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Abstract

u +sinu =0

is a second order differential equation, which is a pendulum motion.

In the process of solving the O.D.E., we have the integral form

/mdu:/dt

where E is the integration constant (a parameter), and u is a function of time t.

The integration is noway to solve due to that \/m is not a single-
valued function. So we study the space where the solution u(t) resides, which is a
Riemann Surface of genus N when sin u is replaced by the N-th partial sum of its
Taylor series (which is a polynomial). And we study the corresponding O.D.E.

under this Riemann Surface with the help of Mathematica computations.

Next, we study the classical elliptic function to solve the exact O.D.E.

v’ + sinu = 0 and analyze the associated properties.

June 2013
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Chapter 1

Introduction

In this paper, we want to study a pendulum motion. An ideal pendulum

motion is energy-conservative, and it can be shown in mathematical model as

v’ 4+ sinu = 0.

Since the ideal pendulum motion is a second order differential equation,

[1] we reduce it to a first order differential equation and try to solve it naturally.

There is

wu” +u'sinu =0,
and

1 AV

i(u ) —cosu=F
where F is the integration constant, then

d

u = d_:: = ++/2(E + cosu)

where u is a function of time ¢,

/ \/Q(Ej—cosu)du N /dt'

(1.1)



Although we together all skills of integration in calculus, we still has no
ability to deal with the equation (1.1). So we change the point to discuss where

the solution u(t) resides in short term.

Let f(z) = v/2(E + cosu). Since the f(z) is in the type of radical ex-

pression, the output of f(z) needs to be confirmed in some domain. For any
E + cosu € C, it can be shown in the polar form, E 4 cosu = z = |z]e", and,
f(2) is a two-valued function of z on complex plane C since |z|e? = |z]e?T2™
Indeed, f(z) works on Riemann Surface, [2] [3] and the computations of the in-
tegral on Riemann Surface rely on the theorems of complex analysis, mainly the

Cauchy integral formula. [4]

After studying the Riemann Surface, we use the tools of computing by

Mathematica [5] on Riemann Surface applying to the nonlinear approximation
3 5
of sinw into Py(u) = u — % + % ) + o by the Taylor expansion, sinu =
© iy ! ! ! !
( ) |x2n+1‘
— (2n+1)!

n

Since we are trapped into the equation (1.1), i.e., we are not able to inte-

grate the fraction , trying a brand-new theory is the idea to know
2(E + cosu)

the exact theorem of the pendulum motion.

By the equation (1.1), we transferred the nonlinear O.D.E. problem into
the so-called inverse problem (in an integral form), and it can be replaced by

elliptic functions. [6] Furthermore, solve and express the solutions u(t) in terms



of classical elliptic functions. [7]

To construct the theorem enough to solve the original question, the pen-
dulum motion, we will introduce several cases of elliptic functions, including the

definitions, properties, and relations among each other.

Consider the condition in ideal environment, the pendulum motion works
without friction, we can derive the mathematical model of the simple pendulum

motion.

In addition, discuss the reasonable E as the total energy in the sense of
physics and take the place of equation (1.1) by Jacobian elliptic functions so that

it yields the exact solutions and the periods case by case.



Chapter 2

Riemann Surface

2.1 Introduction

u” + Py(u) = 0 is also a second order different equation where the degree

of polynomial Py(u) is N.

By the derivation, we have

/ V2(E —1PN+1(U))du N / &

where F is the integration constant.

According to the fundamental theorem of Algebra, there is

hence we must investigate the space where u resides.



n
Actually, f(z) = H(z — z) is a two-valued function of z on complex
k=1
plane C. We use algebra and analysis to develop a new surface such that f be-

comes a single-valued and analytic function on this surface, namely, a Riemann

Surface. [2]

2.1.1 Construct the corresponding Riemann Surface

First, take f(z) = /2 for example, f : C — C. Using polar form, let

z = |z|e? = |z]e!®+™ n € Z, then

0+2nw

F(z) =z = |2|7e 2
|z|%egi if n is even
—|z|%e%i if n is odd

is a two-valued function. Now we want to let f(z) becomes a single-valued func-
tion, so we modify its domain C to develop the corresponding Riemann Surface

such that f becomes a single-valued and analytic function on this surface.

Starting at z = re’, we have f(2) = z = \/Fegi,r # 0. Fixing r and
continuing along a closed path once around the origin so that 6 increase by
27, f(2) comes to the value \/Feﬂ%i = —\/Fegi which is just the negative of its
original value. Continuing above way then 6 increase by 27 and f(z) comes to
original value. First, image two sheets lying over the complex plane and cut the

plane along negative real axis (i.e. from zero to infinite) and restrict ourselves so

as never to continue f(z) over this cuts, we get single-valued branches of f(z).



Define that

called sheet-I and sheet-II respectively. The cut in each sheet has two edges, label
the edge of starting edge with + and the edge of terminal edge with — (Show
in Figure 2.1). Moreover, we cross the cut and pass from one sheet to another.
Second we extend the plane of complex numbers with one additional point at
infinity constitute a number system known as the extended complex numbers.

Use stereographic projection, we can consider the two sheets to be a sphere.

sheet—] sheet=I sheet—11 sheet—11
F 3 F Y
7T 3w
] ; * X ; »
+ 0 + .(]
" \ K - "/

Figure 2.1: Complex plane and extended complex plane

Next, image that the spheres are made of rubber and stretch each cut into

circular holes.

Rotate the spheres until the holes face each other, and paste two cuts to-
gether (+)edge of sheet-I1 with (—)edge of sheet-II and (—)edge of sheet-I with
(4)edge of sheet-II. We can derive a sphere. We called this sphere, Riemann
Surface of genus 0, denoted Ry. Show in Figure 2.3.



sheet-I sheet-1I

Figure 2.2: Place the cuts open

> of sheet 1

of sheet II

sphere Ro

Figure 2.3: Construct Ry

Notice that in Riemann Surface (4)edge of sheet-I is equivalent to (—)edge
of sheet-1I and (—)edge of sheet-I is equivalent to (4 )edge of sheet-II.

We could using similar way to develop the corresponding Riemann Surface

for f(z) =

In general situation, using same idea to construct Riemann Surface of f(z)
n
H(z — 2

n
) = HV(Z—Zk),Zk ER 2z > 20> ... > 2z, for
k=1 k=1

horizontal cuts. First, we cut plane starts from z; to —oo. If the curve cross even

where f(z) =

cuts, it will not change that is becomes no cut. If the curve cross odd cuts, it will



has a branch cut.

- * -+ ~+ + + —>
24 Yoo Lo 22 L4,
A .| | [ ! 1 | I
- 1 j I 1 1 1 1 ¢ JI
e e @) Gf =

Figure 2.4: n=2N —1 or 2N

Case 1: If n = 2N —1. There are cuts along (—00, zan_1], - - -, [225, 22j-1] - - -, [24, 23], [22, 21].

= 4 = \ ”

F T BESS das Loy ¥ Loj MR, Z; T

Figure 2.5: n =2N —1
Case 2: If n = 2N. There are cuts along [zon, zon—1], - - -+ [22), 22j-1], - - -, [24, 23], [22, 21]-

— &
Iyt Zoxar Zrzx--.-‘:_'_ Lo Z::., F z'.l.j—l e Ty 2 Z,

Figure 2.6: n =2N



We use same idea to construct the corresponding Riemann Surface:

Case 1: n=2N —1

LK D7, 76 D7,

Figure 2.7: Placing cuts open in both sheets

sheet-1

-

sheet-1I

Figure 2.8: Together two sheets




e T i e e
Lo Zg Ly Ly Ls Ly

Figure 2.9: N — 1 holes for n = 2N —1

It becomes Riemann Surface with N — 1 holes, that is Ry_;.

Case 2: n =2N

Figure 2.10: Placing cuts open in both sheets

10



e

sheet-1II

Figure 2.11: Together two sheets

Figure 2.12: N — 1 holes for n = 2N

It also becomes Riemann Surface with N — 1 holes, that is Ry_;.

So
CENE | S EN (S
k=1 k=1

will make N cuts and construct Riemann Surface of genus N — 1, i.e., N —1 holes

in its geometric graph.

11



2.1.2 The curve in algebraic and geometric structure

For convenience, we use algebraic to discuss and compute the integrals

later. We already know the relation of algebraic and geometric structure with

H (z — 2z;) and how to create the Riemann Surface.
k=1
We defined something as follow:
1. The curve in sheet-I is solid line and the curve in sheet-II is dash line in
algebraic structure.
2. The curve in overhead Riemann Surface is solid line and the curve in ventral

Riemann Surface is dash line in geometric structure.

