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1 Introduction

We study the exact theory and its nonlinear approximation of the nonlinear Schrodinger equa-

tion (NLS, [1][2][3])

iqt + qxx + 2|q|2q = 0. (1.1)

The nonlinear approximation of NLS has solutions reside on the Riemann surface of genus N-1

denoted by RN−1 :

R(E) =

√√√√ 2N∏
k=1

(E − Ek) (1.2)

where N ∈ N, Ek ∈ C \ R and E∗2k−1 = E2k.

We first study the theory of RN−1 [5][6] from which we can analyze the nonlinear approximations

and the theories about the Riemann surfaces will be studied in section 2. Secondly, we study the

classical elliptic functions [4] which are close related to the theory of Riemann surfaces and are

applied to solve some special solutions of NLS. The theories and properties of the classical elliptic

functions will be studied in section 3.

Finally, we use the theories of Riemann surfaces and the classical elliptic functions to solve

some special solutions of NLS and analyze the degenerates of the NLS solutions in section 4.
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2 The Riemann surfaces

2.1 The construction of Riemann surface

First, take a simple case f(z) =
√
z for example, f : C→ C. When z ∈ C, z can be expressed

as z = |z|eiθ = |z|ei(θ+2nπ) where n ∈ N, then

f(z) =
√
z = |z|

1
2 ei(

θ+2nπ
2

)

=


|z| 12 ei θ2 if n is even,

−|z| 12 ei θ2 if n is odd,

which implies that f is a two-valued function. Now we want to let f(z) be a single-valued function,

so we need to find the corresponding Riemann surface such that f becomes a single-valued function.

Second, by stereographic projection, we know that there is a mapping that projects a sphere

onto a plane, then for any z ∈ C, we can find exactly one corresponding point on the sphere, and

we call this sphere extended complex plane, denoted by C∗. So by this projection, we can visualize

the point at infinity in the complex plane, and it corresponds to the north pole denoted by N of

the extended complex plane.

Note that f(z) = |z| 12 ei θ2 , when θ increases by 2π, f(z) = |z| 12 ei θ+2π
2 = −|z| 12 ei θ2 which is just

the negative of its original value, again when θ increases by 2π, f(z) = |z| 12 ei θ2 which is the original

value. Since f(z) changes its value when θ increases by 2π and f(z) =
√
z =

√
z − 0 where 0

is a branch point, so image there are two sheets lying on the complex plane. By stereographic

projection, we can consider the two sheets to be the spheres (C∗) and cut them from the branch

point 0 to N which corresponds to cut the complex plan along the negative real axis, that is, from

0 to −∞. Then we know each sheet has a corresponding cut plane and we get two single-valued

branches of f(z). Define that

f(z) = |z|
1
2 ei

θ
2 ,−π ≤ θ < π, as z is in the sheet-I,
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f(z) = |z|
1
2 ei

θ
2 , π ≤ θ < 3π, as z is in the sheet-II.

The cut on each sheet has two edges, label the starting edge with ”+” and the terminal edge with

”−”.

Figure 1.The extended complex plane and cut plane

Third, open two spheres from the cuts and stretch two cuts into circular holes, then rotate two

circular holes such that the (+) edge of sheet-I face the (-) edge of sheet-II and the (-) edge of

sheet-I face the (+) edge of sheet-II. Then glue two holes together and mold it into a sphere. We

call this sphere, Riemann surface of genus 0 for it does not have any holes, denoted by R0.

Figure 2.Placing the cuts open
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Figure 3.Together with two sheets

Figure 4.The Riemann surface of genus 0

Since we glue two sheets together and each sheet has a corresponding cut plane, then there

must be a corresponding cut plane to Riemann surface. Note that when we cross the cut, we pass

from one sheet to another so for convenience, we use the solid line to represent the curve in sheet-I

and use the dash line to represent the curve in sheet-II on the cut plane. Moreover, the (+) edge

of sheet-I is equivalent to the (-) edge of sheet-II, and the (-) edge of sheet-I is equivalent to the

(+) edge of sheet-II in the Riemann surface.

Next, we introduce the relation between the curve in algebraic structure and geometric structure

when f(z) =
√
z.
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Example 2.1.1. The curve γ1 is start from a point in the (+) edge of sheet-I to the (-) edge of

sheet-I and γ2 is start from a point in the (+) edge of sheet-II to the (-) edge of sheet-II.

Figure 5.The algebraic structure and geometric structure of γ1 and γ2

Last, if a point z1 is in sheet-I, we can write z1 = |z1|eiθ1 where θ1 ∈ [−π, π), then the argument

of
√
z1 is θ1

2
∈ [−π

2
, π

2
), and if a point z2 is in sheet-II, write z2 = |z2|eiθ2 where θ2 ∈ [π, 3π), then

the argument of
√
z2 is θ2

2
∈ [π

2
, 3π

2
), therefore f(z) =

√
z become a single-valued function whenever

the point z is in sheet-I or sheet-II.

Figure 6.The argument of f(z)

Example 2.1.2. Construct the corresponding Riemann surface for f(z) =

√
5∏

k=1

(z − zk) where
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zk ∈ R and z1 < z2 < · · · < z5.

To begin with, cut the plane from zk to −∞, k = 1, 2, · · · 5.

Figure 7.Cutting the plane from zk to −∞

Since the argument of z increases by 2π when we cross one cut which implies that the argument of

f(z) increases by π, then f(z) becomes the negative of its original value. That is, the value of f(z)

changes one sign when we cross one cut. Thus the value of f(z) will change sign when crossing

the cuts odd times and not change sign when crossing the cuts even times.

Figure 8.Determining the sign of the value of f(z)
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Then the cut structure becomes:

Figure 9.The cut structure

The branch cuts are in [−∞, z1], [z2, z3], [z4, z5].

Furthermore, open the cuts and rotate two sheets such that the (+) edge of sheet-I face the (-)

edge of sheet-II and the (-) edge of sheet-I face the (+) edge of sheet-II.

Figure 10.Placing the cuts open
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Figure 11.Together with two sheets

Finally, glue two sheets together, then we get the corresponding Riemann surface of f(z) and call

it Riemann surface of genus 2.

Figure 12.The Riemann surface of genus 2
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Example 2.1.3. Construct the corresponding Riemann surface for f(z) =

√
6∏

k=1

(z − zk) where

zk ∈ R and z1 < z2 < · · · < z6.

We do the same process as in Example 1.1.1. Cut the plane from zk to −∞, k = 1, 2, · · · 6.

Figure 13.Cutting the plane from zk to −∞

The cut structure becomes:

Figure 14.The cut structure

The branch cuts are in [z1, z2], [z3, z4], [z5, z6].
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Figure 15.Placing the cuts open

Figure 16.Together with two sheets
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Figure 17.The Riemann surface of genus 2

In the preceding two examples, we know that two functions, one with 5 roots, the other with

6 roots, have different algebraic structures but have the same geometric graph, that is, they all

obtain Riemann surface of genus 2.

Now using the same method as before to find the corresponding Riemann surface of f(z) in

general case where f(z) =

√
n∏
k=1

(z − zk), zk ∈ R and z1 < z2 < · · · < zn. Cut the plane from zk

to −∞, k = 1, 2, · · ·n.

Figure 18.Cutting the plane from zk to −∞
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Case 1. n = 2N − 1, N ∈ N.

The cut structure becomes:

Figure 19.The cut structure

The branch cuts are in [−∞, z1], [z2, z3], · · · , [z2N−2, z2N−1].

Figure 20.Placing the cuts open
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Figure 21.Together with two sheets

Figure 22.The Riemann surface of genus N-1

Case 2. n = 2N , N ∈ N.

The cut structure becomes:
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Figure 23.The cut structure

The branch cuts are in [z1, z2], [z3, z4], · · · , [z2N−1, z2N ].

Figure 24.Placing the cuts open

Figure 25.Together with two sheets
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Figure 26.The Riemann surface of genus N-1

In these cases, we all make N branch cuts and get Riemann surface of genus N − 1 whenever

f(z) has 2N − 1 or 2N roots.

2.2 The a, b cycles

We introduce the a, b cycles since the simple closed curves on Riemann surface can be written

as the linear combination of them. Take two examples to illustrate the a, b cycles of f(z) on the

cut plane and the corresponding Riemann surface.

Example 2.2.1. Let f(z) =

√
5∏

k=1

(z − zk) where z1 = −2, z2 = −1, z3 = 0, z4 = 1, and z5 = 2.

From Example 2.1.2, the branch cuts are in [−∞,−2], [−1, 0], [1, 2]. The a, b cycles on the cut

plane:
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Figure 27.The a, b cycles of f(z)

The process of finding the a, b cycles on the corresponding Riemann surface is shown below.

Figure 28.The a, b cycles in sheet-I
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Figure 29.The b cycles in sheet-II

Figure 30.Together with two sheets
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Figure 31.The a, b cycles of f(z) on Riemann surface

Example 2.2.2. Let f(z) =

√
6∏

k=1

(z − zk) where z1 = −2, z2 = −1, z3 = 0, z4 = 1, z5 = 2, and

z6 = 3.

From Example 2.1.3, the branch cuts are in [−2,−1], [0, 1], [2, 3]. The a, b cycles on the cut plane:

Figure 32.The a, b cycles of f(z)

The process of finding the a, b cycles on the corresponding Riemann surface is shown below.
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Figure 33.The a, b cycles in sheet-I

Figure 34.The b cycles in sheet-II
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Figure 35.Together with two sheets

Figure 36.The a, b cycles of f(z) on Riemann surface

After the two examples given above, we can also find the a, b cycles of f(z) on the cut plane

and the corresponding Riemann surface in general case where f(z) =

√
n∏
k=1

(z − zk), zk ∈ R and

z1 < z2 < · · · < zn.
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Case 1. n = 2N − 1, N ∈ N.

The branch cuts are in [−∞, z1], [z2, z3], · · · , [z2N−2, z2N−1]. The a, b cycles on the cut plane:

Figure 37.The a, b cycles of f(z)

The a, b cycles on the corresponding Riemann surface:

Figure 38.The a, b cycles of f(z) on Riemann surface
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Case 2. n = 2N , N ∈ N.

The branch cuts are in [z1, z2], [z3, z4], · · · , [z2N−1, z2N ]. The a, b cycles on the cut plane:

Figure 39.The a, b cycles of f(z)

The a, b cycles on the corresponding Riemann surface:

Figure 40.The a, b cycles of f(z) on Riemann surface
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Note that each a cycle is non-overlapping and each b cycle is,too. Besides, a cycles and b cycles

have the same amount.

2.3 The equivalent paths of a, b cycles

If we want to evaluate the integrals of f(z) over a, b cycles, we can find the equivalent paths

of a, b cycles so that our calculation might be much easier than the original. Therefore, find the

simplest paths of a, b cycles and then evaluate the integrals.

Let’s start off finding the equivalent path of a cycle.

Figure 41.The a cycle

We construct some disjoint contours, L1, L2, Γ1, and Γ2, that make the a cycle become two closed

contours, K1 = a∗ + L1 − Γ2 + L2 and K2 = a∗∗ − L2 − Γ1 − L1, which is shown below.
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Figure 42.The closed contours K1 and K2

By Cauchy theorem,
∫
K1
f(z)dz = 0 and

∫
K2
f(z)dz = 0. Adding contours gives

K1 +K2 = a∗ + L1 − Γ2 + L2 + a∗∗ − L2 − Γ1 − L1 = a∗ + a∗∗ − Γ1 − Γ2

which implies that a∗ + a∗∗ = K1 +K2 + Γ1 + Γ2. Then

∫
a

f(z)dz =

∫
a∗
f(z)dz +

∫
a∗∗
f(z)dz

=

∫
K1

f(z)dz +

∫
K2

f(z)dz +

∫
Γ1

f(z)dz +

∫
Γ2

f(z)dz

=

∫
Γ1

f(z)dz +

∫
Γ2

f(z)dz.

Figure 43.The equivalent paths of a cycle
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Next, find the equivalent path of b cycle.

Figure 44.The b cycle

In the similar way, we construct some disjoint contours, L1, L2, L3, L4, Γ1, and Γ2, that make the

b cycle become two closed contours, K1 = b∗ + L1 − Γ2 + L2 and K2 = b∗∗ − L3 − Γ1 − L4, which

is shown below.

