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在 C 型代數結構下之 N 相黎曼空間的
單擺運動之確切理論與數值計算

研 究 生：范名宏 指導教授：李榮耀　教授

國 立 交 通 大 學

應 用 數 學 系

摘要

u′′ + sinu = 0

在數學的歸類中是一個二階常微分方程，同時也是單擺運動的數學模型。

應用大學課程所學到的微積分技術，可以得到∫
1√

2(E + cosu)
du =

∫
dt,

其中 E 是積分常數，並且 u 是時間 t 的函數。

以大學課程的能力，上述的積分是難以處理的，因為
√
2(E + cosu) 不

是單值函數。因此我們先探討此常微分方程的解 u(t) 所處的空間，並且討論

sinu 的非線性逼近在此空間上的運算情形，此空間就是 N 相黎曼空間。

除此之外，我們研究橢圓函數，並應用雅可比橢圓函數來分析理想單擺

運動的數學模型，也就是我們在摘要開始時所提到的微分方程 u′′ + sin u = 0 ，

並且確實的求解，以及討論解的週期性及相關性質。

中華民國 一 O 二 年 六 月
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The Exact Theory and Numerical Computations of
Pendulum Motions on Riemann Surface of
Genus N with Cut-Structure of Type C

Student: Ming-Hong Fan Advisor: Jong-Eao Lee

Department of Applied Mathematics
National Chiao Tung University

Abstract

u′′ + sinu = 0

is a second order differential equation, which is a pendulum motion.

In the process of solving the O.D.E., we have the integral form∫
1√

2(E + cosu)
du =

∫
dt

where E is the integration constant (a parameter), and u is a function of time t.

The integration is noway to solve due to that
√

2(E + cosu) is not a single-
valued function. So we study the space where the solution u(t) resides, which is a
Riemann Surface of genus N when sin u is replaced by the N -th partial sum of its
Taylor series (which is a polynomial). And we study the corresponding O.D.E.
under this Riemann Surface with the help of Mathematica computations.

Next, we study the classical elliptic function to solve the exact O.D.E.
u′′ + sinu = 0 and analyze the associated properties.

June 2013
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Chapter 1

Introduction

In this paper, we want to study a pendulum motion. An ideal pendulum
motion is energy-conservative, and it can be shown in mathematical model as

u′′ + sinu = 0.

Since the ideal pendulum motion is a second order differential equation,
[1] we reduce it to a first order differential equation and try to solve it naturally.
There is

u′u′′ + u′ sinu = 0,

and
1

2
(u′)2 − cosu = E

where E is the integration constant, then

u′ =
du

dt
= ±

√
2(E + cosu)

where u is a function of time t,∫
1√

2(E + cosu)
du =

∫
dt. (1.1)

1



Although we together all skills of integration in calculus, we still has no
ability to deal with the equation (1.1). So we change the point to discuss where
the solution u(t) resides in short term.

Let f(z) =
√
2(E + cosu). Since the f(z) is in the type of radical ex-

pression, the output of f(z) needs to be confirmed in some domain. For any
E + cosu ∈ C, it can be shown in the polar form, E + cosu = z = |z|eiθ, and,
f(z) is a two-valued function of z on complex plane C since |z|eiθ = |z|eiθ+2nπ.

Indeed, f(z) works on Riemann Surface, [2] [3] and the computations of the in-
tegral on Riemann Surface rely on the theorems of complex analysis, mainly the
Cauchy integral formula. [4]

After studying the Riemann Surface, we use the tools of computing by
Mathematica [5] on Riemann Surface applying to the nonlinear approximation

of sin u into PN(u) = u − u3

3!
+

u5

5!
− u7

7!
+

u9

9!
by the Taylor expansion, sin u =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1.

Since we are trapped into the equation (1.1), i.e., we are not able to inte-
grate the fraction 1√

2(E + cosu)
, trying a brand-new theory is the idea to know

the exact theorem of the pendulum motion.

By the equation (1.1), we transferred the nonlinear O.D.E. problem into
the so-called inverse problem (in an integral form), and it can be replaced by
elliptic functions. [6] Furthermore, solve and express the solutions u(t) in terms

2



of classical elliptic functions. [7]

To construct the theorem enough to solve the original question, the pen-
dulum motion, we will introduce several cases of elliptic functions, including the
definitions, properties, and relations among each other.

Consider the condition in ideal environment, the pendulum motion works
without friction, we can derive the mathematical model of the simple pendulum
motion.

In addition, discuss the reasonable E as the total energy in the sense of
physics and take the place of equation (1.1) by Jacobian elliptic functions so that
it yields the exact solutions and the periods case by case.

3



Chapter 2

Riemann Surface

2.1 Introduction

u′′ + PN(u) = 0 is also a second order different equation where the degree
of polynomial PN(u) is N .

By the derivation, we have∫
1√

2(E − PN+1(u))
du =

∫
dt

where E is the integration constant.

According to the fundamental theorem of Algebra, there is

√
2(E − PN+1(u)) =

√√√√c

N+1∏
k=1

(u− uk), c ∈ C,

hence we must investigate the space where u resides.

4



Actually, f(z) =

√√√√ n∏
k=1

(z − zk) is a two-valued function of z on complex

plane C. We use algebra and analysis to develop a new surface such that f be-
comes a single-valued and analytic function on this surface, namely, a Riemann
Surface. [2]

2.1.1 Construct the corresponding Riemann Surface

First, take f(z) =
√
z for example, f : C → C. Using polar form, let

z = |z|eiθ = |z|ei(θ+2nπ), n ∈ Z, then

f(z) =
√
z = |z|

1
2 e

θ+2nπ
2

i

=

|z|
1
2 e

θ
2
i if n is even

−|z|
1
2 e

θ
2
i if n is odd

is a two-valued function. Now we want to let f(z) becomes a single-valued func-
tion, so we modify its domain C to develop the corresponding Riemann Surface
such that f becomes a single-valued and analytic function on this surface.

Starting at z = reiθ, we have f(z) =
√
z =

√
re

θ
2
i, r ̸= 0. Fixing r and

continuing along a closed path once around the origin so that θ increase by
2π, f(z) comes to the value

√
re

θ+2π
2

i = −
√
re

θ
2
i which is just the negative of its

original value. Continuing above way then θ increase by 2π and f(z) comes to
original value. First, image two sheets lying over the complex plane and cut the
plane along negative real axis (i.e. from zero to infinite) and restrict ourselves so
as never to continue f(z) over this cuts, we get single-valued branches of f(z).

5



Define that

f(z) = |z|
1
2 e

iθ
2 , −π ≤ θ < π,

f(z) = |z|
1
2 e

iθ
2 , π ≤ θ < 3π,

called sheet-I and sheet-II respectively. The cut in each sheet has two edges, label
the edge of starting edge with + and the edge of terminal edge with − (Show
in Figure 2.1). Moreover, we cross the cut and pass from one sheet to another.
Second we extend the plane of complex numbers with one additional point at
infinity constitute a number system known as the extended complex numbers.
Use stereographic projection, we can consider the two sheets to be a sphere.

Figure 2.1: Complex plane and extended complex plane

Next, image that the spheres are made of rubber and stretch each cut into
circular holes.

Rotate the spheres until the holes face each other, and paste two cuts to-
gether (+)edge of sheet-I with (−)edge of sheet-II and (−)edge of sheet-I with
(+)edge of sheet-II. We can derive a sphere. We called this sphere, Riemann
Surface of genus 0, denoted R0. Show in Figure 2.3.

6



Figure 2.2: Place the cuts open

Figure 2.3: Construct R0

Notice that in Riemann Surface (+)edge of sheet-I is equivalent to (−)edge
of sheet-II and (−)edge of sheet-I is equivalent to (+)edge of sheet-II.

We could using similar way to develop the corresponding Riemann Surface

for f(z) =

√√√√ n∏
k=1

(z − zk).

In general situation, using same idea to construct Riemann Surface of f(z)

where f(z) =

√√√√ n∏
k=1

(z − zk) =
n∏

k=1

√
(z − zk), zk ∈ R, z1 > z2 > . . . > zn for

horizontal cuts. First, we cut plane starts from zk to −∞. If the curve cross even
cuts, it will not change that is becomes no cut. If the curve cross odd cuts, it will

7



has a branch cut.

Figure 2.4: n = 2N − 1 or 2N

Case 1: If n = 2N−1. There are cuts along (−∞, z2N−1], . . . , [z2j, z2j−1], . . . , [z4, z3], [z2, z1].

Figure 2.5: n = 2N − 1

Case 2: If n = 2N . There are cuts along [z2N , z2N−1], . . . , [z2j, z2j−1], . . . , [z4, z3], [z2, z1].

Figure 2.6: n = 2N
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We use same idea to construct the corresponding Riemann Surface:

Case 1: n = 2N − 1

Figure 2.7: Placing cuts open in both sheets

Figure 2.8: Together two sheets
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Figure 2.9: N − 1 holes for n = 2N − 1

It becomes Riemann Surface with N − 1 holes, that is RN−1.

Case 2: n = 2N

Figure 2.10: Placing cuts open in both sheets
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Figure 2.11: Together two sheets

Figure 2.12: N − 1 holes for n = 2N

It also becomes Riemann Surface with N − 1 holes, that is RN−1.

So

f(z) =

√√√√2N−1∏
k=1

(z − zk)
or
=

√√√√ 2N∏
k=1

(z − zk)

will make N cuts and construct Riemann Surface of genus N−1, i.e., N−1 holes
in its geometric graph.
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2.1.2 The curve in algebraic and geometric structure

For convenience, we use algebraic to discuss and compute the integrals
later. We already know the relation of algebraic and geometric structure with

f(z) =

√√√√ n∏
k=1

(z − zk) and how to create the Riemann Surface.

We defined something as follow:
1. The curve in sheet-I is solid line and the curve in sheet-II is dash line in
algebraic structure.
2. The curve in overhead Riemann Surface is solid line and the curve in ventral
Riemann Surface is dash line in geometric structure.

