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隨機光柵化在裁切空間下採樣點剔除技術 

 

 

研究生: 吳怡正      指導教授: 施仁忠教授 

               

 

國立交通大學多媒體工程研究所 

 

摘要 

在渲染真實的相機影像時，兩種現象是很常見的：動態模糊(motion blur)與

景深模糊(defocus blur)。我們提出了一個針對動態與景深模糊在隨機光柵化技術

下的裁切空間(clip-space)採樣點剔除技術。這個二階段的測試利用裁切空間下的

資訊去降低我們需要做的覆蓋測試採樣點數量，包含鏡頭座標與時間座標下的所

有採樣點。 

首先我們做一個簡略的測試取得保守的鏡頭座標範圍值，並去除在此範圍之

外的採樣點。在第二階段的測試時我們在裁切空間下針對每個三角形頂點找出

xyuvt 空間的相似三角形的關係，藉由此三角方程式去剔除不屬於此範圍內的採

樣點。本篇論文提供了在即時運算的隨機光柵化中的簡單採樣點剔除方法，並且

在少量的運算下可達到良好的採樣點測試效率(sample test efficiency)。
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Clip Space Sample Culling for Stochastic 

Rasterization 

 

 

Student: Yi-Jeng Wu Advisor: Prof. Zen-Chung Shih                                     

 

Institute of Multimedia Engineering 

National Chiao-Tung University 

 

Abstract 

To render realistic camera images, two effects are common : motion blur and 

defocus blur. We present a novel clip space culling test of stochastic rasterization of 

motion and defocus blur. This 2-stage test use the clip space information to reduce the 

samples needed to be coverage tested over camera lens domain (uv) and time domain 

(t). 

First we do a rough test to get a conservative range of the camera lens uv bound, 

and cull the samples outside this bound. Then the second test finds a similar triangular 

equation for each triangle vertex in xyuvt space. Based on this equation, we cull the 

rest of samples outside. We present a simple method for the real-time stochastic 

rasterizer, and achieve a good sample test efficiency with low computation cost.
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Chapter 1 

Introduction 

 

1.1 Motivation 

Traditional rasterization is based on two assumptions, the pinhole camera and 

extremely fast shutter. These two assumptions will lead to some differences between 

the image we rendered and the image in real world, such as motion blur and defocus 

blur. Motion blur is caused by non-zero shutter time, objects moved during shutter 

time causing motion blur on the image. Defocus blur is caused by camera lens. Object 

not on focus depth goes through different camera lens positions will be formed at 

different image locations.  

 

Motion blur can resolve temporal aliasing problems, and defocus blur can control 

user’s attention on the image. To achieve real-time rendering, point sampling is a 

good way. In stochastic rasterization. We average these sample colors as pixel color. 

These samples have 5 dimensions. Besides traditional (x,y) coordinates, there is also 

time dimension (t) and camera lens dimensions (u,v). 

 

In traditional rasterizer, we build a 2D bounding box on the screen for the 

triangle. Then we test all samples inside this bounding box. But most of these samples 

are not visible. For example, a moving triangle only passes a pixel at time dimension 
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close to 0.3. Then all stochastic samples far from this time will not be visible. That is, 

most of the sample tests failed. The stochastic rasterizer’s performance has a predictor: 

sample test efficiency (STE), which is the percentage of valid coverage samples in all 

test samples [4]. A good visibility test gets higher STE. Our objective is to design a 

sample visibility test not being dependent on the amount of motion and defocus blur. 

Use this algorithm to cull non-visible samples and reach high STE. 

 

Our contributions are as follows: 

1. We design a two-stage sample culling algorithm for both motion and defocus 

blurred stochastic rasterization with low-cost computing. 

2. High STE is achieved. 

3. The algorithm can handle not only just motion blur or defocus blur, but also 

both effects simultaneously. 

 

1.2 System Overview 

Our system renders the camera-like images by the following steps: 

1. Generate 2D bounding box/convex hull for each triangle in geometry shader. 

2. Test the stochastic samples inside these bounding boxes roughly in stage 1. 

3. Test the rest samples in stage two, only samples that pass all tests will do the 

actual triangle interception/coverage test indeed. 

 Figure 1.1 shows the flow of our proposed system. 