2.1.3 The a,b-cycles and its equivalent paths

We know every closed curve on Riemann Surface Ry can be deformed into
an integral combination of the loop-cut a; and b;, ¢« = 1,2,...,N. So in this
paper, we will consider the integrals of f(z) over a, b-cycles help us to obtain the

integrals easier.

If f(z) has 2N —1 or 2N roots, there are loop-cuts a;, b;, i = 1,2,..., N—1.

12



Figure 2.14: a, b-cycles on Riemann Surface

Each a-cycles are non-overlapping and each b-cycles are non-overlapping.

Also a, b-cycles have the same number.

Sometimes the curves are difficult to write out their parameters, but always
easy to straight lines. It could help us quicker and easier to obtain the integrals
over the curves. So now using homotopic of curves to find the equivalent paths

of curves. Take an example to explain.

From C'is homotopic to C, denotes C' =~ C;. We have

1 1
/cf(Z)dZ = o, 7™

in Figure 2.15, C' = (] = (5 =~ (5, and finally we compression the curve C until

13



=

Figure 2.15: Homotopic

we find the equivalent paths of curves C' = I'y UT'5. So

IEeie /” el (2.1

1 1
= L T@% Tt LT (22)

Here we give a simple example to confirm the theorem above.

A
b cycle a cycle
T -~ i +
ol +
complex plane

Figure 2.16: Cut plane and a, b-cycle of f(z) = /2(z — 1)(z — 2)(z — 3)

14



Let f(2) = \V2(z = 1)(z —2)(z —3) = V2vVz — 1Vz — 2v/2 — 3 and a, b-
cycle show as Flgure 2.16, then there are two circular paths display the a, b-cycle,

3
r=—,r=1,and z = 2 r = 1 respectively.

N | Ot

5 )
So we have the parametric forms for the integral of a-cycle, z = 3 + €%,

1 Math. T T
—dz = —df
/a f(2) o f( + i)

= 0.+ 3.37151,

3 )
and b-cycle, z = 5 + €. Since the path in sheet-II are equivalent to the minus of

path in sheet-I, which will introduce later, there is

1 Mith. 0 19
/mdz | e /f

= —4.31303 + 0. i.

Next, we use the homotopic paths to get the integral of a, b-cycle.

complex plane

Figure 2.17: Equivalent paths of a, b-cycle

15



The equivalent path of a-cycle, from 2 to 3 on the (+)edge in sheet-I and

from 3 to 2 on the (—)edge in sheet-1, is called a*-cycle.

/ 1 g Math 2/2 1 d
P 2

o f(2) 5 f(2)
= 0.4+3.3715:

The equivalent path of b-cycle, from 1 to 2 in sheet-I and from 2 to 1 in
sheet-11, is called b*-cycle. Similarly, since the path in sheet-II are equivalent to

the minus of path in sheet-I, there is

1

2
1
——dz — 2/ ——dz
w f(2) 1 f(2)
= —4.31303+0. ¢

By the calculations above, we verify the theorem for the equivalent path,
i.e., homotopic. It means that we can choose the simplest path for the close

contour, and get the numerical result in a efficient way.

In the next pages, we will use the skill (2.1) and (2.2) to compute all cases.

2.1.4 Conclusion of structure of Riemann Surface

For arbitrary cut, if f(z) has 2N — 1 or 2N roots, then
1. There are N cuts in complex plane.
2. Its geometric graph has N — 1 holes, and construct corresponding Riemann
Surface of genus N — 1, i.e., Ry_1.

3. There are N — 1 a-cycles and N — 1 b-cycles.

16



1
2.2 The integrals of —— over a, b-cycles for hor-

f(z)

izontal cuts

1
f(2)

over a, b-cycles. First, discuss the values in sheet-I, sheet-IT and Mathematica for

We will use Mathematica helping us to obtain the values of integrals of

H (z — zx), using polar form H (z —zx). Let 6y
k=1 k=1
denotes 6 in sheet-I and 6, denotes in sheet-II. So

horizontal cuts. f(z) =

‘92 = ‘91 i 2.
We have

0o .
F@)lan = Vre??
= \/;601;2771.
_ \/;e%liem'
01 .
= —Vrezi = —f(2)|n

where f(z)|(;) denote the value of f(z) with z in sheet-I and f(2)|;) means z

in sheet-II. Because the difference of argument between z in sheet-I and sheet-

IT is 27, there is the difference between f(2)|y and f(2)|ir is 7. So, there is
FElan = =f2)w-

Now discuss the difference in sheet-I of theory and Mathematica. First,
V=1 = —i, but we compute v/—1 in Mathematica obtain v/—1 Math- Why?
We found that § € (—n,7] of re” in Mathematica, actually. For any other ¢
of re which does not belong to (—, 7], Mathematica will conversion re® into

re®, 0* € (—n, 7] where re? = re".

17



Compare the value of f(z) with z in sheet-I and in Mathematica, we dis-

cover that

Lemma 2.1. If H (z — z) = re™ in sheet-I for horizontal cut,
k=1

f(z)’Mathematica Zf 9 € (—71',’/T),

_f(z)‘Mathematica Zf 0=—m.

[ =

Proof.

Since —m does not in (—m, 7|, Mathematica will conversion re™*" into re'™, but

f(re™™) and f(re™) are different.

In theory: — 1= = /1= e—%ﬁ = —4

In Mathematica: — 1= NES e = 4/—1= es —
So f(z) Math- —f(2) if # = —m in Mathematica. 1

In whole paper, f(z) ey f(2) denotes the polynomial f(z) in front of

Mah- 5 the value of f (2) in theory and the polynomial f(z) behind the Math- i

the value of f(z) in Mathematica.

Clearly, there is a mistake when # = —7w. When we use Mathematica to
get the value of integration we want, we need modify some range where the value
will wrong. Determine the difference of sign(f) (same or negative) and then
modify the computation of Mathematica to get right value. Because sometimes
the form of integration is complex, if we could simplify the way about modify the

difference of sign(f), it will help us to get right value easier.

18



Discuss in general situation:

1
Compute / Tl >dz over a, b-cycles for horizontal cuts where f(z) =
z

m
H\/z—zk,zkeR,szlwmandzl>zg>...>zm.
k=1

1. a-cycles:

= =1V A\~
L N

+
e |

Figure 2.19: a-cycles for 2N points

There are N cuts (/N — 1 holes), we give that a; is a cycle, center at x with
radius 7, enclosed [z, 22;-1] and doesn’t intersect with other cuts. (parametric

form)

If z € aj, let z = x + re’ where 0 € [—7, ),

. 70 dz_/W

20

: dé.
[, vV +re? — 2

19



1
2. Consider / mdz where aj is an equivalent path for a; and it’s from zy; to
a* <

2251 on (+)edge and then from z;;_1 to zp; on (—)edge:

H#
ay ay ay =
= — e— . — —=
———- —
’{BH Zf%\'-?—+ Zz.\'—a Zza,j ks Zz.i—l 24 * Z:@ Zz ea Zl

=a=
ag ay a;y a1
= PEA . —— &l &—— e
+— e _— B
T ™ e A L > - g
Loy ik 4523_21- Loyg Z:?.j T Loy Ipt g, Z, + Z,

Figure 2.21: a*-cycles for 2N points

By Cauchy integral formula, [4] we can get that

1 1
——dz = / —dz.
aj f(Z) a; f(Z)
Using Lemma 2.1 to compute:
(1) Zgj i) Zgj_ll

arg(z —z) =0

= -7 :>\/z—szgh'—\/Z—z/y€7 k=1,2,...,27—1

arg(z — zi)
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So

]- Math. /Z2jl 1
—dz = — —dz. 2.3
/ﬁ 0 L T0 (23)

(11) 22j (; 22j—-1-

k=2§,27+1,....,m

I
[a)
Y
I

|
&
g
&
I
|
=

arg(z — zx)

arg(z —z) = ﬁx/z—szgh'\/z—zk, k=1,2,...,2j—1

So

TS dsed L/
/’2‘2]'<_Z2j—1 mdz B /sz—l f(Z) dz' (2'4)

Conclusion of a-cycles: By (2.3) and (2.4),

/a ; ﬁdz Math- 9 / ﬁdz.
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3. b-cycles:

Figure 2.22: b-cycles for 2N — 1 points

Give b; is a circle, center at = with radius r, enclosed the [zan_1, 22;] and intersect

at the points on (29, 29;_1] and (—o0, zan_1].

