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1 Introduction

We study the exact theory and its nonlinear approximation of the nonlinear Schrodinger equa-
tion (NLS, [1][2][3])

i + Qe + 2lq’g = 0. (1.1)

The nonlinear approximation of NLS has solutions reside on the Riemann surface of genus N-1

denoted by Ry_1 :

(1.2)

where N € N, E;, € C\ R and Ej, ;= Eo:

We first study the theory of Ry 4 [5][6] from which we ¢an analyze the nonlinear approximations
and the theories about the Riemann surfaces will bestudied in section 2. Secondly, we study the
classical elliptic functions.[4] which are close related fo_the theory of Riemann surfaces and are
applied to solve some special solutions of NLS: The theories and properties of the classical elliptic
functions will be studied in-section 3.

Finally, we use the theories-of Riemann surfaces and the classical elliptic functions to solve

some special solutions of NLS and analyze the degenerates of the NLS solutions in section 4.



2 The Riemann surfaces

2.1 The construction of Riemann surface

First, take a simple case f(z) = /z for example, f : C — C. When z € C, z can be expressed
as z = |z]e" = |2]e'®+2"™) where n € N, then

0+2nm

fz) = Ve = |a2ed
2]2¢'2 i n is even,
—|z]2e'% if nis odd,
which implies that f is a two-valued function. Now we want to.let f(z) be a single-valued function,
so we need to find the corresponding Riemann surface such that f becomes a single-valued function.
Second, by stereographic projection; we know that there is a mapping that projects a sphere
onto a plane, then for any z € C, we can find exactly one corresponding point on the sphere, and
we call this sphere extended complex plane, denoted by C*. So by this projection, we can visualize
the point at infinity in the.complex plane; and it corresponds to the north pole denoted by N of
the extended complex plane.

1 0427
t7/3

Note that f(z) = |z|%e’%, when 6 increases by 27,f(z) = |z|ze = —|z|%ei% which is just
the negative of its original value, again when 6 increases by 2w, f(z) = \z[éeig which is the original
value. Since f(z) changes its value when 6 increases by 27 and f(2) = \/z = v/z — 0 where 0
is a branch point, so image there are two sheets lying on the complex plane. By stereographic
projection, we can consider the two sheets to be the spheres (C*) and cut them from the branch
point 0 to N which corresponds to cut the complex plan along the negative real axis, that is, from

0 to —oo. Then we know each sheet has a corresponding cut plane and we get two single-valued

branches of f(z). Define that

f(z)= |z|%eig, —7 <60 <, as z is in the sheet-I,
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f(z) = |z|%eig, m <0 < 3m,as z is in the sheet-II.

The cut on each sheet has two edges, label the starting edge with ”+” and the terminal edge with

»_ "

50

Figure 1.The extended complex plane and cut plane

Third, open two spheres from the cuts and stretch two cuts into circular holes, then rotate two
circular holes such that the (+) edge of sheet-I face the (-) edge of sheet-II and the (-) edge of
sheet-I face the (+) edge of sheet-II. /Then gluetwo holes together and mold it into a sphere. We

call this sphere, Riemann surface of genus 0 for it does not have any holes, denoted by Rj.

sheet-1 sheet-11

Figure 2.Placing the cuts open
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Figure 3.Together with two sheets

3
.5

Figure 4. The Riemann surface of genus 0

Since we glue two sheets together and each sheet has a corresponding cut plane, then there
must be a corresponding cut plane to Riemann surface. Note that when we cross the cut, we pass
from one sheet to another so for convenience, we use the solid line to represent the curve in sheet-I
and use the dash line to represent the curve in sheet-II on the cut plane. Moreover, the (+) edge
of sheet-I is equivalent to the (-) edge of sheet-II, and the (-) edge of sheet-I is equivalent to the
(+) edge of sheet-II in the Riemann surface.

Next, we introduce the relation between the curve in algebraic structure and geometric structure

when f(2) =+/z.



Example 2.1.1. The curve =, is start from a point in the (+) edge of sheet-I to the (-) edge of

sheet-1 and ~, is start from a point in the (+) edge of sheet-1I to the (-) edge of sheet-II.

Figure 5.The algebraic structure and geometric structure of v and

Last, if a point z; is in sheet-1, we can-write 2, =1z |e? where §; €]—, 7), then the argument
of \/z1 is & € [—Z,Z), and if a point 2, is in sheet-II, write 25 = |2|€™ where 0, € [r,37), then

the argument of ,/z; is 92—2 == 4 37”), therefore f(2) = y/z become a single-valued function whenever

the point z is in sheet-I or sheet-II.

o |
m
T

R

ko |
o

R

Figure 6.The argument of f(z)

| 5
Example 2.1.2. Construct the corresponding Riemann surface for f(z) = (z — zx) where
k=1
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zr€Rand 21 < 29 < - -+ < 25.

To begin with, cut the plane from z, to —oo, k =1,2,---5.
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Figure 7.Cutting the plane from zj to —oo

Since the argument of z increases by 2@ when we cross one cut which implies that the argument of
f(2) increases by 7, then if(z) becomes the negative of its original valuexThat is, the value of f(z)
changes one sign when we cross one cut. Thus the value of f(z) will change sign when crossing

the cuts odd times and not change sign when crossing the cuts even times.
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Figure 8.Determining the sign of the value of f(z)




Then the cut structure becomes:

Figure 9.The cut structure

The branch cuts are in [—00, z1], [22, 23], [24, 25].
Furthermore, open the cuts and rotate two sheets such that the (+) edge of sheet-I face the (-)

edge of sheet-IT and the (-) edge of shee

Figure 10.Placing the cuts open




Finally, glue two sheets toget wann surface of f(z) and call

it Riemann surface of genus:

------------------

qqqqqqqqqqqqqqqq

Figure 12.The Riemann surface of genus 2
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Example 2.1.3. Construct the corresponding Riemann surface for f(z) = (z — zx) where

k=1

zr € Rand 21 < 29 < - -+ < 2.

We do the same process as in Example 1.1.1. Cut the plane from z; to —oo, k =1,2,---6.
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Figure 13.Cutting the plane from z; to —oo

The cut structure becomes:

kL

Figure 14.The cut structure

The branch cuts are in [21, 22, [23, 24], [25, 26]-



sheet — II

Figure 16.Together with two sheets

10



6 roots, have different alg ¢ structures ave - the sa (ric graph, that is, they all

Now using the same met i find the corre ing Riemann surface of f(z) in
general case where f(z) = R < zp. Cut the plane from zj

to —o0, k=1,2,---n.
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Figure 18.Cutting the plane from zj; to —oo
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Case 1. n=2N —1, N e N.

The cut structure becomes:

-
+ + +
= Zy 33 ZoN-2 zﬂN—l
Figure 19.The cut structure
The branch cuts are in [—o0, 1], [22, 23], « - -, [2an—2, Zan—_1]-

12



Figure 22.The Riemann surface of genus N-1

Case 2. n=2N, N € N.

The cut structure becomes:

13
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z, Z, Z, 24 Zan-1 Zyn

Figure 23.The cut structure

The branch cuts are in [21, 22, [23, 24], -+, [2an—1, 22n]-

sheet — IT

Figure 25.Together with two sheets

14



Figure 26.The Riemann surface of genus N-1

In these cases, we all make N branch cuts and get Riemann surface of genus N — 1 whenever

f(2) has 2N — 1 or 2N roo6ts.

2.2 The a, b cycles

We introduce the a, b cycles since the simple closed curves on Riemann surface can be written
as the linear combination of them. Take two examples to.illustrate the a, b cycles of f(z) on the

cut plane and the corresponding Riemann surface.

| 5
Example 2.2.1. Let f(z) =/ [[ (# — z) where 21 = =2, zp = —1, 23 =0, zy = 1, and z; = 2.
k=1

From Example 2.1.2, the branch cuts are in [—o0,—2|, [—1,0], [1,2]. The a, b cycles on the cut

plane:

15



Figure 27.The a, b cycles of f(z)

The process of finding the a, b c he ~. mann surface is shown below.

sheet-1
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Figure 30.Together with two sheets

17



Example 2.2.2. Let f(z) = ,23=0,2,=1, 25 = 2, and
26 — 3.

From Example 2.1.3, the bre e a, b cycles on the cut plane:

Figure 32.The a, b cycles of f(z)

The process of finding the a, b cycles on the corresponding Riemann surface is shown below.

18
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Figure 36.The a, b cycles of f(z) on Riemann surface

After the two examples given above, we can also find the a, b cycles of f(z) on the cut plane

n
and the corresponding Riemann surface in general case where f(z) = | [[ (# — 2x), 2z € R and
k=1

21 < 2o < v < 2y

20



Case 1. n=2N —1, N e N.

The branch cuts are in [—o0, z1], [22, 23], -+, [2an_2, 22n_1]- The a, b cycles on the cut plane:

L

,,,,,

Figure 38.The a, b cycles of f(z) on Riemann surface
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Case 2. n=2N, N € N.

The branch cuts are in [21, 22, [23, 24, -+ -, [22n_1, 22n]. The a, b cycles on the cut plane:
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Figure 40.The a, b cycles of f(z) on Riemann surface
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Note that each a cycle is non-overlapping and each b cycle is,too. Besides, a cycles and b cycles

have the same amount.

2.3 The equivalent paths of a, b cycles

If we want to evaluate the integrals of f(z) over a, b cycles, we can find the equivalent paths
of a, b cycles so that our calculation might be much easier than the original. Therefore, find the
simplest paths of a, b cycles and then evaluate the integrals.

Let’s start off finding the equivalent path of a cycle.

o

Figure 41.The a cycle

We construct some disjoint contours, Ly, Lo, I'1, and I'y, that make the a cycle become two closed

contours, K1y =a*+ L1 — I's + Ly and Ky = a™* — Ly — I'y — Ly, which is shown below.

23
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Figure 43.The equivalent paths of a cycle
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Next, find the equivalent path of b cycle.

Figure 44.The b cycle

In the similar way, we constru ) 3, Ly, I'1, and I'y, that make the
b cycle become two closed ¢ 5 =b" — L3 —I'y — L4, which

is shown below.