 

In our culling algorithm one, we do the rough camera lens test. Find out the 

moving triangle’s maximum and minimum camera lens range. Then cull all samples 

outside this range [umax , umin] , [vmax , vmin]. 
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Then we will apply an accurate test. We use a triangular equation-like 

relationship in clip space. By using this information, we can cull samples with both 

time dimension (t) and camera lens dimension (u,v). For each pixel , we only need to 

compute this equation once. Then every different sample dimensions can use the same 

test for culling. 

 

Finally, the system will test the remaining samples and render the final image. 

We can render motion blurred only or defocus blurred only image, or both effects at 

the same time. 

 

1.3 Thesis Organization 

The rest of the thesis is structured as follows: Chapter 2 reviews the related 

works of stochastic rasterizations on motion and defocus blur. Chapter 3 describes our 

two-stage culling algorithm of stochastic rasterization. Chapter 4 describes our 

implementation detail, results and system performance. Finally, we conclude this 

research with limitation and future work in Chapter 5. 
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Figure 1.1: System overview 
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Chapter 2 

Related Works 
 

 In this chapter, we review related previous works. Existing blurry effects 

rendering often use post processing. We will not discuss these methods. First we 

focus on traditional sampling methods with the 5D space of pixel location (x,y), time t 

and lens position (u,v). Then we briefly survey the technique of stochastic 

rasterization that reduce the computation cost for blurry rendering. 

 

Haeberli and Akeley [7] proposed a hard ware supported method called 

accumulation buffer. It renders multiple images in each buffer. Then average pixel 

values as the final color. If we render enough number of images, this brute-force 

method will get a good result. But the computation cost is very high. If the number of 

rendered images is reduced, the “ghosting” artifact could appear.  

 

Stochastic rasterization renders image once with multiple samplings. Each 

sample has a unique sampling dimensions (x,y,t,u,v).  

 

Fatahalian et al. [4] presented the InterleaveUVT algorithm. They use as many 

samples as possible in accumulation buffer. For example: 4 images = 4 samples per 

pixel. But these samples come from different time steps and lens locations. For 

example, if we have 16 images at different time steps, we use only 4 of them. Each 
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pixel use different 4 images. This is an enhancement of accumulation buffer. But 

there is still a discrete set of individual u, v, t values can be used. This will cause the 

banding artifact. 

 

Akenine-Möller et al. [1] create a bounding box for each moving triangle on 

screen space. Then they test all stochastic samples inside this bounding box. McGuire 

et al. [13] escalate this oriented bounding box into 2D convex hull, which makes the 

testing area smaller. However, most of the samples inside these bounding boxes/2D 

convex hulls do not hit the triangle. In fact, if we look at a pixel which is inside the 

triangle at time = 0, it seems impossible that the samples with high t values could be 

covered if the motion is large. To make the sample test more efficient, solving the 

sample visibility problem is a major challenge. That is, if we can reject samples that 

can’t be hit, the sample test efficiency (STE) would increase. 

 

Laine et al. [10] use a dual-space culling algorithm to solve the visibility test. For 

the defocus blur, they use the linear relation ship between the lens location and the 

space location. By interpolating two axis aligned bounding boxes of the triangle on 

lens locations (0,0) and (1,1), they can get the maximum and minimum lens location 

on the pixel. With the motion blur, the world space affine motion is not affine in 

screen space. For example, an object moves from far to near linearly. It will move 

faster and faster in screen space. So we cannot use simple interpolation to find the 

relative time dimension bounds. They create a dual-space to convert the equation in 

clip space by 

    -     
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where γ is the viewing direction. In this equation, δ is linear with   and ω. Besides    

and ω are both linear with time t. So we can say δ is linear with t. They use this linear 

relationship to get the time bounds by linear interpolation. 

 Munkberg et al. [15] propose a hyper plane culling algorithm. They use the 

equation between object location, lens coordinate, and time coordinate to find linear 

bounds in ut- and vt-space. They also create a hyper plane in xyuvt-space for each 

triangle edge to cull samples. This hyper plane culling algorithm is selectively 

enabled while the blurry area is large enough. Our method use the similar idea to 

create linear bounds in clip space using the triangle similarity relationship. By using 

these bounds to reduce the number of sample tests, we can obtain better performance.
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Chapter 3 

Algorithm 
 

 In this paper, we introduce a novel 2-stage sample culling test for stochastic 

rasterization of motion and defocus blur. We assume that the motion of triangles is 

linear in world space in shutter times. The steps of our algorithm work as follows for 

each triangle. Each pixel is sampled at different 5D sample locations (x,y,t,u,v). Note 

that all steps take place on shaders. 

