

國 立 交 通 大 學

電信工程研究所

碩 士 論 文

針對非均勻訊源之固定長度整合訊源與通道編碼系統之設計

Fixed-Length Joint Source-Channel Coding System for Generally Non-uniform

Sources

研 究 生：林鉑涵

指導教授：陳伯寧 教授

中 華 民 國 一 O 二 年 七 月

針對非均勻訊源之固定長度整合訊源與通道編碼系統之設計

Fixed-Length Joint Source-Channel Coding System for Generally Non-uniform

Sources

研 究 生：林鉑涵 Student：Po-Han Lin

指導教授：陳伯寧 Advisor：Po-Ning Chen

國 立 交 通 大 學

電信工程研究所

碩 士 論 文

A Thesis

Submitted to Institute of Communication Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Communication Engineering

July 2013

Hsinchu, Taiwan, Republic of China

中華民國一 O 二年七月

tt

針針針對對對非非非均均均勻勻勻訊訊訊源源源之之之固固固定定定長長長度度度整整整合合合訊訊訊源源源與與與通通通道道道編編編碼碼碼系系系統統統之之之設設設計計計

學生: 林鉑涵 kkk 指導教授: 陳伯寧

國立交通大學電信工程研究所碩士班

摘摘摘要要要

固定長度整合訊源與通道編碼(FLEC)為一個將訊源編碼與通道編碼結合的系統。在

這篇碩士論文中，我們提出了兩個可用於非均勻訊源(non-uniform source)的FLEC的設計

方法。第一個方法基於所推導的FLEC的聯集錯誤率上界(union bound)，設計使此上界

相對較小的FLEC。由於第一個方法僅能適用於碼長較短的FLEC設計，我們因此再提出

第二個方法。第二個方法基於渦輪碼(turbo code)的架構，重新設計可適用於非均勻訊源

的渦輪碼的解碼量度。模擬結果顯示我們所提出的第一個方法，系統錯誤率會比傳統結

合赫夫曼(Huffman)來源編碼與BCH碼的分離式設計低。而第二個方法的效能比結合赫夫

曼(Huffman)來源編碼與渦輪碼的分離式設計好。

i

Fixed-Length Joint Source-Channel Coding System for
Generally Non-uniform Sources

Student: Po-Han Lin kkk Advisor: Po-Ning Chen

Institute of Communications Engineering

National Chiao Tung University

Abstract

In this thesis, the design of fixed-length joint source-channel error-correcting codes (FLEC)

for generally non-uniform source statistics is considered as contrary to the usual variable-

length joint source-channel error-correcting coding system. Such a system has the advantage

that the receiver can identify easily the codeword margin via a length counter. Two different

approaches are attempted. We first derive the union bounds of decoding errors of the FLECs

for generally non-uniform sources, and then find the FLECs that have acceptably good union

bound values. Since the first approach is only suitable for FLECs of short block length, the

second approach assumes the turbo code structure and modifies the turbo decoding metrics

to adapt to the tranceiving of non-uniform information. Simulations show that the first pro-

posed approach outperforms the traditional tandem scheme that concatenates the Huffman

source code with a BCH code, while the second proposed approach beats the concatenation

of the Huffman source code with a turbo code of similar rate.

ii

Acknowledgements

First of all, I would like to express my gratitude to my advisor, Professor Po-Ning Chen, for

his patient guidance and support. Secondly, I would like to show my special gratitude to Dr.

Ting-Yi Wu for his enthusiastic teaching. This thesis would not have been possible without

these helps. Finally, I would like to thank all the members in the NTL lab and all those who

have helped me in these two years.

iii

Contents

Chinese Abstract i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

1 Introduction 1

2 Preliminaries 4

2.1 Codeword and Codebook . 4

2.2 MAP Decoding Criterion . 4

2.2.1 Hard-Decision Decoding . 5

2.2.2 Soft-Decision Decoding . 6

2.3 Turbo Encoder . 6

2.4 Turbo Decoding . 8

iv

3 Joint Source-Channel Block Code 12

3.1 Union bound . 12

3.2 Construction of Joint Source-Channel Block Code 14

3.3 Decoding . 16

4 Modified Turbo Code 20

4.1 Background . 20

4.2 Definitions and Notations . 21

4.3 Modified Decoding Metric . 22

5 Simulation Results 33

5.1 Joint Source-Channel Block Code . 33

5.2 Modified Turbo Code . 45

5.3 Observations and remarks . 61

6 Conclusion and Future Work 64

References 66

v

List of Figures

1.1 Block diagram of a typical digital communication system with separate source

and channel coding. 2

2.1 The (37,21) recursive systematic encoder . 7

4.1 Diagram of a sample turbo decoder. 22

5.1 Performance comparison between the joint source-channel block code con-

structed by exhaustive search and that by our proposed algorithm with code-

word length ℓ = 8. The source follows Case 1 and hard-decision decoding is

employed. 36

5.2 Performance comparison between the joint source-channel block code con-

structed by exhaustive search and that by our proposed algorithm with the

codeword length ℓ = 8. The source follows Case 2 and hard-decision decoding

is employed. 37

5.3 Performance comparison between the joint source-channel block code con-

structed by exhaustive search and that by our proposed algorithm with the

codeword length ℓ = 8. The source follows Case 3 and hard-decision decoding

is employed. 38

vi

5.4 Performance comparison of the proposed joint source-channel block codes for

different codeword length. The source follows Case 1 and soft-decision decod-

ing is employed. 39

5.5 Performance comparison of the proposed joint source-channel block codes for

different codeword length. The source follows Case 2 and soft-decision decod-

ing is employed. 40

5.6 Performance comparison of the proposed joint source-channel block codes for

different codeword length. The source follows Case 3 and soft-decision decod-

ing is employed. 41

5.7 Performance comparison between the joint source-channel block code with

codeword length 64 and the tandem scheme (i..e, the Huffman code + (63, 16, 11)

BCH code). The source follows Case 1 and hard-decision decoding is em-

ployed. 42

5.8 Performance comparison between the joint source-channel block code with

codeword length 64 and the tandem scheme (i..e, the Huffman code + (63, 16, 11)

BCH code). The source follows Case 2 and hard-decision decoding is em-

ployed. 43

5.9 Performance comparison between the joint source-channel block code with

codeword length 64 and the tandem scheme (i..e, the Huffman code + (63, 16, 11)

BCH code). The source follows Case 3 and hard-decision decoding is em-

ployed. 44

vii

5.10 Performance comparison between the joint source-channel turbo code and the

tandem scheme (i.e., the Huffman code + a traditional turbo code) under

the source with per-letter source entropy 3.9711 bits. The interleaver size is

ℓ = 128× 128. 47

5.11 Performance comparison between the joint source-channel turbo code and the

tandem scheme (i.e., the Huffman code + a traditional turbo code) under

the source with per-letter source entropy 3.92582 bits. The interleaver size is

ℓ = 128× 128. 48

5.12 Performance comparison between the joint source-channel turbo code and the

tandem scheme (i.e., the Huffman code + a traditional turbo code) under

the source with per-letter source entropy 3.79021 bits. The interleaver size is

ℓ = 128× 128. 49

5.13 Performance comparison between the joint source-channel turbo code and the

tandem scheme (i.e., the Huffman code + a traditional turbo code) under

the source with per-letter source entropy 3.73627 bits. The interleaver size is

ℓ = 128× 128. 50

5.14 Performance comparison between the joint source-channel turbo code and the

tandem scheme (i.e., the Huffman code + a traditional turbo code) under

the source with per-letter source entropy 3.59095 bits. The interleaver size is

ℓ = 128× 128. 51

5.15 Performance comparison between the joint source-channel turbo code and the

tandem scheme (i.e., the Huffman code + a traditional turbo code) under

the source with per-letter source entropy 3.52516 bits. The interleaver size is

ℓ = 128× 128. 52

viii

5.16 Performance comparison between the joint source-channel turbo code and the

tandem scheme (i.e., the Huffman code + a traditional turbo code) under

the source with per-letter source entropy 3.24512 bits. The interleaver size is

ℓ = 128× 128. 53

5.17 Performance comparison under two different source distributions with the

same per-letter source entropy 3.20 bits. The interleaver size is ℓ = 128× 128. 54

5.18 Performance comparison between the joint source-channel turbo code and the

tandem scheme (i.e., the Huffman code + a traditional turbo code) under the

26-English-letter text source. The interleaver size is ℓ = 128× 128. 55

5.19 Performance comparison between the joint source-channel turbo code and the

tandem scheme (i.e., the Huffman code + a traditional turbo code) under the

normalized 16-English-letter text source. The interleaver size is ℓ = 128× 128. 56

5.20 Performance comparison between the joint source-channel turbo code and the

tandem scheme (i.e., the Huffman code + a traditional turbo code) under the

normalized 16-English-letter text source. The interleaver size is ℓ = 64× 64. 57

5.21 Performance comparison between the joint source-channel turbo code and the

tandem scheme (i.e., the Huffman code + a traditional turbo code) under the

normalized 16-English-letter text source. The interleaver size is ℓ = 256× 256. 58

5.22 Performance comparison of the modified JSC turbo code by testing different

interleaver sizes under the normalized 16-English-letter text source. 59

ix

Chapter 1

Introduction

The underlying aim of a communication system is to transmit data from the source to the

destination over possibly noisy channels. From the aspect of engineering as well as research,

the ultimate goal is to find approaches to transmit data more efficiently and meanwhile more

reliably.

In leu of transmission efficacy, the procedure of source coding (more often be referred to

as data compression) is employed in communication systems to reduce as much redundancy

as possible. In a sense, the source coding shortened the information sequence (either dis-

tortionlessly or with an acceptable degree of distortion); hence, the efficiency is improved.

In reality, there often exist noise and interference when transmitting data over a medium

such that the receiver might not ensure the correctness of the received data. So in order to

enhance transmission reliability, the channel coding is introduced. As a contrary, channel

coding commonly adds redundancy to protect the data from corruption.

In 1948 , Shannon [1] has proved that there exist a source coding scheme and separately

a channel coding scheme such that the data can be transmuted at a rate approaching the

theoretical transmission limit. Ever since the communication system usually treats the

source coding and channel coding separately for their design convenience. A typical digital

1

Figure 1.1: Block diagram of a typical digital communication system with separate source
and channel coding.

communication system is depicted in Fig. 1.1.

One of the theoretical requirement for achieving the capacity by separate design is the

the length of information sequence should approach infinity, which in a sense implies that the

communication delay and decoding complexity might go to infinity. However, in reality, we

cannot tolerate infinite delay and complexity, and hence under the practical constraints of

finite delay and limited complexity, the joint source-channel coding system might outperform

the traditional separate one [2].