Figure 45.The closed contours K1 and K2

By Cauchy theorem,
∫
K1
f(z)dz = 0 and

∫
K2
f(z)dz = 0.Adding contours gives

K1 +K2 = b∗ + L1 − Γ2 + L2 + b∗∗ − L3 − Γ1 − L4 = b∗ + b∗∗ − Γ1 − Γ2 + L1 + L2 − L3 − L4

which implies that b∗ + b∗∗ = K1 + K2 + Γ1 + Γ2 − L1 − L2 + L3 + L4. Besides, the (-) edge of

25



sheet-II is equal to the (+) edge of sheet-I so the contour L1 = L4 and L2 = L3. Then

∫
b

f(z)dz =

∫
b∗
f(z)dz +

∫
b∗∗
f(z)dz

=

∫
K1

f(z)dz +

∫
K2

f(z)dz +

∫
Γ1

f(z)dz +

∫
Γ2

f(z)dz −
∫
L1

f(z)dz −
∫
L2

f(z)dz

+

∫
L3

f(z)dz +

∫
L4

f(z)dz

=

∫
Γ1

f(z)dz +

∫
Γ2

f(z)dz −
∫
L1

f(z)dz −
∫
L2

f(z)dz +

∫
L3

f(z)dz +

∫
L4

f(z)dz

=

∫
Γ1

f(z)dz +

∫
Γ2

f(z)dz −
∫
L4

f(z)dz −
∫
L3

f(z)dz +

∫
L3

f(z)dz +

∫
L4

f(z)dz

=

∫
Γ1

f(z)dz +

∫
Γ2

f(z)dz.

Figure 46.The equivalent paths of b cycle

2.4 The integrals of 1
f(z) over a, b cycles with horizontal cut structure

We will use Mathematica to help us evaluate the integrals of 1
f(z)

over a, b cycles or other paths

because most computations are laborious and fairly complex. However, there are some differences

between theory and Mathematica so we will discuss the differences between them with different

cut structures respectively.

In order to know the value of f(z) =

√
n∏
k=1

(z − zk) about z in sheet-I and in sheet-II, we can

write
n∏
k=1

(z − zk) in its exponential form:
n∏
k=1

(z − zk) = reiθ where r is the modulus of
n∏
k=1

(z − zk)
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and θ is an argument of
n∏
k=1

(z − zk). Let θ1 denote θ in sheet-I and θ2 denote θ in sheet-II. Then

f(z)|(II) =
√
rei

θ2
2

=
√
rei

θ1+2π
2

=
√
rei

θ1
2 eiπ

= −
√
rei

θ1
2

= −f(z)|(I)

since θ2 = θ1 +2π. Here f(z)|(I) and f(z)|(II) denote the value of f(z) with z in sheet-I and sheet-II

respectively.

We only need to discuss the difference between the value of f(z) in sheet-I of theory and

in Mathematica since f(z)|(II) = −f(z)|(I), the (+) edge of sheet-II is equal to the (-) edge of

sheet-I, and the (-) edge of sheet-II is equal to the (+) edge of sheet-I. Note that Mathematica

is always considering arg(z) ∈ (−π, π]. For convenience, f(z)
Math.

= f(z) is used to denote the

polynomial f(z) in front of
Math.

= is the value in theory and the polynomial f(z) behind is the value

in Mathematica.

Define that

z =


|z|eiθ, θ ∈ [−π, π) if and only if z is in sheet-I;

|z|eiθ, θ ∈ [π, 3π) if and only if z is in sheet-II.

The cut on each sheet has two edges, label the starting edge with ”+” and the terminal edge with

”−”.

Use a simple case f(z) =
√
z to find the difference between theory and Mathematica. Let z be

a point in sheet-I, that is, arg(z) ∈ [−π, π). Obviously when arg(z) ∈ (−π, π), the value of f(z) in

theory and Mathematica are the same because Mathematica is always considering arg(z) ∈ (−π, π],
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and the difference between them is when arg(z) = −π. Then let arg(z) = −π,

in theory : z = |z|e−iπ and
√

z = |z|
1
2 e−iπ

2 = −i|z|
1
2 ,

in Mathematica : −π is regarded as π so z = |z|eiπ and
√

z = |z|
1
2 eiπ

2 = i|z|
1
2 .

Therefore, f(z)
Math.

= f(z) if arg(z) ∈ (−π, π) and f(z)
Math.

= −f(z) if arg(z) = −π.

As described above, we know f(z) will change sign when z is in sheet-I and arg(z) = −π, hence

we have the following result.

Lemma 2.4.1. If zk is the end point for horizontal cut and z is in sheet-I, then

√
z − zk

Math.
=


√
z − zk if arg(z − zk) ∈ (−π, π),

−
√
z − zk if arg(z − zk) = −π.

Proof. Let z be a point in sheet-I and z − zk = |z − zk|eiθ where θ = arg(z − zk). For the

same reason as the above, we can easy obtain
√
z − zk

Math.
=
√
z − zk when θ ∈ (−π, π) and when

θ = −π,

in theory :
√

z− zk = |z− zk|
1
2 e−iπ

2 = −i|z− zk|
1
2 ,

in Mathematica :
√

z− zk = |z− zk|
1
2 eiπ

2 = i|z− zk|
1
2 .

Hence,
√
z − zk

Math.
=
√
z − zk if arg(z − zk) ∈ (−π, π) and

√
z − zk

Math.
= −

√
z − zk

if arg(z − zk) = −π.

Theorem 2.4.2. Let f(z) =
√
z − zk and zk be the end point for horizontal cut. If z is in sheet-I,

then

f(z)
Math.

=


−f(z) if z ∈{the cut with (+) edge of sheet-I},

f(z) otherwise.

Proof. Let z be a point in sheet-I. Since arg(z − zk) = −π when z ∈{the cut with (+) edge of

sheet-I}, then by Lemma 2.4.1, f(z)
Math.

= −f(z). On the other hand, arg(z − zk) ∈ (−π, π), then

f(z)
Math.

= f(z) by Lemma 2.4.1.
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Theorem 2.4.3. If f(z) =
√
z − zk

√
z − zk+1 where zk and zk+1 are two end points for horizontal

cut, and z is in sheet-I, then

f(z)
Math.

=


−f(z) if z ∈{the cut with (+) edge of sheet-I},

f(z) otherwise.

Proof. Let z be a point in sheet-I.

(1) z ∈{the cut with (+) edge of sheet-I}

Since z − zk ≥ 0, then arg(z − zk) = 0 and
√
z − zk

Math.
=
√
z − zk by Lemma 2.4.1.

Since z − zk+1 < 0, then arg(z − zk+1) = −π, by Lemma 2.4.1,
√
z − zk+1

Math.
= −

√
z − zk+1.

Thus, f(z) =
√
z − zk

√
z − zk+1

Math.
= −

√
z − zk

√
z − zk+1 = −f(z).

(2) z ∈{the cut with (-) edge of sheet-I}

Since z − zk ≥ 0, then arg(z − zk) = 0 and
√
z − zk

Math.
=
√
z − zk by Lemma 2.4.1.

Since z − zk+1 < 0 and the (-) edge of sheet-I equals the (+) edge of sheet-II, then

arg(z − zk+1) = π, by Lemma 2.4.1,
√
z − zk+1

Math.
=
√
z − zk+1.

Thus, f(z) =
√
z − zk

√
z − zk+1

Math.
=
√
z − zk

√
z − zk+1 = f(z).

(3) z ∈ (−∞, zk)

Since z − zk < 0 and z − zk+1 < 0, then arg(z − zk) = −π and arg(z − zk+1) = −π,

by Lemma 2.4.1,
√
z − zk

Math.
= −

√
z − zk and

√
z − zk+1

Math.
= −

√
z − zk+1.

Thus, f(z) =
√
z − zk

√
z − zk+1

Math.
=
√
z − zk

√
z − zk+1 = f(z).

(4) Otherwise

Since arg(z − zk) ∈ (−π, π) and arg(z − zk+1) ∈ (−π, π), then
√
z − zk

Math.
=
√
z − zk

and
√
z − zk+1

Math.
=
√
z − zk+1 by Lemma 2.4.1.

Thus, f(z) =
√
z − zk

√
z − zk+1

Math.
=
√
z − zk

√
z − zk+1 = f(z).

Example 2.4.4. Compute
∫

1
f(z)

dz over a1, a2, b1, and b2 cycles where

f(z) =
√

(z + 1)z(z − 1)(z − 2)(z − 3)(z − 4).
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Figure 47.The a, b cycles of f(z)

Let z1 = −1, z2 = 0, z3 = 1, z4 = 2, z5 = 3, and z6 = 4.

1. Compute
∫
a1

1
f(z)

dz.

By Cauchy theorem, we can consider that a∗1 is the equivalent path of a1 and a∗1 = a∗11

⋃
a∗12

where a∗11 = the path on the horizontal cut from 3 to 4 on the (+) edge of sheet-I and a∗12 =

the path on the horizontal cut from 4 to 3 on the (−) edge of sheet-I.

(1) z ∈ a∗11 : Let z = r, r : 3→ 4 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
a∗11

1
f(z)

dz
Math.

= −
∫ 4

3
1

f(r)
dr.

(2) z ∈ a∗12 : Let z = r, r : 4→ 3 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
a∗12

1
f(z)

dz
Math.

=
∫ 3

4
1

f(r)
dr.
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Therefore, by (1) and (2),

∫
a1

1

f(z)
dz =

∫
a∗1

1

f(z)
dz

=

∫
a∗11

⋃
a∗12

1

f(z)
dz

Math.
= −

∫ 4

3

1

f(r)
dr +

∫ 3

4

1

f(r)
dr

= 2

∫ 3

4

1

f(r)
dr.

2. Compute
∫
a2

1
f(z)

dz.

By Cauchy theorem, we can consider that a∗2 is the equivalent path of a2 and a∗2 = a∗21

⋃
a∗22

where a∗21 = the path on the horizontal cut from 1 to 2 on the (+) edge of sheet-I and a∗22 =

the path on the horizontal cut from 2 to 1 on the (−) edge of sheet-I.

(1) z ∈ a∗21 : Let z = r, r : 1→ 2 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
a∗21

1
f(z)

dz
Math.

= −
∫ 2

1
1

f(r)
dr.

(2) z ∈ a∗22 : Let z = r, r : 2→ 1 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
a∗22

1
f(z)

dz
Math.

=
∫ 1

2
1

f(r)
dr.
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Therefore, by (1) and (2),

∫
a2

1

f(z)
dz =

∫
a∗2

1

f(z)
dz

=

∫
a∗21

⋃
a∗22

1

f(z)
dz

Math.
= −

∫ 2

1

1

f(r)
dr +

∫ 1

2

1

f(r)
dr

= 2

∫ 1

2

1

f(r)
dr.

3. Compute
∫
b2

1
f(z)

dz.

By Cauchy theorem, we can consider that b∗2 is the equivalent path of b2 and b∗2 = b∗21

⋃
b∗22

where b∗21 = the path on the horizontal line from 0 to 1 on the sheet-I and b∗22 = the path on

the horizontal line from 1 to 0 on the sheet-II.

(1) z ∈ b∗21 : Let z = r, r : 0→ 1 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
b∗21

1
f(z)

dz
Math.

=
∫ 1

0
1

f(r)
dr.

(2) z ∈ b∗22 : We know that f(z)|(I) = −f(z)|(II), so consider b∗∗22 = the path on the horizontal

line from 1 to 0 on the sheet-I.

z ∈ b∗∗22 : Let z = r, r : 1→ 0 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
b∗22

1
f(z)

dz = −
∫
b∗∗22

1
f(z)

dz
Math.

= −
∫ 0

1
1

f(r)
dr.
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Therefore, by (1) and (2),

∫
b2

1

f(z)
dz =

∫
b∗2

1

f(z)
dz

=

∫
b∗21

⋃
b∗22

1

f(z)
dz

Math.
=

∫ 1

0

1

f(r)
dr −

∫ 0

1

1

f(r)
dr

= 2

∫ 1

0

1

f(r)
dr.

4. Compute
∫
b1
f(z)dz.

By Cauchy theorem, we can consider that b∗1 is the equivalent path of b1 and b∗1 = b∗2
⋃
b∗11

⋃
b∗12

where b∗11 = the path on the horizontal line from 2 to 3 on the sheet-I and b∗12 = the path on

the horizontal line from 3 to 2 on the sheet-II.

(1) z ∈ b∗11 : Let z = r, r : 2→ 3 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
b∗11

1
f(z)

dz
Math.

=
∫ 3

2
1

f(r)
dr.

(2) z ∈ b∗12 : We know that f(z)|(I) = −f(z)|(II), so consider b∗∗12 = the path on the horizontal

line from 3 to 2 on the sheet-I.

z ∈ b∗∗12 : Let z = r, r : 3→ 2 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
b∗12

1
f(z)

dz = −
∫
b∗∗12

1
f(z)

dz
Math.

= −
∫ 2

3
1

f(r)
dr.
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Therefore, by (1) and (2),∫
b1

1

f(z)
dz =

∫
b∗1

1

f(z)
dz

=

∫
b∗2

⋃
b∗11

⋃
b∗12

1

f(z)
dz

Math.
= 2

∫ 1

0

1

f(r)
dr +

∫ 3

2

1

f(r)
dr −

∫ 2

3

1

f(r)
dr

= 2

∫ 1

0

1

f(r)
dr + 2

∫ 3

2

1

f(r)
dr.

2.5 The integrals of 1
f(z) over a, b cycles with vertical cut structure

Define that

z =


|z|eiθ, θ ∈ [−3π

2
, π

2
) if and only if z is in sheet-I;

|z|eiθ, θ ∈ [π
2
, 5π

2
) if and only if z is in sheet-II.