 

1. For each triangle, create a corresponding’s bound geometry 2D convex hull 

(if motion blur only) or bounding box in screen space. 

2. For each pixel inside the box, test the stochastic 5D-dimension samples. 

3. For each sample, apply the 1
st
 stage culling test and cull the sample outside 

the rough camera lens bounds. 

4. If the sample passes the stage 1 test, apply the 2
nd

 stage test. This test uses the 

triangle equation in clip space with point’s information. Find out the time 

bounds of each (u,v) location samples. 

5. Only samples pass both 1
st
 and 2

nd
 stages need a complete triangle 

intersection test. 

 

The rest of this chapter is organized as follows. In Section 3.1, we show how to 

render motion blur and defocus blur images with stochastic rasterizer. In Section 3.2, 

we describe the initial 2D convex hull/bounding box. In Section 3.3, we describe the 
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1
st
 stage culling test and Section 3.4 for the 2

nd
 stage test. Finally in Section 3.5, we 

describe an application to control the defocus blur range by Munkberg et al. [17]. 

 

3.1 Stochastic Rasterization 

To render motion blurred images, we need to input triangles at time t = 0 and t = 

1. That is, the triangle positions when shutter opens and closes. Then, for each pixel 

covered the moving triangle, we test different stochastic samples at different time 

coordinate. Similar to the ray intersection test. We shoot a ray from a pixel and test if 

the ray intersects with triangle at time t. If the intersection happens, we add the color 

value of the intersection point. Otherwise we discard this sample. Finally we average 

valid sample colors as the pixel color. 

 

To render defocus blurred image, we need the lens radius to compute the circle 

of confusion (CoC). We use a simple physically-based CoC setting. It is linearly 

dependent on the depth w in clip space, i.e., CoC(w) = a+wb . Parameters a and b are 

constant derived from the camera’s aperture size and focal distance. The out of focus 

vertex position is changed to different camera lens coordinates. That is, a vertex 

position (x,y,z) in clip space. If we use camera lens (u,v) to see this vertex, it’s 

position will change into (x + uc , y + vc , z), where c = a + zb. For a pixel, only a 

position in lens coordinates can see this vertex. The intersection test is similar to the 

previous one. The ray checks the intersection test with the triangle in lens coordinates. 

 

For the case of both effects exist, the intersection test should find out the triangle 

position in camera lens (u,v) and time coordinate (t). As we know, a lot of samples are 

not visible for a given pixel. Our goal is to increase the hit ration of sample test. 
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3.2 Bounding the Moving/Defocus Range 

 For each triangle, we need to rasterize the bounding geometry large enough to 

cover the entire triangle’s motion. The most conservative bounding is the whole 

viewing frustum’s near plane. The tightest bounding geometry is the front-facing 

surfaces of the triangle’s swept volume, but this bound is curved on the sides. We use 

the 2D bounding box of the moving triangle at near plane to bound the motion 

triangle. If we rasterize in-focus images, we change the bounding box into convex 

hull. 

 

 To create the 2D bounding box, we need the vertex positions of triangles at the 

beginning and the end of the shutter time. The triangle transfers into screen space 

bounding box in geometry shader. First we project these 6 vertices into screen space 

and get the bounding box’s maximum and minimum boundary. Then we 

increase/decrease these boundaries, by passing the camera lens’s radius and the focus 

depth. We compute the maximum circle of confusion with the minimum and the 

maximum depth from the triangle vertices. Figure 3.1 shows how to create 2D 

bounding box. If the triangle passes the z = 0 plane, we find out the intersection point 

at the near plane from the 6 triangle edges and 3 moving point paths. Figure 3.2 shows 

this case. 

 

 If we render the in-focus image, only the motion blur effect is added. We make 

the bound tighter by using the 2D convex hull. We use Graham scan algorithm 

[Graham 1972] [5] to create this 2D convex hull. The reason why we don’t use this 

technique for defocus blur is that computing all these 6 circle of confusions with 
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different depth taking too much cost, as shown in Figure 3.3. 