2.1.3 The a, b-cycles and its equivalent paths

We know every closed curve on Riemann Surface RN can be deformed into
an integral combination of the loop-cut ai and bi, i = 1, 2, . . . , N . So in this
paper, we will consider the integrals of f(z) over a, b-cycles help us to obtain the
integrals easier.

If f(z) has 2N−1 or 2N roots, there are loop-cuts ai, bi, i = 1, 2, . . . , N−1.

12



Figure 2.13: a, b-cycles on complex plane

Figure 2.14: a, b-cycles on Riemann Surface

Each a-cycles are non-overlapping and each b-cycles are non-overlapping.
Also a, b-cycles have the same number.

Sometimes the curves are difficult to write out their parameters, but always
easy to straight lines. It could help us quicker and easier to obtain the integrals
over the curves. So now using homotopic of curves to find the equivalent paths
of curves. Take an example to explain.

From C is homotopic to C1, denotes C ≈ C1. We have∫
C

1

f(z)
dz =

∫
C1

1

f(z)
dz

in Figure 2.15, C ≈ C1 ≈ C2 ≈ C3, and finally we compression the curve C until

13



Figure 2.15: Homotopic

we find the equivalent paths of curves C ≈ Γ1 ∪ Γ2. So∫
C

1

f(z)
dz =

∫
Γ1∪Γ2

1

f(z)
dz (2.1)

=

∫
Γ1

1

f(z)
dz +

∫
Γ2

1

f(z)
dz. (2.2)

Here we give a simple example to confirm the theorem above.

Figure 2.16: Cut plane and a, b-cycle of f(z) =
√

z(z − 1)(z − 2)(z − 3)
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Let f(z) =
√

z(z − 1)(z − 2)(z − 3) =
√
z
√
z − 1

√
z − 2

√
z − 3 and a, b-

cycle show as Figure 2.16, then there are two circular paths display the a, b-cycle,
x =

5

2
, r = 1, and x =

3

2
, r = 1 respectively.

So we have the parametric forms for the integral of a-cycle, z =
5

2
+ eiθ,

∫
a

1

f(z)
dz

Math.
=

∫ π

−π

ieiθ

f(5
2
+ eiθ)

dθ

= 0.+ 3.3715i,

and b-cycle, z =
3

2
+ eiθ. Since the path in sheet-II are equivalent to the minus of

path in sheet-I, which will introduce later, there is∫
b

1

f(z)
dz

Math.
=

∫ 0

−π

ieiθ

f(3
2
+ eiθ)

dθ −
∫ π

0

ieiθ

f(3
2
+ eiθ)

dθ

= −4.31303 + 0. i.

Next, we use the homotopic paths to get the integral of a, b-cycle.

Figure 2.17: Equivalent paths of a, b-cycle
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The equivalent path of a-cycle, from 2 to 3 on the (+)edge in sheet-I and
from 3 to 2 on the (−)edge in sheet-I, is called a∗-cycle.∫

a∗

1

f(z)
dz

Math.
= 2

∫ 2

3

1

f(z)
dz

= 0.+ 3.3715i

The equivalent path of b-cycle, from 1 to 2 in sheet-I and from 2 to 1 in
sheet-II, is called b∗-cycle. Similarly, since the path in sheet-II are equivalent to
the minus of path in sheet-I, there is∫

b∗

1

f(z)
dz

Math.
= 2

∫ 2

1

1

f(z)
dz

= −4.31303 + 0. i

By the calculations above, we verify the theorem for the equivalent path,
i.e., homotopic. It means that we can choose the simplest path for the close
contour, and get the numerical result in a efficient way.

In the next pages, we will use the skill (2.1) and (2.2) to compute all cases.

2.1.4 Conclusion of structure of Riemann Surface

For arbitrary cut, if f(z) has 2N − 1 or 2N roots, then
1. There are N cuts in complex plane.
2. Its geometric graph has N − 1 holes, and construct corresponding Riemann
Surface of genus N − 1, i.e., RN−1.
3. There are N − 1 a-cycles and N − 1 b-cycles.
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2.2 The integrals of 1

f (z)
over a, b-cycles for hor-

izontal cuts

We will use Mathematica helping us to obtain the values of integrals of 1

f(z)
over a, b-cycles. First, discuss the values in sheet-I, sheet-II and Mathematica for

horizontal cuts. f(z) =

√√√√ n∏
k=1

(z − zk), using polar form
n∏

k=1

(z − zk). Let θ1

denotes θ in sheet-I and θ2 denotes in sheet-II. So

θ2 = θ1 + 2π.

We have

f(z)|(II) =
√
re

θ2
2
i

=
√
re

θ1+2π
2

i

=
√
re

θ1
2
ieπi

= −
√
re

θ1
2
i = −f(z)|(I)

where f(z)|(I) denote the value of f(z) with z in sheet-I and f(z)|(II) means z

in sheet-II. Because the difference of argument between z in sheet-I and sheet-
II is 2π, there is the difference between f(z)|(I) and f(z)|(II) is π. So, there is
f(z)|(II) = −f(z)|(I).

Now discuss the difference in sheet-I of theory and Mathematica. First,
√
−1 = −i, but we compute

√
−1 in Mathematica obtain

√
−1 Math.

= i. Why?
We found that θ ∈ (−π, π] of reiθ in Mathematica, actually. For any other θ

of reiθ which does not belong to (−π, π], Mathematica will conversion reiθ into
reiθ

∗ , θ∗ ∈ (−π, π] where reiθ = reiθ
∗ .
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Compare the value of f(z) with z in sheet-I and in Mathematica, we dis-
cover that

Lemma 2.1. If
n∏

k=1

(z − zk) = reiθ in sheet-I for horizontal cut,

f(z)|(I) =

 f(z)|Mathematica if θ ∈ (−π, π),
−f(z)|Mathematica if θ = −π.

Proof.
Since −π does not in (−π, π], Mathematica will conversion re−iπ into reiπ, but
f(re−iπ) and f(reiπ) are different.

In theory: − 1 = e−iπ ⇒
√
−1 = e−

iπ
2 = −i

In Mathematica: − 1 = e−iπ
Math.
= eiπ ⇒

√
−1 = e

iπ
2 = i

So f(z)
Math.
= −f(z) if θ = −π in Mathematica.

In whole paper, f(z) Math.
= −f(z) denotes the polynomial f(z) in front of

Math.
= is the value of f(z) in theory and the polynomial f(z) behind the Math.

= is
the value of f(z) in Mathematica.

Clearly, there is a mistake when θ = −π. When we use Mathematica to
get the value of integration we want, we need modify some range where the value
will wrong. Determine the difference of sign(f) (same or negative) and then
modify the computation of Mathematica to get right value. Because sometimes
the form of integration is complex, if we could simplify the way about modify the
difference of sign(f), it will help us to get right value easier.
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Discuss in general situation:

Compute
∫

1

f(z)
dz over a, b-cycles for horizontal cuts where f(z) =

√√√√ m∏
k=1

(z − zk) =

m∏
k=1

√
z − zk, zk ∈ R, ∀k = 1 ∼ m and z1 > z2 > . . . > zm.

1. a-cycles:

Figure 2.18: a-cycles for 2N − 1 points

Figure 2.19: a-cycles for 2N points

There are N cuts (N − 1 holes), we give that aj is a cycle, center at x with
radius r, enclosed [z2j, z2j−1] and doesn’t intersect with other cuts. (parametric
form)

If z ∈ aj, let z = x+ reiθ where θ ∈ [−π, π),∫
aj

1

f(z)
dz =

∫
aj

1√∏m
k=1 (z − zk)

dz

=

∫ π

−π

rieiθ∏m
k=1

√
x+ reiθ − zk

dθ.
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2. Consider
∫
a∗j

1

f(z)
dz where a∗j is an equivalent path for aj and it’s from z2j to

z2j−1 on (+)edge and then from z2j−1 to z2j on (−)edge:

Figure 2.20: a∗-cycles for 2N − 1 points

Figure 2.21: a∗-cycles for 2N points

By Cauchy integral formula, [4] we can get that∫
aj

1

f(z)
dz =

∫
a∗j

1

f(z)
dz.

Using Lemma 2.1 to compute:

(i) z2j
+→ z2j−1:

arg(z − zk) = 0 ⇒
√
z − zk

Math.
=
√
z − zk, k = 2j, 2j + 1, . . . ,m

arg(z − zk) = −π ⇒
√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2j − 1
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So

f(z)
Math.
= (−1)2j−1f(z)

= −f(z),

∫
z2j

+→z2j−1

1

f(z)
dz

Math.
= −

∫ z2j−1

z2j

1

f(z)
dz. (2.3)

(ii) z2j
−← z2j−1:

arg(z − zk) = 0 ⇒
√
z − zk

Math.
=
√
z − zk, k = 2j, 2j + 1, . . . ,m

arg(z − zk) = π ⇒
√
z − zk

Math.
=
√
z − zk, k = 1, 2, . . . , 2j − 1

So

f(z)
Math.
= f(z),

∫
z2j

−←z2j−1

1

f(z)
dz

Math.
=

∫ z2j

z2j−1

1

f(z)
dz. (2.4)

Conclusion of a-cycles: By (2.3) and (2.4),∫
a∗j

1

f(z)
dz

Math.
= 2

∫ z2j

z2j−1

1

f(z)
dz.
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3. b-cycles:

Figure 2.22: b-cycles for 2N − 1 points

Give bj is a circle, center at x with radius r, enclosed the [z2N−1, z2j] and intersect
at the points on [z2j, z2j−1] and (−∞, z2N−1].

