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針對基於壓縮感知訊號的無線網路適應性傳輸技術 

學生：郭峻安               指導教授：黃經堯 博士 

 國立交通大學 

電子工程學系電子研究所碩士班 

摘  要 

 在未來的無線傳輸系統中，壓縮感知是其中一項具潛力的關鍵技術之

一來進一步提高頻帶使用率、傳輸速率或資料安全度等，根據壓縮感知

的特殊性質，我們提出了一個優化的壓縮感知測量元子的位元長度，可

以使裝置更有效的傳輸資料並且節省傳輸能量消耗。提出的演算法利用

資料的特性以及利用最小化𝑙1解碼，其只需要少量的測量元子就可以還

原重建原資料，並且不需要使用重傳機制。優化的測量元子位元長度可

以使用比最低全精準位元長度更短的長度傳送，其會產生相對應的溢值

機率，針對溢值不有效的測量元子，可以通過收取更多其他的測量元子

來補足進行還原; 在傳送端透過調適所需的測量元子以及每個測量元子

的位元長度將能使的傳輸更為有效率與靈活，並且最小化在空氣中的傳

輸位元。除此之外，適應性無線傳輸也被應用在我們傳輸系統中，根據

通道的訊雜比狀況以及錯誤率限制，採用合適的調變與通道編碼，以及

拉長訊號週期當通道狀況不佳的時候。 
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Abstract 

We propose an optimal bit-length of measurements for devices that lever-

ages the theory of compressive sensing (CS) to achieve high efficiency and 

save the energy of devices. Beyond the 4G communication, the CS is one of 

the potential techniques to further enhance sensor network performance. The 

proposed optimal measurements of CS exploit the sparse property and 𝑙1-min-

imization decoding operation that only a relatively small number of measure-

ments are required to be received and no retransmission is necessary. With the 

target probability of overflow, those optimal measurements are able to be 

transmitted in fewer bits than full-precision measurements, and they can be 

recovered by receiving more redundant measurements. This results in an effi-

cient transmission method that decides the number of measurements and num-

ber of bits per measurement at transmission side to minimize the expected 

transmission bits in the air. Besides, the adaptive link is applied to the trans-

mission that uses proper modulation, channel coding scheme (MCS) and rep-

etition according to the signal-to-noise ratio (SNR) and the target outage rate.  
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Chapter 1 

 Introduction 

Compressive sensing [1] [2] [3] [4] is one of potential key techniques to further improve 

the performance of wireless communication system in the future. It has been widely studied 

in various fields of research recently such as medical image, sensor network and signal 

process. The raw data is compressed or transformed into the “measurements” with proper 

basis, and the raw data can be reconstructed by capturing a small number of compressive 

measurements even sampling lower than Nyquist rate. Therefore, it is suitable to apply CS 

to a large amount of raw data that results in shorter duration of transmission and higher 

bandwidth-efficiency. In addition, CS provides a higher secure link due to the encoding 

process that data is encoded by special weighting and a part of information can’t obtain the 

raw data. For the wireless transmission, it means that the transmitted data wouldn’t be seen 

easily without the enough complete packets and the information of encoding weighting. 

And the targets of compression and higher level of security both can be achieved concur-

rently by the process of encoding with proper matrix. Moreover, it is possible to provide 

flexible CS for the users to set the special encoding transform or weighting by themselves 

if they only want to share something with someone.  

    In [5], the authors considered the massive MIMO system that channel quality infor-

mation (CQI) is sparse and capable to be compressed through some transform of appropri-

ate basis. Reference [6] proposed a random access compressive sensing for underwater 

sensor networks expecting to recover every sensors’ data by receiving a small amount of 

compressed information to achieve fewer collisions and save energy of sensors. In [7] [8], 

the posterior probability was included, it resulted in decoding correctly with fewer meas-

urements than blind decoding. Some references [9] investigated adaptive compressive 

sensing to optimize information gain per unit energy by determining the projection vector, 

but it was difficult to implement in wireless system that the projection weighting must be 

known for receiver.  

Although many applications of CS are proposed in the research area of wireless networks, 

there is no special transmission mechanism applied to the CS-based data or the measure-

ments to further enhance the efficiency. We wish to build a new system model including 
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the signal process of the CS measurements and the adaptive link with non-retransmission 

mechanism. Despite the assumption and the environment are simple in this thesis, it is easy 

to extend our system to more complicated system by the similar process.  

We focus on the work of transmission in the air for the devices using CS, and present 

MAC and PHY layer design selecting the optimal parameters based on CS’s characteristic. 

For the CS-based signal, we can adjust the bit-length lower than minimal sufficient bit-

length expressing the CS measurements to further reduce the total required bits of trans-

mission data in spite of it would make some measurements overflow. Due to that CS is 

sensitive to noise, it is an important issue to protect the transmitted data away from the 

noise influence by enhancement of signal strength or channel coding, which has the capac-

ity to correct some decision error. There are many adaptive mechanisms proposed to fulfill 

the different targets of requirements adjusting with the varying channels. Those algorithms 

consider the error rate of the modulation and channel coding, and use the theoretic error 

bound to decide the best parameters for transmission. In [10] [11], the authors proposed 

adaptive payload length, modulation and channel coding scheme (MCS) to maximize 

throughput, but it required exhaust computation. Hence, a minimum required transmitted 

time (MRTT) algorithm for video transmission was proposed in [13], to reduce the resource 

block cost with a simplified calculation. Our work combines these two techniques and can 

be mainly divided into two parts: (1) Bit-minimization of the transmission data (2) Reliable 

adaptive link for the minimal transmission energy considering the channel condition. 

Moreover, the retransmission is not necessary, it indirectly results in fewer hardware of 

buffer and lower complexity of communication controller on ARQ mechanism. In this the-

sis, CS is briefly introduced in Chapter 2. The assumption of raw data and the suggestion 

of CS process setting are also talked in the chapter. The flowchart and the system architec-

ture of proposed design is shown in Chapter 3. And we propose an algorithm for optimal 

bit-length per measurement to reduce the required total bits for CS recovery in Chapter 4. 

Besides, in order to save the energy and the transmission time, an adaptive link is proposed 

and shown in Chapter 5. Finally, we will give a conclusion and further future work in 

Chapter 6.  
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CHAPTER 2  

BACKGROUND OF COMPRESSIVE SENSING 

    The CS applying to wireless networks commonly have two parts: (1) Transmit sampling 

measurements of compressed data at transmitter. (2) Decode to recovery at receiver. For 

the ideal situation, the sampling process can directly capture the compressed data such as 

the application of computer tomography (CT) and magnetic resonant imaging (MRI). Un-

fortunately, it is not common case to sampling directly, we should do extra process to com-

press the raw data that will be introduced in this chapter. The assumption of the raw data 

used in our experiment will be talked in section 2.2. In addition, the decoding method and 

the suggested CS setting for the following work in our experiment will be presented. The 

CS used in this thesis is just one case that can be changed, and our main contribution is 

talked in Chapter 4, 5. 