The cut on each sheet has two edges, label the starting edge with ”+” and the terminal edge with

”−”.

Lemma 2.5.1. If zk is the end point for vertical cut and z is in sheet-I, then

√
z − zk

Math.
=


−
√
z − zk if arg(z − zk) ∈ [−3π

2
,−π],

√
z − zk if arg(z − zk) ∈ (−π, π

2
).

Proof. Let z be a point in sheet-I and z−zk = |z−zk|eiθ where θ = arg(z−zk). When θ ∈ (−π, π
2
),

the value of
√
z − zk in theory and Mathematica all equal |z−zk|

1
2 ei

θ
2 since Mathematica is always

considering θ ∈ (−π, π], then
√
z − zk

Math.
=
√
z − zk. When θ ∈ [−3π

2
,−π],

in theory :
√

z− zk = |z− zk|
1
2 ei θ

2 ,

in Mathematica : θ ∈ [−3π

2
,−π] is regarded as θ + 2π ∈ [

π

2
, π] so z− zk = |z− zk|ei(θ+2π)

and
√

z− zk = |z− zk|
1
2 ei θ+2π

2 = −|z− zk|
1
2 ei θ

2 .

Therefore,
√
z − zk

Math.
= −

√
z − zk if arg(z − zk) ∈ [−3π

2
,−π] and

√
z − zk

Math.
=
√
z − zk

if arg(z − zk) ∈ (−π, π
2
).
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Theorem 2.5.2. Let f(z) =
√
z − zk

√
z − zk+1 where zk and zk+1 are two end points for vertical

cut and the domain be divided into six areas (A), (B), (C), (D), (E), and (F) where

(A)= {(x, y) : x < Re(zk), y ≥ Im(zk)},

(B)= {(x, y) : x < Re(zk), Im(zk+1) ≤ y < Im(zk)},

(C)= {(x, y) : x < Re(zk), y < Im(zk+1)},

(D)= {(x, y) : x > Re(zk), y ≥ Im(zk)},

(E)= {(x, y) : x > Re(zk), Im(zk+1) ≤ y < Im(zk)},

(F)= {(x, y) : x > Re(zk), y < Im(zk+1)}.

Figure 48.The domain with six areas

If z is in sheet-I, then

f(z)
Math.

=


−f(z) if z ∈ (B)

⋃
{the cut with (+) edge of sheet-I},

f(z) otherwise.

Proof. Let z be a point in sheet-I.

(1) z ∈(A)

Since arg(z − zk) ∈ (−3π
2
,−π] and arg(z − zk+1) ∈ (−3π

2
,−π), then by Lemma 2.5.1,
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√
z − zk

Math.
= −

√
z − zk and

√
z − zk+1

Math.
= −

√
z − zk+1.

Hence, f(z) =
√
z − zk

√
z − zk+1

Math.
=
√
z − zk

√
z − zk+1 = f(z).

(2) z ∈(B)

Since arg(z − zk) ∈ (−π,−π
2
) and arg(z − zk+1) ∈ (−3π

2
,−π], then

√
z − zk

Math.
=
√
z − zk

and
√
z − zk+1

Math.
= −

√
z − zk+1 by Lemma 2.5.1.

Hence, f(z) =
√
z − zk

√
z − zk+1

Math.
= −

√
z − zk

√
z − zk+1 = −f(z).

(3) z ∈{the cut with (+) edge of sheet-I}

Since arg(z − zk) = −π
2

and arg(z − zk+1) = −3π
2

, then by Lemma 2.5.1,

√
z − zk

Math.
=
√
z − zk and

√
z − zk+1

Math.
= −

√
z − zk+1.

Hence, f(z) =
√
z − zk

√
z − zk+1

Math.
= −

√
z − zk

√
z − zk+1 = −f(z).

(4) z ∈{the cut with (-) edge of sheet-I}

Since arg(z − zk) = −π
2
, then

√
z − zk

Math.
=
√
z − zk by Lemma 2.5.1.

Since the (-) edge of sheet-I equals the (+) edge of sheet-II, then arg(z − zk+1) = π
2
,

by Lemma 2.5.1,
√
z − zk+1

Math.
=
√
z − zk+1.

Hence, f(z) =
√
z − zk

√
z − zk+1

Math.
=
√
z − zk

√
z − zk+1 = f(z).

(5) z ∈ {(x, y) : x = Re(zk), y > Im(zk)}

Since arg(z − zk) = −3π
2

and arg(z − zk+1) = −3π
2

, then
√
z − zk

Math.
= −

√
z − zk

and
√
z − zk+1

Math.
= −

√
z − zk+1 by Lemma 2.5.1.

Hence, f(z) =
√
z − zk

√
z − zk+1

Math.
=
√
z − zk

√
z − zk+1 = f(z).

(6) Otherwise

Since arg(z − zk) ∈ (−π, π
2
) and arg(z − zk+1) ∈ (−π, π

2
), then by Lemma 2.5.1,

√
z − zk

Math.
=
√
z − zk and

√
z − zk+1

Math.
=
√
z − zk+1.

Hence, f(z) =
√
z − zk

√
z − zk+1

Math.
=
√
z − zk

√
z − zk+1 = f(z).
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Example 2.5.3. Compute
∫

1
f(z)

dz over a1, a2, b1, and b2 cycles, where

f(z) =
√

(z + 1− 2i)(z + 1 + 2i)(z − 1− 3i)(z − 1 + 3i)(z − 2− i)(z − 2 + i).

Figure 49.The a, b cycles of f(z)

Let z1 = −1 + 2i, z2 = −1− 2i, z3 = 1 + 3i, z4 = 1− 3i, z5 = 2 + i, and z6 = 2− i.

1. Compute
∫
a1

1
f(z)

dz.

By Cauchy theorem, we can consider that a∗1 is the equivalent path of a1 and a∗1 = a∗11

⋃
a∗12

where a∗11 = the path on the vertical cut from 2 + i to 2 − i on the (+) edge of sheet-I and

a∗12 = the path on the vertical cut from 2− i to 2 + i on the (−) edge of sheet-I.

(1) z ∈ a∗11 : Let z = 2 + ri, r : 1→ −1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
a∗11

1
f(z)

dz
Math.

= −
∫ −1

1
i

f(2+ri)
dr.
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(2) z ∈ a∗12 : Let z = 2 + ri, r : −1→ 1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
a∗12

1
f(z)

dz
Math.

=
∫ 1

−1
i

f(2+ri)
dr.

Therefore, by (1) and (2),∫
a1

1

f(z)
dz =

∫
a∗1

1

f(z)
dz

=

∫
a∗11

⋃
a∗12

1

f(z)
dz

Math.
= −

∫ −1

1

i

f(2 + ri)
dr +

∫ 1

−1

i

f(2 + ri)
dr

= 2

∫ 1

−1

i

f(2 + ri)
dr.

2. Compute
∫
a2

1
f(z)

dz.

By Cauchy theorem, we can consider that a∗2 is the equivalent path of a2 and

a∗2 = a∗21

⋃
a∗22

⋃
a∗23

⋃
a∗24

⋃
a∗25

⋃
a∗26 where a∗21 = the path on the vertical cut from 1 + 3i to

1 + i on the (+) edge of sheet-I, a∗22 = the path on the vertical cut from 1 + i to 1− i on the

(+) edge of sheet-I, a∗23 = the path on the vertical cut from 1− i to 1− 3i on the (+) edge

of sheet-I, a∗24 = the path on the vertical cut from 1− 3i to 1− i on the (−) edge of sheet-I,

a∗25 = the path on the vertical cut from 1− i to 1 + i on the (−) edge of sheet-I, and a∗26 =

the path on the vertical cut from 1 + i to 1 + 3i on the (−) edge of sheet-I.

(1) z ∈ a∗21 : Let z = 1 + ri, r : 3→ 1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.
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Thus, f(z)
Math.

= −f(z) and
∫
a∗21

1
f(z)

dz
Math.

= −
∫ 1

3
i

f(1+ri)
dr.

(2) z ∈ a∗22 : Let z = 1 + ri, r : 1→ −1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
a∗22

1
f(z)

dz
Math.

=
∫ −1

1
i

f(1+ri)
dr.

(3) z ∈ a∗23 : Let z = 1 + ri, r : −1→ −3 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
a∗23

1
f(z)

dz
Math.

= −
∫ −3

−1
i

f(1+ri)
dr.

(4) z ∈ a∗24 : Let z = 1 + ri, r : −3→ −1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
a∗24

1
f(z)

dz
Math.

=
∫ −1

−3
i

f(1+ri)
dr.

(5) z ∈ a∗25 : Let z = 1 + ri, r : −1→ 1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
a∗25

1
f(z)

dz
Math.

= −
∫ 1

−1
i

f(1+ri)
dr.
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(6) z ∈ a∗26 : Let z = 1 + ri, r : 1→ 3 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
a∗26

1
f(z)

dz
Math.

=
∫ 3

1
i

f(1+ri)
dr.

Therefore, by (1), (2), (3), (4), (5), and (6),

∫
a2

1

f(z)
dz =

∫
a∗2

1

f(z)
dz

=

∫
a∗21

⋃
a∗22

⋃
a∗23

⋃
a∗24

⋃
a∗25

⋃
a∗26

1

f(z)
dz

Math.
= −

∫ 1

3

i

f(1 + ri)
dr +

∫ −1

1

i

f(1 + ri)
dr −

∫ −3

−1

i

f(1 + ri)
dr

+

∫ −1

−3

i

f(1 + ri)
dr −

∫ 1

−1

i

f(1 + ri)
dr +

∫ 3

1

i

f(1 + ri)
dr

= 2

∫ 3

1

i

f(1 + ri)
dr + 2

∫ −1

1

i

f(1 + ri)
dr + 2

∫ −1

−3

i

f(1 + ri)
dr.

3. Compute
∫
b2
f(z)dz.

By Cauchy theorem, we can consider that b∗2 is the equivalent path of b2 and b∗2 =
8⋃
j=1

b∗2j

where b∗21 = the path on the vertical cut from −1 + i to −1 − i on the (+) edge of sheet-I,

b∗22 = the path on the vertical cut from −1− i to −1− 2i on the (+) edge of sheet-I, b∗23 =

the path on the vertical cut from −1 − 2i to −1 − i on the (−) edge of sheet-I, b∗24 = the

path on the vertical cut from −1− i to −1 + i on the (−) edge of sheet-I, b∗25 = the path on

the horizontal line from −1 + i to 1 + i on the sheet-I, b∗26 = the path on the horizontal line

from 1 + i to −1 + i on the sheet-II, b∗27 = the path on the vertical cut from 1 + 3i to 1 + i

on the (+) edge of sheet-II, and b∗28 = the path on the vertical cut from 1 + i to 1 + 3i on

the (−) edge of sheet-II.
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(1) z ∈ b∗21 : Let z = −1 + ri, r : 1→ −1 and dz = idr, then

√
z − z1

√
z − z2

Math.
= −

√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
b∗21

1
f(z)

dz
Math.

= −
∫ −1

1
i

f(−1+ri)
dr.

(2) z ∈ b∗22 : Let z = −1 + ri, r : −1→ −2 and dz = idr, then

√
z − z1

√
z − z2

Math.
= −

√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
b∗22

1
f(z)

dz
Math.

=
∫ −2

−1
i

f(−1+ri)
dr.

(3) z ∈ b∗23 : Let z = −1 + ri, r : −2→ −1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
b∗23

1
f(z)

dz
Math.

= −
∫ −1

−2
i

f(−1+ri)
dr.

(4) z ∈ b∗24 : Let z = −1 + ri, r : −1→ 1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
b∗24

1
f(z)

dz
Math.

=
∫ 1

−1
i

f(−1+ri)
dr.
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(5) z ∈ b∗25 : Let z = r + i, r : −1→ 1 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
b∗25

1
f(z)

dz
Math.

= −
∫ 1

−1
1

f(r+i)
dr.

(6) z ∈ b∗26 : We know that f(z)|(I) = −f(z)|(II), so consider b∗∗26 = the path on the horizontal

line from 1 + i to −1 + i on the sheet-I.

z ∈ b∗∗26 : Let z = r + i, r : 1→ −1 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
b∗26

1
f(z)

dz = −
∫
b∗∗26

1
f(z)

dz
Math.

=
∫ −1

1
1

f(r+i)
dr.

(7) z ∈ b∗27 : Since b∗27 ≡ the path on the vertical cut from 1 + 3i to 1 + i on the (−) edge

of sheet-I, so let z = 1 + ri, r : 3→ 1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
b∗27

1
f(z)

dz
Math.

=
∫ 1

3
i

f(1+ri)
dr.

(8) z ∈ b∗28 : Since b∗28 ≡ the path on the vertical cut from 1 + i to 1 + 3i on the (+) edge

of sheet-I, so let z = 1 + ri, r : 1→ 3 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.
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Thus, f(z)
Math.

