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摘摘摘要要要

在設計最佳分散式偵測系統的挑戰之一，就是可能的設計組合會隨著偵測器的個數增

加而成指數成長。反之，找出最佳的同化量化器系統設計(Identical Quantizer System or

IQS)是比較容易的，因為可能的組合是隨著偵測器的個數呈線性成長。因此衍生一個在此

領域很重要的研究課題，就是在什麼條件下，最佳的同化量化器系統(IQS)可達到最佳分

散式偵測系統設計的效能？

在這篇碩士論文中，我們嘗試用不同的方式思考此一問題：在什麼條件下，IQS僅能

達到次佳的整體效能。運用參考論文[4]中的推導方式，我們比較了同化量化器系統設

計(IQS)和只改變一個偵測器量化方式的非同化量化器系統設計(Non-identical Quantizer

System or NQS)的錯誤率，然後理論證明出在局部觀察值的機率符合某些特定的線段區域

條件，IQS僅能達到次佳的效能。我們同樣也嘗試運用數值模擬的方式，來驗證同化量化

器系統設計(IQS)僅能達到次佳效能的區域，結果顯示我們的方法應可再推廣至更多的區

段。
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Student: Chun-Yen Yang kkk Advisor: Po-Ning Chen
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National Chiao Tung University

Abstract

One engineering challenge in designing an optimal distributed detection system is that

the number of all possible designs (i.e., the combinations of local likelihood-ratio quantizers

(LRQs) and the fusion rule) grows exponentially with the number of local sensors. Instead,

finding the best identical quantizer design is a much easier task because the number of

possibilities only increase linearly with the number of sensors. This then arises the long-

standing query on the condition under which the best identical quantizer system (IQS) is

also globally optimal.

In this thesis, we try to revisit the same query by asking a different but related question:

when the IQS is only suboptimal. Using the technique in [4], we compare the performances

between the best IQS and the NQS with one different local quantizer, and determine theo-

retically a few line regions that give affirmative answer to our question. We also numerically

identify certain regions that make the best IQS only suboptimal. Observations on patterns

of these regions are subsequently made and remarked.
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sensors that use LRQ ĝ. As indicated on top of the plots, the total numbers

of sensors are respectively 90 and 91 in (a) and (b). . . . . . . . . . . . . . . 39

4.5 Detect errors for the LRQs in Table 4.2. The x-axis indicates the number of
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Chapter 1

Introduction

In this thesis, the parallel distributed detection problem [1–5] defined below is studied.

Consider a distributed detection system consisting of n geographically dispersed sensors

and a fusion center, in which the ith sensor receives an observation Yi drawn possibly from

one of the two hypothesis distributions. Upon its reception, the observation Yi is quantized

into an m-ary data Ui = f (Yi), which is then sent to the fusion center. Afterwards, the

fusion center performs binary hypothesis testing based on the received data (U1, . . . , Un),

and determine which of the two hypotheses, H0 or H1, is the truly happening one.

In its practice, it is more engineeringly convenient to quantize each Yi by the same quan-

tization rule, which is usually termed the identical quantizer system. However, it is known

that such an identical quantizer system design is sometimes only suboptimal in detection

error, and the optimal design mostly adopts non-identical quantizers. Hence, it is of theo-

retical interest to investigate when the simple identical quantizer system yields the optimal

performance. It is however hard to prove the global optimality of the simple identical quan-

tizer system. On the contrary, we turn to investigate under which condition the non-identical

quantizer system design strictly outperforms the best identical quantizer system in this the-

sis.
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In notations, we denote the detection error of the optimal (possibly non-identical) dis-

tributed detection system by γ∗ (π), and use γ⋄ (π) to denote the detection error of the best

identical quantizer system, where π is the prior probability of the null hypothesis H0. We

will study what distribution of local observation Yi will give

γ∗ (π) < γ⋄ (π) .

In the literature, only few publications have been devoted to this theoretical problem.

The study of our thesis is basically a followup work of [1]. In summary, this publication [1]

first pointed out a known result from [2] that even if the local observations Y1, . . . , Yn are

independent and identically distributed (i.i.d.), the optimal quantizers are not necessarily

identical. It then proved the conjecture in [3] that the boundedness assumption in local

statistics can be removed. It then proceeded to show that under certain boundedness condi-

tion, the ratio γ∗ (π) /γ⋄ (π) is asymptotically bounded from below. The authors in [1] also

showed that the conjecture that the ratio γ∗ (π) /γ⋄ (π) approaches one as the number of

sensors n goes to infinity is in general not true. Another publication of the same authors [4]

provided two examples in the Appendix, in which a table indicates whether the identical

sensor system can be optimal or not for n varying from 2 to 23. The table reveals that

for some finite number of sensors, it is still possible that the simple identical sensor system

performs optimally even if the simple identical sensor system performs suboptimally as n

goes to infinity. Following their work, we will provide more situations that the simple iden-

tical sensor system is only suboptimal in this thesis. Details will be given in the subsequent

chapters.
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Chapter 2

Preliminaries

In this chapter, we define the notations we use in this thesis and present the background

knowledge respectively in Sections 2.1 and 2.2. The system model follows exactly what has

been adopted in [1].

2.1 System Model

In this thesis, we consider a parallel distributed detection system with ternary local obser-

vation from {a1, a2, a3} and binary local quantization. This should be the simplest model

in the respective research domain. Through the study of such a simple system, we intend

to give a preliminary answer to the general query that under which condition the so-called

identical quantizer system is optimal in detection error.

In our setting, the two hypotheses are assumed equally likely. The statistics for local
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observations in {a1, a2, a3} is denoted parametrically by:

Pr (a1|H0) = P1

Pr (a2|H0) = P2

Pr (a3|H0) = 1− P1 − P2

Pr (a1|H1) = 1−Q1 −Q2

Pr (a2|H1) = Q1

Pr (a3|H1) = Q2

They can be listed in a tabular form as follows.

y a1 a2 a3

Pr(y|H0) P1 P2 1−P1−P2

Pr(y|H1) 1−Q1−Q2 Q1 Q2

Based on the above setting, there are only two nontrivial deterministic likelihood ratio quan-

tizers (LRQs) if either

Pr(a1|H1)

Pr(a1|H0)
≥

Pr(a2|H1)

Pr(a2|H0)
≥

Pr(a3|H1)

Pr(a3|H0)
(2.1)

or

Pr(a1|H1)

Pr(a1|H0)
≤

Pr(a2|H1)

Pr(a2|H0)
≤

Pr(a3|H1)

Pr(a3|H0)
(2.2)

holds. These two LRQs are ĝ, which partitions local observation space {a1, a2, a3} to {a1}

and {a2, a3}, and ḡ, which partitions local observation space {a1, a2, a3} to {a1, a2} and

{a3}. For ordering relations of likelihood ratios other than (2.1) and (2.2), we can do similar

partitions by re-indexing the local observations and hence they are included in the cases

we discuss in the sequel. The resulting post-partition or post-quantization distributions for

random quantizer output u respectively for ĝ and ḡ are illustrated in Table 2.1.

Because the local observations Y1, . . ., Yn are i.i.d., each local sensor in the optimal

system should adopt either ĝ or ḡ as the local quantizer. Assume that m out of n local

4



Table 2.1:

u 0 1

Pĝ(u) = Pr(u|H0) P1 1− P1

Qĝ(u) = Pr(u|H1) 1−Q1−Q2 Q1 +Q2

u 0 1

Pḡ(u) = Pr(u|H0) P1 + P2 1−P1−P2

Qḡ(u) = Pr(u|H1) 1−Q2 Q2

quantizers used the quantization rule ĝ; then, the remaining n − m sensors accommodate

the quantization rule ḡ. By this assumption, the detection error is given by:

Pe(m,n) =
1

2

m
∑

x=0

n−m
∑

y=0

min

{(

m

x

)

P x
1 (1− P1)

m−x

(

n−m

y

)

(P1 + P2)
y(1− P1 − P2)

n−m−y,

(

m

x

)

(1−Q1 −Q2)
x(Q1 +Q2)

m−x

(

n−m

y

)

(1−Q2)
yQn−m−y

2

}

where x and y are respectively the numbers of ĝ-sensors and ḡ-sensors that report 1 to

the future center. In particular, when all the sensors assume quantization rule ḡ, which

corresponds to m = 0, the detection error becomes:

Pe(0, n) =
1

2

n
∑

y=0

min

{(

n

y

)

(P1 + P2)
y(1− P1 − P2)

n−y,

(

n

y

)

(1−Q2)
yQn−y

2

}

In contrast, if all sensors adopt quantization rule ĝ, implying m = n, the detection error is

reduced to:

Pe(n, n) =
1

2

n
∑

x=0

min

{(

n

x

)

P x
1 (1− P1)

n−x,

(

n

x

)

(1−Q1 −Q2)
x(Q1 +Q2)

n−x

}

.