Figure 2.23: b-cycles for 2N points

Give bj is a circle, center at x with radius r, enclosed the [z2N−1, z2j] and intersect
at the points on [z2j, z2j−1] and (−∞, z2N−1]. If z ∈ bj, z = x + reiθ where
θ ∈ [−π, 0) ∪ [2π, 3π). From

f(z)|(II) = −f(z)|(I),

there is∫
bj

1

f(z)
dz =

∫ 0

−π

rieiθ∏m
k=1

√
x+ reiθ − zk

dθ +

∫ 3π

2π

rieiθ∏m
k=1

√
x+ reiθ − zk

dθ

=

∫ 0

−π

rieiθ∏m
k=1

√
x+ reiθ − zk

dθ −
∫ π

0

rieiθ∏m
k=1

√
x+ reiθ − zk

dθ.
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4. The equivalent path b∗j :

Figure 2.24: b∗-cycles for 2N − 1 points

Figure 2.25: b∗-cycles for 2N points

From Cauchy integral formula, we have∫
bj

1

f(z)
=

∫
b∗j

1

f(z)

where b∗j is a path from zm to z2j in sheet-I and then from z2j to zm in sheet-II.
Similarly, using Lemma 2.1 to compute:

(1) The path on cut, i.e., the path from z2s+2 to z2s+1 on (+)edge of sheet-I and
the path from z2s+1 to z2s+2 on (−)edge of sheet-II, s = j, j + 1, . . . , N − 2.

(i) z2s+2
+→ z2s+1:

arg(z − zk) = 0 ⇒
√
z − zk

Math.
=
√
z − zk, k = 2s+ 2, 2s+ 3, . . . ,m

arg(z − zk) = −π ⇒
√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2s+ 1
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So

f(z)
Math.
= (−1)2s+1f(z)

= −f(z),

∫
z2s+2

+→z2s+1

1

f(z)
dz

Math.
= −

∫ z2s+1

z2s+2

1

f(z)
dz. (2.5)

(ii) z2s+2
−. z2s+1 on (−)edge of sheet-II is same as on (+)edge of sheet-I,

so consider z2s+2
+← z2s+1:

arg(z − zk) = 0 ⇒
√
z − zk

Math.
=
√
z − zk, k = 2s+ 2, 2s+ 3, . . . ,m

arg(z − zk) = −π ⇒
√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2s+ 1

So

f(z)
Math.
= (−1)2s+1f(z)

= −f(z),

∫
z2s+2

−. z2s+1

1

f(z)
dz

Math.
= −

∫ z2s+2

z2s+1

1

f(z)
dz. (2.6)

(2) Without cuts, i.e., the path from z2s+1 to z2s in sheet-I and the path from z2s

to z2s+1 in sheet-II, s = j, j + 1, . . . , N − 2.
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(i) z2s+1 → z2s:

arg(z − zk) = 0 ⇒
√
z − zk

Math.
=
√
z − zk, k = 2s+ 1, 2s+ 2, . . . ,m

arg(z − zk) = −π ⇒
√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2s

So

f(z)
Math.
= (−1)2sf(z)

= f(z),

∫
z2s+1→z2s

1

f(z)
dz

Math.
=

∫ z2s

z2s+1

1

f(z)
dz. (2.7)

(ii) z2s+1 . z2s, by f(z)|(II) = −f(z)|(I), we consider z2s+1 ← z2s first:

arg(z − zk) = 0 ⇒
√
z − zk

Math.
=
√
z − zk, k = 2s+ 1, 2s+ 2, . . . ,m

arg(z − zk) = −π ⇒
√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2s

Hence

f(z)|z2s+1 . z2s = −f(z)|z2s+1←z2s

Math.
= −(−1)2sf(z)|z2s+1←z2s

= −f(z)|z2s+1←z2s ,

∫
z2s+1 . z2s

1

f(z)
dz

Math.
= −

∫ z2s+1

z2s

1

f(z)
dz. (2.8)

25



Conclusion of b-cycles: By (2.5), (2.6), (2.7) and (2.8),∫
b∗j

1

f(z)
dz

Math.
=

N−1∑
s=j

(
2

∫ z2s

z2s+1

1

f(z)
dz

)
.

2.3 The integrals of 1

f (z)
over a, b-cycles for ver-

tical cuts

After knowing the integrals in horizontal cuts introducing in the previous
section, we will discuss the integrals for vertical cuts. In this case, we define that

z − zk = reiθ, θ ∈ [−3π

2
,
π

2
) if z in sheet-I

z − zk = reiθ, θ ∈ [
π

2
,
5π

2
) if z in sheet-II,

the cut in each sheet has two edges, label the starting edge with + and the terming
edge with − and zk is the end point of vertical cut.

As the previous section, we need to modify the computation in Mathemat-
ica such that the numerical result of Mathematica is identical to the numerical
result of theory when θ ∈ [−3π

2
,−π].

Lemma 2.2. When z in sheet-I for vertical cut whose one of the end points is
zk,

√
z − zk

Math.
=

 −
√
z − zk if arg(z − zk) ∈ [−3π

2
,−π],

√
z − zk if arg(z − zk) ∈ (−π, π

2
).
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Proof.
Let z in sheet-I and using polar form z− zk = reiθ. When θ ∈ (−π, π

2
), the argu-

ment in theory or Mathematica is the same. When θ ∈ [−3π

2
,−π], Mathematica

will conversion θ into θ + 2π where θ + 2π ∈ [
π

2
, π] and reiθ = re(θ+2π)i, but

In theory:
√
z − zk =

√
re

θ
2
i

In Mathematica:
√
z − zk =

√
re

θ+2π
2

i = −
√
re

θ
2
i

Thus, if θ ∈ [−3π

2
,−π],

√
z − zk

Math.
= −

√
z − zk.

As same as horizontal cut. We first discuss the difference between the value
in theory and the value in Mathematica. Compare their sign(f) is different or
not? Using statement before about modify and get value, the result will be the
same or not?

Discuss in general situation of case 1:

Compute
∫

1

f(z)
dz over a, b-cycles for vertical cuts where f(z) =

√√√√ m∏
k=1

(z − zk) =

m∏
k=1

√
z − zk, zk = rki, rk ∈ R,∀k = 1 ∼ m and r1 < r2 < . . . < rm.
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1. a-cycles:

Figure 2.26: a-cycles and their equivalent paths a∗

aj is a cycle, center at x with radius r, enclosed [z2j, z2j−1] and doesn’t
intersect with other cuts.

∫
aj

1

f(z)
dz =

∫
a∗j

1

f(z)
dz in sheet-I. The equivalent

path a∗j is the path on a vertical cut from z2j to z2j−1 on (+)edge and then from
z2j−1 to z2j on (−)edge.

Using Lemma 2.2 to compute:

(i) z2j
+→ z2j−1:

arg(z − zk) = −
π

2
⇒
√
z − zk

Math.
=
√
z − zk, k = 2j, 2j + 1, . . . ,m

arg(z − zk) = −
3π

2
⇒
√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2j − 1
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So

f(z)
Math.
= (−1)2j−1f(z)

= −f(z),

∫
z2j

+→z2j−1

1

f(z)
dz

Math.
= −

∫ z2j−1

z2j

1

f(z)
dz. (2.9)

(ii) z2j
−← z2j−1:

arg(z − zk) = −
π

2
⇒
√
z − zk

Math.
=
√
z − zk, k = 2j, 2j + 1, . . . ,m

arg(z − zk) = −
π

2
⇒
√
z − zk

Math.
=
√
z − zk, k = 1, 2, . . . , 2j − 1

So

f(z)
Math.
= f(z),

∫
z2j

−←z2j−1

1

f(z)
dz

Math.
=

∫ z2j

z2j−1

1

f(z)
dz. (2.10)

Conclusion of a-cycles of case 1: By (2.9) and (2.10),∫
a∗j

1

f(z)
dz

Math.
= 2

∫ z2j

z2j−1

1

f(z)
dz.

2. b-cycles:

bj is a cycle, center at x with radius r, enclosed [z2N−1, z2j] and intersect
the points on [z2j, z2j−1] and [z2N−1, z2N ] in the case of 2N points, or bj is a cy-
cle, center at x with radius r, enclosed [z2N−1, z2j] and intersect the points on
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Figure 2.27: bj and b∗j of 2N − 1 and 2N points

[z2j, z2j−1] and [z2N−1,∞) in the case of 2N − 1 points.

By Cauchy integral formula, we know that∫
bj

1

f(z)
dz =

∫
b∗j

1

f(z)
dz

where b∗j is a path from zm to z2j in sheet-I and then from z2j to zm in sheet-II.
Similarly, using Lemma 2.2 to compute:

(1) The path on cut, i.e., the path from z2s+2 to z2s+1 on (+)edge of sheet-I and
the path from z2s+1 to z2s+2 on (−)edge of sheet-II, s = j, j + 1, . . . , N − 2.

(i) z2s+2
+→ z2s+1:

arg(z − zk) = −
π

2
⇒
√
z − zk

Math.
=
√
z − zk, k = 2s+ 2, 2s+ 3, . . . ,m

arg(z − zk) = −
3π

2
⇒
√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2s+ 1
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So

f(z)
Math.
= (−1)2s+1f(z)

= −f(z),

∫
z2s+2

+→z2s+1

1

f(z)
dz

Math.
= −

∫ z2s+1

z2s+2

1

f(z)
dz. (2.11)

(ii) z2s+2
−. z2s+1 on (−)edge of sheet-II is same as on (+)edge of sheet-I,

so consider z2s+2
+← z2s+1:

arg(z − zk) = −
π

2
⇒
√
z − zk

Math.
=
√
z − zk, k = 2s+ 2, 2s+ 3, . . . ,m

arg(z − zk) = −
3π

2
⇒
√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2s+ 1

So

f(z)
Math.
= (−1)2s+1f(z)

= −f(z),

∫
z2s+2

−. z2s+1

1

f(z)
dz

Math.
= −

∫ z2s+2

z2s+1

1

f(z)
dz. (2.12)

(2) Without cuts, i.e., the path from z2s+1 to z2s in sheet-I and the path from z2s

to z2s+1 in sheet-II, s = j, j + 1, . . . , N − 2.
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(i) z2s+1 → z2s:

arg(z − zk) = −
π

2
⇒
√
z − zk

Math.
=
√
z − zk, k = 2s+ 1, 2s+ 2, . . . ,m

arg(z − zk) = −
3π

2
⇒
√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2s

So

f(z)
Math.
= (−1)2sf(z)

= f(z),

∫
z2s+1→z2s

1

f(z)
dz

Math.
=

∫ z2s

z2s+1

1

f(z)
dz. (2.13)

(ii) z2s+1 . z2s, by f(z)|(II) = −f(z)|(I), we consider z2s+1 ← z2s first:

arg(z − zk) = −
π

2
⇒
√
z − zk

Math.
=
√
z − zk, k = 2s+ 1, 2s+ 2, . . . ,m

arg(z − zk) = −
3π

2
⇒
√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2s

Hence

f(z)|z2s+1 . z2s = −f(z)|z2s+1←z2s

Math.
= −(−1)2sf(z)|z2s+1←z2s

= −f(z)|z2s+1←z2s ,

∫
z2s+1 . z2s

1

f(z)
dz

Math.
= −

∫ z2s+1

z2s

1

f(z)
dz. (2.14)
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Conclusion of b-cycles of case 1: By (2.11), (2.12), (2.13) and (2.14),∫
b∗j

1

f(z)
dz

Math.
=

N−1∑
s=j

(2

∫ z2s

z2s+1

1

f(z)
dz).

