurements overflow. Due to that CS is
sensitive to noise, it is an important issue to protect the transmitted data away from the
noise influence by enhancement of signal strength or channel coding, which has the capac-
ity to correct some decision error. There are many adaptive mechanisms proposed to fulfill
the different targets of requirements adjusting with the varying channels. Those algorithms
consider the error rate of the modulation and channel coding, and use the theoretic error
bound to decide the best parameters for transmission. In [10] [11], the authors proposed
adaptive payload ‘length;-modulation and channel coding scheme (MCS) to maximize
throughput, but it required exhaust computation. Hence, a minimum required transmitted
time (MRTT) algorithm for video transmission was proposed in [13], to reduce the resource
block cost with a simplified calculation. Our work combines these two techniques and can
be mainly divided into two parts: (1) Bit-minimization of the transmission data (2) Reliable
adaptive link for the minimal. transmission energy considering the channel condition.
Moreover, the retransmission is not necessary, it indirectly results in fewer hardware of
buffer and lower complexity of communication controller on ARQ mechanism. In this the-
sis, CS is briefly introduced in Chapter 2. The assumption of raw data and the suggestion
of CS process setting are also talked in the chapter. The flowchart and the system architec-
ture of proposed design is shown in Chapter 3. And we propose an algorithm for optimal
bit-length per measurement to reduce the required total bits for CS recovery in Chapter 4.
Besides, in order to save the energy and the transmission time, an adaptive link is proposed
and shown in Chapter 5. Finally, we will give a conclusion and further future work in
Chapter 6.



CHAPTER 2
BACKGROUND OF COMPRESSIVE SENSING

The CS applying to wireless networks commonly have two parts: (1) Transmit sampling
measurements of compressed data at transmitter. (2) Decode to recovery at receiver. For
the ideal situation, the sampling process can directly capture the compressed data such as
the application of computer tomography (CT) and magnetic resonant imaging (MRI). Un-
fortunately, it is not common case to sampling directly, we should do extra process to com-
press the raw data that will be introduced in this chapter. The assumption of the raw data
used in our experiment will be talked in section 2.2. In addition, the decoding method and
the suggested CS setting for the following work in our experiment will be presented. The
CS used in this thesis is just one case that can be changed, and our main contribution is
talked in Chapter 4, 5.

2.1 Overview of Compressive Sensing

At transmission side, the raw data is divided into many partitions that each of them con-
tains an N-dimensional vector x = [x; x5 == xy]" and sparse property through some trans-
form with appropriate basis such as FFT. The compressive process can be viewed as pro-

jecting x onto M-dimensional space, and the normal form is given as:
y = ®x (2-1)

where @ is a M-by-N random matrix called encoding matrix and y is a Mx1 vector called
measurements in which M <<N. In order to reconstruct the raw data at decoder, M must be
larger than a minimal number of required measurements that depends on the raw data and
decoding method to ensure having enough information.

To obtain the original data with enough number of measurements, the decoding opera-
tion at receiver can be l,-minimization or I;-minimization that both can find a unique so-
lution. Since I,-minimization is a NP-hard problem, I;-minimization, the computational

complexity of which is convex, is more often used for recovery. l;-minimization can find



TABLE 2-1 Notation Summary

Parameter Explanation
N Number of original sparse signal
L Bit-length of each original signal
S Sparsity(number of nonzero term)
S Sparsity ratio (S/N)
H Size of overhead in bits
A Number of measurements per packet
Myeq Number of required measurement for recovery
M,eq Number of required packet for recovery
Ys SNR per symbol in dB
Pout Outage rate constraint
m m-ary QAM
Te Code rate of channel coding
T Number of repetition bit

the unique solution subjecting to that @ satisfies the restricted isometry property (RIP)

given below:

(1= 8)llxg — 22115 < || @xy = DPx3lI5 < (14 6) x4 — x5

holds for all sparse vector x, where § has a small value. It can be viewed as that the process
of projection between different domains wouldn’t change the Euclidean distance. There
are some matrixes that has been proven fulfilling the RIP, such as Fourier, Bernoulli and
Gaussian matrix. I;-minimization and blind decoding method excluding prior probability

is used as following:

min ||x||, s.t. y=®x (2-3)
X




decoding result
—— perfect recovery
100 ................................................................................... -
|
43} 105 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -
=
10'10 L e n i simsn ot n s cmrn A i A rasd et Aot enrn st 108 AcBLE
10'15 i ] ] i 1 i
300 310 320 330 340 350 360 370

Measurements

Figure 2-1 Performance of MSE using unsigned raw data, Bernoulli encoding matrix and
blind decoding algorithm. ( N=500, L=8, s=0.5)

The common notations here are listed in Table 2-1. The performance of MSE with dif-
ferent numbers of measurements is shown in Figure 2-1, the MSE can dramatically de-
crease to achieve perfect recovery with enough number of measurements for decoding.