2.2 Background on Distributed Detection

The study of this thesis is basically a followup work to [1]. Some key results in [1] are

therefore summarized in this subsection.
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In the appendix, the authors in [1] demonstrated a counterexample that as the number of

local quantizers n goes to infinity, the identical quantizer system is not optimal in detection.

In that counterexample, binary hypotheses, ternary observation space {a1, a2, a3} and binary

local quantization are assumed. The two hypothesis distributions are specified as indicated

below.

Y a1 a2 a3

P (y) = Pr(y|H0)
1
12

1
4

2
3

Q(y) = Pr(y|H1)
1
3

1
3

1
3

(dP/dQ)(y) 1
4

3
4

2

Under this setting, there are only two nontrivial deterministic LRQ’s, as having been

stated in the previous subsection. Their post-quantization distributions are listed in Table

2.2.

Table 2.2:

u 0 1

Pĝ(u)
1
12

11
12

Qĝ(u)
1
3

2
3

u 0 1

Pḡ(u)
1
3

2
3

Qḡ(u)
2
3

1
3

Denote by γn(π) as the Bayes detection error for a distributed system with (n − 1) ḡ-

sensors and one g-sensor, where g could be either ĝ or ḡ. Abbreviate (u1, ...., un) as u
n
1 . Note

that the best identical quantizer system should assume ḡ for all sensors.

6



We then derive:

γn

(

1

2

)

=
1

2

∑

un

1
∈{0,1}n

[

Pḡ(u
n−1
1 )Pg(un) ∧Qḡ(u

n−1
1 )Qg(un)

]

=
1

2

∑

u
n−1

1
∈{0,1}n−1

∑

un∈{0,1}
n

[

Pḡ(u
n−1
1 )Pg(un) ∧Qḡ(u

n−1
1 )Qg(un)

]

=
∑

u
n−1

1
∈{1,2}n−1

(

Pḡ(u
n−1
1 ) +Qḡ(u

n−1
1 )

2

)

γ1

(

Pḡ(u
n−1
1 )

Pḡ(u
n−1
1 ) +Qḡ(u

n−1
1 )

)

(2.3)

where γ1(·) is the Bayes detection error for a system with only one sensor, and we use for

notational convenience (x ∧ y) to denote min{x, y}.

Taking the distribution in Table 2.2 into (2.3) and using l to indicate the number of 1’s

in un−1
1 , we obtain

γn

(

1

2

)

=
n−1
∑

l=0

(

n− 1

l

)(

2l + 2n−l−1

2 · 3n−1

)

· γ1

(

22l−n+1

22l−n+1 + 1

)

. (2.4)

The last output un can be resulted from either local quantization rule ĝ or ḡ. Accordingly, γ1

can have two different formulas, which are respectively denoted by γ̂1 and γ̄1 for quantization

rules ĝ and ḡ. Their formulas are:

γ̂1(π) =

(

1

12
π ∧

1

3
(1− π)

)

+

(

11

12
π ∧

2

3
(1− π)

)

and

γ̄1(π) =

(

1

3
π ∧

2

3
(1− π)

)

+

(

2

3
π ∧

1

3
(1− π)

)

,

where their curves are plotted in Figure 2.1. Note that γ̂1(π) = γ̄1(π) for 0 ≤ π ≤ 1/3,

π = 4/7 and 4/5 ≤ π ≤ 1. Thus the critical values of l in (2.4) are those for which

22l−n+1/(22l−n+1 + 1) lies in the union of (1/3, 4/7) and (4/7, 4/5). Equivalently, the critical

l’s lies in

n− 2

2
< l <

n+ 1− log2(3)

2
≈

n− 0.585

2
and

n+ 1− log2(3)

2
< l <

n+ 1

2
.

7



When n = 2k is even,

k − 1 < l <
2k + 1− log2(3)

2
≈ k − 0.292 and k − 0.292 < l < k + 0.5.

So the only critical value of l is n/2 = k, which implies that

22l−n+1

22l−n+1 + 1
=

2

3
.

Since γ̂(2/3) = 5/18 < 1/3 = γ̄(2/3), there exists a non-identical quantizer system performed

better than the best identical quantizer system. Hence, the optimal system must be a non-

identical quantizer system.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pi

 

 
γ̂(π)
γ̄(π)

Figure 2.1: Functions of γ̂1(π) and γ̄1(π), where γ̂1(π) is plotted in solid blue color, while
γ̄1(π) in dotted red color.

To be specific,

γ∗
2k

(

1

2

)

− γ⋄
2k

(

1

2

)

≥

(

2k − 1

k

)[

2k + 2k−1

2 · 32k−1

] [

γ̄

(

2

3

)

− γ̂

(

2

3

)]

=
1

8

(

2k − 1

k

)(

2

9

)k

, (2.5)
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where γ∗
2k (1/2) and γ⋄

2k (1/2) denote the detector errors for the optimal (surely, non-identical

quantizer, in this counterexample) system and the best identical quantizer system, respec-

tively. Based on (2.5), it can be proved that the ratio γ∗
2k (π) /γ

⋄
2k (π) will be strictly less

than one as k → ∞.
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Chapter 3

Sufficient Conditions For

Suboptimality Of Identical Quantizer

System

In this chapter, we examine the optimality of the identical quantizer system (IQS) for various

source statistics and determine under which condition the IQS is suboptimal.

In the previous chapter, we have provided an exemplified hypothesis distribution pair

that the IQS is not optimal. However, in general, it is hard to known whether the IQS is

suboptimal or not simply by the given hypothesis distribution pair unless detection errors

of all possible designs (including the identical quantizer systems and non-identical quan-

tizer systems) are exhausted. Nonetheless, in order to find the sufficient rule on hypothesis

distributions, under which the IQS is suboptimal. We first resort to exhaustive numerical

computations when the number of sensors is feasibly small, hoping to induce the possible

rule from massive number of observations.

From the computations we have carried out, it seems that there does exist a certain line

or area patterns of hypothesis distributsions such that the NQS (an acronym of non-identical

quantizer system) is a better choice than the IQS.

Specifically, in Section 3.1, we will mention our preliminary works and some experiments

10



we have carried out. As there are only few publications devoting to this problem due to its

intractability, we have to perform massive number of experiments to observe the possible

trend for some specific cases. In Section 3.2, we will focus on those specific distributed

detection systems, where the NQS performs strictly better than the IQS.

3.1 The Best Quantizers for Finite Number of Sensors

We now perform numerical experiments in this section so as to find the pattern for the sub

optimality of the IQS.

For the ternary local observations, there are two nontrivial LRQs ḡ and ĝ as mentioned

in the previous chapter. Our approach is to find the best IQS and then to replace one of

the quantizers by a distinct one, which we will refer to it for convenience as the near-IQS in

the sequel. If the latter has better detection error, then the optimal NQS (which performs

surely better than the near-IQS) is apparently better than the best IQS.

Of course, when the number of sensors is small such as 20, we can test all possible

combinations of quantizers and determine the true optimal design. In certain situations of

the given hypothesis distributions, however, we do find that the IQS is always optimal for

all the sensor number n we test. In other cases, whether the IQS is optimal depending on

n. However, it is possible that the optimal NQS has two sensors using district quantizers

instead of just one. Some optimal design even assumes three or four distinct quantizers.

Thus, it is somewhat hard to identify the rule for the construction of the optimal NQS. This

is perhaps the reason why only asymptotic results are available in this literature.

