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Sufficient Conditions for the Suboptimality of Identical
Quantizer Distributed Detection

Student: Chun-Yen Yang Advisor: Po-Ning Chen
Institute of Communications Engineering

National Chiao Tung University
Abstract

One engineering challenge.in designing an optimal distributed detection system is that
the number of all possible designs-(ize;;-the combinations of loeal likelihood-ratio quantizers
(LRQs) and the fusionrule) grows-exponentially with the number of local sensors. Instead,
finding the best identical quantizer design is-@ much easier task because the number of
possibilities only increase linearly with the iumber of sensors. This then arises the long-
standing query on the condition under which thebest identical quantizer system (IQS) is

also globally optimal.

In this thesis, we try to revisit the'same query by asking a different but related question:
when the IQS is only suboptimal. Using'the technique in [4], we compare the performances
between the best 1QS and the NQS with one different local quantizer, and determine theo-
retically a few line regions that give affirmative answer to our question. We also numerically
identify certain regions that make the best 1QS only suboptimal. Observations on patterns

of these regions are subsequently made and remarked.
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Chapter 1

Introduction

In this thesis, the parallel distributed detection preblem [1-5] defined below is studied.

Consider a distributed detection system consisting of #2 geographically dispersed sensors
and a fusion center, in which the-ith-sensor receives an observation Y; drawn possibly from
one of the two hypothesis /distributions. Upon‘its reception, the-observation Y; is quantized
into an m-ary data Up= f(Y;), which is then‘senf to the fusion center. Afterwards, the
fusion center performs binary hypothesis testing based on’ the réceived data (Ui, ...,U,),

and determine which of the two hypotheses; HgoreHyyis the truly happening one.

In its practice, it is more engineeringly convenient to quantize each Y; by the same quan-
tization rule, which is usually/termedsthe identical quantizer system. However, it is known
that such an identical quantizer system 'design is sometimes only suboptimal in detection
error, and the optimal design mostly adopts non-identical quantizers. Hence, it is of theo-
retical interest to investigate when the simple identical quantizer system yields the optimal
performance. It is however hard to prove the global optimality of the simple identical quan-
tizer system. On the contrary, we turn to investigate under which condition the non-identical
quantizer system design strictly outperforms the best identical quantizer system in this the-

sis.



In notations, we denote the detection error of the optimal (possibly non-identical) dis-
tributed detection system by v* (7), and use 7° () to denote the detection error of the best
identical quantizer system, where 7 is the prior probability of the null hypothesis Hy. We

will study what distribution of local observation Y; will give

7 (m) <% (7).

In the literature, only few publications have been devoted to this theoretical problem.
The study of our thesis is basically a followup work of [1]. In summary, this publication [1]
first pointed out a known result from [2] that even if the local observations Y;,..., Y, are
independent and identically distributed (i.i.d.), the optimal quantizers are not necessarily
identical. It then proved 4he conjecture in [3] that the boundedness assumption in local
statistics can be removed. It then proceeded to show that under certain boundedness condi-
tion, the ratio v* (7) /9% (7) is asymptotically-bounded from below. The authors in [1] also
showed that the conjecture that the ratio 7 (7m)/+° (7) approaches one as the number of
sensors n goes to infinity is in general not true. Another publication of the same authors [4]
provided two examples’in the Appendix, in which a-table indicates whether the identical
sensor system can be optimalior not for n varying from 2 .toe 23. The table reveals that
for some finite number of sensors, it issstill possible that the simple identical sensor system
performs optimally even if the simple identical ‘sensor system performs suboptimally as n
goes to infinity. Following their work, we will provide more situations that the simple iden-
tical sensor system is only suboptimal in this thesis. Details will be given in the subsequent

chapters.



Chapter 2

Preliminaries

In this chapter, we define the notations we use in this thesis and present the background
knowledge respectively in Seetions 21 and 2.2. The.system model follows exactly what has

been adopted in [1].

2.1 System Model

In this thesis, we consider a parallel distributed detection systemswith ternary local obser-
vation from {aj, as, az¥ and binary local quantization: This should be the simplest model
in the respective research domain. Through the study.ofsuch a simple system, we intend
to give a preliminary answer to the.general.query that under which condition the so-called

identical quantizer system is optimal in detection error.

In our setting, the two hypotheses are assumed equally likely. The statistics for local



observations in {a1, as, asz} is denoted parametrically by:

Pr(a|Hp) = P
Pr (az|Ho) = P>
Pr(as|Hy) =1— P — Py
Pr(ai|Hi) =1-Q1— Qs
Pr(az|H1) = Q1
Pr(as|Hy) = Q2

They can be listed in a tabular form as follows.

Yy ax a2 as
Pr(y\HO) P1 P2 1—P1—P2
Pr(y|Hy) 1-Q1—Q2 | O Q>

Based on the above setting; there-are-only two nontrivial. deterministic likelihood ratio quan-
tizers (LRQs) if either

Pr(a1|H1) > PI‘(CL2|H1) = PI‘(CL3|H1)
Pr(al\Ho) y PI‘(CL2|H0) - PI‘(CL3|H0)

(2.1)

or

PI‘(CLl’Hl) PI‘(CLQ’Hl) PI"(CL3|H1)
it |Ho) — Pr(as|Ho) — Po(adlfy)

(2.2)
holds. These two LRQs are g4 whichwpartitions lecal-observation space {ay, as, a3} to {a;}
and {as,as}, and g, which partitions local ebservation space {ai,as,as} to {aj,as} and
{as}. For ordering relations of likelihood ratios other than (2.1) and (2.2), we can do similar
partitions by re-indexing the local observations and hence they are included in the cases

we discuss in the sequel. The resulting post-partition or post-quantization distributions for

random quantizer output u respectively for g and g are illustrated in Table 2.1.