 

   

(a) Without defocus      (b) With defocus (Red: circle of confusions) 

Figure 3.1: Create 2D bounding box  

 

 

 

Figure 3.2: Crossing Z=0 plane 

 
 

 

 

 

 

 

 

Z=0 Near 

+z -z 
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Figure 3.3: 2D convex hull 

3.3 Culling Stage 1 

Consider the vertex of a triangle in the clip space. We assume a linear motion,   

p(t) = (1-t)q + r, where q is the starting point and r is ending point. For defocus blur, 

in the signed clip space, we assume that the circle of confusion is linear with time, 

that is, c(t) = a + w(t)b. In stage 1 culling, the samples outside the camera lens bounds 

are culled. 

 

The computation of these bounds is relatively simple because the clip-space 

vertex position is linear to lens coordinates. We normalize the lens by (u,v) ∈ [-1,1]
2
 . 

For each pixel covered by the triangle, we give stochastic samples with different 

parameters (t,u,v). Then we need to test if the triangle is visible from camera lens u 

and v in time t.  

 

In Figure 3.4, a ray is shot from camera and passes through a screen pixel. We 

set this “screen pixel” as the focus point with our focus depth. In this xw space, we 

connect all 6 triangle vertices with the focus point. We will obtain 6 points at depth 
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w=0. We take the maximum and minimum one as the camera lens bounds. 

 

We can compute u = ( n
x
 ⋅ p(t) ) / ( p(t).z – focusDepth ),  

where n
x
 = ( -focusDepth , 0 , focusPoint.x) is the normal vector of the pixel ray. 

Then we divide this u by camera lens radius. Finally we get the normalized camera 

lens bounds at u dimension. The v dimension bound can be obtained in the same way 

with n
y
 = ( 0 , -focusDepth , focusPoint.y). 

 

 

Figure 3.4: A ray is shot from camera to screen pixel and intersects 

with the focus point. All 6 triangle vertices connect with this focus  

point and intersect with the camera lens at depth w=0 

 

With these rough camera lens bounds, we cull the stochastic samples where u, v 

dimensions are outside the lens bounds. This makes higher STE further.  

x 

w 

t=0 

t=1 

 

 

u
min

 u
MAX

 

W=focusDepth 

n
x
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3.4 Culling Stage 2 

 After 1
st
 stage culling, samples outside camera lens bounds are culled. The 

remaining of samples would go into2
nd

 stage test. We test the samples with each u, v 

dimensions and find out the corresponding time bounds. 

 

 Consider the triangle vertices in clip space. The vertex will “translate” with 

different camera lens u, v relatively. For example, a vertex p = ( x , y , w ), we use 

camera lens ( u , v ) to see this vertex. It is translated into p’ = ( x + uc , y + vc , w ), 

where c is the circle of confusion of this vertex : c = a + wb. With shutter opened, we 

need to know when this pixel can see the triangle. It is hard to compute the 

intersection time in screen space because, the vertex’s linear motion is not linear to 

the viewing direction, as shown in Figure 3.5. 

 

Figure 3.5 Ray intersection with moving vertex  

 In order to obtain the intersection time, we find a triangle relationship in this clip 

x 

w 

t=0 

t=1 
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space. First, for each sample, we compute two vertex positions with camera lens u, v 

at time t = 0 and t = 1, that is,  

x’(0) = x(0) + uc(0)  ,  x’(1) = x(1) + uc(1).  

The y coordinate can be obtained in the same way. Then we find the other 2 points 

with the ray shot from camera to pixel which intersects with the triangle vertex’s 

depth values when the shutter opened and closed. 

 

Figure 3.6 Ray intersection with two similar triangles 

 

 

Now we have 4 vertices in xw clip pace. Two points with camera lens u, v and 

their own circle of confusions c(t) when shutter opened and closed. The other 2 points 

are the viewing direction’s intersection points at the same depth value of the previous 

2 vertices. Figure 3.6 shows all these four points. Then we can find two similar 

triangles, where their corresponding edges are proportional in length: 

 

x 

w 

t=0 

t=1 

view dir 
x

0
 

x
1
 v

1
 

v
0
 

I 
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Then the intersection time t can be obtained as follows: 

         
       

       
  

 

   
         (1) 

 

We compute all 3 pair of triangle vertices at time t = 0 and t = 1 in xw and vw 

space. Then we get time bound [ tmax , tmin ]. All stochastic samples with t dimension 

outside this bound will be culled. 

 

As we described before, we find the similar triangles in clip space. And use it to 

compute time dimension bounds. We have to compute each vertex position with 

stochastic sample’s u, v camera lens position. That is, for each sample, we have to 

compute the triangle vertex position p(0) = ( x + uc(0) , y + vc(0) , w). This takes too 

much cost. 