Along this research direction, the authors in [3] derive the union bound for the so-called

joint source-channel variable-length error-correcting (VLEC) codes , and propose a method

to construct the VLEC code that possibly minimizes this bound. However, there are some

possible drawbacks for a VLEC: e.g., i) its varying decoding delay, ii) error propagation, and

iii) an extra mechanism may be needed for the receiver to identify the end of a codeword.

For this reason, we will focus on the joint source-channel fixed-length error-correcting code

(FLEC) design in this thesis.

Two different approaches to design FLECs will be discussed in this thesis. The first one

2

is to derive the union bound for the error rate of FLECs as parallel to [3], and determine

the best FLEC that possibly minimizes this bound. The second approach is to presume the

turbo coding structure and devises a joint source-channel turbo coding scheme that suits the

transceiving of non-uniform sources.

There have been some publications taking the second approach to design FLECs. In [4]

and [5], the authors provides encoding and decoding schemes for binary non-uniform sources

and binary Markov sources assuming the turbo coding structure. In this thesis, we extend

their results to non-binary non-uniform sources. Details will be given in Chapter 4.

The remainder of the thesis is organized as follows. Chapter 2 introduces the notations

we use in this thesis and provides the necessary background for the maximum a posteriori

(MAP) metric and turbo coding. Chapter 3 derives the union bound of the FLEC, followed

by the construction of the FLEC that gives an acceptably low union bound low. Chapter 4

devises the modified turbo coder for n-ary non-uniform sources. Chapter 5 presents and

remarks on numerical and simulation results, and Chapter 6 concludes the thesis.

3

Chapter 2

Preliminaries

2.1 Codeword and Codebook

In the joint source-channel coding system considered in this thesis, there are n symbols

{s1, s2, . . . , sn} in the source alphabet with probabilities of transmission {p1, p2, . . . , pn},

respectively. The ith source symbol si will be mapped to a codeword ci = (ci,1, ci,2, . . . , ci,ℓ)

of fixed length ℓ, where ci,j ∈ {0, 1} for every i, j. The code book C can therefore be

represented as a matrix below:

C ,

c1

c2
...
cn

=

c1,1 c1,2 . . . cℓ,l
c2,1 c2,2 . . . c2,ℓ
...

...
...

cn,1 cn,2 . . . cn,ℓ

.

2.2 MAP Decoding Criterion

Denoting by r = (r1, r2, . . . , rℓ) the received vector corresponding to the transmission of

codewords through the additive white Gaussian noise (AWGN) channel, we present the

respective MAP decoding criterion as follows.

4

2.2.1 Hard-Decision Decoding

Define the hard-decision sequence y = (y1, y2, . . . , yℓ) corresponding to received vector r =

(r1, r2, . . . , rℓ) by

yi =

{

0, if ri > 0

1, otherwise

Based upon y , the maximum a posteriori (MAP) hard-decision decoding is to find the

codeword cm such that

Pr (cm | y) ≥ Pr (ci | y) for all 1 ≤ i ≤ n. (2.1)

Equivalently, (2.1) can be transformed to:

Pr (y | cm) Pr (cm)

Pr (y)
≥ Pr (y | ci) Pr (ci)

Pr (y)

⇔ Pr (y | cm) Pr (cm) ≥ Pr (y | ci) Pr (ci) . (2.2)

Instead of using the above hard-decision decoding aspect, we can directly reduce the AWGN

channel with hard-decision decoding to the binary symmetric channel (BSC) with crossover

probability b = Q
(√

2EbR
N0

)

, where Q(x) = 1√
2π

∫∞
x

e−u2/2du is the Q-function, Eb is the

energy per information bit, N0 is the variance of additive Gaussian noise sample, and R is

the code rate. Letting hi = dH (ci, y), where dH(·, ·) is the Hamming distance, we have

Pr (y | ci) = bhi (1− b)ℓ−hi .

Criterion (2.2) can thus be re-expressed as that for all 1 ≤ i ≤ n,

bhm (1− b)ℓ−hm Pr (cm) ≥ bhi (1− b)ℓ−hi Pr (ci)

⇔ ln
[

bhm (1− b)ℓ−hm Pr (cm)
]

≥ ln
[

bhi (1− b)ℓ−hi Pr (ci)
]

⇔ hm ln(b) + (ℓ− hm) ln (1− b) + lnPr (cm) ≥ hi ln(b) + (ℓ− hi) ln (1− b) + lnPr (ci)

⇔ hm [ln(b)− ln (1− b)] + lnPr (cm) ≥ hi [ln(b)− ln (1− b)] + lnPr (ci) .

5

2.2.2 Soft-Decision Decoding

For a soft-decision decoding, the log-likelihood ratio φi in response to the reception of soft

received value ri is given by:

φi = ln
Pr (ri | 0)
Pr (ri | 1)

= ln

1√
πN0

e−(ri−1)2/N0

1√
πN0

e−(ri+1)2/N0
= ln e[−(ri−1)2+(ri+1)2]/N0 =

4

N0
ri.

Thus, the soft maximum a posteriori decision must satisfy that for 1 ≤ i ≤ n,

Pr (cm | r) ≥ Pr (ci | r)

⇔ f (r | cm) Pr (cm)

f (r)
≥ f (r | ci) Pr (ci)

f (r)

⇔ f (r | cm) Pr (cm) ≥ f (r | ci) Pr (ci)

⇔
ℓ
∏

j=1

f (rj | cm,j) Pr (cm) ≥
ℓ

∏

j=1

f (rj | ci,j) Pr (ci)

⇔
ℓ

∑

j=1

ln f (rj | cm,j) + lnPr (cm) ≥
ℓ

∑

j=1

ln f (rj | ci,j) + lnPr (ci)

⇔
ℓ

∑

j=1

ln
f (rj | cm,j)

f (rj | ci,j)
+ lnPr (cm) ≥ ln Pr (ci)

⇔
ℓ

∑

j=1

[

ln
f (rj | cm,j)

f (rj | ci,j)
− ln

f (rj | ci,j)
f (rj | cmj)

]

+ 2 lnPr (cm) ≥ 2 lnPr (ci)

⇔
ℓ

∑

j=1

[(−1)cm,j φj − (−1)ci,j φj] + 2 lnPr (cm) ≥ 2 ln Pr (ci)

⇔
ℓ

∑

j=1

(−1)cm,j φj + 2 lnPr (cm) ≥
ℓ

∑

j=1

(−1)ci,j φj + 2 lnPr (ci)

where we use f(·) to denote the probability density function of respective random entity.

2.3 Turbo Encoder

The scheme of a turbo encoder consists of two recursive systematic convolutional encoders

(RSC) and an interleaver. The component encoder used in our thesis is the (37,21) RSC as

6

Figure 2.1: The (37,21) recursive systematic encoder .

shown in Figure 2.1. In addition, we adopt the the Berrou-Glavieux interleaver, which is

described in the following.

Place the input sequence as an s × s matrix. For a bit located at row i and column j,

the permuted or interleaved position at row ir and column jr satisfy

ir = 129 (i+ j) mod s

and

jr = [p (ξ)× (j + 1)− 1] mod s,

where ξ = (i+ j) mod 8 and the assignment of function p(·) is given by:

p(0) = 17

p(1) = 37

p(2) = 19

p(3) = 29

p(4) = 41

p(5) = 23

p(6) = 13

p(7) = 7

7

2.4 Turbo Decoding

In this section, we derive the metric that will be used for turbo decoding.

Again, r is the received sequence of length ℓ. Denote by ui is the ith bit in the decision

sequence. Then, we derive:

Pr (ui = 0 | r) =
∑

(Si−1
w̄ ,Si

w)∈T0

Pr
(

Si−1
w̄ , Si

w | r
)

=
∑

(Si−1
w̄ ,Si

w)∈T0

Pr
(

Si−1
w̄ , Si

w, r
)

Pr (r)

where T0 is the set of consecutive two states respectively located at trellis level i− 1 and i,

of which the connecting branch is labeled with code bit 0, and subscripts w̄ and w denote

the indices of the trellis states. In parallel, we also derive:

Pr (ui = 1 | r) =
∑

(Si−1
w̄ ,Si

w)∈T1

Pr
(

Si−1
w̄ , Si

w | r
)

=
∑

(Si−1
w̄ ,Si

w)∈T1

Pr
(

Si−1
w̄ , Si

w, r
)

Pr (r)

where T1 is the set of consecutive two states respectively located at trellis level i− 1 and i,

of which the connecting branch is labeled with code bit 1.

Define the log-likelihood ratio (LLR) of the ith decision bit as follows:

Λ (i) = log
Pr (ui = 1 | r)
Pr (ui = 0 | r) = log

∑

(Si−1
w̄ ,Si

w)∈T1
Pr

(

Si−1
w̄ , Si

w, r
)

∑

(Si−1
w̄ ,Si

w)∈T0
Pr

(

Si−1
w̄ , Si

w, r
) .

Then, the ith bit is declared zero, i.e., ui = 0, if Λ (i) ≤ 0, and is declared one, otherwise.

The term inside the summation, i.e., Pr
(

Si−1
w̄ , Si

w, r
)

can be further decomposed as follows.

Pr
(

Si−1
w̄ , Si

w, r
)

= Pr
(

Si−1
w̄ , Si

w, r
i−1
1 , r i, r

ℓ
i+1

)

= Pr
(

r ℓ
i+1 | Si−1

w̄ , Si
w, r

i−1
1 , r i

)

Pr
(

Si−1
w̄ , Si

w, r
i−1
1 , r i

)

(2.3)

= Pr
(

r ℓ
i+1 | Si

w

)

Pr
(

Si−1
w̄ , Si

w, r
i−1
1 , r i

)

(2.4)

= Pr
(

r ℓ
i+1 | Si

w

)

Pr
(

Si
w, r i | Si−1

w̄ , r i−1
1

)

Pr
(

Si−1
w̄ , r i−1

1

)

= Pr
(

Si−1
w̄ , r i−1

1

)

Pr
(

Si
w, r i | Si−1

w̄ , r i−1
1

)

Pr
(

r ℓ
i+1 | Si

w

)

= Pr
(

Si−1
w̄ , r i−1

1

)

Pr
(

Si
w, r i | Si−1

w̄

)

Pr
(

r ℓ
i+1 | Si

w

)

8

Define

α
(

Si−1
w̄

)

, Pr
(

Si−1
w̄ , r i−1

1

)

β
(

Si
w

)

, Pr
(

r ℓ
i+1 | Si

w

)

γ
(

Si−1
w̄ , Si

w

)

, Pr
(

Si
w, r i | Si−1

w̄

)

Then

Pr
(

Si−1
w̄ , Si

w, r
)

= α
(

Si−1
w̄

)

γ
(

Si−1
w̄ , Si

w

)

β
(

Si
w

)

Therefore, determination of the three functions can decide Λ(i), which in turns decides the

ith bit ui.