Because the local observations Yi, ..., Y, are i.i.d., each local sensor in the optimal

system should adopt either g or g as the local quantizer. Assume that m out of n local



Table 2.1:

U 0 1

P;(u) = Pr(u|Hy) P 1-P
Qg(u) = Pr(u|H) 1-Q1—Q2 | Q1+ Q2

U 0 1

P;(u) = Pr(u|Hy) P+ P, 1—-P — P
Qg(u) = Pr(ulHy) 1—Qo Q>

quantizers used the quantization rule ¢; then, the remaining n — m sensors accommodate

the quantization rule g. By thistassumption, the-detection error is given by:
i1 { <m) Py (=P ™" (n :—ym> (P + P)Y(1— P — P)" Y,

( ) =01 - QAL O (”;m)u—@z)y@;“m‘y}

where x and y are respectively the numbers of g-sensors and g=sensors that report 1 to

m n—m

P.(m,n) =

l\DI»—t

the future center. Im"particular, when all the sensors assume quantization rule g, which

corresponds to m = 0,"the detection error becomes:

= _me{< ) (Pr+ P2)Y(1 — D= )™, (Z)(l—Qz)ng_y}

In contrast, if all sensors adopt quantization rule g, implying m = n, the detection error is

reduced to:

Pe(n,n) = 3 " min { (Z) PE(1— P, <Z> (1—Q1—Q)"(Q1 + Qz)n_x} .

2.2 Background on Distributed Detection

The study of this thesis is basically a followup work to [1]. Some key results in [1] are

therefore summarized in this subsection.



In the appendix, the authors in [1] demonstrated a counterexample that as the number of
local quantizers n goes to infinity, the identical quantizer system is not optimal in detection.
In that counterexample, binary hypotheses, ternary observation space {a1, as, az} and binary

local quantization are assumed. The two hypothesis distributions are specified as indicated

below.
Y a | az | as
Ply) =Pr(y|Hy) || L] 2
Qly) =Pr(y|H,) | 1] 1]1
(dP/dQ)(y) L3

Under this setting, there are only two nontrivial déterministic LRQ’s, as having been

stated in the previous subsection. Their post-quantization distributions are listed in Table

2.2.

Table 2.2:

IS
o
—
I
&)
—

P % — By A4
Q) |} Qs(u) ) :

Denote by v, () as the Bayes detection error for a distributed system with (n — 1) g-
sensors and one g-sensor, where g could be either g or g. Abbreviate (uy, ....,u,) as u}. Note

that the best identical quantizer system should assume g for all sensors.



We then derive:

ST [P Pyun) A Qqui ) Qg (uy)]

u?71€{0,1}7“1 unE{Ql}n

_ Py(ui™") + Qg(u?_l)> ( Py(ui™) ) 93
u?le{l,z}n1< ! Py(ui™) + Qqui™) (23)

1 1 n—1 U _un—l U
w(3) - 5, 2 IR A Q40 )
1
2

where 71(+) is the Bayes detection error for a system with only one sensor, and we use for
notational convenience (x A y) to denote min{z, y}.

Taking the distribution in Table 2.2 into (2.3) and using [ to indicate the number of 1’s

in u}~!, we obtain

n—1
1 n—1 2l + 2n—l—1 22l—n+1
= | = — —— ). 24
QOS2 St h SR e B
The last output wu, can be resulted from either local quantization rule g or g. Accordingly, 1

can have two different formulas, which arerespéctively denoted by, and 7, for quantization

rules g and g. Their formulas are:
and

where their curves are plotted in Figure 2.1. Note that 4;(7w) = F1(7) for 0 < 7 < 1/3,
m = 4/7 and 4/5 < m < 1. Thus the critical values of [ in (2.4) are those for which
22l=n+l /(22=n+1 4 1) lies in the union of (1/3,4/7) and (4/7,4/5). Equivalently, the critical

I’s lies in

-2 1-1 — 0. 1-1 1
n2 <l<n+ 2og2(3)%n ;)585 . n+ 20g2(3)<l<n—2k.




When n = 2k is even,

2k + 1 — log,(3)

E—1<1
<< 5

~k—-0292 and £k£-0.292<[<k+0.5.

So the only critical value of [ is n/2 = k, which implies that

22l—n+1 B 2
22-n+1l 4 1 3

Since 4(2/3) = 5/18 < 1/3 = 4(2/3), there exists a non-identical quantizer system performed
better than the best identical quantizer system. Hence, the optimal system must be a non-

identical quantizer system.

Figure 2.1: Functions of 4;(m) and 7 (m), where 44 (m) is plotted in solid blue color, while
~1(m) in dotted red color.

To be specific,
a()-(2) = () EIEE) -6
-5 6) h



where 75, (1/2) and 75, (1/2) denote the detector errors for the optimal (surely, non-identical
quantizer, in this counterexample) system and the best identical quantizer system, respec-
tively. Based on (2.5), it can be proved that the ratio 3, (7) /75, (7) will be strictly less

than one as k — oo.




Chapter 3

Sufficient Conditions For
Suboptimality Of Identical Quantizer
System

In this chapter, we exaniine the optimality of the identical quantizer system (1QS) for various

source statistics and determine under-which condition the [QS is suboptimal.

In the previous chapter, we have provided an exemplified hypothesis distribution pair
that the IQS is not optimal. Hewever, in general, it. is hard to known whether the 1QS is
suboptimal or not simply by the given hypothesis distribution pair unless detection errors
of all possible designs (ingluding the identical quantizér<systems and non-identical quan-
tizer systems) are exhausted. Nonetheless;in orderto find the sufficient rule on hypothesis
distributions, under which the IQS is suboptimal. We first resort to exhaustive numerical
computations when the number of sensors is feasibly small, hoping to induce the possible

rule from massive number of observations.

From the computations we have carried out, it seems that there does exist a certain line
or area patterns of hypothesis distributsions such that the NQS (an acronym of non-identical

quantizer system) is a better choice than the IQS.

Specifically, in Section 3.1, we will mention our preliminary works and some experiments

10



we have carried out. As there are only few publications devoting to this problem due to its
intractability, we have to perform massive number of experiments to observe the possible
trend for some specific cases. In Section 3.2, we will focus on those specific distributed

detection systems, where the NQS performs strictly better than the IQS.

3.1 The Best Quantizers for Finite Number of Sensors

We now perform numerical experiments in this section so as to find the pattern for the sub

optimality of the 1QS.

For the ternary local observations, there are two.nontrivial LRQs g and g as mentioned
in the previous chapter. Our approach is to find the bestr IQS and then to replace one of
the quantizers by a distinet one, which we will refer to it for convenience as the near-IQS in
the sequel. If the latter has better-detection error, then the optimal NQS (which performs

surely better than thenear-1QS) is apparently bétter than the best 1QS.