Figure 2.23: b-cycles for 2N points

Give b; is a circle, center at & with radius r, enclosed the [zon_1, 22;] and intersect
at the points on [z9;, 22j_1] and (—o0,zon—1]. If 2 € bj,2 = x + re® where

6 € [-m,0) U [2m,37). From

f@)an = =),

there is
1 0 0 3w 0
/ ——dz = — e , df + — e : d6
bj f(2) - Hk:l v +re? — z, o szl x +re? — z

iei@

0 rie a0 /7T r
- m ; - m ;
[y Ve +rei? — z, o [le, Vo +re? — 2z

do.
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4. The equivalent path b7:

v

v

Figure 2.25: b*-cycles for 2N points

From Cauchy integral formula, we have

175~ by 70

where b;-‘ is a path from z,, to 23; in sheet-I and then from z5; to z,, in sheet-II.

Similarly, using Lemma 2.1 to compute:

(1) The path on cut, i.e., the path from zos 5 t0 29,11 on (+)edge of sheet-I and
the path from 24,1 to 29549 on (—)edge of sheet-II, s =7, +1,..., N — 2.

(i) 22542 i> 22541+

arg(z —z,) =0 = z—szgh'\/z—zk, k=2s+2,25+3,...,m
arg(z —z) = -1 = z—szgh'—\/z—zk, k=1,2,...,2s+1

23



So

flz) MR (C1)Ef(2)

= —f(2),
1 M&th. B 22s+1 L
/Z2s+2i>z25+1 mdz N /225+2 f(Z) dz. (25)

(ii) 29542 <=- 22511 on (—)edge of sheet-1I is same as on (+)edge of sheet-I,

. +
so consider 2zogio ¢— 29541:

Math.

arg(z —z) =0 =>Vz—2zr = \zZ-— z, k=2s+2,25+3,...,m
arg(z — zx) = —m = z—szgh'—\/z—zk, k=1,2,...,2s+1

So

flz) MM (1))

= /)
1 Math. o Z2S+2L
/ ol / O (26)

(2) Without cuts, i.e., the path from z9,,1 to 255 in sheet-I and the path from zy
to 2941 in sheet-II, s =45,7+1,..., N — 2.
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(1) 22s+1 — 225!

arg(z — zx) =0 = z—szgh'\/z—zk, k=2s+1,2s+2,....,m

—T :>\/z—sz2h' —Vz—zr, k=1,2,...,2s

arg(z — z,)

So

1 Math. / 21
dz = dz. 2.7
/Zzs+1—>225 f(Z) 22541 f(Z) ( )

(i) 22541 ¢ -- 225, by f(2)|lan = —f(2)|1), we consider zo,y1 — 2o, first:

arg(z — zx) =0 = z—sz&th'\/z—zk, k=2s+1,2s+2,....,m
Math.

arg(z —zy) = —m  =>z—zr = —Vz—2zk, k=1,2,...2s
Hence
f(z>’22s+1 ¢ - 225 = _f(z)|22s+1%223
Math. s
= _(_1)2 f(z) 22s+4+1%22s
= _f<z) 2954142259

1 Math. /228+1 1
gy Math 4 (2.8)
L2s+l & - 225 f<z> Z22s f(z)
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Conclusion of b-cycles: By (2.5), (2.6), (2.7) and (2.8),
N-1

1 Math. S|
— dz TZ —dz |.
S EpY (2 / i) )

1
2.3 The integrals of —— over a, b-cycles for ver-

f(z)

tical cuts

After knowing the integrals in horizontal cuts introducing in the previous

section, we will discuss the integrals for vertical cuts. In this case, we define that

- 3
z— 2 = re, 0 e [—;, g) if z in sheet-I
; 5
2 — zp =16, 0 e [g, g) if z in sheet-II,

the cut in each sheet has two edges, label the starting edge with 4+ and the terming

edge with — and z; is the end point of vertical cut.

As the previous section, we need to modify the computation in Mathemat-
ica such that the numerical result of Mathematica is identical to the numerical

3
result of theory when 0 € [—g, —l.

Lemma 2.2. When z in sheet-1 for vertical cut whose one of the end points is

2k,

Math, | —VZ =2k if arg(z — z) ,
Vz—z if arg(z — z) € (—, g)

m
|
[

26



Proof.

Let z in sheet-I and using polar form z — z, = re?. When 0 € (—, g), the argu-

3T
ment in theory or Mathematica is the same. When 6 € [—7, —m], Mathematica

will conversion 6 into 6 4 27 where 6 + 27 € [g, 7] and 7’ = e but

In theory: Vz— 2z, = \/?egi
In Mathematica: VZ =2 = re 2 = _\Jred

Thus, if 0 € [—3;, —],

Vz— 2z Math. -z — z. 1

As same as horizontal cut. We first discuss the difference between the value
in theory and the value in Mathematica. Compare their sign(f) is different or
not? Using statement before about modify and get value, the result will be the

same or not?

Discuss in general situation of case 1:

1
Compute / I )dz over a, b-cycles for vertical cuts where f(z) =
z

m

H\/z—zk,zk:rki,rkER,‘V’szlwmand r<rg < ...<Tp.
k=1
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1. a-cycles:

Figure 2.26: a-cycles and their equivalent paths a”

a; is a cycle, center at x with radius r, enclosed [z, 22;—1] and doesn’t

1 1
intersect with other cuts. ——dz = / ——dz in sheet-I. The equivalent
a; (Z) a; f(Z)

path a} is the path on a vertical cut from 2y; to 235 on (4)edge and then from

Z2j-1 t0 225 on (—)edge.
Using Lemma 2.2 to compute:

(1) ZQj i) ZQj_1:

m’g(z—zk):—z = z—szgh'\/z—zk, k=25,27+1,....m

2
3 ath. ‘
arg(z—zk):—g = 2 =z e —Vz—z, k=1,2,...,27—1
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So

U v [ 1
/ﬁ ok / Ok (29)

(11) 224 (; 2251+

arg(z—zk):—z = z—szgh'\/z—zk, k=25,274+1,....m

2
arg(z—zk):—g = z—szgh'\/z—zk, k=1,2,...,2j—1
So
Maith.
fz) " f(2),
1 Math. /sz 1
——dz = dz. (2.10)
/ZQj(-Zle f(Z) 2251 f(Z)
Conclusion of a-cycles of case 1: By (2.9) and (2.10),
1 Math. /22'7 1
——dz =2 —dz.
/a;. f(Z) 2251 f(Z)
2. b-cycles:

b; is a cycle, center at x with radius r, enclosed [zan5_1, 29;] and intersect
the points on [z, 22;_1] and [zan_1, 22n] in the case of 2NV points, or b; is a cy-

cle, center at x with radius 7, enclosed [z2n_1, 22;] and intersect the points on
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Figure 2.27: b; and b; of 2N — 1 and 2N points

(225, 22j-1] and [29n_1, 00) in the case of 2N — 1 points.

By Cauchy integral formula, we know that

/bj ﬁ(h': /b;f ﬁdz

where b; is a path from z,, to z; in sheet-I and then from zy; to z,, in sheet-II.

Similarly, using Lemma 2.2 to compute:

(1) The path on cut, i.e., the path from zesy9 to 29,11 on (+)edge of sheet-I and
the path from 2941 to 29549 on (—)edge of sheet-II, s =77+ 1,..., N — 2.
(i) 22542 i> 22s+1"
arg(z—zk):—g = z—szgh'\/z—zk, k=25s+22s+3,....,m

3 ath.
arg(z—zk):—g =z ek —Vz—z k=1,2,...,25+1
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So

flz) MR (C1)Ef(2)

= _f(Z)7
1 Math. /223+1 1
——dy M —dz. (2.11)
/2"25+2i>2’25+1 f(Z) 22542 f(Z)

(ii) 29542 <=- 22511 on (—)edge of sheet-1I is same as on (+)edge of sheet-I,

. +
so consider 2zogio ¢— 29541:

@rg(z—zk):—g = z—szgh'\/z—zk, k=2s+22s+3,...,m
3 a
arg(z — z,) = —; = 2z — 2 M —z—zp, k=1,2,...,25+1
So
fl) M ()P E)
= _f<Z)7
1 o 22542 1
/ ——dy Mt —/ ——dz. (2.12)
225424 = -225+1 f(Z) 22541 f(z>

(2) Without cuts, i.e., the path from zy,,1 to 2o, in sheet-I and the path from 2o
to 29511 in sheet-1I, s =7, 5+ 1,..., N — 2.
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(1) 22s+1 — 225!

arg(z—zk):—g = Z—szgh'\/z—zk, k=2s+1,2s+2,....,m
3 ath.
arg(z—zk):—g = z—sz:th —Vz—2z, k=1,2,...,2s
So
Math. s
flz) ME (=17 f(z)
= f(2),
1 Math. /225 1
——dz = —dz. (2.13)
/Zzs+1—>225 f(Z) 22541 f(Z)
(i) 22541 ¢ -- 225, Y f(2)|lan = —f(2)|1), we consider zo,y1 < 2o, first:

m‘g(z—zk):—z = z—szgh'\/z—zk, k=2s+1,2s+2,....,m

2
3 ath.
arg(z — z) = —; = VzZ— 2 e —z—z, k=1,2,...,2s
Hence
f(z>yz2s+1 ¢ - 225 = _f(z)|22s+1%223
Math. s
= _(_1)2 f(z) 2254+1%22s
= _f<z) 2254142259
1 Math. /223“ 1
—dz =" - —dz. (2.14)
L?s«l»l & - 225 f<z> Z22s f(Z)
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Conclusion of b-cycles of case 1: By (2.11), (2.12), (2.13) and (2.14),

N-1

forat e Ze )

*
J §=J

dz).