 

2.1 Overview of Compressive Sensing 

At transmission side, the raw data is divided into many partitions that each of them con-

tains an N-dimensional vector 𝒙 = [𝑥1 𝑥2 ⋯𝑥𝑁]
T and sparse property through some trans-

form with appropriate basis such as FFT. The compressive process can be viewed as pro-

jecting x onto M-dimensional space, and the normal form is given as: 

 

                        𝒚 = 𝜱𝒙                                     (2-1) 

 

where 𝜱 is a M-by-N random matrix called encoding matrix and y is a M×1 vector called 

measurements in which M <<N. In order to reconstruct the raw data at decoder, M must be 

larger than a minimal number of required measurements that depends on the raw data and 

decoding method to ensure having enough information. 

    To obtain the original data with enough number of measurements, the decoding opera-

tion at receiver can be 𝒍𝒐-minimization or 𝒍𝟏-minimization that both can find a unique so-

lution. Since 𝒍𝒐-minimization is a NP-hard problem, 𝒍𝟏-minimization, the computational 

complexity of which is convex, is more often used for recovery.  𝒍𝟏-minimization can find  
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the unique solution subjecting to that 𝜱 satisfies the restricted isometry property (RIP) 

given below: 

 

(1 − 𝛿)‖𝒙𝟏 − 𝒙𝟐‖2
2 ≤ ‖𝜱𝒙𝟏 −𝜱𝒙𝟐‖2

2 ≤ (1 + 𝛿)‖𝒙𝟏 − 𝒙𝟐‖2
2         (2-2) 

 

holds for all sparse vector x, where 𝛿 has a small value. It can be viewed as that the process 

of projection between different domains wouldn’t change the Euclidean distance. There 

are some matrixes that has been proven fulfilling the RIP, such as Fourier, Bernoulli and 

Gaussian matrix.  𝒍𝟏-minimization and blind decoding method excluding prior probability 

is used as following: 

 

𝑚𝑖𝑛
𝒙
  ‖𝒙‖1            𝑠. 𝑡.    𝒚 = 𝜱𝒙               (2-3) 

     

TABLE 2-1 Notation Summary 

 

Parameter Explanation 

N 

L 

S 

s 

H 

A 

𝑚𝑟𝑒𝑞 

𝑀𝑟𝑒𝑞 

𝛾𝑠 

𝑃𝑜𝑢𝑡 

m 

𝑟𝑐 

𝑟𝑝 

Number of original sparse signal  

Bit-length of each original signal 

Sparsity(number of nonzero term) 

Sparsity ratio (S/N) 

Size of overhead in bits 

Number of measurements per packet 

Number of required measurement for recovery 

Number of required packet for recovery 

SNR per symbol in dB 

Outage rate constraint 

m-ary QAM 

Code rate of channel coding 

Number of repetition bit 
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The common notations here are listed in Table 2-1. The performance of MSE with dif-

ferent numbers of measurements is shown in Figure 2-1, the MSE can dramatically de-

crease to achieve perfect recovery with enough number of measurements for decoding.  

 Perfect recovery means that recovery is 100% correct, and the MSE is resulted from 

decoding result including float point that hasn’t used corresponding precision. The extra 

process and comparison will be talked in next section. 

 

2.2 Hypothesis and Compressive Sensing Setting 

In order to implement and simplify the CS design, it is reasonable to compress some 

specific fixed dimensions of raw data. Hence, the raw data are divided into many segments, 

and each segment is an N-by-1 vector, in which each element is an L-bits data. We process 

the raw data using a segment each time in the following work, and the “raw data” men-

tioned in the following chapter indicates a segment of raw data. We assume the raw data 

that is generated randomly by us has the sparse property, and the nonzero part is 

 

Figure 2-1 Performance of MSE using unsigned raw data, Bernoulli encoding matrix and 

blind decoding algorithm. ( N=500, L=8, s=0.5) 
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Figure 2-2 Measurement number comparison between various signal length and encod-

ing matrix. ( N=500, s=0.5, 50 samples, L: raw data bit-length) 

 

Figure 2-3 CS required measurements comparison based on different decoding con-

straint. (N=500, s=0.5, 50 samples, signed or unsigned: original signal format; [ ] indi-

cates the CS decoding constraint) 
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distributing uniformly. In this thesis, we consider three cases of the dimensions of the raw 

data segments: N=250, 500 and 1000. 

 Although our work is based on the CS-based signal, we still took a series of CS verifi-

cation and comparison. According to the result of the comparison, we suggest a CS  

setting, and the following proposed algorithm is based on the suggested CS setting. It is 

important to know the CS setting is just one case, our proposed method can further extend 

to other cases of CS.  

In our experiment, the Gaussian encoding matrix for CS causes longer bit-length per 

measurement than Bernoulli encoding matrix that both require the near numbers of meas-

urements for CS decoding and different precisions of raw data cause the same result (see 

Figure 2-2). Each points in the figure took 50 times of experiments and recorded the largest 

value of numbers of required measurements with perfect recovery. In addition, we found 

that unsigned data results in fewer necessary CS measurements for recovery, the compari-

sons of which are shown in Figure 2-3. We also applied different decoding constraints to 

obtain the raw data. From the result of experiment, the bit-length of each raw data doesn’t 

need to be known for receiver in advance. Consequently, the unsigned-data format and 

Bernoulli encoding matrix are employed to minimize the required information according 

to the experimental results, and we use L=8  bits for our all following work  The data are 

transformed to unsigned value, and then encoded through Bernoulli encoding matrix that 

the elements in matrix are either 1 or -1 with p=0.5. Hence, the decoding algorithm be-

comes to have more constraint shown as following: 

 

𝑚𝑖𝑛
𝒙
  ‖𝒙‖1            𝑠. 𝑡.    𝒚 = 𝜱𝒙 , 𝒙 ≥ 0               (2-4) 

 

2.3 Recovery Bound 

To obtain the raw data successfully, a minimal number of measurements is necessary to 

be reached for decoder that may differ by various elements of encoding matrix, raw data 

and decoding method. It is impractical to verify the required measurements at transmitter 

or device that decoding costs power, time and extra hardware. In order to efficiently pro-

cess the fast adaptive transmission, a valid recovery bound that must ensure having enough  
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measurements and information is applied to our process. We took a series of test to find 

out a proper bound that can be expressed by some simple variables, so it can be applied to 

the latter work easily with guarantee of accurate decoding.  

First, we took 50 times of experiments using the raw data of assumption and blind de-

coding algorithm talked in section 2.2 and recorded the largest value of the minimal num-

bers of required measurements for recovery in these experiments that all of experiments  

had near value of the numbers. Besides, three cases of N=250,500 and 1000 were consid-

ered to ensure the common expression was valid for various cases. Second, we identify the 

mathematic expression using some variables of raw data according to the result of previous 

test. In the end, we took 10000 times of extra experiments using measurements with cor-

responding number of target bound directly to check that the bound is valid. Hence, the 

 

Figure 2-4 The largest value of minimal numbers of experimental required measure-

ments and expected recovery bound. ( L=8, 50 samples) 
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lower bound of required measurements for recovery in our work according to experience 

and experimental result is approximate as following expression: 

 

𝑚𝑟𝑒𝑞 = 3 ∙ 𝑆 ∙ log10 (1.2 +
𝑁

𝑆
)                         (2-5) 

 

The required number of measurements can be computed simply by the sparsity and dimen-

sions of raw data and efficiently used for the rest of process. The target bound and experi-

mental result are shown in Figure 2-4 including three cases, and the bounds are greater than 

and close to the experimental results. 