11



3.2 Finding the Particular Hypothesis Distributions

That the IQS Is Better Than the Near-IQS

3.2.1 Case 1: Uniform Alternative Hypothesis Distribution

We first examine the specific case that the alternative hypothesis distribution is uniform. By

this setting, only the null hypothesis distribution needs to be varied. The statistics for local

observations {a1, a2, a3} can be given as follows.

Pr (a1|H0) = P1

Pr (a2|H0) = P2

Pr (a3|H0) = 1− P1 − P2

and

Pr (a1|H1) =
1
3

Pr (a2|H1) =
1
3

Pr (a3|H1) =
1
3

where P1 and P2 range from 0 to 1 under the restriction that P1+P2 < 1. The above formula

can be listed in a tabular form below.

y a1 a2 a3

Pr(y|H0) P1 P2 1−P1−P2

Pr(y|H1)
1
3

1
3

1
3

Based on this table, there are three possible post-quantization LRQ’s resulted, which are

respectively classified as type 1, type 2, and type 3 as shown in Table 3.1. We would like to

stress again that among these three, there are only two nontrivial LRQ’s after P1 and P2 are

given.

We then increase P1 and P2 from 0 to 1 under P1 + P2 < 1. During this process, we fix

the number of sensors n. Our experimental results indicate which IQS (among type-1 IQS,

12



Table 3.1: The condition on P1 and P2 specified below is the range in which the respective
post-quantization LRQ is of effectively use in detection.

(a) P1 > max{P2, (1− P2)/2} or P1 < min{P2, (1− P2)/2}

u 0≡ {a1} 1≡ {a2, a3}

Pg1(u) P1 1− P1

Qg1(u)
1
3

2
3

(b) min{P2, 1− 2P2} < P1 < max{P2, 1− 2P2}

u 0≡ {a2} 1≡ {a1, a3}

Pg2(u) P2 1− P2

Qg2(u)
1
3

2
3

(c) P1 < min{(1− P2)/2, 1− 2P2} or P1 > max{(1− P2)/2, 1− 2P2}

u 0≡ {a1, a2} 1≡ {a3}

Pg3(u) P1 + P2 1− P1 − P2

Qg3(u)
2
3

1
3

type-2 IQS, and type-3 IQS) should be used can be clearly characterized into six regions. It

would then be of interest, if we could identify the formulas of the six boundaries.

By denoting the error probabilities of the IQS for type 1, type 2 and type 3 local quantizers

respectively by γn,1, γn,2 and γn,3, we derive for different P1 and P2 as follows:

γn,1

(

1

2

)

=
n−1
∑

l=0

(

n− 1

l

)(

P l
1(1− P1)

n−1−l + (1
3
)l(2

3
)n−1−l

2

)

γ1,1

(

P l
1(1− P1)

n−1−l

P l
1(1− P1)n−1−l + (1

3
)l(2

3
)n−1−l

)

=
n−1
∑

l=0

(

n− 1

l

)(

P l
1(1− P1)

n−1−l

2π

){[

P1π ∧
1

3
(1− π)

]

+

[

(1− P1)π ∧
2

3
(1− π)

]}

=
1

2

n−1
∑

l=0

(

n− 1

l

){[

P l+1
1 (1− P1)

n−1−l ∧ (
1

3
)l+1(

2

3
)n−1−l

]

+

[

P l
1(1− P1)

n−l ∧ (
1

3
)l(

2

3
)n−l

]}

(3.1)
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γn,2

(

1

2

)

=
1

2

n−1
∑

l=0

(

n− 1

l

){[

P l+1
2 (1− P2)

n−1−l ∧ (
1

3
)l+1(

2

3
)n−1−l

]

+

[

P l
2(1− P2)

n−l ∧ (
1

3
)l(

2

3
)n−l

]}

(3.2)

γn,3

(

1

2

)

=
1

2

n−1
∑

l=0

(

n− 1

l

){[

P l+1
3 (1− P3)

n−1−l ∧ (
2

3
)l+1(

1

3
)n−1−l

]

+

[

P l
3(1− P3)

n−l ∧ (
2

3
)l(

1

3
)n−l

]}

(3.3)

where for convenience, we let P3 = 1−P1−P2. With the availability of these error formulas,

the boundaries of the six regions can be characterized by the following six formulas:

γn,1
(

1
2

)

= γn,2
(

1
2

)

for 0 < P1 <
1
3
and 1

3
< P2 < 1

γn,1
(

1
2

)

= γn,2
(

1
2

)

for 1
3
< P1 < 1 and 0 < P2 <

1
3

γn,1
(

1
2

)

= γn,3
(

1
2

)

for 1
3
< P1 < 1 and 0 < P2 <

1
3

γn,1
(

1
2

)

= γn,3
(

1
2

)

for 0 < P1 <
1
3
and 0 < P2 <

1
3

γn,2
(

1
2

)

= γn,3
(

1
2

)

for 0 < P1 <
1
3
and 0 < P2 <

1
3

γn,2
(

1
2

)

= γn,3
(

1
2

)

for 0 < P1 <
1
3
and 1

3
< P2 < 1

They are respectively drawn in Figure 3.1.

In (3.1), (3.2), and (3.3), “∧” means to take the smaller value of the two quantities across

it. So these formulas can be transformed to other shapes if the thresholds, beyond or under

which the smaller one between the two quantities can be identified, are known.

Take (3.1) and (3.2) as examples. Let the thresholds l11, l12, l21, and l22 be defined

according to the below relations:

P l+1
1 (1− P1)

n−1−l > (1
3
)l+1(2

3
)n−1−l for l < l11

P l
1(1− P1)

n−l > (1
3
)l(2

3
)n−l for l < l12

P l+1
2 (1− P2)

n−1−l > (1
3
)l+1(2

3
)n−1−l for l < l21

P l
2(1− P2)

n−l > (1
3
)l(2

3
)n−l for l < l22
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Figure 3.1: Regions of the best IQSs. The dark-gray, gray and light-gray areas respectively
correspond to the regions that γn,1, γn,2, and γn,3 are the best IQSs. In addition, the line
sections of colors dark red, light red, dark green, light green, dark blue and light blue
correspond to Segments 1, 2, 3, 4, 5 and 6, respectively, described in (3.5).

Bases on these thresholds, we can re-write (3.1) and (3.2) as follows.

γn,1

(

1

2

)

=
1

2

l11−1
∑

l=0

(

n− 1

l

)[

(
1

3
)l+1(

2

3
)n−1−l + (

1

3
)l(

2

3
)n−l

]

+
1

2

l12−1
∑

l=l11

(

n− 1

l

)[

P l+1
1 (1− P1)

n−1−l + (
1

3
)l(

2

3
)n−l

]

+
1

2

n−1
∑

l=l12

(

n− 1

l

)

[

P l+1
1 (1− P1)

n−1−l + P l
1(1− P1)

n−l
]
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γn,2

(

1

2

)

=
1

2

l21−1
∑

l=0

(

n− 1

l

)[

(
1

3
)l+1(

2

3
)n−1−l + (

1

3
)l(

2

3
)n−l

]

+
1

2

l22−1
∑

l=l21

(

n− 1

l

)[

P l+1
2 (1− P2)

n−1−l + (
1

3
)l(

2

3
)n−l

]

+
1

2

n−1
∑

l=l22

(

n− 1

l

)

[

P l+1
2 (1− P2)

n−1−l + P l
2(1− P2)

n−l
]

.

Examining

γn,1

(

1

2

)

= γn,2

(

1

2

)

, (3.4)

we can rewrite it as

1

2

max{l11−1,l21−1}
∑

l=|l11−l21|+1

(

n− 1

l

)[

(
1

3
)l+1(

2

3
)n−1−l + (

1

3
)l(

2

3
)n−l

]

+
1

2

max{l11,l21}−1
∑

l=min{l11,l21}

(

n− 1

l

)[

(
1

3
)l(

2

3
)n−l

]

+
1

2

n−1
∑

l=l12

(

n− 1

l

)

[

P l+1
1 (1− P1)

n−1−l + P l
1(1− P1)

n−l
]

+
1

2

l12−1
∑

l=l11

(

n− 1

l

)

[

P l+1
1 (1− P1)

n−1−l
]

−
1

2

l12−1
∑

l=l11

(

n− 1

l

)

[

P l+1
2 (1− P2)

n−1−l
]

+
1

2

max{l12,l22}
∑

l=min{l22,l12}+1

(

n− 1

l

)[

(
1

3
)l(

2

3
)n−l

]

−
1

2

n−1
∑

l=l22

(

n− 1

l

)

[

P l+1
2 (1− P2)

n−1−l + P l
2(1− P2)

n−l
]

= 0.