= −f(z) and
∫
b∗27

1
f(z)

dz
Math.

= −
∫ 3

1
i

f(1+ri)
dr.

Therefore, by (1), (2), · · · , (8),∫
b2

1

f(z)
dz =

∫
b∗2

1

f(z)
dz

=

∫
8⋃
j=1

b∗2j

1

f(z)
dz

Math.
= −

∫ −1

1

i

f(−1 + ri)
dr +

∫ −2

−1

i

f(−1 + ri)
dr −

∫ −1

−2

i

f(−1 + ri)
dr

+

∫ 1

−1

i

f(−1 + ri)
dr −

∫ 1

−1

1

f(r + i)
dr +

∫ −1

1

1

f(r + i)
dr

+

∫ 1

3

i

f(1 + ri)
dr −

∫ 3

1

i

f(1 + ri)
dr

= 2

∫ 1

−1

i

f(−1 + ri)
dr + 2

∫ −2

−1

i

f(−1 + ri)
dr + 2

∫ −1

1

1

f(r + i)
dr

+2

∫ 1

3

i

f(1 + ri)
dr.

4. Compute
∫
b1
f(z)dz.

By Cauchy theorem, we can consider that b∗1 is the equivalent path of b1 and

b∗1 = b∗2
⋃
a∗22

⋃
a∗23

⋃
a∗24

⋃
a∗25

⋃
b∗11

⋃
b∗12 where b∗11 = the path on the horizontal line from

1 + i to 2 + i on the sheet-I and b∗12 = the path on the horizontal line from 2 + i to 1 + i on

the sheet-II.

(1) z ∈ b∗11 : Let z = r + i, r : 1→ 2 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
b∗11

1
f(z)

dz
Math.

=
∫ 2

1
1

f(r+i)
dr.

(2) z ∈ b∗12 : We know that f(z)|(I) = −f(z)|(II), so consider b∗∗12 = the path on the horizontal

line from 2 + i to 1 + i on the sheet-I.
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z ∈ b∗∗12 : Let z = r + i, r : 2→ 1 and dz = dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
b∗12

1
f(z)

dz = −
∫
b∗∗12

1
f(z)

dz
Math.

= −
∫ 1

2
1

f(r+i)
dr.

Therefore, by (1) and (2),

∫
b1

1

f(z)
dz =

∫
b∗1

1

f(z)
dz

=

∫
b∗2

⋃
a∗22

⋃
a∗23

⋃
a∗24

⋃
a∗25

⋃
b∗11

⋃
b∗12

1

f(z)
dz

Math.
= 2

∫ 1

−1

i

f(−1 + ri)
dr + 2

∫ −2

−1

i

f(−1 + ri)
dr + 2

∫ −1

1

1

f(r + i)
dr

+2

∫ 1

3

i

f(1 + ri)
dr + 2

∫ −1

1

i

f(1 + ri)
dr + 2

∫ −1

−3

i

f(1 + ri)
dr

+2

∫ 2

1

1

f(r + i)
dr.

2.6 The integrals of 1
f(z) over a, b cycles with slant cut structure

In this section, we will discuss the difference between theory and Mathematica with slant cut.

Consider the cut with slope m = tanα where 0 < α < π and α 6= π
2
.

Define that

z =


|z|eiθ, θ ∈ [α− 2π, α) if and only if z is in sheet-I;

|z|eiθ, θ ∈ [α, α + 2π) if and only if z is in sheet-II.

The cut on each sheet has two edges, label the starting edge with ”+” and the terminal edge with

”−”.

Lemma 2.6.1. If zk is the end point for slant cut with slope m = tanα, 0 < α < π, α 6= π
2
, and

44



z is in sheet-I, then

√
z − zk

Math.
=


−
√
z − zk if arg(z − zk) ∈ [α− 2π,−π],

√
z − zk if arg(z − zk) ∈ (−π, α).

Proof. Let z be a point in sheet-I and z−zk = |z−zk|eiθ where θ = arg(z−zk). When θ ∈ (−π, α),

the value of
√
z − zk in theory and Mathematica all equal |z−zk|

1
2 ei

θ
2 since Mathematica is always

considering θ ∈ (−π, π], then
√
z − zk

Math.
=
√
z − zk. When θ ∈ [α− 2π,−π],

in theory :
√

z− zk = |z− zk|
1
2 ei θ

2 ,

in Mathematica : θ ∈ [α− 2π,−π] is regarded as θ + 2π ∈ [α, π] so z− zk = |z− zk|ei(θ+2π)

and
√

z− zk = |z− zk|
1
2 ei θ+2π

2 = −|z− zk|
1
2 ei θ

2 .

Therefore,
√
z − zk

Math.
= −

√
z − zk if arg(z − zk) ∈ [α− 2π,−π] and

√
z − zk

Math.
=
√
z − zk

if arg(z − zk) ∈ (−π, α).

Definition 2.6.2. Let a cut with slope m = tanα where 0 < α < π and α 6= π
2
, zk and zk+1 are

two end points of the cut. A point (x, y) ∈ L if

y − Im(zk+1) > tanα · (x− Re(zk+1)) as tanα > 0,

y − Im(zk+1) < tanα · (x− Re(zk+1)) as tanα < 0;

and (x, y) ∈ S if

y − Im(zk+1) < tanα · (x− Re(zk+1)) as tanα > 0,

y − Im(zk+1) > tanα · (x− Re(zk+1)) as tanα < 0.
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Figure 50.The areas L and S

Theorem 2.6.3. Let f(z) =
√
z − zk

√
z − zk+1 where zk and zk+1 are two end points for slant

cut and the domain be divided into six areas (A), (B), (C), (D), (E), and (F) where

(A)= {(x, y) : (x, y) ∈ L, y ≥ Im(zk)},

(B)= {(x, y) : (x, y) ∈ L, Im(zk+1) ≤ y < Im(zk)},

(C)= {(x, y) : (x, y) ∈ L, y < Im(zk+1)},

(D)= {(x, y) : (x, y) ∈ S, y ≥ Im(zk)},

(E)= {(x, y) : (x, y) ∈ S, Im(zk+1) ≤ y < Im(zk)},

(F)= {(x, y) : (x, y) ∈ S, y < Im(zk+1)}.If z is in sheet-I, then

f(z)
Math.

=


−f(z) if z ∈ (B)

⋃
{the cut with (+) edge of sheet-I},

f(z) otherwise.

Proof. Let z be a point in sheet-I.

(1) z ∈(A)

Since arg(z − zk) ∈ (α− 2π,−π] and arg(z − zk+1) ∈ (α− 2π,−π), then by Lemma 2.6.1,

√
z − zk

Math.
= −

√
z − zk and

√
z − zk+1

Math.
= −

√
z − zk+1.

Thus, f(z) =
√
z − zk

√
z − zk+1

Math.
=
√
z − zk

√
z − zk+1 = f(z).
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(2) z ∈(B)

Since arg(z − zk) ∈ (−π, α− π) and arg(z − zk+1) ∈ (α− 2π,−π], then
√
z − zk

Math.
=
√
z − zk

and
√
z − zk+1

Math.
= −

√
z − zk+1 by Lemma 2.6.1.

Thus, f(z) =
√
z − zk

√
z − zk+1

Math.
= −

√
z − zk

√
z − zk+1 = −f(z).

(3) z ∈{the cut with (+) edge of sheet-I}

Since arg(z − zk) = α− π and arg(z − zk+1) = α− 2π, then by Lemma 2.6.1,

√
z − zk

Math.
=
√
z − zk and

√
z − zk+1

Math.
= −

√
z − zk+1.

Thus, f(z) =
√
z − zk

√
z − zk+1

Math.
= −

√
z − zk

√
z − zk+1 = −f(z).

(4) z ∈{the cut with (-) edge of sheet-I}

Since arg(z − zk) = α− π, then
√
z − zk

Math.
=
√
z − zk by Lemma 2.6.1.

Since the (-) edge of sheet-I equals the (+) edge of sheet-II, then arg(z − zk+1) = α,

by Lemma 2.6.1,
√
z − zk+1

Math.
=
√
z − zk+1.

Thus, f(z) =
√
z − zk

√
z − zk+1

Math.
=
√
z − zk

√
z − zk+1 = f(z).

(5) z ∈ {(x, y) : y − Im(zk) = tanα · (x− Re(zk)), y > Im(zk)}

Since arg(z − zk) = α− 2π and arg(z − zk+1) = α− 2π, then
√
z − zk

Math.
= −

√
z − zk

and
√
z − zk+1

Math.
= −

√
z − zk+1 by Lemma 2.6.1.

Thus, f(z) =
√
z − zk

√
z − zk+1

Math.
=
√
z − zk

√
z − zk+1 = f(z).

(6) Otherwise

Since arg(z − zk) ∈ (−π, α) and arg(z − zk+1) ∈ (−π, α), then by Lemma 2.6.1,

√
z − zk

Math.
=
√
z − zk and

√
z − zk+1

Math.
=
√
z − zk+1.

Thus, f(z) =
√
z − zk

√
z − zk+1

Math.
=
√
z − zk

√
z − zk+1 = f(z).

Example 2.6.4. Compute
∫

1
f(z)

dz over a1, a2, b1, and b2 cycles where

f(z) =
√

(z +
√

3)(z − i)(z − 2i)(z − 1− (2 +
√

3)i)(z − 1− i)(z − 2− 2i).
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Figure 51.The a, b cycles of f(z)

Let z1 = −
√

3, z2 = i, z3 = 2i, z4 = 1 + (2 +
√

3)i, z5 = 1 + i, and z6 = 2 + 2i.

1. Compute
∫
a1

1
f(z)

dz.

By Cauchy theorem, we can consider that a∗1 is the equivalent path of a1 and a∗1 = a∗11

⋃
a∗12

where a∗11 = the path on the slant cut from 2 + 2i to 1 + i on the (+) edge of sheet-I and

a∗12 = the path on the slant cut from 1 + i to 2 + 2i on the (−) edge of sheet-I.

(1) z ∈ a∗11 : Let z = 2 + 2i+ r(−1− i), r : 0→ 1 and dz = (−1− i)dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
a∗11

1
f(z)

dz
Math.

= −
∫ 1

0
−1−i

f(2+2i+r(−1−i))dr.

(2) z ∈ a∗12 : Let z = 2 + 2i+ r(−1− i), r : 1→ 0 and dz = (−1− i)dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.
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Thus, f(z)
Math.

= f(z) and
∫
a∗12

1
f(z)

dz
Math.

=
∫ 0

1
−1−i

f(2+2i+r(−1−i))dr.

Therefore, by (1) and (2),

∫
a1

1

f(z)
dz =

∫
a∗1

1

f(z)
dz

=

∫
a∗11

⋃
a∗12

1

f(z)
dz

Math.
= −

∫ 1

0

−1− i
f(2 + 2i+ r(−1− i))

dr +

∫ 0

1

−1− i
f(2 + 2i+ r(−1− i))

dr

= 2

∫ 0

1

−1− i
f(2 + 2i+ r(−1− i))

dr.

2. Compute
∫
a2

1
f(z)

dz.

By Cauchy theorem, we can consider that a∗2 is the equivalent path of a2 and a∗2 = a∗21

⋃
a∗22

where a∗21 = the path on the slant cut from 1 + (2 +
√

3)i to 2i on the (+) edge of sheet-I

and a∗22 = the path on the slant cut from 2i to 1 + (2 +
√

3)i on the (−) edge of sheet-I.

(1) z ∈ a∗21 : Let z = 1 + (2 +
√

3)i+ r(−1−
√

3i), r : 0→ 1 and dz = (−1−
√

3i)dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
= −

√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
a∗21

1
f(z)

dz
Math.

= −
∫ 1

0
−1−

√
3i

f(1+(2+
√

3)i+r(−1−
√

3i))
dr.

(2) z ∈ a∗22 : Let z = 1 + (2 +
√

3)i+ r(−1−
√

3i), r : 1→ 0 and dz = (−1−
√

3i)dr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
a∗22

1
f(z)

dz
Math.

=
∫ 0

1
−1−

√
3i

f(1+(2+
√

3)i+r(−1−
√

3i))
dr.
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Therefore, by (1) and (2),∫
a2

1

f(z)
dz =

∫
a∗2

1

f(z)
dz

=

∫
a∗21

⋃
a∗22

1

f(z)
dz

Math.
= −

∫ 1

0

−1−
√

3i

f(1 + (2 +
√

3)i+ r(−1−
√

3i))
dr

+

∫ 0

1

−1−
√

3i

f(1 + (2 +
√

3)i+ r(−1−
√

3i))
dr

= 2

∫ 0

1

−1−
√

3i

f(1 + (2 +
√

3)i+ r(−1−
√

3i))
dr.

3. Compute
∫
b2

1
f(z)

dz.