 

2.4 Significant Characteristic 

   Unlike conventional transmitted data, the content of transmission carried in the packets 

is the CS measurements that are the encoded raw data through some process. It results in a 

flexible transmission that each measurement is replaceable and can be supplemented by 

 

Figure 2-5 Recovery performance versus number of measurements using different parts 

of measurements. (N=500, L=8, s=0.5) 
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the others. In other words, we can accomplish the perfect recovery successfully by decod-

ing with a random selecting set of measurements that the number of measurements is 

greater than or equal to the requirement. An experimental result is shown in Figure 2-5, all 

of them uses one and the same raw data and encoding matrix but different sets that may 

have a number of the same measurements with some probability. We can see that all the 

sets obtain the raw data successfully and have the near turning points of MSE lower than 

the bound discussed in section 2.3. It is not necessary to reach any specific measurement, 

but to randomly use some measurements for decoding. 

  This significant property that measurements are replaceable is applied to our work widely, 

and it results in a more flexible and efficient adaptive transmission. The loss of the meas-

urements or the invalid measurements can be supplemented by the other measurements, 

and the detail of application will be talked in chapter 3 and 4. Moreover, it further results 

in the sooner reliable transmission without retransmission mechanism. 
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CHAPTER 3  

SYSTEM ARCHITECTURE AND FLOWCHART 

The overview of the dataflow and the system architecture of the proposed system will 

be talked in this chapter. We will introduce the working mechanism and flowchart of the 

design system based on the previous assumption and the CS setting. And the optimization 

work will be talked in the later chapters. 

 

3.1 Flowchart  

 We propose a cross-layer design including data process, MAC and PHY layers design 

which can adjust the system’s variables to meet the request of QoS according to the raw 

data and the channel condition. The signal process and optimization work are concurrent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 The dataflow of designed process at transmitter. 
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and real time, and the dataflow of designed process at transmitter is simply shown in Figure 

3-1. The process executes continuously and start once the segment of raw data is ready. 

According to the suggestion of CS setting and the experimental result provided in Chapter 

2, the flowchart of designed process at transmission side is as following. The first step is 

to transform the raw data into unsigned format due to that nonnegative data requires fewer 

measurements discussed in section 2.2. Then, the data is encoded by Bernoulli random 

matrix that results in fewer bits per measurement comparing with Gaussian random matrix. 

In order to make the value of the measurements have zero mean and save the hardware, the 

Bernoulli random variables in the matrix are either 1 or -1 with equal probability. In the 

third step, the adjustment of bit-length per measurement can further reduce the total trans-

mitted bits and improve bit-utilization efficiently that will be talked in this chapter. The 

optimization of bit-length only requires the information of the raw data, the format of the 

encoding matrix and the packet format. Consequently, the optimization of bit-length can 

work individually, and it is not necessary to wait for the encoding process or collecting the 

measurements. In the next step, the measurements using the optimal bit-length are collected 

and packetized every A measurements. Finally, the packets are encoded and enhanced 

based on the results of the optimization of MCS and repetition that result in the reliable 

adaptive link. The optimization work of adaptive link is to achieve the minimal transmis-

sion energy according to not only the channel condition but also the information of the raw 

data and the optimal bit-length which can further estimate the necessary number of the 

packets and payload length. In other words, the optimization work can execute before the 

packetization finishes completely. Hence, the packets are generated and sent continuously 

without waiting for collecting and buffering all packets. At another side, the strong receiver 

receives the packets to collect and identify the measurements in the packets passing the 

error-detect of cyclic redundancy check (CRC). And the receiver would further distinguish 

the valid measurements from the invalid measurements that is overflow and incorrect value. 

Then, the receiver tries to reconstruct the raw data by using valid measurements and CS 

decoding method, such as 𝒍𝒐-minimization and 𝒍𝟏-minimization case by case. Moreover, it 

may require to transform the data of decoding result into signed format if necessary.  
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3.2 System Architecture  

  Figure 3-2 shows the designed system architecture which is a cross-layer design relative 

to application layer, MAC layer and physical layer. The raw data segment is the unsigned 

N-by-1 vector, of which the sparsity is S and each element is L-bits long. The control unit 

in MAC layer is responsible for the work of control and optimization that operate with the 

information of raw data and channel quality. And the most important optimization work of 

bit-length optimization and link adaptation are included in the control unit. The work of 

compression unit, bit-length adjustment and packetization is a continuous real time process 

all controlled by the control unit. The compressive unit is responsible for encoding or trans-

forming the raw data and generate the full-precision measurements one by one continu-

ously, and it may be put in the application layer sometimes if we directly process the input 

of compressed raw data (measurement). Then, the measurements are cut off redundant bits 

by the bit-length adjustment unit according to the output of bit-length optimization in con-

trol unit. The bit-length optimization unit would estimate a best bit-length by considering 

 

Figure 3-2 The system architecture at transmitter 
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the distribution of the measurements, the overflow probability, aggregating number A and 

overhead of CRC, MAC and PHY header. Next, the packetization unit aggregates a number 

of measurements into one packet and adds the overhead of MAC header and CRC once it 

collects the last A measurements generated from the bit-length adjustment unit. The packet 

in physical layer will be added PHY header and be sent immediately once the packet fin-

ishes the modulation and channel coding using the result of optimization executing in link 

adaptation unit. The link adaptation is responsible for optimizing the MCS and repetition 

according to the SNR of varying channel to reduce the transmission energy. 
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CHAPTER 4  

OPTIMAL BIT-LENGTH OF MEASUREMENTS 

To efficiently achieve higher bit-utilization, the optimal bit-length of measurements is 

proposed in this chapter that is able to be transmitted in fewer bits than full-precision meas-

urements before modulation and channel coding. Besides, the aggregation mechanism and 

fixed format for packing are applied to further reduce the overhead. 

 

4.1 Packet Format 

It is impractical and extravagant to send each measurement separately due to that it 

spends too much resource on redundant overhead of packets. Obviously, to prevent this 

situation, the aggregation of measurements is the efficient and simple solution. We con-

sider a fixed number of measurements in each packet in our investigation so far. Hence, 

the measurements are divided into many sets in order for the corresponding packets.   

It is important to realize that each measurement is encoded by corresponding row of 

encoding matrix that must be known for the receiver. Actually, it is needlessly to record 

the encoding matrix if both sender and receiver make use of the same random hardware. 