As a result, the boundary formula becomes a function of four parameters l11, l12, l21, and

l22, each of which ranges from 0 to n. By this, we can plot the boundaries of the six regions

directly. Nevertheless, further simplification of the boundary formulas might require specific

conditions on the hypothesis distributions, and is deferred as the future work.

3.2.2 Regions that the IQS is Suboptimal

After identifying the best IQS for a given hypothesis distribution, we next test whether the

NQS can improve the best IQS or not. As aforementioned, it would be easier to disprove

the optimality of the IQS rather than proving its optimality because we only need to show

the existence of an NQS that outperforms the best IQS.
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To achieve this goal, we choose to replace one of the sensors’ LRQ by a distinct one. By

this, we may possibly identify some area on the hypothesis distribution domain, which the

NQS outperforms the IQS. However, we found that such areas may be changed for different

number of sensors n. We then ask ourselves whether there exists a specific area that the NQS

is always better than the IQS for most n. For this purpose, we overlap our experimental

results for different n and look for the common area that the NQS (or more specifically, the

near-IQS) is better. We found some desired common areas:

Segment 1: (n− 1) type 1 + 1 type 2 : P1 =
2
3
, 5
64

≤ P2 <
1
6

Segment 2: (n− 1) type 1 + 1 type 3 : P1 =
2
3
, 1
6
< P2 ≤

49
192

Segment 3: (n− 1) type 2 + 1 type 1 : P2 =
2
3
, 5
64

≤ P1 <
1
6

Segment 4: (n− 1) type 2 + 1 type 3 : P2 =
2
3
, 1
6
< P1 ≤

49
192

Segment 5: (n− 1) type 3 + 1 type 1 : P1 + P2 =
3
4
, 21
64

≤ P1 <
3
8
, 3
8
< P2 ≤

27
64

Segment 6: (n− 1) type 3 + 1 type 2 : P1 + P2 =
3
4
, 3
8
< P1 ≤

27
64
, 21
64

≤ P2 <
3
8

(3.5)

Now take the first segment as an example. We have already known that the type-1 IQS is the

best IQS in the specified ranges of P1 and P2. We then replace one of the local quantizer to a

type-2 quantizer ĝ. For reader’s convenience, the post-quantization hypothesis distributions

of the type-1 and type-2 quantizers are tabulated in Table 3.2.

Table 3.2:

u 0 1

Pḡ(u) P1 1− P1

Pḡ(u)
1
3

2
3

u 0 1

Pĝ(u) P2 1− P2

Qĝ(u)
1
3

2
3
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Figure 3.2: Functions of γ̂1(π) and γ̄1(π), where γ̂1(π) is plotted in solid blue color, while
γ̄1(π) in dotted red color.

Using the same technique introduced in Chapter 2, we derive:

γn

(

1

2

)

=
1

2

∑

un

1
∈{0,1}n

[

Pḡ(u
n−1
1 )Pg(un) ∧Qḡ(u

n−1
1 )Qg(un)

]

=
1

2

∑

un−1

1
∈{0,1}n−1

∑

un∈{0,1}
n

[

Pḡ(u
n−1
1 )Pg(un) ∧Qḡ(u

n−1
1 )Qg(un)

]

=
∑

un−1

1
∈{1,2}n−1

(

Pḡ(u
n−1
1 ) +Qḡ(u

n−1
1 )

2

)

γ1

(

Pḡ(u
n−1
1 )

Pḡ(u
n−1
1 ) +Qḡ(u

n−1
1 )

)

. (3.6)

Taking the distributions in Table 3.2 into (3.6), we can rewrite (3.6) as

γn

(

1

2

)

=

n−1
∑

l=0

(

n− 1

l

)(

P l
1(1− P1)

n−1−l + (1
3
)l(2

3
)n−1−l

2

)

γ1

(

1

1 + ( 1
3P1

)l( 2
3−3P1

)n−1−l

)

.(3.7)

By checking Fig. 3.2(a) under P1 =
2
3
and P2 =

5
64
, the range that γ̂(π) 6= γ̄(π) is the union

of (1/3, 64/113) and (64/113, 64/79). So the critical l lies in

1

3
<

1

1 + 2n−1−2l
<

64

113
and

64

113
<

1

1 + 2n−1−2l
<

64

79
,

or equivalently,

n

2
− 1 < l <

n + 5− 2 log2(7)

2
≈

n

2
− 0.307 (3.8)
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and

n+ 5− 2 log2(7)

2
< l <

n+ 5− log2(15)

2
≈

n

2
+ 0.547. (3.9)

Again, when n = 2k, it is not possible to have an integer l satisfying (3.8) but l = n/2 = k

makes valid (3.9).

Similar derivation can be applied to Fig. 3.2(b). The two ranges for Fig. 3.2(b) are

(1/3, 128/193) and (128/193, 128/191), where γ̂(π) is larger than γ̄(π) in the former range

but is smaller than γ̄(π) in the latter range. This results in the derivation that

1

3
<

1

1 + 2n−1−2l
<

128

193
and

128

193
<

1

1 + 2n−1−2l
<

128

191
,

or equivalently,

n

2
− 1 < l <

n

2
+ 3−

1

2
log2(65) ≈

n

2
− 0.011 (3.10)

and

n+ 5− 2 log2(7)

2
< l <

n

2
+ 3−

1

2
log2(63) ≈

n

2
+ 0.011. (3.11)

Again, when n = 2k, it is not possible to have an integer l satisfying (3.10) but l = n/2 = k

makes valid (3.11).

A) Line Segment 1

We now give a general result for line segment 1. For P1 = 2/3, the two gamma functions

are given by:

r̄(π) =

[

P1π ∧
1

3
(1− π)

]

+

[

(1− P1)π ∧
2

3
(1− π)

]

=

[

2

3
π ∧

1

3
(1− π)

]

+

[

1

3
π ∧

2

3
(1− π)

]

=











2
3
π + 1

3
π, 0 ≤ π < 1

3
1
3
(1− π) + 1

3
π, 1

3
≤ π < 2

3
1
3
(1− π) + 2

3
(1− π) , 2

3
≤ π ≤ 1

=











π, 0 ≤ π < 1
3

1
3
, 1

3
≤ π < 2

3

1− π, 2
3
≤ π ≤ 1
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and for P2 < 1− P1 = 1/3,

r̂(π) =

[

P2π ∧
1

3
(1− π)

]

+

[

(1− P2)π ∧
2

3
(1− π)

]

=











P2π + (1− P2)π, 0 ≤ π < 2
5−3P2

P2π + 2
3
(1− π) , 2

5−3P2

≤ π < 1
3P2+1

1
3
(1− π) + 2

3
(1− π) , 1

3P2+1
≤ π ≤ 1

=











π, 0 ≤ π < 2
5−3P2

P2π + 2
3
(1− π) , 2

5−3P2

≤ π < 1
3P2+1

1− π, 1
3P2+1

≤ π ≤ 1

The two ranges that γ̂(π) 6= γ̄(π) are (1
3
, 1
2−3P2

) and ( 1
2−3P2

, 1
3P2+1

), where γ̂(π) is larger than

γ̄(π) in the former range but is smaller than γ̄(π) in the latter range. This results in the

derivation that

1

3
<

1

1 + 2n−1−2l
<

1

2− 3P2

and
1

2− 3P2

<
1

1 + 2n−1−2l
<

1

3P2 + 1
,

or equivalently,

n

2
− 1 < l <

n

2
−

1

2
−

1

2
log2(1− 3P2) (3.12)

and

n

2
−

1

2
−

1

2
log2(1− 3P2) < l <

n

2
−

1

2
−

1

2
log2(3P2). (3.13)

Suppose n = 2k is even. Therefore, if

k −
1

2
−

1

2
log2(1− 3P2) < k (i.e., P2 <

1

6
),

then no integer l satisfies (3.12). Note that P2 < 1
6
implies that −1

2
− 1

2
log2(1 − 3P2) < 0,

and −1
2
− 1

2
log2(3P2) > 0. Hence, taking γ1 to be γ̂ in (3.7) always yields a smaller γn(1/2).