Perfect recovery means that recovery is 100% correct, and the MSE is resulted from
decoding result including float point that hasn’t used corresponding precision. The extra

process and comparison will be talked in next section.

2.2 Hypothesis and Compressive Sensing Setting

In order to implement and simplify the CS design, it is reasonable to compress some
specific fixed dimensions of raw data. Hence, the raw data are divided into many segments,
and each segment is an N-by-1 vector, in which each element is an L-bits data. We process
the raw data using a segment each time in the following work, and the “raw data” men-
tioned in the following chapter indicates a segment of raw data. We assume the raw data

that is generated randomly by us has the sparse property, and the nonzero part is
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distributing uniformly. In this thesis, we consider three cases of the dimensions of the raw
data segments: N=250, 500 and 1000.

Although our work is based on the CS-based signal, we still took a series of CS verifi-
cation and comparison. According to the result of the comparison, we suggest a CS
setting, and the following proposed algorithm is based on the suggested CS setting. It is
important to know the CS setting is just one case, our proposed method can further extend
to other cases of CS.

In our experiment, the Gaussian encoding matrix for CS causes longer bit-length per
measurement than Bernoulli encoding matrix that both require the near numbers of meas-
urements for CS decoding and different precisions of raw data cause the same result (see
Figure 2-2). Each points in the figure took 50 times of experiments and recorded the largest
value of numbers of required measurements with perfect recovery. In addition, we found
that unsigned data results in fewer necessary CS measurements for recovery, the compari-
sons of which are shown in Figure 2-3. We also applied different decoding constraints to
obtain the raw data. From the result of experiment, the bit-length of each raw data doesn’t
need to be known for receiver in advance. Consequently, the unsigned-data format and
Bernoulli encoding matrix are employed to minimize the required information according
to the experimental results, and we use L=8 bits for ourall following work The data are
transformed to unsigned value, and then encoded through Bernoulli encoding matrix that
the elements in matrix are either 1 or -1 with p=0.5. Hence, the decoding algorithm be-

comes to have more constraint shown as-following:

min ||x||; s.t. y=dx, x>0 (2-4)
X

2.3 Recovery Bound

To obtain the raw data successfully, a minimal number of measurements is necessary to
be reached for decoder that may differ by various elements of encoding matrix, raw data
and decoding method. It is impractical to verify the required measurements at transmitter
or device that decoding costs power, time and extra hardware. In order to efficiently pro-

cess the fast adaptive transmission, a valid recovery bound that must ensure having enough
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Figure 2-4 The largest value of minimal numbers of experimental required measure-
ments and expected recovery bound. ('L=8, 50 samples)

measurements and information is applied to our process. We took a series of test to find
out a proper bound that can be expressed by some simple variables, so it can be applied to
the latter work easily with guarantee of accurate decoding.

First, we took 50 times of experiments using the raw data of assumption and blind de-
coding algorithm talked in section 2.2 and recorded the largest value of the minimal num-
bers of required measurements for recovery in these experiments that all of experiments
had near value of the numbers. Besides, three cases of N=250,500 and 1000 were consid-
ered to ensure the common expression was valid for various cases. Second, we identify the
mathematic expression using some variables of raw data according to the result of previous
test. In the end, we took 10000 times of extra experiments using measurements with cor-

responding number of target bound directly to check that the bound is valid. Hence, the



lower bound of required measurements for recovery in our work according to experience

and experimental result is approximate as following expression:
N
Myeq =3+ -logo (1.2 +5) (2-5)

The required number of measurements can be computed simply by the sparsity and dimen-
sions of raw data and efficiently used for the rest of process. The target bound and experi-
mental result are shown in Figure 2-4 including three cases, and the bounds are greater than

and close to the experimental results.

2.4 Significant Characteristic

Unlike conventional transmitted data, the content of transmission carried in the packets
is the CS measurements that are the encoded raw data through some process. It results in a

flexible transmission that each measurement is replaceable and can be supplemented by

10
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.
U’) 105 ........................................
=
107"
—— perfect recovery
: : .J".
10"5 i ! 1 i 1 i u
300 310 320 330 340 350 360 370
Measurements

Figure 2-5 Recovery performance versus number of measurements using different parts
of measurements. (N=500, L=8, s=0.5)



the others. In other words, we can accomplish the perfect recovery successfully by decod-
ing with a random selecting set of measurements that the number of measurements is
greater than or equal to the requirement. An experimental result is shown in Figure 2-5, all
of them uses one and the same raw data and encoding matrix but different sets that may
have a number of the same measurements with some probability. We can see that all the
sets obtain the raw data successfully and have the near turning points of MSE lower than
the bound discussed in section 2.3. It is not necessary to reach any specific measurement,
but to randomly use some measurements for decoding.

This significant property that measurements are replaceable is applied to our work widely,
and it results in a more flexible and efficient adaptive transmission. The loss of the meas-
urements or the invalid measurements can be supplemented by the other measurements,
and the detail of application will be talked in chapter 3'and 4. Moreover, it further results

in the sooner reliable transmission without retransmission mechanism.