Functions α and β can be recursively computed as follows.

α
(

Si
w

)

= Pr
(

Si
w, r

i
1

)

=
15
∑

w̄=0

Pr
(

Si−1
w̄ , Si

w, r
i
1

)

=
15
∑

w̄=0

Pr
(

Si−1
w̄ , Si

w, r
i−1
1 , r i

)

=
15
∑

w̄=0

Pr
(

Si−1
w̄ , r i−1

1

)

Pr
(

Si
w, r i | Si−1

w̄ , r i−1
1

)

=

15
∑

w̄=0

α
(

Si−1
w̄

)

γ
(

Si−1
w̄ , Si

w

)

,

9

β
(

Si
w̄

)

= Pr
(

r ℓ
i+1 | Si

w̄

)

=
Pr

(

r ℓ
i+1, S

i
w̄

)

Pr (Si
w̄)

=
15
∑

w=0

Pr
(

r ℓ
i+1, S

i
w̄, S

i+1
w

)

Pr (Si
w̄)

=

15
∑

w=0

Pr
(

r i+1, r
ℓ
i+2, S

i
w̄, S

i+1
w

)

Pr (Si
w̄)

=

15
∑

w=0

Pr
(

r ℓ
i+2 | r i+1, S

i
w̄, S

i+1
w

)

Pr (r i+1, S
i
w̄, S

i+1
w)

Pr (Si
w̄)

=

15
∑

w=0

Pr
(

r ℓ
i+2 | Si+1

w

)

Pr (r i+1, S
i
w̄, S

i+1
w)

Pr (Si
w̄)

=

15
∑

w=0

Pr
(

r ℓ
i+2 | Si+1

w

)

Pr (r i+1, S
i+1
w | Si

w̄) Pr (S
i
w̄)

Pr (Si
w̄)

=

15
∑

w=0

Pr
(

r ℓ
i+2 | Si+1

w

)

Pr
(

r i+1, S
i+1
w | Si

w̄

)

=

15
∑

w=0

β
(

Si+1
w

)

γ
(

Si
w̄, S

i+1
w

)

,

where for the additive white Gaussian noise channel, function γ is equal to:

γ
(

Si−1
w̄ , Si

w

)

= Pr
(

Si
w, r i | Si−1

w̄

)

=
Pr

(

Si−1
w̄ , Si

w, r i

)

Pr
(

Si−1
w̄

)

=
Pr

(

r i | Si−1
w̄ , Si

w

)

Pr
(

Si−1
w̄ , Si

w

)

Pr
(

Si−1
w̄

)

=
Pr (r i | x i) Pr

(

Si−1
w̄ , Si

w

)

Pr
(

Si−1
w̄

)

=
Pr (r i | x i) Pr

(

Si
w | Si−1

w̄

)

Pr
(

Si−1
w̄

)

Pr
(

Si−1
w̄

)

= Pr (r i | x i) Pr
(

Si
w | Si−1

w̄

)

= Pr (ci) Pr (r i | x i)

= Pr (ci)
1√
2πσ

exp{−|| r i − x i ||2
2σ2

}.

10

We now state the algorithmic procedures to obtain the three functions. Note that the

RSC trellis we adopt has 16 states as shown in Figure 2.1.

Derivation of function α

1. Initialization: Set α (S0
0) = 1 and α (S0

w) = 0 for all 1 ≤ w ≤ 15.

2. Recursion: For 1 ≤ i ≤ ℓ, compute α (Si
w) =

∑15
w̄=0 α

(

Si−1
w̄

)

γ
(

Si−1
w̄ , Si

w

)

.

Derivation of function β

1. Initialization: Set β
(

Sℓ
0

)

= 1 and β
(

Sℓ
w

)

= 0 for 1 ≤ w ≤ 15.

2. Recursion: For 1 ≤ i ≤ ℓ, β (Si
w̄) =

∑15
w=0 β (Si+1

w) γ (Si
w̄, S

i+1
w).

Derivation of function γ

1. Initialization: Give that ci is the information bit corresponding to the state transition

from Si−1
w̄ to Si

w. Let the corresponding output vector be x i.

2. Computation: γ
(

Si−1
w̄ , Si

w

)

= Pr (ci)
1√
2πσ

exp{− ||r i−x i||2
2σ2 }.

11

Chapter 3

Joint Source-Channel Block Code

In this chapter, the proposed construction approach for the joint source-channel block codes

for non-uniform source distributions over additive white Gaussian noise (AWGN) channels

will be presented.

3.1 Union bound

In general, it is difficult to determine the close-form formula for the symbol error probability

(SEP) corresponding to a codebook and a source distribution. When a criterion for the SEP

is needed, researchers will mostly derive the union bound instead. As such, we will use the

union bound as a design criterion for the proposed joint source-channel code.

For the derivation of the union bound, a pair-wise error probability should be devised first.

Consider two source symbols si and sj respectively with probabilities pi and pj, and assume

that they are mapped respectively to codewords ci and cj , between which the Hamming

distance is h. In such case, an error occurs when the receiver declares the reception of sj but

si is transmitted, or vice versa. Denote the previously mentioned pair-wise error probability

12

by Pr(si → sj). Then, when ci is transmitted over the BSC,

Pr(si → sj) =

h
∑

e=(h+1)/2

(

h
e

)

be (1− b)h−e for odd h

1
2

(

h
h/2

)

bh/2 (1− b)h/2 +
h
∑

e=h/2+1

(

h
e

)

be (1− b)h−e for even h

Since the above Pr(si → sj) is only a function of h, we will denote it by Kh.

Next, we denote by Pe(h) the probability that a transmitted codeword ci is incorrectly

decoded to another codeword at Hamming distance h from it. Then, Pe(h) can be bounded

above by:

Pe(h) ≤
n

∑

i=1

pi
∑

j:dH(ci,cj)=h

Kh,

where dH(ci, cj) is the Hamming distance between codewords ci and cj. The system error

probability Pe must then satisfy:

Pe ≤
ℓ

∑

h=1

Pe(h)

≤
ℓ

∑

h=1

n
∑

i=1

pi
∑

j:dH(ci,cj)=h

Kh

=
ℓ

∑

h=1

Kh

n
∑

i=1

pi
∑

j:dH(ci,cj)=h

where the last step follows since Kh is nothing to do with i and j. Define Ah ,
n
∑

i=1

∑

j:dH(i,j)=h

pi

to be the average number of codeword pairs with Hamming distance h . Finally, we have

Pe ≤
ℓ

∑

h=1

KhAh.

We then use the above upper bound as a design criterion for our joint source-channel coding

design.

In summary, based on a given code rate R = 1/4 and system signal-to-noise ratio per

information bit Eb/N0 = 10 dB, we can compute Kh. Afterwards, we will attempt to find a

good joint source-channel block code of length ℓ that hopefully minimizes
ℓ
∑

h=1

KhAh.

13

3.2 Construction of Joint Source-Channel Block Code

For a small codeword length such as ℓ = 8, we can exhaustively search for all the possi-

ble code designs and find the one that minimizes
ℓ
∑

h=1

KhAh. However, such an exhaustive

search approach may not be feasible for a larger codeword length. We therefore propose a

sub-optimal but low-complexity algorithm to construct a joint source-channel code with a

prohibitively small union bound value.

For given n source symbol s1, . . . , sn with probabilities of occurrence p1, . . . , pn, and for

a specified codeword length ℓ , we propose to construct a joint source-channel block code as

follows.

Step 0. Initialize the length index as one, namely, y = 1. Set code matrices

C =

c1,1 c1,2 . . . c1,ℓ
c2,1 c2,2 . . . c2,ℓ
...

...
...

cn,1 cn,2 . . . cn,ℓ

= 0 and C ′ =

c′1,1 c′1,2 . . . c′1,ℓ
c′2,1 c′2,2 . . . c′2,ℓ
...

...
...

c′n,1 c′n,2 . . . c′n,ℓ

= 0,

where 0 is the all-zero matrix of proper size.

Step 1. For 1 ≤ i, j ≤ n, calculate ai,j,y = dH (ci,1ci,2 . . . ci,y−1, cj,1cj,2 . . . cj,y−1) .

Step 2. Compute the union bound contribution for each codeword, i.e., for 1 ≤ i ≤ n,

gi =
n

∑

j=1

Kai,j,y × pi.

Step 3. Set the codeword index q = 1. Sort {gi}ni=1 such that gs1 ≥ gs2 ≥ . . . ≥ gsn, where

{si}ni=1 denotes the sequence of the sorted ordering.

Step 4. For 1 ≤ u < q, calculate

{

d0,u = (0⊕ csu,y) + asq ,su,y

d1,u = (1⊕ csu,y) + asq ,su,y

14

and

r0 =

0, q = 1
q−1
∑

u=1

Kd0,u ×
(

psq + psu
)

, q > 1
, r1 =

0, q = 1
q−1
∑

u=1

Kd1,u ×
(

psq + psu
)

, q > 1

Step 5. Compare r0 and r1 as follows.

If r0 > r1, choose csq,y = 1; else choose csq,y = 0.

Step 6. For 1 ≤ i, j ≤ n, calculate bi,j,y = dH
(

c′i,1c
′
i,2 . . . c

′
i,y−2, c

′
j,1c

′
j,2 . . . c

′
j,y−2

)

.

Step 7. Compute the union bound contribution for each codeword, i.e., for 1 ≤ i ≤ n,

gi =

n
∑

j=1

Kbi,j,y × pi.

Step 8. Set the codeword index q = 1. Sort {gi}ni=1 such that gs1 ≥ gs2 ≥ . . . ≥ gsn, where

{si}ni=1 denotes the sequence of the sorted ordering.

Step 9. If y ≥ 2, compute for 1 ≤ u < q,

d00,u = (00⊕ c′su,y−1c
′
su,y) + bsq ,su,y

d01,u = (01⊕ c′su,y−1c
′
su,y) + bsq ,su,y

d10,u = (10⊕ c′su,y−1c
′
su,y) + bsq ,su,y

d11,u = (11⊕ c′su,y−1c
′
su,y) + bsq ,su,y

and

r00 =

0, q = 1
q−1
∑

u=1

Kd00,u ×
(

psq + psu
)

, q > 1

r01 =

0, q = 1
q−1
∑

u=1

Kd01,u ×
(

psq + psu
)

, q > 1

r10 =

0, q = 1
q−1
∑

u=1

Kd10,u ×
(

psq + psu
)

, q > 1

r11 =

0, q = 1
q−1
∑

u=1

Kd11,u ×
(

psq + psu
)

, q > 1

.