Figure 45.The closed contours K; and Ky

By Cauchy theorem, [,. f(2)dz =0 and [, f(2)dz = 0.Adding contours gives
Ki+Ky=b'+Li—T9+ Lo+ 0" —Ls—T11 —Ls=b"+b"—-T1 -9+ Ly +Ly—Lg— Ly

which implies that b* + b = Ky + Ko+ I'y + I's — Ly — Lo + L3 + L4. Besides, the (-) edge of

25



sheet-11 is equal to the (+) edge of sheet-I so the contour L; = Ly and Ly = L3. Then

/b F(2)de = /b fedz+ [ (e
= . f(z)dz+ Kzf(z)der/Flf(z)der/

T

2 f(z)dz — /L1 f(z)dz — /L2 f(z)dz
—l—/Lgf(z)dz—l— 5 f(z)dz

= /F1 f(z)dz+/r2f(z)dz— /L1 f(z)dz — /1;2f(z)dz+//:3 f(Z)dZ+/]:4 f(z)d=
- [ s+ [ - / ez / Fedz+ / e+ | s

Ly

= f)dz+ | f(2)d=.
r I

b
,--'_'{_""-..._‘
..r’f H-".\
{ \
£ r-.
2 . b
r Nt 2 .
— ~— m e
+ e h

Figure 46.The equivalent paths of b ¢ycle

2.4 The integrals of ﬁ over a, b cycles with horizontal cut structure

We will use Mathematica to help us evaluate the integrals of ﬁ over a, b cycles or other paths
because most computations are laborious and fairly complex. However, there are some differences
between theory and Mathematica so we will discuss the differences between them with different

cut structures respectively.

In order to know the value of f(z) = (z — z;) about z in sheet-I and in sheet-II, we can
\/ k=1

n n n
write [] (z — z) in its exponential form: [] (z — 2;) = re? where r is the modulus of [] (z — )
k=1 k=1 k=1

26



and € is an argument of [] (z — zx). Let 6; denote € in sheet-I and 5 denote 6 in sheet-I1I. Then
k=1

fR)|an = \/R‘iie72

since 0 = 0, +2m. Here f(2)|(;) and f(z)|@ry denote thevalue of f(z) with 2 in sheet-I and sheet-11
respectively.

We only need to discuss:the difference between the value of f(z) in sheet-I of theory and
in Mathematica since f(z)[u) = —f(z)l), the (4) edge of sheet-ILis equal to the (-) edge of
sheet-I, and the (-) edgerof sheet-ITis equal to the (4) edge of sheet-I. Note that Mathematica
is always considering arg(z) & (—mm]. For-¢onvenience, f(z) MO (2) is used to denote the
polynomial f(z) in front of Math: 5 the value in theory and the polynomial f(z) behind is the value
in Mathematica.

Define that

|z]e?,0 € [—m,m) if and only if z is in sheet-I;

|z]e?, 0 € [r,37) if and only if z is in sheet-II.
The cut on each sheet has two edges, label the starting edge with ”+" and the terminal edge with
Use a simple case f(z) = +/z to find the difference between theory and Mathematica. Let z be
a point in sheet-1, that is, arg(z) € [—m, 7). Obviously when arg(z) € (—m, 7), the value of f(z) in

theory and Mathematica are the same because Mathematica is always considering arg(z) € (—m, 7],

27



and the difference between them is when arg(z) = —m. Then let arg(z) = —m,

™

in theory : z = |zle™™ and /z = |z|2e F = —i|z]2,
. . . i s NURE
in Mathematica : —7 is regarded as m so z = |z|e'™ and vz = |z|2e'2 = i|z|2.

Math

f(z) if arg(z) € (—m,m) and f(2) = —f(2) if arg(z) = —.

Math.

Therefore, f(z)
As described above, we know f(z) will change sign when z is in sheet-I and arg(z) = —, hence

we have the following result.

Lemma 2.4.1. If z; is the end point for horizontal cut and z is in sheet-I, then

Ve =zt arg(z —z;) € (—m, ),
—V/Z =2k if arg(a— Zp)E 7.

Proof. Let z be a point in sheet-1 and-z — 2, =]z — 2 |e? where 0 = arg(z — 2;). For the

Tz Ml
— Mat

J Math.
same reason as the above, we can easy obtain \/z — 2z~ = /2 — 2, when 0 € (—m, ) and when

0=—m,

in theory : vz — 7% = |2+ Zk|%egi% = —ilg & Zk’%,

in Mathematica : \/z — z, = |z — Zkiéei% =ilz — Zk|%-

Hence, /2 — 2z Math- r— 2y, if arg(z — 2p) € (—=m,m) and \/z — z Math- = 2k

if arg(z — zx) = —m.

Theorem 2.4.2. Let f(z) = +/z — z and z be the end point for horizontal cut. If z is in sheet-I,

then
—f(z) if z €{the cut with (+) edge of sheet-1},

f(z)  otherwise.
Proof. Let z be a point in sheet-I. Since arg(z — z;) = —7 when z €{the cut with (+) edge of

sheet-1}, then by Lemma 2.4.1, f(2) Math.

—f(2). On the other hand, arg(z — z;) € (—m, ), then
f(2) Math. f(2) by Lemma 2.4.1.

28



Theorem 2.4.3. If f(2) = \/z — 2i\/z — 2k+1 where z;, and 2;4; are two end points for horizontal
cut, and z is in sheet-I, then
—f(z) if z €{the cut with (+) edge of sheet-1},

f(z)  otherwise.
Proof. Let z be a point in sheet-I.
(1) z €{the cut with (+) edge of sheet-I}
Since z — 2z, > 0, then arg(z — z;) = 0 and /z — 2 Math. Vz — 2z, by Lemma 2.4.1.
Since z — zp+1 < 0, then arg(z — zx41) = —m, by Lemma 2.4.1, \/2 — 2541 Math- —\/Z = Zk1-
Thus, f(2) = v/Z = 2eV/Z = Zhra & et/ 2 =2l = — [ (2).

(2) z €{the cut with (-) edge of sheet-1}

Since z — z;, > 0, then arg(z — z)="0-and /z = % e /z — 2z by Lemma 2.4.1.
Since z — 2,41 < 0 and.the (-) edge of sheet-I equals the (+) edge of sheet-II, then

arg(z — zg11) = m, by Lemma 2.4.1, \/2 — 2.4 L /2 — Zpi1-

Math.

Thus, f(2) = V2 — 2k /2= 21, = V2 — 2kn/7 — 2= f(2);

(3) z € (—o0, 21)

Since z — 2z, < 0 and z — zgyq < 0, themarg(z — zp) = —7m and arg(z — zx11) = —,
by Lemma 2.4.1, \/2 — z Math. —VZ — 2z and \/z — k41 Math. —\/Z — Zky1-
Math.

Thus, f(2) = Vz — 2kV/2 — 2611 = V72— 2k/Z — 21 = f(2).

(4) Otherwise
Since arg(z — zx) € (—m,7) and arg(z — zx11) € (—m,7), then /2 — z¢ Math. N
and \/Z = znp1 2" /Z= Zns1 by Lemma 2.4.1.

Mat

Thus, f(2) = Vz — 2k/Z — Zk11 ath. VZz = zik/z — 2z = f(2).

Example 2.4.4. Compute f ﬁdz over ay, as, by, and by cycles where

f(z) = \/(z+ Dz(z —1)(z—=2)(z — 3)(z — 4).

29



Figure 47.The a, b cycles of f(z)

Let 2y = —1, 20 =0, 23 =1, 24, = 2, 25 = 3, and

1. Compute [, ﬁdz
By Cauchy theorem, wn consid ivalent-path of a; and a} = a3, | aj,
where a}; = the path o

the path on the hor

(1) z€aj, : Let z

VZ— 2532 — 26 Math. —V2Z — 2502 — 2.

Math. Math

Thus, f(z) —f(2) and f f(z) =" —f34 ﬁdr

(2) z€ajy: Let z=r,r:4— 3 and dz = dr, then

VZi— 217z — 2 Math. V2 — 212 — 29,
Math

Vi—23/z2— 24 = \z— 2372 — 24,

Vz— 2572 — 2% Mt VZ — 2577 — 2.

Thus, f(z) Math. f(z) and f f(z) y Math 43 fl dr.

30



Therefore, by (1) and (2),

|7 - l—dz
A W
= / T / kg
2/4 mdr

2. Compute fa2 ﬁdz
By Cauchy theorem, we can considér that a} is the equivalent path of ay and a = a3, | a3,
where a%; = the path on the horizontal cut from 1 to'2 on the (+) edge of sheet-I and a%, =

the path on the horizontal cut from 2 to 1 on the (—) edge of sheet-I.

1) z€ad, : Let z)=r, r:1 — 2 and dz = dr,then
21

Math

VZ— e —#s = 2 — 217 e,
VA — 2y LR /2 — ZAL — 24,

Vi =25\2 — 26 Math. VA — 25\ 2 — 2.

Math. Math. 2
Thus, f(z) = —f(z) and f f(z) s>/ ﬁdr
(2) z€aby,: Let z=r,r:2—1and dz = dr, then

Math

VZi—22Z— 22 = \zZ— 217 — 29,

Math

VZ— 232 — 24 = \Z— 232 — 24,

Math

Vi— 2532 — 26 = \Z— 252 — 2.

Thus, f(2) Math. f(z andf f(z , Math. f; ﬁdr.
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Therefore, by (1) and (2),

’ —dz = /—dz
- / T [
2 / mdr

dz

3. Compute sz ﬁdz
By Cauchy theorem, we can consider that b3 is the equivalent path of by and b5 = b3, | 03,
where b3, = the path on the horizontal line from 0 to L on the sheet-I and b3, = the path on

the horizontal line from 1 to 0 on the sheet-11I.

(1) z€ b5, : Let z=r, r:0— 1 and dz = drthen

V2t 27z 12 Magth. 2 — 212 =2,
VE = 23y /2 — 24 (4 C /2 — 22— 24,
V2= 250/2 — 26 Math. 2 = 25\/% — 2.

Math. Math
Thus, f(z) "=" f(z) and fbgl ﬁd fO f(lr)dr

(2) z € by, : We know that f(2)|) = —f(2)|(1), so consider b35 = the path on the horizontal
line from 1 to 0 on the sheet-I.

zebyy:Let z=r,r:1—0and dz = dr, then

iz — 2172 — 22 Math. VZ— 212 — 29,
Math

VZ— 232 — 24 = \Z— 232 — 24,
7z — 25\/Z2 — 2 Magth. VZ— 25v/2 — 2.

Math. Mah
Thus, f(2) " f(2) and [, shsde = — [, de M2 — [0 Ldr
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Therefore, by (1) and (2),

—dz = —d,z
bg b*

- /bmub ek

= /frd“/l f<1r>dr
|

- 2/0 oK

4. Compute [, f(z)dz.
By Cauchy theorem, we can consider that bj is the equivalent path of by and b = b5 [ b7, U b3,
where b7, = the path on the horizontal line from 2 to'3 on the sheet-I and b}, = the path on

the horizontal line from 3 to 2 on the sheet-11I.

