
國 立 交 通 大 學 

機械工程學系 

博士論文 

 

 

同心旋轉圓柱間 

調制Couette流及Taylor渦旋流之不穩定 

 

Instabilities of Modulated Couette Flow and Taylor 

Vortex Flow Between Concentric Rotating Cylinders 

 

 

研 究 生:林豪傑 

指導教授:楊文美 博士 

 

 

 

 

中華民國九十八年十一月 



同心旋轉圓柱間調制Couette流及Taylor渦旋流之不穩定 

Instabilities of Modulated Couette Flow and Taylor Vortex 

Flow Between Concentric Rotating Cylinders 

研 究 生：林豪傑          Student：Hau-Chieh Lin 

指導教授：楊文美          Advisor：Wen-Mei Yang 

 

國 立 交 通 大 學 

機 械 工 程 學 系 

博 士 論 文 

 

A Thesis 
Submitted to Department of Mechanical Engineering 

College of Engineering 
National Chiao Tung University 

In partial Fulfillment of the Requirements 
for the Degree of  

Doctor of Philosophy 
in 

Mechanical Engineering 

Nov. 2009 

Hsinchu, Taiwan, Republic of China 

中華民國九十八年十一月 



i 

同心旋轉圓柱間 

調制Couette流及Taylor渦旋流之不穩定 

學生:林豪傑        指導教授:楊文美 博士 

國立交通大學機械工程學系博士班 

 

摘要 

同心圓柱間的旋轉流場在流體動力學之研究上處於極為重要之一

環，其有趣且複雜之現象，至今仍是眾多學者及研究人員相當關注的

研究課題。本論文主要目的為利用數值方法建構及分析不同半徑比之

同心圓柱間旋轉流場的型態，對於同心圓柱間多變之流況，以雷諾數

做為描繪流況之參數，探討此旋轉流場在調制與非調制轉速下之流動

特性。 

本研究主題包括(1)不同調制效應的Couette流轉換為Taylor渦旋流

(2)調制與非調制Taylor渦旋流流場分析(3)非調制Taylor渦旋流轉換為

波動Taylor渦旋流。首先，針對在不同的調制振幅及頻率下的Couette

流進行穩定性分析研究，發生此不穩定將形成調制Taylor渦旋流。根據

Floquet理論可將擾動量分成時間與空間兩部份，其中時間函數與調制

具相同的頻率。數值方法採用Galerkin和Collocation法將擾動方程式轉

換為代數的特徵方程式，最後以QZ法求解特徵值，此複數型態特徵值
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的實數部將為流場穩定與否的判斷指標。其次，探討調制與非調制

Taylor渦旋流場，在運算上直接求解二維、時變並以圓柱座標系統表示

的 Navier-Stokes 方程式以及連續方程式，其中數值方法是以

Adam-Bashforth法和Crank-Nicolson法分別處理方程式中的非線性及線

性項，再將擾動方程式轉換為矩陣方程式並進行求解原始的壓力及速

度分量。最後，針對超臨界、軸對稱的非調制Taylor渦旋流進行穩定性

分析，求取在不同波數與半徑比下Taylor渦旋流轉換為波動渦旋流的最

低穩定曲線，在此階段主要以線性理論來簡化三維擾動的Navier-Stokes

方程式以及連續方程式，再利用Galerkin和Collocation等數值方法，將

擾動方程式轉換為代數的特徵方程式，如同第一階段Couette流場分析

準則，根據複數型態特徵值的實數部作為判斷Taylor渦旋流發生不穩定

之依據。 
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Instabilities of Modulated Couette Flow and Taylor Vortex 

Flow Between Concentric Rotating Cylinders 

 

Student：Hau-Chieh Lin      Advisor：Dr. Wen-Mei Yang 

 

Department of Mechanical Engineering 

National Chiao Tung University 

 

ABSTRACT 

Fluid flow between two concentric rotating cylinders has remained an important 

topic in fluid dynamics, attracting scholars and researchers to date. In this study, 

numerical methods are used to analyze and simulate flows and stabilities, which are 

characterized by a Reynolds number, under different radius ratios and modulated 

effects. 

This study focuses on (1) the transition of Couette flow to Taylor vortex flow under 

different modulated amplitudes and frequencies, (2) the non-modulated and modulated 

Taylor vortex flows, and (3) the transition of the non-modulated Taylor vortex flow to 

wavy vortex flow. 

First, the instability of modulated Couette flow before it transitions to modulated 

Taylor vortex flow, as well as the effects of modulated amplitude and frequency are 

studied. By using the Floquet theorem, perturbations are expanded into two series with 

time periodical coefficients which has the same period as that of the modulation. By 

following the work of Galerkin and using collocation methods, the equation is 

transformed into an algebraic eigenvalue problem. The QZ algorithm is employed to 

solve for the eigenvalues that determine the flow stability. 
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Second, the primitive variables of modulated and non-modulated Taylor vortex 

flows are solved numerically using the Crank-Nicolson and Adam-Bashforth methods to 

discretize the linear and nonlinear terms, respectively, of the Navier-Stokes equations.  

Finally, the stabilities of supercritical Taylor vortex flows are studied by perturbing 

the nonlinear Taylor vortex flows. Using the same techniques as in part I, the marginal 

curves of transition to wavy vortex flows are obtained for different radius ratios and 

axial wave numbers. The resulting stability boundary curve for transition of 

supercritical Taylor vortex flow is different from that obtained in previous studies, in 

which the Reynolds number of the inner cylinder is assumed to increase quasi-statically. 
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Chapter 1 Introduction 

 

1.1 Motive of the Present Study 

Fluid flow between concentric rotating cylinders, generally known as circular 

Couette or Taylor-Couette flow (Couette[1]; Taylor[2]), is a classic problem in 

hydrodynamic stability and has provided an important paradigm for the dynamics of 

shear flows. This problem has been the focus of numerous theoretical and experimental 

studies. 

Taylor[2] went one step further and studied the instability when both cylinders rotate. 

However, it is my opinion that the current problems concerning this instability (in 

particular the nonlinear problems) are outlined more clearly in the simpler case in which 

the outer cylinder is at rest. This strategy also is in line with the scientific paradigm of 

proceeding from the simple to the complex. Each additional variable makes the 

theoretical explanation of a nonlinear problem significantly more difficult. 

The present study focuses on the centerpiece of the Taylor vortex problem, which is 

the instability of an infinitely long fluid column between concentric rotating cylinders. 

This instability is manifested in four ways: linear and nonlinear axisymmetric Taylor 

vortex flow (TVF), wavy vortex flow (WVF), irregular or chaotic Taylor vortex flow, 

and turbulent Taylor vortex flow. In this study, we only focus on the instability of the 

Couette flow, Taylor vortex flow, and wavy vortex flow and pursue the lowest 

instability boundary curves between these different types of flow. 

 

1.2 Literatures Review 

In this study, the behavior of flow motion for the following cases is investigated: (1) 

rotation of an inner cylinder, which remains static in an outer cylinder, (2) the inner and 

outer cylinders rotate at different speeds, and (3) the rotation of the inner cylinder is 
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periodic and modulated. 

Donnelly[3] and Simon and Donnelly[4] utilized the torque produced in a cylinder 

during viscous flow motion to measure the circular Couette flow at the critical point 

between stable and unstable flow. As the rotational speed of the inner cylinder increases, 

the torque suddenly changes when the fluid status changes from stable to unstable. 

From this, the Reynolds number of the critical point can be acquired. The critical point 

marks the transition from one-dimensional stable Couette flow to two-dimensional 

Taylor vortex flow. Koschmieder[5], Burkhalter and Koschmieder[6], and Swinney and 

Gollub[7] obtained the same result by observing flows. For inner and outer cylinders 

with the same rotational speed and direction, Taylor[2] experimentally demonstrated 

that when the rotational speed increases gradually to a speed exceeding the critical 

speed, the flow still retains its one-dimensional flow status. In other words, the rotating 

outer cylinder has inhibition to stable status. Coles[8], Schwarz et al.[9], and Nissan et 

al.[10] obtained the same experimental result as Taylor. Moreover, Walsh and 

Donnelly[11] demonstrated that when the rotational speed of the inner cylinder is fixed 

and the outer cylinder undergoes periodic motion, the flow is stabilized. Gollub and 

Swinney[12] and Walden and Donnelly[13] used the Laser Doppler Anemometer (LDA) 

to investigate circular Taylor-Couette flow by measuring the radial temperature of flow 

measurement points.  