15

Step 10. Among r00, r01, r10 and r11;

if r00 is the minimum one, choose c′sq,y−1c
′
sq,y = 00;

else if r01 is the minimum one, choose c′sq,y−1c
′
sq,y = 01;

else if r10 is the minimum one, choose c′sq,y−1c
′
sq,y = 10;

else choose c′sq,y−1c
′
sq,y = 11.

Step 11. Set q = q + 1 and repeat Steps 4–8 until q = n.

Step 12. Compare the union bound of C and C ′, and let C∗ be the one with a smaller

union bound.

Step 13. Set y = y + 1, C ′ = C and C = C∗. Then repeat Steps 1–10 until y = ℓ.

This algorithm will give us a codebook C∗ with a satisfiable union bound value.

3.3 Decoding

For a joint source-channel block code, it has been known that the MAP decoder is optimal in

the sense of minimizing the symbol error probability. The MAP decoder in general does not

have an efficient implementation. Fortunately, it can be noted that the MAP decoding metric

derived in Section 2.2 is strictly decreasing when being calculated in a bit by bit fashion;

hence, we can use the priority-first sequential search algorithm as a vehicle to obtain the

MAP decision. In this thesis, the priority-first sequential search decoding algorithms have

two forms: one for hard-decision decoding and the other for soft-decision decoding.

3.3-A) Priority-first sequential search hard-decision decoding algorithm

Step 0. Construct the binary code tree corresponding to the given codebook, in which a

path form the root node to a leaf node is a codeword. Each leaf node (equivalently,

16

the end node of a codeword path) is associated with a probability corresponding

to the probability of occurrence for the source letter that is encoded to this code-

word. The probability associated with a non-leaf node is the largest one among

all probabilities associated with those leaf nodes that are offsprings of this non-leaf

node.

Step 1. Calculate the hard-decision sequence y. Initialize the metric of the root node as

0, and push the root node into the stack.

Step 2. Extract the node with the maximal metric value from the stack, which we denote

it by e. Then, for all child nodes of the extracted node, if there is any, perform the

following procedure and then repeat Step 2.

• If the child node of the extracted node is a non-leaf node, set the metric of

this child node to

e+ (ci,j ⊕ yj) ln

(

b

1− b

)

,

where ci,j is the code bit corresponding to the tree branch connecting the

extracted node and the child node, and j is the tree level at which the extracted

node is located. Push the child node into the stack.

• Else if the child node of the extracted node is a leaf node, set the metric of

this child node to

e + (ci,j ⊕ yj) ln

(

b

1− b

)

+ ln (pi) ,

where pi is the probability associated with this leaf node. Push the child node

into the stack.

If the extracted node is a leaf node (which certainly has has no child nodes), output

the codeword corresponding to the leaf node and stop the algorithm.

17

3.3-B) Priority-first sequential search soft-decision decoding algorithm

Step 0. The same as Step 0 in the algorithm in 3.3-A.

Step 1. Calculate the log-likelihood ratio φj for all 1 ≤ j ≤ ℓ. Initilize the metric of the

root node as 0, and push the root node into the stack.

Step 2. Extract the node with the maximal metric value from the stack, which we denote

it by e. Then, for all child nodes of the extracted node, if there is any, perform the

following procedure, and then repeat Step 2.

• If the child node of the extracted node is a non-leaf node, set the metric of

this child node to

e+ (−1)ci,jφi,

where ci,j is the code bit corresponds to the tree branch connecting the ex-

tracted node and the child node, and and j is the tree level at which the

extracted node is located. Push the child node into the stack.

• Else if the child node of the extracted node is a leaf node, set the metric of

this child node to

e+ (−1)ci,jφi + 2 ln (pi) ,

where pi is the probability associated with this leaf node. Push the child node

into the stack.

If the extracted node is a leaf node (which certainly has has no child nodes), output

the codeword corresponding to the leaf node and stop the algorithm.

We remark that when the metric is non-increasing along all paths, the sequential search

of the above two algorithms guarantee to find the optimal leaf path with the maximal metric.

18

However, the metrics we adopt in the two algorithms are apparently not non-increasing; so

the algorithms we propose may end up with a suboptimal codeword path.

Since at low SNR, the complexity of the second sequential search algorithm may be too

large to be practical, an amendment refinement to remove some of the tree nodes during the

decoding search is additional proposed below.

• When extracting a node at tree level j and associated with probability q, it will be

directly discarded if

2 (ℓ− jM)− ln qM ≤ (jM − j)− ln q,

where qM is the largest probability associated with those nodes that have been visited

thus far, and jM is the level at which the node that decides qM is located.

19

Chapter 4

Modified Turbo Code

4.1 Background

In Chapter 3, we have proposed a novel approach to construct a joint source-channel block

code for a non-uniform source. This approach however cannot be feasibly applied when

the codeword length of interest is moderately large, and hence the attainable error rates

are limited. As such, in this chapter, we turn to the modification of turbo codes that were

previously designed by assuming uniform prior probabilities on codewords, and target a joint

source-channel turbo coding system that can provide a practically acceptable performance

for non-uniform sources.

In the literature, there have been publications working on turbo code design for non-

uniform source. In [4], a turbo code has been proposed for binary independent and iden-

tically distributed (i.i.d.) source with non-uniform marginal distribution. In [5], the turbo

code design has been extended to binary first-order Markov sources. Note that for binary

i.i.d. sources, each information bit is statistically independent of all previous bits, which

facilitates the derivation of the corresponding decoding metric for turbo decoder. When a

first-order Markov source is considered, each bit only depends on the previous bit; nonethe-

less, the extension derivation of the turbo decoding metric can make use of this statistical

20

structure. In this thesis, we actually consider a source of different statistical nature, where

each information bit is dependent on t previous bits with t being a known function of the

bit location. Specifically, an English alphabet can be binary-indexed using five bits; so the

first bit is surely dependent on the next four bits, and the second bit is statistically affected

by the next three bits, etc., while the fifth bit is actually independent of the next bit if the

stream of English letters is i.i.d. in nature. Details will be given in later sections.

4.2 Definitions and Notations

Assume there are n symbols {s1, s2, . . . , sn} that are generated according to an independently

and identically distributed distribution with marginal probabilities {p1, p2, . . . , pn}. Let g =

⌈log2 n⌉. We can then binary-index each source symbol using g bits as s1 = (00 . . . 00),

s2 = (00 . . . 01), s3 = (00 . . . 10), etc. As a result, for 1 ≤ a < g, the (mg + a)th bit only

depends on the previous a− 1 bits.

For notational convenience, we derive in the following by assuming the ith bit ui is

dependent on the previous t bits ui−1 . . . ui−t. By our setting in the previous paragraph, ui−1

should be dependent only on bits ui−2 . . . ui−t. Denote U i = ui−1 . . . ui−t = ui−1U i−1.

Denote by Si
w the state at level i, and by Tc the set of state pair

(

Si−1
w̄ , Si

w

)

such that

the input bit ui = c will make the trellis transition from state Si−1
w̄ to state Si

w . Let x be

the codeword sequence corresponding to the input information sequence {ui}ℓ1, and let x i

be the codeword vector portion corresponding to ui. For convenience, we use x
j
i to denote

x ix i+1 . . .x j . Similarly, denote by r i the channel output due to input x i, and use r
j
i to

denote r ir i+1 . . . r j. Also, abbreviate r = r ℓ
1 = r 1r 2 . . . r ℓ. Note that for 1/3-rate turbo

coding system, x i =
(

xs
i , x

1p
i , x2p

i

)

and r i =
(

rsi , r
1p
i , r2pi

)

, where superscripts “1p” and “2p”

indicates the first and second parity-check codeword portions, respectively. We then illustrate

the general scheme of a turbo decoder in Fig. 4.1, in which Λ(j) (i) is the log-likelihood ratio

21

Figure 4.1: Diagram of a sample turbo decoder.

of the ith bit ui computed by the jth component code decoder, and Λ
(j)
ex (i) is the extrinsic

information of the ith bit ui obtained from the jth component code decoder.

4.3 Modified Decoding Metric

The derivation of the decoding metric for the turbo code in the previous chapter is based on

the assumption that the source is uniform i.i.d. When the source is not uniformly distributed,

the equality of (2.3) and (2.4) is no longer valid. Hence, an alternative decomposition of

Pr (ui = c | r) should be done.

Let V t be the binary bit stream of length t , i.e., V t = vtvt−1 . . . v1, where vi ∈ {0, 1}

for every i, and denote V t = vtV t−1. We then derive:

Pr (ui = c | r) =
Pr (ui = c, r)

Pr (r)

=
∑

(Si−1
w̄ ,Si

w)∈Tc

Pr
(

Si−1
w̄ , Si

w, r
)

Pr (r)
,

22

where

∑

(Si−1
w̄ ,Si

w)∈Tc

Pr
(

Si−1
w̄ , Si

w, r
)

=
∑

(Si−1
w̄ ,Si

w)∈Tc

∑

V t∈{0,1}t
Pr

(

Si−1
w̄ , Si

w,U i = V t, r
)

=
∑

(Si−1
w̄ ,Si

w)∈Tc

∑

V t∈{0,1}t
Pr

(

Si−1
w̄ , Si

w,U i = V t, r
i−1
1 , r i, r

ℓ
i+1

)

=
∑

(Si−1
w̄ ,Si

w)∈Tc

∑

V t∈{0,1}t
Pr

(

r i−1
1

)

Pr
(

Si−1
w̄ ,U i = V t | r i−1

1

)

Pr
(

Si
w, r i, r

ℓ
i+1 | Si−1

w̄ ,U i = V t, r
i−1
1

)

(4.1)

Given state Si−1
w̄ andU i, the received bit stream r i−1

1 is independent of
(

Si
w, r i, r

ℓ
i+1

)

. Hence,

the derivation of (4.1) can be continued as follows.

∑

(Si−1
w̄ ,Si

w)∈Tc

∑

V t∈{0,1}t
Pr

(

r i−1
1

)

Pr
(

Si−1
w̄ ,U i = V t | r i−1

1

)

Pr
(

Si
w, r i, r

ℓ
i+1 | Si−1

w̄ ,U i = V t, r
i−1
1

)

=
∑

(Si−1
w̄ ,Si

w)∈Tc

∑

V t∈{0,1}t
Pr

(

r i−1
1

)

Pr
(

Si−1
w̄ ,U i = V t | r i−1

1

)

Pr
(

Si
w, r i, r

ℓ
i+1 | Si−1

w̄ ,U i = V t

)

=
∑

(Si−1
w̄ ,Si

w)∈Tc

∑

V t∈{0,1}t

[

Pr
(

r i−1
1

)

Pr
(

Si−1
w̄ ,U i = V t | r i−1

1

) Pr
(

Si
w, r i, S

i−1
w̄ ,U i = V t

)

Pr
(

Si−1
w̄ ,U i = V t

)

×Pr
(

Si
w, r i, S

i−1
w̄ ,U i = V t, r

ℓ
i+1

)

Pr
(

Si
w, r i, S

i−1
w̄ ,U i = V t

)

]

=
∑

(Si−1
w̄ ,Si

w)∈Tc

∑

V t∈{0,1}t

[

Pr
(

r i−1
1

)

Pr
(

Si−1
w̄ ,U i = V t | r i−1

1

)

Pr
(

Si
w, r i | Si−1

w̄ ,U i = V t

)

×Pr
(

r ℓ
i+1 | r i, S

i−1
w̄ , Si

w,U i = V t

)]

.