(1) z€ b3, : Let z=r, 2 — 3 and dz = drthen

V2t 2z 12 Magth. 2 — 212 =2,
VE = 23y /2 — 24 (4 C /2 — 22— 24,
V2= 250/2 — 26 Math. 2 = 25\/% — 2.

ath. Ma h.
Thus, f(2) = f(z) and fb’;l ﬁd : f2 f(lr)dr

(2) z € by, : We know that f(2)|) = —f(2)|(1), so consider bj5 = the path on the horizontal
line from 3 to 2 on the sheet-I.

zebjy:Let z=r,r:3—2and dz = dr, then

iz — 2172 — 22 Math. VZ— 212 — 29,
Math

VZ— 232 — 24 = \Z— 232 — 24,
7z — 25\/Z2 — 2 Magth. VZ— 25v/2 — 2.

Math. Math 2
Thus, f(z) = f(z) and fb’{z f(lz)dz: f12 f(lz dz — i ﬁdr.
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Therefore, by (1) and (2),

1 ; 1
b f(2) B bt f(z)

byUes, U, (2
Math. | 1
d 4
2 T ”/ 7r /3 "

2/01%617“%—2/2 mdr

2.5 The integrals of ﬁ over a, b cycles with vertical cut structure

Define that
2|76 € [=27, 2) if and onlyuif 24s in sheet-I;
2156 e [5-235) " if and only if z is\insheet-I1.
The cut on each sheet has‘two edges, label-the starting edge with "+ and the terminal edge with

»_ "

Lemma 2.5.1. If z; is the end point forvertical cut and z is in sheet-I, then

e =z nerg(Egy,) €[5, —n),
o=z, if argle= ) € (-7, 5).

Proof. Let z be a point in sheet-I and z 2, = |z— 2, [¢’’ where § = arg(z—z;,). When § € (-, %),

V7= et
— Mt

the value of \/z — z; in theory and Mathematica all equal |z — 2| 2¢'s since Mathematica is always
considering 6 € (—m, 7], then /z — z Math. 2. When 0 € [—37”, —l,
in theory : vz — z = |z — zk|%ei%,

in Mathematica : 6 € [—;, —m| is regarded as 0 + 27 € [g, 7] 50 2 — 7 = |z — 7|02

and \/z — 7, = |z—zk|%eie+22ﬂ |z—zk|5e‘5

Therefore, \/z — 2z "2 —\/z — 25 if arg(z — z;) € [, —n] and /z P
if arg(z — 2) € (-7, 5).
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Theorem 2.5.2. Let f(z) = /2 — 2k\/2 — zk+1 where z and zj4; are two end points for vertical
cut and the domain be divided into six areas (A), (B), (C), (D), (E), and (F) where
(A)={(xy) : x < Re(z), y = Im(z0)},
(B)={(x,y) : x <Re(z), Im(zic1) <y < Im(z0)},
(C)={(xy) : x <Re(z), y < Im(zei1)},
(D)= {(x,¥) : x> Re(z), y = Im(z)},
(E)={(x,y) : x> Re(z), Im(ze1) <y < Im(z0)},

(F)={(xy) : x> Re(n), v < Im(z11)}-

Figure 48.

If z is in sheet-I, then

—f(2) if z € (B)J {the cut with (4) edge of sheet-1},
f(z)  otherwise.

Proof. Let z be a point in sheet-I.

(1) z €(A)

3T

Since arg(z — z) € (=3, —7] and arg(z — zp41) € (=2, —7), then by Lemma 2.5.1,
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N R N R I i N L
Hence, £(2) = vz = oz = 21 2" e = my/Z= 71 = £(2).
(2) z €(B)
Since arg(z — z;) € (—m, —%) and arg(z — zp41) € (—3F, =7, then /z — 2, Math. N
and \/Z — zpp1 2" —\/Z = Zp;1 by Lemma 2.5.1.

Math.

Hence, f(2) = Vz —zv/2 — 21 = —VZ2 — 22 — 2ip1 = — f(2).

(3) z €{the cut with (+) edge of sheet-I}

Since arg(z — zx) = —5 and arg(z — zj41) = —27, then by Lemma 2.5.1,
Math. Math.
VZi— 2z = Vz—zrand /2 & Zpar o= =2 =21k

ath.

Hence, f(2) = vz — zey/Zodids = —JEm B T e (2).

(4) z €{the cut with (-) edge of sheet-I}

Since arg(z — zx) = —%, then' /2 — 2 L Vz — 2z, by Lemma 2.5.1.

Since the (-) edge of sheet-I equals the (4) edge of sheet-II, then arg(z — zp11) = 7,

by Lemma 2.5.1, \/Z — gt ="\ /2= Zhet.
Hence, f(2) = vz — 2ov/Z 2ot /Z = 25n/Z — 2o = (2).

(5) z € {(x,y) : x = Re(zx), y > Im(z,)}
Since arg(z — z;) = —37” and arg(z — zp41) = —37“, then v/z — 2 Math. —V/z =z
and /Z = ze1 2" —\/Z = Zy1 by Lemma 2.5.1.
Hence, f(2) = vz = 2ny/Z = 2he1 2" 2= 2un/Z = 2 = f(2).

(6) Otherwise

,5) and arg(z — 2;41) € (-, 5), then by Lemma 2.5.1,

Math. Math.
Vi—z = Vz—zrand \/Z — 2p1 = A2 — Zkt1-

Mat

Hence, f(2) = v/Z = 2ay/Z — 21 2" \/Z = 2i/Z — et = f(2).

Since arg(z — zx) € (=7
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Example 2.5.3. Compute [ ﬁdz over ap, as, by, and by cycles, where

) =VETT—20G+1+20(z—1-3)(z—1+30)(z—2—0)(z — 2+ 1.

w

Figure 49.The.a, b.cycles of f(z)

Let 2y = —14+2i, 20 = —b= 21, 23 =143 z4=1— 31, 25 =2+ 1, and 256 = 2 — 1.

1. Compute [ ﬁdz.
By Cauchy theorem, we can consider.that af is theequivalent path of a; and a7 = a3, | ai,
where aj; = the path on the vertical eut from 2+ ¢ to 2 — i on the (4) edge of sheet-I and

aj, = the path on the vertical cut from 2 — i to 2 + 4 on the (—) edge of sheet-I.

(1) z€aj, : Let z=2+ri,r:1— —1 and dz = idr, then

NN Math. 2z — 2132 — 29,
Math

VZi—23/z2— 2z =z — 232 — 24,
VZ— 2572 — 2 Math. —\/z — 2572 — 2.

Math. Math. -
Thus, f(z) """ —f(z) and [, gdz "= = [ gk dr.
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(2) z€aj,: Let z=2+ri,r: —1 — 1 and dz = idr, then

Math

Vi—2z—2 = \z—21VzZ — 29,

Math

VZ— 232 — 24 = \Z— 232 — 24,

ath

VZ— 25v2 — 2 Math. V7 — 2532 — 26

Thus, f(2) Math. f(z) and f f(z Math. f L T ar

Therefore, by (1) and (2),

/alﬁdz = /a —dz

1
& =z
\/a>1k1 Uai, f(Z)

Math ! { ! l
a .
ath e e N dr

v f(2+ri) e f (24 1)

2. Compute [ fl dz.
By Cauchy theoremywe can consider that as-is-the equivalent path of ay and
ay = ab |Jas, Jass |Jasg ) ass Jass where aj, = the path on the vertical cut from 1+ 3i to
1+ on the (+) edge of sheet-1, a3, =-the path.en the vertical cut from 1414 to 1 —i on the
(+) edge of sheet-1, a’; = the path on the vertical cut from 1 — i to 1 — 3i on the (+) edge
of sheet-1, a}, = the path on the vertical cut from 1 —3i to 1 — ¢ on the (—) edge of sheet-I,
ass = the path on the vertical cut from 1 — i to 1+ ¢ on the (—) edge of sheet-I, and al; =

the path on the vertical cut from 1+ to 1 + 3¢ on the (—) edge of sheet-I.

(1) z€ a3, : Let z=1+ri,r:3 — 1 and dz = idr, then

V2 — 21v/ 2 — 29 Math. 2z — 212 — 29,
VZ— 232 — 2 Math. —VZ — z3\/2 — 24,

Math

VZ—25vz2— 2 = 2— 252 — %
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Thus, f(z) 2" —f(z) and fa’él f(lz)d Math. ——dr.

f3 f1+rz)
(2) z€aby: Let z=1+ri,r:1— —1 and dz = idr, then

Math.

VZ—2V2— 2 = 22— 21\/Z— 29,
VZ— 232 — 2 Math. —V/2Z — 23\/2 — 24,
2 — 2572 — 2 Math. —Vz — 257/2 — 2.

Math.

ThUS, f(Z) f and f f(z MghA fl (1+m T dr

(3) z€aby:Let z=1+ri,r: —1 — —3 and dz = idr, then

V& 2T — 2y Matl V2 = 21\/2 — 29,
VzZ— 23\/2 — 24 Math, —\/2 = 28\/2 — 24,
V2 =ZENZ — % i N

Thus, f(z) 2% = f(z) and fa;3 ﬁd it w—dr.

f 1 fH—m)

(4) z € ab, : Let z =1 4 ri, n': =83 — —1 and dz = idr, then

VL2 — 212 — 22 o V22 ANZ — 2o,
V7 — 23\/2 =24 Math. VZ— 23\/2 — 24,
Vz— z5v/2 — 26 MZh V72— 25\/Z — 2.

Math. Math
Thus, f(z) = f(z) and f f(z) f 5 f(1+m —dr.
(5) z€ab; : Let z=14ri, r: =1 — 1 and dz = idr, then
VZ—21Vz2— 2 Math. VZ— 212 — 22,

VZ— 232 — 24 Mgth. V2 — 232 — 24,

2 — 2572 — 2 Math. —VzZ — 250/2 — 2.

Thus, f(2) Math. —f(z) and f25 o] Math. ——dr.

f 1 f(1+m
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(6) z€abs:Let z=1+ri,r:1— 3 and dz = idr, then

Math

Vz— 2172 — 22 VZ— 212 — 29,
V2 — 23\/2 — 24 Mgth. VZ— 23\/2 — 24,
VZ = 25v/7% — %6 Math VZ — 2572 — 2.
Math. Math
Thus, f(z) = f(z) and f f(z f1 me)d?“

Therefore, by (1), (2), (3), (4), (5), and (6),

. f(lz> : /

1
= / ——dz
21Ua22Ua25Ua24Ua25U026 f( )
Math . d - d - { J
0 I —. -+ o v\ 7y Y S—
3 O ) ot SN D) / Fa+rm”

p i

i i 3
+/3 f1+m‘ % _1f(1+ri)dT+/1 f(1+m')

3
= | B 70 dr+2/ 7 dr+/ i +m)dr.

dr

3. Compute be f(2)dz.
By Cauchy theorem, we can/consider. that b3 is-the equivalent path of by and b = 'U1 bs;
=
where b, = the path on the vertical cut from —1 + ¢ to —1 — ¢ on the (4) edge of sheet-I,
b, = the path on the vertical cut from —1 — i to —1 — 2¢ on the (+) edge of sheet-I, b5, =
the path on the vertical cut from —1 — 2i to —1 — 7 on the (—) edge of sheet-I, b5, = the
path on the vertical cut from —1 — i to —1 4 ¢ on the (—) edge of sheet-I, b, = the path on
the horizontal line from —1 4 ¢ to 1 47 on the sheet-1, b3, = the path on the horizontal line
from 144 to —1 + 4 on the sheet-II, b3; = the path on the vertical cut from 14 3¢ to 1 +¢
on the (+) edge of sheet-II, and b3y = the path on the vertical cut from 144 to 1 + 3i on

the (—) edge of sheet-II.
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(1) z€ by : Let z=—=14ri,r:1— —1 and dz = idr, then

VZ— 212 — 2 Math. —VzZ — 21\/2 — 29,
VZ— 232 — 24 Math. —\/2 — 23\/2 — 24,
VZ— 2572 — 26 Math. —V2Z — 250/2 — 2.