Through power-spectrum analysis, the time domain is transformed into a frequency 

domain. The advantage of power spectrum analysis is that different characteristics of a 

spectrum represent different flow states. When flow is periodic, peaks of a certain size 

appear in the spectrum at relative and harmonic frequencies. When flow transitions into 

quasi-periodic flow, a new frequency appears that is not associated with the original 

frequency. The power spectrum analysis is an efficient approach for studying the 
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transformation between quasi-periodic and chaotic flows. Cole[14] experimentally 

investigated the effect of cylinder height on flow stability and demonstrated that 

cylinder height does not influence the critical point for transformation from a Couette 

flow to a Taylor vortex flow, unless the aspect ratio between cylinder height and 

interval is <8. Additionally, according to the study by Hall and Blennerhasset[15], when 

the aspect ratio L/ 12d ≥ 12, the numerical and experimental results are not 

significantly different, indicating that the effect of cylinder height on flow stability is 

negligible. Barenghi and Jones[16] and Murray et al.[17] obtained the same result 

numerically. Walowit et al.[18] applied linear theory to derive the critical value for 

different radius ratios and the ratio between inner and outer rotational speeds. To 

examine the stability of a Couette flow between cylinders with different radial 

temperatures, Snyder and Karlsson[19] experimentally determined the critical Taylor 

number ( 2
1

3 )/(2 νΩ= RdTa ) under different temperatures with 958.0=η . They found 

that the result is stable over a small temperature range. Outside of this range, the 

positive and negative values of the critical Taylor number become unbalanced, and the 

flow typically becomes unstable. 

The present study focuses primarily on the influence of modulated amplitude and 

frequency on flow stability between the cylinders. The rotational speed of the cylinder is 

modulated by the factor )cos1( 'tωε+Ω
−

 to investigate the effects of flow stabilization 

and destabilization. Donnelly[20] experimentally analyzed modulated flow stability and 

found that when the outer cylinder remains static and the inner cylinder rotates 

periodically, parameters such as interval, rotational frequency, and modulation 

amplitude of the two cylinders can be modified to determine how the circular Couette 

flow is affected by modulated rotation. Hall[21] utilized linear theory to determine low 

and high frequencies and used non-linear theory to analyze the flow for high frequency 
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modulations. Hall demonstrated that flow is slightly destabilized regardless of 

amplitude for low frequency modulations. Within a certain frequency range, the flow 

becomes increasingly stable. When the rotation is modulated at high frequency, the 

stability approaches the critical value of the non-modulated situation. Riley and 

Laurence[22] utilized Galerkin expansion and Floquet theory for stability analysis and 

investigated flow stability under modulated conditions with a narrow inter-cylinder gap. 

The numerical result obtained by Riley and Laurence is the same as that acquired by 

Hall[21]. Davis[23] developed the notion of the quasi-steady limit by showing that a 

modulated inner cylinder destabilizes flow. Under extremely low frequency, the critical 

stability value of a flow declines to )1/(1 ε+  of the non-modulated situation. Carmi 

and Tustaniwskyj[24] examined modulated flow stability under small-gap conditions 

and the influence of axis symmetry on modulated flow. In their study, the unstable 

offset of the critical Reynolds number increases at low frequencies. At medium-to-high 

frequencies, no stable critical value appears. Walsh and Donnelly[11] analyzed the flow 

between inner and outer cylinders with different radii using the photo voltage of 

observation particles. They determined that the critical Reynolds number has a 

relatively large offset at low frequency. In conclusion, a critical Reynolds number lower 

than the theoretical value indicates that the flow is temporarily unstable, but not 

permanently unstable. Therefore, the stable critical value is lower than the theoretical 

value at low frequency.  

Walsh et al.[25] measured the critical Reynolds number for concentric cylinders 

with different radius ratios and, multiplying the result by a factor, obtained roughly the 

same value as that calculated by Carmi and Tustaniwskyj[24]. Kuhlmann et al.[26] 

utilized a low-dimensional model to examine the stability of circular Couette flow and 

Taylor vortex flow under instability. They found that a large modulated amplitude 
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causes subharmonic perturbation. Ganske et al.[27] used a static outer cylinder and a 

modulated vortex flow in the inner cylinder to investigate the influence on stability of 

different amplitudes. They demonstrated that the modulated effect causes the flow to 

become increasingly unstable, and that the effect of amplitude on flow stability is 

significantly more important than the effect of frequency. When the amplitude is large, 

the unstable effect increases and the critical stability value declines further. Meksyn[28] 

used numerical methods to predict the occurrence of instability when the inner and outer 

cylinders rotated in either the same or opposite directions. Sparrow et al.[29] also 

applied numerical methods to investigate the same and opposite flows around inner and 

outer cylinders for a radius ratio of 0.95–0.1. Youd et al.[30], who analyzed 

zero-equivalent modulated flow around concentric cylinders with a radius ratio of 

75.0=η , identified the axis symmetry of the Taylor vortex. 

After the Taylor vortex problem had approached nonlinearity for many years, 

Coles[31] brought it decisively into nonlinearity in reporting the non-uniqueness of the 

wavy flow in the Taylor-Couette flow. The entire pattern of wavy vortices moves with 

uniform velocity in the azimuthal direction. Because the term “wavy” is typically 

associated with a motion that has periodic vertical oscillation, this study emphasizes that 

wavy Taylor vortices move in the azimuthal direction as rings that have an integer 

number 1k  of fixed sinusoidal upward and downward deformations ( 1k  is the integer 

number of azimuthal waves). An example of a wavy Taylor vortex flow, as observed by 

Taylor[2], Lewis[32], Coles[31], and Schultz-Grunow and Hein[33], was not recognized 

as a characteristic new feature of the flow. After Coles’ preliminary results were 

published, wavy vortices were also observed by Nissan et al.[10]. Schwarz et al.[9] 

reported experiments in which they observed an asymmetrical mode with 11 =k . 

Burkhalter and Koschmieder[6] concluded that the wavelength of axisymmetrical 
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vortices with large radius ratios is independent of the Reynolds number in fluid columns 

of infinite length when the Reynolds number increases quasi-steadily. However, the 

wavelength of Taylor vortices is constant only as long as the flow is quasi-static. 

Jones[34] reported the stability boundary for wave number 13.3=α , the critical value 

of a quasi-static transition, for a wide range of η . 

Although Taylor analyzed the flow under supercritical conditions, Stuart[35] 

concluded that the vortex size remains unchanged above the critical Reynolds number. 

However, numerous studies (see Ahlers et al.[36], Andereck et al.[37], Park et al.[38], 

Burkhalter and Koschmieder [6, 39], and Antonijoan[40]) have demonstrated the 

importance of acceleration/deceleration in determining the final state of the flow. These 

vortices have axial wavelengths that are shorter or longer than those obtained after a 

quasi-static transition. This study demonstrates that the lowest stability boundary occurs 

at the critical wavelength of a quasi-static transition and also in another. These solutions 

are connected with standard Taylor vortices and can be obtained quasi-statically for 

certain radius ratios when using a mechanism to modify the axial wavelength (see Ref. 

[41]). 

 

1.3 Objective of This Study 

The literatures reviewed above describes the transition between Couette flow and 

supercritical Taylor vortex flow through experimental and theoretical work. However, 

the lowest-stability boundary between supercritical axisymmetric Taylor vortex flow to 

wavy vortex flow for different wave numbers and for various radius ratios is not clear. 

In this study, therefore, we will pursue the objective of the lowest stability curve for 

Taylor-Couette flow. This results will be compared with previous experimental and 

theoretical research. 
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Chapter 2 Instability of Non-modulated and Modulated 

Circular Couette Flow 

 

2.1 General Features 

This study analyzes both fluid flow of rotating cylinders and the stability of 

modulated Couette flow by using numerical methods, under different modulated 

amplitudes and frequencies, the unstable behaviour caused by fluid flow and the 

influence to become a Taylor vortex flow is also studied. To investigate the change in 

stability of a modulated Couette flow, Floquet theorem is used with numerical methods. 