Of course, when ‘the number of sensors is small such as 20, we can test all possible
combinations of quantizers and determine the true optimal design. In certain situations of
the given hypothesis distributions; however, we do find that the IQS is always optimal for
all the sensor number n we‘test.» Innother cases, whether the 1QS is optimal depending on
n. However, it is possible that the ‘optimal NQS has two sensors using district quantizers
instead of just one. Some optimal design even assumes three or four distinct quantizers.
Thus, it is somewhat hard to identify the rule for the construction of the optimal NQS. This

is perhaps the reason why only asymptotic results are available in this literature.

11



3.2 Finding the Particular Hypothesis Distributions
That the IQS Is Better Than the Near-1QS

3.2.1 Case 1: Uniform Alternative Hypothesis Distribution

We first examine the specific case that the alternative hypothesis distribution is uniform. By
this setting, only the null hypothesis distribution needs to be varied. The statistics for local

observations {aj, as,az} can be given as follows.

PI‘ (a1|H0) = P1
PI‘ (a2|H0) = P2
PI’(CL3|H0) = 1—P1 —P2

and
Pr(a|Hy) = %
Pr (ag|Hy) =5
Pr(as|Hy) = 3

where P; and P, range from 0 to 1 under the restriction that Py + P, < 1. The above formula

can be listed in a tabular form below.

Yy aq a3 a3
Pr(y|Ho) Py P, 1-P—-P
Pr(y|H,) |4 3 3

Based on this table, there are three possible post-quantization LRQ’s resulted, which are
respectively classified as type 1, type 2, and type 3 as shown in Table 3.1. We would like to
stress again that among these three, there are only two nontrivial LRQ’s after P, and P; are

given.

We then increase P, and P, from 0 to 1 under P, + P, < 1. During this process, we fix

the number of sensors n. Our experimental results indicate which IQS (among type-1 1QS,

12



Table 3.1: The condition on P, and P, specified below is the range in which the respective
post-quantization LRQ is of effectively use in detection.

(a) P, > max{P, (1 — P)/2} or P, < min{ Py, (1 — P»)/2}

u 0= {a1} 1= {ay, as}
P, (u) P 1-P
Q) (1) 3 3
(b) min{ P, 1 — 2P} < P, < max{F»,1 — 2P}
u 0= {as} 1={ay, a3}
Py, (u) Py 1-P5
Qs (1) 3 3
(c) P <min{(1—=5)/2,1 —2P,} or P.> max{(L— P»)/2,1 — 2P}
u 0=Hasa} | 1= {as}
P (u) P+ P =P =55
Qs (1) 3 3

type-2 1QS, and type-3 1QS) should be used can be clearly ¢haracterized into six regions. It

would then be of interest, if we'could identify the formuilas of the six boundaries.

By denoting the error probabilities of the IQS for type 1, type 2 and type 3 local quantizers

respectively by v, 1, Yn,2 and 7, 3, we derive for different P, and P, as follows:

) - B ey ()
lzl (” ; 1) <Pf(1 _21;1)n_1_l) { [Plﬂ' A %(1 - w)} + [(1 —P)rA %(1 - w)} }

S (U [y [pa - e}

=0

—_
W=

~

3
|

(]

3 O

13



n—1
1 n—1 4101 poyn—i—l x (L1 211
e 2) = 50T e mendred

s (3) = 2 (" [ e

where for convenience, we let P3 = 1— P, — P,. With the availability of these error formulas,

1

} + {pgu —

2

1

|+ [ - rrra i}

(3.2)

A}

3

the boundaries of the six regions can be characterized by the following six formulas:

Vn,1 (%) = Yn2 (%) forO<P1<§and%<P2<1
Y1 (3) 2 me (F)for b <P <d and 0 < P < %
Y1 k5 =3 (3) fors <P <1l and0< P < 4
Vg (5) = Yraly) for 0 < Pr< sand 0 < P, < 5
T2 (5) = Ynals) forld <P, <1and 0< P < 1
Ya2(3) =9ns (5) for 0.<'Pe< Sand)i < P, < 1

They are respectivelysdrawn in Figure3.1:

In (3.1), (3.2), and (33),.“A” means to takethe smaller yalue of the two quantities across

it. So these formulas can he transformed to other shapesif the thresholds, beyond or under

which the smaller one between the two.quantities-¢an be identified, are known.

Take (3.1) and (3.2) as examples. Let the thresholds ly1, l12, lo1, and [y be defined

according to the below relations:

Pi(L= Py > (3)(3)

14

for | < li1
for | < l1o
for [ < l21

for | < Iy

3

(3.3)
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Figure 3.1: Regions of the best 1QSs. The dark-gray, gray and light-gray areas respectively
correspond to the regions that v, 1, Yn2, and 7, 5 are the best'IQSs. In addition, the line
sections of colors darkred, light red, dark green, light green, dark blue and light blue
correspond to Segments 1,234, 5 and 6, respectively; déseribed in (3.5).

Bases on these thresholds, we can're-write (3.1) and (3.2) as follows.
1 18 =1\ [ 1.2 1,2
- — § - TNIH1 2 \n—1-1 N\ Z\n—l
li12—1
1 n—1 1,2
4 5 E ( l ) |:P1l+1(1 _ Pl)n—l—l + (g)l(g)n—l:|

I=l11

n—1
1 n—1 n—1— n—
+ 52( z )[P{“(l—ﬂ) = Pl - Py

I=l12

15



Examining

1 1
n =] = In P 3.4
) () 0
we can rewrite it as

A S (e Y[ e L s SR G T T

I=[l11—l21|+1 I=min{l11,l21}

1n—1 n—1 L N lip—1 n—1 .
+§Z( z )[Pf+1(1—P1) =L P11 — P) l}+52( z )[P{+1(1—P1) 1

I=l12 I=l11

(nl—1> [PHL(1 — Pyt + % max{fjpz} ("}1) {(%)l @”_l]

l:min{l22 12 }+1

=
-5 Z

I=l11

n—1
1 n—1
= ( z ) [ (LR By(1 = Py) '] = 0.

I=l22

As a result, the boundary formula’ becomes a function of four parameters l11, l12, I3, and
l32, each of which ranges from 0tom. By this, we can plot the boundaries of the six regions
directly. Nevertheless, further simplification of the boundary formulas might require specific

conditions on the hypothesis distributions, and is deferred as the future work.