Math.

Math. -1 i
Thus, f(z) —f(z) and fb f(z) = =i ol

(2) z€bsy: Let z=—14ri,r: —1 - —2 and dz = idr, then

h.
—\/z — 21\ 2 — 29,

VZi— 212 — 2 Ma

Mat ath.
Thus, f(z) = 5 T2 = “JoFCim

(4) z€ b3, : Let z=—1+4ri,r: —1 — 1 and dz = idr, then

Math

VZ— 212 — 2 VzZ— 212 — 29,
VZ— 232 — 24 Math. —\/z — 23\/2 — 24,
VZ— 25\/% — 26 Math. —VZ — 250/2 — 2.

Math. Math
ThUS, f(Z) = f and fb* f(z f 1 f(— 1+m)dr'
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(5) ze€bly:Let z=r+1i,r: —1—1and dz = dr, then

Math

VZ—21VzZ2— 2 VZ— 212 — 29,
VZ— 232 — 2 Math. —V/2Z — 23\/2 — 24,

Math

VZi—25/2— 2 = Z— 25\/Z— .

Math. . Math.

Thus, f(z) o

f and fb* f(z f 1 f7"+z

(6) z € byg : We know that f(z)|) = —f(2)|(1), so consider bs; = the path on the horizontal
line from 1 4 ¢ to —1 + ¢ on the sheet-I.

zeby:Let z=r+1,r:1— —1and dz = dr, then

Math

V2 —721\/2 — 22 VE—21\/2 — 22,
V2= 23N 2 Math. —\2 —2anZ — 24,
Math

/2 =wsnf % T =" A 25/ % k6

Math
—f(z) and fb f(lz dg — fb% ﬁd fl TH o

Thus, f(z) Mgl

(7) z € b}, : Since b, = the path on the vertical.eutofrom 1 43¢ to 1 + ¢ on the (—) edge

of sheet-I, so let z=1+717, 7 :3 — 1 and dz = idr, then

Math

V4 g =R 20— 21/ % — 22,
VZ— 2372 — 24 M V2 — 23\/2 — 24,
VZ— z5v/2 — 26 Math. VZ— 25\/2 — 2.
Math. Math
Thus, f(z) = f(z) and 1;37 ﬁd f3 f(1+rz .

(8) z € big : Since by = the path on the vertical cut from 1+ ¢ to 1+ 3i on the (+) edge

of sheet-I, solet z=1+1r7, r: 1 — 3 and dz = idr, then

V2 — 212 — 29 Math. 2z — 212 — 29,
VZ— 232 — 24 Math. —\/2 — 23\/2 — 24,

Math

VZ—25vz2— 2 = 2— 252 — %
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Thus, f(z)

Therefore, by (1), (2), - --

1
b %dz

4. Compute [, f(z)d

Math.

2.

Math
f and fb* f(z fl f( 1+m)d

, (8),

1
—dz
b3 (2)

/LSJ b3; f(lz)

-1
1 f 1—1—7“2 / f 1—1—7“@ / f 1+m
1

+/ <1+m fr+z v / f(r+z‘>dr

1

* 3 fl+m /f1+m
1 —1 1

2 —d +2/ —d + 2 / —d
ATt TS ) S A T

1

2 —d.
A =)

By Cauchy theorem, we can consider that b7 is the equivalent path of b; and

by = by as, Jass Uag, | ass | big L by, where by, = the path on the horizontal line from

1+ to 2 + ¢ on the sheet-I and b}y = the path on.thehorizontal line from 2 +¢ to 1 47 on

the sheet-II.

(1) ze€bf, - Let z=r+i,r:1— 2 and dz = dr, then

Thus, f(z) 2" #(z) and fb’{l ﬁdz Math. ff

(2) z € bj, : We know that f(2)|) =

iz — 2172 — 22 Math. VZ— 21\2 — 29,
VZ— 2372 — 24 Math. V2 — 23\/2 — 24,
Vz— z5v/2 — 26 Math. V72— 25\/2 — 2.

dr.

1
flr+1)

line from 2 4+ % to 1 + 7 on the sheet-1.

43
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zebjy:Let z=r+1i4,7r:2—1and dz = dr, then

VZ— 212 — 22 Math. VZz2— 21Vz — 29,

V2 — 232 — 24 Math. V2 — 23\/2 — 24,

VZ — 257z — %6 Mt VZ — 2577 — 2.

Math. Math. 1
Thus, f(z) = f(z) and fb’{z ﬁdz: _fb{; f(lz)dz =" - f(rl—i-i)dr'

Therefore, by (1) and (2),

1 1
LT téfuﬂz

1
1
= / ——dz
by Ja 22Ua23U‘124Ua20Ub11Ub12 f( )

—2
Math
dr+2 dr
/ 3 f( 1+m fT+Z

1 .
— A ) Ly
/ T+21 Fi+ >T+2,3fu+m>r

2.6 The integrals of ﬁ over a, b cycles with slant cut structure

In this section, we will discuss the difference between theory and Mathematica with slant cut.
Consider the cut with slope m = tan a where 0 < o < 7 and «a # 7.

Define that

|z]e?,0 € [ — 27, ) if and only if z is in sheet-I;
|2]€,0 € [a, a4+ 27) if and only if z is in sheet-IL.

The cut on each sheet has two edges, label the starting edge with ”+” and the terminal edge with

»_»
Lemma 2.6.1. If z; is the end point for slant cut with slope m = tana, 0 < a <7, a # 7, and
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z is in sheet-I, then

—z =z, ifarg(z — z) € [a — 27, —7],
Vz—z ifarg(z — z) € (—7, ).

V7= Math
— Mat

Proof. Let z be a point in sheet-I and z— 2, = |2 —z;|e? where § = arg(z—z). When 6 € (—7, ),
the value of \/z — z; in theory and Mathematica all equal |z — 2| 2¢'s since Mathematica is always

considering 6 € (—m, 7], then /z — z Mtk Zr. When 0 € [ — 27, —m],

in theory : vz — 7, = |z — zk|%eig,

in Mathematica : 0 € [ — 27, —7] is regarded as'@.4 2r € o, 7] 50 z — 7 = |2 — 7 |e!@+2™)

and z— 7z = |z — zk|%eie+22w = <z — zk]%eig.

Therefore, /2 — 2, Math. — [zl z, it arglz — zp) efa — 27, =w} and \/z — z Math. vz — 2

if arg(z — zx) € (—m, ).

Definition 2.6.2. Let a cut with slope m = tana where 0 < o < 7 and o # 5, 2r and zpyq are

two end points of the cut. A point.(x,y) € L if
y — Im(zy41) >dana - (X =Re(zks1)) as tana > 0,

y — Im(z41) < tana - (x — Re(zky1)) as tana < 0;

and (x,y) € Sif

y — Im(z41) < tana - (x — Re(zky1)) as tana > 0,

y —Im(z+1) > tana - (x — Re(z41)) as tana < 0.
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Figure 50.The areas L. and S

Theorem 2.6.3. Let f(z) = 3/2 — 2x\/2 — 2x+1 where 2, and 2,1, are two end points for slant

cut and the domain be divided into six-areas (A), (B), (C), (D), (E),and (F) where
(A)=A{(xy) : (x,y) € Loy > Im(z) };
(B)={(xy) : (%) € I (z11) Sy < Tz},
(C)={y): (xy) € By < Im(zg) )5
(D)=A{(x,y) : (x,y) €S, y= Im(z)},
(BE)={(xy): (x,y) € 5, Im(z1) Sy <Imz) s
(B)y=A{(x,y) : (x,¥) €S, y < Im(zg;1)}.If 2 is in sheet-I, then
—f(z) if z € (B)J {the cut with (+) edge of sheet-1},
f(z)  otherwise.
Proof. Let z be a point in sheet-I.
(1) z €(A)
Since arg(z — zx) € (o — 2w, —7| and arg(z — 2x41) € (o — 2w, —7), then by Lemma 2.6.1,
ST Mt _ e and m]\z[gh. ey

Thus, f(z) = V2 — 2k/2 — Zkt1 Math. VzZ— 2z — 2 = f(2).
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(2) z €(B)
Since arg(z — zx) € (—m,a — 7) and arg(z — zx41) € (o — 2w, —7|, then /z — z Mtk %
and /2 — 2Zx41 Math. —+\/Z — 241 by Lemma 2.6.1.

Math.

Thus, f(2) = VZ — 22 — 2ep1 = —VZ2 — 22 — 21 = — f(2).

(3) z €{the cut with (+) edge of sheet-I}

Since arg(z — zx) = o — m and arg(z — zp41) = a — 27, then by Lemma 2.6.1,

Math. Math.
Vi—z = Vz—zrand /2 — 21 = —/Z — Zkt1-
Math.

Thus, f(2) = vVz — 2kV/Z — 2611 = —V7Z — 2k/Z — 21 = — [ (2).

(4) z €{the cut with (-) edge of sheet-L}

Since arg(z — zx) = o — mithen’\/z — 2 Neld y/z=—2, by Lemma 2.6.1.

Since the (-) edge of sheet-T equals-the-(+) edge.of sheet-I1, then arg(z — zx11) = a,

by Lemma 2.6.1, /2 = 211 e V2 — Zpy1-

Math.

Thus, f(2) = Vz — 22 = 2k11 = 2= 2\/Z — 21 = [(2).

(5) z € {(x,y) : y — Im(z) = tan o - (x = Re(z)), y> Im(zx) }
Since arg(z — zx) = o — 2r.and arg(z — zx41) = o — 2w, then /z — 2 Math. —/z — 2
and /2 — zZx41 Math. —v/z — 241 by Lemmar2.6:1+

Mat

Thus, f(2) = VZ — 2ay/Z — zae1 2" V2= 2n/Z — 2kt = f(2).

(6) Otherwise

Since arg(z — zx) € (—m, a) and arg(z — zx41) € (—7, a), then by Lemma 2.6.1,

Math. Math.
Vi—z = Vz—zrand \/Z — 21 = A2 — Zkt1-

Math.