The amount of perturbation motion is divided into two progressions of time and space. 

Galerkin and Collocation techniques are then utilized to transform the perturbation 

motion formula into an algebraic Eigenvalue problem. Then QZ method is applied to 

solve the Eigenvalue problem. The factors of instability are determined by these 

Eigenvalues. 

 

2.2 Numerical Procedures 

Figure 1 presents the physics model examined in this study. The two unlimited long 

vertical and concentric cylinders are full of viscid fluids. The outer cylinder remains 

static and the inner cylinder rotates at )cos1( '
1 tωε+Ω . When the inner cylinder rotates 

at a fixed speed ( 0=ε ) that is very low, the flow between cylinders is one-dimensional 

and stable. The fluid particles wind around the centre in a circular motion and is called a 

circular Couette flow. When rotational speed is increased to a critical value, the flow 

becomes unstable and forms a two-dimensional stable flow. At that time, the particles 

wind around the centre in toroidal motion; this is called a Taylor vortex flow (TVF). 

When the inner cylinder rotates in a modulated manner ( 0≠ε ) and average rotational 
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speed is very low, the flow remains one-dimensional; this is called a modulated circular 

Couette flow. When average rotational speed is increased to the critical value, the flow 

becomes unstable and is transformed into a two-dimensional flow. This critical 

rotational speed is affected by modulated amplitude ε  and modulated frequency 'ω . 

For the convenience of problem analysis, we assume the working fluid is Newtonian 

fluid. Except for density, all other physical properties are fixed. The change in fluid 

density satisfies the Boussinesq approximation for gravity and centrifugal force; other 

items are ignored. The loss of fluid viscidly is also ignored. The governing equations 

are as follows: 

Continuity equation : 

 ( ) 011
=

∂
∂

+
∂
∂

+
∂
∂

z
vv

r
rv

rr
z

r θ
θ  (2.1) 

Momentum equations : 
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∂
∂

+
∂
∂

+
∂
∂
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∂
∂

z
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r
v

r
vv

t
v z

z
zz

r
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θ
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∂
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ρ
1  (2.4) 

Boundary condition : 

 1Rr =  : 0== zr vv , ( )tRv '
11 cos1 ωεθ +Ω=  (2.5) 

 2Rr =  : 0=== zr vvv θ  

 2

2

2

2

22

2 11
zrrrr ∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=∇
θ

 (2.6) 

where, ρ  is density and ν  is the dynamic viscosity coefficient. Figure 2 presents 
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the definitions of coordinates. the following parameters to make governing equation 

dimensionless: 

 
d
Rr = , 

d
Zz = , 2d

tντ = , 
ν
ωω

'2d
= , 

ν
dR 11

1Re
Ω

=  (2.7) 

 
ν

dv
V r

r =
=

, 
ν
θ

θ
dv

V =
=

, 
ν

dv
V z

z =
=

, 2

2

ρν
pdP =

=

 

where 12 RRd −= . 

When inner cylinder rotates in fixed speed and the rotational speed is very low, the 

flow of cylinders is one-dimensional stable status and is called circular Couette flow. At 

that moment 

 0=
=

rV , ),( τθθ rVV
==

= , 0=
=

zV  (2.8) 

It is then substituted into dimensionless equation. After the simplification, the 

following is obtained: 

 θ
θ

τ

=
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+= V

rdr
d

rdr
d

d
Vd

22

2 11  (2.9) 

Boundary condition: 

 
η

η
−

=
1

r  : 0==
==

zr VV ， )cos1(Re1 ωτεθ +=
=

V  (2.10) 

 
η−

=
1

1r  : 0===
===

zr VVV θ  

from the equation above, we can solve and get: 

 ( ) ( )
( )( )

1
22 111

1, −
=

−−
+

−
−

−= rrrV
ηη

η
η
ηητθ + 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ⎭

⎬
⎫

⎩
⎨
⎧

−
− ωτε ie

srKsrIsrKsrI
srKsrIsrIsrK

al
11212111

121121Re  (2.11) 

where ωis = ，
η

η
−

=
11r  and 

η−
=

1
1

2r  are the position of inner and outer 
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cylinders respectively. 1I  and 1K   are respectively the first and second kind first 

order modulated Bessel functions. 

According to the study by Carmi and Tustaniwskyj[24], axial symmetrical status is 

easily become unstable than axial asymmetrical status. Therefore, this study only 

considers disturbance as a symmetrical status. When the average rotational speed of a 

one-dimensional modulated circular Couette flow exceeds the critical value, the flow is 

transformed into a symmetrical two-dimensional flow. This flow can be considered a 

one-dimensional flow ⎟
⎠
⎞

⎜
⎝
⎛ ==

PV ,0,,0 θ  plus a disturbance ( )'''' ,,, PVVV zr θ . At that moment, 

0=∂∂ θ . After substituting into the equation, simplification and ignoring the nonlinear 

items, the following disturbance equation is obtained: 

Continuity equation: 

 ( ) 01 '' =+
∂
∂

zr VrV
rr

 (2.12) 

Momentum equations: 
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Boundary condition: 

 
η

η
−

=
1

r  : 0''' === zr VVV θ , 
η−

=
1

1r  : 0''' === zr VVV θ  (2.16) 

The variables 'P  and '
zV  in Eqs. (2.12) - (2.15) can be cancelled out from algebraic 
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operation, and we can obtain 
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'
rV  is the fourth order differential equation of r , and the boundary conditions are:  

 
η

η
−

=
1

r  : 0'
'

' === θV
dr

dV
V r

r  (2.19) 

 
η−

=
1

1r  : 0'
'

' === θV
dr

dV
V r

r  

The disturbance equation is the differential equation of time and space. Furthermore, 

time and periodic coefficients are included in the equation. According to Floquet theory 

(Coddington and Levinson[42]]), the time item for disturbance can be divided into time 

and an index function, which increases over time. If the disturbance equation is 

described in normal mode, disturbance ( )'' , θVVr  in the equation can be assumed in the 

axis direction and periodically distributed. Additionally, the index function increases 

over time, and the disturbance amplitude uses time and space as its function. The 

disturbance terms can be represented as 

 
( )
( )

zir e
rg
rf

V
V αστ

θ τ
τ +
⎥
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⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
,
,

'

'

 (2.20) 

where α  is the axial wave number, and σ  is the growth rate of a complex 

disturbance. The stability of basic flow can be determined by the real number of the 

growth rate of a complex disturbance. When 0<rσ , the entire flow is stable. The 

disturbance declines as time increases. When 0>rσ , the disturbance increases over 
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time and the flow becomes unstable. When 0=rσ , the flow has neutral stability. The 

characteristic value of flow stability can be determined using the disturbance growth 

rate σ  in the characteristic equation. 

This study utilizes the spectral method (Canuto et al.[43]) to transform the 

characteristic equation into an algebraic characteristic equation. The QZ numeric 

method is then applied to solve the characteristic value of this equation group. 

According to the Floquet theory, ( ) ( )[ ]ττ ,,, rgrf  represents the disturbance value. The 

second orders of time and space are expanded. Time is expanded via a complex Fourier 

series of period ωπ2 . Space is expanded by the first type n orders of Chebyshev 

polynomial (Fox and Parker[44]). The definition of Chebyshev polynomial is 

 ( ) ( )ξξ 1coscos −⋅= nTn  (2.21) 

The defined domain of r  in the original equation is transformed from 

( ) ( )ηηη −≤≤− 1/11/ r  to 11 ≤≤− ξ  through the relational equation 

( ) ( )ηηξ −+−= 1/12r . The amplitude in normal mode can be expressed as 

 ( ) ( ) ωτξτξ im
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m n
mn eaf −
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∞

=
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,  (2.22) 
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2

,  (2.23) 

where mna  and mnb  are unknown coefficients, and nΨ  and nφ  are basis functions. 