All we should do is to let the receiver know which measurement it is. For the purpose of 

avoiding redundant overhead of the indices of measurements, we not only aggregate A 

measurements into a packet, but also transmit the useless overflow value resulted from the 

adjustment of bit-length that is presented in next section in the format of negative maximal 

value (2’s complement 1000…000) depending on the precision of measurements. The rea-

son is that the components of each packet are fixed now. Consequently, the packet does 

not require to include the information of all indices of corresponding measurements but the 

 

 

 

 

 

Figure 4-1 The aggregation packet format, in which the number in block is the index of the 

measurement. (n: nth sets of measurements, A: number of measurements in a packet) 

 

header ((n-1)*A+1)th ((n-1)*A+2)th …… (n*A-1)th (n*A)th 

A measurements 
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information of which set it is in this packet. By the way, the measurements is invalid and 

useless if its value is negative maximal value. The format of packet is shown in Figure 4-

1, and each measurement adopts the optimal bit-length discussed in the following section. 

 

4.2 Proposed Optimal Bit-Length 

Each compressive sensing measurement can be seen as a sum of n (equal to sparsity S) 

uniform random variables written by:  

 

𝑚𝑖 = ∑ 𝑏𝑖𝑥𝑖
𝑛
𝑖=0                            (4-1) 

 

where 𝑥𝑖 are the unsigned data within bit-length L resulting in nonnegative numbers rang-

ing from 0 to 2𝐿 − 1, and 𝑏𝑖 are Bernoulli random variables which are either -1 or 1 with 

𝑝 = 0.5. The Bernoulli random variables work as the operation of addition and subtraction 

from the hardware’s point of view.  It results in that each term of summation distributes on 

the interval [−2𝐿 + 1, 2𝐿 − 1 ] uniformly.  Moreover, the value of measurements distrib-

utes like Gaussian distribution with zero mean that the more significant bits are less used 

(see Figure 4-2), and that it mainly locates around the zero is the reason for why we choose 

Bernoulli random variables like this. To efficiently achieve higher bit-utilization, the opti-

mal bit-length of measurements is proposed that is able to be transmitted in fewer bits than 

full-precision measurements. We will cut off a proper number of bits to express the meas-

urements that will cause some overflow measurements. 

Conventionally, the bit-length of transmitted data must be sufficient longer than or equal 

to the required precision for expressing the data. Firstly, we can quickly evaluate the max-

imum bits of each measurement: 

 

𝑏𝑚𝑎𝑥 = ⌈log2 𝑛(2
𝐿+1 − 2)⌉                      (4-2) 

 

where  ⌈ ⌉ denotes the operation of selecting the nearest integer greater than or equal to the  

inside value. Thus the minimal sufficient bit-length of each full-precision measurement 

without overflow is shown as Eq. (4-2) and can be simplified as: 
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𝑏𝑚𝑎𝑥 = ⌈log2 𝑛⌉ + 𝐿 + 1                            (4-3) 

 

And the full-precision bit-length depend on the sparsity and the bit-length used for the raw 

data. 

To reduce the total transmitted bits, the optimal bit-length which is l-bits less than 𝑏𝑚𝑎𝑥 

is adopted that there is a probability of overflow. Now the optimal bit-length for use is 

expressed as following: 

 

      𝑏𝑚𝑎𝑥 − 𝑙
∗                                   (4-4) 

 

where 𝑙∗is the redundant bits which would be cut and found in our optimization work. In 

order to minimize total transmitted bits, let we consider the expectation of bits per meas-

urement that must be generate successfully till a non-overflow measurement is produced. 

 

Figure 4-2 The distribution of the value of the measurements 
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The overflow measurements would also be transmitted in a special format (2’s complement 

1000…000) due to the consideration of the packet format. As a result, the expectation of 

bits of l-bits less can be review as a summation below: 

   

       ∑ (𝐻/𝐴 + 𝑏𝑚𝑎𝑥 − 𝑙) (𝑃𝑒𝑟𝑟
𝑙 )𝑖∞

𝑖=0                           (4-5) 

 

where 𝑃𝑒𝑟𝑟
𝑙  is the probability of overflow corresponding to the l-bits less bit-length. H is 

the overhead in a packet without modulation and channel coding, and A is the aggrega-

tion number of measurements per packet. This expectation includes the overhead estima-

tion and the bit-evaluation of measurements that is the result of sum of infinite geometric 

series according to the employed content of packet format. The summation of infinite ge-

ometric series can be calculated because the overflow probability is smaller than 1 which 

makes the series convergent.  Hence, the optimization problem becomes to minimize the 

expectation of bits per measurement: 

 

                      𝑚𝑖𝑛
𝑙
  (𝐻/𝐴 + 𝑏𝑚𝑎𝑥 − 𝑙)/(1 − 𝑃𝑒𝑟𝑟

𝑙 )  

                     𝑠. 𝑡.    0 ≤ 𝑙 < 𝑏𝑚𝑎𝑥 , 𝑙 ∈ 𝑍                  
                (4-6) 

 

And the overflow probability of 𝑙-bits less can be expressed as: 

 

𝑃𝑒𝑟𝑟
𝑙 = 2𝑃(𝑥 > 2𝑏𝑚𝑎𝑥−𝑙−1 − 1)                  (4-7) 

 

To further calculate the value of probability, consider the accumulation of n signal uni-

formly distributing on the interval [0, a]. The cumulative density function (CDF) of cumu-

lative value can be computed below [17]: 

 

𝐹𝑛
𝑎(𝑥) =

1

𝑛!𝑎𝑛
∑ (−1)𝑗 (𝑛

𝑗
) [(𝑥 − 𝑎𝑗)+]𝑛𝑛

𝑗=0                 (4-8) 

                       

where (𝑥 − 𝑎𝑗)+ denotes max(0, 𝑥 − 𝑎𝑗). To compute the probability of overflow, the 

above CDF can be shifted to match our case with zero mean. Therefore, the overflow prob-

ability of 𝑙-bits less can be bounded by: 
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  𝑃𝑒𝑟𝑟
𝑙 = 2 ∙ (1 − 𝐹𝑛

𝑎(𝑥 + 𝑛(2𝐿 − 1))|𝑥=2𝑏𝑚𝑎𝑥−𝑙−1−1             (4-9) 

 

where 𝑎 = 2𝐿+1 − 2 resulted from that Bernoulli weighting can double L-bits precision of 

data. And Eq. (4-9) can be also written as:  

 

  𝑃𝑒𝑟𝑟
𝑙 = 2 ∙ (1 − 𝐹𝑛

𝑎(𝑥))|𝑥=𝑛(2𝐿−1)+2𝑏𝑚𝑎𝑥−𝑙−1−1             (4-10) 

 

Combine a and Eq. (4-3), x in Eq. (4-10) can be rewritten as: 

 

𝑥 = 𝑛
𝑎

2
+ 2⌈𝑙𝑜𝑔2 𝑛⌉

𝑎+2

2𝑙+1
− 1                                 (4-11) 

 

Because 𝑎 is large comparing with the constants, we can simplify Eq. (4-11), and substitute 

it and Eq. (4-8) into Eq. (4-10):  

 

𝑥 ≈ 𝑎(
𝑛

2
+ 2⌈log2𝑛⌉−𝑙−1)                                                                                (4-12) 