We conclude that when P1 =
2
3
and 0 ≤ P2 <

1
6
, using (n− 1) type 1 + 1 type 2 quantizers

always outperform γn,1. Since Figure 3.1 indicates that γn,1 is the optimal IQS between the

two margins of γn,1 = γn,2 and γn,1 = γn,3 for 1
3
≤ P1 ≤ 1 and 0 ≤ P2 ≤ 1

3
, we can then

decide numerically that for the line segment decided by P1 =
2
3
and 5

64
≤ P2 <

1
6
, the IQS is

only suboptimal.
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Note that when P2 =
1
6
, no integer satisfies both (3.12) and (3.13); hence, using (n− 1)

type 1 + 1 type 2 quantizers have the same performance as γn,1. In such case, we can no

longer claim that the IQS is only suboptimal.

B) Line Segment 2

We can similarly examine our result regarding line segment 2.

Again, for P1 = 2/3, the two gamma functions are given by:

r̄(π) =

[

P1π ∧
1

3
(1− π)

]

+

[

(1− P1)π ∧
2

3
(1− π)

]

=

[

2

3
π ∧

1

3
(1− π)

]

+

[

1

3
π ∧

2

3
(1− π)

]

=











2
3
π + 1

3
π, 0 ≤ π < 1

3
1
3
(1− π) + 1

3
π, 1

3
≤ π < 2

3
1
3
(1− π) + 2

3
(1− π) , 2

3
≤ π ≤ 1

=











π, 0 ≤ π < 1
3

1
3
, 1

3
≤ π < 2

3

1− π, 2
3
≤ π ≤ 1

and denoting conveniently P12 = P1 + P2 =
2
3
+ P2 ≥

2
3
,

r̂(π) =

[

P12π ∧
2

3
(1− π)

]

+

[

(1− P12)π ∧
1

3
(1− π)

]

.

It can be verified that 2
3P12+2

< 1
4−3P12

; hence,

r̂(π) =

[

P12π ∧
2

3
(1− π)

]

+

[

(1− P12)π ∧
1

3
(1− π)

]

=











P12π + (1− P12)π, 0 ≤ π < 2
3P12+2

2
3
(1− π) + (1− P12)π,

2
3P12+2

≤ π < 1
4−3P12

2
3
(1− π) + 1

3
(1− π) , 1

4−3P12

≤ π ≤ 1

=











π, 0 ≤ π < 2
3P12+2

2
3
+
(

1
3
− P12

)

π, 2
3P12+2

≤ π < 1
4−3P12

1− π, 1
4−3P12

≤ π ≤ 1

The two ranges that γ̂(π) 6= γ̄(π) are (1
3
, 1
3P3−1

) and ( 1
3P3−1

, 1
4−3P3

), where γ̂(π) is larger than

γ̄(π) in the former range but is smaller than γ̄(π) in the latter range. This results in the
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derivation that

1

3
<

1

1 + 2n−1−2l
<

1

3P12 − 1
and

1

3P12 − 1
<

1

1 + 2n−1−2l
<

1

4− 3P12

,

or equivalently,

n

2
− 1 < l <

n

2
−

1

2
−

1

2
log2(3P12 − 2) (3.14)

and

n

2
−

1

2
−

1

2
log2(3P12 − 2) < l <

n

2
−

1

2
−

1

2
log2(3− 3P12). (3.15)

Suppose n = 2k is even. Therefore, if

k −
1

2
−

1

2
log2(3P12 − 2) < k

(

i.e., P12 >
5

6
, or equivalently P2 >

1

6

)

,

then no integer l satisfies (3.14). Note that P12 >
5
6
implies that −1

2
− 1

2
log2(3P12 − 2) < 0,

and −1
2
− 1

2
log2(3 − 3P12) > 0. Hence, taking γ1 to be γ̂ in (3.7) always yields a smaller

γn(1/2). We conclude that when P1 = 2
3
and 1

6
< P2 ≤ 1, using (n − 1) type 1 + 1 type 3

quantizers always outperform γn,1. Since Figure 3.1 indicates that γn,1 is the optimal IQS

between the two margins of γn,1 = γn,2 and γn,1 = γn,3 for 1
3
≤ P1 ≤ 1 and 0 ≤ P2 ≤ 1

3
, we

can then decide numerically that for the line segment decided by P1 =
2
3
and 1

6
< P2 <

49
192

,

the IQS is only suboptimal.

Note that when P2 =
1
6
, no integer satisfies both (3.14) and (3.15); hence, using (n− 1)

type 1 + 1 type 3 quantizers have the same performance as γn,1. In such case, we can no

longer claim that the IQS is only suboptimal.

C) Line Segment 3

We now prove the validity of line segment 3. For P2 = 2/3, the two gamma functions are
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given by:

r̄(π) =

[

P2π ∧
1

3
(1− π)

]

+

[

(1− P2)π ∧
2

3
(1− π)

]

=

[

2

3
π ∧

1

3
(1− π)

]

+

[

1

3
π ∧

2

3
(1− π)

]

=











2
3
π + 1

3
π, 0 ≤ π < 1

3
1
3
(1− π) + 1

3
π, 1

3
≤ π < 2

3
1
3
(1− π) + 2

3
(1− π) , 2

3
≤ π ≤ 1

=











π, 0 ≤ π < 1
3

1
3
, 1

3
≤ π < 2

3

1− π, 2
3
≤ π ≤ 1

and for P1 < 1− P2 = 1/3,

r̂(π) =

[

P1π ∧
1

3
(1− π)

]

+

[

(1− P1)π ∧
2

3
(1− π)

]

=











P1π + (1− P1)π, 0 ≤ π < 2
3P3+2

P1π + 2
3
(1− π) , 2

5−3P1

≤ π < 1
3P1+1

1
3
(1− π) + 2

3
(1− π) , 1

3P1+1
≤ π ≤ 1

=











π, 0 ≤ π < 2
3P3+2

2
3
+
(

1
3
− P1

)

π, 2
3P3+2

≤ π < 1
4−3P3

1− π, 1
4−3P3

≤ π ≤ 1

The two ranges that γ̂(π) 6= γ̄(π) are (1
3
, 1
2−3P1

) and ( 1
2−3P1

, 1
3P1+1

), where γ̂(π) is larger than

γ̄(π) in the former range but is smaller than γ̄(π) in the latter range. This results in the

derivation that

1

3
<

1

1 + 2n−1−2l
<

1

2− 3P1
and

1

2− 3P1
<

1

1 + 2n−1−2l
<

1

3P1 + 1
,

or equivalently,

n

2
− 1 < l <

n

2
−

1

2
−

1

2
log2(1− 3P1) (3.16)

and

n

2
−

1

2
−

1

2
log2(1− 3P1) < l <

n

2
−

1

2
−

1

2
log2(3P1). (3.17)
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Suppose n = 2k is even. Therefore, if

k −
1

2
−

1

2
log2(1− 3P1) < k (i.e., P1 <

1

6
),

then no integer l satisfies (3.16). Note that P1 < 1
6
implies that −1

2
− 1

2
log2(1 − 3P1) < 0,

and −1
2
− 1

2
log2(3P1) > 0. Hence, we conclude that when P2 = 2

3
and 0 ≤ P1 < 1

6
, using

(n− 1) type 2 + 1 type 1 quantizers always outperform γn,2. Since Figure 3.1 indicates that

γn,2 is the optimal IQS between the two margins of γn,1 = γn,2 and γn,2 = γn,3 for 0 ≤ P1 ≤
1
3

and 1
3
≤ P2 ≤ 1, we can then decide numerically that for the line segment decided by P2 =

2
3

and 5
64

≤ P1 <
1
6
, the IQS is only suboptimal.

Note that when P1 =
1
6
, no integer satisfies both (3.16) and (3.17); hence, using (n− 1)

type 2 + 1 type 1 quantizers have the same performance as γn,2. In such case, we can no

longer claim that the IQS is only suboptimal.