When we want to modify the computation of f(z) which has m roots, we
needs to consider

√
z − zk, k = 1, 2, . . . ,m. There are m steps of modifying the

computation, and if m is large, it will become troublesome. Here provides a way
to reduce the step. We can divided domain R into many areas to discuss the way
to modify on vertical cuts.

If f(z) =

√√√√ m∏
k=1

(z − zk) =
m∏
k=1

√
z − zk for vertical cut in general situation:

Figure 2.28: The areas with 2N − 1 and 2N points in vertical cuts

In each case we can determine that where f(z)
Math.
= f(z) or f(z)

Math.
= −f(z).

33



Case 1: zk = aki, ak ∈ R, k = 1, 2, . . . , 2N

Case 2: zk = aki, ak ∈ R, k = 1, 2, . . . , 2N − 1

1. z ∈ (+)edge of the cut [z2j−1, z2j):

arg(z − zk) = −
3π

2
⇒
√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2j − 1

arg(z − zk) = −
π

2
⇒
√
z − zk

Math.
=
√
z − zk, k = 2j, 2j + 1, . . . , 2N − 1 or 2N

f(z)
Math.
= (−1)2j−1f(z) = −f(z)

2. z ∈ (−)edge of the cut [z2j−1, z2j):

arg(z − zk) =
π

2
⇒
√
z − zk

Math.
=
√
z − zk, k = 1, 2, . . . , 2j − 1

arg(z − zk) = −
π

2
⇒
√
z − zk

Math.
=
√
z − zk, k = 2j, 2j + 1, . . . , 2N − 1 or 2N

f(z)
Math.
= f(z)

3. z ∈ {(x, y) : x < 0, a2j−1 ≤ y < a2j} = region-(2j − 1):

arg(z − zk) ∈ (−3π

2
,−π] ⇒

√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2j − 1

arg(z − zk) ∈ (−π,−π

2
) ⇒

√
z − zk

Math.
=
√
z − zk, k = 2j, 2j + 1, . . . , 2N − 1 or 2N

f(z)
Math.
= (−1)2j−1f(z) = −f(z)

4. z ∈ {(x, y) : x ≤ 0, a2j ≤ y < a2j+1} = region-(2j):

arg(z − zk) ∈ [−3π

2
,−π] ⇒

√
z − zk

Math.
=
√
z − zk, k = 1, 2, . . . , 2j

arg(z − zk) ∈ (−π,−π

2
] ⇒

√
z − zk

Math.
=
√
z − zk, k = 2j + 1, 2j + 2, . . . , 2N − 1 or 2N

f(z)
Math.
= f(z)
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5. z ∈ {(x, y) : x ≤ 0, y < a1} ∪ {(x, y) : 0 < x}:

arg(z − zk) ∈ (−π, π
2
) ⇒

√
z − zk

Math.
=
√
z − zk, ∀k

f(z)
Math.
= f(z)

Conclusion:

f(z)
Math.
=

−f(z) if z ∈ region-(2j − 1) ∪ (+)edge of the cut [z2j−1, z2j)

f(z) otherwise

After studying the above skill, now let us discuss the other general case of
vertical cuts whose figure showed below by two ways.

Consider f(z) =

√√√√ m∏
k=1

(z − zk) =
m∏
k=1

√
z − zk, where n = 2N, z2k−1 =

z2k, k = 1, 2, . . . , N and Re(z1) > Re(z3) > . . . > Re(z2N−1), also Im(z1) =

Im(z3) = . . . = Im(z2N−1) and Im(z2) = Im(z4) = . . . = Im(z2N).

Figure 2.29: a, b-cycles in other kind of vertical cuts
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1. Compute
∫
a∗j

1

f(z)
dz where a∗j is an equivalent path for aj:

Figure 2.30: a∗j -cycles in other kind of vertical cuts

(1) Compute by using argument of complex number to modify:

(i) The path from z2j to z2j−1 on (+)edge of sheet-I:

arg(z − zk) ∈ [−3π

2
,−π] ⇒

√
z − zk

Math.
= −

√
z − zk, k = 1, 3, . . . , 2j − 1

arg(z − zk) ∈ (−π, π
2
) ⇒

√
z − zk

Math.
=
√
z − zk, k = otherwise

f(z)
Math.
= (−1)jf(z)

(ii) The path from z2j−1 to z2j on (−)edge of sheet-I:

arg(z − zk) ∈ [−3π

2
,−π] ⇒

√
z − zk

Math.
= −

√
z − zk, k = 1, 3, . . . , 2j − 3

arg(z − zk) ∈ (−π, π
2
) ⇒

√
z − zk

Math.
=
√
z − zk, k = otherwise

f(z)
Math.
= (−1)j−1f(z)
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By (i), (ii), and Cauchy integral formula,∫
aj

1

f(z)
dz =

∫
a∗j

1

f(z)
dz

Math.
= (−1)j

∫ z2j−1

z2j

1

f(z)
dz + (−1)j−1

∫ z2j

z2j−1

1

f(z)
dz

= (−1)j2
∫ z2j−1

z2j

1

f(z)
dz.

(2) Using the result about modify of blocks and then we can compute∫
a∗j

1

f(z)
dz:

(i) The path from z2j to z2j−1 on (+)edge of sheet-I:

√
z − z2k−1

√
z − z2k

Math.
= −

√
z − z2k−1

√
z − z2k, k = 1, 2, . . . , j

√
z − z2k−1

√
z − z2k

Math.
=
√
z − z2k−1

√
z − z2k, k = j + 1, j + 2, . . . , N

f(z)
Math.
= (−1)j

m∏
k=1

√
z − zk = (−1)jf(z)

(ii) The path from z2j−1 to z2j on (−)edge of sheet-I:

√
z − z2k−1

√
z − z2k

Math.
= −

√
z − z2k−1

√
z − z2k, k = 1, 2, . . . , j − 1

√
z − z2k−1

√
z − z2k

Math.
=
√
z − z2k−1

√
z − z2k, k = j, j + 1, . . . , N

f(z)
Math.
= (−1)j−1

m∏
k=1

√
z − zk = (−1)j−1f(z)
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By (i),(ii), we have∫
aj

1

f(z)
dz =

∫
a∗j

1

f(z)
dz

Math.
= (−1)j

∫ z2j−1

z2j

1

f(z)
dz + (−1)j−1

∫ z2j

z2j−1

1

f(z)
dz

= (−1)j2
∫ z2j−1

z2j

1

f(z)
dz.

2. Compute
∫
b∗j

1

f(z)
dz where b∗j is an equivalent path for bj, and b∗j = ∪N

k=j+1a
∗
k∪

{z2N → z2j} ∪ {z2N . z2j}:

Figure 2.31: b∗j -cycles in other kind of vertical cuts

(1) z ∈ a∗k: done above.

(2) {z2N → z2j} ∪ {z2N . z2j}:

(a) Compute by using argument of complex number to modify:

(i) z2s+2 → z2s (namely b∗s1), s = j, j + 1, . . . , N − 1:

arg(z − zk) ∈ [−3π

2
,−π] ⇒

√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2s

arg(z − zk) ∈ (−π, π
2
) ⇒

√
z − zk

Math.
=
√
z − zk, k = 2s, 2s+ 1, . . . , 2N
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f(z)
Math.
= (−1)2sf(z) = f(z)

(ii) z2s+2. z2s (namely b∗s2), s = j, j + 1, . . . , N − 1. Since f(z)|(II) =

−f(z)|(I), so we consider z2s+2 ← z2s first:

arg(z − zk) ∈ [−3π

2
,−π] ⇒

√
z − zk

Math.
= −

√
z − zk, k = 1, 2, . . . , 2s

arg(z − zk) ∈ (−π, π
2
) ⇒

√
z − zk

Math.
=
√
z − zk, k = 2s, 2s+ 1, . . . , 2N

f(z)
Math.
= −(−1)2sf(z) = −f(z)

By (i),(ii), and letting b∗s1 ∪ b∗s2 = b∗s, we have∫
b∗s

1

f(z)
dz =

∫
b∗s1

1

f(z)
dz +

∫
b∗s2

1

f(z)
dz

Math.
=

∫ z2s

z2s+2

1

f(z)
dz + (−1)

∫ z2s+2

z2s

1

f(z)
dz

= 2

∫ z2s

z2s+2

1

f(z)
dz.

(b) Using the result about modify of blocks to compute in Mathematica:

(i) z2s+2 → z2s (b∗s1), s = j, j + 1, . . . , N − 1:

√
z − z2k−1

√
z − z2k

Math.
=

√
z − z2k−1

√
z − z2k, ∀k

f(z)
Math.
= f(z)

39



(ii) z2s+2. z2s (b∗s2), s = j, j + 1, . . . , N − 1. Since f(z)|(II) = −f(z)|(I), so
we consider z2s+2 ← z2s first:

√
z − z2k−1

√
z − z2k

Math.
=

√
z − z2k−1

√
z − z2k, ∀k

f(z)
Math.
= −f(z)

By the above compute and Cauchy integral formula,∫
bj

1

f(z)
dz =

∫
b∗j

1

f(z)
dz

=
N∑

k=j+1

∫
a∗k

1

f(z)
dz +

N−1∑
s=j

∫
b∗s

1

f(z)
dz

Math.
=

N∑
k=j+1

(
(−1)j2

∫ z2k−1

z2k

1

f(z)
dz

)
+

N−1∑
s=j

(
2

∫ z2s

z2s+2

1

f(z)
dz

)
.