The definition of the basis functions are as follows: 
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The Galerkin and collocation methods are applied to make the characteristic equation 

discrete, and can be represented by a matrix such as 

 
~~~~
YBYA σ=  (2.26) 

where σ  is the characteristic value used to determine flow stability in this study. 
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2.3 The Result of Non-modulated Effect on Couette Flow 

Table 1 shows experimental results. The flow generates an unstable critical value 

and average experimental value of 75.68Re0 = . Compared with experimental results 

obtained by other studies, the error rate is < 1.18%. If error deviation is added, then the 

critical value is 1.175.68Re0 ±= . The experimental results acquired by other studies 

are within the error range in this experiment. The experimental result is the 

experimental foundation of the modulated Couette flow. For measurement of wave 

number α , only the total length of 10 cells in the middle of the flow (equivalent to the 

total length of five wavelengths) were examined to avoid influence from upper and 

lower boundaries in the experiment. The vortex size is averaged and then its 

wavelengthλ  is calculated. The precision of this measurement is within 0.1mm. Then, 

the wavelength is calculated by απλ /2= . 

Table 1 shows the average wave number, which is 19.3=α . The theoretical value 

calculated for unlimited length is 17.3=α . The error between the experimental result 

and theoretical value is < 0.6%. Additionally, this experiment also examined different 

aspect ratios, including =h 24, 20 and 16. The experimental result does not change 

obviously and the critical Re is within 1.175.68 ± . Therefore, the aspect ratio does not 

have a significant effect on the aspect ratio; this is the same experimental result obtained 
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by Cole[14]. 

 

2.4 The Result of Modulated Effect on Couette Flow 

Under a modulated effect, the inner cylinder rotates with the )cos1( '
1 tωε+Ω  

period. The stability of the modulated Couette flow is primarily affected by modulated 

amplitude and modulated frequency. This study analyzed different aspect ratios, upper 

and lower boundaries to determine how they affect the modulated Couette flow. To 

compare modulated effect with the non-modulated effect, the change rate of the critical 

Re1 is defined here; 00 Re/)Re(Re −=Δ c , 0>Δ  represents the modulation has 

stabilized. 

The experimental value was obtained using the optical measurement method and 

flow observation method. The solid line on Fig. 3(a) is the theoretical result. At a low 

frequency, when Δ  < 0, the critical Re is lower than that for a non-modulated effect. 

The result demonstrates that the modulated effect has an unstable effect on flow. 

Additionally, when the frequency continues to decrease, Δ  approached the quasi-static 

limit )1/( εε +− . At a medium-to-high frequency, Δ  increases as frequency increases. 

Generally, in this frequency range, the modulated effect destabilizes the flow. As 

frequency decreases, destabilization increases. 

The error of result in this experiment and theoretical value are relatively large at a 

medium frequency (Fig. 3(a)). At a high frequency, Δ  approaches but remains slightly 

lower than 0. At that moment, modulated frequency has slightly destabilized the flow. 

Figure 3(b) presents the curve of medium stable critical Re at different modulated 

amplitudes. When the flow is unstable, the disturbance has three statuses. For any 

amplitude, disturbance 0=iσ  at a low frequency is synchronous. After the flow 

becomes unstable, the frequency of the flow and base status are the same. As frequency 
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increases, disturbance changes to a quasi-periodic state. At that moment, 0≠iσ  and 

the ratio of the flow frequency to base status frequency is not a rational number. When 

the frequency increases to an ultra-high frequency, iσ  is multiple times the base status 

frequency. At that moment, disturbance returns to synchronous. 

Figure 4 shows the relationship between relative variable Δ  of the Re and 

amplitude under different frequencies. The solid line in the graph is the experimental 

result derived using the numerical method. The dotted line in Fig. 4(a) is the 

quasi-steady limit )1/( εε +− when 0→ω . At an extra low frequency, if the amplitude 

is high, destabilization is also high. If the critical Re approaches )1/(Re0 ε+  when 

frequency is 063.0=ω , amplitude increases from 0 to 1.0, and the variable Δ  of the 

Re1 gradually decreases to around −0.5. Additionally, based on the graph, the 

experimental result and quasi-static limit )1/( εε +−  are extremely close. When the 

modulated frequency is 628.0=ω  and 28.6=ω (Figs. 4(b) and 4(c), respectively), 

the relative variable Δ  of the Re1 will decrease as modulated amplitude increases. 

When the modulated amplitude is high, the relative variable Δ  of the Re decreases and 

the flow becomes increasingly unstable. However, the degree of instability is lower than 

that at a low frequency.  

At a high frequency (Fig. 4(d)), when modulated frequency is 8.62=ω , the 

different modulated amplitude does not have a significant effect on relative variable Δ  

of the Re. The modulated amplitude does not significantly influence flow stability.  

For different radius ratios η , Fig. 5 presents the experimental result obtained by 

this study and Walsh et al.[25]. The graph includes different radius ratios η , which 

include η  = 0.4833, 0.719, 0.88, and a modulated amplitude of 0.5. Regardless of the 

radius ratio, the stable critical value increases as frequency increases, and approaches a 
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stable critical value 0Re  under the non-modulated effect. At a low frequency, the 

stable critical value approaches )1/(Re0 ε+ . 

This study investigated the influence of several aspect ratios h  on the stable 

critical value. Figure 6 presents numerical results. When aspect ratio h  decreases, Δ  

also decreases and flow destabilization increases. When frequency is high, the rate 

reduction is obvious. 

This experiment chose three different cylinder boundary conditions: fixed on sides, 

top free bottom fix, and top rotate bottom fix. The aspect ratio is 24=h . Figure 7 

presents the numerical result. The measured results for the three conditions are similar. 

The flow is not affected by the upper and lower boundaries. The possible reasons are 

that measurement points for the optical measurement method are at the middle of the 

cylinder and the aspect ratio is sufficiently large. Therefore, the effect caused by 

boundaries near measurement points is extremely small. 

For the non-modulated effect, the experimental result for wave number of the stable 

critical value is 19.3=α . When the flow is modulated, the flow observation method is 

used to measure the wave number when flow exceeds a stable state, and determine 

whether the wave number changes under a modulated effect. Figure 8 shows numerical 

results. The wave number first decreases as the modulated frequency increases. The 

wave number is not a fixed value and changes for different modulated frequencies. The 

degree of change to experimental data is not as large as the theoretical value; however, 

the tendencies are the same. 

Figure 9 presents the relationship between critical wave number ck  and frequency 

for different radius ratios and modulated amplitudes. When the flow transforms 

disturbance from synchronous to quasi-periodic, a discontinuous point exists at 

amplitude. The axial wave number increases as modulated frequency increases. When 
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the frequency exceeds the first discontinuous point, axial wave number suddenly 

decreases and then increases again. When the axial wave number reaches a maximum 

value, the critical Re also reaches a maximum value, the decrease as modulated 

frequency increases. Finally, the axial wave number approaches the value of 

non-modulated rotation at an extra high frequency. 

Figure 10 presents the relationship between the Re1 and frequency when amplitude 

is (a) 1=ε  and (b) 2=ε  under different radius ratios η . When radius ratio η  is 

small, the change to the critical Re under medium-to-high frequency becomes steep; at a 

stable status, the offset is large. 
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Table 1 Comparison list of results from this study and other scholars under the condition 

of a non-modulated Couette flow 

 

 Study method 
Aspect 

ratio 

Radius 

ratio 

Critical 

value 

Wave 

number

  h  η  0Re  α  

Huang[45] 

 

Flow visualization and 

Optical method 

24 0.4833 68.75 3.19 

Donnelly[3] 
Torsion measurement 

method 
4 0.5 68.28  

Donnelly[46] Flow visualization 5 0.5 68.57 3.10 

Simon and 

Donnelly[4] 

Torsion measurement 