By Cauchy theorem, we can consider that b∗2 is the equivalent path of b2 and b∗2 = b∗21

⋃
b∗22

where b∗21 = the path on the vertical line from i to 2i on the sheet-I and b∗22 = the path on

the vertical line from 2i to i on the sheet-II.

(1) z ∈ b∗21 : Let z = ri, r : 1→ 2 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
b∗21

1
f(z)

dz
Math.

= −
∫ 2

1
i

f(ri)
dr.

(2) z ∈ b∗22 : We know that f(z)|(I) = −f(z)|(II), so consider b∗∗22 = the path on the vertical

line from 2i to i on the sheet-I.

z ∈ b∗∗22 : Let z = ri, r : 2→ 1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
b∗22

1
f(z)

dz = −
∫
b∗∗22

1
f(z)

dz
Math.

=
∫ 1

2
i

f(ri)
dr.
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Therefore, by (1) and (2),

∫
b2

1

f(z)
dz =

∫
b∗2

1

f(z)
dz

=

∫
b∗21

⋃
b∗22

1

f(z)
dz

Math.
= −

∫ 2

1

i

f(ri)
dr +

∫ 1

2

i

f(ri)
dr

= 2

∫ 1

2

i

f(ri)
dr.

4. Compute
∫
b1
f(z)dz.

By Cauchy theorem, we can consider that b∗1 is the equivalent path of b1 and

b∗1 = b∗2
⋃
b∗11

⋃
b∗12

⋃
b∗13

⋃
b∗14 where b∗11 = the path on the vertical line from 1 + (2 +

√
3)i to

1 + 2i on the sheet-I, b∗12 = the path on the vertical line from 1 + 2i to 1 + i on the sheet-I,

b∗13 = the path on the vertical line from 1 + i to 1 + 2i on the sheet-II, and b∗14 = the path on

the vertical line from 1 + 2i to 1 + (2 +
√

3)i on the sheet-II.

(1) z ∈ b∗11 : Let z = 1 + ri, r : 2 +
√

3→ 2 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
b∗11

1
f(z)

dz
Math.

=
∫ 2

2+
√

3
i

f(1+ri)
dr.

(2) z ∈ b∗12 : Let z = 1 + ri, r : 2→ 1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
b∗12

1
f(z)

dz
Math.

= −
∫ 1

2
i

f(1+ri)
dr.
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(3) z ∈ b∗13 : We know that f(z)|(I) = −f(z)|(II), so consider b∗∗13 = the path on the vertical

line from 1 + i to 1 + 2i on the sheet-I.

z ∈ b∗∗13 : Let z = 1 + ri, r : 1→ 2 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
b∗13

1
f(z)

dz = −
∫
b∗∗13

1
f(z)

dz
Math.

=
∫ 2

1
i

f(1+ri)
dr.

(4) z ∈ b∗14 : We know that f(z)|(I) = −f(z)|(II), so consider b∗∗14 = the path on the vertical

line from 1 + 2i to 1 + (2 +
√

3)i on the sheet-I.

z ∈ b∗∗14 : Let z = 1 + ri, r : 2→ 2 +
√

3 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
=
√
z − z5

√
z − z6.

Thus, f(z)
Math.

= f(z) and
∫
b∗14

1
f(z)

dz = −
∫
b∗∗14

1
f(z)

dz
Math.

= −
∫ 2+

√
3

2
i

f(1+ri)
dr.

Therefore, by (1), (2), (3), and (4),

∫
b1

1

f(z)
dz =

∫
b∗1

1

f(z)
dz

=

∫
b∗2

⋃
b∗11

⋃
b∗12

⋃
b∗13

⋃
b∗14

1

f(z)
dz

Math.
= 2

∫ 1

2

i

f(ri)
dr +

∫ 2

2+
√

3

i

f(1 + ri)
dr −

∫ 1

2

i

f(1 + ri)
dr

+

∫ 2

1

i

f(1 + ri)
dr −

∫ 2+
√

3

2

i

f(1 + ri)
dr

= 2

∫ 1

2

i

f(ri)
dr + 2

∫ 2

2+
√

3

i

f(1 + ri)
dr + 2

∫ 2

1

i

f(1 + ri)
dr.
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2.7 The integrals of 1
f(z) over other paths

After introducing the integrals of 1
f(z)

over a, b cycles, we will discuss the integrals of 1
f(z)

over

other paths with three different cut structure. To start with, find the equivalent paths of original

paths by Cauchy theorem. Next, use the lemmas and theorems given above to judge where f(z)

would change sign. Finally, use Mathematica to evaluate the integrals.

Example 2.7.1. Compute
∫

1
f(z)

dz over γ1, γ2, γ3, and γ4 paths where f(z) =

√
7∏

k=1

(z − k).

Figure 52.The γ paths of f(z)

We evaluate the integrals of different paths respectively.

1. Compute
∫
γ1

1
f(z)

dz.

By Cauchy theorem, we can consider that γ∗1 is the equivalent path of γ1 and γ∗1 = γ∗11

⋃
γ∗12

where γ∗11 = the path on the horizontal cut from 4 to 5 on the (+) edge of sheet-I and γ∗12 =

the path on the horizontal cut from 5 to 4 on the (−) edge of sheet-I.
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(1) z ∈ γ∗11 : Let z = r, r : 4→ 5 and dz = dr, then

√
z − 1

Math.
=
√
z − 1,

√
z − 2

√
z − 3

Math.
=
√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
= −

√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
=
√
z − 6

√
z − 7.

Thus, f(z)
Math.

= −f(z) and
∫
γ∗11

1
f(z)

dz
Math.

= −
∫ 5

4
1

f(r)
dr.

(2) z ∈ γ∗12 : Let z = r, r : 5→ 4 and dz = dr, then

√
z − 1

Math.
=
√
z − 1,

√
z − 2

√
z − 3

Math.
=
√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
=
√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
=
√
z − 6

√
z − 7.

Thus, f(z)
Math.

= f(z) and
∫
γ∗12

1
f(z)

dz
Math.

=
∫ 4

5
1

f(r)
dr.

Therefore, by (1) and (2),

∫
γ1

1

f(z)
dz =

∫
γ∗1

1

f(z)
dz

=

∫
γ∗11

⋃
γ∗12

1

f(z)
dz

Math.
= −

∫ 5

4

1

f(r)
dr +

∫ 4

5

1

f(r)
dr

= 2

∫ 4

5

1

f(r)
dr.

2. Compute
∫
γ2

1
f(z)

dz.

By Cauchy theorem, we can consider that γ∗2 is the equivalent path of γ2 and γ∗2 = γ∗21

⋃
γ∗22

where γ∗21 = the path on the horizontal cut from −2 to 1 on the (+) edge of sheet-I and

γ∗22 = the path on the horizontal cut from 1 to −2 on the (−) edge of sheet-I.
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(1) z ∈ γ∗21 : Let z = r, r : −2→ 1 and dz = dr, then

√
z − 1

Math.
= −

√
z − 1,

√
z − 2

√
z − 3

Math.
=
√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
=
√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
=
√
z − 6

√
z − 7.

Thus, f(z)
Math.

= −f(z) and
∫
γ∗21

1
f(z)

dz
Math.

= −
∫ 1

−2
1

f(r)
dr.

(2) z ∈ γ∗22 : Let z = r, r : 1→ −2 and dz = dr, then

√
z − 1

Math.
=
√
z − 1,

√
z − 2

√
z − 3

Math.
=
√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
=
√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
=
√
z − 6

√
z − 7.

Thus, f(z)
Math.

= f(z) and
∫
γ∗22

1
f(z)

dz
Math.

=
∫ −2

1
1

f(r)
dr.

Therefore, by (1) and (2),

∫
γ2

1

f(z)
dz =

∫
γ∗2

1

f(z)
dz

=

∫
γ∗21

⋃
γ∗22

1

f(z)
dz

Math.
= −

∫ 1

−2

1

f(r)
dr +

∫ −2

1

1

f(r)
dr

= 2

∫ −2

1

1

f(r)
dr.

3. Compute
∫
γ3

1
f(z)

dz.

By Cauchy theorem, we can consider that γ∗3 is the equivalent path of γ3 and

γ∗3 = γ∗31

⋃
γ∗32

⋃
γ∗33

⋃
γ∗34 where γ∗31 = the path on the horizontal line from 3 to 4 on the

sheet-I, γ∗32 = the path on the horizontal line from 4 to 3 on the sheet-II, γ∗33 = the path on
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the horizontal line from 5 to 6 on the sheet-I, and γ∗34 = the path on the horizontal line from

6 to 5 on the sheet-II.

(1) z ∈ γ∗31 : Let z = r, r : 3→ 4 and dz = dr, then

√
z − 1

Math.
=
√
z − 1,

√
z − 2

√
z − 3

Math.
=
√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
=
√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
=
√
z − 6

√
z − 7.

Thus, f(z)
Math.

= f(z) and
∫
γ∗31

1
f(z)

dz
Math.

=
∫ 4

3
1

f(r)
dr.

(2) z ∈ γ∗32 : We know that f(z)|(I) = −f(z)|(II), so consider γ∗∗32 = the path on the

horizontal line from 4 to 3 on the sheet-I.

z ∈ γ∗∗32 : Let z = r, r : 4→ 3 and dz = dr, then

√
z − 1

Math.
=
√
z − 1,

√
z − 2

√
z − 3

Math.
=
√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
=
√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
=
√
z − 6

√
z − 7.

Thus, f(z)
Math.

= f(z) and
∫
γ∗32

1
f(z)

dz = −
∫
γ∗∗32

1
f(z)

dz
Math.

= −
∫ 3

4
1

f(r)
dr.

(3) z ∈ γ∗33 : Let z = r, r : 5→ 6 and dz = dr, then

√
z − 1

Math.
=
√
z − 1,

√
z − 2

√
z − 3

Math.
=
√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
=
√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
=
√
z − 6

√
z − 7.

Thus, f(z)
Math.

= f(z) and
∫
γ∗33

1
f(z)

dz
Math.

=
∫ 6

5
1

f(r)
dr.
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(4) z ∈ γ∗34 : We know that f(z)|(I) = −f(z)|(II), so consider γ∗∗34 = the path on the

horizontal line from 6 to 5 on the sheet-I.

z ∈ γ∗∗34 : Let z = r, r : 6→ 5 and dz = dr, then

√
z − 1

Math.
=
√
z − 1,

√
z − 2

√
z − 3

Math.
=
√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
=
√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
=
√
z − 6

√
z − 7.

Thus, f(z)
Math.

= f(z) and
∫
γ∗34

1
f(z)

dz = −
∫
γ∗∗34

1
f(z)

dz
Math.

= −
∫ 5

6
1

f(r)
dr.

Therefore, by (1), (2), (3), and (4),

∫
γ3

1

f(z)
dz =

∫
γ∗3

1

f(z)
dz

=

∫
γ∗31

⋃
γ∗32

⋃
γ∗33

⋃
γ∗34

1

f(z)
dz

Math.
=

∫ 4

3

1

f(r)
dr −

∫ 3

4

1

f(r)
dr +

∫ 6

5

1

f(r)
dr −

∫ 5

6

1

f(r)
dr

= 2

∫ 4

3

1

f(r)
dr + 2

∫ 6

5

1

f(r)
dr.

4. Compute
∫
γ4

1
f(z)

dz.

By Cauchy theorem, we can consider that γ∗4 is the equivalent path of γ4 and

γ∗4 = γ∗1
⋃
γ∗41

⋃
γ∗42

⋃
γ∗43

⋃
γ∗44 where γ∗41 = the path on the horizontal cut from 2 to 3 on

the (+) edge of sheet-I, γ∗42 = the path on the horizontal cut from 3 to 2 on the (−) edge

of sheet-I, γ∗43 = the path on the horizontal cut from 6 to 7 on the (+) edge of sheet-I, and

γ∗44 = the path on the horizontal cut from 7 to 6 on the (−) edge of sheet-I.
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(1) z ∈ γ∗41 : Let z = r, r : 2→ 3 and dz = dr, then

√
z − 1

Math.
=
√
z − 1,

√
z − 2

√
z − 3

Math.
= −

√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
=
√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
=
√
z − 6

√
z − 7.

Thus, f(z)
Math.

= −f(z) and
∫
γ∗41

1
f(z)

dz
Math.

= −
∫ 3

2
1

f(r)
dr.

(2) z ∈ γ∗42 : Let z = r, r : 3→ 2 and dz = dr, then

√
z − 1

Math.
=
√
z − 1,

√
z − 2

√
z − 3

Math.
=
√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
=
√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
=
√
z − 6

√
z − 7.

Thus, f(z)
Math.

= f(z) and
∫
γ∗42

1
f(z)

dz
Math.

=
∫ 2

3
1

f(r)
dr.

(3) z ∈ γ∗43 : Let z = r, r : 6→ 7 and dz = dr, then

√
z − 1

Math.
=
√
z − 1,

√
z − 2

√
z − 3

Math.
=
√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
=
√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
= −

√
z − 6

√
z − 7.

Thus, f(z)
Math.