𝑃𝑒𝑟𝑟
𝑙 = 2(1 −

1

𝑛!𝑎𝑛
∑ (−1)𝑗 (𝑛

𝑗
) [(𝑥 − 𝑎𝑗)+]𝑛𝑛

𝑗=0 )|𝑥=𝑎(𝑛
2
+2⌈log2 𝑛⌉−𝑙−1)            (4-13) 

  

Since the numerator and numerator in Eq. (4-13) both have the term of 𝑎𝑛, the equation 

of probability of overflow can be further simplified by eliminating a : 

 

𝑃𝑒𝑟𝑟
𝑙 = 2(1 −

1

𝑛!
∑ (−1)𝑗 (𝑛

𝑗
) [(𝑥 − 𝑗)+]𝑛)𝑛

𝑗=0 |𝑥=𝑛
2
+2⌈log2 𝑛⌉−𝑙−1            (4-14) 

 

Hence, the optimal bit-length  𝑏𝑚𝑎𝑥 − 𝑙 with corresponding probability of overflow eval-

uated by Eq. (4-14) can be solve by Eq. (4-6) now.  

    With the increase of the sparsity (S or n), the computational complexity becomes higher 

and higher. As a result, it would take too much time to calculate the optimal bit-length if 

we still use Eq. (4-14) to approach the overflow propability. Fortunately, when the sparsity 
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is large, the distribution of the value of measurements is approximate to Gaussian distribu-

tion. So the CDF above in Eq. (4-14) can be replace by Gaussian distribution with mean 
𝑛

2
 

and standard deviation √𝑛/12: 

 

𝑃𝑒𝑟𝑟
𝑙 = 2(1 − 𝑐𝑑𝑓(′𝑛𝑜𝑟𝑚𝑎𝑙′, 𝑥,

𝑛

2
, √𝑛 12⁄ ) )|𝑥=𝑛

2
+2⌈log2 𝑛⌉−𝑙−1            (4-15) 

 

Through this approach, it results in a fast algorithm and makes it possible to construct a 

real time system even when sparsity is large. 

 

4.3 Simulation Result I 

We compare the total bits of required received measurements using optimal bit-length 

with the measurements using full-precision, and the result is shown in Figure 4-3. The total 

bits of required received measurements means how many bits of measurements should be 

 

Figure 4-3 Bits of required received data of maximum bits, optimal bits and opt-bit-

simulation for recovery. ( N=1000, L=8, H=224, A=20, 10000 samples)  
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generated to reach the goal of collecting 𝑚𝑟𝑒𝑞 (see section 2.3) valid measurements which 

are not overflow. In the simulation, we considered aggregating 20 measurements into a 

packet and 28 bytes overhead due to that it is the length of header of MAC and PHY.  It is 

apparent that the adjustment of bit-length of measurements can produce fewer necessary 

transmitted data. It saves about total 20% bits, and the cutting off bit-length can improve 

bit-utilization efficiently. Except the theoretic simulation, we also took the 10000 times of 

real experiments to generate the sufficient valid random measurements using the optimal 

bit-length. The average result of real test is very close to our proposed as good as expected. 
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CHAPTER 5  

ADAPTIVE LINK FOR MINIMAL ENERGY 

The present wireless network supports multiple modulation and channel coding schemes 

(MCSs). And repetition is an effective way to enhance the strength of signal when the 

channel condition is bad. The adaptive link is proposed to minimize the transmission en-

ergy and time through using optimal modulation, channel coding scheme and repetition of 

symbol according to channel’s signal-to-noise ratio (SNR) in this chapter, and correspond-

ing simulation will be shown, too. 

 

5.1 Considered MCSs and Channel 

 To accomplish flexible and efficient transmission, the various modulation and channel 

coding schemes can be chosen in the present wireless communication system. The hard-

ware provides different MCSs which have different throughputs and power consumptions 

for the users according to their request of QoS and the channel quality. In order to save the 

transmission energy and time in the situation of varying channel and different error con-

straints, we use the optimal modulation and channel coding scheme which are supported 

TABLE 5-2 Throughput of Raw Data  

 

PHY mode index 

(m) 

Throughput 

(bits per symbol duration) 

1 2/3 

2 1 

3 5/4 

4 2 

5 5/2 

6 3 

7 4 

8 6 
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in our system. We consider the modulation including QPSK, 16-QAM and 64-QAM which 

are available in LTE. Although the common channel coding schemes include block code, 

convolution code and turbo code, we only use convolution code in this thesis due to that 

all of them have the similar analytical method. The MCSs used in this experiment which 

have different throughputs and bit error rate are shown in Table 5-1, and additive white 

Gaussian noise (AWGN) and single-input-single-output (SISO) channel is considered here.  

 

5.2 Resource Block Allocation 

To achieve the goal of shorter time duration of transmission is also an important issue in 

our research. Due to the property of CS that the losing measurements can be replaced by 

the others, we consider sending packets consecutively without retransmission mechanism 

that can avoid spending time on waiting for the ACK/NACK and hardware’s idle. For tim-

ing analysis, we adopt LTE resource block and uplink channel due to that it is proper to do 

complicate CS decoding at powerful computational base station.  

For the LTE uplink transmission [15], SC-FDMA with a CP is adopted. An uplink radio 

frame consists of 10 sub-frames, and each sub-frame consists of 2 slots of 0.5 ms each 

shown as Figure 5-1. For normal CP, there are 7 symbols for each subcarrier in a slot. And  

TABLE 5-1 Available MCSs (convolution code) 

 

PHY mode index 

(m) 
Code rate Modulation 

1 1/3 QPSK 

2 1/22qazaaz QPSK 

3 5/8 QPSK 

4 1/2 16-QAM 

5 5/8 16-QAM 

6 3/4 16-QAM 

7 1 16-QAM 

8 1 64-QAM 
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Figure 5-1 The structure of the uplink resource grid. 
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there are 12 subcarriers that each subcarrier spaces over 15 kHz in frequency domain in 

one resource block. The number of resource blocks in each resource grid depends on the 

uplink transmission bandwidth which is configured in the cell and should satisfy: 

 

𝑁𝑅𝐵
𝑚𝑖𝑛,𝑈𝐿 ≤ 𝑁𝑅𝐵

𝑈𝐿 ≤ 𝑁𝑅𝐵
𝑚𝑎𝑥,𝑈𝐿

                         (5-1) 

 

where 𝑁𝑅𝐵
𝑚𝑖𝑛,𝑈𝐿 = 6 and 𝑁𝑅𝐵

𝑚𝑎𝑥,𝑈𝐿 = 110 correspond to the smallest and largest uplink sup-

ported bandwidth, respectively.  

To take a simplified simulation of transmission, we transmit data by using one resource 

block corresponding to one slot in time domain and 180 kHz in frequency domain once 

based on the specification of LTE. Moreover, the fourth symbol is used to be reference 

signal in each slot. The latency of waiting for ACK/NACK back has been defined in LTE 

that is at least 4 ms including about 3 ms for hardware’s decoding. In our simulation, we 

consider the minimal waiting time and wait-and-stop ARQ mechanism that requires lower 

complexity of controller and fewer buffer. 