-10 -



CHAPTER 3
SYSTEM ARCHITECTURE AND FLOWCHART

The overview of the dataflow and the system architecture of the proposed system will
be talked in this chapter. We will introduce the working mechanism and flowchart of the
design system based on the previous assumption and the CS setting. And the optimization

work will be talked in the later chapters.

3.1 Flowchart

We propose a cross-layer design including data process, MAC and PHY layers design
which can adjust the system’s variables to meet the request of QoS according to the raw

data and the channel condition. The signal process and optimization work are concurrent

Raw Data
Input
\_/_-
v
Signed Encode with
to > Bernoulli
Unsigned Random Matrix
A
Evaluate Optimal Bit-Length
Bit-Length of ' Adjustment
Meastrement
N
Aggregate A
Measurements into
One Packet

Optimize MCS and Modulation
Repetition ——»  Channel Coding
Repetition

Packet
Transmission

.

Figure 3-1 The dataflow of designed process at transmitter.
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and real time, and the dataflow of designed process at transmitter is simply shown in Figure
3-1. The process executes continuously and start once the segment of raw data is ready.
According to the suggestion of CS setting and the experimental result provided in Chapter
2, the flowchart of designed process at transmission side is as following. The first step is
to transform the raw data into unsigned format due to that nonnegative data requires fewer
measurements discussed in section 2.2. Then, the data is encoded by Bernoulli random
matrix that results in fewer bits per measurement comparing with Gaussian random matrix.
In order to make the value of the measurements have zero mean and save the hardware, the
Bernoulli random variables in the matrix are either 1 or -1 with equal probability. In the
third step, the adjustment of bit-length per measurement can further reduce the total trans-
mitted bits and improve bit-utilization efficiently that will be talked in this chapter. The
optimization of bit-length only requires the information of the raw data, the format of the
encoding matrix and the packet format. Consequently, the optimization of bit-length can
work individually, and it is not necessary to wait for the encoding process or collecting the
measurements. In the next step, the measurements-using the optimal bit-length are collected
and packetized every A measurements. Finally, the packets are encoded and enhanced
based on the results of the optimization of MCS and repetition that result in the reliable
adaptive link. The optimization work of adaptive link-isto achieve the minimal transmis-
sion energy according to not only the channel condition but also the information of the raw
data and the optimal bit-length which can further estimate the necessary number of the
packets and payload length. In other words; the-optimization work can execute before the
packetization finishes completely. Hence, the packets are generated and sent continuously
without waiting for collecting and buffering all packets. At another side, the strong receiver
receives the packets to collect and identify the measurements in the packets passing the
error-detect of cyclic redundancy check (CRC). And the receiver would further distinguish
the valid measurements from the invalid measurements that is overflow and incorrect value.
Then, the receiver tries to reconstruct the raw data by using valid measurements and CS
decoding method, such as 1,-minimization and I;-minimization case by case. Moreover, it

may require to transform the data of decoding result into signed format if necessary.

-12-



3.2 System Architecture

Figure 3-2 shows the designed system architecture which is a cross-layer design relative
to application layer, MAC layer and physical layer. The raw data segment is the unsigned
N-by-1 vector, of which the sparsity is S and each element is L-bits long. The control unit
in MAC layer is responsible for the work of control and optimization that operate with the
information of raw data and channel quality. And the most important optimization work of
bit-length optimization and link adaptation are included in the control unit. The work of
compression unit, bit-length adjustment and packetization is a continuous real time process
all controlled by the control unit. The compressive unit is responsible for encoding or trans-
forming the raw data and generate the full-precision measurements one by one continu-
ously, and it may be put in the application layer sometimes if we directly process the input
of compressed raw data (measurement). Then, the measurements are cut off redundant bits
by the bit-length adjustment unit according to the output of bit-length optimization in con-

trol unit. The bit-length optimization-unit would estimate a best bit-length by considering

_ N S)
Application Layer Raw data segment

{

Cuntml!Jnit _l—- Compression unit

= Bit-length adjustment

¢

e Packetization

mcs, rp § } sNR T

MAC Layer

Physical Layer

Figure 3-2 The system architecture at transmitter



the distribution of the measurements, the overflow probability, aggregating number A and
overhead of CRC, MAC and PHY header. Next, the packetization unit aggregates a number
of measurements into one packet and adds the overhead of MAC header and CRC once it
collects the last A measurements generated from the bit-length adjustment unit. The packet
in physical layer will be added PHY header and be sent immediately once the packet fin-
ishes the modulation and channel coding using the result of optimization executing in link
adaptation unit. The link adaptation is responsible for optimizing the MCS and repetition

according to the SNR of varying channel to reduce the transmission energy.
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CHAPTER 4
OPTIMAL BIT-LENGTH OF MEASUREMENTS

To efficiently achieve higher bit-utilization, the optimal bit-length of measurements is
proposed in this chapter that is able to be transmitted in fewer bits than full-precision meas-
urements before modulation and channel coding. Besides, the aggregation mechanism and

fixed format for packing are applied to further reduce the overhead.