method 
5 0.5 68.23  

Sparrow et 

al.[29] 
Numerical method Infinite 0.5 68.19 3.16 

Present Numerical method Infinite 0.4833 67.94 3.17 

Present Numerical method Infinite 0.5 68.186 3.16 
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Figure 1 Physics mode graph 
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(a) 

 

Figure 3 (a) The relationship of relative variable Δ  vs modulated frequency is showing under modulated effect 1=ε  
(b) A chart showing the variation of Re1 on different modulated amplitudes vs frequencies. ( 4833.0=η ) 
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(b) 

 

Continued.
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(a) 

 

Figure 4 Relationship between relative variable Δ  of the Re1 and amplitude under different modulated effects. 
(a) 063.0=ω  (b) 628.0=ω  (c) 28.6=ω  (d) 8.62=ω  
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(b) 

 

Continued. 
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(c) 

 

Continued. 
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(d) 

 

Continued. 
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Figure 5 Different inner and outer radius ratios, and the relationship between critical Re and frequency. 
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Figure 6 Influence of aspect ratio (h) on variable Δ  of the critical Re (see Huang[45]). 
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Figure 7 Influence of different upper and lower boundaries on variable Δ  of the critical Re (see Huang[45]). 
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Figure 8 Relationship between wave number of the modulated Couette flow under a stable critical number and modulated frequency;  
upper and lower fixed boundaries are 5.0=ε and 4833.0=η , respectively. 
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(a) 9.0=η  

 

Figure 9 Relationship between critical wave number and frequency at different modulated amplitudes. 
(a) 9.0=η  (b) 4833.0=η  (c) 2.0=η  
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(b) 4833.0=η  

 

Continued. 
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(c) 20.0=η  

 

Continued. 



34 

(a) 1=ε  

 

Figure 10 Relationship between the relative variable of the critical Re and frequency under different radius ratios. 
(a) 1=ε  (b) 2=ε  
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(b) 2=ε  

 

Continued. 
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Chapter 3 Taylor Vortex Flow 

 

3.1 General Description of the TVF 

Fluid motion between two concentric rotating cylinders is often investigated in the 

field of fluid dynamics. This section uses numerical methods to analyze and simulate 

flow patterns and relevant flow characteristics between two concentric rotating 

cylinders. Coles[8] was the first researcher to definitively consider Taylor vortex flow to 

be nonlinear, although several researchers had previously speculated that the Taylor 

vortex problem could be solved by considering nonlinear flow. Donnelly[47] and Hu[48] 

experimentally analyzed modulated flow stability. When the outer cylinder remains 

stationary and the inner cylinder rotates periodically, parameters such as interval, 

rotational frequency, and the modulated amplitude of the two cylinders can be varied to 

determine how the flow is affected by modulated rotation. Hall[21] utilized linear 

theory to determine low and high frequencies and used nonlinear theory to analyze the 

flow under a high frequency. Carmi and Tustaniwskyj[24] examined modulated stability 

under a limited gap and the influence of axial symmetry and asymmetry on modulated 

flow. In a former study, it was shown that the critical Reynolds number exhibits an 

increased unstable offset under low frequency. Marques and Lopez[49] and Lopez and 

Marques[50] introduced and studied more cases of time-modulated Taylor–Couette 

problems in which the inner cylinder moves periodically along the axial direction. Youd 

et al.[30, 51], who analyzed zero-equivalent modulated flow around concentric 

cylinders with a radius ratio of 75.0=η , defined as 21 / RR=η  where 1R  and 2R , 

are the inner and outer radii of cylinders, identified the formation of reversing and 

non-reversing modulated Taylor–Couette flow. The main objectives of the study 

investigate the instability of modulated Taylor vortices flow by utilizing a numerical 
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method. It is practical to focus attention on the transition based on varying modulated 

amplitudes and frequencies. 

 

3.2 Numerical Method 

3.2.1 Model description 

The flow is described by the incompressible, three-dimensional Navier-Stokes 

equations with cylindrical coordinates ( R , θ , Z ) in an absolute frame of reference 

according to the velocity-pressure formulation. The dimensionless factors r , z  are 

the radial and axial coordinates, τ  is the time and ω  is the modulated frequency with 

corresponding dimensional quantities are t  and 'ω ; Re  is the Reynolds number of 

the inner cylinder and α  is the axial wave number; the velocity components and 

pressure are rV
−

, θ

−

V , zV
−

, and 
−

P . 

 

3.2.2 Governing Equations 

The basic flow type is the one-dimensional Couette flow with the modulated 

amplitude and frequency of azimuthal velocity between two concentric cylinders. Then 

the inner cylinder rotates with the increasing Reynolds number Re , and the outer 

cylinder is considered to be at rest under all conditions. The dimensionless 

Navier-Stokes and continuity equations are as follows: 

 
→−→→

→

Δ+−∇=⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+

∂
∂ VPVV

t
V

Re
1 , 0=⋅∇

→

V  (3.1) 

where ⎟
⎠
⎞

⎜
⎝
⎛=

−−−→

zr VVVV ,, θ . The time scheme is semi-implicit and second-order 

accurate. It corresponds to a combination of the Crank-Nicolson scheme (for the linear 

term) and an explicit Adam-Bashforth scheme (for the nonlinear terms). 
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Cole [14] demonstrated that cylinder height does not influence the critical point for 

transformation from a Couette flow to a Taylor vortex flow unless the aspect ratio 

between cylinder height and interval is less than 8. We assume infinite cylinders and a 

periodic solution in the axial direction. The boundary conditions are 

 
η

η
−

=
1

r  : 0==
−−

zr VV , ( )ωτεθ cos1Re1 +=
−

V  

 
η−

=
1

1r  : 0=
→

V  (3.2) 

where ε  and ω  are the modulated amplitude and frequency, respectively.  

The flow velocity and pressure profile of the Taylor vortices can be regarded as a 

one-dimensional flow with a perturbation and can be expressed as: 

 ( )τ,,0 ' zrVV rr +=
−

 (3.3) 

 ( ) ( )ττ θθθ ,,, ' zrVrVV +=
=−

 (3.4) 

 ( )τ,,0 ' zrVV zz +=
−

 (3.5) 

 ( )τ,,0 ' zrpP +=
−

 (3.6) 

The perturbations are determined using a pseudo-spectral Fourier-Chebyshev 

collocation method, taking advantage of the orthogonality properties of Chebyshev 

polynomials and assuming exponential convergence (see Daoyi and Gerhard H.[52], 

Speetjens and Clercx[53]).  
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Here, M and N are the number of terms in the Fourier series expansion and 

Chebyshev polynomial expansion, respectively, and mnA , mnB , mnC , and mnD  are 

amplitude coefficients. The definitions of nT  and nφ  are listed in section 2. ( )τθ ,rV
=

 

is the velocity of one-dimensional Couette flow. 

Substituting Eqs. (3.3)–(3.6) into the Eq. (3.1), the equations are transformed into an 

algebraic equation, which can be expressed as a matrix equation:  

 1,1 −+ = jjj FAX , 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

00
00

000
00

4341

3433

22

1411

AA
AA

A
AA

A , 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mn

mn

mn

mn

D
C
B
A

X , 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0
3

2

1

F
F
F

F  (3.11) 

where A is a matrix of coefficients and vector ( )Tmnmnmnmn DCBAX ,,,= . The 

unknown values of vector F , ( )TFFFF 0,,, 321= , are the summation of radial, 

azimuthal and axial velocity components for linear term at time jt  and nonlinear term 

at time 1−jt . 
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The coefficients mnA , mnB , mnC , and mnD  are determined iteratively until the 

convergence condition is satisfied. When the inner cylinder rotates with a fixed 

rotational speed, the convergence condition is  

 4
1

1

10−
+

+

<
−
j

jj

X
XX  (3.12) 

We adopt the tolerance (10-4) to avoid the computation process becomes time 

consuming and larger error ratio compared with those obtained by Jones [54]. When the 

pressure coefficient is converging to the tolerance (10-4), the other coefficients in 

velocity components had been converging and lower to the tolerance (10-4). The 

coefficient that satisfies the convergence condition is substituted in the appropriate 

equation among Eqs. (3.3)–(3.6); the speed and pressure in each time interval can then 

be determined. If the cylinder rotates periodically, the largest value of axial speed 