When we want to modify the computation of f(z) which has m roots, we
needs to consider vz — 2z, k = 1,2,...,m. There are m steps of modifying the
computation, and if m is large, it will become troublesome. Here provides a way
to reduce the step. We can divided domain R into many areas to discuss the way

to modify on vertical cuts.

------- Lo
N~-1+ |l =
------- Zox-1
------- Zog+2
Zd +ll—
T T L2
- S sz
Sy o
------- Z25-1
""""""" I Z2
1 +|H—:
_______ ,:1
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Case 1: zp = agi,ar € Rok=1,2,... 2N
Case 2: zp = axt,ap e RyE=1,2,...,2N — 1

1. z € (4)edge of the cut [zj_1, 22;):

3
aw“g(z—zk):——7T = z—szgh'—\/z—zk, k=1,2,...,2j—1

arg(z — zx) = —= = z—szgh'\/z—zk, k=252j+1,...,2N —1or 2N

1) "E ()P f() = - f(2)
2. z € (—)edge of the cut [z9,_1, 225):

=g M e, k=1,2,....2j— 1

= o M =, k=2,2j+1,...,2N —1or 2N

arg(z — zx) =

bo |

s
arg(z — z) = =,

f(2) "= f(2)
3. z€{(z,y) :  <0,a9;—1 <y < ag;} = region-(2j — 1):

3 a .
arg(z—zk)e(—?ﬂ,—w] = z—sz:th'—\/z—zk, k=1,2,...,2j—1

CLT’g(Z—Zk)G(—ﬂ',—E) = z—szgh' Vz—2z, k=25,2j+1,...,2N —1or2N

2
f2) " ()P () = =1 (2)
4. z € {(x,y) : v <0,a9; <y < agj1} = region-(2j):
3T

arg(z—zk)e[—j,—ﬂ] = z—szgh'\/z—zk, k=1,2,...,2j
CM”g(Z—Zk)E(—W,—g] ix/z—szgh'\/z—zk, k=27+1,274+2,...,2N —1or 2N

F2) M £(2)
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5. z€{(z,y):x<0,y<a}U{(x,y):0 <z}
arg(z — zx) € (—m, g) =z = S,
1) M 1 z)
Conclusion:

van, | —f(2) if z € region-(2j — 1) U (+)edge of the cut [29;_1, 22;)

f(z)  otherwise

After studying the above skill, now let us discuss the other general case of

vertical cuts whose figure showed below by two ways.

Consider f(z) = = H\/z—zk, where n = 2N, 2901 =

k=1
Zak, k= 1,2,...,N and Re(z1) > Re(z3) > ... > Re(zan_1), also Im(z) =
Im(z3) = ... =Im(zan_1) and Im(z) = Im(zy) = ... = Im(2on).
ZoN N 2.0 Z4 7o
I _& e 1 a; ; .
i) m | +‘— +|— >
b; ]
Zon-1 Z2x-3 Z25-1 Zs 4

Figure 2.29: a, b-cycles in other kind of vertical cuts
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1
1. Compute / mdz where a; is an equivalent path for a;:
a¥ <
J

ZoN  Zon-2 L2; Za s
A
m - .=l STagaad ' >
i I a; * I i |
Zon-1 Zon-3 Z25-1 Z3 Z1

Figure 2.30: aj-cycles in other kind of vertical cuts

(1) Compute by using argument of complex number to modify:

(i) The path from z5; to 221 on (+)edge of sheet-I:

3 a ‘
arg(z—zk)e[—l,—w] = z—sz:th'—\/z—zk, k=1,3,...,2j—1

2
arg(z — z) € (—m, =) =z — 2 "z =2z, k= otherwise

| X

(i) The path from z9;_; to z9; on (—)edge of sheet-I:

3 a .
—7T,—7T] =z =z, e —z—z, k=13,...,2j—3

Math.

arg(z — zx) € [— 5
arg(z — zx) € (—m, g) =Vz—2, = Vz—2z, k=otherwise

Flz) M (1) (2)
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By (i), (ii), and Cauchy integral formula,

f% / —f”

g [ e [P L
Zh (—1) /z? f(z)dz+( 1) /szl f(z)dz

J

o [ L,
- v

J

(2) Using the result about modify of blocks and then we can compute
1
——dz:
/a; f(2)

(i) The path from z; to 221 on (+)edge of sheet-I:

Math.
VZ = 2oz — 2k = =2 — 2oV E — 2ok, k=1,2,...,]

Math. | .
VZ — Zok—1V 7 — 2ok o VZ — 2ok—1V' % — 2ok, k=j5+1,j+2,...,N

fz [ ve=2=(-1f(2)

k=1

(ii) The path from z9;_1 to z9; on (—)edge of sheet-I:

Math. .
Vi = zopaVz — 2o = —Z— 1V 2 — 2k, k=1,2,...,5—1

Math. ..
VZ— 2ok 1V 7z — 2ok = N2 — 2op—1V 2 — 2ok, k=g3j+1,...,N

f(z H z— 2z = (=177 f(2)

k=1



By (i),(ii), we have

1 1
—dz = / ——dz
aj f(Z) a;f f(Z)
Math. (] [
=" (=1) ——dz+ (—1)? f—dz

;o f() (2)
2 [T
= -1 32/ —dz.
o f(2)
1 % - . * N *
2. Compute ; %dz where 0} is an equivalent path for b;, and b; = U_;  a; U
J
{22]\[ — Zgj} U {ZQN(._.ZQj}Z
b Lo dono  _ Logwd 1225 ZANNZa

* ME ] | [ S e Y ‘

Zon-1 Zon-3 Lojv1  Z2j-1 Z3 Z1

Figure 2.31: bi-cycles in other kind of vertical cuts

(1) z € aj: done above.

(2) {ZQN — Zgj} U {ZZN(__.ZQJ'}:
(a) Compute by using argument of complex number to modify:

(1) 22542 —7 22s (namely b:l)’ s = ja] + ]-7 s 7N — L

3 ath.
arg(z — zy) € [—;, -] = Vz—z Math- 7= 2k, k=1,2,...,2s
arg(z — z) € (—W,g) Sz a =z, k=2s2s+1,...,2N
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(i) 22s42¢--22s (namely b%,), s = j,j +1,...,N — 1. Since f(2)|un

—f(2)|(r), so we consider zps49 < 29, first:

3 ath.
arg(z—zk)e[—g,—ﬂ] = 7 — 2y e —Vz—z k=1,2,...,2s

arg(z—zk)e(—w,g) =z —z 2 e = k=12s,25+1,...,2N

F) MY (1) f(2) = ~f(2)

By (i),(ii), and letting b%; U b%, = b;, we have
1
—_— —dz—l—/ —dz
/ f bty Z br, Z)
Math 1 /22s+2 1
= ——dz + ——dz
/ Faer=b | e

22s 1

— 2/ dz.
22542 f(Z)

(b) Using the result about modify of blocks to compute in Mathematica:

(1) 22542 7 Z2s (bZI)’ S :]7j+ 1a"'7N_ 1:

Math

Vi—zmpVz— 2 =z zaVE— 2o, Yk
fz) M fe)
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(11) 292542¢ - -%2s (b:2)7 S = j,j + 1, ceey N —1. Since f<Z>|([[) = —f(Z)l([), SO

we consider 2519 4— 29, first:

Math.
VZ =z aVz — 2 = 72— zap1Vz — 2ok, VK

flz) "= —f(2)

By the above compute and Cauchy integral formula,

1
/b. T R _dz

1
A =+
k;—l ay .f : Z b* f )
Math, ‘ Zok-1 ] N-1 225 L
- Z ((_1)j2\/22k de) + ; (2 /225+2 f(z) dZ)

N
k=j+1

No matter what methods we use, way of areas or the arguments of complex
number, the modifying is the same. This means that we could choose the way

letting the computation easier for different situation.