By noticing that knowing
(

Si−1
w̄ , Si

w

)

is equivalent to knowing (ui, S
i
w), and r ℓ

i+1 is indepen-

23

dent of r i when given (ui,U i), we can continued the derivation as:

Pr (ui = c, r)

=
∑

(Si−1
w̄ ,Si

w)∈Tc

∑

V t∈{0,1}t

[

Pr
(

r i−1
1

)

Pr
(

Si−1
w̄ ,U i = V t | r i−1

1

)

Pr
(

Si
w, r i | Si−1

w̄ ,U i = V t

)

×Pr
(

r ℓ
i+1 | r i, S

i−1
w̄ , Si

w,U i = V t

)]

=
∑

(Si−1
w̄ ,Si

w)∈Tc

∑

V t∈{0,1}t

[

Pr
(

r i−1
1

)

Pr
(

Si−1
w̄ ,U i = V t | r i−1

1

)

Pr
(

Si
w, r i | Si−1

w̄ ,U i = V t

)

×Pr
(

r ℓ
i+1 | ui,U i = V t, S

i
w

)]

.

Define

α
(

V t, S
i−1
w̄

)

, Pr
(

Si−1
w̄ ,U i = V t | r i−1

1

)

β
(

c,V t, S
i
w

)

, Pr
(

r ℓ
i+1 | ui = c,U i = V t, S

i
w

)

γ
(

c,V t, S
i−1
w̄ , Si

w

)

, Pr
(

ui = c, Si
w, r i | Si−1

w̄ ,U i = V t

)

= Pr
(

Si
w, r i | Si−1

w̄ ,U i = V t

)

and observe that when t = 0, bit ui is independent of any previous bits and the above

functions are reduced to:

α
(

V 0, S
i−1
w̄

)

, Pr
(

Si−1
w̄ | r i−1

1

)

β
(

c,V 0, S
i
w

)

, Pr
(

r ℓ
i+1 | ui = c, Si

w

)

γ
(

c,V 0, S
i−1
w̄ , Si

w

)

, Pr
(

ui = c, Si
w, r i | Si−1

w̄

)

= Pr
(

Si
w, r i | Si−1

w̄

)

24

Hence,

Λ(1) (i) = ln
Pr (ui = 1 | r)
Pr (ui = 0 | r)

= ln
Pr (ui = 1, r)

Pr (ui = 0, r)

= ln

∑

(Si−1
w̄ ,Si

w)∈T1

∑

V t∈{0,1}t
Pr(ri−1

1)Pr(Si−1
w̄ ,U i=V t|r

i−1
1)Pr(Si

w,ri|S
i−1
w̄ ,U i=V t)Pr(rℓi+1|ui,U i=V t,S

i
w)

∑

(Si−1
w̄ ,Si

w)∈T0

∑

V t∈{0,1}t
Pr(ri−1

1)Pr(Si−1
w̄ ,U i=V t|r

i−1
1)Pr(Si

w,ri|S
i−1
w̄ ,U i=V t)Pr(rℓi+1

|ui,U i=V t,S
i
w)

= ln

∑

(Si−1
w̄ ,Si

w)∈T1

∑

V t∈{0,1}t
α
(

V t, S
i−1
w̄

)

γ
(

1,V t, S
i−1
w̄ , Si

w

)

β (1,V t, S
i
w)

∑

(Si−1
w̄ ,Si

w)∈T0

∑

V t∈{0,1}t
α
(

V t, S
i−1
w̄

)

γ
(

0,V t, S
i−1
w̄ , Si

w

)

β (0,V t, Si
w)

For additive white Gaussian noise channels, function γ is given by

γ
(

c,V t, S
i−1
w̄ , Si

w

)

= Pr
(

ui = c, Si
w, r i | Si−1

w̄ ,U i = V t

)

=
Pr

(

ui = c, Si
w, r i, S

i−1
w̄ ,U i = V t

)

Pr
(

Si−1
w̄ ,U i = V t

)

=
Pr

(

r i | ui = c, Si
w, S

i−1
w̄ ,U i = V t

)

Pr
(

ui = c, Si
w, S

i−1
w̄ ,U i = V t

)

Pr
(

Si−1
w̄ ,U i = V t

)

= Pr
(

r i | ui = c, Si
w, S

i−1
w̄ ,U i = V t

)

Pr
(

ui = c, Si
w | Si−1

w̄ ,U i = V t

)

= Pr (r i | x i) Pr (ui = c | U i = V t)

The basic structure of the turbo decoding metric is now done.

Now after the execution of a certain rounds of turbo decoding, we denote by r
ex(2)
i the

extrinsic information from the second component decoder after de-interleaving. This r
ex(2)
i

will be the input to the first component decoder. The Gaussian assumption on r
ex(2)
i from

[6] [7] then gives:

Pr (r i | x i) =
1√
2πσ2

exp

−
(rsi − xs

i)
2 +

(

r
(1p)
i − x

(1p)
i

)2

2σ2

Pr
(

r
ex(2)
i

∣

∣

∣
ui = c

)

.

25

Suppose σ̄2 and M̄ are the estimated variance and mean of r
ex(2)
i , respectively, which are

defined as follows:

M̄ =
1

ℓ

ℓ
∑

i=1

| rex(2)i |

σ̄2 =
1

ℓ− 1

ℓ
∑

i=1

(

| rex(2)i | −M̄
)2

The probability Pr
(

r
ex(2)
i

∣

∣

∣
ui = c

)

can then be assigned as:

Pr
(

r
ex(2)
i

∣

∣

∣
ui = c

)

=

1, if σ̄2 = 0

1√
2πσ̄2

exp

−

[

r
ex(2)
i − (2ui − 1) M̄

]2

2σ̄2

, otherwise

Hence, function γ can be given as:

γ
(

c,V t, S
i−1
w̄ , Si

w

)

= Pr (ui = c | U i = V t)
1√
2πσ2

exp

−
(rsi − xs

i)
2 +

(

r
(1p)
i − x

(1p)
i

)2

2σ2

×Pr
(

r
ex(2)
i | ui = c

)

.

Similar to what has been introduced in the previous chapter, function α can be recursively

computed through the following steps:

Case 1. i 6= mg + 1, where m ∈ Z
+ and g = ⌈log2(n)⌉. Knowing that bit ui is dependent

26

on the previous t bits, we get:

Pr
(

Si−1
w̄ ,U i = V t, r

i−1
1

)

= Pr
(

Si−1
w̄ ,U i−1 = V t−1, ui−1 = v1, r

i−2
1 , r i−1

)

=
∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tv1

Pr
(

Si−2
w′ , Si−1

w̄ ,U i−1 = V t−1, r
i−2
1 , r i−1

)

=
∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tv1

[

Pr
(

r i−2
1

)

Pr
(

U i−1 = V t−1, S
i−2
w′ | r i−2

1

)

×Pr
(

Si−1
w̄ , r i−1 | Si−2

w′ ,U i−1 = V t−1, r
i−2
1

)]

=
∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tv1

[

Pr
(

r i−2
1

)

Pr
(

U i−1 = V t−1, S
i−2
w′ | r i−2

1

)

×Pr
(

Si−1
w̄ , r i−1 | Si−2

w′ ,U i−1 = V t−1

)]

=
∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tv1

Pr
(

r i−2
1

)

α
(

V t−1, S
i−2
w′

)

γ
(

v1,V t−1, S
i−2
w′ , Si−1

w̄

)

,

Pr
(

r i−1
1

)

=
15
∑

w̄=0

∑

V t∈{0,1}t
Pr

(

Si−1
w̄ ,U i = V t, r

i−1
1

)

=

15
∑

w̄=0

∑

V t∈{0,1}t

∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tv1

Pr
(

r i−2
1

)

α
(

V t−1, S
i−2
w′

)

γ
(

v1,V t−1, S
i−2
w′ , Si−1

w̄

)

,

and

α
(

V t, S
i−1
w̄

)

= Pr
(

Si−1
w̄ ,U i = V t | r i−1

1

)

=
Pr

(

Si−1
w̄ ,U i = V t, r

i−1
1

)

Pr
(

r i−1
1

)

=

∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tv1

α
(

V t−1, S
i−2
w′

)

γ
(

v1,V t−1, S
i−2
w′ , Si−1

w̄

)

15
∑

w̄=0

∑

V t∈{0,1}t

∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tv1

α
(

V t−1, S
i−2
w′

)

γ
(

v1,V t−1, S
i−2
w′ , Si−1

w̄

)

.

Case 2. i = mg + 1, where m ∈ Z
+ and g = ⌈log2(n)⌉. In this case, bit ui is independent

27

of any previous bits. So we can simply the above derivations to:

Pr
(

Si−1
w̄ , r i−1

1

)

=
1

∑

c′=0

∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tc′

Pr
(

Si−2
w′ , Si−1

w̄ , r i−2
1 , r i−1

)

=

1
∑

c′=0

∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tc′

Pr
(

r i−2
1

)

Pr
(

Si−2
w′ | r i−2

1

)

Pr
(

Si−1
w̄ , r i−1 | Si−2

w′ , r i−2
1

)

=
1

∑

c′=0

∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tc′

Pr
(

r i−2
1

)

Pr
(

Si−2
w′ | r i−2

1

)

Pr
(

Si−1
w̄ , r i−1 | Si−2

w′

)

,

Pr
(

r i−1
1

)

=
15
∑

w̄=0

Pr
(

Si−1
w̄ , r i−1

1

)

=
15
∑

w̄=0

1
∑

c′=0

∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tc′

Pr
(

r i−2
1

)

Pr
(

Si−2
w′ | r i−2

1

)

Pr
(

Si−1
w̄ , r i−1 | Si−2

w′

)

,

and

α
(

V 0, S
i−1
w̄

)

= Pr
(

Si−1
w̄ | r i−1

1

)

=
Pr

(

Si−1
w̄ , r i−1

1

)

Pr
(

r i−1
1

)

=

1
∑

c′=0

∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tc′

Pr
(

Si−2
w′ | r i−2

1

)

Pr
(

Si−1
w̄ , r i−1 | Si−2

w′

)

15
∑

w̄=0

1
∑

c′=0

∑

w′:(Si−2
w′ ,Si−1

w̄)∈Tc′

Pr
(

Si−2
w′ | r i−2

1

)

Pr
(

Si−1
w̄ , r i−1 | Si−2

w′

)

,

where

Pr
(

Si−2
w′ | r i−2

1

)

=
∑

V g∈{0,1}g
Pr

(

Si−2
w′ ,U i−1 = V g | r i−2

1

)

=
∑

V g∈{0,1}g
α
(

V gS
i−2
w′

)

,

and

Pr
(

Si−1
w̄ , r i−1 | Si−2

w′

)

= Pr (ui−1 = c′) Pr (r i−1 | x i−1)

= Pr (ui−1 = c′)
1√
2πσ2

exp{−
(rsi − xs

i)
2 +

(

r
(1p)
i − x

(1p)
i

)2

2σ2
}Pr

(

r
ex(2)
i | ui = c

)

.