 

5.3 Bit Error Rate Analysis 

The different MCSs result in different bit error rates and lengths of packet that would 

influence the packet error rate and required energy to meet the target of outage rate. We 

use the theoretical mathematical error bound to find out the suitable MCS and predict the 

transmission energy. Moreover, we adopt the repetition of symbols to enhance the signal’s 

strength that can decrease the error rate efficiently especially at low signal-to-noise ratio. 

The average probability of bit error with modulation and channel coding corresponding to 

PHY mode j and channel quality 𝛾𝑠 (SNR per symbol) can be bounded by first event error 

rate given as following [16]: 

 

𝑏𝑒𝑟𝑗,𝑟𝑝(𝛾𝑠) ≤ ∑ 𝑎𝑑,𝑗 ∙ 𝑃𝑑,𝑗,𝑟𝑝(𝛾𝑠) 
∞
𝑑=𝑑𝑓𝑟𝑒𝑒

                (5-2) 

 

with 𝑑𝑓𝑟𝑒𝑒 being the free distance of the convolutional code used in PHY mode j and 𝑎𝑑,𝑗 

being the total number of error events of weight d that both can be obtained in Table 5-3. 
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For hard decision decoding with corresponding probability of bit error 𝜌 caused only by 

modulation, 𝑃𝑑,𝑗,𝑟𝑝(𝛾𝑠) is given by: 

 

𝑃𝑑,𝑗,𝑟𝑝(𝛾𝑠) =

{
 
 

 
 ∑ (

𝑑
𝑘
) ∙ 𝜌𝑘 ∙ (1 − 𝜌)𝑑−𝑘           if d is odd𝑑

𝑘=(𝑑+1)/2

1

2
∙ (

𝑑
𝑑/2

) ∙ 𝜌𝑑/2 ∙ (1 − 𝜌)𝑑/2                                      

      +∑ (
𝑑
𝑘
) ∙ 𝜌𝑘 ∙ (1 − 𝜌)𝑑−𝑘    if d is even𝑑

𝑘=𝑑/2+1

                (5-3) 

 

where 𝜌 is the bit error rate for uncoded AWGN channels associating with modulation type, 

signal-to-noise ratio per symbol and repetition which is equal to the multiplying factor  

of signal’s enhancement, and it is given by: 

 

𝜌 =

{
 
 
 
 

 
 
 
                               Q (√2 ∙

𝐸𝑏

𝑁𝑜
)                                                        if QPSK 

 
3

4
∙ Q (√

4

5
∙
𝐸𝑏

𝑁𝑜
) +

1

2
∙ Q (3 ∙ √

4

5
∙
𝐸𝑏

𝑁𝑜
) +

1

4
∙ Q (5 ∙ √

4

5
∙
𝐸𝑏

𝑁𝑜
)        if 16 − QAM

7

12
∙ Q (√

2

7
∙
𝐸𝑏

𝑁𝑜
) −

1

2
∙ Q (3 ∙ √

2

7
∙
𝐸𝑏

𝑁𝑜
) +

1

12
∙ Q (5 ∙ √

2

7
∙
𝐸𝑏

𝑁𝑜
)                            

                          −
1

12
∙ Q (9 ∙ √

2

7
∙
𝐸𝑏

𝑁𝑜
) +

1

12
∙ Q (13 ∙ √

2

7
∙
𝐸𝑏

𝑁𝑜
)     if 64 − QAM

      (5-4) 

 

where 
𝐸𝑏

𝑁𝑜
 is the signal-to-noise ratio per bit in linear scale which can be obtain from 𝛾𝑠 

TABLE 5-3 Weight 𝑎𝑑 and Free Distance 𝑑𝑓𝑟𝑒𝑒 for Corresponding Convolution Codes 

 

Convolution 

 code rate 
𝒅𝒇𝒓𝒆𝒆 𝒂𝒅 

1/3 15 3 3 6 9 4 18 35 45 77 153 263 436 764 1209 2046 

3550 5899 10002 16870 28701 

1/2 10 11 0 38 0 193 0 1331 0 7275 0 40406 0 234969 0 

1337714 0 7594819 0 43375588 

5/8 6 1 19 71 168 546 2004 6391 21431 71709 235868 

3/4 5 4 36 175 882 4486 23156 120602 622937 3216664 

16628990 
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and the repetition 𝑟𝑝 will be discussed in section 5.4: 

 

             
𝐸𝑏

𝑁𝑜
=

{
 
 

 
     

𝑟𝑝∙10
(𝛾𝑠/10)

2
               if QPSK            

𝑟𝑝∙10
(𝛾𝑠/10)

4
                  if 16 − QAM

𝑟𝑝∙10
(𝛾𝑠/10)

6
                  if 64 − QAM

                              (5-5) 

 

Figure 5-2 shows the above mathematical result of average probability of bit error for 

coded AWGN channels with varying channel quality and MCSs. The lower bit error rate 

is, the longer payload length of the packet is. Hence, there exists a trade-off between bit 

error rate and payload length resulting from the uncertain packet error rate. Consequently, 

it becomes an optimization problem to select proper coding scheme according to the chan-

nel quality information and the target of outage rate in order to achieve minimal resource 

cost and transmission time. 

 

 

Figure 5-2  BER versus SNR with 8 MCSs. 
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5.4 Proposed Adaptive Mechanism 

Because the loss of measurements resulting from transmission-error can be supple-

mented by other measurements in different packets or sets that each set includes A meas-

urements, it is not necessary to adopt the retransmission mechanism to ensure receiving all 

packets that results in a shorter time of transmission. 

To minimize the transmission energy, we consider the total required transmission energy 

first, that can be written as: 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = (𝑀 ∗ 𝐿𝑜𝑟𝑖 ∗
𝑟𝑝

𝑟𝑐
)/  (log2𝑚) ∗ 𝐸𝑠           (5-6) 

 

where M denotes the number of total transmission packets, and 𝐸𝑠 is the energy per symbol. 

𝐿𝑜𝑟𝑖 is the bit-length of data in a packet including overhead before modulation and channel 

coding which is given by: 

 

                 𝐿𝑜𝑟𝑖 = 𝐻 + (𝑏𝑚𝑎𝑥 − 𝑙) ∗ 𝐴                           (5-7) 

 

It makes no difference to eliminate 𝐿𝑜𝑟𝑖 and 𝐸𝑠 that both have constant value for the opti-

mization finding the suitable MCS (m, 𝑟𝑐) and the number of repetition 𝑟𝑝. Hence, with the 

target of outage rate 𝑃𝑜𝑢𝑡 and the number of necessary correct packets 𝑀𝑟𝑒𝑞,  the optimi-

zation problem becomes as following: 

 