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attained in a particular time interval at a selected observation point in the flow is 

compared with the axial speed in the preceding time interval, the convergence condition 

is  

 4

1

1

10−

+
−

−
+

−

<
−
i

z

i
z

i
z

V

VV  (3.13) 

where i  is the periodic counter. If the difference is less than 410 − , then the 

convergence condition is considered to be satisfied. 

 

3.2.3 Model Validation 

Prior to the computation of the flow field, we analyze the degree of accuracy, which 

serves as the basis for the post computation. In theory, the greater the number of terms 

expanded, the higher is the accuracy; however, the limit to the increase of the number of 

terms will come from the round-off error and the computation process becomes time 

consuming. Therefore, the best option is to use the expansion with the least number of 

terms for which a certain degree of accuracy can be guaranteed. The results computed 

from the expanded number of terms, M and N in the computation mode of Taylor 

vortices, were compared with the results obtained by Jones[54] when the inner cylinder 

rotated at a constant velocity. Jones[54] used the Taylor number to obtain the rotating 

velocity of the inner cylinder, as shown in Table 2. For a low Re  value ( Re  = 72.5), 

the radial velocity at the point of observation can be converged with the expanded terms 

6 × 6. The difference ratio compared with the expanded terms 6 × 6 and 7 × 7 is 

converging to 0.19%. However, for a high Re  value ( Re  = 259.8), the radial velocity 

at the point of observation can be converged with the expanded terms 10*10. The 

difference ratio compared with the expanded terms 10 × 10 and 11 × 11 is converging to 

0.14%. These results are in agreement with those obtained by Jones[54]. For the 
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computation in this study, both M and N were expanded to 10 terms. 

 

3.3 The Onset of Taylor Vortices under Modulated Effect 

Fig. 11 presents the relationship between offset Δ  and modulated frequency ω . 

At a low frequency, the modulation effect has significant and unstable effect on flow. 

This experimental result agrees with the experimental result obtained by Carmi and 

Tustaniwskyj[24]. Under the same conditions, the value acquired by numerical 

calculation and the experiment value are compared. At an extremely high frequency, the 

offset approaches 0, indicating that the critical Reynolds number cRe  approaches the 

critical Reynolds number 0Re  under a non-modulated effect. As the modulated 

frequency decreases, the calculated result becomes similar to that acquired by Riley and 

Laurence[22]. However, the difference between the experimental value and linear 

theoretical value increases. 

Figure 12 shows a graph of the relationship between the rotating outer and inner 

cylinders. From experimental observations, when the inner and outer cylinders rotate, 

the critical Reynolds number cRe  of the inner cylinder increases as 2Re  increases. 

The derived critical Reynolds number is slightly higher than the theoretical value. 

However, the error is only about 5%. When the inner and outer cylinders rotate in 

opposite directions, the Reynolds number cRe  of the inner cylinder also increases as 

2Re  increases. However, the slope is smaller than when the cylinders are rotating in 

the same direction. The critical Reynolds number cRe  obtained experimentally agrees 

with the theoretical value. 

Figure 13 shows the radius ratio 937.0=η ; inner cylinder 11

−

Ω=Ω ; outer cylinder 

rotating with a non-zero mean modulated rotation t'12 cosωε
−

Ω⋅=Ω ; different 
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amplitudes, 5.0=ε , 1.0 and 1.5; and the effects of experimental and theoretical values 

under different modulated frequencies on critical Reynolds number of the inner cylinder. 

The graph shows that the critical Reynolds number offset Δ  of the inner cylinder 

approaches 0 at a low frequency. The Δ  value then increases as frequency increases 

until 8.0≈ω , and Δ  reaches the highest value. Then Δ  value decreases as the 

frequency increases. The Δ  approaches 0 again at a high frequency.  

In Fig. 14 and Fig. 15, the outer cylinder is fixed and amplitude of the inner cylinder 

is modulated at 1=ε  and 2=ε , respectively. The axial speed changes with time at 

different values of Reynolds number and modulated frequency when 5.0=ξ . For low 

frequency, the dimensionless time τ becomes time consuming to obtain the  iterative 

convergence under different Reynolds number. But for high frequency, the computation 

process is rapidly converged. When the inner cylinder rotates at low frequency, the flow 

has sufficient time to change with the velocity. Once the rotation speed of the inner 

cylinder exceeds the threshold value for one-dimensional flow, the flow is transformed 

from one-dimensional circular Couette flow to axisymmetrical Taylor vortex flow. 

When the instantaneous Reynolds number reaches the maximum value, the Taylor 

vortex flow disappears in process of time; this phenomenon is referred to as transient 

stability, as shown in Fig. 14(a)–(b) and Fig. 15(a)–(b). With an increase in the 

modulated frequency, transient stability disappears because a Stokes layer is produced 

near the wall. The flow beyond the Stokes layer cannot completely reflect the velocity 

change in the inner cylinder (Figs. 14(c), 15(c)). Meanwhile, we can employ a larger 

Reynolds number and ensure that Taylor vortex flow occurs at an earlier time period. 

The plots in Figs. 14(d), 15(d) show the flow sustain the more stable Taylor vortex flow 

at high frequency. It is worth noting that subharmonic flow exists at intermediate and 

high frequencies when 2=ε , as shown in Fig. 15(c). However, no such flow is 
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observed when 1=ε . The phenomenon is similar to Youd et al.[30, 51]. 

 

3.4 Conclusion 

This study used numerical analysis to investigate the behavior of flow between two 

concentric cylinders. The unstable Couette flow was transformed to Taylor vortex flow 

by considering the flow under non-zero averaged rotation speed at different modulated 

amplitudes and frequencies. In general, the flow generates larger instability at 

low-frequency modulation. At intermediate and high frequencies, the flow instability 

shows a gradually decreasing trend; when the modulated amplitude is sufficiently large, 

the period of flow at intermediate frequency is twice that of the rotational period of 

cylinders, which is ωπ /4  of subharmonic flow.  

In addition to the modulated effects will affect the instability of Taylor vortices flow, 

most of the unstable state of supercritical Taylor vortices flow between concentric 

cylinders are the wavy form, so-called Taylor wavy vortices, at higher Reynolds 

numbers of the cylinders. The transition from Taylor vortices to wavy vortices takes 

place via a number of intermediate flow form, and this paper will be a milestone to 

investigate the phenomenon of Taylor wavy vortices. 
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Table 2 Radial velocity at the point of observation ( 0=ξ , z = 0) for 5.0=η as the outer 

cylinder is fixed and the inner cylinder rotates at a constant velocity. The 

definition of aT  is represented by ( ) ( )ηη +−= 1/Re12 2
aT  

 

       Re   

( )aT
 

  

NM ×  

72.5 

(3500) 

106.1 

(7500) 

150 

(15000) 

212.1 

(30000) 

259.8 

(45000) 

4 × 4 4.6991 17.5775 - - - 

5 × 5 3.9956 17.1988 30.5700 41.92323 - 

6 × 6 4.2333 17.8566 32.8350 52.7493 67.0024 

7 × 7 4.2253 17.9733 33.5851 52.8491 69.8342 

8 × 8 4.2340 17.9840 33.5712 54.9975 70.7955 

9 × 9 4.2376 17.9733 33.6452 55.5914 71.8347 

10 × 10 4.2354 17.9840 33.6900 55.6550 72.2764 

11 × 11 4.2347 17.9840 33.6754 55.6763 72.3803 

12 × 12 4.2354 17.9840 33.6754 55.6975 72.4063 

13 × 13 4.2354 17.9840 33.6754 55.6975 72.4063 

Study of 

Jones[54] 
4.2336 17.9733 33.6768 55.7187 72.2764 
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Figure 11 The relationship between offset of the critical Reynolds numberΔ  and modulated frequency when the outer cylinder is fixed and 
modulated amplitude of the inner cylinder is 1=ε . 
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Figure 12 The flow instability of the relationship between the rotating outer and inner cylinder. ( 937.0=η ) 
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Figure 13 The inner cylinder rotates with 
−

Ω=Ω 11 , the outer cylinder t'12 cosωε
−

Ω=Ω  rotates with a non-zero mean modulated rotation. The 
relationship between the Reynolds number of the inner cylinder and frequency. ( 937.0=η ) 
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(a) 126.0=ω  

 

Figure 14 The outer cylinder is fixed and the inner cylinder rotates at different modulated frequencies. The axial speed zV
−

changes with time τ  