= −f(z) and
∫
γ∗43

1
f(z)

dz
Math.

= −
∫ 7

6
1

f(r)
dr.

(4) z ∈ γ∗44 : Let z = r, r : 7→ 6 and dz = dr, then

√
z − 1

Math.
=
√
z − 1,

√
z − 2

√
z − 3

Math.
=
√
z − 2

√
z − 3,

√
z − 4

√
z − 5

Math.
=
√
z − 4

√
z − 5,

√
z − 6

√
z − 7

Math.
=
√
z − 6

√
z − 7.
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Thus, f(z)
Math.

= f(z) and
∫
γ∗44

1
f(z)

dz
Math.

=
∫ 6

7
1

f(r)
dr.

Therefore, by (1), (2), (3), and (4),

∫
γ4

1

f(z)
dz =

∫
γ∗4

1

f(z)
dz

=

∫
γ∗1

⋃
γ∗41

⋃
γ∗42

⋃
γ∗43

⋃
γ∗44

1

f(z)
dz

Math.
= 2

∫ 4

5

1

f(r)
dr −

∫ 3

2

1

f(r)
dr +

∫ 2

3

1

f(r)
dr −

∫ 7

6

1

f(r)
dr +

∫ 6

7

1

f(r)
dr

= 2

∫ 4

5

1

f(r)
dr + 2

∫ 2

3

1

f(r)
dr + 2

∫ 6

7

1

f(r)
dr.

Example 2.7.2. Compute
∫

1
f(z)

dz over γ path where

f(z) =
√

(z +
√

3)(z − i)(z − 2i)(z − 1− (2 +
√

3)i)(z − 1− i)(z − 2− 2i).

Figure 53.The γ path of f(z)

Let z1 = −
√

3, z2 = i, z3 = 2i, z4 = 1+(2+
√

3)i, z5 = 1+ i, and z6 = 2+2i. By Cauchy theorem,

we can consider that γ∗ is the equivalent path of γ and γ∗ = γ∗1
⋃
γ∗2 where γ∗1 = the path on the

vertical line from 2i to i on the sheet-II and γ∗2 = the path on the vertical line from i to 2i on the

sheet-I.

(1) z ∈ γ∗1 : We know that f(z)|(I) = −f(z)|(II), so consider γ∗∗1 = the path on the vertical line
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from 2i to i on the sheet-I.

z ∈ γ∗∗1 : Let z = ri, r : 2→ 1 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
γ∗1

1
f(z)

dz = −
∫
γ∗∗1

1
f(z)

dz
Math.

=
∫ 1

2
i

f(ri)
dr.

(2) z ∈ γ∗2 : Let z = ri, r : 1→ 2 and dz = idr, then

√
z − z1

√
z − z2

Math.
=
√
z − z1

√
z − z2,

√
z − z3

√
z − z4

Math.
=
√
z − z3

√
z − z4,

√
z − z5

√
z − z6

Math.
= −

√
z − z5

√
z − z6.

Thus, f(z)
Math.

= −f(z) and
∫
γ∗2

1
f(z)

dz
Math.

= −
∫ 2

1
i

f(ri)
dr.

Therefore, by (1) and (2),

∫
γ

1

f(z)
dz =

∫
γ∗

1

f(z)
dz

=

∫
γ∗1

⋃
γ∗2

1

f(z)
dz

Math.
=

∫ 1

2

i

f(ri)
dr −

∫ 2

1

i

f(ri)
dr

= 2

∫ 1

2

i

f(ri)
dr.
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3 Elliptic Functions

We discuss the Weierstrassian elliptic functions in section 3.1, the theta functions in section 3.2,

and the Jacobian elliptic functions in section 3.3 according to [4]. Now introduce some definitions

and properties of elliptic functions.

Let ω1, ω2 be any two numbers (real or complex) and ω2

ω1
/∈ R. A function f(z) is called a doubly-

periodic function of z, with periods 2ω1, 2ω2 if it satisfies f(z + 2ω1) = f(z), f(z + 2ω2) = f(z),

for all values of z for which f(z) exists.

A doubly-periodic function f(z;ω1, ω2) is called an elliptic function if it is analytic (except at

poles), and has no singularities other than poles in the finite part of the plane. Let z0 + 2(m −

1)ω1 + 2(n− 1)ω2, z0 + 2(m− 1)ω1 + 2nω2, z0 + 2mω1 + 2(n− 1)ω2, and z0 + 2mω1 + 2nω2 be four

vertices for any one of the parallelograms, where z0 ∈ C, and m, n ∈ Z. If there is no point ω inside

or on the boundary of these parallelograms (the vertices expected) such that f(z + ω) = f(z) for

all values of z, and none of the poles of f are on the sides of the parallelograms for proper choice

of z0, then such parallelograms are called the cells.

Simple properties of elliptic functions

(I) The number of poles of an elliptic function in any cell is finite.

(II) The number of zeros of an elliptic function in any cell is finite.

(III) The sum of the residues of an elliptic function, f(z), at its poles in any cell is zero.

(IV) Liouville’s theorem: An elliptic function, f(z), with no poles in a cell is merely a constant.

3.1 The Weierstrassian elliptic functions

Define the Weierstrassian elliptic function ℘(z) by the equation

℘(z) =
1

z2
+
∑
m,n

′{ 1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2
} (3.1)
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where
∑ ′ denotes that the term for which m = n = 0 has to be omitted from the summation and

ω1, ω2 satisfy the condition that ω2

ω1
/∈ R.

For brevity, we write Ωm,n in place of 2mω1 + 2nω2, so that (3.1) becomes

℘(z) =
1

z2
+
∑
m,n

′{ 1

(z − Ωm,n)2
− 1

Ω2
m,n

}. (3.2)

Properties of ℘(z)

(I) ℘(z) is an even function of z.

(II) ℘
′
(z) is an odd function of z and it is an elliptic function.

(III) ℘(z) satisfies the nonlinear differential equation

(℘
′
(z))2 = 4℘3(z)− g2℘(z)− g3, (3.3)

where g2 and g3 (called the invariants) are given by the equations

g2 = 60
∑
m,n

′Ω−4
m,n, g3 = 140

∑
m,n

′Ω−6
m,n.

(IV) The integral representation of ℘(z) is derived from (3.3),

z =

∫ ∞
℘(z)

1√
4t3 − g2t− g3

dt. (3.4)

3.2 The theta functions

Let τ be a (constant) complex number with Im(τ) > 0; and write q = eπiτ , so that |q| < 1.

Define the theta function ϑ(z, q) by the series

ϑ(z, q) =
∞∑

n=−∞

(−1)nqn
2

e2niz, (3.5)

qua function of the variable z.

It is evident that

ϑ(z, q) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2nz, (3.6)
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and that

ϑ(z + π, q) = ϑ(z, q); (3.7)

further

ϑ(z + πτ, q) =
∞∑

n=−∞

(−1)nqn
2

e2ni(z+πτ)

=
∞∑

n=−∞

(−1)nqn
2

q2ne2niz

= −q−1e−2iz

∞∑
n=−∞

(−1)n+1q(n+1)2e2(n+1)iz

= −q−1e−2izϑ(z, q). (3.8)

In consequence of (3.7) and (3.8), ϑ(z, q) is called a quasi doubly-periodic function of z, 1 and

−q−1e−2iz are called the multipliers or periodicity factors associated with the periods π and πτ

respectively. Moreover, it is obvious that if z0 be any zero of ϑ(z, q), then z0 +mπ + nπτ is also a

zero of ϑ(z, q), for all m, n ∈ Z.

Definition 3.2.1. Write ϑ4(z, q) in place of ϑ(z, q), define

ϑ1(z, q) = −ieiz+
1
4
πiτϑ4(z +

1

2
πτ, q), (3.9)

ϑ2(z, q) = ϑ1(z +
1

2
π, q), (3.10)

ϑ3(z, q) = ϑ4(z +
1

2
π, q). (3.11)

From Definition 3.2.1, we can derive

ϑ1(z, q) = 2
∞∑
n=0

(−1)nq(n+ 1
2

)2 sin(2n+ 1)z,

ϑ2(z, q) = 2
∞∑
n=0

q(n+ 1
2

)2 cos(2n+ 1)z,

ϑ3(z, q) = 1 + 2
∞∑
n=1

qn
2

cos 2nz,

ϑ4(z, q) = 1 + 2
∞∑
n=1

(−1)nqn
2

cos 2nz.
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It is obvious that ϑ1(z, q) is an odd function of z and that the other Theta-functions are even

functions of z. For brevity, let ϑj(z, q) = ϑj(z) for j = 1, 2, 3, 4 when the parameter q is not

specified. When it is desired to exhibit the dependence of a Theta-function on the parameter τ , it

will be written ϑj(z|τ) for j = 1, 2, 3, 4. Also ϑj(0) = ϑj and ϑj
′(0) = ϑj

′ for j = 1, 2, 3, 4.

The four Theta-functions are related in

ϑ1(z) = −ϑ2(z +
1

2
π) = −iMϑ3(z +

1

2
π +

1

2
πτ) = −iMϑ4(z +

1

2
πτ),

ϑ2(z) = Mϑ3(z +
1

2
πτ) = Mϑ4(z +

1

2
π +

1

2
πτ) = ϑ1(z +

1

2
π),

ϑ3(z) = ϑ4(z +
1

2
π) = Mϑ1(z +

1

2
π +

1

2
πτ) = Mϑ2(z +

1

2
πτ),

ϑ4(z) = −iMϑ1(z +
1

2
πτ) = iMϑ2(z +

1

2
π +

1

2
πτ) = ϑ3(z +

1

2
π),

(3.12)

where M = q
1
4 eiz.

We can obtain the multipliers of the Theta-functions associated with the periods π and πτ

easily by the scheme

ϑ1(z) ϑ2(z) ϑ3(z) ϑ4(z)

π -1 -1 1 1

πτ -N N N -N

Table 3.1

where N = q−1e−2iz.

Since one zero of ϑ1(z) is obviously z = 0, it follows that the zeros of ϑ1(z), ϑ2(z), ϑ3(z), ϑ4(z),

are the points congruent respectively to 0, 1
2
π, 1

2
π+ 1

2
πτ , 1

2
πτ . The squares of the Theta-functions
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are related in

ϑ2
2(z)ϑ2

4 = ϑ2
4(z)ϑ2

2 − ϑ2
1(z)ϑ2

3,

ϑ2
3(z)ϑ2

4 = ϑ2
4(z)ϑ2

3 − ϑ2
1(z)ϑ2

2,

ϑ2
1(z)ϑ2

4 = ϑ2
3(z)ϑ2

2 − ϑ2
2(z)ϑ2

3,

ϑ2
4(z)ϑ2

4 = ϑ2
3(z)ϑ2

3 − ϑ2
2(z)ϑ2

2,

(3.13)

and the detailed proof can be found in [4].

The four Theta-functions can be expressed as infinite products

ϑ4(z) = G
∞∏
n=1

(1− 2q2n−1 cos 2z + q4n−2),

ϑ3(z) = G
∞∏
n=1

(1 + 2q2n−1 cos 2z + q4n−2),

ϑ2(z) = 2Gq
1
4 cos z

∞∏
n=1

(1 + 2q2n cos 2z + q4n),

ϑ1(z) = 2Gq
1
4 sin z

∞∏
n=1

(1− 2q2n cos 2z + q4n),

(3.14)

where G =
∞∏
n=1

(1−q2n). It is straightforward that ϑj(z|τ) satisfies the ordinary differential equation

∂2ϑj(z|τ)

∂z2
= − 4

πi

∂ϑj(z|τ)

∂τ
(3.15)

for j = 1, 2, 3, 4. By (3.14) and (3.15), we can obtain a relation between Theta-functions of zero

argument

ϑ1
′(0) = ϑ2(0)ϑ3(0)ϑ4(0). (3.16)

Remark 3.2.2. The differential equations satisfied by quotients of Theta- functions.

From Table 3.1, we know that the function

ϑ1(z)

ϑ4(z)
and

ϑ2(z)ϑ3(z)

ϑ2
4(z)

have periodicity factors −1 and 1 associated with periods π and πτ respectively; and consequently

d

dz
{ϑ1(z)

ϑ4(z)
} =

ϑ1
′(z)ϑ4(z)− ϑ4

′(z)ϑ1(z)

ϑ2
4(z)
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has the same periodicity factors.

If φ(z) be defined as the quotient

d

dz
{ϑ1(z)

ϑ4(z)
} ÷ ϑ2(z)ϑ3(z)

ϑ2
4(z)

,

that is,

φ(z) =
ϑ1
′(z)ϑ4(z)− ϑ4

′(z)ϑ1(z)

ϑ2
4(z)

÷ ϑ2(z)ϑ3(z)

ϑ2
4(z)

=
ϑ1
′(z)ϑ4(z)− ϑ4

′(z)ϑ1(z)

ϑ2(z)ϑ3(z)
,

then φ(z) is doubly-periodic with periods π and πτ ; and the only possible poles of φ(z) are simple

poles at points congruent to 1
2
π and 1

2
π + 1

2
πτ .