 

By rewriting equation 1, each x can be replaced by x = x + u*c(t), we have : 

   
          

(           )    (     )
 

 

This is a rational function in u, and this function is also monotone, which can be 

bounded by two linear functions as shown in Figure 3.7. 
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Figure 3.7 The rational function is bounded by two linear bounds 

 

Figure 3.8 Combine of all 3 pairs of linear bounds with 2 linear bounds 

(Red Lines) 

u 

t 

-1 1 

 

u 

t 

- 1 
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The two linear bound are as follows: 

Green :  ( )   (  )   
(   )

 
 (  ( )   (  )) 

Red :  ( )   ( )   
  

  
( )  (   )  

  

  
( ) 

 

 All 3 pairs of triangle vertices will create 2 linear bounds. We combine 

these linear bounds with 2 bounds, one is maximum bound [t(-1)MAX , t(1)MAX], and 

one minimum bound [t(-1)min, t(1)min]. By two linear bounds, we can test all stochastic 

samples at the same pixel (same viewing direction). If the time dimension is larger 

than upper bound or smaller than lower bound, the sample will be culled. That is, we 

only need to compute two linear bounds once for each pixel. 

 

3.5Controllable Defocus Blur 

People often want to control over depth of field parameters empirically, such as 

limit foreground blur or extend the in-focus range while preserving the foreground 

and background. MunKberg et al. [17] proposed a user controllable defocus blur 

method. We use their technique in our system.  

 

We modify the circle of confusion by limited it’s size near the focus depth. 

 

   0     ,  w-focusDepth < ε 

C =  

  a + wb  ,   otherwise 
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It is assumed that the clip space circle of confusion radius is linear in the interior 

of a triangle. Then we can increase the focus range or decrease the foreground blur 

easily. If the triangle vertex is inside the extended focus range, all samples pass stage 

1 test. And set u = v = 0 to compute the stage 2 time bounds. Finally we modify the 

circle of confusion when doing the triangle intersection test and render the extended 

focus range blurry image.
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Chapter 4 

Implementation and Results 
 

 We develop our system based on openGL and GLSL. Our stochastic sample 

culling algorithm is implemented in pixel shader. In the CPU host, we bind the vertex 

stream and the transform matrix at shutter time t = 0. We also bind the texture 

coordinates and other shading attributes like vertex normal etc. as usual. We also bind 

the vertex at shutter time t = 1 as an additional vertex attribute. 

 

Vertex Shader: 

 We transform the vertices into clip space at shutter time t = 0 and t = 1. Then we 

pass all vertex attributes to the geometry shader. 

 

Geometry Shader: 

 In this shader, we convert each triangle into a 2D bounding box or a 2D convex 

hull as we described in Section 3.2. Since this method destroy the triangle’s structure, 

we should store the original all 6 vertices positions as output variables. Besides we 

pack each vertex’s circle of confusion and other vertex attributes from previous 

shader to every emitted vertex. 
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Pixel Shader: 

 In pixel shader, we deal with each pixel inside the 2D bounding box. The 

stochastic sample buffer is created in CPU host program, and passes into pixel shader 

as a texture. We create this buffer in 3 channels at time t and camera lens u, v. The 

time values are uniform in [0,1] as floating point. The camera lens value are uniform 

in [-1,1]. We set this buffer size as 128*128. Each pixel takes the stochastic samples 

from this texture. 

 

 We also use multi-sample antialiasing (MSAA) as well. For each pixel, we use a 

bit mask to store hit/miss of the samples. We use gl_SampleMask[] as the bit mask in 

openGL. Coverage for the current fragment will become the logical AND of the 

coverage mask and the output gl_SampleMask. That is, setting a bit 

in gl_SampleMask to zero will cause the corresponding sample to be considered 

uncovered for the purpose of multisample fragment operations. Finally we average the 

pixel values whose corresponding mask bit is equal to one. If the bit mask is all zero, 

we discard this pixel. 

 

 If the stochastic sample passes our culling test and the triangle intersection test, 

we draw the pixel color with the corresponding texture coordinate or the 

corresponding color. The GPU program flow is shown in Figure 4.1. 
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Figure 4.1: GPU program workflow 
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 In the remaining of this chapter, we present our result images rendered in 

real-time on a desktop PC with Intel Core i7 950 CPU 3.07GHz and NVIDIA 

GeForce GTX 580 video card. Our system is implemented in C++ Language using 

OpenGL and GLSL. All results are rendered with 1024 x 768 pixels. 