Thus, f(2) = Vz — 2kV/Z — 2611 = V2 — 2k/Z — 211 = [(2).

Example 2.6.4. Compute [ ﬁdz over ap, as, by, and by cycles where

() =\ 4+ VB — i)z — 20)(= = 1 — 2+ VB)i)(z — 1 - i)(= — 2 — 2i).
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1+ 2+:31]

W

Figure 51.Thera; hrcycles of f(2)

Let z; = 3, 29 = = 2ipzy = 14 (2 + ¥B)ipze=1 4 i, and @ = 2 + 2i.

1

1. Compute f LG
By Cauchy theorem, we can consider that aj is the equivalent path of a; and a} = a3, Jaj,
where aj; = the path on the slant cut from 2 + 2i to 1 + i on the (+) edge of sheet-I and

af, = the path on the glant cut from 1+ ¢ t0.2 4 2i on the (~).edge of sheet-I.

(1) z€a}, : Let z =24 2i4 r(=1=4), r: 0 =1 and dz = (—1 — i)dr, then

ath

Math.
VZ—2Vz2— 2 = 2 — 212 — 29,
VZ = a7 — 2 V72— 2372 — 24,

Math

VZi—25\/2— 2 = —Z— 25\/2 — %.

Math. Math. 1
Thus, f(2) "=" —f(z) and f (Z) = fo 7 2+2z+1r( - z))d

(2) z€ajy:Let z=2+2i+7r(—1—14),r:1—0and dz = (—1 — i)dr, then

V2 — 2172 — 2 Math. VZ— 212 — 29,
VZ— 232 — 2 Math. V72— 23\/2 — 24,

VZ = 25v/Z — %6 ah VZ— 2577 — 2.

48



Math. Math. 0 —1—i
Thus, f(2) "=" f(z) and f f(z) = h f(2+2z‘+1r(—1—i))dT'
Therefore, by (1) and (2),
1
/al f(2) o
= —dz
/‘111 U‘112 f(Z)
Math —1—1 —1—
d d
o f24+2i+r(—1—1)) T L f242i4r( 1—i))r

—-1—3

dr.
e 2ier(—1—in"

2. Compute fa2 ﬁdz
By Cauchy theorem, weican consider thatra’ is the equivalent path of ay and a = a3, | a3,
where aj, = the path on'the slantcut from L+ (2 +/3)i to 2i on the (+) edge of sheet-I

and aj, = the pathion the slant cut from 2i to1 4-(2 + v/3): on-the (—) edge of sheet-1.

(1) z€a3 : Let 2= 13 (2+4/3)id (=1 —=/3i),r : 0 — 1 and'dz = (—1 — v/34)dr, then

Math.

NEZ=&NzZ— 2 = 22— 2,
V7 = ana— 2 —/2 = Z3\/2 — 24,

VZ — 2572 = 2 Wt 7z — 25\/% — 2.

Math. Math —1—/3i dr.

fo FOA+(2+V3)i+r(—1—+/3i))

Thus, f(z) —f(z) and fa’gl ﬁd

(2) z€asy:Let z =1+ (2+V3)i+r(—1—+/3i),r:1—0and dz = (—1 — v/3i)dr, then

Math.

VZ— 212 — 22 VZ—21Vz2 — 29,
VZ— 232 — 24 VZz— 2372 — 24,
VZ— 2572 — 2 Math. VZ — 2532 — 26

Math

Math. Math —1-+/3i dr

Thus, f(2) f(z) and f % f(z f1 FO+2+V3)itr(—1—/3i))
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Therefore, by (1) and (2),

/%d - /%d

1
_ —
/2 Uas, 1(2)

Math. —/1 —1 - V3 dr
FL+ (2 +V3)i+ (=1 —/30))

—1—+/3i
+/ f(1+ 2+\/§)i+7“(—1—\/§i)>dr
13 dr
1 f(L4 (24 V3)i + (=1 — V/30))

3. Compute be ﬁdz
By Cauchy theorem, we can consider that b} is the equivalent path of by and b5 = b3, | b3,
where b3, = the path on the vertical-line from 7 to 2 on the sheet-1 and b3, = the path on

the vertical line from-2¢ to ¢ on the-sheet-11.

(1) z € b3, : Let zi=wi, r : 1 — 2 and dz =ddr, then

Math

Vi ztidflz — 2 V2 — 212 =20,
V28— 23\/2 — 24 Math- V2 =282 — 24,
Vi Benfci— %6 Matly —\2— 2512 — 2.

Math. Math. i
ThUS, f(Z) = f and fb* f(z = fl f m)dr

(2) z € b3y : We know that f(2)|) = —f(2)|1), so consider b33 = the path on the vertical
line from 2i to ¢ on the sheet-I.

ze€byy: Let z=ri,r:2—1and dz = idr, then
VZ— 212 — 2 Math. 2z — 2132 — 29,
VZ— 232 — 2 Math. V2 — 23\/% — 24,
V72— 2572 — 2 Mgth. —\/z — 2532 — 2.
1 _ 1 Math i
—f(2) and fb§2 oz = fbéé‘ HOKK f2 T dr-

20

Thus, f(2) Math.



Therefore, by (1) and (2),

/b2 ﬁdz = /b2 %dz
1
B /651sz2 mdz |
-t |

Z/ﬁd

4. Compute [, f(z)dz.
By Cauchy theorem, we can consider that b0} is the equivalent path of b; and
b= b5 bt Ubt, b, by where b, = the path on'the vertical line from 1+ (24 v/3)i to
1 4 2¢ on the sheet-I, b7, = the path on the vertical line from 1 + 27 to 1 + ¢ on the sheet-I,
b3 = the path on thewertical line from.1 + 4 to 1 +27 on the sheet-1I, and bj, = the path on

the vertical line from 14 2i to 14 (2 + /3)i on the sheet-II.

(1) z € b, : Let z =d4ri, 722 +4/3 = 2 and dz = idr, then

V2= 212 — 2o Math. V2“2 — 2,
VZE=8\2— 2 ‘s 4 Vz— 2372 — 24,
VzZ— 2572 — 2 Math. VZ— 2532 — 26

Math. Math.

Thus, f(2)

f(z) and fbﬁ ﬁd f2+\f 370 1+m)dr

(2) z€bjy: Let z=14ri, r:2— 1 and dz = idr, then

NN Math. 2z — 2132 — 29,
VZ— 232 — 2 Math. V72— 23\/% — 24,

VZ— 2572 — 2 Math. —\/z — 2572 — 2.

Math. Math.
ThUS, f(Z) :t f and fb* f(z < f2 f( 1+m)dr
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(3) z € b5 : We know that f(2)|) = —f(2)|1), so consider b5 = the path on the vertical
line from 1 + ¢ to 1 + 2¢ on the sheet-I.

zebj:Let z=1+ri,r:1— 2 and dz = idr, then

VZ—21Vz2— 2 Mgth. VZ— 212 — 29,
Ve —zmz =z " Ja = mE =z,
VZ— 2572 — 2 Math. —VZ — 2502 — 2.

Math.

Math
Thus, f(z) —f(z) and fb’fg ﬁ fb f(z) fl 70 1+m) T dr.

(4) z € by, : We know that f(2)|u) = =f(2)|w1), s0 consider b7} = the path on the vertical
line from 14 2i to 1k (24 v/3)i on the sheet-I.

z € bt Let 2z =1 471, r :2—2 + /3 and dz = idr, then

VZ— 21z — 22 v V2 — 212 =22,
V2 — 23— Z Math. V2 — Z3\/2 — 24,

Vo N2 — 26 5 O V2 — 250/ 2= 2.

Math.

Math. 2+v3
Thus, f(2) f(z) and fbhﬁ fb** FORE _f2+ T dr

Therefore, by (1), (2), (3), and (4),

—dz = —dz

i b f
1

= ——dz
/b*Ub bi, Ubts UbL, f(2)

= /fm /+ff1+m /f1+m
s
st [

1y 2 i 2 i
2/2 f(ri)dr+2/2+\/g—f(1+ri)dr+2/1 —f(1+ri)dr'
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2.7 The integrals of ﬁ over other paths

After introducing the integrals of ﬁ over a, b cycles, we will discuss the integrals of ﬁ over
other paths with three different cut structure. To start with, find the equivalent paths of original
paths by Cauchy theorem. Next, use the lemmas and theorems given above to judge where f(z)

would change sign. Finally, use Mathematica to evaluate the integrals.

7
Example 2.7.1. Compute [ ﬁdz over 71, 72, 73, and 4 paths where f(2) = 4/ [ (z — k).

Figure 52.The  paths of f(z)

We evaluate the integrals of different paths respectively.

1. Compute fyl f(lz) dz.
By Cauchy theorem, we can consider that 7; is the equivalent path of v; and ~f = ~v{; U7
where 77, = the path on the horizontal cut from 4 to 5 on the (+) edge of sheet-I and 77}, =

the path on the horizontal cut from 5 to 4 on the (—) edge of sheet-1.
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(1) z€~f,: Let z=r, r:4 — 5 and dz = dr, then

VEoT M o
Vzi—2vz—-3 Math. Vz—2vz—-3,
VE—dyE=5 M L aE T,
Vz—06yz—7 Math. Vz—6yz—T.
Math. Math. 5
Thus, f(z) =" —f(z) and fWiH ﬁdz =" -/ ﬁdr.

(2) z€97y: Let z=r,r:5— 4 and dz = dr, then
Pyl — 2§
Vi—2Vz—3 Math. 2 =2v/2— 3,
Vz=dn/Z — 5 ~ & V2 =4[z =D,
Vz—6yz—T7 ey Vz— 6+ 2z =T

Math. Math.
Thus, f(2) "S5 f(z) and [ g5det 2 dr

Therefore, by (1) and (2),

/vlﬁdz = [ﬁ%z)dz

2. Compute fw ﬁdz.
By Cauchy theorem, we can consider that 7; is the equivalent path of 75 and 75 = v3; V3o
where 75, = the path on the horizontal cut from —2 to 1 on the (+) edge of sheet-I and

~55 = the path on the horizontal cut from 1 to —2 on the (—) edge of sheet-I.
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(1) z€~3,: Let z=r, r: -2 — 1 and dz = dr, then

VoI M T,

VEmByE3 M EmEET,
VETAYE=s M ETaVE,
Vz—6vz—7 M 26T

Math Math.

Thus, f(z) =" —f(z) and fWiH ﬁdz = —f_12 ﬁdr.

(2) z €759 Let z=r,r:1— —2 and dz = dr, then

A,

Jo=2/5m3 e 0 W3,
=S A R
Vz—6yz—7 & 26z 1.

Math. Math. —
Thus, f(z) =% f(z) and fvé‘z ﬁdz o IR ° f(lr)dr.