at the point of observation ( 5.0=ξ , 4/λ=Z ). ( 4833.0=η , 1=ε )  

(a) 126.0=ω  (b) 283.6=ω  (c) 42.31=ω  (d) 16.314=ω  
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(b) 283.6=ω  

 

 

Continued. 
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(c) 42.31=ω  

 

 

Continued. 
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(d) 16.314=ω  

 

 

Continued. 
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(a) 126.0=ω  

 

Figure 15 The outer cylinder is fixed and the inner cylinder rotates at different modulated frequencies. The axial speed zV
−

changes with time τ  

at the point of observation ( 5.0=ξ , 4/λ=Z ). ( 4833.0=η , 2=ε ) 

(a) 126.0=ω  (b) 283.6=ω  (c) 42.31=ω  (d) 16.314=ω  
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(b) 283.6=ω  

 

 

Continued. 
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(c) 42.31=ω  

 

 

Continued. 
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(d) 16.314=ω  

 

 

Continued.
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Chapter 4 Transition to Wavy Vortex Flow 

 

4.1 The Second Transition of Taylor-Couette Flow 

After the Taylor vortex problem had teetered on the brink of being classified as a 

nonlinear problem for many years, Coles[8] was the first to report on the nonuniqueness 

of the wavy flow in the Taylor-Couette flow. The entire pattern of wavy vortices moves 

with a uniform velocity in the azimuthal direction. Since the term “wavy” is typically 

associated with motion that includes periodic vertical oscillations, this study emphasizes 

that wavy Taylor vortices move in the azimuthal direction as rings that have 1k  fixed 

sinusoidal upward and downward deformations, where 1k  is an integer number of 

azimuthal waves. Wavy Taylor vortices were observed by Taylor[2], Lewis[32], and 

Schultz-Grunow and Hein[33]; however, they were not recognized as a characteristic 

feature of the flow. After Coles’ preliminary results were published, wavy vortices were 

also observed by Nissan et al.[10]. 

Burkhalter and Koschmieder[39] found that in the case of large radius ratios, the 

wavelength of axisymmetrical vortices is independent of the Reynolds number in fluid 

columns of infinite length if the Reynolds number in such fluid columns increases 

quasi-steadily. Jones[34] presented the stability boundary for a wavenumber of 3.13, the 

critical value for a quasi-static transition, for a wide range of radius ratios. Jones [34] 

considered the problem of calculation of nonlinear axisymmetrical Taylor vortices. A 

spectral method combines with Newton-Raphson iterations was used to solve the 

nonlinear algebraic equations. While Taylor’s study analyzed such flow under 

supercritical conditions, Stuart[35] observed that the shape, i.e., the size, of the vortices 

remains unchanged above the critical Reynolds number. Numerous studies (see Ahlers 

et al.[36], Andereck et al.[37], Park et al.[55]) have demonstrated the importance of 
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considering the acceleration/deceleration of the flow in determining the final state of the 

flow. These vortices have axial wavelengths that are different from those of vortices 

observed after a quasi-static transition. The study demonstrates that the stability 

boundary occurs at a critical wavelength corresponding to the quasi-static transition in 

addition to another wavelength. These solutions are related to the standard Taylor 

vortices and can be obtained quasi-statically for certain radius ratios when a mechanism 

is used for modifying the axial wavelength, see [36]. 

 

4.2 Numerical Method 

4.2.1 Model Description 

The system geometry is specified by the inner and outer radii, 1R  and 2R , of 

cylinders with an infinite aspect ratio and the dimensionless parameter in the problem is 

the radius ratio 21 / RR=η . The inner cylinder rotates with the Reynolds number 1Re , 

ν/Re 111 dRΩ=  and the outer cylinder rotates with the Reynolds number 2Re , 

ν/Re 222 dR Ω=  where ν  is the dynamic viscosity, Ω  is the angular velocity of the 

cylinders rotation and 12 RRd −=  is the gap of the cylinders, respectively. First, the 

TVF is solved numerically. The velocity components and pressure profile of TVF are 

solved previously in section 3. 

 

4.2.2 Governing Equations 

The stabilities of supercritical TVF are studied by introducing disturbances in the 

TVF. This flow type is expressed as follows: 

 ( ) ( )''''' ,,,,,,,,, pVVVfpVVVfpVVVf zrzrzr θθθ +⎟
⎠
⎞

⎜
⎝
⎛=

−−−−−

 (4.1) 

where 
−

f  denotes the flow velocity and pressure profile of the supercritical TVF 
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and 'f  represents the perturbations. The equations employed for the analysis, only 

out-of-phase wavy modes are investigated, of perturbations in normal modes are as 

follows: 
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Here, Q and S are the number of terms in the Fourier series expansion and 

Chebyshev polynomial expansion, respectively. 1k  (an integer) and 2k  (a real number) 

are wavenumbers of the perturbations in the azimuthal and axial directions, respectively, 

and qsa , qsb , qsc , and qsd  are amplitude coefficients.  

The dimensionless Navier-Stokes and continuity equations are as follows: 

 
→→→→

Δ+−∇=∇⋅+∂ fpffft , 0=⋅∇
→

f  (4.6) 

The boundary conditions are 

 0' =f  at 
η

η
−

=
1

r  and 
η−

=
1

1r   

Substituting Eq. (4.1) into Eq. (4.6) and linearizing the dimensionless Navier-Stokes 

equation, we can obtain the linear perturbation equations : 

Continuity equation : 
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Momentum equations : 
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And the characteristic perturbation equations, which constitute a generalized 

eigenvalue problem: 
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Here, A and B are complex matrices that depend on 1k  and 2k , and the 

eigenvector X contains the amplitudes of the eigenfunctions.  
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4.2.3 Solution Method and Definition of Instability  

The stability of the flow can be determined by the real part of the growth rate of a 

complex disturbance. When rσ  < 0, the entire flow is stable. The disturbance 

decreases with an increase in time. When rσ  > 0, the disturbance increases with time 

and the flow becomes unstable. When rσ  = 0, the flow has neutral stability. 

The eigenvalue of the generalized eigensystem is obtained by using the subroutine 

DGVLCG in the IMSL library, which determines all eigenvalues with a high level of 

accuracy. Re  is searched on the neutral stable curve, i.e., the curve on which the real 

part of the most unstable eigenvalue vanishes, using the secant method; this method 

requires two initial guesses. The iteration is not terminated until the real part of the most 

unstable eigenvalue is less than 610 − . The Re  values for different wavenumbers can 

be obtained for neutral stable states. The minimum Reynolds number is called the 

critical Reynolds number and corresponds to the critical wavenumber. 
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4.3 Lowest Instability of the Wavy Vortices under Inner Cylinder Rotation which 

is 1Re  

Fig. 16 shows the numerical result (with 2k  = 0) together with the experimental 

data obtained by Ahlers et al.[36]. Each symbol (solid circle) corresponds to a solution 

in their study (onset of the WVF at 1k  = 3). The range of wavenumbers considered is 

2.6–4.0 and the range of cReRe/  is 0.8–2.0. cRe  is the critical value of Re , i.e., the 

value at which the TVF occurs. The model used in the present study assumes that the 

wavy Taylor vortices are perfectly periodic in the axial direction and thus ignores the 

end effects. This model is similar to that developed by Ahlers et al.[36]. 

A comparison of the model used in the present study with the models developed by 

Park[38] and Jones[56] indicates that the agreement between experimental and 

theoretical values for 1k  = 2 is good (see Table 3). 

The plots in Figs. 17(a)–(i) show the stability boundaries at the onset of wavy Taylor 

vortices with 1k  in the range 1–3 in the parameter plane ( )cReRe/,α . Every plot has 

been compared with the plots obtained by Jones[34], and good agreement has been 

observed. 

For η in the range 0.7–0.74605, the lowest stability of the transition from TVF to 

WVF depends strongly on α , which is less than 3.13. For 76.0=η  and 78415.0=η , 

the dominant transition occurs at 1k  = 3, which is below a certain α . When η  is 

increased above 0.78415, a new transition curve with 1k  = 1, for which α  is equal to 

approximately 3.13, represents the lowest stability boundary. 

Fig. 18 presents the wavenumbers of the lowest stability boundary for various η  

values. For the transition from TVF to WVF, α  is less than 3.13 for three sections: the 

first section is 7842.076.0 ≤≤η  with an upper branch of 1k  = 1, the second section 