3.2.2 Regions that the IQS is Suboptimal

After identifying the best IQS for a given hypothesis distribution, we next test whether the
NQS can improve the best IQS or not. As aforementioned, it would be easier to disprove
the optimality of the IQS rather than proving its optimality because we only need to show

the existence of an NQS that outperforms the best 1QS.

16



To achieve this goal, we choose to replace one of the sensors’ LRQ by a distinct one. By
this, we may possibly identify some area on the hypothesis distribution domain, which the
NQS outperforms the 1QS. However, we found that such areas may be changed for different
number of sensors n. We then ask ourselves whether there exists a specific area that the NQS
is always better than the IQS for most n. For this purpose, we overlap our experimental
results for different n and look for the common area that the NQS (or more specifically, the

near-1QS) is better. We found some desired common areas:

Segment 1: (n—l)type1+1type2:P1:§,%§P2<%

Segment 2: (n—1) type 1 + 1 type 3: P, =2,2 < P, < 1%

Segment 3: (n — 1) type 2 41 type 1+ Py=2/5.< P, < ¢ (3.5)
Segment 4: (n — 1) type2 #1 type 3: P, = 2, B P < 2

Segment 5: (n — 1)ytypé 3 +l-type 1 : P, + P, = %2—4§P1<%%<P g%
Segment 6: (n —ib) type 3 +1-type 2t Pp+ P; = %g<P1_<_g E—SP %

Now take the first segment as an example. We havealready known that the type-1 IQS is the
best IQS in the specified ranges of P, and P: We then replace one of the local quantizer to a
type-2 quantizer g. For reader’s convenience, the post-quantization hypothesis distributions

of the type-1 and type-2_quantizers are tabulated in Table 3.2.

Table 3.2:
u 0 1 U 0 1
Py(u) Py 1-P Py(u) Py 1-P
PUNE : CERE g
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P1=2/3 P2=5/64 P1=2/3 P2=21/128
T T T T T T

09 09t i

08 , 08
07 , 07
061 b 0.6
05 , 05

041 AR g 04+
03f
0.2f

0.1

] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pi

(a)P1=§ansz=gi4 (b)Plzgandszf—QlS

Figure 3.2: Functions of 4 () and % (), -where 4,(r) is plotted in solid blue color, while
71 (m) in dotted red color.

Using the same techmique introduced in Chapter 2, we derive:

Y P Pyl YA Qalus=NQ, (i)

ulte{0,1}"

S LY B P () A Qi )Qy (un)]

ulle 0,1} 1 up€f0,13"

e\ (Pgw’f-l);@g(u?—l))% (pg@yig)(f;j(uy—l))- 50

—1 “
ul e{l2int

DO o= DN —

Taking the distributions in Table 3:2 into«(3:6); we-¢an rewrite (3.6) as

N (%) _ ;—: (n . 1) (Pf(l - Pl)"—l—;+( )l(é)"‘l") o (1 - (ﬁ)l(i_épl)"‘l‘) (3.7)

By checking Fig. 3.2(a) under P; = 2 and P, = 2, the range that §(m) # () is the union

L=

of (1/3,64/113) and (64/113,64/79). So the critical [ lies in

1 - 1 - 64 q 64 - 1 - 64
3 142»1-20 113 113 14271220 = 79’
or equivalently,
5—21 7
g—1<1<”+ 2Og2()zg—0.307 (3.8)
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and
n+5—2logy(7) - n+5—logy(15) n

5 5 ~ 5+ 0.547. (3.9)

Again, when n = 2k, it is not possible to have an integer [ satisfying (3.8) but [l =n/2 =k

makes valid (3.9).

Similar derivation can be applied to Fig. 3.2(b). The two ranges for Fig. 3.2(b) are
(1/3,128/193) and (128/193,128/191), where () is larger than 4(7) in the former range

but is smaller than 4(7) in the latter range. This results in the derivation that

1 - 1 - 128 d 128 - 1 - 128
3 1427120 193 193~ 1+427-1=20 " 191’
or equivalently,
n n 1 n
— <l <— — =1 ~— —0.011 1
5 <l < 5 +3 5 0g,(65) 5 0.0 (3.10)

and

5% 2log,(7 !
n+ 20&()<l<g+3—§k%ﬂ%)%g+00”' (3.11)

Again, when n = 2k, it is not possible to havean dnteger ! satistying (3.10) but l =n/2 =k
makes valid (3.11).

A) Line Segment 1

We now give a general Tesultfor line segment 1. For P —2/3, the two gamma functions

are given by:

#(r) :lﬂwA%u—nﬂ+kL4mwA§a—m}

3 3 3
(§7r+%7r, 0§7r<%
= 31 —mn)+3m, s<m<?2
s1-m+2(1-7), 2<7<1
(7r, O§7T<%
- {4 dse<d
(1-7m, 2<7<1

—_
Nej



and for P, <1— P, =1/3,

1 2
r(m) = |Prm A 5(1_7?):|+|:(1—P2)7T A g(l—ﬂ)
( Pyr + (1 — P), 0<7T< - 3P
= (Pr+3(-7), 571 <7 < 3
sA=—m+2(1-7), gy <r<l
(7r, 0<7r<53P
= {Pr+i(1-m), 5§P §7T<3Pz+1
1—7?, 3P+1§7r<1
The two ranges that §(m) # () are (3, 35 ép)and(z 3P2,3P21+1) where () is larger than

() in the former range but is smaller than 7(7) in the latter range. This results in the

derivation that

1 _ 1 Y 1 d 1 N\ 1 _ 1
— an
3 1+2n 1920 42 =35 2-3P, 14201-2 3P +1°
or equivalently,
n n 1 1
——l<l<=—==-—== 1 1—-3F 12
sl S US55 5108, (153 7%) (3.12)
and
nel. 1 1 1

Suppose n = 2k is even. Therefore, if

174 : 1
k—§—§10g2(1—3P2) <k (e, B< 6),
then no integer [ satisfies (3.12). Note that P, < § implies that —3 — $log,(1 — 3P,) < 0,

and —% — % log,(3FP2) > 0. Hence, taking 7, to be 4 in (3.7) always yields a smaller ,(1/2).
We conclude that when P = 2 and 0 < P, < ¢, using (n — 1) type 1 + 1 type 2 quantizers
always outperform 7, ;. Since Figure 3.1 indicates that v, ; is the optimal IQS between the
two margins of 7,1 = yn2 and 7,1 = y,3 for % <P <land 0 < P < %, we can then
decide numerically that for the line segment decided by P, = = and T < Py < g, the IQS is

only suboptimal.
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Note that when P, = %, no integer satisfies both (3.12) and (3.13); hence, using (n — 1)
type 1 + 1 type 2 quantizers have the same performance as 7, ;. In such case, we can no

longer claim that the IQS is only suboptimal.
B) Line Segment 2
We can similarly examine our result regarding line segment 2.