Now consider φ(z + 1
2
πτ); from Definition 3.2.1, we have

ϑ1(z +
1

2
πτ) = iq−

1
4 e−izϑ4(z), ϑ4(z +

1

2
πτ) = iq−

1
4 e−izϑ1(z),

ϑ2(z +
1

2
πτ) = q−

1
4 e−izϑ3(z), ϑ3(z +

1

2
πτ) = q−

1
4 e−izϑ2(z),

then

φ(z +
1

2
πτ) =

−ϑ4
′(z)ϑ1(z) + ϑ1

′(z)ϑ4(z)

ϑ2(z)ϑ3(z)
= φ(z).

Hence φ(z) is doubly-periodic with periods π and 1
2
πτ ; and relative to these periods, the only

possible poles of φ(z) are simple poles at points congruent to 1
2
π. By Liouville’s theorem, φ(z) is

a constant; and making z → 0, the value of this constant is {ϑ1
′ϑ4} ÷ {ϑ2ϑ3} = ϑ2

4 by (3.16).

Therefore, we have

d

dz
{ϑ1(z)

ϑ4(z)
} = ϑ2

4

ϑ2(z)

ϑ4(z)
· ϑ3(z)

ϑ4(z)
. (3.17)

Let ξ = ϑ1(z)
ϑ4(z)

and use (3.13), then we get

(
dξ

dz
)2 = (ϑ2

2 − ξ2ϑ2
3)(ϑ2

3 − ξ2ϑ2
2) (3.18)
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from (3.17) and this differential equation has the solution ϑ1(z)
ϑ4(z)

.

Using the similar argument, we can get

d

dz
{ϑ2(z)

ϑ4(z)
} = −ϑ2

3

ϑ1(z)

ϑ4(z)

ϑ3(z)

ϑ4(z)
, (3.19)

d

dz
{ϑ3(z)

ϑ4(z)
} = −ϑ2

2

ϑ1(z)

ϑ4(z)

ϑ2(z)

ϑ4(z)
. (3.20)

3.3 The Jacobian elliptic functions

Let ξϑ3
ϑ2

= y, zϑ2
3 = u; then, if κ

1
2 = ϑ2

ϑ3
, the equation (3.18) becomes

(
dy

du
)2 = (1− y2)(1− κ2y2) (3.21)

by a slight change of variable. This differential equation (3.21) determines y in terms of u and has

the particular solution

y =
ξϑ3

ϑ2

=
ϑ3

ϑ2

ϑ1(z)

ϑ4(z)
=
ϑ3

ϑ2

ϑ1(uϑ−2
3 )

ϑ4(uϑ−2
3 )

. (3.22)

The differential equation (3.21) may be written as

u =

∫ y

0

(1− t2)−
1
2 (1− κ2t2)−

1
2dt, (3.23)

and y can be expressed in terms of u as the quotient of two Theta-functions in the form (3.22).

Thus, if

u =

∫ y

0

(1− t2)−
1
2 (1− κ2t2)−

1
2dt,

we write

y = sn(u, κ)

when exhibit y as a function of u and κ or simply

y = snu
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when it is unnecessary to emphasize κ.

The constant κ is called the modulus; if κ′
1
2 = ϑ4

ϑ3
, so that κ2 + κ′2 = 1, κ′ is called the

complementary modulus. The quasi-periods πϑ2
3, πτϑ

2
3 are usually written 2K, 2iK ′, so that

sn(u, κ) has periods 4K, 2iK ′. The function snu is known as a Jacobian elliptic function of u, and

snu =
ϑ3

ϑ2

ϑ1(uϑ−2
3 )

ϑ4(uϑ−2
3 )

.

Now write

cnu =
ϑ4

ϑ2

ϑ2(uϑ−2
3 )

ϑ4(uϑ−2
3 )

, (3.24)

dnu =
ϑ4

ϑ3

ϑ3(uϑ−2
3 )

ϑ4(uϑ−2
3 )

. (3.25)

Then, from (3.17), we have

d

du
snu = cnu dnu, (3.26)

and from (3.13), we have

sn2 u+ cn2 u = 1, (3.27)

κ2sn2 u+ dn2 u = 1, (3.28)

cn 0 = dn 0 = 1. (3.29)

Next, let us differentiate the equation (3.27); on using equation (3.26), we get

d

du
cnu = −snu dnu;

in like manner, from equations (3.28) and (3.26) we have

d

du
dnu = −κ2snu cnu.

Remark 3.3.1. If

u =

∫ 1

y

(1− t2)−
1
2 (κ′2 + κ2t2)−

1
2dt,
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then y = cn(u, κ) or simply y = cnu.

If

u =

∫ 1

y

(1− t2)−
1
2 (t2 − κ′2)−

1
2dt,

then y = dn(u, κ) or simply y = dnu.

Glaisher has invented a short and convenience notation to express reciprocals and quotients of

the Jacobian elliptic functions :

nsu = 1/snu, ncu = 1/cnu, ndu = 1/dnu,

scu = snu/cnu, sdu = snu/dnu, cdu = cnu/dnu,

csu = cnu/snu, dsu = dnu/snu, dcu = dnu/cnu.

Define

K =

∫ 1

0

(1− t2)−
1
2 (1− κ2t2)−

1
2dt =

∫ 1
2
π

0

(1− κ2 sin2 φ)−
1
2dφ, (3.30)

K ′ =

∫ 1

0

(1− t2)−
1
2 (1− κ′2t2)−

1
2dt =

∫ 1
2
π

0

(1− κ′2 sin2 φ)−
1
2dφ. (3.31)

In (3.31), make the substitution

s = (1− κ′2t2)−
1
2 ,

which gives

K ′ =

∫ 1
κ

1

(s2 − 1)−
1
2 (1− κ2s2)−

1
2ds. (3.32)

Besides, we have some relations

K + iK ′ =

∫ 1
κ

0

(1− t2)−
1
2 (1− κ2t2)−

1
2dt, (3.33)

snK = 1, cnK = 0, dnK = κ′,

sn (K + iK ′) =
1

κ
, cn (K + iK ′) = −iκ

′

κ
, dn (K + iK ′) = 0.
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An integral of the form
∫
R(ω, x)dx, where R denotes a rational function of ω and x, and ω2

is a quartic or cubic function of x (without repeated factors), is called an elliptic integral.

The following three intgrals were called by Legendre elliptic integrals of the first, second and

third kinds, respectively.

(i)

∫
{(A1t

2 +B1)(A2t
2 +B2)}−

1
2dt, (3.34)

(ii)

∫
t2{(A1t

2 +B1)(A2t
2 +B2)}−

1
2dt, (3.35)

(iii)

∫
(1 +Nt2)−1{(A1t

2 +B1)(A2t
2 +B2)}−

1
2dt. (3.36)

The elliptic integral of the first kind presents no difficulty, as it can be integrated at once by a

substitution based on the integral formulae of the complementary modulus and Glaisher’s notation

for quotiens; thus, if A1, B1, A2, B2 are all positive and A2B1 > A1B2, we write

A
1
2
1 t = B

1
2
1 cs (u, κ) [κ′2 =

A1B2

A2B1

.]

Remark 3.3.2. The degenerates of dnu

By the integral representation of snu,

u =

∫ snu

0

dt√
(1− t2)(1− κ2t2)

and κ2sn2 u+ dn2 u = 1, we get

dnu degenerates to sechu as κ→ 1,

dnu degenerates to 1 as κ→ 0.
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4 The nonlinear Schrodinger equation

Recall from (1.1), the nonlinear Schrodinger equation is

iqt + qxx + 2|q|2q = 0. (4.1)

In this paper, we study the special case N=2. Then the NLS solution q(x, t) now resides on the

Riemann surface of the elliptic curve

R(E) =

√√√√ 4∏
k=1

(E − Ek) (4.2)

from (1.2) as illustrated in Figure 54, where Ek ∈ C \ R, 1 ≤ k ≤ 4; E2 = E∗1 and E4 = E∗3 .

Figure 54.The Riemann surface of R(E) =

√
4∏

k=1

(E − Ek)

4.1 The NLS solution q(x, t)

Let the constants B and C be defined on this Riemann surface as

C = (

∫
a−cycle

dE

R(E)
)−1, B = (

∫
b−cycle

dE

R(E)
)(

∫
a−cycle

dE

R(E)
)−1, (4.3)
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then according to [2][3], q(x, t) may be derived from the following equations,

qx
q

= i(2µ−
4∑

k=1

Ek), (4.4)

qt
q

= i[2µ
4∑

k=1

Ek + 2
4∑
j>k

EjEk −
3

2
(

4∑
k=1

Ek)
2]; (4.5)

µx = −2iR(µ), (4.6)

µt = µx

4∑
k=1

Ek = −2iR(µ)
4∑

k=1

Ek; (4.7)

∫ µ(x,t)

µ0

dE

R(E)
=

∫ µ(x,t)

µ0

dE√
4∏

k=1

(E − Ek)

= −2i(x+
4∑

k=1

Ekt) + α0. (4.8)

(4.8) shows that µ(x, t) is the inverse of a Abel integral with the integration constant α0 determined

by the initial condition µ0.

Rewrite R(E) as

R2(E) =
4∏

k=1

(E − Ek) = (E2 − 2b1E + c1)(E2 − 2b2E + c2) = S1(E)S2(E),

where b1 = Re(E1), b2 = Re(E3), c1 = |E1|2, and c2 = |E3|2. It is clear that b1, b2, c1, and c2 ∈ R.

Since S1(E)− λS2(E) = (1− λ)E2 − 2(b1 − λb2)E + (c1 − λc2), then S1(E)− λS2(E) is a perfect

square if λ is such that

(1− λ)(c1 − λc2)− (b1 − λb2)2 = 0. (4.9)

Let λ1 > λ2 be the two roots of (4.9), and α1, α2 be the two roots of S1(E) − λjS2(E), then for

each λj,

S1(E)− λjS2(E) = (1− λj)(E − αj)2, j = 1, 2.

Therefore,

Sj(E) = Aj(E − α1)2 +Bj(E − α2)2, j = 1, 2,
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where A1 = λ2(1−λ1)
λ2−λ1 , B1 = λ1(λ2−1)

λ2−λ1 , A2 = 1−λ1
λ2−λ1 , and B2 = λ2−1

λ2−λ1 . Note that λ1, λ2 > 0, and

A2B1 > A1B2 since

λ1 + λ2 =
c1 + c2 − 2b1b2

c2 − b2
2

> 0

and

λ1λ2 =
c1 − b2

1

c2 − b2
2

> 0.

Now let

t =
E − α1

E − α2

, that is, E =
α1 − tα2

1− t
,

then

dE =
α1 − α2

(1− t)2
dt.

Thus, (4.8) can be written as

∫
dE

R(E)
=

∫
dE√

S1(E)S2(E)
=

∫
dE√

2∏
j=1

[Aj(E − α1)2 +Bj(E − α2)2]

=
1

α1 − α2

∫
dt√

(A1t2 +B1)(A2t2 +B2)
, (4.10)

which is the Legendre integral of the first kind since αj, Aj, Bj j = 1, 2, are all real. We see that

the Abel integral (4.8) is exactly a Legendre integral of the first kind.

Following (4.4) and (4.5), q(x, t) is found in terms of the Jacobian elleptic function dn(u, κ),

q(x, t) = q0 · dn(π · ϑ2
3(0;B) · (α(x, t) + I0)) · ei(Kx−Wt) (4.11)

where

α(x, t) = −2iC · (x+
4∑

k=1

Ek · t), q0 = ±2iπC · ϑ2
3(0;B), I0 ∈ R, K = −1

2

4∑
k=1

Ek, and

W =
1

4
(

4∑
k=1

Ek)
2 − 4π2C2 · (eiπB · ϑ4

3(
B

2
;B)− 2ϑ4

3(0;B)).

(4.12)
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As shown in [2][3], B, C∈ iR, therefore, according to Definition 3.2.1 and (3.12), ϑj(0;B), ϑ3(1
2
;B),

ϑ3(B
2

;B) ∈ R, j = 1, 2, 3, 4, which implies that q0, α(x, t), K, W∈ R. It is easy to verify that

q(x, t) in (4.11) is an exact NLS two-(real)phase, quasi-periodic solution.

4.2 The degenerates of q(x, t)

In this section, we introduce two ways to find the degenerates of q(x, t) in (4.11) when {Ek, 1 ≤

k ≤ 4} collapse. There are several ways for {Ek, 1 ≤ k ≤ 4} to collapse.

Case 1.