 

 For our stochastic rasterization culling algorithm, we compare two culling tests. 

Namely Liane et al.’s dual space [10] culling algorithm. And the traditional culling 

algorithm with bounding box. We test four different scenes. The scene Hand is tested  

with object’s motion blur (Figure 5.2). The FlyingDragonfly is tested with camera’s 

motion blur (Figure 5.3). The FairyForest is tested with both motion blur and defocus 

blur (Figure5.4). We also show the image with enlarge focus range (Figure 5.5). With 

increasing the focus range, the whole fairy face can be seen clearly. Note that all 

scenes are rendered by 32 samples per pixel. 
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Figure 4.2: Defocus blur with different focus depths 
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Figure 4.3: RacingCar with/without motion blur 
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Figure 4.4: FlyingDragonfly with/without camera motion blur 
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Figure 4.5: FairyForest with/without both motion and defocus blur 
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 Figure 4.6: Difference between enlarge focus range or not 
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Table 4.1 shows the result of STE. We compare our algorithm with the other two 

culling tests. The first scene Hand has 15k triangles, Car has 54k triangles ,Dragonfly 

and FairyForest has about 85k and 170k triangles. We can see that with motion blur or 

defocus blur only, our algorithm’s STE is almost the same as Dual space. Because our 

stages 1 and 2 culling algorithms are separately like the uv test and t test with Laine et 

al. [10]. But our algorithm comes better with both effects exist. 

 

 

Scene Bbox Dual Space Our 

Hand 

Defocus blur 

Defocus blur*2 

 

  12% 

  10% 

 

  29% 

  28% 

 

  29% 

  27% 

Car 

  Motion blur 

  Motion blur*2 

 

  9% 

  4% 

 

  28% 

  25% 

 

  27% 

  26% 

Dragonfly 

  Motion blur 

  Motion blur*2 

 

  3% 

  1% 

 

  23% 

  24% 

 

  22% 

  24% 

FairyForest 

  Both blur 

  Both blur*2 

 

  0.4% 

0.2% 

 

  5% 

  2% 

 

  19% 

  13% 

Table 4.1: STE results with 16spp. Higher is better. 
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Table 4.2 shows the computation time for each scene in millisecond. Our 

algorithm takes a little more computation time than Laine et al. [10] while rendering 

large motion scenes. But, we perform better when both effects exist. 

 

Scene Bbox Dual Space Our 

Hand 

Defocus blur 

Defocus blur*2 

 

  135 ms 

  140 ms 

 

  131 ms 

  133 ms 

 

  123 ms 

  126 ms 

Car 

  Motion blur 

  Motion blur*2 

 

  178 ms 

  185 ms 

 

  156 ms 

  172 ms 

 

  158 ms 

  166 ms 

Dragonfly 

  Motion blur 

  Motion blur*2 

 

  156 ms 

  161 ms 

 

  140 ms 

  148 ms 

 

  136 ms 

  138 ms 

FairyForest 

  Both blur 

  Both blur*2 

 

  212 ms 

222 ms 

 

  183 ms 

  202 ms 

 

  175 ms 

  188 ms 

Table 4.2: Computation time results with 16spp. Lower is better. 
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Chapter 5  

Conclusions and Future Work 
 

In this thesis, we propose a 2-stage culling algorithm for stochastic rasterization. 

We propose a new idea to compute the time bounds with relative camera lens in clip 

space. Using these bounds to cull and get higher STE. 

 

We cull samples outside camera lens bounds in stage1 using the linear 

relationship between camera lens and vertex position. Stage 2 culls samples outside 

time bounds. We use the triangle similarity in clip space to find the intersection time 

easily. We use this idea to compute two linear bounds. Each pixel only needs to 

compute these bounds once. Our algorithm can handle motion blur and defocus blur 

simultaneously. 

 

In the future we would find some other improvement to find bounding geometry 

easily and more accurately. We shall try to reduce the execution time, such as increase 

the test range from per pixel test to per tile test. Furthermore we can make the STE 

higher with more “accurate” stochastic samples. We can use stage 1 result to generate 

relative stochastic samples with different camera lens. Then use stage2 result to set 

each previous sample’s time dimension. These samples would hit the triangle with 

higher probability than fully stochastic samples. 
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