Again, for P, = 2/3, the two gamma functions are given by:

[ 1 2
r(r) = |Pim A g(l—ﬂ)] + [(1—P1)7r A g(l—ﬂ)]
21 2
= _§7r/\§(1—7r)]+[§7r/\§(1—7r)]
%w—l—%w, 0§7r<%
-7 N
A (=421 -7 A< A1
(7r, O§7r<%
) 1 ;i
(A 3 ST<j
v
\1— §S7TS1

2
() =apPmA = (1 —7) [+ {(1 = Pl = (1— w)}
It can be verified that 3P 5 o ;P ; hence,
R i 2 1
7"(7'(') = P127T/\§(1—7T):|—|—|:(1—P12)7T/\g(l—ﬂ'):|
( Pom + (1 — Ppo)m, 0<nr<

3P 2—|—2

= %(1—7T)+(1—P12)7T, 3P122+2 §7T<4 TP

30-m)+50-7), mp; <7<l
(. O<7T<3P2+2

= 93+t Pe)m 3P122+2 <7< i3,
(1 -, ﬁgwgl

The two ranges that §(m) # () are (3, 3P31_1) and (3Pi—1’ ﬁ), where 4(7) is larger than

() in the former range but is smaller than J(7) in the latter range. This results in the
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derivation that

1 _ 1 _ 1 d 1 _ 1 _ 1

— an

3 1+ gn—1-2l 3P12 —1 3P12 —1 1+ gn—1-2l 4 — 3P12’
or equivalently,

n n 1 1
and
n 1 1 n 1 1
Suppose n = 2k is even. Therefore, if
1 1 } ) . 1
k — 373 log,(3P12 —2) < k <1.e., P > P or equivalently Py > 6)’

then no integer [ satisfiesy(3.14). Note thatwPg> 2 implies thiat —1 — £ log, (3P, — 2) < 0,
and —= — 2 log,(3 — 3Pyg) > 0. “Hetce, taking-7; to be 4 in (3.7) always yields a smaller
Yn(1/2). We concludé*thatywhen Pp= 2 and <P, < Iyusing"(n — 1) type 1 + 1 type 3
quantizers always outperform -, 1. Since Figure 3.1 indicates that v, ; is the optimal IQS

between the two margins of v, 0= g afd 4,1 = 7,3 for $ <P <1land 0< P, < 3, we

49

can then decide numerically that for the line segment decided by P, = % and % < Py < 1555

the IQS is only suboptimal.

Note that when P, = 1, no integer satisfies both (3.14) and (3.15); hence, using (n — 1)
type 1 + 1 type 3 quantizers have the same performance as 7, ;. In such case, we can no

longer claim that the IQS is only suboptimal.
C) Line Segment 3

We now prove the validity of line segment 3. For P, = 2/3, the two gamma functions are
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given by:

r(r) = |:P27T A —(1—71')}+[(1—P2)7r A g(l—ﬂ'):|
- EwA%u—w)]JrEwAgu w)}
(§7r+%7r, 0<7m<3
= (31 —m)+3m, i<T<?
s(1-m+2(1-7), 2<7<1
(71', O§7r<%

=1 e
(1=, §§7T<]_

and for P, <1 — P, =

The two ranges that ()
() in the former range but is

derivation that

1 - 1 - 1 J 1 - 1 - 1
— an
3 14201220 "2 3P 2—-3P 1420120 " 3P+ 17
or equivalently,
n n 1 1
— << =—=—= 1 1-3P 1
5 L <l<5— 5 glog(l—30) (3.16)
and
n 1 1 n 1 1
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Suppose n = 2k is even. Therefore, if

1 1 1

k—§—§10g2(1—3pl)<]€ (i.e., P1<6),

then no integer [ satisfies (3.16). Note that P, < % implies that —3 — $log,(1 — 3P;) < 0,
and —3 — 1logy(3P;) > 0. Hence, we conclude that when P, = 2 and 0 < P; < ¢, using

(n—1) type 2 + 1 type 1 quantizers always outperform =, 2. Since Figure 3.1 indicates that

Y2 1s the optimal IQS between the two margins of 7,1 = Y52 and 7,2 = Y3 for 0 < P <

Wi Wl

and % < P, <1, we can then decide numerically that for the line segment decided by P, =

and % <P < %, the IQS is only suboptimal.

Note that when P; = }, no integer-satisfies'both (3.16) and (3.17); hence, using (n — 1)
type 2 + 1 type 1 quantizers have the same performance as v, .. In such case, we can no

longer claim that the 1QS s only-suboptimal.
D) Line Segment 4

We now proceed to prove the validity of liné segment 4. Hor P, = 2/3, the two gamma

functions are given by:
_ 1 2
T(r) = |:P27T N 3 (T— W)} + {(1 — Py 3 (1-— W)]

— [%ﬂ' A %(1—7)}+E7T A %(1—@}

~

|
W= W= wiN
wio wie O
IAINAIA
SE
IN AN A
— ol Wik

N\ 7

)

1 1
3 3

2
kl , 3>

wln Wl

A\
3

AN
—_

andforP12:P1+P2:P1+§,

F(m) = |[Per A g(l—ﬂ)}jL[(l—Pm)w A %(1—7r) .
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It can be verified that 3P 5 < ?}P ; hence,
. 1 2
7"(7'(') = Pmﬂ'/\g(l—ﬂ') -+ (1—P12)7T/\§(1—7T)
'P127T+(1—P12)7T, O<7T<3P2+2
= (50 =—m)+ (1= Po)7, 55005 <7< 555
2(1-m)+3(1—m), ﬁ<ﬂ'§1
)
, O<7T<3P12+2
_ 2 1 2
= it (3—Po)m 3P12+2<7T<4 3P1
1
\]_—77', mﬁﬂ‘ﬁl