Therefore, by (1) and (2),

/mﬁdz = /72%612

1
B /7§1U7§2mdz
, L | -2 1
- _m"”[ "

= 2 ; md?"

3. Compute f% 1Z)dz.

f(
By Cauchy theorem, we can consider that «; is the equivalent path of 3 and

v = v Ui U7as Ui, where 45, = the path on the horizontal line from 3 to 4 on the

sheet-1, 73, = the path on the horizontal line from 4 to 3 on the sheet-II, v3; = the path on
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the horizontal line from 5 to 6 on the sheet-I, and ~;, = the path on the horizontal line from

6 to 5 on the sheet-II.

(1) z€~3 : Let z=r,r:3 — 4 and dz = dr, then

VEST M ao,

VN NS NeEs
VEmAVEs M EoaVEE,
Vz—6yvz—7 "2 2=z =1

Math. Math. 4
Thus, f(z) =" f(z) and f7§1 ﬁdz - ﬁdr.

(2) z € 735 : We know that f(2)|r= =f(2)|(r1), so consider 755 = the path on the
horizontal line from 4 to 3 on-the sheet-IL.

z € 735 Let zi=1r, r+4 = 3 and dz = dr; then

(i

YW N k&GO T~
Va— 1z =5 Mah VZ <4z -5,
m\/ﬁ Math. mm

Math. Math. 3
Thus, f(2) "= f(z) and f7§2 ﬁdz = _fv;;g ﬁdz ah ﬁdr.

(3) z€ 733 Let z=r,r:5— 6 and dz = dr, then

VEST M ao,

VN BN NeEs
VEmAVEs M EoaVES,
Vz—6yvz—17 "2 2=z =1

Math. Math.

Thus, f(2) f(2) and f7§3 ﬁdz = 56 ﬁdr.
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(4) z € 73, : We know that f(2)|qy = —f(2)|an, so consider v3; = the path on the
horizontal line from 6 to 5 on the sheet-I.

z€v; Let z=7r,7r:6 =5 and dz = dr, then

Ve—1 M e

Vz—2vz—=3 " a2y -3,
Vz—dyz—5 "2 Z—1/z 5,
Va—byvz—7 M a6

Math. Math.

Thus, f(z) f(2) and f 1 A da = —fﬁ;{ f(lz) f6 o)

Therefore, by (1), (2), (3), and (4),

’Y3f

=z

/ U732U733U734 f(z) .

1
7@ /f ”*/f = | e
2/34% r+2/ —dr

4. Compute fm ﬁdz.
By Cauchy theorem, we can consider that «; is the equivalent path of v, and

v = v U Ui Uvis Uiy where 5, = the path on the horizontal cut from 2 to 3 on
the (4) edge of sheet-1, v}, = the path on the horizontal cut from 3 to 2 on the (—) edge

of sheet-I, vj; = the path on the horizontal cut from 6 to 7 on the (+) edge of sheet-I, and

~vi4 = the path on the horizontal cut from 7 to 6 on the (—) edge of sheet-I.
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(1) z€~j, : Let z=r, r:2— 3 and dz = dr, then

Vz—1 M,
Vz—=2v/z—-3 Math. —Vz—2vz -3,
Vz—dyz—5 Y& ST = iz =5,
Vz—6yz—7 " ST 6z —T.
Math. | Math. 3
Thus, f(z) = —f(z) and f%’h dz = = [y qmdr

(2) z€jy: Let z=r,r:3— 2 and dz = dr, then

Thus, f(z) Mt

(3) z €745 Let 2

(4) z€~j,: Let z=r,r:7— 6 and dz = dr, then
VAT M T,
Vi—2vz—3 " a2z =3,
VETaVETS M aayE,
Vz—6yz—7 M a6V —T.
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Math. Math
Thus, f(z) = f(z) and f%h f(l)d f7 f(r)

Therefore, by (1), (2), (3), and (4),

/%d - /%d

1
/VTU’VLUszUngUm f(2)

o e [ o [
/—dr—i—Q/ —dr+2/ —dr

Example 2.7.2. Compute [ ﬁdz over v path where

dz

f(z) = \/(z +3) (2 —i)(z =221 — (2+/3)i) (2 —d —) (g —2 — 20).

Figure 53.The ~ path of f(z)

Let 21 = —/3, 29 = i, 23 = 2i, 24 = 1+ (24+/3)i, 25 = 1 +14, and 25 = 2+ 2i. By Cauchy theorem,
we can consider that v* is the equivalent path of v and v* = 7 |75 where 7] = the path on the
vertical line from 2i to ¢ on the sheet-II and 75 = the path on the vertical line from 7 to 2 on the

sheet-I.

(1) z € 77 : We know that f(2)|) = —f(2)|(11), so consider v;* = the path on the vertical line
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from 27 to ¢ on the sheet-I.

ze™:Let 2z =7ri,r:2—=1and dz = idr, then

VZi—2Vz2— 2
VZ— 2372 — 24
VZ— 2572 — 2
Thus, f(z) 2" —f(2) and fﬁ ﬁdz =

Math.

= Z—21\/7Z— 29,
Math. V72— 23\/2 — 24,
Math. —\/2z — z50/2 — 2.

1 Math. 1
~ L rmds =T L

(2) z€ 3 : Let z=ri, r: 1 — 2 and dz = idr, then

Thus, f(z) Math

Therefore, by (1) and (2),
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3 Elliptic Functions

We discuss the Weierstrassian elliptic functions in section 3.1, the theta functions in section 3.2,
and the Jacobian elliptic functions in section 3.3 according to [4]. Now introduce some definitions
and properties of elliptic functions.

Let wy, wp be any two numbers (real or complex) and 22 ¢ R. A function f(z) is called a doubly-
periodic function of z, with periods 2wy, 2w if it satisfies f(z + 2w1) = f(2), f(z + 2ws2) = f(2),
for all values of z for which f(z) exists.

A doubly-periodic function f(z;w;,ws) i8 called an elliptic function if it is analytic (except at
poles), and has no singularities other than poles in the finite part of the plane. Let zy + 2(m —
Dwi +2(n — 1wa, 2o+ 2(m =l)w; + 20w, 2o + 2mw; + 2(n — 1)wsyand zo + 2mw; + 2nws be four
vertices for any one of the parallelograms,-where z, € C, and m, n € Z. If there is no point w inside
or on the boundary of these parallelograms (the vertices expected) such that f(z + w) = f(2) for
all values of z, and none of the poles of fareon the sides of the parallclograms for proper choice
of zp, then such parallelograms are called the cells.

Simple properties of elliptic functions

(I) The number of poles of an elliptic function in any cell is finite.

(IT) The number of zeros of an elliptic function in any cell is finite.

(ITI) The sum of the residues of an elliptic function, f(z), at its poles in any cell is zero.

(IV) Liouville’s theorem: An elliptic function, f(z), with no poles in a cell is merely a constant.

3.1 The Weierstrassian elliptic functions

Define the Weierstrassian elliptic function (z) by the equation

1 , 1 1
plz) = 22 * Z {(z — 2mwy — 2nws)? B (2mwy + 2”002)2} (3.1)

m,n
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where >’ denotes that the term for which m = n = 0 has to be omitted from the summation and
w1, wy satisfy the condition that Z—f ¢ R.
For brevity, we write €,,,, in place of 2mw; + 2nws,, so that (3.1) becomes

p('z) = % + ; /{ (Z _ ém,n)2 - Q%l%n} (32)

Properties of p(z)
(I) p(z) is an even function of z.
(II) ¢'(2) is an odd function of z and it is an elliptic function.

(IIT) p(z) satisfies the nonlinear differential equation

(01(2))? = 49°(2) = go2(2) —'g3, (3.3)

where gy and g3 (called the invariants) are given by theequations

g2 =603 _ 'Ot g5 =140> '

(IV) The integral representation of ((2) is derived from (3.3),

& 1
N / dt: (3.4)
Bz) /43 — got. =73

3.2 The theta functions

Let 7 be a (constant) complex number with Im(7) > 0; and write ¢ = €™", so that |¢| < 1.

Define the theta function J(z, q) by the series

[e.e]

ﬁ(Z,Q) _ Z (_1)nqn2€2m‘z’ (35>
qua function of the variable z.
It is evident that
V(z,q) =142 Z (=1)"¢q" cos 2nz, (3.6)
n=1
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and that
Wz +m,q) =9z, q);

further

n=—oo

_ _q—le—Qiz Z (_1)n+1q(n+1)2€2(n+1)iz

n=—oo

= —g 1T (2 0):

(3.8)

In consequence of (3.7) and«(3.8),4(z, q) is called a quasi doubly-periodic function of z, 1 and

-1

—q te7%% are called the multipliers or periodicity factors associated with the periods 7 and 77

respectively. Moreover, it/is:obvious that if zy be any zero of ¥(z,¢), then zo + mnm + n77 is also a

zero of ¥(z,q), for all m, n. € Z.
Definition 3.2.1. Write J4(2, ¢) in placeof ¥(z, q), define
. iztimir 1
Vi(z2,q) = —ie” a9, (2 + 577 q)s
1
192(27 q) A 191(2 + 57-(7 Q)v

1
V3(2,q) = Va(z + 37 q).

From Definition 3.2.1, we can derive

V1(z,q) =2 Z (—1)"(](’”%)2 sin(2n + 1)z,
n=0

Ua(2,q) = QZ gt cos(2n + 1)z,

n=0

U3(z,q) =142 Z q”2 cos 2nz,

n=1

Uy(z,q) =142 Z (—=1)"¢q" cos 2nz.
n=1
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It is obvious that ¥;(z,q) is an odd function of z and that the other Theta-functions are even
functions of z. For brevity, let ¥,(z,q) = v,(2) for j = 1,2,3,4 when the parameter ¢ is not
specified. When it is desired to exhibit the dependence of a Theta-function on the parameter 7, it
will be written ¥;(z|7) for j =1,2,3,4. Also ¥,;(0) = 9; and 9,'(0) = 9;’ for j = 1,2, 3,4.