Together with the consequences, the next chapter shows how we apply the
all conclusions above to a polynomial, surely, we can deal with the computation
of known function which we are interesting about its construction on Riemann

Surface.
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Chapter 3

Apply Riemann Surface to

Nonlinear Approximation of Sine

After the study of previous chapter, we apply the conclusion of Riemann
Surface to the approximation of sine, and compute the integration7on the Rie-
3 5
u u u

mann Surface. Here we replace sinu by Py(u) = u — a1 + ] + o since

o _1 n
sinu = Z ((—)x2”+1, the Taylor expansion shows.

“—~ (2n+1)!

So that, there is a new differential equation
u 4 Py(u) = 0,
wu' +u Py(u) = 0.

Integrating both sides, we obtain

1
5 (u )+ Pyyi(u) = E

41



U2 u4 U6 U8 ulO

where E is the integration constant, Pyyq(u) = ol + o’ + o then
’ du
U= = V2(E — Pyya(u))

where u is a function of time ¢,

/ V2(E —1PN+1(u))du - /dt'

According to the fundamental theorem of Algebra, there is

Let f(u,E) = \/2(E — Pyy1(u)), here we take E be 1.5, so that we can

use Mathematica and obtain

flu, 1.5) =
where
u; = —5.7957 — 3.81789i Uy = —H.7957 + 3.81789:
uz = —5.42043 uy = —4.26672
uy = —2.09438 ug = 2.09438
uy = 4.26672 ug = 5.42043
ug = 5.7957 — 3.81789i U190 = 5.7957 + 3.817809s.

For convenience, we will replace f(u,1.5) by f(u) in the following pages.
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Hence, we have ten branch points and obtain five branch cuts as the figure

below.

L] Tt

s ny s g s g

nny Ty

Figure 3.1: Branch points and branch cuts

As we learned in Chapter 2, all integration of closed contour on Riemann
Surface is homotopic to the linear combination of a,b-cycles since the Cauchy

integral formula. Hence, it is going to show the a, b-cycles in the integral

/ﬁdu:/niil \;mdu.

Since there exist five branch cuts, there are four a-cycles and four b-cycles
we need to discuss, and the following computation will be completed by paramet-

ric form. The all closed contour cycles are counterclockwise.
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The a-cycles is showed below.

i

]
:

Figure 3.2: a-cycles

The equivalent a;-cycle is showed below.

Figure 3.3: Equivalent a;-cycle

1 Math. /u4 1
— du TE"™ 2 ——dr
/al f(u) ws S(7)
= —1.03837 x 1072° — 0.00339657i
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The equivalent as-cycle is showed below.

Figure 3.4: Equivalent as-cycle

1 Math. /U6 1
—du — 2 —dr
/a2 f(u) ws (1)
=  —2.29246 x 10~%° + 0.00640376i

The equivalent as-cycle is showed below.

Figure 3.5: Equivalent as-cycle
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1 Math. o]
——du =" 2 —dr
/a3 f(u) wr f(7)
= 230733 x 1072 — 0.00339657i

The equivalent a4-cycle is showed below.

Figure 3.6: Equivalent ay-cycle

1 Math, /Im<“1°> 1 .
——du =" 2 —idr
/(1‘4 f(u> Im(ug) f(Re(Ug) + TZ)

= —3.52366 x 107" + 0.000194696i

Hence, we have all numerical results of a-cycles, and the next step is com-

puting the b-cycles.
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The b-cycles is showed below.

Figure 3.7: b-cycles

The equivalent b;-cycle is showed below.

Figure 3.8: Equivalent b;-cycle

1 Math. /W“l) 1 . / 1
——du =" 2 —idr — 2 ——dr
/b1 f(u) 0 f(Re(uy) + i) Re(ur) £(7)
= 0.00226652 + 0.00009734823
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The equivalent by-cycle is showed below.

Figure 3.9: Equivalent by-cycle

Math
. 1N —du / —dr
ba f b1 U4
= —0. 00300153 + 0. 00009734822'

The equivalent bs-cycle is showed below.

Figure 3.10: Equivalent b3-cycle
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1 o 1 o1
— dy M ——du — 2 ——dr
b3 (U) ba (U) ug (T)
= 0.00226652 4+ 0.00009734821

The equivalent by-cycle is showed below.

Figure 3.11: Equivalent bs-cycle

1 Math. 1 /Re(uw) 1 /0 1 .
——du = ——du — 2 ——dr + 2 —idr
/b4 f(u) by f (1) us f(r) Im(uro) | (Re(uio) + 7i)
= 8.67362 x 107 — 4.06576 x 102°;

So far, we have all numerical results of a, b-cycles, and, hence, we can obtain

any integration of closed contour in this specific case.

49



Chapter 4
Elliptic Functions

In our original question, we want to solve the different equation
" R
u’ +sinu =0,

and since the difficulty in integration, the ideal of solving the equation changes
to the theory of elliptic functions. [6] There are several typical cases of elliptic
functions, and the following pages will introduce the definitions, properties, and

relations among these cases.

4.1 General definitions and properties of elliptic

functions

4.1.1 Introduction

The first mathematician who studied the theory of elliptic integrals sys-

tematically is Legendre, and the ideal of inverting an elliptic integral to obtain
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an elliptic function is due to Abel, Jacobi and Gauss. The elliptic function is
originated from the problem of finding the circumference of the ellipse, and in
the view of differential equations, the elliptic function can solve kinds of problem

with complex integrations.

4.1.2 Doubly-periodic functions and elliptic functions

A function f is called periodic with period 2w if

f(z+2w) = f(2).

A function f is called a doubly-periodic function with 2w; and 2w, if

f(z 4 2w) = f(z + 2w) = f(2)

w
where —= is not purely real.
2&)1
Moreover, a doubly-periodic function f is called an elliptic function if it is
analytic except poles and has no singularities other than poles in the finite part

of the plane.

4.1.3 Period-parallelograms

Suppose that in the plane of the variable z we mark the points 0, 2wy, 2ws
and 2wy + 2w, generally, all the points whose complex coordinates are of the form
2mwy + 2nws, where m and n are integers. Consider the points of set 0, 2wy, 2wy

and 2w; + 2w», and we obtain a parallelogram as the vertices. If there is no point
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w inside or on the boundary of this parallelogram such that

fz+w) = f(2)

for all values of z, this parallelogram is called a fundamental period-parallelogram

for an elliptic function with periods 2wy, 2ws.

Such a translated parallelogram, without zeros or poles on its boundary, is

called a cell.

4.1.4 Simple properties of elliptic functions

1. The number of poles of an elliptic function in any cell is finite.

2. The number of zeros of an elliptic function in any cell is finite.

3. The sum of the residues of an elliptic function at its poles in any cell is zero.
4. Liouville’s theorem:

An elliptic function with no poles in a cell is merely a constant.

4.2 Weierstrass elliptic function

4.2.1 Definition

The Weierstrass elliptic function g(z) is one of the famous elliptic function,

which is defined by the equation

1 , 1 1
_ 1 B 4.1
o(z) 22 " ; { (2 = 2mwy — 2nwy)?  (2mwi + 2nws)? } -y
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where Z’ denotes that the sum excludes the term when m = n = 0 and w, ws
satisfy the condition that the ratio is not purely real. For brevity, we write €2, ,,

in place of 2mw; + 2nws. So that the equation (4.1) will be

1 / -2 -2

4.2.2 Properties of p(z2)

1. p(z) is an even function with single double pole at 2, ,, for integers m, n.

2. p(z) satisfies the differential equation

p2(2) = 49°(2) — 920(2) = g5
where gy and g3 (called the invariants) are given by the equations
g2 =060 't gy =140 Q0.
3. (Properties of homogeneity)
oAz dwr, dws) = A 2p(z;w1,wa), A #0
©(A2; A2, A %g3) = A 20(202,93), A#0
where p(z;wi,wq) denote the function formed with periods 2w, 2ws and (2; ga, g3)
denote the function formed with invariants gs, gs.

4. (Addition-theorem)
a. If u+v+w =0, then
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unless 2z is a period. The result is called the duplication formula.

4.2.3 The constants e, e, e3

Let p(z) be the Weierstrass elliptic function with periods 2wy, 2ws. The
value p(w1), p(ws), p(ws) (Where wg = —w;—wsy) are all unequal; and, if their value
be ey, ey, 3, respectively, then the roots of the cubic equation 4t> — got — g3 = 0
and e; # ey # e3. We have

e1+ey+e3 =0,
1

€263 + €361 + €169 = —1927
1
€1€2€3 = —(7s3.
4

4.2.4 The Weierstrass-zeta function

First of all, the Weierstrass-zeta function should not be confused with the

Zeta-function of Riemann discussed in Chapter XIII in [6].
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The Weierstrass-zeta function ((z) is defined by the equation

29— o),

z—0 z

1
coupled with the condition lim {C (2) — —} = 0.