The two ranges that §(r) # () are (3, ﬁ) and (3})112 T ?}P ), where () is larger
than 4(7) in the former range but is smaller than 5(7) in the latter range. This results in

the derivation that

1 - 1 Y 1 d 1 - 1 - 1
- an
3 1+ 2n—1gk 3P12 -1 3P12 —1 1+ 2p-1-2 4 — ?)Plg7

or equivalently,

n n 1 1
and
n 1 1 1
i —log2(3P12 -2)<l< 5 4 510g2(3 — 3P). (3.19)

Suppose n = 2k is even. Therefore, if

1 1 ) 1
k— 573 log,(3P12 —2) < k (i.e., Py > 6’ or equivalently P, > 6)’
then no integer [ satisfies (3.18). Note that P, > ¢ implies that —3 — 1logy(3P;2 — 2) < 0,

and —% — % log,(3 —3P12) > 0. Hence, we conclude that when P, = § and 4 5 <P <1, using
(n—1) type 2 + 1 type 3 quantizers always outperform =, ». Since Figure 3.1 indicates that

Y2 1s the optimal IQS between the two margins of 7,1 = Y52 and 7,2 = Y3 for 0 < P <

Wi Wl

and % < P, <1, we can then decide numerically that for the line segment decided by P, =

and % <P < the IQS is only suboptimal.

192 ’
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Note that when Py = %, no integer satisfies both (3.18) and (3.19); hence, using (n — 1)
type 2 4 1 type 3 quantizers have the same performance as 7,2. In such case, we can no

longer claim that the IQS is only suboptimal.
E) Line Segment 5

Our next proof is for line segment 5. For P, + P, = 3/4, the two gamma functions are

given by:

() = {Zw A 2(1—@] + Ew A %(1—@]

F(r) is (&, —==). By (2.3), we derive

The only range that 4(7) T Tt

Py(ui™)

Py(ui™") 4 Qa(ui™)
(D
(DU + G) (gt
1
1+ (3)H3)mt
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Hence, to check wether the 1QS is suboptimal, we examine:

8 _ 1 o1
17 "1+ &) (&t T 3R -1

or equivalently,

log,y(3P1) + (1 —n) 10g2(§) 10g2(%) +(1—n) 10g2(§)
oz (2) <f= TE)

=an — 1. (3.20)

2—log,(3)

~ 0.7095 is an irrational number.
1-logy(3)

where o« =

Now, if we place probability mass 1/N at points {an — |an]}_, to form a probability
measure fi,, then by the theory about the so-called uniformly distributed modulo 1 [6], we
have p, converges in distribution te g, where zis/a uniform distribution over (0, 1]. This

indicates as long as
3
Pl < g’
there exists integer [ ‘satisfying (3:20) for infinitely many n..Hence, we conclude that when
3

0< P < % subject' to P, + P, = =, using (w — 1) type 3 + 1 type 1 quantizers always

40
outperform =, 3. Since Figure 3.1 indicates that =, 3 is the optimal IQS between the two
margins of 7,1 = Vn,3.a0d v, 2 = Jns3, We can theil decide numerically that for the line
segment decided by P, + &, = %, 2—}1 < P < % and g < Py < g, the 1QS is suboptimal
infinitely often in n.

Note that when P, = %, no integer satisfies (3.20); hence, using (n — 1) type 3 + 1 type

1 quantizers have the same performance as 7, 3. In such case, we can no longer claim that

the IQS is only suboptimal.
F) Line Segment 6

We now turn to the last proof about line segment 6. For Ps = Py + P, = 3/4, the two
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gamma functions are given by:

[ 2 1
() = |[Ppr A 5(1—71'):|+|:(1—P12)7T/\ g(l—ﬂ)]

3 11

= -Zﬂ/\g(l—ﬂ')]-i-{zﬂ'/\ﬁ(l—ﬂ)]
(%7?—1—%#, 0§7T<%

= (2(1—m)+im, L<r<i
Z(1-m+i(1—7), 2<n<1
(71', O§7r<§

= {5 gr fxw<d
(1 -, %S?‘(’Sl

and for P, < % such that ﬁ <

The only one range tha

T+ O

Hence, to examine whether the IQS is suboptimal or not, we continue to derive

8 _ 1 _ !
17 1+ ()1 T 3R 1

or equivalently,

log,(3P,) 4 (1 —n) Ing(é) Ing(%) +(1—n) Ing(é)
tog(2) <f= ogo(2)

=an—1,

28
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2—log,(3)

— ~ 0.7095 is an irrational number.
1-logy(3)

where o =

Again, if we place probability mass 1/N at points {an — [an |}, to form a probability
measure fi,, then by the theory about the so-called uniformly distributed modulo 1 [6], we
have p, converges in distribution to p, where p is a uniform distribution over (0, 1]. This
indicates as long as

3

P2<§,

there exists integer [ satisfying (3.21) for infinitely many n. Hence, we conclude that when
3

0< P < % subject to Py + P, = 2, using (n — 1) type 3 + 1 type 2 quantizers always

49
outperform =, 3. Since Figure 3.1 indicates that ~, s is the optimal IQS between the two
margins of 7,1 = Vn,3 and Yo = Fus, we cansthen décide numerically that for the line
segment decided by P, +. = %, % < Pp< g and (23—‘11 < B < %, the 1QS is suboptimal
infinitely often in n.

Note that when P, = %, no integer satisfies (3:21); hence; using (n — 1) type 3 + 1 type

2 quantizers have the same performance as ;3. In such case, we.can no longer claim that

the 1QS is only suboptimal.

3.2.3 Case 2: Non-Uniform Alternative’Hypothesis Distribution

We also examine a case that equips with non-uniform alternative hypothesis distribution.

The statistics for local observations in {ai, as, ag} is denoted as follows:

Pr(a1|Ho) = P Pr(ai|Hy) = i
Pr (GQ‘H(]) = P2 and Pr (a2|H1) = i
Pr(a3|Hy) =1— P — P Pr (as|H,) = 3

The above equations can also be listed in a tabular form below.
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Yy ay a2 a3

Pr(y|Ho) Py P, 1-P—P

1 1 1
4 4 2

Similar to the previous case, we can perform binary quantizer and yields three LRQ types.