4.1 Packet Format

It is impractical and extravagant to send each measurement separately due to that it
spends too much resource on redundant overhead of packets. Obviously, to prevent this
situation, the aggregation of measurements is the efficient.and simple solution. We con-
sider a fixed number of measurements in each packet in our investigation so far. Hence,
the measurements are divided into-many sets in order for the corresponding packets.

It is important to realize that each measurement is encoded by corresponding row of
encoding matrix that must be known for the receiver. Actually, it is needlessly to record
the encoding matrix if both sender and receiver make use of the same random hardware.
All we should do is to let the receiver know which measurement it is. For the purpose of
avoiding redundant overhead of the indices of measurements, we not only aggregate A
measurements into a packet, but also transmit the useless overflow value resulted from the
adjustment of bit-length that is presented in next section in the format of negative maximal
value (2’s complement 1000...000) depending on the precision of measurements. The rea-
son is that the components of each packet are fixed now. Consequently, the packet does

not require to include the information of all indices of corresponding measurements but the

header ((-1)*A+1)th ((n-1)*A+2)th (n*A-1)th (n*A)th

A measurements

Figure 4-1 The aggregation packet format, in which the number in block is the index of the
measurement. (n: nth sets of measurements, A: number of measurements in a packet)

-15 -



information of which set it is in this packet. By the way, the measurements is invalid and
useless if its value is negative maximal value. The format of packet is shown in Figure 4-

1, and each measurement adopts the optimal bit-length discussed in the following section.

4.2 Proposed Optimal Bit-Length

Each compressive sensing measurement can be seen as a sum of n (equal to sparsity S)

uniform random variables written by:
m; = Xitobix; (4-1)

where x; are the unsigned data within bit-length L resulting in nonnegative numbers rang-
ing from 0 to 2L — 1, and b; are Bernoulli random variables which are either -1 or 1 with
p = 0.5. The Bernoulli random variables work as the operation of addition and subtraction
from the hardware’s point of view. It results in that each term of summation distributes on
the interval [—2L + 1,2% —1 ] uniformly. Moreover, the value of measurements distrib-
utes like Gaussian distribution with zero mean that the more significant bits are less used
(see Figure 4-2), and that it mainly locates around the zero is the reason for why we choose
Bernoulli random variables like this. To efficiently achieve higher bit-utilization, the opti-
mal bit-length of measurements is proposed that is able to be transmitted in fewer bits than
full-precision measurements. We will cut off a proper number of bits to express the meas-
urements that will cause some overflow measurements.

Conventionally, the bit-length of transmitted data must be sufficient longer than or equal
to the required precision for expressing the data. Firstly, we can quickly evaluate the max-

imum bits of each measurement:
bmax = [1082 n(2L+1 - 2)] (4-2)
where [ ] denotes the operation of selecting the nearest integer greater than or equal to the

inside value. Thus the minimal sufficient bit-length of each full-precision measurement

without overflow is shown as Eq. (4-2) and can be simplified as:
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Figure 4-2 The distribution of the value of the measurements

bax = [log,n| +L+1 (4-3)

And the full-precision bit-length depend on the sparsity and the bit-length used for the raw
data.

To reduce the total transmitted bits, the optimal bit-length which is I-bits less than b,
is adopted that there is a probability of overflow. Now the optimal bit-length for use is

expressed as following:

bmax =l (4'4)
where [*is the redundant bits which would be cut and found in our optimization work. In
order to minimize total transmitted bits, let we consider the expectation of bits per meas-

urement that must be generate successfully till a non-overflow measurement is produced.
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The overflow measurements would also be transmitted in a special format (2’s complement
1000...000) due to the consideration of the packet format. As a result, the expectation of

bits of I-bits less can be review as a summation below:
Z(ix;O(H/A + bmax - l) (Pelrr)i (4'5)

where P, is the probability of overflow corresponding to the I-bits less bit-length. H is

the overhead in a packet without modulation and channel coding, and A is the aggrega-

tion number of measurements per packet. This expectation includes the overhead estima-
tion and the bit-evaluation of measurements that is the result of sum of infinite geometric
series according to the employed content of packet format. The summation of infinite ge-
ometric series can be calculated because the overflow prebability is smaller than 1 which
makes the series convergent. Hence, the optimization problem becomes to minimize the

expectation of bits per measurement:

mlin (H/A + bmax P l)/(l 7 Pelrr)
s.t. 0S1I<byax,lE€EZ

(4-6)
And the overflow prabability of [-bits less can be expressed as:
Pl = 2P(x > 2Pmax=i=1_ 1) (4-7)
To further calculate the value of probability, consider the accumulation of n signal uni-

formly distributing on the interval [0, a]. The cumulative density function (CDF) of cumu-

lative value can be computed below [17]:

) = — 37 (-1 (1) [(x — ap)*T (4-8)
where (x — aj)* denotes max(0,x — aj). To compute the probability of overflow, the
above CDF can be shifted to match our case with zero mean. Therefore, the overflow prob-

ability of [-bits less can be bounded by:
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Pl =2+ (1= E2(x + (2" = 1))| ;e pbmar-t-1_y (4-9)

where a = 2L*+1 — 2 resulted from that Bernoulli weighting can double L-bits precision of

data. And Eq. (4-9) can be also written as:
Pelrr =2 (1 - Fna(x))|x=n(2L_1)+2bmax—l—1_1 (4'10)

Combine a and Eq. (4-3), x in Eq. (4-10) can be rewritten as:

a+2

x's nofelterem s g (4-11)
Because a is large comparing with.the constants, we can simplify Eg. (4-11), and substitute
it and Eqg. (4-8) into Eq. (4-10):

x ~ a( + 2llegni=I-1) (4-12)

1
Pelrr = 2(1 e

lan ;l=0(_1)] (7) [(x 4 aj)+]n)|x=a(§+2“0g2 n]—l—l) (4-13)
Since the numerator and numerator in Eq. (4-13) both have the term of a™, the equation

of probability of overflow can be further simplified by eliminating a :
Phy =21 = = 20 o(=1)7 (M) [ = )T | o gitoga i (4-14)
err n1 &Jj=0 j x=5+2[ ogy n|-1-1

Hence, the optimal bit-length b,,,,,, — [ with corresponding probability of overflow eval-
uated by Eqg. (4-14) can be solve by Eq. (4-6) now.

With the increase of the sparsity (S or n), the computational complexity becomes higher
and higher. As a result, it would take too much time to calculate the optimal bit-length if

we still use Eq. (4-14) to approach the overflow propability. Fortunately, when the sparsity
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is large, the distribution of the value of measurements is approximate to Gaussian distribu-

tion. So the CDF above in Eq. (4-14) can be replace by Gaussian distribution with mean g

and standard deviation \/n/12:
Pelrr = 2(1 - Cdf(lnormal,' X, 2) n/lz) )|x=§+2[10g2 nl-l-1 (4'15)

Through this approach, it results in a fast algorithm and makes it possible to construct a

real time system even when sparsity is large.

4.3 Simulation Result |

We compare the total bits of required received measurements using optimal bit-length
with the measurements using full-precision; and-the result is shown in Figure 4-3. The total

bits of required received measurements means how many bits of measurements should be
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Figure 4-3 Bits of required received data of maximum bits, optimal bits and opt-bit-
simulation for recovery. ( N=1000, L=8, H=224, A=20, 10000 samples)
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generated to reach the goal of collecting m,.., (see section 2.3) valid measurements which
are not overflow. In the simulation, we considered aggregating 20 measurements into a
packet and 28 bytes overhead due to that it is the length of header of MAC and PHY. Itis
apparent that the adjustment of bit-length of measurements can produce fewer necessary
transmitted data. It saves about total 20% bits, and the cutting off bit-length can improve
bit-utilization efficiently. Except the theoretic simulation, we also took the 10000 times of
real experiments to generate the sufficient valid random measurements using the optimal

bit-length. The average result of real test is very close to our proposed as good as expected.
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CHAPTER S
ADAPTIVE LINK FOR MINIMAL ENERGY

The present wireless network supports multiple modulation and channel coding schemes
(MCSs). And repetition is an effective way to enhance the strength of signal when the
channel condition is bad. The adaptive link is proposed to minimize the transmission en-
ergy and time through using optimal modulation, channel coding scheme and repetition of
symbol according to channel’s signal-to-noise ratio (SNR) in this chapter, and correspond-

ing simulation will be shown, too.

5.1 Considered MCSs-and Channel

To accomplish flexible and efficient transmission, the various modulation and channel
coding schemes can be chosen-in-the present wireless communication system. The hard-
ware provides different MCSs which have different throughputs and power consumptions
for the users according to their request of QoS and the channel quality. In order to save the
transmission energy and time in the situation of varying channel and different error con-

straints, we use the optimal modulation and channel coding scheme which are supported

TABLE 5-2 Throughput of Raw Data

2/3

5/4

5/2

-22 -



in our system. We consider the modulation including QPSK, 16-QAM and 64-QAM which
are available in LTE. Although the common channel coding schemes include block code,
convolution code and turbo code, we only use convolution code in this thesis due to that
all of them have the similar analytical method. The MCSs used in this experiment which
have different throughputs and bit error rate are shown in Table 5-1, and additive white

Gaussian noise (AWGN) and single-input-single-output (SISO) channel is considered here.