D) Line Segment 4

We now proceed to prove the validity of line segment 4. For P2 = 2/3, the two gamma

functions are given by:

r̄(π) =

[

P2π ∧
1

3
(1− π)

]

+

[

(1− P2)π ∧
2

3
(1− π)

]

=

[

2

3
π ∧

1

3
(1− π)

]

+

[

1

3
π ∧

2

3
(1− π)

]

=











2
3
π + 1

3
π, 0 ≤ π < 1

3
1
3
(1− π) + 1

3
π, 1

3
≤ π < 2

3
1
3
(1− π) + 2

3
(1− π) , 2

3
≤ π ≤ 1

=











π, 0 ≤ π < 1
3

1
3
, 1

3
≤ π < 2

3

1− π, 2
3
≤ π ≤ 1

and for P12 = P1 + P2 = P1 +
2
3
,

r̂(π) =

[

P12π ∧
2

3
(1− π)

]

+

[

(1− P12)π ∧
1

3
(1− π)

]

.
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It can be verified that 2
3P12+2

< 1
4−3P12

; hence,

r̂(π) =

[

P12π ∧
1

3
(1− π)

]

+

[

(1− P12)π ∧
2

3
(1− π)

]

=











P12π + (1− P12)π, 0 ≤ π < 2
3P12+2

2
3
(1− π) + (1− P12)π,

2
3P12+2

≤ π < 1
4−3P12

2
3
(1− π) + 1

3
(1− π) , 1

4−3P12

≤ π ≤ 1

=











π, 0 ≤ π < 2
3P12+2

2
3
+
(

1
3
− P12

)

π, 2
3P12+2

≤ π < 1
4−3P12

1− π, 1
4−3P12

≤ π ≤ 1

The two ranges that γ̂(π) 6= γ̄(π) are (1
3
, 1
3P12−1

) and ( 1
3P12−1

, 1
4−3P12

), where γ̂(π) is larger

than γ̄(π) in the former range but is smaller than γ̄(π) in the latter range. This results in

the derivation that

1

3
<

1

1 + 2n−1−2l
<

1

3P12 − 1
and

1

3P12 − 1
<

1

1 + 2n−1−2l
<

1

4− 3P12

,

or equivalently,

n

2
− 1 < l <

n

2
−

1

2
−

1

2
log2(3P12 − 2) (3.18)

and

n

2
−

1

2
−

1

2
log2(3P12 − 2) < l <

n

2
−

1

2
−

1

2
log2(3− 3P12). (3.19)

Suppose n = 2k is even. Therefore, if

k −
1

2
−

1

2
log2(3P12 − 2) < k

(

i.e., P12 >
5

6
, or equivalently P1 >

1

6

)

,

then no integer l satisfies (3.18). Note that P1 >
1
6
implies that −1

2
− 1

2
log2(3P12 − 2) < 0,

and −1
2
− 1

2
log2(3−3P12) > 0. Hence, we conclude that when P2 =

2
3
and 1

6
< P1 ≤ 1, using

(n− 1) type 2 + 1 type 3 quantizers always outperform γn,2. Since Figure 3.1 indicates that

γn,2 is the optimal IQS between the two margins of γn,1 = γn,2 and γn,2 = γn,3 for 0 ≤ P1 ≤
1
3

and 1
3
≤ P2 ≤ 1, we can then decide numerically that for the line segment decided by P2 =

2
3

and 1
6
≤ P1 <

49
192

, the IQS is only suboptimal.
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Note that when P1 =
1
6
, no integer satisfies both (3.18) and (3.19); hence, using (n− 1)

type 2 + 1 type 3 quantizers have the same performance as γn,2. In such case, we can no

longer claim that the IQS is only suboptimal.

E) Line Segment 5

Our next proof is for line segment 5. For P1 + P2 = 3/4, the two gamma functions are

given by:

r̄(π) =

[

3

4
π ∧

2

3
(1− π)

]

+

[

1

4
π ∧

1

3
(1− π)

]

=











3
4
π + 1

4
π, 0 ≤ π < 8

17
2
3
(1− π) + 1

4
π, 8

17
≤ π < 4

7
2
3
(1− π) + 1

3
(1− π) , 4

7
≤ π ≤ 1

=











π, 0 ≤ π < 2
5

2
3
− 5

12
π, 2

5
≤ π < 4

7

1− π, 4
7
≤ π ≤ 1

and for P1 ≤ 3/8 such that 2
5−3P1

≤ 1
3P1+1

,

r̂(π) =

[

P1π ∧
1

3
(1− π)

]

+

[

(1− P1)π ∧
2

3
(1− π)

]

=











P1π + (1− P1)π, 0 ≤ π < 2
5−3P2

P1π + 2
3
(1− π) , 2

5−3P1

≤ π < 1
3P1+1

1
3
(1− π) + 2

3
(1− π) , 1

3P1+1
≤ π ≤ 1

=











π, 0 ≤ π < 2
5−3P1

2
3
+
(

P1 −
2
3

)

π, 2
5−3P1

≤ π < 1
3P1+1

1− π, 1
3P1+1

≤ π ≤ 1

The only range that γ̂(π) > γ̄(π) is ( 8
17
, 1
1+3P1

). By (2.3), we derive

π =
Pḡ(u

n−1
1 )

Pḡ(u
n−1
1 ) +Qḡ(u

n−1
1 )

=
(3
4
)l(1

4
)n−l−1

(3
4
)l(1

4
)n−l−1 + (2

3
)l(1

3
)n−l−1

=
1

1 + (8
9
)l(4

3
)n−l−1

.
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Hence, to check wether the IQS is suboptimal, we examine:

8

17
<

1

1 + (8
9
)l(4

3
)n−l−1

<
1

3P1 − 1
,

or equivalently,

log2(3P1) + (1− n) log2(
4
3
)

log2(
2
3
)

< l <
log2(

9
8
) + (1− n) log2(

4
3
)

log2(
2
3
)

= αn− 1. (3.20)

where α = 2−log2(3)
1−log2(3)

≈ 0.7095 is an irrational number.

Now, if we place probability mass 1/N at points {αn− ⌊αn⌋}Nn=1 to form a probability

measure µn, then by the theory about the so-called uniformly distributed modulo 1 [6], we

have µn converges in distribution to µ, where µ is a uniform distribution over (0, 1]. This

indicates as long as

P1 <
3

8
,

there exists integer l satisfying (3.20) for infinitely many n. Hence, we conclude that when

0 ≤ P1 < 8
3
subject to P1 + P2 = 3

4
, using (n − 1) type 3 + 1 type 1 quantizers always

outperform γn,3. Since Figure 3.1 indicates that γn,3 is the optimal IQS between the two

margins of γn,1 = γn,3 and γn,2 = γn,3, we can then decide numerically that for the line

segment decided by P1 + P2 = 3
4
, 21

64
≤ P1 < 3

8
and 3

8
< P2 ≤ 27

64
, the IQS is suboptimal

infinitely often in n.

Note that when P1 =
3
8
, no integer satisfies (3.20); hence, using (n− 1) type 3 + 1 type

1 quantizers have the same performance as γn,3. In such case, we can no longer claim that

the IQS is only suboptimal.