1
Since the series for p(z) — — converges uniformly throughout any domain
z
from which the neighbourhoods of the points (2, , are excluded, we can integrate

term-by-term and get

and so
1 , 1 1 z
¢(2) = ;+mn {z—Qm,n gt Q?nn}

4.2.5 Properties of ((z2)

1. {(2) is an odd function. It is not a doubly-periodic function, and the residue
of {(z) at every pole is 1.

2. If we integrate the equations
P(z+2w1) = p(z)  and (2 + 2wy) = p(2),

we get
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C(z +2w1) = ((2) + 2m
C(z + 2wa) = ((2) + 21y

where 2n; and 27, are the constants introduced by integration; putting z =
—wy, 2 = —ws, respectively, and taking account of the fact that ((z) is an odd

function, we have

= C(w1>?
M2 = ((w2).
3. (Properties of homogeneity)

C(Az; dwr, Adws) = )\_1C(z;w1,w2), A#£0

4. (Legendre’s relation)

iV 4
Thwa — 1wy = 57”

4.2.6 The Weierstrass-sigma function

The Weierstrass-sigma function o(z) is defined by the equation

L togo(2) = ¢(2)

coupled with the condition lim {U(Z) } =1.

z—0 z

On account of the uniformity of convergence of the series for ((z), except

near the poles of ((z), we may integrate the series term-by-term. Doing so, and
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taking the exponential of each side of the resulting equation, we get

, 2 2 22
a(z):zH (1—Q )exp(Q + 50 ) p-

m,n

4.2.7 Properties of o(z2)

1. The product for o(z) converges absolutely and uniformly in any bounded
domain of values of z.

2. The function o(z) is an odd integral function of z with simple zeros at all the
points €2,, ,,.

3. If we integrate the equations
C(z+2w)=C(2)+2m and ((z+ 2ws) = ((2) + 29,

we get
o(z + 2w) = ;M0 (2)

o(2+ 2wy) = 15 (z)

where ¢; and ¢y are the constants of integration; to determine cq,co, we put

Z = —w1, 2 = —Wwa, respectively, and then
o(wy) = —cre Mg (wy),
o(wy) = —cee P20 (wy).
Consequently,
¢ = —emen,
Co = —e22%2,
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4. (Properties of homogeneity)

o(Az; Awr, Awg) = Ao (z; wr, we)

4.3 The Theta-functions

4.3.1 Definition

Let 7 be a (constant) complex number whose imaginary part is positive;

and write ¢ = ™7, so that |q| < 1.

Consider the function 9(z, ¢), defined by the series

(e}

o= 3 (e,

nN—=——0o0

It is evident that

Hz,q) =142 Z (—1)"q" cos2nz,
n=1

and that
Wz +m,q) =9(zq);
further
n _n? 2n 2niz
Wetmra) = 3o (Z1)"q g
—1 _—2iz n n 2 n 1z
= —q 1,-2 Z (—1) +1q( +1)2 2(n+1) :
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and so

Oz +77,q) = —¢~ e (2, q).

In consequence of these results, 9(z,q) is called a quasi doubly-periodic

2

function of z, and accordingly 1 and —¢ ‘e 2% are called the periodicity factors

associated with the periods m and 77 respectively.

4.3.2 The four types of Theta-functions

It is customary to write J4(z, q) in place of ¥(z, ¢); the other three types of

Theta-functions are then defined as follows:

The function ¥3(z, q) is defined by the equation

1 o0
I3(z,q) = 94(2 + o q9)=1+2 Z q"2 cos 2nz.

n=1

Next, ¥1(z, q) is defined by the equation
) ) 1
V1(z,q) = —z'e’zﬁﬂ”m(z + 57, q)

n=—oo
o0

=2 Z (—1)"q(”+%)2 sin (2n + 1)z.

n=0
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Lastly, 95(z, q) is defined by the equation

1 > ,
Va(2,q) = V1(2 + ™ q) =2 2% ¢+ cos (2n + 1)z.

Summary:
V1(z,q) =2 Z (—1)"q" "2 sin (2n + 1)z
n=0

Va(2,q) = 2 Z ¢ 27 cos (2n + 1)z

n=0

VU3(z,9) =142 Z q”2 cos2nz

n=1

Vy(z,q) =142 Z (=1)"q" cos2nz
n=1

For brevity, the parameter ¢ will usually not be specified, so that 9J;(z) will
be written for 9;(z,q),i = 1,2,3,4.
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4.3.3 Properties of 9J;(z)

1. ¥1(2) is an odd function and the other Theta-functions are even functions.

2. The zeros of the Theta-functions:

V1(z) =0, where z=0+mnr+nnar

Us(2) =0, where z= g +mm +nrT

VU3(z) =0, where z= g + % +mm +nrT
T

U4(2) =0, where z= - +mm +nrT

3. The identity 95(0) + 95 = 95(0).
4. Jacobi’s expressions for the Theta-functions as infinite products:

Yi(z) = 2¢7 sin 2 H (1—¢*)(1 —2¢* cos2z + ¢*")

n=1

Pa(z) = 2q7 cos z H (1 —¢*)(1 4 2¢*" cos 2z + ¢*™)

n=1
V3(2) = H (1 —¢*)(1 +2¢°" " cos 2z + ¢'"7?)
n=1
V4(z) = H (1 —¢*)(1 —2¢°" " cos 2z + ¢*"2)
n=1

5. The differential equation satisfied by the Theta-functions
O*05(z|T) 4 90;(2|7)

022 T 0T

where we may regard J3(z|7) as a function of two independent variables z and 7.

6. A relation between Theta-functions of zero argument

91(0) = 72(0)93(0)94(0).
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7. Weierstrass-sigma function can express in terms of Theta-functions; in other
words, there will exist expressions for any elliptic functions in terms of Theta-
functions.

8. The differential equations satisfied by quotients of Theta-functions:

d ) 91(2) 2 U2(2) U3(2)
— = 4.2
dz { U4(2) } % V4(2) V4(2) (42)
d ) 9a(2) 2 01(2) Us(2)
— — 4.
iz { 91(2) } U35:2) a2) (43)
d ) 93(z) 2 V1(2) ¥2(2)
- 1 4.4
dz { V4(2) } % V4(2) U4(2) (44)
. - 191(2) : .
We write £ = ) and use the results established above, there is
4\ Z
d 2
(&) - w-eooi-ev.
z
. 5193 o 2 "\ 192 o 1 . .. .
Write 9. = Y, 205 = u, 5. = kz, and we get the equation determining y in terms
2 3
of u is

dy\?
(%) —a-mu-w, (45)
This differential equation has the particular solution

0 9 (ud;?)

Y 0y 0a(udy?)

(4.6)
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4.4 Jacobian elliptic functions

4.4.1 Definition

From (4.5) and (4.6), we have the 1ntegral representation of y is

/ i,
V(1 —2)(1 - k22)
so we defined y = su(u, k) or simply y = sn(u ), when it is unnecessary to empha-

size the modulus k.

Jacobian functions defined as follow:

193 191(’&/19 )

sulu, k) = 5, Da(uf?)
194 ?92<U/19 )

v k) = 5 Bau/ %)
7.94 193(U/19 )

dn(u, k) = 9 194(u/19 )

From (4.2), (4.3), and (4.4) with k% + k2 = 1, we get the solutions for the

following integral equations:

1
If uw= dt, then y =sn(u,k). 4.7
/ V(1 —2)( 1—k2t2) Y (u.K) (47)
If uvw= dt, then y = cn(u, k). 4.8
/ = t2) k"2 + k2t2) Y (. ) (4.8)

1
If uw= dt, then y =dn(u,k). 4.9
[ s y=duwk).  (49)

Moreover, the integrals (4.7), (4.8), and (4.9) are called the elliptic integrals of
the first kind.
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4.4.2 Glaisher’s notation for quotients

A short and convenient notation has been invented by Glaisher to express

reciprocals and quotients of the Jacobian elliptic functions.

ns(u) = 1/sn(u) nc(u) = 1/cen(u) nd(u) = 1/dn(u)
sc(u) = sn(u)/cn(u) sd(u) = sn(u)/dn(u) cd(u) = en(u)/dn(u)
cs(u) = cn(u)/sn(u) ds(u) = dn(u)/sn(u) de(u) = dn(u)/en(u)

We obtain the following results:

on(u) 1 0 1
u = dt :/ dt
0 \/ 1 — tZ) 1 y k2t2) ns(u) \/(t2 - 2 - k2)
1 1 nc(u) 1
— / dt ) - dt
en(w) v/ (1 = 12) (K" + k2t%) L V(= DEPE +E)
1 1 nd(u) 1
e / - dt — / dt
) VA= BB ) . VP-Da-Fw)
sc(u) 1 9) 1
= ___dt = / __t
o VOFPILRP) ) B+ D + B
sd(u) 1 00
= dt / L dt
0 \/ /2t2 1+ k2t2) ds(u) \/ t2 + k'Q)

1 1

_ d -
/cd<u> V(1= 12)(1 - k2?) t /dc<u> V(82 = 1)t = k?)

dt

4.4.3 Some relations among Jacobian elliptic functions

1.

d
@sn(u) = cn(u) dn(u) (4.10)
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sn?(u) +cen?(u) = 1 (4.11)
E* sn®(u) + dn®(u) = 1 (4.12)
en®(0) +dn?(0) = 1 (4.13)

3. By (4.10) and (4.11), there is
d

—ocn(u) = —sn(u) dn(u).

du
4. By (4.10) and (4.12), there is

d 2
@dn(u) = —k* sn(u) en(u).