The corresponding post-quantization distributions are listed in Table 3.3.

Table 3.3: For convenience, we denote P; = P, + Ps.

U 0 1
P, (u) P, 1-P
Qo) 1
U 0 1
P, () Py 1— P
Qg () i i
U 0 1
P, (u) P 1—-P;
Qgs (1) 3 >

The results are very similar to that forthefirst case. The picture of the optimal IQS region
is also divided into six areas and the margins of the six areas must be decided numerically.
However, since the areas are more messy than Case 1 due to non-uniformity of the alternative
hypothesis distribution, no conclusive results are obtained; we therefore defer this part as a

future work.
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Chapter 4

Simulation Results

In this chapter, numerical and simulation results are provided to confirm and demonstrate
the derivations in Chapter 3. For beétter readability, simulation results are summarized in

Section 4.1, and discussions régarding them are given in Seetion 4.2.

4.1 Summary of:-Numerical-and Simulation Results

We first introduce thessystem setting of the following simulations:

1. Figures 4.1-4.12 show the resulting error probabilities for all possible combinations of

the LRQs introduced in Section 3.1.

(a) What presented in Figures 4.1~ 4.4 are the performances of the hypothesis setting

below.
Yy ap Qs as
Pr(y|Ho) | 35 i 3
Pr(y|H) |3 3 3

After binary quantization, it will result in two nontrivial LRQs as shown in Table

4.1.
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Table 4.1:

IS
o
—_

—_
—

V)

Wl (=
Sl=
WIN =

<
)
—_

Wl Wi

O

QI

=

I

e,

=

£

=

WIN Wl

In our experiment, we will base on the 1QS, where all sensors use g as their
local quantizers, and gradually increase .the number of sensors that use LRQ
g, for which the @umber is indicated byuthe 4-axis. We can observe that the
performance ;basically improves but not monotonically when the number of ¢
LRQ sensors.increase.~It-hints that.the optimal NQS-only use very few number
(actually only one in Figures 4.1 and4:10)of g quantizers but is nearly close to an

identical quantizer system.

Again, what presented in Figures 4.5 - 4.8 are the performances of the hypothesis

setting below.

Yy ay a9 as
Pr(y|Ho) “|5 5 5
Pr(ylHy) |3 5 5

After binary quantization, it will result in two nontrivial LRQs as shown in Table

4.2.

Similar to the previous experiment, we start from the IQS that uses unanimously
g and then gradually increase the number of sensors using LRQ ¢. Different form
the previous case, the performance monotonically degrades and hence the initial

IQS is actually the optimal system.
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Table 4.2:

IS
(@]
—_

W= (Ol
winy [l

<
e}
—_

win [l
Wl [ Ol

(c) What presented in Figures 4.9 - 4.12 are the performances of hypothesis distribu-

tion pair indicated below.

Y ax as as
Pr (| Ho)—fum; = o
Pr(y|Ho)— 5 3 5

After binary: quantization, it will result in'two nontrivial LRQs as shown in Table

4.3.

Table 4.3:

<
e}
—_

)
s}

£
I

)—U
=
—~
=4
=

O |[wi= g|,_.

o

SICEIS
2o
R

Parallel to the previous case, we also observe a monotonic behavior of the per-
formances when we increase the number of sensors using LRQ ¢g. However, the

detection errors decrease instead of increase in this case. Hence, the I1QS, where
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all sensors use LRQ g, is the globally optimal design.

2. Figures 4.13 and 4.14 show the area, of which local LRQ gives the best IQS. The three
possible LRQs are termed type 1, type 2 and type 3, depending on which of the local
observations in {aj, as, a3} is isolated as specified the same as in Table 3.1. Different

colors are adopted for different areas according to:

type 1 gives the best 1QS : dark gray
type 2 gives the best 1QS : gray
type 3 gives the best 1QS : light gray

The local hypothesis settingdn Figure 4.13 is as follows.

Yy ax Qg as
PT(yIHo) P1 PQ 1—P1—P2
Pr(y|H,) =15 3 5

The local hypothesis setting in Figure4.14 is given below.

Yy ay a as
PI‘(y|H0) Pl P2 1—P1—P2
Pr(yl A g i >

We specifically try an odd number of sensors(e.g., 39) and an even number of sensors
(e.g., 60) in our experiment to see whether the patterns alternate according to odd or

even number of sensors.

3. Figures 4.15 and 4.16 show the areas, in which the NQS with one different local LRQ

improves the best IQS. When such an improvement occurs, we will use the following
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colors to indicate it:

by:

dark red
red

dark green

: green
dark blue
blue
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30 sensors
0.039 T

0.038 N

o
Q
@
@

error probability
o
o
S

o
Q
@

error probability

0.027 I I I I
0 5 10 15 20 25 30
number of sensors using different LRQ

(b)

Figure 4.1: Detect errors for the LRQs in Table 4.1. The z-axis indicates the number of

sensors that use LRQ ¢. As indicated on top of the plots, the total numbers of sensors are
respectively 30 and 31 in (a) and (b).
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50 sensors
11 T

1051

101

95

error probability

85

50

error probability

751

6.5 I I I I I I I
0 20 25 30 35 40 45 50
number of sensors using different LRQ

e

I I
5 10 1

(b)