The four Theta-functions are related in

1 1 1 1
V1(z) = —0y(2 + §7T) = —iMI3(z + 37 + §7T7') = —iM04(z + §7r7'),

1 1 1 1
Uo(2) = MIs(z + 57?7') = MIy(z+ =7+ =77) = V1 (2 + =7),

) 7 ’ (3.12)
193(2) = 194(2 + 57’(’) = Mﬁl(z -+ 571' 1in 571'7’) = Mﬁ2(2 + 57-(-7—)’
. 1 . 1 1 1
Vy(2) = =M (2 + §7T7') = iMvy(z + 571' SE 571-7-) = U3(z + 571—),

where M = qie®.
We can obtain the multipliers of the Theta-functions associated with the periods 7 and 77

easily by the scheme

V1(2) | Ua(2) |03(2) 4-04(2)

s -1 -1 1 1

T <N N N =N

Table 3.1
—2iz )

where N = g~ le

Since one zero of ¥1(z) is obviously z = 0, it follows that the zeros of ¥1(z2), ¥2(2), ¥3(z), 94(2),

are the points congruent respectively to 0, %77, %71' + %71’7', %7‘(’7’. The squares of the Theta-functions
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are related in
05(2)0% = 03(2)05 — 93 (2)03,

U5(2)0] = Vi(2)95 — 01(2)03,

(3.13)
Ui(2)9] = 03(2)9; — 95(2)05,
V3(2)05 = 03(2)05 — 05(2)03,
and the detailed proof can be found in [4].
The four Theta-functions can be expressed as infinite products
Uy(2) =G H(l — 2¢°" L cos 2z + ¢'"?),
n=1
Vv3(z) =G H(l + 2¢°" 7 cos 22 +g" ),
i » (3.14)
el 2n 4an
U9(2) = 2Ggi-cos z H(l +2¢™ cos2z + ¢,
n=1
V1(2) = 2qu sin z H(l < 2¢°" cos 2z 4 q'),
n=1

where G = [] (1—¢*"). Ttisstraightforward that o,(z|7) satisfies the ordinary differential equation

n=1

820402 |7) 4 09,(z|7)
022 T 0T (3.15)

for j = 1,2,3,4. By (3.14) and (3.15), we can obtain a relation between Theta-functions of zero

argument
91/(0) = 92(0)03(0)94(0). (3.16)

Remark 3.2.2. The differential equations satisfied by quotients of Theta- functions.
From Table 3.1, we know that the function

191(2) and 192(Z)193(Z)
U4(z) 3(2)

have periodicity factors —1 and 1 associated with periods m and 77 respectively; and consequently

N

d 191(2)} _ ' (2)04(2) — 94/ (2)01(2)
dz ~94(2) ¥3(2)
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has the same periodicity factors.

If ¢(z) be defined as the quotient

dz "94(z)" ~ 9%(z)

that is,

V' (2)04(2) — 94/ (2)01(2) . Vo (2)03(2) _ W (2)04(2) — ¥4/ (2)01(2)
¥3(2) 6 Ua(2)05(2) 7

¢(2) =

then ¢(z) is doubly-periodic with periods 7 and 77; and the only possible poles of ¢(z) are simple
poles at points congruent to %7? and %7? + %71'7’.

Now consider ¢(z + 377); from'Definition 3.2.1, we have

1 [— 1 1
V(2 + §7r'r) = iq ey (2)y di(z + §7r7) = iq te"(2),

]_ 1 . ]_ 1 .
oz + 57?7') =q te “U3(2), V(2 + 57?7') =q 1e "y(z),

then

1 =04 (2)01(2) +91(2)04(2)
Oz H=mT)= 92(2)05(2)

; =0(2).

Hence ¢(z) is doubly-periodic with periods 7 and %71’7'; and relative to these periods, the only
possible poles of ¢(z) are simple poles at points congruent to %7‘(‘. By Liouville’s theorem, ¢(z) is
a constant; and making z — 0, the value of this constant is {t1'9,} + {9293} = 92 by (3.16).

Therefore, we have

d 191(2) . 192(2) 193(2)
dz 194(;:)} - ‘2%94(;:) 4(2) (3.17)
Let £ = glg; and use (3.13), then we get
(%2 (92— 203) (92 — 292) (3.18)
dZ 2 3 3 2 .
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from (3.17) and this differential equation has the solution Zi—gz;.

Using the similar argument, we can get

i) = oo o
o228
3.3 The Jacobian elliptic functions
Let &2 =y, 20% = u; then, if k2 = 22, the equation (3.18) becomes
(==l (3.21)

du

by a slight change of variable. This differential equation (3.21) determines y in terms of u and has

the particular solution

-2
y = %:%ﬁl(z) :%Mﬁ;) (3.22)
192 7.92 194(22) 192 194(71,193 )
The differential equation(3.21) may be written as
4 1 1
? :/ (1— )73 (1 — w22y S, (3.23)
0

and y can be expressed in terms of u as the quotient of two Theta-functions in the form (3.22).

Thus, if
Y 1 1
" :/ (1= ) 5(1 — k22~ 4at,
0

we write

y = sn(u, K)

when exhibit y as a function of u and x or simply

Yy =snu
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when it is unnecessary to emphasize k.
The constant x is called the modulus; if K3 = 3—§, so that k2 + k2 = 1, &’ is called the

complementary modulus. The quasi-periods 793, 7793 are usually written 2K, 2:K’, so that

sn(u, k) has periods 4K, 2iK’. The function snu is known as a Jacobian elliptic function of u, and

793 191 (1“9372)
snu = — °5
792 194(m93 )
Now write
’(94 192(U’l93_2)
— JaT2\Ws ) 3.24
cnu T Da(a>?) (3.24)
Jysudy?
S 32). (3.25)
193 194(U’l93 )
Then, from (3.17), we have
Iy U= cnudn, (3.26)
and from (3.13), we have
sn®u +en® =1, (3.27)
wZsn?u + dnu =1, (3.28)
en0 = dn0 = 1. (3.29)

Next, let us differentiate the equation (3.27); on using equation (3.26), we get

d
— cnu = —snudnu;

du
in like manner, from equations (3.28) and (3.26) we have

d
— dnu = —«%snucnu.

du
Remark 3.3.1. If
1
u :/ (1—12)72 (52 + K22) " 2dt,
Y
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then y = cn(u, k) or simply y = cnu.
If
' 2\—1 7,2 2\ —1
u :/ (1 —t7)"2(t° — k") 2dt,
y

then y = dn(u, k) or simply y = dnwu.

Glaisher has invented a short and convenience notation to express reciprocals and quotients of

the Jacobian elliptic functions :

nsu = 1/snu, ncu = 1/cnu, ndu = 1/dnu,

scu=snu/cnuwy sdw=snu/dnu, cdu=cnu/dnu,

csu = cnufsnu, dsu=dnu/snus dew=dnu/cnu.
Define

1 T )
K= [ 1-1¥)2(1—rX?) 2dt = / (1 = &%sin"¢) 2do, (3.30)
0

1 %ﬂ' L
K/_/ (1—t2)‘5(1—/§’2t2)_§dt:/ (1 — x2l8inZe) -3 dg. (3.31)
0

which gives

K' = /”(32 —1)72(1 — k%s%) " 2ds. (3.32)
1

Besides, we have some relations

-

K+ iK' = /”(1 — 275 (1 — KX2) " 2dL, (3.33)
0
snK =1, ecnK =0, dnK =+«

1 ol
sn (K +1iK') = —, cn(K—l—z’K’):—Zi, dn (K +iK') = 0.
K K
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An integral of the form [ R(w,z)dx, where R denotes a rational function of w and z, and w?
is a quartic or cubic function of z (without repeated factors), is called an elliptic integral.
The following three intgrals were called by Legendre elliptic integrals of the first, second and

third kinds, respectively.

(i) / {(A#® + By)(Ast? + By)} 2dt, (3.34)
(ii) / £2{(A1? + By)(Ast® + By)} 24t (3.35)
(iii) /(1 + N2 (A2 + By)(Aot® + By)} 24t (3.36)

The elliptic integral of the first kind presents no diffieulty; as.it can be integrated at once by a
substitution based on the integral formulae of the complementary modulus and Glaisher’s notation

for quotiens; thus, if Ay, By, As, By are-all positive and As By > A1 Bs, we write

2 AIBQ

A}t = Bies(u, k) [k = LB

Remark 3.3.2. The degenerates of . dnu

By the integral representation of snu;

Y /SHU dt
o V-0

and k2sn?u + dn®u = 1, we get

dnu degenerates to sechu as Kk — 1,

dnwu degenerates to 1 as kK — 0.
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4 The nonlinear Schrodinger equation

Recall from (1.1), the nonlinear Schrodinger equation is
it + oo + 2|g|*q = 0. (4.1)

In this paper, we study the special case N=2. Then the NLS solution ¢(x,t) now resides on the

Riemann surface of the elliptic curve

[IE-E

k=1

(4.2)

et W -
E &l \
1 55 \
/ 1
Ez
+
E
e a
Eq
Ea b

4
Figure 54.The Riemann surface of R(E) = 4/ [[ (E — Ek)

4.1 The NLS solution ¢(z,t)

Let the constants B and C be defined on this Riemann surface as

dE ., dE dE
¢= (L—cycle ﬁ) ’ b= (/b‘—cycle m)</a—cycle @) ’ (43>
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then according to [2][3], ¢(x,t) may be derived from the following equations,

4
-y E), (4.4)
k=1
q 4 4 3 4
S=il2p)y B+ 2) BB - S B (4.5)
q k=1 >k =1
Mz = _2ZR(M>7 (4 6)
4 4
o=tz »_ B =—2iR(1) > Ey; (4.7)
k=1 k=1
wat)  Jp p(,t) dE 4
/ —/ = —2i(x+ Y Ept) + ao. (4.8)
o R(E) Ho 4 k=1
[L(E = Ey)
k=1

(4.8) shows that p(z,t) is the inverse’of a Abel integral with the integration constant a determined
by the initial condition .

Rewrite R(E) as

R*E) = | [(B= E}) = (E? — 20, B4 a1)(B® = 20,F +/ca)= S1(E)S,(E),

k=1
where by = Re(E}), by = Re(Bs); ¢p = |\ |%, and ¢, = |E3)%. Ttdis clear that by, by, ¢1, and ¢y € R.
Since S1(E) — AS9(E) = (1 — \)E% —2(b; =Abg) E +(¢1 —Aes); then Si(E) — ASy(F) is a perfect
square if A is such that

(1= MN)(c1 — Aea) — (by — Aby)? = 0. (4.9)

Let Ay > Ay be the two roots of (4.9), and oy, as be the two roots of S1(E) — A\;5(E), then for

cach \;,

SI(E) = \jSa(E) = (1= M) (E — oy)?, j=1,2.

Therefore,

Si(E)=A;(E —a)®+ B;(E —ap)?, j=1,2,
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where A; = %, B, = %, Ay = 2_’\/\11, and By = /\’\22__/\11. Note that Ay, Ay > 0, and

AgBl > AlBQ since
C1 + Cy — lebg

AL+ Ay = 0
1+ A2 p— >

and

C1 — b%

AMAdg = —— :
- B2 >0
Now let
E — (05} . a1 — tOé2
t E_a2,tatls, =7

then

a1 — Qg

dE = dt.
(1—1)
Thus, (4.8) can be written as
/ dE / dE » dE
R(E) o V/S(E)S(B) J- 3
Hl[Aj(E — 1)’ + Bj(E — az)?]
e
1 dt
_ (4.10)

ar /(A2 + By)(Ast? + By)’
which is the Legendre integral of thefirst kind-sinee oy A;, B; j = 1,2, are all real. We see that
the Abel integral (4.8) is exactly a Legendre integral of the first kind.