28

We next turn to the recursive computation of function β as follows.

Case 1. i 6= mg. In this case, the next bit ui+1 is dependent on the previous bit ui. By

defining V t+1 = V tc, we derive:

Pr
(

r ℓ
i+1, ui = c,U i = V t, S

i
w

)

=

1
∑

c′=0

Pr
(

r ℓ
i+1, ui = c,U i = V t, ui+1 = c′, Si

w

)

=
1

∑

c′=0

Pr
(

r i+1, r
ℓ
i+2,U i+1 = V t+1, ui+1 = c′, Si

w, S
i+1
w̄

)

=

1
∑

c′=0

[

Pr
(

r ℓ
i+2 | ui+1 = c′,U i+1 = V t+1, S

i+1
w̄

)

×Pr
(

r i+1 | r ℓ
i+2, ui+1 = c′,U i+1 = V t+1, S

i+1
w̄

)

Pr
(

ui+1 = c′,U i+1 = V t+1, S
i+1
w̄

)]

=

1
∑

c′=0

[

β
(

c′,V t+1, S
i+1
w̄

)

Pr
(

r i+1 | ui+1 = c′,U i+1 = V t+1, S
i+1
w̄

)

×Pr
(

ui+1 = c′,U i+1 = V t+1, S
i+1
w̄

)]

=
1

∑

c′=0

β
(

c′,V t+1, S
i+1
w̄

)

Pr
(

r i+1, ui+1 = c′,U i+1 = V t+1, S
i+1
w̄

)

=

1
∑

c′=0

β
(

c′,V t+1, S
i+1
w̄

)

Pr
(

r i+1, ui+1 = c′,U i+1 = V t+1, S
i+1
w̄ , Si

w

)

=
1

∑

c′=0

[

β
(

c′,V t+1, S
i+1
w̄

)

Pr
(

ui+1 = c′, Si+1
w̄ , r i+1 | Si

w,U i+1 = V t+1

)

×Pr
(

Si
w,U i+1 = V t+1

)]

=

1
∑

c′=0

β
(

c′,V t+1, S
i+1
w̄

)

γ
(

c′,V t+1, S
i
w, S

i+1
w̄

)

Pr
(

Si
w,U i+1 = V t+1

)

,

29

where

β
(

c,V t, S
i
w

)

= Pr
(

r ℓ
i+1 | ui = c,U i = V t, S

i
w

)

=
Pr

(

r ℓ
i+1, ui = c,U i = V t, S

i
w

)

Pr (ui = c,U i = V t, Si
w)

=

1
∑

c′=0

β
(

c′,V t+1, S
i+1
w̄

)

γ
(

c′,V t+1, S
i
w, S

i+1
w̄

)

Pr (Si
w,U i+1 = V t+1)

Pr (U i+1 = V t+1, Si
w)

=
1

∑

c′=0

β
(

c′,V t+1, S
i+1
w̄

)

γ
(

c′,V t+1, S
i
w, S

i+1
w̄

)

.

Case 2. i = mg. In this case, the next bit ui+1 is independent of the previous bit ui. This

simplifies our derivation to:

Pr
(

r ℓ
i+1, ui = c,U i = V t, S

i
w

)

=
1

∑

c′=0

Pr
(

r i+1, r
ℓ
i+2, ui = c,U i = V t, ui+1 = c′, Si

w, S
i+1
w̄

)

=

1
∑

c′=0

[

Pr
(

r ℓ
i+2 | ui+1 = c′, Si+1

w̄

)

Pr
(

r i+1 | r ℓ
i+2, ui+1 = c′, ui = c,U i = V t, S

i+1
w̄

)

×Pr
(

ui+1 = c′, ui = c,U i = V t, S
i+1
w̄

)]

=
1

∑

c′=0

β
(

c′,V 0, S
i+1
w̄

)

Pr
(

r i+1, ui+1 = c′, ui = c,U i = V t, S
i+1
w̄

)

=

1
∑

c′=0

[

β
(

c′,V 0, S
i+1
w̄

)

Pr
(

ui+1 = c′, Si+1
w̄ , r i+1 | Si

w, ui = c,U i = V t

)

×Pr
(

Si
w, ui = c,U i = V t

)]

=
1

∑

c′=0

β
(

c′,V 0, S
i+1
w̄

)

Pr
(

ui+1 = c′, Si+1
w̄ , r i+1 | Si

w

)

Pr
(

Si
w, ui = c,U i = V t

)

=

1
∑

c′=0

β
(

c′,V 0, S
i+1
w̄

)

γ
(

c′,V 0, S
i
w, S

i+1
w̄

)

Pr
(

Si
w, ui = c,U i = V t

)

,

30

where

β
(

c,V t, S
i
w

)

=
Pr

(

r ℓ
i+1, ui = c,U i = V t, S

i
w

)

Pr (ui = c,U i = V t, Si
w)

=
1

∑

c′=0

β
(

c′,V 0, S
i+1
w̄

)

γ
(

c′,V 0, S
i
w, S

i+1
w̄

)

.

The initial values of functions α and β are:

α (V 0, S
0
0) = 1 , α (V 0, S

0
w) = 0 for every 0 < w ≤ 16

β
(

0,V k, S
ℓ
w

)

= β
(

1,V k, S
ℓ
w

)

= 1
2
for every 0 ≤ w ≤ 16

where k ≡ (ℓ− 1)mod g.

It remains to discuss about the iterative decoding scheme based on our newly derived

functions. A well-known iterative decoding equation is to iteratively exchange the so-called

extrinsic information as follows.

Λ(1) (i) = Λ
(1)
ch (i) + Λ(1)

ap (i) + Λ(1)
ex (i)

⇐⇒ Λ(1)
ex (i) = Λ(1) (i)− Λ

(1)
ch (i)− Λ(1)

ap (i)

= Λ(1) (i)− ln
Pr (rsi | ui = 1)

Pr (rsi | ui = 0)
− ln

Pr
(

r
(ex)
i | ui = 1

)

Pr
(

r
(ex)
i | ui = 0

)

=

{

Λ(1) (i)− 2
σ2 r

s
i if σ̄2 = 0

Λ(1) (i)− 2
σ2 r

s
i − 2M̄

σ̄2 r
(ex)
i otherwise

,

where Λch(i) and Λap(i) stand for the quantities due to channel and a priori information,

respectively.

After updating the extrinsic information by the first component decoder, it is the turn of

the second component decoder to modify the extrinsic information. Let {ũ}ℓ1 be the input

sequence after interleaving. Assume that (ũ)ℓ1 is i.i.d. in statistics; hence the traditional

BCJR algorithm described in Section 2.4 can be applicable. Let Λ(2) (i) be the log-likelihood

31

ratio updated in Decoder 2. Then we have:

Λ̃(2) (i) = Λ̃
(2)
ch (i) + Λ̃(2)

ap (i) + Λ̃(2)
ex (i)

⇐⇒ Λ̃(2)
ex (i) = Λ̃(2) (i)− Λ̃

(2)
ch (i)− Λ̃(2)

ap (i)

= Λ̃(2) (i)− ln
Pr

(

r̃si | ũi = 1
)

Pr
(

r̃si | ũi = 0
) − ln

Pr (ũi = 1)

Pr (ũi = 0)

= Λ̃(2) (i)− 2

σ2
r̃si − Λ̃(1)

ex (i)

where {r̃}ℓ1 is the interleaved sequence for {r}ℓ1, and {Λ̃(1)
ex (i)}ℓi=1 is the interleaved sequence

for {Λ(1)
ex (i)}ℓi=1.

Based on [5], we slightly adjust the extrinsic information equation for Decoder 2 as

follows. Again, let {Λ(2)
ex (i)}ℓi=1 be the de-interleaved sequence for {Λ̃(2)

ex (i)}ℓi=1. Then,

Λ(2)
ex (i)

= vΛ(2)
ex (i) + (1− v) ln

∑

V t∈{0,1}t
Pr (ui = 1 | U i = V t) Pr (ûi−t = vt) . . .Pr (ûi−1 = v1)

∑

V t∈{0,1}t
Pr (ui = 0 | U i = V t) Pr (ûi−t = vt) . . .Pr (ûi−1 = v1)

where

Pr (ûi = 0) =
1

1 + eΛ
(2)
ex (i)

, Pr (ûi = 1) =
eΛ

(2)
ex (i)

1 + eΛ
(2)
ex (i)

,

and

v =

{

1, if (i− 1)mod g = 0

0.85, otherwise

32

Chapter 5

Simulation Results

In this chapter, simulation results are provided to demonstrate the performance of the FLEC

that we derived in Chapters 3 and 4. Specifically, we examine what has been proposed in

Chapter 3 in Section 5.1, and test the FLEC in Chapter 4 in Section 5.2. Remarks on our

simulation results are given in Section 5.3.

5.1 Joint Source-Channel Block Code

Throughout this section, the code rate of FLECs examined is fixed as 1/4. The first-order

Markov sources are the chosen source distributions. Three Markov source cases will be

simulated.

Case 1. Transition distribution Pr (ui = 0 | ui−1 = 0) = Pr (ui = 1 | ui−1 = 1) = 0.9 with

initial probability Pr (u1 = 0) = 1− Pr (u1 = 1) = 0.9.

Case 2. Transition distribution Pr (ui = 0 | ui−1 = 0) = Pr (ui = 1 | ui−1 = 1) = 0.95 with

initial probability Pr (u1 = 0) = 1− Pr (u1 = 1) = 0.5.

Case 3. Transition distribution Pr (ui = 0 | ui−1 = 0) = Pr (ui = 1 | ui−1 = 1) = 0.55 with

initial probability Pr (u1 = 0) = 1− Pr (u1 = 1) = 0.55.