No matter what methods we use, way of areas or the arguments of complex
number, the modifying is the same. This means that we could choose the way
letting the computation easier for different situation.

Together with the consequences, the next chapter shows how we apply the
all conclusions above to a polynomial, surely, we can deal with the computation
of known function which we are interesting about its construction on Riemann
Surface.
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Chapter 3

Apply Riemann Surface to
Nonlinear Approximation of Sine

After the study of previous chapter, we apply the conclusion of Riemann
Surface to the approximation of sine, and compute the integration on the Rie-
mann Surface. Here we replace sin u by PN(u) = u − u3

3!
+

u5

5!
− u7

7!
+

u9

9!
since

sinu =
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1, the Taylor expansion shows.

So that, there is a new differential equation

u
′′
+ PN(u) = 0,

u
′
u

′′
+ u

′
PN(u) = 0.

Integrating both sides, we obtain

1

2
(u

′
)2 + PN+1(u) = E
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where E is the integration constant, PN+1(u) =
u2

2!
− u4

4!
+

u6

6!
− u8

8!
+

u10

10!
, then

u
′
=

du

dt
=
√
2(E − PN+1(u))

where u is a function of time t,∫
1√

2(E − PN+1(u))
du =

∫
dt.

According to the fundamental theorem of Algebra, there is

√
2(E − PN+1(u)) =

√√√√c

N+1∏
k=1

(u− uk), c ∈ C.

Let f(u,E) =
√
2(E − PN+1(u)), here we take E be 1.5, so that we can

use Mathematica and obtain

f(u, 1.5) =

√√√√ 10∏
k=1

(u− uk) =
10∏
k=1

√
u− uk

where

u1 = −5.7957− 3.81789i u2 = −5.7957 + 3.81789i

u3 = −5.42043 u4 = −4.26672

u5 = −2.09438 u6 = 2.09438

u7 = 4.26672 u8 = 5.42043

u9 = 5.7957− 3.81789i u10 = 5.7957 + 3.81789i.

For convenience, we will replace f(u, 1.5) by f(u) in the following pages.
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Hence, we have ten branch points and obtain five branch cuts as the figure
below.

Figure 3.1: Branch points and branch cuts

As we learned in Chapter 2, all integration of closed contour on Riemann
Surface is homotopic to the linear combination of a, b-cycles since the Cauchy
integral formula. Hence, it is going to show the a, b-cycles in the integral∫

1

f(u)
du =

∫
1∏10

k=1

√
u− uk

du.

Since there exist five branch cuts, there are four a-cycles and four b-cycles
we need to discuss, and the following computation will be completed by paramet-
ric form. The all closed contour cycles are counterclockwise.
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The a-cycles is showed below.

Figure 3.2: a-cycles

The equivalent a1-cycle is showed below.

Figure 3.3: Equivalent a1-cycle

∫
a1

1

f(u)
du

Math.
= 2

∫ u4

u3

1

f(r)
dr

= −1.03837× 10−20 − 0.00339657i
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The equivalent a2-cycle is showed below.

Figure 3.4: Equivalent a2-cycle

∫
a2

1

f(u)
du

Math.
= 2

∫ u6

u5

1

f(r)
dr

= −2.29246× 10−20 + 0.00640376i

The equivalent a3-cycle is showed below.

Figure 3.5: Equivalent a3-cycle
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∫
a3

1

f(u)
du

Math.
= 2

∫ u8

u7

1

f(r)
dr

= 2.30733× 10−21 − 0.00339657i

The equivalent a4-cycle is showed below.

Figure 3.6: Equivalent a4-cycle

∫
a4

1

f(u)
du

Math.
= 2

∫ Im(u10)

Im(u9)

1

f(Re(u9) + ri)
idr

= −3.52366× 10−19 + 0.000194696i

Hence, we have all numerical results of a-cycles, and the next step is com-
puting the b-cycles.
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The b-cycles is showed below.

Figure 3.7: b-cycles

The equivalent b1-cycle is showed below.

Figure 3.8: Equivalent b1-cycle

∫
b1

1

f(u)
du

Math.
= 2

∫ Im(u1)

0

1

f(Re(u1) + ri)
idr − 2

∫ u3

Re(u1)

1

f(r)
dr

= 0.00226652 + 0.0000973482i
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The equivalent b2-cycle is showed below.

Figure 3.9: Equivalent b2-cycle

∫
b2

1

f(u)
du

Math.
=

∫
b1

1

f(u)
du− 2

∫ u5

u4

1

f(r)
dr

= −0.00300153 + 0.0000973482i

The equivalent b3-cycle is showed below.

Figure 3.10: Equivalent b3-cycle
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∫
b3

1

f(u)
du

Math.
=

∫
b2

1

f(u)
du− 2

∫ u7

u6

1

f(r)
dr

= 0.00226652 + 0.0000973482i

The equivalent b4-cycle is showed below.

Figure 3.11: Equivalent b4-cycle

∫
b4

1

f(u)
du

Math.
=

∫
b3

1

f(u)
du− 2

∫ Re(u10)

u8

1

f(r)
dr + 2

∫ 0

Im(u10)

1

f(Re(u10) + ri)
idr

= 8.67362× 10−19 − 4.06576× 10−20i

So far, we have all numerical results of a, b-cycles, and, hence, we can obtain
any integration of closed contour in this specific case.
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Chapter 4

Elliptic Functions

In our original question, we want to solve the different equation

u′′ + sinu = 0,

and since the difficulty in integration, the ideal of solving the equation changes
to the theory of elliptic functions. [6] There are several typical cases of elliptic
functions, and the following pages will introduce the definitions, properties, and
relations among these cases.

4.1 General definitions and properties of elliptic

functions

4.1.1 Introduction

The first mathematician who studied the theory of elliptic integrals sys-
tematically is Legendre, and the ideal of inverting an elliptic integral to obtain
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an elliptic function is due to Abel, Jacobi and Gauss. The elliptic function is
originated from the problem of finding the circumference of the ellipse, and in
the view of differential equations, the elliptic function can solve kinds of problem
with complex integrations.

4.1.2 Doubly-periodic functions and elliptic functions

A function f is called periodic with period 2ω if

f(z + 2ω) = f(z).

A function f is called a doubly-periodic function with 2ω1 and 2ω2 if

f(z + 2ω1) = f(z + 2ω2) = f(z)

where 2ω2

2ω1

is not purely real.

Moreover, a doubly-periodic function f is called an elliptic function if it is
analytic except poles and has no singularities other than poles in the finite part
of the plane.

4.1.3 Period-parallelograms

Suppose that in the plane of the variable z we mark the points 0, 2ω1, 2ω2

and 2ω1+2ω2, generally, all the points whose complex coordinates are of the form
2mω1 + 2nω2, where m and n are integers. Consider the points of set 0, 2ω1, 2ω2

and 2ω1+2ω2, and we obtain a parallelogram as the vertices. If there is no point
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ω inside or on the boundary of this parallelogram such that

f(z + ω) = f(z)

for all values of z, this parallelogram is called a fundamental period-parallelogram
for an elliptic function with periods 2ω1, 2ω2.

Such a translated parallelogram, without zeros or poles on its boundary, is
called a cell.

4.1.4 Simple properties of elliptic functions

1. The number of poles of an elliptic function in any cell is finite.
2. The number of zeros of an elliptic function in any cell is finite.
3. The sum of the residues of an elliptic function at its poles in any cell is zero.
4. Liouville’s theorem:
An elliptic function with no poles in a cell is merely a constant.

4.2 Weierstrass elliptic function

4.2.1 Definition

The Weierstrass elliptic function ℘(z) is one of the famous elliptic function,
which is defined by the equation

℘(z) =
1

z2
+
∑
m,n

′

{
1

(z − 2mω1 − 2nω2)2
− 1

(2mω1 + 2nω2)2

}
(4.1)
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where
∑

′ denotes that the sum excludes the term when m = n = 0 and ω1, ω2

satisfy the condition that the ratio is not purely real. For brevity, we write Ωm,n

in place of 2mω1 + 2nω2. So that the equation (4.1) will be

℘(z) =
1

z2
+
∑
m,n

′

{
(z − Ωm,n)

−2 − Ω−2m,n

}
.

4.2.2 Properties of ℘(z)

1. ℘(z) is an even function with single double pole at Ωm,n for integers m,n.

2. ℘(z) satisfies the differential equation

℘
′2(z) = 4℘3(z)− g2℘(z)− g3

where g2 and g3 (called the invariants) are given by the equations

g2 = 60
∑
m,n

′Ω−4m,n, g3 = 140
∑
m,n

′Ω−6m,n.

3. (Properties of homogeneity)

℘(λz;λω1, λω2) = λ−2℘(z;ω1, ω2), λ ̸= 0

℘(λz;λ−4g2, λ
−6g3) = λ−2℘(z; g2, g3), λ ̸= 0

where ℘(z;ω1, ω2) denote the function formed with periods 2ω1, 2ω2 and ℘(z; g2, g3)

denote the function formed with invariants g2, g3.

4. (Addition-theorem)
a. If u+ v + w = 0, then ∣∣∣∣∣∣∣∣

℘(u) ℘
′
(u) 1

℘(v) ℘
′
(v) 1

℘(w) ℘
′
(w) 1

∣∣∣∣∣∣∣∣ = 0.
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b.

℘(z + y) =
1

4

{
℘

′
(z)− ℘

′
(y)

℘(z)− ℘(y)

}2

− ℘(z)− ℘(y).

c.