Following (4.4) and (4.5), q(z,t) is found in terms of the Jacobian elleptic function dn(u, k),
q(z,t) = qo - dn(m - 92(0; B) - (au(z, t) + I)) - e'E==W0) (4.11)

where

4 4
1

a(z,t) = =2iC - (x + g Ep-t), qo=+2irC-93(0;B), I, €R, K = ~5 E Ey, and

= = (4.12)

4
— 1 2 22 itB 4 B, 4/0.
W = Z(;Ek) —4m*C? ("7 05(55 B) — 203(0; B)).
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As shown in [2][3], B, C€ iR, therefore, according to Definition 3.2.1 and (3.12), 9;(0; B), ¥3(3; B),
03(5;3) € R, j = 1,2,3,4, which implies that gy, a(z,t), K, We R. It is easy to verify that

q(z,t) in (4.11) is an exact NLS two-(real)phase, quasi-periodic solution.

4.2 The degenerates of ¢(z,1)

In this section, we introduce two ways to find the degenerates of ¢(x,t) in (4.11) when {E}, 1 <
k < 4} collapse. There are several ways for {E), 1 <k < 4} to collapse.

Case 1.

By = ret3) = jreic, By= et —jre™ e Iy By = F;, E, = E}, and

w(x,t) = pO(z, t) 4 - (@)= 0. (4.13)

E].% +.Es

[
0
L ]
|

8 —>

Figure 55.The Case 1

Use Taylor’s formula, £} and E3 can be written as

By =ir —er+O(%), Es=ir+er + O(e?),
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then Re(E)) = —er + O(e?) and Re(E3) = er + O(e?). Therefore,

4

R(p) = [ [(n— Ex)

= [(n — E1)(p — Eo)][(1 — E3)(pn — Ey)]

= [(1 % + %) + epOuY + 20 O) + O [(7? + 1%) + e(2u O pD — 27
Take R(p) = —(p @2 +12) — - 2u@p™ 1+ O(€?), then according to (4.6), we have
pl? = 2i(u % + %), pl) = 4ip©p;

and according to (4.7) with

> B = 2Re( i)t 2Re(#5) = Ofe);

k=1
we have

4O — 0 4V — o,
Integrate (4.14) and (4.15)for u(©, we get

pO(x,t) = r - tan(2irzd- rA) = r - tan(i2r(x + a)) = ir- tanh(2r(z + a))
where A and a are constants. According to (4.4), we have

= —2iu® = —2r - tanh(2r(z + a)),

and therefore

According to (4.5), we get

Inserting (4.18) into (4.19) yields

B(t) = 4ir’t + cg
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where ¢, is a integration constant, and is to be determined by that (4.18) satisfies NLS (4.1).
Finally, we obtain

¢ (x,t) = 2r - sech(2rz + 2ra) - €. (4.21)
¢ (z,t) in (4.21) is called a NLS modulated oscillation and such a solution is localized in ,
periodic in t.
Case 2.
By =re™9 = —peT By =1, e 1, Fy= Ef, E,=FE3, and

w(z,t) = Oz, 1) + e - WUz, t) + O(2); (4.22)

Figure 56.The Case 2

Use the similar way, we can obtain
¢ (x,t) = A-sec(2rz + B) - et (4.23)

which is not a NLS solution.

Case 3.

Ey=ir, Es=s+1ie, e<1, Ey=FE], E,=Fj, and

p(,t) = p O, t) + ey, t) + O(), pl =, (4.24)
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E}.‘b

el

Figure 57.The Case 3

Then

Integrating (4.25) and (4

which is a NLS plane-wave so ) & x-independent.
Case 4.

Same as Case 1 except pu(© = +ir.

In this case, we get

q(O) —A. e—2rxei4r2t

which is not a NLS solution.
Case 5.

Same as Case 2 except u¥ = —r.
In this case, we obtain

q(O) —A. e—2ir(x+2rt)

7

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)



which is not a NLS solution.
Next, we derive the degenerates of ¢(x,t) in (4.11) by considering the degenerates of dn(u; k),

where k — 0 or k — 1. By (3.25), we can find that one period 2K of dn(u; k),

2K — 7 as Kk — 0, and (4.30)

2K — o0 as k — 1. (4.31)

Therefore, we expect that the degenerates of ¢(x,t) for K — 0 will be NLS periodic solution and will
be similar to the plane-waves in Case 3, and those for kK — 1 will be NLS localized solution (that
is, the periods approach to infinitely long) and will be similar to the NLS modulated oscillations
in Case 1.

Let {Ey, 1 < k < 4} be denoted-as {E,EE), 1 <k < 4}, q(zyt) in (4.11) be denoted as ¢,
and {B, C, k, 95(0; B), "K, W} be denoted as {B'9, O kO, 19:(:)’ K©, W@}, For the case

£ =1, {EY, 1<k <4} are same as (4.13). Let
¢© = 0V -19:())6)2, and = —in - ¢ (4.32)
Let

g9 = ¢ as € 5 0 (that is, &9 — 1),

1D =@ = iz . ¢ as e — 0. (4.33)
According to (4.12) with the fact that
4
ZE,EE)—)O as € > 0, and B® — 0 ase— 0,
k=1
we have
K© -0 as e — 0, and
we© — —47?20(0)2[195,0)4 - 219&0)4] = 4%20(0)2§g0)4 = 47202 = 472 as € — 0.
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Therefore,

¢z, t) = ¢z, t) = 2r - sech(2rz + 2ra) - ¥t as k9 — 1 (4.34)

and ¢(©(x,t) is the NLS modulated oscillation which has been obtained in Case 1.

Next, for the case (& — 0, {E,EE), 1 <k <4} are same as (4.24). Now we have

4
B

ZE,&E) —~2sas e — 0, and ™7 0 as € — 0,

k=1

which implies that

K© = —sas e— 0, and

1
W — 1(25)2 — 47T2C(0)2[—219§0)4] = 5%+ 87T2C(0)219§O)4 = 21 87%g 02 = ¢2 — &% as € — 0.

Therefore,

¢ (@st) — ¢ O, t) = g - €29 e 16T 5g (O (4.35)

where g = 2r. The degenerates (4.35) satisty’ NLS, and are periodierin x for fixed ¢, and are
periodic in ¢ for fixed z. In particular, these degenerates are the NLS plane-wave solutions when

s =0, that is, E\” € iR for all'k,

Figure 58.The specified Case 3
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5 Conclusion

We know the nonlinear Schrodinger equation iq; + q.. + 2|¢|>¢ = 0 (NLS) has solutions ¢(x, )

reside on the curve

(5.1)
2N

where N € N, B, € C\ R and E}, | = Ey. But R(E) = | [[ (E — Ek) is a two-valued function
k=1

on complex plane C for the same z, so we need to modify its domain on a new surface such that
it becomes a single-valued and analytic function, and we call this domain Riemann surface.

We first study the theory of Riemann surface. Next, we introduce the a, b cycles since all the
simple closed curve on the Riemann surface can be written as the linear combination of them, study
finding the simplest equivalent paths of-a; b cycles, and then evaluate the integrals over a, b cycles
or other pathes with horizontal, vertical, and slant cut structure. In addition, we use Mathematica
to help us evaluate the integrals and discuss the differences between theory and Mathematica with
different cut structures.

Then we study the classical elliptic functions. To begin‘with, we introduce some definitions
and properties of Weierstrassian elliptic functions. Next, we study the four Theta-functions and
some relations between them. Furthermore, we study the Jacobian elliptic functions snu, cnu, and
dnu.

Finally, we use the theories of Riemann surfaces and classical elliptic functions to solve some
special solutions of NLS and analyze the degenerates of the NLS solutions ¢(z,t). There are two
degenerates of ¢(z,t). One is the NLS modulated oscillation ¢°(z,t) = 2r - sech(2rz + 2ra) - ¢4
which is localized in z, and periodic in . The other is the NLS plane-wave solution ¢°(z, t) = re’"*!
which is z-independent, and periodic in ¢. Moreover, the degenerates of ¢(z,t) for k — 0 is similar

to the plane-wave solution, and those for x — 1 is similar to the NLS modulated oscillations.
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A The integrals over a, b cycles

We place Mathematica codes of previous examples here.

Example 2.4.4. f[X |=(z+1)2a(z—1)2 (z —2)2 (x — 3)2 (x — 4)2
L[, siyde M N[2 [} hdr] = 0.474399i
2. [, gisde =" N2 [, fydr] = —3.37150
3. Jy, figdz =Y N2 [ fhdr] = 1.20234
4 fy qsdz VEY N [ fhdr + 2 f§ di] ==3.02069
Example 2.5.3. f[X_] = (z+1=21)2 (z+1+2D)2 (@=1<31)5(z—1+31)2 (z—2—1)2 (z —2+1)2

Math.
1. fa1 ﬁdz = 2f e d?" =(.542041

Math. 3 =i -1 I ;
2 oy side =" N2 dr + 20 i £2 [y il —0-964009

Math

3. be f(lz dz 2f 1 Jirr] 1+rI dr+2f 1 7 1+TI]dT+2f1 r+1]d +2f3 f1+r1]dr]

= 0.226455 4 0.692989:

1 Mith
4. fb adz = 2f1f[ 1+T1dr+2f1 yie 1+ I]dr+2f1 +1]d +2f3 f1+7"I]d

-1 -1 2 .
+2 [ @ + 2 )5 frendr + 2 f7 gppdr] = —0.175558 — 0.0600364

Example 2.6.4. f[X_ |=(z+V3)z(z—D2(z—2D)2(x—1-21—3D)2(z—1—1)2 (z —2—2I)2

Math. 1-1 .

L[, siyde " N2 [7 o dr] = —0.717556 + 1.13471i
_1 g, Math. 0 —1-/31 o _ :
2 [, e M N [ AL dr] = —0.502113 — 1214485

Math. I _
3. be ﬁdz = 2[2 il dr 1.13334 — 1.2457:

Math. 1 2 I 2_ 1 — ;
4 fbl f1 dz "E" N2 [, mdr + 2f2+¢§ mdr +2 mdr] = —0.466353 — 0.103835¢
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B The integrals over other paths

Example 2.7.1. f[X | =(z—1)2(z —2)2 (z —3)2 (z —4)2 (x —5)2 (z — 6)2 (x — 7)2

Math

L[ d N[2 [ hdr] = —0.935417i

2. [, 7de M= N[2 [P dr] = —0.13304d

3. [, gisde M= N2 [ fadr 42 [ Fhydr] = 0.23235

A [ gsde MEN N2 [ dr 4+ 2 [ dydr +2 [ fdr] = 0.143249i

Example 2.7.2. f[X_| =

f’y f(lz)d Math N[Qf
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