4.4.4 Some properties of Jacobian functions

1. sn(u) is an odd function of u, cn(u) and dn(u) are an even functions of wu.

2. The addition-theorems for Jacobian functions:

sn(u) cn(v) dn(v) + sn(v) en(u) dn(u)

sn(u+v) = 1 — k2 sn2(u) sn2(v)

_ en(w) en(v) — sn(u) sn(v) dn(u) dn(v)
cn(u+v) = 1 — k2 sn2(u) sn?(v)

_ dn(u) du(v) — & sn(u) sn(v) en(u) en(v)
dn(u+v) = 1 — k2 sn?(u) sn?(v)

3. The constants K, K :
a. Symbol K is a function of k such that sn(K, k) = 1. In other words,

! 1
Fe(k) = /0 N )
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and sn(K) =1, en(K) =0, dn(K) = k.
b. Symbol K’ is a function of &,

1
! / 1
K (k :/ dt
W= Ve
c. Another form of K and K :

2 1
K(k):/ de
0 1—k2sin?¢
o 2 1
K(k;):/
0 1 —Kk2sin?¢

4. The periodic properties of the Jacobian elliptic functions:

a. associated with K :

sn(u + 2K) = —sn(u) sn(u + 4K) = sn(u)
en(u +2K) = —cn(u) cn(u + 4K) = cen(u)
dn(u + 2K) = dn(u) dn(u + 4K) = dn(u)

b. associated with K + iK :

sn(u + 2K + 2iK') = —sn(u) sn(u+ 4K + 4iK') = sn(u)
en(u 4 2K + 2iK') = cn(u) en(u+ 4K + 4iK') = cn(u)
dn(u + 2K 4+ 2iK') = —dn(u) dn(u + 4K + 4iK") = dn(u)
c. associated with ik :
sn(u+ 2iK') = sn(u) sn(u + 4iK") = sn(u)
en(u + 20K) = —cn(u) en(u+ 4iK') = en(u)
dn(u + 2iK') = —dn(u) dn(u+ 4iK') = dn(u)
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- sn(u) cn(u) dn(u)
Periods 4K, 2K 41K, 2K + 2K’ 2K, 4i K’
Zeros | 0mod (2K,2K') | K mod (2K,2iK") | K +iK mod (2K,2iK)
Poles iK' 2K + iK' iK' 2K + iK' iK' 3K
mod (4K,2K") | mod (4K,2K + 2iK’) mod (2K, 4iK")
Parity odd even even
Derivative en(u) dn(u) -sn(u) dn(u) -k? sn(u) cn(u)

Table 4.1: Summary about sn(u), cn(u) and dn(u)

4.4.5 Elliptic integrals of the first kind

The function sn(u) satisfies the differential equation (4.5)

()2 = (1 - g1 - R%),

we have the integral representation of sn(u) is

thus y = sn(u, k).

v 1
‘e /0 VI =2)(1 - k;?t?)dt’

A special case of the integral representation is

! 1
) /0 N )

this is the complete elliptic integral of the first kind. Moreover, if we let ¢t = sin ¢,

2 1
K:/
0 1 — k2sin’ ¢

and we have at once

4.4.6 The graphs of Jacobian functions
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Figure 4.2: sn(u, —)

Figure 4.3: sn(u, 1)
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Figure 4.9: dn(u, 1)
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Chapter 5

Exact Theory of the Simple

Pendulum Motion

5.1 Introduction of the simple pendulum

A pendulum is a weight suspended from a pivot so that it can swing freely.
When a pendulum is displaced sideways from its resting equilibrium position, it
is subject to a restoring force due to gravity that will accelerate it back toward
the equilibrium position. When released, the restoring force combined with the
pendulum’s mass causes it to oscillate about the equilibrium position, swinging
back and forth. The time for one complete cycle, a left swing and a right swing,
is called the period. A pendulum swings with a specific period which depends on

its length mainly.
The simple pendulum is an idealized mathematical model of a pendulum.

This is a weight (or bob) on the end of a massless cord suspended from a pivot,

without friction. When given an initial push, it will swing back and forth at a
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constant amplitude.

The figure below shows the simple pendulum:

frictionless pivot

amplitude
massless rod

bol_)'s‘* o | =
trajectory massive bob
equilibrium

position

Figure 5.1: Simple pendulum

5.2 Analyze the derivation

Here we introduce two ways, via Newton’s second law and conservation of

energy, to obtain the differential equation

u" +sinu = 0. (5.1)
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1. By Newton’s second law:

5
k
=Y
.
k
D

3
NE)
o)
[}
v
@

Y
mg

Figure 5.2: Analysis via Newton’s second law

Consider Newton’s second law,
F=ma

where F' is the sum of forces on the object, m is mass, and a is the acceleration.
Because the bob is forced to stay in a circular path, we apply Newton’s equation

to the tangential axis only,

F=—mgsinf = ma

a=—gsiné

where g is the acceleration due to gravity near the surface of the earth. The

negative sign on the right hand side implies that # and a always point in opposite
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directions. This makes sense because when a pendulum swings further to the left,

we would expect it to accelerate back toward the right.

This linear acceleration a can be related to the change in angle 6 by the

arc length formulas; [ is the length of the pendulum and s is the arc length:

Thus

2. By conservation of energy:

Figure 5.3: Analysis via conservation of energy

s =10
p_ s _ b
Cdt dt
LB
dt2 2
d?0 g .
ﬁﬁ‘jSlng—O.
0
0,
Y
Y
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Any object falling a vertical distance h would acquire kinetic energy equal
to that which it lost to the fall. In other words, gravitational potential energy is

converted into kinetic energy. Change in potential energy is given by
AU = mgh,
change in kinetic energy (body started from rest) is given by
L,
AK = SO

Since the conservation of energy, no energy is lost, those two must be equal
—muv? = mgh
2
v = \/2gh.

Using the arc length formula above, this equation can be rewritten as

do
W= l% = /2gh
g1

1R
a VY

where h is the vertical distance the pendulum fell.

Look at Figure 5.3, which presents the trigonometry of a simple pendulum.
If the pendulum starts its swing from some initial angle 6y, then yg, the vertical

distance from the screw, is given by
Yo = [ cos by,

similarly, for y;, we have

y1 = lcosb,
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then h is the difference of the two

h =1(cos @ — cosBy).

In terms of — gives
at ©

do 29
== 7(COS€ — cosb).

We can differentiate, by applying the chain rule, with respect to time to

get
20 ddo  d [2g
— = —— = —1/—(cosf — cos b
i@ " aa a1 sl Tesh)
1 29(— sin 0) df
2 \/279(c08(9 — cos ) dt
1 2(—sing 2
=5 L (Csinf) \/Tg(COSQ — cos by)
\/279(c086 — cos )
= —%sin&.
Thus )
o g .
@ + 7 sinf = 0. (53)

No matter which idea for derivation, there are the same results, (5.2) and
(5.3). Letting % = 1 for convenience, there is (5.1). After the above pre-work,

the following contents will recall the conclusion in Chapter 4 and get the exact

theory of the simple pendulum motion.

76



5.3 Apply Jacobian elliptic function to solve the

simple pendulum motion

Consider the differential equation

v’ +sinu =0,

there is

1

E(u’)2 —cosu=F (5.4)
where F is the integration constant. Adding 1 to both sides yields

1
§(UI>2 + (1 —cosu)=F +1.

: L, 9 A
In the idea of energy, we can regard i(u) as kinetic energy, (1 — cosu) as po-
tential energy, and E + 1 as the total energy of this system. Certainly, u is a

function of time t.

Since (1 — cosu) is regarded as the potential energy, 0 < (1 — cosu) < 2,
and the kinetic energy %(u')2 > 0, the total energy £ 4 1 must be greater than
or equal to 0. Furthermore, when the potential energy reaches the maximum 2,
it also means that the pendulum is right at the highest position in the circular
path. So the total energy '+ 1 = 2 will be the key factor of different types of

pendulum motions.