TABLE 5-1 Available MCSs (convolution code)

_ 1/22qazaaz QPSK
_ 1/2 16-QAM
_ 5/8 16-QAM
_ 3/4 16-QAM
e QA
e o

5.2 Resource Block Allocation

To achieve the goal of shorter time duration of transmission is also an important issue in
our research. Due to the property of CS that the losing measurements can be replaced by
the others, we consider sending packets consecutively without retransmission mechanism
that can avoid spending time on waiting for the ACK/NACK and hardware’s idle. For tim-
ing analysis, we adopt LTE resource block and uplink channel due to that it is proper to do
complicate CS decoding at powerful computational base station.

For the LTE uplink transmission [15], SC-FDMA with a CP is adopted. An uplink radio
frame consists of 10 sub-frames, and each sub-frame consists of 2 slots of 0.5 ms each

shown as Figure 5-1. For normal CP, there are 7 symbols for each subcarrier in a slot. And

-23-



One radio frame, T;= 10 ms

- >
1 One subframe :
et =
i One slot :
-

0 1 2 | 3 I ............ I 18 | 19
~
\ ~
\ RN
\ ~ ~ s
\ g Resource grid
\ S
\ ~
\ S
i . _ ayUL s RB
k=Npg'Ng ~1
Resource block
o
<
o s
2 S
n o
= = Resource element (&, /)
2 :
5| 2
2] 2
el R
35| =
=
=
;{‘;
o
E
Y 3
2
=
s
>'
2
S
=
o
L]
—
=
Y k=0
o UL =
[=0 I=N symb ~ l

Time (SC-FDMA symbols)
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there are 12 subcarriers that each subcarrier spaces over 15 kHz in frequency domain in
one resource block. The number of resource blocks in each resource grid depends on the

uplink transmission bandwidth which is configured in the cell and should satisfy:
ng;in,UL < N}g])g < Nggax,UL (5_1)

where NJ™UL = 6 and NJ2*U" = 110 correspond to the smallest and largest uplink sup-
ported bandwidth, respectively.

To take a simplified simulation of transmission, we transmit data by using one resource
block corresponding to one slot in time domain and 180 kHz in frequency domain once
based on the specification of LTE. Moreover, the fourth symbol is used to be reference
signal in each slot. The latency of waiting for ACK/NACK back has been defined in LTE
that is at least 4 ms including about 3 ms for hardware’s decoding. In our simulation, we
consider the minimal waiting time and wait-and-stop ARQ mechanism that requires lower

complexity of controller and fewer buffer.

5.3 Bit Error Rate Analysis

The different MCSs result in different bit error rates and lengths of packet that would
influence the packet error rate and required energy to meet the target of outage rate. We
use the theoretical mathematical error bound to find out the suitable MCS and predict the
transmission energy. Moreover, we adopt the repetition of symbols to enhance the signal’s
strength that can decrease the error rate efficiently especially at low signal-to-noise ratio.
The average probability of bit error with modulation and channel coding corresponding to
PHY mode j and channel quality y; (SNR per symbol) can be bounded by first event error

rate given as following [16]:
berj,rp (¥s) < Z(o)lozdfree Qqg,j Pd,j,rp (¥s) (5-2)

with dg... being the free distance of the convolutional code used in PHY mode j and ag

being the total number of error events of weight d that both can be obtained in Table 5-3.
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TABLE 5-3 weight a,; and Free Distance dy, for Corresponding Convolution Codes

3369418354577 153 263 436 764 1209 2046
3550 5899 10002 16870 28701

10 11038 0193013310 7275 0 40406 0 234969 0
1337714 0 7594819 0 43375588

6 11971 168 546 2004 6391 21431 71709 235868

5 4 36 175 882 4486 23156 120602 622937 3216664
16628990

For hard decision decoding with corresponding probability of bit error p caused only by

modulation, P, jrp (Vs) is given by:

|( Y- (d+1)/2 (d) B Bl el © & if d is odd
Pd,j,rp (VS i d/2 (1 p)d/z (5_3)
\ +X0 d/2+1 (z) -p¥ (1 —p)?F ifdiseven

where p is the bit error rate for uncoded AWGN channels associating with modulation type,
signal-to-noise ratio per symbol and repetition which is equal to the multiplying factor

of signal’s enhancement, and it is given by:

( Q z-ﬂ) if QPSK
: Q( . %)+§ Q(3- 2 E—b)+§ Q(s 2 %) if 16 — QAM
= 5-4
712 (z.@)_z. (3. Eﬂ)+i (5. z.E_b) &4
12 Q 7 N, 2 Q 7 N 12 Q 7 N,
\ —1—12-Q(9- ;-E—’;)+%-Q(13- ;ﬂ) if 64 — QAM

where % is the signal-to-noise ratio per bit in linear scale which can be obtain from y;
o
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Figure 5-2-BER versus SNR with 8 MCSs.

and the repetition's, will be discussed in section 5.4:

rp.lo(ys/lo)

- if QPSK
E .10%s/10)
i T if 16 — QAM (5-5)
-107s/10)
L il & if 64 = QAM

6

Figure 5-2 shows the above mathematical result of average probability of bit error for
coded AWGN channels with varying channel quality and MCSs. The lower bit error rate
is, the longer payload length of the packet is. Hence, there exists a trade-off between bit
error rate and payload length resulting from the uncertain packet error rate. Consequently,
it becomes an optimization problem to select proper coding scheme according to the chan-
nel quality information and the target of outage rate in order to achieve minimal resource

cost and transmission time.
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5.4 Proposed Adaptive Mechanism

Because the loss of measurements resulting from transmission-error can be supple-
mented by other measurements in different packets or sets that each set includes A meas-
urements, it is not necessary to adopt the retransmission mechanism to ensure receiving all
packets that results in a shorter time of transmission.