Figure 4.2: Detect errors for the LRQs in Table 4.1. The z-axis indicates the number of

sensors that use LRQ §. As indicated on top of the plots, the total numbers of sensors are
respectively 50 and 51 in (a) and (b).
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Figure 4.3: Detect errors for the LRQs in Table 4.1. The z-axis indicates the number of
sensors that use LRQ §. As indicated on top of the plots, the total numbers of sensors are
respectively 70 and 71 in (a) and (b).
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Figure 4.4: Detect errors for the LRQs in Table 4.1. The z-axis indicates the number of
sensors that use LRQ §. As indicated on top of the plots, the total numbers of sensors are
respectively 90 and 91 in (a) and (b).
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Figure 4.5: Detect errors for the LRQs in Table 4.2. The z-axis indicates the number of

sensors that use LRQ §. As indicated on top of the plots, the total numbers of sensors are
respectively 30 and 31 in (a) and (b).
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Figure 4.6: Detect errors for the LRQs in Table 4.2. The z-axis indicates the number of

sensors that use LRQ ¢. As indicated on top of the plots, the total numbers of sensors are
respectively 50 and 51 in (a) and (b).
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Figure 4.7: Detect errors for the LRQs in Table 4.2. The z-axis indicates the number of
sensors that use LRQ §. As indicated on top of the plots, the total numbers of sensors are
respectively 70 and 71 in (a) and (b).
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Figure 4.8: Detect errors for the LRQs in Table 4.2. The z-axis indicates the number of
sensors that use LRQ ¢. As indicated on top of the plots, the total numbers of sensors are
respectively 90 and 91 in (a) and (b).
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Figure 4.9: Detection errors for the LRQs in Table 4.3. The z-axis indicates the number

of sensors that use LRQ ¢. As indicated on top of the plots, the numbers of sensors are
respectively 30 and 31 in (a) and (b).
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Figure 4.10: Detection errors for the LRQs in Table 4.3. The z-axis indicates the number
of sensors that use LRQ ¢. As indicated on top of the plots, the numbers of sensors are
respectively 50 and 51 in (a) and (b).
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Figure 4.11: Detect errors for the LRQs in Table 4.2. The z-axis indicates the number of

sensors that use LRQ §. As indicated on top of the plots, the total numbers of sensors are
respectively 70 and 71 in (a) and (b).
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Figure 4.12: Detect errors for the LRQs in Table 4.2. The z-axis indicates the number of

sensors that use LRQ §. As indicated on top of the plots, the total numbers of sensors are
respectively 90 and 91 in (a) and (b).
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39 sensors

Figure 4.13: Areas identifying the best 1QS. The colors of dark gray, gray and light gray
respectively indicate type 1 LRQ, type 2 LRQ and type 3 LRQ gives the best 1QS. The
numbers of sensors in (a) and (b) are 39 and 60, respectively.
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39 sensors

Figure 4.14: Areas identifying the best IQS. The colors of dark gray, gray and light gray
respectively indicate type 1 LRQ, type 2 LRQ and type 3 LRQ gives the best 1QS. The
numbers of sensors in (a) and (b) are 39 and 60, respectively.
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Figure 4.15: Areas that the NQS with one different LRQ outperforms the best IQS. The
implications of different colors are designated in (4.1). The number of sensors are 30 and 31
for (a) and (b), respectively.
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(a)
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Figure 4.16: Areas that the NQS with one different LRQ outperforms the best IQS. The
implications of different colors are designated in (4.1). The number of sensors are 80 and 81
for (a) and (b), respectively.
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Figure 4.17: Areas that the NQS with one different LRQ outperforms the best IQS. The
implications of different colors are designated in (4.1). The number of sensors are 30 and 31
for (a) and (b), respectively.
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Figure 4.18: Areas that the NQS with one different LRQ outperforms the best IQS. The
implications of different colors are designated in (4.1). The number of sensors are 80 and 81
for (a) and (b), respectively.
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4.2 Remarks

From Figures 4.1-4.10, we observe that the best IQS is optimal in some cases but is only
suboptimal in some other cases. We also note that the performance curve may not be mono-
tonic with the number of different LRQs from the original IQS. But these curves somehow
confirm the general impression that to achieve optimality in performance requires only to

use very few distinct LRQs.

In order to simplify our analysis, we focus on the comparison between the best IQS
and the NQS with only one distinct LRQ. To the end, we first numerically identify the
best 1QS in Figures 4.13 and 4.14¢ The following observations can be made. First, the six
regions meet at the point Pp.= P = % in Figure 4:.13 and at the point P, = P, = i in
Figure 4.14. Notably, at. this particular point, the null hypothesis distribution is identical
to the alternative hypethesis distribution™ Sorthere is.no way-to differentiate statistically
the two hypotheses and the resulting detection errors of all designs behave equally bad.
Secondly, the pattern'of the six regions that-identify the best IQS does not change with the

total number of sensors. Thirdly, the pattern can be sub-divided into six regions of the same

color.

We next test whether the NQS.with.one different JlRQ improves the best IQS. The areas
in colors other than gray show exactly the situations where the best 1QS performs worse
than the one-different-LRQ NQS. One can however observe that these colored areas, such
as the green ones, reshape when the total number of sensors change. As the number of
sensors grow, they will split into more triangular-shape bands, while these bands become
slimmer. Nevertheless, one can still observe certain “symmetry” around the center point

(eg.,, Py=Py, = % in Figure 4.13) among these band patterns.

To confirm what observed in the previous paragraph can also be applied to other hy-
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pothesis setting, we perform another numerical examination. The results are summarized in

Figures 4.17 and 4.18. The resulting behavior of the triangular-shape bands is similar, except

that the center of the symmetry of these color band patterns is changed to P, = P, = i.

Also, the number of bands increase as the number of sensors grow; but it seems hard to

determine the relation between the number of sensors and the number of narrow colored

bands.
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Chapter 5

Conclusion and Future Work

In this thesis, we revisit the long-standing problem_in the respective literature that when
the identical quantizer system (IQS)"is globally optimal. Since the answer to the previous
question may be hard, we alternatively ask ourselves a different but related question, i.e.,

when the identical quantizer systeni-(1QS).is globally suboptimal.

By simplifying oursfocus on cases of ternary local observations, we found via extensive
trials that the optimial design is mostly<identical but uses only féew (one or two) different
LRQs. Based on this,"we proceed to both theoreticallyrand nuumerically compare the perfor-
mances of the best 1QS and the NQS with one different ILRQ. By deriving the exact error
formulas, we did locate a few line.regions that the NQS outperforms the best IQS. In fact, the
technique we used should be able"to extend to identify a region that the NQS outperforms

the best 1QS, but we defer this task as a future work.

It is interesting to note from simulations that the regions that we wish to identify have
some symmetry pattern around some center point. If we can prove this symmetry, then the
identification of certain region could focus only on a restricted area and hence facilitate the

research along this direction.

One may wish to check whether adopting two distinct LRQs, not just one, can further im-
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prove the detection errors. This would be another future work that could help understanding

the optimal design in a distributed detection scenario.
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