O<FEF+1<2 == —-1<FE<1
F+1=2 = E=1
F+1>2 = E>1
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Keeping on the above statement (5.4), since the equation

) du
==

u 2(F + cosu) (5.5)

is separable, we can obtain

(5.6)

U(t) 1
= / du.
0 v/2(E+cosu)

Our goal is to find out the solution of equation (5.6). That is, we must find the
representation of U(t) in terms of ¢. Discussing (5.6) in three different cases by

given F is the next works.

1. - 1< E<1:
U(t) 1

du
0 V2E + 2cosu
1

/U(t)
0 vi+(2-4mﬁg)

t =

du

1

4 2 u
2642 S 5

1 /U(t)
- V2E+2 ), VL'

V2E + 2 1 .

Lot k — s
¢ 9 g

ESIH > 1 1
t:/ dz
0 \/1—22\/1—]€222

According to Jacobian function (4.7)

sn(t, k) = %sin Uét),
U(t) = 2arcsin (k sn(t, k)) (5.8)
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V2FE + 2
where kK = ——.
2
2. F=1

U(t) 1

0 V2 4+ 2cosudu
U(t) 1
- / S SN
0 \/4 — 4sin? 3
U(t)
= 1/ ;du (5.9)
2 Jo \/1 — sin? 5

t =

u
Let z = sin —, then

in U0
2

/sm 1 1
= dz.
0 \/1—2’2 \/1—22

So

sn(t, 1) = sin M,

i.e.

U(t) = 2arcsin (sn(t, 1)). (5.10)

If we do not use Jacobian elliptic function, we can also get the solution by
Calculus. There is given by

u)
2

= d
/0 1 2%

2
So
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i.e.

U(t) = 2arcsin (tanh ).

3. E>1:
U(t) 1
t= du
0 V2E 4+ 2cosu
U(t) 1
:/ du
0 \/2E + (2 — 4sin? &)
1 ue) 1
~ V2B 2/ du
4 2w
t2Jo \/1_2E+25m5
2 U
Let Kk = ——, z = sin —, then
V2E + 2 2
. U®)
SIHT 1 1
t=k dz.
/0 V1— k2221 — 22
So
t Ut
sn(—, k) = sin ( ),
2
i.e.
t
U(t) = 2arcsin (SH(E’k))
here k 2
where bk = ——.
V2E +2

(5.11)

(5.12)

(5.13)

Note: There are no confusions with the patterns of £ in (5.7), (5.9), (5.12).

Since the definition of Jacobian elliptic functions, there is an identity k? + K?=1

for (4.7), (4.8), and (4.9). Hence, the patterns of k related to F must be deter-

mined with &% < 1.
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5.4 Periods and phase portraits with different
total energy

Since the solutions of u” 4 sinu = 0 had been found in terms of Jacobian
elliptic function with different F, we want to further know the period of the so-

lution if it is periodic.

Moreover, we try to plot the relation between U and U’, i.e., the phase
portrait. Before drawing the phase portrait, we see back to the equation (5.4)
first. It shows that %(u’)2 —cosu is a constant. It can be regarded as a conserva-
tion law in the view point of mathematics since — cosu is not always larger than
0. (But this case can be transferred to the conservation law in the view point of
physics by plus a constant 1 for equation (5.4).) This means that its total energy
is a constant and the former part E(U/)2 can be regarded as kinetic energy and

the latter part — cosu can be regarded as potential energy.

1. -1<E<1:
The solution with —1 < E < 1 is given by

U(t) = 2arcsin (k sn(t, k))
V2B +2

where k = — Therefore, by subsection 4.4.4, the period is

! 1
r= 4/0 N EETRe
=4K.

1
1

Obviously, K = / dz

0 V-2 - R
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By the assumption we defined before, there is
—1< Ei < Ey <1l = ki <ks,

and, hence,
1 1

V- D012 - 21122

i.e. Kl < KQ.

In short, if there are two different £ and E,, where —1 < E; < Ey < 1,

the comparison with two periods is

Ty < Ts.

1 1
Figure 5.4: Solution curves with £ = —5 E=0,and F = 5

In the sense of pendulum motion, the greater total energy means the higher
initial position, and it is naturally that the time pendulum returns to the initial
position is longer if the initial position is higher. Thus we have the result as

above, F; < Ey implies T} < T5.
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We set E' = 0 to analyze the phase portrait. By the equation (5.4), we have
u' = ++v2cosu. The following graphs are potential energy and phase portrait,
respectively. Those graphs show the relation between u and cos u and the relation

between v and .

(b) Phase Portrait

(a} Potential Energy —
19 /."' g . \
// \ ™
cos(u) 0.5 051 ",
E=0 {
{
-3 1/ 2 3 dis o1 Ces o o5 1 13
u I"\ u f.l'
\ -05] /
A
\ M /
— -

Figure 5.5: Potential energy and phase portrait with £ =0

From the graph of the phase portrait, the red curve means that the velocity
at those position are positive and the blue curve means that the velocity at those
position are negative. The positive velocity is defined by rotating counterclock-

wise and the negative velocity is defined by rotating clockwise.

2. E=1:
The solution with £ = 1 is given by

U(t) = 2arcsin (sn(t, 1)).

! 1
T

1
1
:4/ de
o 1—2

= OQ.
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T T T T T T
-6 -4 -2 o 2 4 6

Figure 5.6: Solution curve with £ =1

In the sense of pendulum motion, since the total energy F + 1 = 2, the
potential energy must be 2 and the kinetic energy must be 0 somewhere. By the
language we used before, that is the greatest potential energy means the highest
place in the pendulum motion, surely the top of the circular path. Therefore it
implies that if we release the pendulum at the top of the circular path, it will

return to the initial position after travelling the time infinity.

Now we focus on the phase portrait with £ = 1. By the equation (5.4), we

have v’ = 4+1/2(1 + cos u), and phase portrait as following.

(a) Potential Energy (b) Phase Portrait
1 = s
\ E=1 /
f osu) 0.5 // 19 “\\
..\ !/ / \
2 2 N\ -1 O 1/ 2 3 - 2 -1 0 1 2
" u u
05 -1
4 . -
N S T 7
2l =l

Figure 5.7: Potential energy and phase portrait with £ =1
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3. E>1:
By (5.5), there is ' > 0 if £ > 1. This means that for any time ¢, the velocity
of pendulum is always greater than 0. That is, the pendulum will never stop. So

the motion is no periodicity.

Vi
£ Vi
Vi
69 / ’
E=5/2 /
4 d
2
E=2
6 4 Il 2 4 6
E=3/2 2 9
.r'/
/ y 4
/(/, s —6
e

3 5
Figure 5.8: Solution curves with £ = 5 E =2 and F = 5

3
Last, we see the phase portrait with £ = 5: By the equation (5.4), we have

3
u =4+ 2(5 + cosu), and phase portrait as following.

(@) Potential Energy
s .
Phase Portrai
E=3/2 T !
- 1] _—
N / 2 .
N costi) 05 — 1 .
S 2\ -1 1/2 33 2 O 4 1 2 3
S u
-05 ~— -1 o
~. /
] X I

3
Figure 5.9: Potential energy and phase portrait with £ = 3
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From the graph of the phase portrait, we know that the pendulum of this
case will never stop since the phase portrait has no intersection with the wu-axis.
And by the graph of potential energy, we observe that the kinetic energy is never
equal to 0. This implies that the case has no periodic solution and the result is

corresponded to the property which we had discussed.

By our discussion, there are three kinds of the phase portraits. Before
finishing the section, we combine the three phase portraits and the vector field

together.

With vector field

Figure 5.10: Global phase portrait

There are three different kinds of phase portraits with different energy F.
The outer curve corresponds to larger energy E. They are separated by the phase
portrait with £ = 1 and the phase curve is called the separatrix with periods oc.
The phase curves outer the separatrix are called the wave train and they has no
period. The phase curves inside the separatrix are periodic and their period T’

satisfies 27 < T < oo.
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5.5 Summary

The mathematical model of the simple pendulum motion is a nonlinear
second order differential equation. There are k corresponding to the given FE,

and thus the solutions of the simple pendulum motion is expressed by Jacobian

elliptic function sn(t, k) within different cases of E.

Together the consequences in all cases we considered, there is the following

table.
- —-1< FEF<1 E=1 E>1
V2FE +2 2
Modulus k — 1 _—
2 V2E + 2

Solution U(t)

2 arcsin (k sn(t, k))

2 arcsin (sn(t, 1))

2 arcsin (sn(é, k))

Period T

4K

(©,9)

No periodicity

Table 5.1: Summary about the simple pendulum motion within different F
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