E1 = rei(ε+
π
2

) = ireiε, E3 = rei(−ε+
π
2

) = ire−iε, ε� 1, E2 = E∗1 , E4 = E∗3 , and

µ(x, t) = µ(0)(x, t) + ε · µ(1)(x, t) +O(ε2). (4.13)

Figure 55.The Case 1

Use Taylor’s formula, E1 and E3 can be written as

E1 = ir − εr +O(ε2), E3 = ir + εr +O(ε2),
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then Re(E1) = −εr +O(ε2) and Re(E3) = εr +O(ε2). Therefore,

R2(µ) =
4∏

k=1

(µ− Ek)

= [(µ− E1)(µ− E2)][(µ− E3)(µ− E4)]

= [(µ(0)2 + r2) + ε(2µ(0)µ(1) + 2rµ(0)) +O(ε2)][(µ(0)2 + r2) + ε(2µ(0)µ(1) − 2rµ(0)) +O(ε2)].

Take R(µ) = −(µ(0)2 + r2)− ε · 2µ(0)µ(1) +O(ε2), then according to (4.6), we have

µ(0)
x = 2i(µ(0)2 + r2), µ(1)

x = 4iµ(0)µ(1); (4.14)

and according to (4.7) with

4∑
k=1

Ek = 2Re(E1) + 2Re(E3) = O(ε2),

we have

µ
(0)
t = 0, µ

(1)
t = 0. (4.15)

Integrate (4.14) and (4.15) for µ(0), we get

µ(0)(x, t) = r · tan(2irx+ rA) = r · tan(i2r(x+ a)) = ir · tanh(2r(x+ a)) (4.16)

where A and a are constants. According to (4.4), we have

q
(0)
x

q(0)
= 2iµ(0) = −2r · tanh(2r(x+ a)), (4.17)

and therefore

q(0) = sech(2r(x+ a)) · eB(t). (4.18)

According to (4.5), we get

q
(0)
t

q(0)
= 4ir2. (4.19)

Inserting (4.18) into (4.19) yields

B(t) = 4ir2t+ c0 (4.20)
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where c0 is a integration constant, and is to be determined by that (4.18) satisfies NLS (4.1).

Finally, we obtain

q(0)(x, t) = 2r · sech(2rx+ 2ra) · e4ir2t. (4.21)

q(0)(x, t) in (4.21) is called a NLS modulated oscillation and such a solution is localized in x,

periodic in t.

Case 2.

E1 = rei(π−ε) = −re−iε, E3 = reiε, ε� 1, E2 = E∗1 , E4 = E∗3 , and

µ(x, t) = µ(0)(x, t) + ε · µ(1)(x, t) +O(ε2). (4.22)

Figure 56.The Case 2

Use the similar way, we can obtain

q(0)(x, t) = A · sec(2rx+B) · e−4ir2t (4.23)

which is not a NLS solution.

Case 3.

E1 = ir, E3 = s+ iε, ε� 1, E2 = E∗1 , E4 = E∗3 , and

µ(x, t) = µ(0)(x, t) + ε · µ(1)(x, t) +O(ε2), µ(0) ≡ s. (4.24)
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Figure 57.The Case 3

Then

q
(0)
x

q(0)
= 0, (4.25)

q
(0)
t

q(0)
= 2ir. (4.26)

Integrating (4.25) and (4.26) yield

q(0) = rei2r
2t (4.27)

which is a NLS plane-wave solution and is x-independent.

Case 4.

Same as Case 1 except µ(0) ≡ ±ir.

In this case, we get

q(0) = A · e−2rxei4r
2t (4.28)

which is not a NLS solution.

Case 5.

Same as Case 2 except µ(0) ≡ −r.

In this case, we obtain

q(0) = A · e−2ir(x+2rt) (4.29)
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which is not a NLS solution.

Next, we derive the degenerates of q(x, t) in (4.11) by considering the degenerates of dn(u;κ),

where κ→ 0 or κ→ 1. By (3.25), we can find that one period 2K of dn(u;κ),

2K → π as κ→ 0, and (4.30)

2K →∞ as κ→ 1. (4.31)

Therefore, we expect that the degenerates of q(x, t) for κ→ 0 will be NLS periodic solution and will

be similar to the plane-waves in Case 3, and those for κ→ 1 will be NLS localized solution (that

is, the periods approach to infinitely long) and will be similar to the NLS modulated oscillations

in Case 1.

Let {Ek, 1 ≤ k ≤ 4} be denoted as {E(ε)
k , 1 ≤ k ≤ 4}, q(x, t) in (4.11) be denoted as q(ε),

and {B, C, κ, ϑ3(0;B), K, W} be denoted as {B(ε), C(ε), κ(ε), ϑ
(ε)
3 , K(ε), W (ε)}. For the case

κ(ε) → 1, {E(ε)
k , 1 ≤ k ≤ 4} are same as (4.13). Let

g(ε) = C(ε) · ϑ(ε)2
3 , and r(ε) = −iπ · g(ε). (4.32)

Let

g(ε) → g(0) as ε→ 0 (that is, κ(ε) → 1),

r(ε) → r(0) = −iπ · g(0) as ε→ 0. (4.33)

According to (4.12) with the fact that

4∑
k=1

E
(ε)
k → 0 as ε→ 0, and B(ε) → 0 as ε→ 0,

we have

K(ε) → 0 as ε→ 0, and

W (ε) → −4π2C(0)2[ϑ
(0)4
3 − 2ϑ

(0)4
3 ] = 4π2C(0)2ϑ

(0)4
3 = 4π2g(0)2 = −4r2 as ε→ 0.
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Therefore,

q(ε)(x, t)→ q(0)(x, t) = 2r · sech(2rx+ 2ra) · e4ir2t as κ(ε) → 1 (4.34)

and q(0)(x, t) is the NLS modulated oscillation which has been obtained in Case 1.

Next, for the case κ(ε) → 0, {E(ε)
k , 1 ≤ k ≤ 4} are same as (4.24). Now we have

4∑
k=1

E
(ε)
k → 2s as ε→ 0, and eiπB

(ε) → 0 as ε→ 0,

which implies that

K(ε) → −s as ε→ 0, and

W (ε) → 1

4
(2s)2 − 4π2C(0)2[−2ϑ

(0)4
3 ] = s2 + 8π2C(0)2ϑ

(0)4
3 = s2 + 8π2g(0)2 = s2 − 8r2 as ε→ 0.

Therefore,

q(ε)(x, t)→ q(0)(x, t) = g · ei2g2t · e−i(sx+s2t) as κ(ε) → 0 (4.35)

where g = 2r. The degenerates (4.35) satisfy NLS, and are periodic in x for fixed t, and are

periodic in t for fixed x. In particular, these degenerates are the NLS plane-wave solutions when

s = 0, that is, E
(ε)
k ∈ iR for all k.

Figure 58.The specified Case 3
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5 Conclusion

We know the nonlinear Schrodinger equation iqt + qxx + 2|q|2q = 0 (NLS) has solutions q(x, t)

reside on the curve

R(E) =

√√√√ 2N∏
k=1

(E − Ek) (5.1)

where N ∈ N, Ek ∈ C \ R and E∗2k−1 = E2k. But R(E) =

√
2N∏
k=1

(E − Ek) is a two-valued function

on complex plane C for the same z, so we need to modify its domain on a new surface such that

it becomes a single-valued and analytic function, and we call this domain Riemann surface.

We first study the theory of Riemann surface. Next, we introduce the a, b cycles since all the

simple closed curve on the Riemann surface can be written as the linear combination of them, study

finding the simplest equivalent paths of a, b cycles, and then evaluate the integrals over a, b cycles

or other pathes with horizontal, vertical, and slant cut structure. In addition, we use Mathematica

to help us evaluate the integrals and discuss the differences between theory and Mathematica with

different cut structures.

Then we study the classical elliptic functions. To begin with, we introduce some definitions

and properties of Weierstrassian elliptic functions. Next, we study the four Theta-functions and

some relations between them. Furthermore, we study the Jacobian elliptic functions snu, cnu, and

dnu.

Finally, we use the theories of Riemann surfaces and classical elliptic functions to solve some

special solutions of NLS and analyze the degenerates of the NLS solutions q(x, t). There are two

degenerates of q(x, t). One is the NLS modulated oscillation q0(x, t) = 2r · sech(2rx+ 2ra) · e4ir2t

which is localized in x, and periodic in t. The other is the NLS plane-wave solution q0(x, t) = rei2r
2t

which is x-independent, and periodic in t. Moreover, the degenerates of q(x, t) for κ→ 0 is similar

to the plane-wave solution, and those for κ→ 1 is similar to the NLS modulated oscillations.
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A The integrals over a, b cycles

We place Mathematica codes of previous examples here.

Example 2.4.4. f [X ] = (x+ 1)
1
2 x(x− 1)

1
2 (x− 2)

1
2 (x− 3)

1
2 (x− 4)

1
2

1.
∫
a1

1
f(z)

dz
Math.

= N[2
∫ 3

4
1
f [r]
dr] = 0.474399i

2.
∫
a2

1
f(z)

dz
Math.

= N[2
∫ 1

2
1
f [r]
dr] = −3.3715i

3.
∫
b2

1
f(z)

dz
Math.

= N[2
∫ 1

0
1
f [r]
dr] = 1.29234

4.
∫
b1

1
f(z)

dz
Math.

= N[2
∫ 1

0
1
f [r]
dr + 2

∫ 3

2
1
f [r]
dr] = −3.02069

Example 2.5.3. f [X ] = (x+1−2I)
1
2 (x+1+2I)

1
2 (x−1−3I)

1
2 (x−1+3I)

1
2 (x−2− I)

1
2 (x−2+I)

1
2

1.
∫
a1

1
f(z)

dz
Math.

= N[2
∫ 1

−1
I

f [2+r I]
dr] = 0.54204i

2.
∫
a2

1
f(z)

dz
Math.

= N[2
∫ 3

1
I

f [1+r I]
dr + 2

∫ −1

1
I

f [1+r I]
dr + 2

∫ −1

−3
I

f [1+r I]
dr] = −0.964009i

3.
∫
b2

1
f(z)

dz
Math.

= N[2
∫ 1

−1
I

f [−1+r I]
dr + 2

∫ −2

−1
I

f [−1+r I]
dr + 2

∫ −1

1
1

f [r+I]
dr + 2

∫ 1

3
I

f [1+r I]
dr]

= 0.226455 + 0.692989i

4.
∫
b1

1
f(z)

dz
Math.

= N[2
∫ 1

−1
I

f [−1+r I]
dr + 2

∫ −2

−1
I

f [−1+r I]
dr + 2

∫ −1

1
1

f [r+I]
dr + 2

∫ 1

3
I

f [1+r I]
dr

+2
∫ −1

1
I

f [1+r I]
dr + 2

∫ −1

−3
I

f [1+r I]
dr + 2

∫ 2

1
1

f [r+I]
dr] = −0.175558− 0.060036i

Example 2.6.4. f [X ] = (x+
√

3)
1
2 (x− I)

1
2 (x− 2I)

1
2 (x− 1− 2I−

√
3I)

1
2 (x− 1− I)

1
2 (x− 2− 2I)

1
2

1.
∫
a1

1
f(z)

dz
Math.

= N[2
∫ 0

1
−1−I

f [2+2I+r(−1−I)]
dr] = −0.717556 + 1.13471i

2.
∫
a2

1
f(z)

dz
Math.

= N[2
∫ 0

1
−1−

√
3I

f [1+(2+
√

3)I+r(−1−
√

3I)]
dr] = −0.502113− 1.21448i

3.
∫
b2

1
f(z)

dz
Math.

= N[2
∫ 1

2
I

f [r I]
dr] = 1.13334− 1.2457i

4.
∫
b1

1
f(z)

dz
Math.

= N[2
∫ 1

2
I

f [r I]
dr + 2

∫ 2

2+
√

3
I

f [1+r I]
dr + 2

∫ 2

1
I

f [1+r I]
dr] = −0.466353− 0.103835i
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B The integrals over other paths

Example 2.7.1. f [X ] = (x− 1)
1
2 (x− 2)

1
2 (x− 3)

1
2 (x− 4)

1
2 (x− 5)

1
2 (x− 6)

1
2 (x− 7)

1
2

1.
∫
γ1

1
f(z)

dz
Math.

= N[2
∫ 4

5
1
f [r]
dr] = −0.935417i

2.
∫
γ2

1
f(z)

dz
Math.

= N[2
∫ −2

1
1
f [r]
dr] = −0.13304i

3.
∫
γ3

1
f(z)

dz
Math.

= N[2
∫ 4

3
1
f [r]
dr + 2

∫ 6

5
1
f [r]
dr] = 0.23235

4.
∫
γ4

1
f(z)

dz
Math.

= N[2
∫ 4

5
1
f [r]
dr + 2

∫ 2

3
1
f [r]
dr + 2

∫ 6

7
1
f [r]
dr] = 0.143249i

Example 2.7.2. f [X ] = (x+
√

3)
1
2 (x− I)

1
2 (x− 2I)

1
2 (x− 1− 2I−

√
3I)

1
2 (x− 1− I)

1
2 (x− 2− 2I)

1
2

∫
γ

1
f(z)

dz
Math.

= N[2
∫ 1

2
I

f [r I]
dr] = 1.13334− 1.2457i
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