𝑚𝑖𝑛 
𝑀,𝑗,𝑟𝑝

  
𝑀∗𝑟𝑝

𝑟𝑐𝑗∗𝑙𝑜𝑔2𝑚𝑗
                                                    

     𝑠. 𝑡.    ∑ (𝑀
𝑖
)𝑃𝑗,𝑟𝑝

𝑖 (1 − 𝑃𝑗,𝑟𝑝)
𝑀−𝑖𝑀𝑟𝑒𝑞−1

𝑖=0
≤ 𝑃𝑜𝑢𝑡 ,

𝑀 ≥ 𝑀𝑟𝑒𝑞                                       

       (5-8) 

 

where j is the index of PHY mode. 𝑃𝑗,𝑟𝑝 is the probability of packet received successfully 

corresponding to mode j and repetition 𝑟𝑝, and is given by: 

 

                         𝑃𝑗,𝑟𝑝 = (1 − 𝑏𝑒𝑟𝑗,𝑟𝑝)
𝐿𝑜𝑟𝑖/𝑟𝑐                         (5-9) 
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where 𝑏𝑒𝑟𝑗,𝑟𝑝 (see section 5.3) is the average probability of bit error bounded by first event 

error rate which is the function of (𝑗, 𝑟𝑝 , 𝛾𝑠). By the way, 𝑀𝑟𝑒𝑞 in Eq. (5-8) which is the 

number of expected necessary received packets can be evaluated by combination of Eq. (2-

4) (4-6) (4-11): 

 

                            𝑀𝑟𝑒𝑞 = ⌈
𝑚𝑟𝑒𝑞

𝐴∙(1−𝑃𝑒𝑟𝑟
𝑙 )
 ⌉                                  (5-9) 

 

    Figure 5-3 shows the results of optimization with different MCSs that we optimize the 

variables of (M,𝑟𝑝) based on the channel quality through the similar optimal function like 

Eq. (5-8), respectively. The intersections of power consumption mainly locate on the inter-

val of [5, 25] (dB per symbol) that is a common practical transmission environment in real 

world. It means the selection between different MCSs is a reasonable way to save the power 

and increase the throughput. 

 

 

 

Figure 5-3 The result of optimization with 8 MCSs, respectively.  

(𝑃𝑜𝑢𝑡=10^-3, N=1000, s=0.5, L=8, H=224, A=20) 
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5.5 Corresponding Conventional Algorithm 

    We compare our proposed with the corresponding conventional algorithm optimizing 

the same variables (𝑀, 𝑗, 𝑟𝑝) according to the same error constraint. The difference is that 

the conventional transmission must ensure receiving all the 𝑀𝑟𝑒𝑞 specific packets by re-

transmitting the packet once the packet is failed to be transmitted. The total required trans-

mission energy has been shown in Eq. (5-6), and the conventional optimization has the 

similar form with𝑀 = 𝑀𝑟𝑒𝑞 ∗ 𝑁𝑎𝑣𝑒 , in which 𝑁𝑎𝑣𝑒  is the average expected number of 

transmission packets including the retransmission packets for successfully receiving a 

packet. Hence, the optimization problem becomes as: 

 

  

𝑚𝑖𝑛 
𝑁𝑎𝑣𝑒,𝑗,𝑟𝑝

  
𝑁𝑎𝑣𝑒∗𝑟𝑝

𝑟𝑐𝑗∗𝑙𝑜𝑔2𝑚𝑗
                                 

                     
                

     𝑠. 𝑡.    1 − [∑ 𝑃𝑗,𝑟𝑝 ∗ (1 − 𝑃𝑗,𝑟𝑝)
𝑖

𝑁𝑡−1
𝑖=0 ]

𝑀𝑟𝑒𝑞

≤ 𝑃𝑜𝑢𝑡 ,

𝑁𝑡 ≥ 1                                                    

            (5-10) 

 

where 𝑃𝑗,𝑟𝑝 is the packet success rate as same as Eq. (5-9). To fulfill the constraint of outage 

rate, 𝑁𝑡 is the minimal required number of transmission packets to receive a packet suc-

cessfully according to the statistic. With the corresponding  𝑁𝑡 and  𝑃𝑗,𝑟𝑝, the expectation 

of average number of transmission packets including retransmission packets for success-

fully receiving a packet can be evaluated by: 

 

𝑁𝑎𝑣𝑒 = ∑ (1 − 𝑃𝑗,𝑟𝑝)
𝑖

𝑁𝑡−1
𝑖=0                            (5-11) 

 

The content of the summation in Eq. (5-10) (5-11) is the finite geometric series, which can 

be computed easily and fastly. By the equations above, the optimal parameters can be ob-

tained, and we can further estimate the required transmission energy for receiving the target 

number of packets. 

 

5.6 Simulation Result II 
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Figure 5-4 Optimal transmission and experimental result with different algorithm. 

(𝑃𝑜𝑢𝑡=10^-3, N=1000, s=0.5, L=8, H=224, A=20, 10000 samples) 

 

 

Figure 5-5 Theoretical and experiment latency using LTE-A timing scale.  

(𝑃𝑜𝑢𝑡=10^-3, N=1000, s=0.5, L=8, H=224, A=20, 10000 samples) 
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    In the simulation, we include theoretic and experimental results of the proposed and  

conventional algorithms with different types of raw data N=250, 500 and 1000. For the real 

test, we randomly generate a set of raw data with the fixed sparsity and an encoding matrix  

 in each experiment, and transmit the packets till receiver receives the target number of 

packet successfully. All of them achieve the similar results of three cases of N, the proposed 

method’s performance of power consumption is close to conventional adaptive link with 

ARQ. Figure 5-4 shows one of the results with N=1000, sparsity ratio=0.5, target of outage  

rate =0.1% and 10000 samples. It is reasonable that transmission energy decreases when 

the channel quality becomes better and better resulting in lower packet error rate. The pro-

posed has almost the same transmission energy comparing with the conventional optimi-

zation, and the average experimental result has proven the correctness of the algorithm.  

Without the necessary of retransmission mechanism, the shorter time of proposed trans-

mission can be achieved based on the significant CS property. For timing analysis, we 

apply the standard of LTE-A uplink resource (see section 5.2) to our simulation and com-

pare with stop-and-wait ARQ which has the lowest complexity of controller, and the la-

tency simulation is shown as Figure 5-5. The performance is distinctly improved especially 

at high SNR, the reason is that it spends more ratio of the time on waiting for ACK/NACK 

back. It means that we can save the working time and prevent redundant hardware idle with 

low complexity of computation and control at transmission side. Although other types of 

ARQ mechanism can also save the working time, it needs high complexity of controller 

and extra buffer for packets at user’s device. 

 In addition, Figure 5-6 statistics the probability of the experimental result of the frus-

trated transmission that receiver doesn’t receive more than the target number of measure-

ments 𝑚𝑟𝑒𝑞. We consider the various length of raw data and different error constraint con-

taining 1% and 0.1% two cases in the experiment. It is apparent that the under-reception-

rates correspond to the targets of outage rates in rough especially in the case of 0.1% error 

constraint. As a result, we can adjust the transmission to fulfill the different error constraint 

according to the requirement of QoS.  

Actually, the error rate of CS recovery failure at receiver can be lower than the outage 

rate because it may decode correctly even with fewer measurements than the target 𝑚𝑟𝑒𝑞. 