F) Line Segment 6

We now turn to the last proof about line segment 6. For P12 = P1 + P2 = 3/4, the two
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gamma functions are given by:

r̄(π) =

[

P12π ∧
2

3
(1− π)

]

+

[

(1− P12)π ∧
1

3
(1− π)

]

=

[

3

4
π ∧

2

3
(1− π)

]

+

[

1

4
π ∧

1

3
(1− π)

]

=











3
4
π + 1

4
π, 0 ≤ π < 8

17
2
3
(1− π) + 1

4
π, 8

17
≤ π < 4

7
2
3
(1− π) + 1

3
(1− π) , 4

7
≤ π ≤ 1

=











π, 0 ≤ π < 2
5

2
3
− 5

12
π, 2

5
≤ π < 4

7

1− π, 4
7
≤ π ≤ 1

and for P2 ≤
3
8
such that 2

5−3P2

≤ 1
3P2+1

,

r̂(π) =

[

P2π ∧
1

3
(1− π)

]

+

[

(1− P2)π ∧
2

3
(1− π)

]

=











P2π + (1− P2)π, 0 ≤ π < 2
5−3P2

P2π + 2
3
(1− π) , 2

5−3P2

≤ π < 1
3P2+1

1
3
(1− π) + 2

3
(1− π) , 1

3P2+1
≤ π ≤ 1

=











π, 0 ≤ π < 2
5−3P2

2
3
+
(

P2 −
2
3

)

π, 2
5−3P2

≤ π < 1
3P2+1

1− π, 1
3P2+1

≤ π ≤ 1

The only one range that γ̂(π) > γ̄(π) is again ( 8
17
, 1
1+3P2

). Derive from (2.3) that

π =
Pḡ(u

n−1
1 )

Pḡ(u
n−1
1 ) +Qḡ(u

n−1
1 )

=
(3
4
)l(1

4
)n−l−1

(3
4
)l(1

4
)n−l−1 + (2

3
)l(1

3
)n−l−1

=
1

1 + (8
9
)l(4

3
)n−l−1

.

Hence, to examine whether the IQS is suboptimal or not, we continue to derive

8

17
<

1

1 + (8
9
)l(4

3
)n−l−1

<
1

3P2 − 1
,

or equivalently,

log2(3P2) + (1− n) log2(
4
3
)

log2(
2
3
)

< l <
log2(

9
8
) + (1− n) log2(

4
3
)

log2(
2
3
)

= αn− 1, (3.21)
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where α = 2−log2(3)
1−log2(3)

≈ 0.7095 is an irrational number.

Again, if we place probability mass 1/N at points {αn− ⌊αn⌋}Nn=1 to form a probability

measure µn, then by the theory about the so-called uniformly distributed modulo 1 [6], we

have µn converges in distribution to µ, where µ is a uniform distribution over (0, 1]. This

indicates as long as

P2 <
3

8
,

there exists integer l satisfying (3.21) for infinitely many n. Hence, we conclude that when

0 ≤ P2 < 8
3
subject to P1 + P2 = 3

4
, using (n − 1) type 3 + 1 type 2 quantizers always

outperform γn,3. Since Figure 3.1 indicates that γn,3 is the optimal IQS between the two

margins of γn,1 = γn,3 and γn,2 = γn,3, we can then decide numerically that for the line

segment decided by P1 + P2 = 3
4
, 3

8
≤ P1 < 27

64
and 21

64
≤ P2 < 3

8
, the IQS is suboptimal

infinitely often in n.

Note that when P2 =
3
8
, no integer satisfies (3.21); hence, using (n− 1) type 3 + 1 type

2 quantizers have the same performance as γn,3. In such case, we can no longer claim that

the IQS is only suboptimal.

3.2.3 Case 2: Non-Uniform Alternative Hypothesis Distribution

We also examine a case that equips with non-uniform alternative hypothesis distribution.

The statistics for local observations in {a1, a2, a3} is denoted as follows:



















Pr (a1|H0) = P1

Pr (a2|H0) = P2

Pr (a3|H0) = 1− P1 − P2

and



















Pr (a1|H1) =
1
4

Pr (a2|H1) =
1
4

Pr (a3|H1) =
1
2

The above equations can also be listed in a tabular form below.
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y a1 a2 a3

Pr(y|H0) P1 P2 1−P1−P2

Pr(y|H1)
1
4

1
4

1
2

Similar to the previous case, we can perform binary quantizer and yields three LRQ types.

The corresponding post-quantization distributions are listed in Table 3.3.

Table 3.3: For convenience, we denote P3 = P1 + P2.

u 0 1

Pg1(u) P1 1− P1

Qg1(u)
1
4

3
4

u 0 1

Pg2(u) P2 1− P2

Qg2(u)
1
4

3
4

u 0 1

Pg3(u) P3 1− P3

Qg3(u)
1
2

1
2

The results are very similar to that for the first case. The picture of the optimal IQS region

is also divided into six areas and the margins of the six areas must be decided numerically.

However, since the areas are more messy than Case 1 due to non-uniformity of the alternative

hypothesis distribution, no conclusive results are obtained; we therefore defer this part as a

future work.
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Chapter 4

Simulation Results

In this chapter, numerical and simulation results are provided to confirm and demonstrate

the derivations in Chapter 3. For better readability, simulation results are summarized in

Section 4.1, and discussions regarding them are given in Section 4.2.

4.1 Summary of Numerical and Simulation Results

We first introduce the system setting of the following simulations.

1. Figures 4.1–4.12 show the resulting error probabilities for all possible combinations of

the LRQs introduced in Section 3.1.

(a) What presented in Figures 4.1 - 4.4 are the performances of the hypothesis setting

below.

y a1 a2 a3

Pr(y|H0)
1
12

1
4

2
3

Pr(y|H1)
1
3

1
3

1
3

After binary quantization, it will result in two nontrivial LRQs as shown in Table

4.1.
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Table 4.1:

u 0 1

Pĝ(u) = Pr(u|H0)
1
12

11
12

Qĝ(u) = Pr(u|H1)
1
3

2
3

u 0 1

Pḡ(u) = Pr(u|H0)
1
3

2
3

Qḡ(u) = Pr(u|H1)
2
3

1
3

In our experiment, we will base on the IQS, where all sensors use ḡ as their

local quantizers, and gradually increase the number of sensors that use LRQ

ĝ, for which the number is indicated by the x-axis. We can observe that the

performance basically improves but not monotonically when the number of ĝ

LRQ sensors increase. It hints that the optimal NQS only use very few number

(actually only one in Figures 4.1 and4.10)of ḡ quantizers but is nearly close to an

identical quantizer system.

(b) Again, what presented in Figures 4.5 - 4.8 are the performances of the hypothesis

setting below.

y a1 a2 a3

Pr(y|H0)
1
9

4
9

4
9

Pr(y|H1)
1
3

1
3

1
3

After binary quantization, it will result in two nontrivial LRQs as shown in Table

4.2.

Similar to the previous experiment, we start from the IQS that uses unanimously

ḡ and then gradually increase the number of sensors using LRQ ĝ. Different form

the previous case, the performance monotonically degrades and hence the initial

IQS is actually the optimal system.
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Table 4.2:

u 0 1

Pĝ(u) = Pr(u|H0)
1
9

8
9

Qĝ(u) = Pr(u|H1)
1
3

2
3

u 0 1

Pḡ(u) = Pr(u|H0)
5
9

4
9

Qḡ(u) = Pr(u|H1)
2
3

1
3

(c) What presented in Figures 4.9 - 4.12 are the performances of hypothesis distribu-

tion pair indicated below.

y a1 a2 a3

Pr(y|H0)
1
23

1
23

21
23

Pr(y|H1)
1
3

1
3

1
3

After binary quantization, it will result in two nontrivial LRQs as shown in Table

4.3.

Table 4.3:

u 0 1

Pĝ(u) = Pr(u|H0)
1
23

22
23

Qĝ(u) = Pr(u|H1)
1
3

2
3

u 0 1

Pḡ(u) = Pr(u|H0)
2
23

21
23

Qḡ(u) = Pr(u|H1)
2
3

1
3

Parallel to the previous case, we also observe a monotonic behavior of the per-

formances when we increase the number of sensors using LRQ ĝ. However, the

detection errors decrease instead of increase in this case. Hence, the IQS, where
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all sensors use LRQ ĝ, is the globally optimal design.

2. Figures 4.13 and 4.14 show the area, of which local LRQ gives the best IQS. The three

possible LRQs are termed type 1, type 2 and type 3, depending on which of the local

observations in {a1, a2, a3} is isolated as specified the same as in Table 3.1. Different

colors are adopted for different areas according to:

type 1 gives the best IQS : dark gray

type 2 gives the best IQS : gray

type 3 gives the best IQS : light gray

The local hypothesis setting in Figure 4.13 is as follows.

y a1 a2 a3

Pr(y|H0) P1 P2 1−P1−P2

Pr(y|H1)
1
3

1
3

1
3

The local hypothesis setting in Figure 4.14 is given below.

y a1 a2 a3

Pr(y|H0) P1 P2 1−P1−P2

Pr(y|H1)
1
4

1
4

1
2

We specifically try an odd number of sensors (e.g., 39) and an even number of sensors

(e.g., 60) in our experiment to see whether the patterns alternate according to odd or

even number of sensors.