℘(2z) =
1

4

{
℘

′′
(z)

℘′(z)

}2

− 2℘(z)

unless 2z is a period. The result is called the duplication formula.

4.2.3 The constants e1, e2, e3

Let ℘(z) be the Weierstrass elliptic function with periods 2ω1, 2ω2. The
value ℘(ω1), ℘(ω2), ℘(ω3) (where ω3 = −ω1−ω2) are all unequal; and, if their value
be e1, e2, e3, respectively, then the roots of the cubic equation 4t3 − g2t− g3 = 0

and e1 ̸= e2 ̸= e3. We have
e1 + e2 + e3 = 0,

e2e3 + e3e1 + e1e2 = −
1

4
g2,

e1e2e3 =
1

4
g3.

4.2.4 The Weierstrass-zeta function

First of all, the Weierstrass-zeta function should not be confused with the
Zeta-function of Riemann discussed in Chapter XIII in [6].
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The Weierstrass-zeta function ζ(z) is defined by the equation

dζ(z)

dz
= −℘(z),

coupled with the condition lim
z→0

{
ζ(z)− 1

z

}
= 0.

Since the series for ℘(z)− 1

z2
converges uniformly throughout any domain

from which the neighbourhoods of the points Ω′

m,n are excluded, we can integrate
term-by-term and get

ζ(z)− 1

z
= −

∫ z

0

{
℘(z)− 1

z2

}
dz

= −
∑
m,n

′
∫ z

0

{
(z − Ωm,n)

−2 − Ω−2m,n

}
dz,

and so

ζ(z) =
1

z
+
∑
m,n

′

{
1

z − Ωm,n

+
1

Ωm,n

+
z

Ω2
m,n

}
.

4.2.5 Properties of ζ(z)

1. ζ(z) is an odd function. It is not a doubly-periodic function, and the residue
of ζ(z) at every pole is 1.
2. If we integrate the equations

℘(z + 2ω1) = ℘(z) and ℘(z + 2ω2) = ℘(z),

we get
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ζ(z + 2ω1) = ζ(z) + 2η1

ζ(z + 2ω2) = ζ(z) + 2η2

where 2η1 and 2η2 are the constants introduced by integration; putting z =

−ω1, z = −ω2, respectively, and taking account of the fact that ζ(z) is an odd
function, we have

η1 = ζ(ω1),

η2 = ζ(ω2).

3. (Properties of homogeneity)

ζ(λz;λω1, λω2) = λ−1ζ(z;ω1, ω2), λ ̸= 0

4. (Legendre’s relation)
η1ω2 − η2ω1 =

1

2
πi

4.2.6 The Weierstrass-sigma function

The Weierstrass-sigma function σ(z) is defined by the equation

d

dz
logσ(z) = ζ(z)

coupled with the condition lim
z→0

{
σ(z)

z

}
= 1.

On account of the uniformity of convergence of the series for ζ(z), except
near the poles of ζ(z), we may integrate the series term-by-term. Doing so, and
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taking the exponential of each side of the resulting equation, we get

σ(z) = z
∏
m,n

′

{
(1− z

Ωm,n

)exp( z

Ωm,n

+
z2

2Ω2
m,n

)

}
.

4.2.7 Properties of σ(z)

1. The product for σ(z) converges absolutely and uniformly in any bounded
domain of values of z.
2. The function σ(z) is an odd integral function of z with simple zeros at all the
points Ωm,n.

3. If we integrate the equations

ζ(z + 2ω1) = ζ(z) + 2η1 and ζ(z + 2ω2) = ζ(z) + 2η2,

we get
σ(z + 2ω1) = c1e

2η1zσ(z)

σ(z + 2ω2) = c1e
2η2zσ(z)

where c1 and c2 are the constants of integration; to determine c1, c2, we put
z = −ω1, z = −ω2, respectively, and then

σ(ω1) = −c1e−2η1ω1σ(w1),

σ(ω2) = −c2e−2η2ω2σ(w2).

Consequently,
c1 = −e2η1ω1 ,

c2 = −e2η2ω2 .
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4. (Properties of homogeneity)

σ(λz;λω1, λω2) = λσ(z;ω1, ω2)

4.3 The Theta-functions

4.3.1 Definition

Let τ be a (constant) complex number whose imaginary part is positive;
and write q = eπiτ , so that |q| < 1.

Consider the function ϑ(z, q), defined by the series

ϑ(z, q) =
∞∑

n=−∞

(−1)nqn2

e2niz.

It is evident that

ϑ(z, q) = 1 + 2
∞∑
n=1

(−1)nqn2 cos 2nz,

and that
ϑ(z + π, q) = ϑ(z, q);

further

ϑ(z + πτ, q) =
∞∑

n=−∞

(−1)nqn2

q2ne2niz

= −q−1e−2iz
∞∑

n=−∞

(−1)n+1q(n+1)2e2(n+1)iz,
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and so
ϑ(z + πτ, q) = −q−1e−2izϑ(z, q).

In consequence of these results, ϑ(z, q) is called a quasi doubly-periodic
function of z, and accordingly 1 and −q−1e−2iz are called the periodicity factors
associated with the periods π and πτ respectively.

4.3.2 The four types of Theta-functions

It is customary to write ϑ4(z, q) in place of ϑ(z, q); the other three types of
Theta-functions are then defined as follows:

The function ϑ3(z, q) is defined by the equation

ϑ3(z, q) = ϑ4(z +
1

2
π, q) = 1 + 2

∞∑
n=1

qn
2 cos 2nz.

Next, ϑ1(z, q) is defined by the equation

ϑ1(z, q) = −ieiz+
1
4
πiτϑ4(z +

1

2
πτ, q)

= −i
∞∑

n=−∞

(−1)nq(n+
1
2
)2e(2n+1)iz

= 2
∞∑
n=0

(−1)nq(n+
1
2
)2 sin (2n+ 1)z.
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Lastly, ϑ2(z, q) is defined by the equation

ϑ2(z, q) = ϑ1(z +
1

2
π, q) = 2

∞∑
n=0

q(n+
1
2
)2 cos (2n+ 1)z.

Summary:

ϑ1(z, q) = 2
∞∑
n=0

(−1)nq(n+
1
2
)2 sin (2n+ 1)z

ϑ2(z, q) = 2
∞∑
n=0

q(n+
1
2
)2 cos (2n+ 1)z

ϑ3(z, q) = 1 + 2
∞∑
n=1

qn
2 cos 2nz

ϑ4(z, q) = 1 + 2
∞∑
n=1

(−1)nqn2 cos 2nz

For brevity, the parameter q will usually not be specified, so that ϑi(z) will
be written for ϑi(z, q), i = 1, 2, 3, 4.
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4.3.3 Properties of ϑi(z)

1. ϑ1(z) is an odd function and the other Theta-functions are even functions.
2. The zeros of the Theta-functions:

ϑ1(z) = 0, where z = 0 +mπ + nπτ

ϑ2(z) = 0, where z =
π

2
+mπ + nπτ

ϑ3(z) = 0, where z =
π

2
+

πτ

2
+mπ + nπτ

ϑ4(z) = 0, where z =
πτ

2
+mπ + nπτ

3. The identity ϑ4
2(0) + ϑ4

4 = ϑ4
3(0).

4. Jacobi’s expressions for the Theta-functions as infinite products:

ϑ1(z) = 2q
1
4 sin z

∞∏
n=1

(1− q2n)(1− 2q2n cos 2z + q4n)

ϑ2(z) = 2q
1
4 cos z

∞∏
n=1

(1− q2n)(1 + 2q2n cos 2z + q4n)

ϑ3(z) =
∞∏
n=1

(1− q2n)(1 + 2q2n−1 cos 2z + q4n−2)

ϑ4(z) =
∞∏
n=1

(1− q2n)(1− 2q2n−1 cos 2z + q4n−2)

5. The differential equation satisfied by the Theta-functions

∂2ϑ3(z|τ)
∂z2

= − 4

πi

∂ϑ3(z|τ)
∂τ

where we may regard ϑ3(z|τ) as a function of two independent variables z and τ.

6. A relation between Theta-functions of zero argument

ϑ
′

1(0) = ϑ2(0)ϑ3(0)ϑ4(0).
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7. Weierstrass-sigma function can express in terms of Theta-functions; in other
words, there will exist expressions for any elliptic functions in terms of Theta-
functions.
8. The differential equations satisfied by quotients of Theta-functions:

d

dz

{
ϑ1(z)

ϑ4(z)

}
= ϑ2

4

ϑ2(z)

ϑ4(z)

ϑ3(z)

ϑ4(z)
(4.2)

d

dz

{
ϑ2(z)

ϑ4(z)

}
= −ϑ2

3

ϑ1(z)

ϑ4(z)

ϑ3(z)

ϑ4(z)
(4.3)

d

dz

{
ϑ3(z)

ϑ4(z)

}
= −ϑ2

2

ϑ1(z)

ϑ4(z)

ϑ2(z)

ϑ4(z)
(4.4)

We write ξ ≡ ϑ1(z)

ϑ4(z)
and use the results established above, there is

(
dξ

dz

)2

= (ϑ2
2 − ξ2ϑ2

3)(ϑ
2
3 − ξ2ϑ2

2).

Write ξϑ3

ϑ2

= y, zϑ2
3 = u,

ϑ2

ϑ3

= k
1
2 , and we get the equation determining y in terms

of u is (
dy

du

)2

= (1− y2)(1− k2y2). (4.5)

This differential equation has the particular solution

y =
ϑ3

ϑ2

ϑ1(uϑ
−2
3 )

ϑ4(uϑ
−2
3 )

. (4.6)
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4.4 Jacobian elliptic functions

4.4.1 Definition

From (4.5) and (4.6), we have the integral representation of y is

u =

∫ y

0

1√
(1− t2)(1− k2t2)

dt,

so we defined y = su(u, k) or simply y = sn(u), when it is unnecessary to empha-
size the modulus k.