33

Below we illustrate the details of all figures in Section 5.1.

1. Figure 5.1 compares the SER performances between the JSC block codes constructed

by exhaustive search and those constructed by our algorithm. The source under test

follows Case 1.

2. The setting of Figure 5.2 is same as that in Figure 5.1 except that the source follows

Case 2.

3. The setting of Figure 5.3 is same as that in Figure 5.1 except that the source follows

Case 3.

4. Figure 5.4 shows the SER performances of JSC block codes constructed by the algo-

rithm introduced in Section 3.2 and decoded by the sequential soft-decision decoding

algorithm introduced in Section 3.3 for three different codeword lengths. The source

follows Case 1.

5. The setting of Figure 5.5 is same as that of Figure 5.4 except that the source follows

Case 2.

6. The setting of Figure 5.6 is same as that of Figure 5.4 except that the source follows

Case 3.

7. Figure 5.7 compares the SER performances between the JSC block code we constructed

and the tandem scheme. The hard-decision decoding scheme is presumed and the

source under test follows Case 1. The codeword length of the JSC block code is 64.

The tandem scheme selected for performance comparision is the concatenation of a

Huffman code with an (n, k, t) = (63, 16, 11) BCH code. Since the tandem scheme

becomes variable length in nature, we use the Levenshtein distance [8] to account for

the symbol errors.

34

8. The setting of Figure 5.8 is same as that of Figure 5.7 except the source follows Case

2.

9. The setting of Figure 5.9 is same as that of Figure 5.7 except the source follows Case

3.

Remarks and observations regarding these figures will be presented in Section 5.3.

35

5 6 7 8 9 10 11
10-5

10-4

10-3

10-2

S
E

R

E
b
/N

0
(dB)

 algorithm
 exhaustive search from 6dB to 10dB
 exhaustive search at 5dB
 exhaustive search at 5.5dB
 union bound of algorithm
 union bound of exhaustive search from 6dB to 10dB
 union bound of exhaustive search at 5dB
 union bound of exhaustive search at 5.5dB

Figure 5.1: Performance comparison between the joint source-channel block code constructed
by exhaustive search and that by our proposed algorithm with codeword length ℓ = 8. The
source follows Case 1 and hard-decision decoding is employed.

36

5 6 7 8 9 10 11
10-5

10-4

10-3

10-2

S
E

R

E
b
/N

0
(dB)

 algorithm
 exhaustive search from 5dB to 10dB
 union bound of algorithm
 union bound of exhaustive search from 5dB to 10dB

Figure 5.2: Performance comparison between the joint source-channel block code constructed
by exhaustive search and that by our proposed algorithm with the codeword length ℓ = 8.
The source follows Case 2 and hard-decision decoding is employed.

37

5 6 7 8 9 10 11
10-5

10-4

10-3

10-2

S
E

R

E
b
/N

0
(dB)

 algorithm
 exhaustive search from 5dB to 10dB
 union bound of algorithm
 union bound of exhaustive search from 5dB to 10dB

Figure 5.3: Performance comparison between the joint source-channel block code constructed
by exhaustive search and that by our proposed algorithm with the codeword length ℓ = 8.
The source follows Case 3 and hard-decision decoding is employed.

38

0 1 2 3 4 5 6
10-5

10-4

10-3

10-2

10-1

S
E

R

E
b
/N

0
(dB)

 length=32
 length=48
 length=64

Figure 5.4: Performance comparison of the proposed joint source-channel block codes for
different codeword length. The source follows Case 1 and soft-decision decoding is employed.

39

0 1 2 3 4 5 6
10-5

10-4

10-3

10-2

10-1

S
E

R

E
b
/N

0
(dB)

 length=32
 length=48
 length=64

Figure 5.5: Performance comparison of the proposed joint source-channel block codes for
different codeword length. The source follows Case 2 and soft-decision decoding is employed.

40

0 1 2 3 4 5 6
10-5

10-4

10-3

10-2

10-1

S
E

R

E
b
/N

0
(dB)

 length=32
 length=48
 length=64

Figure 5.6: Performance comparison of the proposed joint source-channel block codes for
different codeword length. The source follows Case 3 and soft-decision decoding is employed.

41

1 2 3 4 5 6
10-5

10-4

10-3

10-2

10-1

S
E

R

E
b
/N

0
(dB)

 Huffman+BCH(n=63,k=16,t=11)
 JSC block code(length=64)

Figure 5.7: Performance comparison between the joint source-channel block code with code-
word length 64 and the tandem scheme (i..e, the Huffman code + (63, 16, 11) BCH code).
The source follows Case 1 and hard-decision decoding is employed.

42

0 1 2 3 4 5 6
10-5

10-4

10-3

10-2

S
E

R

E
b
/N

0
(dB)

 Huffman+BCH(n=63,k=16,t=11)
 JSC block code(length=64)

Figure 5.8: Performance comparison between the joint source-channel block code with code-
word length 64 and the tandem scheme (i..e, the Huffman code + (63, 16, 11) BCH code).
The source follows Case 2 and hard-decision decoding is employed.

43

2 3 4 5 6 7 8
10-5

10-4

10-3

10-2

10-1

S
E

R

E
b
/N

0
(dB)

 Huffman+BCH(n=63,k=16,t=11)
 JSC block code(length=64)

Figure 5.9: Performance comparison between the joint source-channel block code with code-
word length 64 and the tandem scheme (i..e, the Huffman code + (63, 16, 11) BCH code).
The source follows Case 3 and hard-decision decoding is employed.

44

5.2 Modified Turbo Code

For all cases in Section 5.2, the number of iterations for turbo decoder is set as 18.

Below we illustrate the details of all figures in Section 5.2.

1. Figure 5.10 compares the SER performance between the modified JSC turbo code and

a tandem scheme. The tandem scheme we choose for comparison in this section is the

concatenation of the Huffman code with a traditional turbo code of interleaver size

ℓ = 128 × 128. The number of source symbols is 16. The source symbol is resulted

from a group of four bits, each of which is generated according to binary non-uniform

source with p0 = 0.55 and p1 = 0.45. The resulting source entropy per symbol is 3.9711

bits.

2. The setting in Figure 5.11 is the same as that in Figure 5.10 except p0 = 0.58. The

resulting source entropy per symbol is 3.92582 bits.

3. The setting in Figure 5.12 is the same as that in Figure 5.10 except p0 = 0.634. The

resulting source entropy per symbol is 3.79021 bits.

4. The setting of Figure 5.13 is same as that in Figure 5.10 except p0 = 0.65. The resulting

source entropy per symbol is 3.73627 bits.

5. The setting of Figure 5.14 is same as that in Figure 5.10 except p0 = 0.686. The

resulting source entropy per symbol is 3.59095 bits.

6. The setting of Figure 5.15 is same as that in Figure 5.10 except p0 = 0.7. The resulting

source entropy per symbol is 3.52516 bits.

7. The setting of Figure 5.16 is same as that in Figure 5.10 except p0 = 0.75. The resulting

source entropy per symbol is 3.24512 bits.

45

8. Figure 5.17 compares the SER performance between two different source statistics

of the same source entropy. The two different sources distributions are randomly

generated.

9. Figure 5.18 compares the SER performances between the modified JSC turbo code and

a tandem scheme. The tandem scheme chosen is the concatenation of Huffman code

and a traditional turbo code with interleaver size ℓ = 128× 128. The source is the 26

English alphabet, and its statistics is tabulated in Table 5.1.

10. The setting of Figure 5.19 is same as that in Figure 5.18 except the source alphabet

now consists of only 16 most likely letters in Table 5.1. We normalize the distribution

for 16-English-letter alphabet to make their probabilities sum to one (cf. Table 5.2).

11. The settings of Figures 5.20 and 5.21 are the same as that in Figure 5.19 except the

interleaver sizes are changed to ℓ = 64× 64 and 256× 256, respectively.

12. Figure 5.22 compares the SER performances of the modified JSC turbo code under

three different interleaver sizes. The source alphabet contains the normalized most

probable 16 English letters.

46

5.4 5.6 5.8 6.0 6.2 6.4 6.6
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0
(dB)

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.10: Performance comparison between the joint source-channel turbo code and the
tandem scheme (i.e., the Huffman code + a traditional turbo code) under the source with
per-letter source entropy 3.9711 bits. The interleaver size is ℓ = 128× 128.

47

5.4 5.6 5.8 6.0 6.2 6.4
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0
(dB)

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.11: Performance comparison between the joint source-channel turbo code and the
tandem scheme (i.e., the Huffman code + a traditional turbo code) under the source with
per-letter source entropy 3.92582 bits. The interleaver size is ℓ = 128× 128.

48

5.2 5.4 5.6 5.8 6.0 6.2 6.4
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

S
E

R

E
s
/N

0
 (dB)

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.12: Performance comparison between the joint source-channel turbo code and the
tandem scheme (i.e., the Huffman code + a traditional turbo code) under the source with
per-letter source entropy 3.79021 bits. The interleaver size is ℓ = 128× 128.

49

5.2 5.4 5.6 5.8 6.0 6.2 6.4
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0
(dB)

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.13: Performance comparison between the joint source-channel turbo code and the
tandem scheme (i.e., the Huffman code + a traditional turbo code) under the source with
per-letter source entropy 3.73627 bits. The interleaver size is ℓ = 128× 128.

50

5.0 5.2 5.4 5.6 5.8 6.0 6.2
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0
(dB)

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.14: Performance comparison between the joint source-channel turbo code and the
tandem scheme (i.e., the Huffman code + a traditional turbo code) under the source with
per-letter source entropy 3.59095 bits. The interleaver size is ℓ = 128× 128.

51

5.0 5.2 5.4 5.6 5.8 6.0 6.2
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0
(dB)

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.15: Performance comparison between the joint source-channel turbo code and the
tandem scheme (i.e., the Huffman code + a traditional turbo code) under the source with
per-letter source entropy 3.52516 bits. The interleaver size is ℓ = 128× 128.

52

4.8 5.0 5.2 5.4 5.6 5.8
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0
(dB)

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.16: Performance comparison between the joint source-channel turbo code and the
tandem scheme (i.e., the Huffman code + a traditional turbo code) under the source with
per-letter source entropy 3.24512 bits. The interleaver size is ℓ = 128× 128.

53

4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0
(dB)

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code
 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.17: Performance comparison under two different source distributions with the same
per-letter source entropy 3.20 bits. The interleaver size is ℓ = 128× 128.

54

5.8 6.0 6.2 6.4 6.6 6.8
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.18: Performance comparison between the joint source-channel turbo code and the
tandem scheme (i.e., the Huffman code + a traditional turbo code) under the 26-English-
letter text source. The interleaver size is ℓ = 128× 128.