To minimize the transmission energy, we consider the total required transmission energy

first, that can be written as:
T
Etotar = (M % Loy *r_z:)/ (log,m) * Es (5-6)

where M denotes the number of total transmission packets, and E's is the energy per symbol.
L,i 1s the bit-length of data in a packet including overhead before modulation and channel

coding which is given by:
Loy = H+ (bpax = D+ A (5-7)

It makes no difference to eliminate L,,; and E's that both have constant value for the opti-
mization finding the suitable MCS (m, ) and the number of repetition r,,. Hence, with the
target of outage rate P,,¢ and the number of necessary correct packets M,..,, the optimi-
zation problem becomes as following:

M1y

M,j,rp ch*wgz mj

(5-8)

Myeq—1

. M—i
s.t. Zi=0 (A;I)[)J'vrpl (1 - P]';T'p) < Pout ’
M 2 Mreq

where j is the index of PHY mode. P, is the probability of packet received successfully

corresponding to mode j and repetition 7, and is given by:

Pir, = (1= ber yrori/Te (5-9)
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Figure 5-3 The result of optimization with 8 MCSs, respectively.
(P,y,:=107-3,N=1000, s=0.5, L=8, H=224, A=20)

where ber;., (seesection 5.3) is the average probability of bit error bounded by first event

error rate which is the function of (j,7,,¥s). By the way, M,.., in Eq. (5-8) which is the

number of expected necessary received packets canbe evaluated by combination of Eq. (2-

4) (4-6) (4-11):

Mye
Mreq = L-u—ém (5-9)

Figure 5-3 shows the results of optimization with different MCSs that we optimize the
variables of (M,r,) based on the channel quality through the similar optimal function like
Eq. (5-8), respectively. The intersections of power consumption mainly locate on the inter-
val of [5, 25] (dB per symbol) that is a common practical transmission environment in real
world. It means the selection between different MCSs is a reasonable way to save the power

and increase the throughput.
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5.5 Corresponding Conventional Algorithm

We compare our proposed with the corresponding conventional algorithm optimizing
the same variables (M, j,7;,) according to the same error constraint. The difference is that
the conventional transmission must ensure receiving all the M,.., specific packets by re-
transmitting the packet once the packet is failed to be transmitted. The total required trans-
mission energy has been shown in Eq. (5-6), and the conventional optimization has the
similar form withM = M,..4 * Ngye, in Which Ng,, is the average expected number of
transmission packets including the retransmission packets for successfully receiving a

packet. Hence, the optimization problem becomes as:

Nave*Tp

min g, «logsm;
Nave,j,Tp 2 J

B i1Mreq (5-10)
s.toodl= [z’ivztol Pyt (1= Py ] <P,

N, >1

where P; ;. is the packet success rate as same as Eq. (5-9). To fulfill the constraint of outage

rate, N; is the minimal required number of transmission packets to receive a packet suc-

cessfully according to the statistic. With the corresponding N and P; ;. , the expectation

of average number of transmission packets including retransmission packets for success-

fully receiving a packet can be evaluated by:

_ i
Nave = 2455 (1= Byy)) (5-11)
The content of the summation in Eq. (5-10) (5-11) is the finite geometric series, which can
be computed easily and fastly. By the equations above, the optimal parameters can be ob-

tained, and we can further estimate the required transmission energy for receiving the target

number of packets.

5.6 Simulation Result I1
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Figure 5-4 Optimal transmission and experimental result with different algorithm.
(P,yu:=10"-3,'N=1000, s=0.5, L=8, H=224, A=20, 10000 samples)
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Figure 5-5 Theoretical and experiment latency using LTE-A timing scale.
(P,ue=107-3, N=1000, s=0.5, L=8, H=224, A=20, 10000 samples)
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In the simulation, we include theoretic and experimental results of the proposed and
conventional algorithms with different types of raw data N=250, 500 and 1000. For the real
test, we randomly generate a set of raw data with the fixed sparsity and an encoding matrix

in each experiment, and transmit the packets till receiver receives the target number of
packet successfully. All of them achieve the similar results of three cases of N, the proposed
method’s performance of power consumption is close to conventional adaptive link with
ARQ. Figure 5-4 shows one of the results with N=1000, sparsity ratio=0.5, target of outage
rate =0.1% and 10000 samples. It is reasonable that transmission energy decreases when
the channel quality becomes better and better resulting in lower packet error rate. The pro-
posed has almost the same transmission energy comparing with the conventional optimi-
zation, and the average experimental result has proven the correctness of the algorithm.