Jacobian functions defined as follow:

sn(u, k) = ϑ3

ϑ2

ϑ1(u/ϑ
2
3)

ϑ4(u/ϑ2
3)

cn(u, k) = ϑ4

ϑ2

ϑ2(u/ϑ
2
3)

ϑ4(u/ϑ2
3)

dn(u, k) = ϑ4

ϑ3

ϑ3(u/ϑ
2
3)

ϑ4(u/ϑ2
3)

From (4.2), (4.3), and (4.4) with k2 + k
′2 = 1, we get the solutions for the

following integral equations:

If u =

∫ y

0

1√
(1− t2)(1− k2t2)

dt, then y = sn(u, k). (4.7)

If u =

∫ 1

y

1√
(1− t2)(k′2 + k2t2)

dt, then y = cn(u, k). (4.8)

If u =

∫ 1

y

1√
(1− t2)(t2 − k′2)

dt, then y = dn(u, k). (4.9)

Moreover, the integrals (4.7), (4.8), and (4.9) are called the elliptic integrals of
the first kind.
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4.4.2 Glaisher’s notation for quotients

A short and convenient notation has been invented by Glaisher to express
reciprocals and quotients of the Jacobian elliptic functions.

ns(u) = 1/sn(u) nc(u) = 1/cn(u) nd(u) = 1/dn(u)

sc(u) = sn(u)/cn(u) sd(u) = sn(u)/dn(u) cd(u) = cn(u)/dn(u)

cs(u) = cn(u)/sn(u) ds(u) = dn(u)/sn(u) dc(u) = dn(u)/cn(u)

We obtain the following results:

u =

∫ sn(u)

0

1√
(1− t2)(1− k2t2)

dt =

∫ ∞
ns(u)

1√
(t2 − 1)(t2 − k2)

dt

=

∫ 1

cn(u)

1√
(1− t2)(k′2 + k2t2)

dt =

∫ nc(u)

1

1√
(t2 − 1)(k′2t2 + k2)

dt

=

∫ 1

dn(u)

1√
(1− t2)(t2 − k′2)

dt =

∫ nd(u)

1

1√
(t2 − 1)(1− k′2t2)

dt

=

∫ sc(u)

0

1√
(1 + t2)(1 + k′2t2)

dt =

∫ ∞
cs(u)

1√
(t2 + 1)(t2 + k′2)

dt

=

∫ sd(u)

0

1√
(1− k′2t2)(1 + k2t2)

dt =

∫ ∞
ds(u)

1√
(t2 − k′2)(t2 + k2)

dt

=

∫ 1

cd(u)

1√
(1− t2)(1− k2t2)

dt =

∫ 1

dc(u)

1√
(t2 − 1)(t2 − k2)

dt

4.4.3 Some relations among Jacobian elliptic functions

1.
d

du
sn(u) = cn(u) dn(u) (4.10)
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2.

sn2(u) + cn2(u) = 1 (4.11)

k2 sn2(u) + dn2(u) = 1 (4.12)

cn2(0) + dn2(0) = 1 (4.13)

3. By (4.10) and (4.11), there is

d

du
cn(u) = −sn(u) dn(u).

4. By (4.10) and (4.12), there is

d

du
dn(u) = −k2 sn(u) cn(u).

4.4.4 Some properties of Jacobian functions

1. sn(u) is an odd function of u, cn(u) and dn(u) are an even functions of u.
2. The addition-theorems for Jacobian functions:

sn(u+ v) =
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1− k2 sn2(u) sn2(v)

cn(u+ v) =
cn(u) cn(v)− sn(u) sn(v) dn(u) dn(v)

1− k2 sn2(u) sn2(v)

dn(u+ v) =
dn(u) dn(v)− k2 sn(u) sn(v) cn(u) cn(v)

1− k2 sn2(u) sn2(v)

3. The constants K,K
′
:

a. Symbol K is a function of k such that sn(K, k) = 1. In other words,

K(k) =

∫ 1

0

1√
(1− t2)(1− k2t2)

dt

65



and sn(K) = 1, cn(K) = 0, dn(K) = k
′
.

b. Symbol K ′ is a function of k′
,

K
′
(k

′
) =

∫ 1

0

1√
(1− t2)(1− k′2t2)

dt.

c. Another form of K and K
′
:

K(k) =

∫ π
2

0

1√
1− k2 sin2 ϕ

dϕ

K
′
(k

′
) =

∫ π
2

0

1√
1− k′2 sin2 ϕ

dϕ

4. The periodic properties of the Jacobian elliptic functions:
a. associated with K :

sn(u+ 2K) = −sn(u) sn(u+ 4K) = sn(u)

cn(u+ 2K) = −cn(u) cn(u+ 4K) = cn(u)

dn(u+ 2K) = dn(u) dn(u+ 4K) = dn(u)

b. associated with K + iK
′
:

sn(u+ 2K + 2iK
′
) = −sn(u) sn(u+ 4K + 4iK

′
) = sn(u)

cn(u+ 2K + 2iK
′
) = cn(u) cn(u+ 4K + 4iK

′
) = cn(u)

dn(u+ 2K + 2iK
′
) = −dn(u) dn(u+ 4K + 4iK

′
) = dn(u)

c. associated with iK
′
:

sn(u+ 2iK
′
) = sn(u) sn(u+ 4iK

′
) = sn(u)

cn(u+ 2iK
′
) = −cn(u) cn(u+ 4iK

′
) = cn(u)

dn(u+ 2iK
′
) = −dn(u) dn(u+ 4iK

′
) = dn(u)
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- sn(u) cn(u) dn(u)
Periods 4K, 2iK

′
4K, 2K + 2iK

′
2K, 4iK

′

Zeros 0 mod (2K, 2iK
′
) K mod (2K, 2iK

′
) K + iK

′ mod (2K, 2iK
′
)

Poles iK
′
, 2K + iK

′
iK

′
, 2K + iK

′
iK

′
, 3K

′

mod (4K, 2iK
′
) mod (4K, 2K + 2iK

′
) mod (2K, 4iK

′
)

Parity odd even even
Derivative cn(u) dn(u) -sn(u) dn(u) -k2 sn(u) cn(u)

Table 4.1: Summary about sn(u), cn(u) and dn(u)

4.4.5 Elliptic integrals of the first kind

The function sn(u) satisfies the differential equation (4.5)

(
dy

du
)2 = (1− y2)(1− k2y2),

we have the integral representation of sn(u) is

u =

∫ y

0

1√
(1− t2)(1− k2t2)

dt, thus y = sn(u, k).

A special case of the integral representation is

K =

∫ 1

0

1√
(1− t2)(1− k2t2)

dt,

this is the complete elliptic integral of the first kind. Moreover, if we let t = sinϕ,

and we have at once
K =

∫ π
2

0

1√
1− k2 sin2 ϕ

dt.

4.4.6 The graphs of Jacobian functions
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Figure 4.1: sn(u, 1
2
)

Figure 4.2: sn(u, 7
8
)

Figure 4.3: sn(u, 1)
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Figure 4.4: cn(u, 1
2
)

Figure 4.5: cn(u, 7
8
)

Figure 4.6: cn(u, 1)

69



Figure 4.7: dn(u, 1
2
)

Figure 4.8: dn(u, 7
8
)

Figure 4.9: dn(u, 1)
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Chapter 5

Exact Theory of the Simple
Pendulum Motion

5.1 Introduction of the simple pendulum

A pendulum is a weight suspended from a pivot so that it can swing freely.
When a pendulum is displaced sideways from its resting equilibrium position, it
is subject to a restoring force due to gravity that will accelerate it back toward
the equilibrium position. When released, the restoring force combined with the
pendulum’s mass causes it to oscillate about the equilibrium position, swinging
back and forth. The time for one complete cycle, a left swing and a right swing,
is called the period. A pendulum swings with a specific period which depends on
its length mainly.

The simple pendulum is an idealized mathematical model of a pendulum.
This is a weight (or bob) on the end of a massless cord suspended from a pivot,
without friction. When given an initial push, it will swing back and forth at a
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constant amplitude.

The figure below shows the simple pendulum:

Figure 5.1: Simple pendulum

5.2 Analyze the derivation

Here we introduce two ways, via Newton’s second law and conservation of
energy, to obtain the differential equation

u′′ + sinu = 0. (5.1)
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1. By Newton’s second law:

Figure 5.2: Analysis via Newton’s second law

Consider Newton’s second law,

F = ma

where F is the sum of forces on the object, m is mass, and a is the acceleration.
Because the bob is forced to stay in a circular path, we apply Newton’s equation
to the tangential axis only,

F = −mg sin θ = ma

a = −g sin θ

where g is the acceleration due to gravity near the surface of the earth. The
negative sign on the right hand side implies that θ and a always point in opposite
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directions. This makes sense because when a pendulum swings further to the left,
we would expect it to accelerate back toward the right.

This linear acceleration a can be related to the change in angle θ by the
arc length formulas; l is the length of the pendulum and s is the arc length:

s = lθ

v =
ds

dt
= l

dθ

dt

a =
d2s

dt2
= l

d2θ

dt2

Thus
d2θ

dt2
+

g

l
sin θ = 0. (5.2)

2. By conservation of energy:

Figure 5.3: Analysis via conservation of energy
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Any object falling a vertical distance h would acquire kinetic energy equal
to that which it lost to the fall. In other words, gravitational potential energy is
converted into kinetic energy. Change in potential energy is given by

∆U = mgh,

change in kinetic energy (body started from rest) is given by

∆K =
1

2
mv2.

Since the conservation of energy, no energy is lost, those two must be equal

1

2
mv2 = mgh

v =
√
2gh.

Using the arc length formula above, this equation can be rewritten as

v = l
dθ

dt
=
√
2gh

dθ

dt
=

1

l

√
2gh

where h is the vertical distance the pendulum fell.

Look at Figure 5.3, which presents the trigonometry of a simple pendulum.
If the pendulum starts its swing from some initial angle θ0, then y0, the vertical
distance from the screw, is given by

y0 = l cos θ0,

similarly, for y1, we have
y1 = l cos θ,
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then h is the difference of the two

h = l(cos θ − cos θ0).

In terms of dθ

dt
gives

dθ

dt
=

√
2g

l
(cos θ − cos θ0).