55

5.4 5.6 5.8 6.0 6.2 6.4 6.6
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0
(dB)

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.19: Performance comparison between the joint source-channel turbo code and the
tandem scheme (i.e., the Huffman code + a traditional turbo code) under the normalized
16-English-letter text source. The interleaver size is ℓ = 128× 128.

56

5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0
(dB)

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.20: Performance comparison between the joint source-channel turbo code and the
tandem scheme (i.e., the Huffman code + a traditional turbo code) under the normalized
16-English-letter text source. The interleaver size is ℓ = 64× 64.

57

5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0
(dB)

 1st order Huffman code+turbo code
 2nd order Huffman code+turbo code
 Modified JSC turbo code

Figure 5.21: Performance comparison between the joint source-channel turbo code and the
tandem scheme (i.e., the Huffman code + a traditional turbo code) under the normalized
16-English-letter text source. The interleaver size is ℓ = 256× 256.

58

5.4 5.6 5.8 6.0 6.2 6.4 6.6
10-5

10-4

10-3

10-2

10-1

S
E

R

E
s
/N

0
(dB)

 Modified JSC turbo code with length 64×64
 Modified JSC turbo code with length 128×128
 Modified JSC turbo code with length 256×256

Figure 5.22: Performance comparison of the modified JSC turbo code by testing different
interleaver sizes under the normalized 16-English-letter text source.

59

Table 5.1: Source distribution of 26 English alphabet symbols. The source entropy is 4.12091
bits.

English probability English probability
alphabet alphabet

E 0.14878610 T 0.09354149
A 0.08833733 O 0.07245769
R 0.06872164 N 0.06498532
H 0.05831331 I 0.05644515
S 0.05537763 D 0.04376834
L 0.04123298 U 0.02762209
P 0.02575393 F 0.02455297
M 0.02361889 C 0.02081665
W 0.01868161 G 0.01521216
Y 0.01521216 B 0.01267680
V 0.01160928 K 0.00867360
X 0.00146784 J 0.00080064
Q 0.00080064 Z 0.00053376

Table 5.2: Normalized source distribution of the 16 most probable English letters. The
source entropy is 3.78611 bits.

English probability English probability
alphabet alphabet

E 0.1627270 T 0.1023060
A 0.0966141 O 0.0792466
R 0.0751605 N 0.0710741
H 0.0637770 I 0.0617338
S 0.0605662 D 0.0478692
L 0.0450963 U 0.0302101
P 0.0281670 F 0.0268535
M 0.0258319 C 0.0227671

60

5.3 Observations and remarks

In Figures 5.1 and 5.3, we can observe that the SER performance of the JSC block code con-

structed by our proposed algorithm in Section 3.2 is very close to that of the code constructed

by exhaustive search under codeword length ℓ = 8 for high Eb/N0, where the exhaustive

search approach finds the code that minimizes the SER union bound derived in Section 3.1

at a fixed Eb/N0 (e.g., 5 dB) or at a per-Eb/N0 basis (e.g., from 6 dB to 10 dB). Figures 5.1

and 5.2 even show that our code construction algorithm can sometimes produce a JSC block

code that performs better than the one that minimizes the union bound when Eb/N0 ≤ 6

dB and 9.5 dB, respectively. This is because that the union bound is a rough bound; so its

minimization does not implies the optimality in terms of the error probability.

Figures 5.4-5.6 indicate that the SERs of the constructed JSCs (or FLECs) decrease as

the codeword length ℓ grows. Specifically, the FLEC of length ℓ = 64 has around 1.4 dB gain

over the FLEC of length ℓ = 32 at SER = 10−4 in both Figures 5.4 and 5.5. In Figure 5.6,

this gain is reduced to 1.2 dB but still the trend of improvement by extending the codeword

length remains evident. However, we fail to generate FLECs of length larger than 64 as the

complexity of the code construction is infeasibly high.

We next turn to the performance comparison between the constructed JSC block code

and a benchmark tandem scheme. The benchmark tandem scheme consists of a Huffman

code concatenated with a BCH code. We group 16 bits as a block input to the Huffman code

for compression. For a fair comparison, the codeword length and code rate of the codes to be

compared are made similar. In Figures 5.7 and 5.8, we observe that the performance of our

constructed JSC block code is far behind the benchmark tandem scheme; but in Figure 5.9,

an opposite result is obtained that the tandem scheme performs worse than our constructed

JSC block code. From these three figures, we conclude that due to its fixed-length nature,

61

our constructed JSC block code is specially suitable for sources with near-uniform statistics

such as Case 3. As a quantitative index, by defining the compression efficiency of a source

as

1− (average codeword length of Huffman compressed outputs)

(codeword length of uncompressed symbols)
,

we obtain the compression efficiencies of the three sources considered are:

Case 1 : 0.5283

Case 2 : 0.6665

Case 3 : 0.0054

Hence, we may say that our constructed JSC block code is good for sources with low com-

pression efficiencies (i.e., for sources with a more “uniform” statistics).

We now inspect the proposed modified turbo code for non-uniform sources. The results

are summarized in Figures 5.10-5.21. We compare our modified turbo code with two tandem

schemes: the concatenation of a first-order Huffman code with a conventional turbo code,

and the concatenation of a second-order Huffman code with a conventional turbo code.

For the two tandem schemes to be compared with, we note from our simulations that the

waterfall region of the tandem scheme with a 2nd order Huffman code is in general improved

in comparison with the one with a 1st order Huffman code, but at a price of a higher error

floor.

In details, we observe from Figures 5.10-5.13 that the SER performances of the proposed

modified JSC turbo code are better than both tandem schemes in the error floor region.

However, in Figures 5.14 and 5.15, the error floor of the modified JSC turbo code becomes

higher than the tandem scheme with a 1st order Huffman code. One possible cause is that

the sources used in Figures 5.14 and 5.15 have lower source entropies and hence are more

“non-uniform” in statistics. As expected, in Figures 5.16 and 5.17, the error floor of the

modified JSC turbo code is above both tandem schemes when the source entropy rates

further decrease.

62

In Figure 5.18, it can be seen that the two tandem schemes have about 0.2 dB advantage

over the modified JSC turbo code in the waterfall region when the source is the 26-English

text. Such an advantage is perhaps due to that in our design, we transform forcefully the

26-English letter into a 5-bit format, which inevitably introduce additional redundancy. In

order to confirm the above interpretation, we modify the English text source by selecting only

the 16 most probably letters and normalize their probabilities such that their probabilities

sum to one. As such, we can use a 4-bit representation for these 16 letters. It can then be

observed from Figure 5.19 that the error floor of the modified JSC turbo code is approaching

that of the tandem scheme with 1 1st order Huffman code, and is below the other tandem

scheme. This, to some extent, supports our interpretation for the result in Figure 5.18.

We also simulate the impact of different interleaver sizes on the performances of our

modified JSC turbo code in Figures 5.20 and 5.21, and summarize the results in Figure 5.22.

It can be observed that at SER = 10−4, taking a larger interleaved size of ℓ = 256× 256 has

0.35 dB gain over that of ℓ = 64× 64. Hence, a larger interleaved size would help improving

the performance.

We end this chapter by remarking that the entropy of the normalized 16 most probable

English letter source is 3.78611 bit per letter, which is larger than the original 26-English

alphabet source whose entropy rate is 3.73627 bits per letter. As the source entropy only

increases 0.0576 = 10 log10(3.78611/3.73627) dB, the improvement of our modified JSC turbo

code in performance, when switching from a source with a lower entropy to one with a higher

entropy, is actually larger than this number in the error floor region. In fact, there does not

seem to have an evident relation between the source entropy and error performance; but

somehow they are vaguely correlated. Further study to identify their relation is required.

63

Chapter 6

Conclusion and Future Work

In this thesis, a code construction method for joint source-channel (JSC) block codes and

the corresponding low-complexity sub-optimal decoding algorithm are proposed. Since the

proposed code construction method cannot generate codes of long block length, we subse-

quently propose a modified turbo code (in particular the decoder) as a joint-source block

code that can be used for non-uniform sources and long block length. For sources with low

Huffman compression efficiency, both proposed codes outperform the tandem scheme formed

by concatenating a Huffman code with a properly selected channel code. Since the proposed

joint source-channel block code has fixed block length, it does not require an end-of-codeword

detection or indication scheme at the receiver; hence, its practice is much easier than the

traditional variable-length joint source-channel code.

At the current stage, the proposed code construction algorithm for joint source-channel

block codes costs too much complexity as codeword length grows. Thus, it may be necessary

and also interesting to reduce the complexity of the proposed code construction algorithm in

the future. On the other hand, in the modified joint source-channel turbo coding system, the

information of the source statistics is only used in the outer decoder, but not in the inner

BCJR decoder (that still assumes that the information bit sequence is binary i.i.d. with

uniform marginal distribution after interleaving). In general, the assumption made by the

64

inner BCJR algorithm is not valid; hence, how to incorporate the knowledge of the given

source statistics into the inner decoder metrics is another future work of both practical and

theoretical interest.

65

Bibliography

[1] C.E. Shannon, “A Mathematical Theory of Communication,” Bell Syst. Tech. J.,vol.

27, pp. 379 - 423 and pp. 623 - 656, July and October 1948.

[2] Vembu S., Verdú,S. and Steinberg, Y., “The Source-Channel Separation Theorem Re-

visited,” IEEE Trans. Inform. Theory, vol. 41, no. 1, pp. 44 - 54, January 1995.

[3] V.Buttigieg and P.G.Farrell, “Variable-length error-correcting codes,” IEE Proc. Com-

mun.,vol. 147, no. 4, pp. 211-215, August 2000.

[4] Guang-Chong Zhu and Fady Alajaji, “Turbo codes for nonuniform memoryless sources

over noisy channels,” IEEE Commun. Letters,vol. 6, no. 2, pp. 64 - 66, February 2002.

[5] Guang-Chong Zhu and Fady Alajaji, “Joint source-channel turbo coding for binary

Markov sources,” IEEE Trans. Wireless Commun.,vol. 5, no. 5, pp. 1065 - 1075, May

2006.

[6] Claude Berrou and Alain Glavieux, “Near optimum error correcting coding and decod-

ing: turbo-codes,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1261 - 1271, October

1996.

[7] Giulio Colavolpe, Gianluigi Ferrari and Riccardo Raheli, “Extrinsic information in turbo

decoding: a unified view,” Proc of Globecom’99, pp. 505 - 509, 1999.

66

[8] V.I. Levenshtein, “Binary codes capable of correcting deletions insertions and reversals,”

Sov. Phys. Doklady, vol. 10, no. 8, pp. 707 - 710, February 1966.

67

	論文封面
	組合 1
	abstract
	main