It results from that we applied the numerical lower bound of required number of the 
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Figure 5-6 The under reception rate resulted from different N and outage  

rate constraint. (s=0.5, L=8, H=224, A=20, 10000 samples) 

 

 

Figure 5-7  The result of CS decoding error rate caused by the lack of  

measurements. (s=0.5, L=8, H=224, A=20, 10000 samples) 
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measurements to our proposed algorithm to simplify the computation and work at trans-

mission side, and the bound is equal to or higher than the real requirement case by case. 

Figure 5-7 shows the CS decoding error rate at receiver caused by the lack of measurements. 

The error rate is directly proportional to the target of outage rate like under-reception-rate, 

except for that the error rate is lower than the under-reception-rate. Besides, the impact of 

different N is also shown in the figure, which the larger N has the lower error under the 

same target of outage rate due to that the given numerical bound is closer to the experi-

mental result with smaller N (see Figure 2-4). 
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 
We present a cross-layer design of reliable adaptive transmission for the users applying 

compressive sensing to wireless communication in this thesis. The proposed system pro-

vides an optimal bit-length of measurements and an adaptive link without retransmission 

policy. The uniform distribution raw data, Bernoulli encoding matrix, and AWGN channel 

have been considered in this thesis, and the channel coding of convolution code is used to 

protect the transmitted data away from the noise influence. The proposed optimal bit-length 

can be evaluated simply by the mathematical calculation in time. The optimal bit-length 

for a CS measurement efficiently achieves fewer required data saving about 20% bits com-

paring with the minimal sufficient full-precision bit-length. According to the channel state, 

SNR 𝛾𝑠 and targeted outage rate, the adaptive link is adopted to minimize the transmission 

energy which uses the mathematic error bound to select the proper coding scheme for real 

time system. It accomplishes the goal of lower energy consumption due to the optimal 

parameter setting. The retransmission is not necessary based on CS’s characteristic that the 

loss of measurements can be supplement by the others, so shorter transmission time is re-

quired and the performance improvement is good especially at high SNR. Although there 

are many techniques to improve the bandwidth-efficiency and avoid redundant hardware 

ide such as TDD, go-back-to-N ARQ, block ACK and so on, those mechanisms has higher 

complexity of communication and control  and need more buffer to store the uncertain 

packets. We wish to achieve the reliable transmission with low complexity and hardware 

cost for the device at transmission side. Besides, it is possible to achieve lower error rate 

than the target of outage rate. 

We hope that each element in the system block model built in this thesis is able to be 

replaced by the other types of data, coding schemes or channel. It means that the flexible 

system can be applied to different cases using the similar analysis, the corresponding dis-

tribution, corresponding bound and so on. For example, the recovery bound of required 

measurements can be adjusted according to what kind of CS method is used in the com-

munication system. And the other common channel coding including block code and turbo 
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code can replace the convolution code even jointly use, all we should do is to analyze the 

corresponding statistic error rate and apply it to the optimization work. In addition, it is 

possible to further reduce the transmission time if we adopt the real-time decoding given 

the powerful computational capacity at base station that can stop the transmission early 

when the decoding result is convergent. 

Although the SISO system is considered in this thesis, it can further extend to the MIMO 

system. Besides, the payload length is our next issue that aggregates different number of 

measurements into a packet in the future, we think the performance can be further improved. 

Obviously, the computational complexity must become higher, and it need recursive opti-

mization. It is difficult to obtain the real time transmission. Fortunately, we already has a 

simplified approach method for adaptive payload length in our previous work if we con-

sider the SNR larger than 5 dB which does not necessarily enhance the signal by repetition. 

We expect to combine these two works in the future. 

  



 

- 37 - 

 

Reference 

[1] M. Davenport, M Duarte, Y. Eldar, and G. Kutyniok, “Introduction to compressed 

sensing," in Electrical Engineering, pp.1-68, 2011. 

[2] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal re-

construction from highly incomplete frequency information,” IEEE Trans. Inform. 

Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006. 

[3] E. Candès and T. Tao, “Near optimal signal recovery from random projections: Uni-

versal encoding strategies?,” IEEE Trans. Inform. Theory, vol. 52, no. 12, pp. 5406–

5425, Dec. 2006. 

[4] D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52, no. 4, pp. 

1289-1306, Apr. 2006. 

[5] Ping-Heng Kuo, H. T. Kung, and Pang-AN Ting, “Compressive sensing based channel 

feedback protocols for spatially-correlated massive antenna arrays,” in Proc., IEEE 

WCNC 2012, Apr. 2012. 

[6] F. Fazel, M. Fazel, and M. Stojanovic, “Random access compressed sensing for en-

ergy-efficient underwater sensor networks,” IEEE Journal On Selected Areas In Com-

munications, vol. 29, pp. 1660–1670, 2011. 

[7] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. Signal Pro-

cess., vol. 56, no. 6, pp. 2346–2356, Jun. 2008. 

[8] D. Baron, S. Sarvotham, and R. G. Baraniuk, “ Bayesian compressive sensing via 

belief propagation,” IEEE Trans. Signal Process.,vol. 58, no. 1, pp. 269–280, Jan. 

2010. 

[9] C. T. Chou, R. Rana, and W. Hu, “Energy efficient information collection in wireless 

sensor networks using adaptive compressive sensing,” in IEEE 34th Conference on 

Local Computer Networks (LCN), pp. 443–450, Oct 2009. 

[10] S. Choudhury and J. D. Gibson, “Throughput optimization for wireless LANs in the 

presence of packet error rate constraints,” IEEE Commun. Lett., vol. 12, no. 1, Jan 

2008. 

[11] S. Choudhury and J. D. Gibson, “ Payload length and rate adaptation for multimedia 

communications in wireless LANs, ” Selected Areas in Communications, IEEE Jour-

nal on, vol. 25, pp. 796-807, 2007. 



 

- 38 - 

 

[12] X. Zhu, “ Distributed rate allocation for video streaming over wireless networks,” 

June 2009, Standford University. 

[13] Hsuan-Li Lin, Tung-Yu Wu, and Ching-Yao Huang, “Cross layer adaptation with QoS 

guarantees for wireless scalable video streaming,” IEEE Commun. Lett., vol. 16, no. 

9, pp. 1349-1352, Sep 2012. 

[14] J. G. Proakis, “Chapter Four: Optimum Receivers for AWGN channels,” in Digital 

Communications, 4th ed., New York, McGraw Hill, 2008, pp. 196-199. 

[15] J. Zhang, J.G. Andrews, and R. Muhamed, Fundamentals of LTE. Prentice Hall, Sep, 

2011. 

[16] C. Lee and L. H. C. Lee, Convolutional Coding: Fundamentals and Applications. 

Artech House Publishers, 1997. 

[17] J. B. Uspensky, Introduction to Mathematical Probability (New York: McGraw-Hill 

1937), pp. 277 

[18] W. Molenaar, "Approximations to the poisson, binomial and hypergeometric distri-

bution functions," Mathematical Centre Tracts, no. 31, Mathematisch Centrum, Am-

sterdam, 1970, pp. 155-159. 