We can differentiate, by applying the chain rule, with respect to time to
get

d2θ

dt2
=

d

dt

dθ

dt
=

d

dt

√
2g

l
(cos θ − cos θ0)

=
1

2

2g
l
(− sin θ)√

2g
l
(cos θ − cos θ0)

dθ

dt

=
1

2

2g
l
(− sin θ)√

2g
l
(cos θ − cos θ0)

√
2g

l
(cos θ − cos θ0)

= −g

l
sin θ.

Thus
d2θ

dt2
+

g

l
sin θ = 0. (5.3)

No matter which idea for derivation, there are the same results, (5.2) and
(5.3). Letting g

l
= 1 for convenience, there is (5.1). After the above pre-work,

the following contents will recall the conclusion in Chapter 4 and get the exact
theory of the simple pendulum motion.
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5.3 Apply Jacobian elliptic function to solve the

simple pendulum motion

Consider the differential equation

u′′ + sinu = 0,

there is
1

2
(u′)2 − cosu = E (5.4)

where E is the integration constant. Adding 1 to both sides yields
1

2
(u′)2 + (1− cosu) = E + 1.

In the idea of energy, we can regard 1

2
(u′)2 as kinetic energy, (1 − cosu) as po-

tential energy, and E + 1 as the total energy of this system. Certainly, u is a
function of time t.

Since (1 − cosu) is regarded as the potential energy, 0 ≤ (1 − cosu) ≤ 2,

and the kinetic energy 1

2
(u′)2 ≥ 0, the total energy E + 1 must be greater than

or equal to 0. Furthermore, when the potential energy reaches the maximum 2,

it also means that the pendulum is right at the highest position in the circular
path. So the total energy E + 1 = 2 will be the key factor of different types of
pendulum motions.

0 < E + 1 < 2 ⇒ −1 < E < 1

E + 1 = 2 ⇒ E = 1

E + 1 > 2 ⇒ E > 1
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Keeping on the above statement (5.4), since the equation

u′ =
du

dt
=
√
2(E + cosu) (5.5)

is separable, we can obtain

t =

∫ U(t)

0

1√
2(E + cosu)

du. (5.6)

Our goal is to find out the solution of equation (5.6). That is, we must find the
representation of U(t) in terms of t. Discussing (5.6) in three different cases by
given E is the next works.

1. −1 < E < 1 :

t =

∫ U(t)

0

1√
2E + 2 cosu

du

=

∫ U(t)

0

1√
2E + (2− 4 sin2 u

2
)
du

=
1√

2E + 2

∫ U(t)

0

1√
1− 4

2E+2
sin2 u

2

du (5.7)

Let k =

√
2E + 2

2
, z =

1

k
sin u

2
, then

t =

∫ 1
k

sin U(t)
2

0

1√
1− z2

1√
1− k2z2

dz.

According to Jacobian function (4.7)

sn(t, k) = 1

k
sin U(t)

2
,

i.e.
U(t) = 2 arcsin (k sn(t, k)) (5.8)
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where k =

√
2E + 2

2
.

2. E = 1 :

t =

∫ U(t)

0

1√
2 + 2 cosu

du

=

∫ U(t)

0

1√
4− 4 sin2 u

2

du

=
1

2

∫ U(t)

0

1√
1− sin2 u

2

du (5.9)

Let z = sin u

2
, then

t =

∫ sin U(t)
2

0

1√
1− z2

1√
1− z2

dz.

So
sn(t, 1) = sin U(t)

2
,

i.e.
U(t) = 2 arcsin (sn(t, 1)). (5.10)

If we do not use Jacobian elliptic function, we can also get the solution by
Calculus. There is given by

t =

∫ sin U(t)
2

0

1

1− z2
dz

=
1

2
ln

1 + sin U(t)
2

1− sin U(t)
2

.

So
sin U(t)

2
= tanh t,
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i.e.
U(t) = 2 arcsin (tanh t). (5.11)

3. E > 1 :

t =

∫ U(t)

0

1√
2E + 2 cosu

du

=

∫ U(t)

0

1√
2E + (2− 4 sin2 u

2
)
du

=
1√

2E + 2

∫ U(t)

0

1√
1− 4

2E+2
sin2 u

2

du (5.12)

Let k =
2√

2E + 2
, z = sin u

2
, then

t = k

∫ sin U(t)
2

0

1√
1− k2z2

1√
1− z2

dz.

So
sn( t

k
, k) = sin U(t)

2
,

i.e.
U(t) = 2 arcsin (sn( t

k
, k)) (5.13)

where k =
2√

2E + 2
.

Note: There are no confusions with the patterns of k in (5.7), (5.9), (5.12).
Since the definition of Jacobian elliptic functions, there is an identity k2+k

′2 = 1

for (4.7), (4.8), and (4.9). Hence, the patterns of k related to E must be deter-
mined with k2 ≤ 1.
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5.4 Periods and phase portraits with different

total energy

Since the solutions of u′′ + sinu = 0 had been found in terms of Jacobian
elliptic function with different E, we want to further know the period of the so-
lution if it is periodic.

Moreover, we try to plot the relation between U and U ′, i.e., the phase
portrait. Before drawing the phase portrait, we see back to the equation (5.4)
first. It shows that 1

2
(u′)2− cosu is a constant. It can be regarded as a conserva-

tion law in the view point of mathematics since − cosu is not always larger than
0. (But this case can be transferred to the conservation law in the view point of
physics by plus a constant 1 for equation (5.4).) This means that its total energy
is a constant and the former part 1

2
(u′)2 can be regarded as kinetic energy and

the latter part − cosu can be regarded as potential energy.

1. −1 < E < 1 :

The solution with −1 < E < 1 is given by

U(t) = 2 arcsin (k sn(t, k))

where k =

√
2E + 2

2
. Therefore, by subsection 4.4.4, the period is

T = 4

∫ 1

0

1√
(1− z2)(1− k2z2)

dz

= 4K.

Obviously, K =

∫ 1

0

1√
(1− z2)(1− k2z2)

dz.
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By the assumption we defined before, there is

−1 < E1 < E2 < 1 ⇒ k1 < k2,

and, hence,
1√

(1− z2)(1− k2
1z

2)
<

1√
(1− z2)(1− k2

2z
2)
,

i.e. K1 < K2.

In short, if there are two different E1 and E2, where −1 < E1 < E2 < 1,

the comparison with two periods is

T1 < T2.

Figure 5.4: Solution curves with E = −1

2
, E = 0, and E =

1

2

In the sense of pendulum motion, the greater total energy means the higher
initial position, and it is naturally that the time pendulum returns to the initial
position is longer if the initial position is higher. Thus we have the result as
above, E1 < E2 implies T1 < T2.
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We set E = 0 to analyze the phase portrait. By the equation (5.4), we have
u′ = ±

√
2 cosu. The following graphs are potential energy and phase portrait,

respectively. Those graphs show the relation between u and cos u and the relation
between u and u′.

Figure 5.5: Potential energy and phase portrait with E = 0

From the graph of the phase portrait, the red curve means that the velocity
at those position are positive and the blue curve means that the velocity at those
position are negative. The positive velocity is defined by rotating counterclock-
wise and the negative velocity is defined by rotating clockwise.

2. E = 1 :

The solution with E = 1 is given by

U(t) = 2 arcsin (sn(t, 1)).

T = 4

∫ 1

0

1√
(1− z2)(1− z2)

dz

= 4

∫ 1

0

1

1− z2
dz

=∞.
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Figure 5.6: Solution curve with E = 1

In the sense of pendulum motion, since the total energy E + 1 = 2, the
potential energy must be 2 and the kinetic energy must be 0 somewhere. By the
language we used before, that is the greatest potential energy means the highest
place in the pendulum motion, surely the top of the circular path. Therefore it
implies that if we release the pendulum at the top of the circular path, it will
return to the initial position after travelling the time infinity.

Now we focus on the phase portrait with E = 1. By the equation (5.4), we
have u′ = ±

√
2(1 + cosu), and phase portrait as following.

Figure 5.7: Potential energy and phase portrait with E = 1
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3. E > 1 :

By (5.5), there is u′ > 0 if E > 1. This means that for any time t, the velocity
of pendulum is always greater than 0. That is, the pendulum will never stop. So
the motion is no periodicity.

Figure 5.8: Solution curves with E =
3

2
, E = 2, and E =

5

2

Last, we see the phase portrait with E =
3

2
. By the equation (5.4), we have

u′ = ±
√
2(
3

2
+ cosu), and phase portrait as following.

Figure 5.9: Potential energy and phase portrait with E =
3

2
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From the graph of the phase portrait, we know that the pendulum of this
case will never stop since the phase portrait has no intersection with the u-axis.
And by the graph of potential energy, we observe that the kinetic energy is never
equal to 0. This implies that the case has no periodic solution and the result is
corresponded to the property which we had discussed.

By our discussion, there are three kinds of the phase portraits. Before
finishing the section, we combine the three phase portraits and the vector field
together.

Figure 5.10: Global phase portrait

There are three different kinds of phase portraits with different energy E.

The outer curve corresponds to larger energy E. They are separated by the phase
portrait with E = 1 and the phase curve is called the separatrix with periods∞.

The phase curves outer the separatrix are called the wave train and they has no
period. The phase curves inside the separatrix are periodic and their period T

satisfies 2π < T <∞.
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5.5 Summary

The mathematical model of the simple pendulum motion is a nonlinear
second order differential equation. There are k corresponding to the given E,

and thus the solutions of the simple pendulum motion is expressed by Jacobian
elliptic function sn(t, k) within different cases of E.

Together the consequences in all cases we considered, there is the following
table.

- −1 < E < 1 E = 1 E > 1

Modulus k

√
2E + 2

2
1

2√
2E + 2

Solution U(t) 2 arcsin (k sn(t, k)) 2 arcsin (sn(t, 1)) 2 arcsin (sn( t
k
, k))

Period T 4K ∞ No periodicity

Table 5.1: Summary about the simple pendulum motion within different E
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