Without the necessary of retransmission mechanism, the shorter time of proposed trans-
mission can be achieved based on the significant CS property. For timing analysis, we
apply the standard of LTE-A uplink resource (sce section 5.2) to our simulation and com-
pare with stop-and-wait ARQ which has the lowest complexity of controller, and the la-
tency simulation is shown as Figure 5-5. The performance is distinctly improved especially
at high SNR, the reason is that it spends more ratio of the time on waiting for ACK/NACK
back. It means that we can save the working time and prevent redundant hardware idle with
low complexity of computation and control at transmission side. Although other types of
ARQ mechanism can also save the working time, it needs high complexity of controller
and extra buffer for packets at user’s device:

In addition, Figure 5-6 statistics the probability of the experimental result of the frus-
trated transmission that receiver doesn’t receive more than the target number of measure-
ments m,..,. We consider the various length of raw data and different error constraint con-
taining 1% and 0.1% two cases in the experiment. It is apparent that the under-reception-
rates correspond to the targets of outage rates in rough especially in the case of 0.1% error
constraint. As a result, we can adjust the transmission to fulfill the different error constraint
according to the requirement of QoS.

Actually, the error rate of CS recovery failure at receiver can be lower than the outage
rate because it may decode correctly even with fewer measurements than the target m,.q,.

It results from that we applied the numerical lower bound of required number of the
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Figure 5-6 The under reception rate resulted from different N.and outage
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Figure 5-7 The result of CS decoding error rate caused by the lack of
measurements. (s=0.5, L=8, H=224, A=20, 10000 samples)
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measurements to our proposed algorithm to simplify the computation and work at trans-
mission side, and the bound is equal to or higher than the real requirement case by case.
Figure 5-7 shows the CS decoding error rate at receiver caused by the lack of measurements.
The error rate is directly proportional to the target of outage rate like under-reception-rate,
except for that the error rate is lower than the under-reception-rate. Besides, the impact of
different N is also shown in the figure, which the larger N has the lower error under the
same target of outage rate due to that the given numerical bound is closer to the experi-
mental result with smaller N (see Figure 2-4).
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CHAPTER 6
CONCLUSION AND FUTURE WORK

We present a cross-layer design of reliable adaptive transmission for the users applying
compressive sensing to wireless communication in this thesis. The proposed system pro-
vides an optimal bit-length of measurements and an adaptive link without retransmission
policy. The uniform distribution raw data, Bernoulli encoding matrix, and AWGN channel
have been considered in this thesis, and the channel coding of convolution code is used to
protect the transmitted data away from the noise influence. The proposed optimal bit-length
can be evaluated simply by the mathematical calculation in time. The optimal bit-length
for a CS measurement efficiently achieves fewer required data saving about 20% bits com-
paring with the minimal sufficient full-precision bit-length. According to the channel state,
SNR v, and targeted outage rate, the adaptive link is adopted to minimize the transmission
energy which uses the mathematic error bound to select the proper coding scheme for real
time system. It accomplishes the goal of lower energy consumption due to the optimal
parameter setting. The retransmission is not necessary based on CS’s characteristic that the
loss of measurements can be supplement by the others, so shorter transmission time is re-
quired and the performance improvement is good especially at high SNR. Although there
are many techniques to improve the bandwidth-efficiency and avoid redundant hardware
ide such as TDD, go-back-to-N ARQ, block-ACK and so on, those mechanisms has higher
complexity of communication and control and need more buffer to store the uncertain
packets. We wish to achieve the reliable transmission with low complexity and hardware
cost for the device at transmission side. Besides, it is possible to achieve lower error rate
than the target of outage rate.

We hope that each element in the system block model built in this thesis is able to be
replaced by the other types of data, coding schemes or channel. It means that the flexible
system can be applied to different cases using the similar analysis, the corresponding dis-
tribution, corresponding bound and so on. For example, the recovery bound of required
measurements can be adjusted according to what kind of CS method is used in the com-
munication system. And the other common channel coding including block code and turbo
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code can replace the convolution code even jointly use, all we should do is to analyze the
corresponding statistic error rate and apply it to the optimization work. In addition, it is
possible to further reduce the transmission time if we adopt the real-time decoding given
the powerful computational capacity at base station that can stop the transmission early
when the decoding result is convergent.

Although the SISO system is considered in this thesis, it can further extend to the MIMO
system. Besides, the payload length is our next issue that aggregates different number of
measurements into a packet in the future, we think the performance can be further improved.
Obviously, the computational complexity must become higher, and it need recursive opti-
mization. It is difficult to obtain the real time transmission. Fortunately, we already has a
simplified approach method for adaptive payload length in our previous work if we con-
sider the SNR larger than 5 dB which does not necessarily enhance the signal by repetition.

We expect to combine these two works.in the future.
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