3. Figures 4.15 and 4.16 show the areas, in which the NQS with one different local LRQ

improves the best IQS. When such an improvement occurs, we will use the following
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colors to indicate it:

(n− 1) type 1 + 1 type 2 : dark red

(n− 1) type 1 + 1 type 3 : red

(n− 1) type 2 + 1 type 1 : dark green

(n− 1) type 2 + 1 type 3 : green

(n− 1) type 3 + 1 type 1 : dark blue

(n− 1) type 3 + 1 type 2 : blue

(4.1)

In this experiment, the distribution of the pre-quantization local observation is given

by:

y a1 a2 a3

Pr(y|H0) P1 P2 1−P1−P2

Pr(y|H1)
1
3

1
3

1
3
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Figure 4.1: Detect errors for the LRQs in Table 4.1. The x-axis indicates the number of
sensors that use LRQ ĝ. As indicated on top of the plots, the total numbers of sensors are
respectively 30 and 31 in (a) and (b).
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Figure 4.2: Detect errors for the LRQs in Table 4.1. The x-axis indicates the number of
sensors that use LRQ ĝ. As indicated on top of the plots, the total numbers of sensors are
respectively 50 and 51 in (a) and (b).
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Figure 4.3: Detect errors for the LRQs in Table 4.1. The x-axis indicates the number of
sensors that use LRQ ĝ. As indicated on top of the plots, the total numbers of sensors are
respectively 70 and 71 in (a) and (b).
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Figure 4.4: Detect errors for the LRQs in Table 4.1. The x-axis indicates the number of
sensors that use LRQ ĝ. As indicated on top of the plots, the total numbers of sensors are
respectively 90 and 91 in (a) and (b).
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Figure 4.5: Detect errors for the LRQs in Table 4.2. The x-axis indicates the number of
sensors that use LRQ ĝ. As indicated on top of the plots, the total numbers of sensors are
respectively 30 and 31 in (a) and (b).
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Figure 4.6: Detect errors for the LRQs in Table 4.2. The x-axis indicates the number of
sensors that use LRQ ĝ. As indicated on top of the plots, the total numbers of sensors are
respectively 50 and 51 in (a) and (b).
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Figure 4.7: Detect errors for the LRQs in Table 4.2. The x-axis indicates the number of
sensors that use LRQ ĝ. As indicated on top of the plots, the total numbers of sensors are
respectively 70 and 71 in (a) and (b).
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Figure 4.8: Detect errors for the LRQs in Table 4.2. The x-axis indicates the number of
sensors that use LRQ ĝ. As indicated on top of the plots, the total numbers of sensors are
respectively 90 and 91 in (a) and (b).
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Figure 4.9: Detection errors for the LRQs in Table 4.3. The x-axis indicates the number
of sensors that use LRQ ĝ. As indicated on top of the plots, the numbers of sensors are
respectively 30 and 31 in (a) and (b).
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Figure 4.10: Detection errors for the LRQs in Table 4.3. The x-axis indicates the number
of sensors that use LRQ ĝ. As indicated on top of the plots, the numbers of sensors are
respectively 50 and 51 in (a) and (b).
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Figure 4.11: Detect errors for the LRQs in Table 4.2. The x-axis indicates the number of
sensors that use LRQ ĝ. As indicated on top of the plots, the total numbers of sensors are
respectively 70 and 71 in (a) and (b).
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Figure 4.12: Detect errors for the LRQs in Table 4.2. The x-axis indicates the number of
sensors that use LRQ ĝ. As indicated on top of the plots, the total numbers of sensors are
respectively 90 and 91 in (a) and (b).
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Figure 4.13: Areas identifying the best IQS. The colors of dark gray, gray and light gray
respectively indicate type 1 LRQ, type 2 LRQ and type 3 LRQ gives the best IQS. The
numbers of sensors in (a) and (b) are 39 and 60, respectively.
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Figure 4.14: Areas identifying the best IQS. The colors of dark gray, gray and light gray
respectively indicate type 1 LRQ, type 2 LRQ and type 3 LRQ gives the best IQS. The
numbers of sensors in (a) and (b) are 39 and 60, respectively.
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Figure 4.15: Areas that the NQS with one different LRQ outperforms the best IQS. The
implications of different colors are designated in (4.1). The number of sensors are 30 and 31
for (a) and (b), respectively.
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Figure 4.16: Areas that the NQS with one different LRQ outperforms the best IQS. The
implications of different colors are designated in (4.1). The number of sensors are 80 and 81
for (a) and (b), respectively.
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Figure 4.17: Areas that the NQS with one different LRQ outperforms the best IQS. The
implications of different colors are designated in (4.1). The number of sensors are 30 and 31
for (a) and (b), respectively.
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Figure 4.18: Areas that the NQS with one different LRQ outperforms the best IQS. The
implications of different colors are designated in (4.1). The number of sensors are 80 and 81
for (a) and (b), respectively.
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4.2 Remarks

From Figures 4.1–4.10, we observe that the best IQS is optimal in some cases but is only

suboptimal in some other cases. We also note that the performance curve may not be mono-

tonic with the number of different LRQs from the original IQS. But these curves somehow

confirm the general impression that to achieve optimality in performance requires only to

use very few distinct LRQs.

In order to simplify our analysis, we focus on the comparison between the best IQS

and the NQS with only one distinct LRQ. To the end, we first numerically identify the

best IQS in Figures 4.13 and 4.14. The following observations can be made. First, the six

regions meet at the point P1 = P2 = 1
3
in Figure 4.13 and at the point P1 = P2 = 1

4
in

Figure 4.14. Notably, at this particular point, the null hypothesis distribution is identical

to the alternative hypothesis distribution. So there is no way to differentiate statistically

the two hypotheses and the resulting detection errors of all designs behave equally bad.

Secondly, the pattern of the six regions that identify the best IQS does not change with the

total number of sensors. Thirdly, the pattern can be sub-divided into six regions of the same

color.

We next test whether the NQS with one different LRQ improves the best IQS. The areas

in colors other than gray show exactly the situations where the best IQS performs worse

than the one-different-LRQ NQS. One can however observe that these colored areas, such

as the green ones, reshape when the total number of sensors change. As the number of

sensors grow, they will split into more triangular-shape bands, while these bands become

slimmer. Nevertheless, one can still observe certain “symmetry” around the center point

(e.g., P1 = P2 =
1
3
in Figure 4.13) among these band patterns.

To confirm what observed in the previous paragraph can also be applied to other hy-
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pothesis setting, we perform another numerical examination. The results are summarized in

Figures 4.17 and 4.18. The resulting behavior of the triangular-shape bands is similar, except

that the center of the symmetry of these color band patterns is changed to P1 = P2 = 1
4
.

Also, the number of bands increase as the number of sensors grow; but it seems hard to

determine the relation between the number of sensors and the number of narrow colored

bands.
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Chapter 5

Conclusion and Future Work

In this thesis, we revisit the long-standing problem in the respective literature that when

the identical quantizer system (IQS) is globally optimal. Since the answer to the previous

question may be hard, we alternatively ask ourselves a different but related question, i.e.,

when the identical quantizer system (IQS) is globally suboptimal.

By simplifying our focus on cases of ternary local observations, we found via extensive

trials that the optimal design is mostly identical but uses only few (one or two) different

LRQs. Based on this, we proceed to both theoretically and numerically compare the perfor-

mances of the best IQS and the NQS with one different LRQ. By deriving the exact error

formulas, we did locate a few line regions that the NQS outperforms the best IQS. In fact, the

technique we used should be able to extend to identify a region that the NQS outperforms

the best IQS, but we defer this task as a future work.

It is interesting to note from simulations that the regions that we wish to identify have

some symmetry pattern around some center point. If we can prove this symmetry, then the

identification of certain region could focus only on a restricted area and hence facilitate the

research along this direction.

One may wish to check whether adopting two distinct LRQs, not just one, can further im-
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prove the detection errors. This would be another future work that could help understanding

the optimal design in a distributed detection scenario.
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