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is 7248.07.0 ≤≤η  with 1k  = 2, and the third section is 7842.07248.0 ≤≤η  with 

1k  = 3 (see Figs. 19). The critical Reynolds number shifts to values of α  that are 

substantially less than 3.13, i.e., waves are easily generated. Fig. 20 also shows the new 

stability boundary curves for the transition from TVF to WVF and presents different 

stability boundary curves for axisymmetrical TVF when η  is lower than 

approximately 0.7842. 

 

4.4 The Lowest Instability Curve of the Transition from TVF to WVF under the 

Condition of Concerntric Rotating Cylinders 

The regime diagram of the onset of WVF was determined by Coles[8] (see Fig. 21). 

The Coles’ result is a remarkable confirmation of Taylor’s[2] stability diagram for the 

onset of axisymmetric TVF as a function of the rotation rate of both cylinders. The 

axisymmetric TVF will be transformed to WVF when the rotational speed of the 

cylinders exceeds the critical value cRe , the instability boundary will be changed with 

different axial wavelength, rotational direction and speed of the cylinders. In this study, 

we consider the case wherein η  = 0.88, α  = 2.7–3.5, and 1k  = 1–3, and we solve 

the lowest instability boundary of TVF for two concentric rotating cylinders. Fig. 22(a) 

shows that the TVF is more stable during corotation rather than counterrotation of the 

cylinders. In the case of flow in corotational cylinders, the lowest instability occurs 

when cReRe/  = 2–4 for 0 < 2R  < 400; however, cReRe/  = 1.31 for 2R  = 0. The 

numerical result is in good agreement with that obtained by Coles[8]. However, with 

regard to the flow in the case of counterrotating cylinders, the instability boundary, with 

various azimuthal wavenumbers 1k  = 1–3 and axial wave numbers α  = 2.7–3.5, is 

different from that of axisymmetric TVF. Fig. 22(b) shows that the lowest TVF 
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instability boundary occurs when the rotational speed of the outer cylinder is (1) 

0290 2 ≤≤− R  for 1k  = 1 or 2, (2) 2901000 2 −≤≤− R  for 1k  = 3, and (3) 

10001300 2 −≤≤− R  for 1k  = 2 or 3. When 2R  ( 13004000 2 −≤≤− R ) increase 

gradually for any value of 1k , the instability of TVF is occurred immediately by 

cReRe/  = 1.006-1.06. 

 

4.4 Results Summary 

The effect of a variation in the wavenumber of a TVF on the stability of the flow can 

be studied by the infinite cylinder approximation. The wavenumber is considered as an 

external parameter and is not determined theoretically, but is measured experimentally. 

In some apparatuses such as those used by King and Swinney[57], fluid can be added or 

removed even when the cylinders are rotating, thereby allowing direct control of the 

wavelength. The present study determines a new lowest stability boundary curve for the 

transition from a supercritical TVF to a WVF. This curve differs from that obtained by 

Jones[34], who assumed that the Reynolds number of the inner cylinder increases 

quasi-statically. This study also investigates the lowest stability boundary for different 

wavenumbers and various radius ratios ranging from the ratio corresponding to a 

supercritical TVF to that corresponding to a WVF. The variation in the wavenumber is 

found to affect the stability of the flow for radius ratios less than 0.7842 (at Re1 of the 

inner cylinder). 

We also investigated the lowest stability boundary in the case of different azimuthal 

wavenumbers 1k  corresponding to a axisymmetric TVF that is transformed to a WVF. 

The axial wavenumber is considered as an external parameter and is not determined 

theoretically, but is measured experimentally. In the present study, we determined a new 

lowest stability boundary curve for the transition from a supercritical TVF to a WVF at 
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the rotating cylinders. This curve differs from that obtained by Coles [8], who assumed 

that the Reynolds number of the cylinders increased quasi-statically. 
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Table 3 Comparison of experimental and theoretical data of Re  values for 782.0=η  

 

 

 

 

 

 

 

 

 

 

 Experiment 

Park[38] 

Theory 

Jones[56] Present 

Onset of 1k =1 Not seen 110 109.5 

Onset of 1k =2 137.3 120 119.5 

1k =2 gone 161.3 163 167.5 

1k =1 gone Not seen 169 167.8 

Onset of 1k =3 322 None None 
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Figure 16 Combines both numerical and experimental results for the onset of WVF for 893.0=η . 
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(a) 7.0=η  

 

Figure 17 Neutral stability curves of the transition of Taylor vortex flow to wavy vortex flow for various η . 
(a) 7.0=η  (b) 727.0=η  (c) 74605.0=η  (d) 76.0=η (e) 78415.0=η  (f) 8032.0=η   
(g) 82.0=η  (h) 88.0=η  (i) 93.0=η  
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(b) 727.0=η  

 

Continued. 
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(c) 74605.0=η  

 

Continued. 
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(d) 76.0=η  

 

Continued. 
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(e) 78415.0=η  

 

Continued. 
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(f) 8032.0=η  

 

Continued. 
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(g) 82.0=η  

 

Continued. 
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(h) 88.0=η  

 

Continued. 
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(i) 93.0=η  

 

Continued. 
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Figure 18 The wave number of the lowest stability boundary for variousη . The numbers denote 1k . 
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Figure 19 The lowest stability boundary for the bifurcation from Taylor vortices. 
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Figure 20 The lowest stability boundary for the bifurcation from Taylor vortices (with the simulated result obtained by Jones[34]). 



 82

 

Figure 21 Different regimes in the flow between two rotating cylinders. 88.0=η , 4.14=Γ . The fluid is silicone oil of 0.11 cm2/sec viscosity. 

Below the Taylor boundary there is circular Couette flow. Above the Taylor boundary there is axisymmetric Taylor vortex flow. 

Above the second boundary marked by the full circles there is wavy (doubly periodic) Taylor vortex flow. After Coles [8] 
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Figure 22 Lowest stability boundary for different azimuthal wavenumbers 1k  corresponding to nonaxisymmetric TVF that is transformed to a 

WVF. 
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Figure 22 Lowest stability boundary for different azimuthal wavenumbers 1k  corresponding to nonaxisymmetric TVF that is transformed to a 

WVF. 
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Chapter 5 Concluding Remarks 

Looking back on what we have learned about TVF since Taylor’s[2] original paper, 

what seems to be most impressive is the tremendous progress that has been made in the 

experimental field. Foremost among the modern experimental discoveries is the 

observation of the WVF by Coles[31].  

This study analyzes both the fluid flow of rotating cylinders and the stability of the 

modulated Couette flow by numerical methods; under different modulated amplitudes 

and frequencies, the unstable behavior caused by fluid flow influences the Couette flow 

to become TVF.  

Then this study investigates the instability analysis of modulated TVF by utilizing a 

numerical method. Based on the consideration that the outer cylinder is fixed and the 

inner cylinder rotates at a non-zero averaged speed under varying modulated amplitudes 

and frequencies, the flow is converted from one-dimension Couette flow to TVF. When 

the modulated amplitude is greater than one and the rotation speed of the inner cylinder 

exceeds the threshold value for one-dimensional flow, the flow will be more stable at 

intermediate and high frequencies. When the modulated amplitude is sufficiently large 

and the inner cylinder rotates at medium frequency, subharmonic flow arises. 

When the rotational speed of cylinders exceeds the threshold value of stable TVF, 

the flow will be transformed from TVF to WVF. First, we numerically investigate the 

lowest stability boundary of TVF for flows with different wavenumbers and for various 

radius ratios under the inner cylinder rotates at a fixed speed and outer cylinder is 

stationary. The variation in the wavenumber of a supercritical TVF will cause the 

various stability of the flow and the wavenumber of Taylor vortices is constant only as 

long as the flow is quasi-static. The variation in the wavenumber is examined and found 

to be important when the radius ratio is less than 0.7842. And then we consider the case 
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wherein η  = 0.88, α  = 2.7–3.5, and 1k  = 1–3, and we solve the lowest instability 

boundary of TVF for two concentric rotating cylinders. 

One may ask whether it is worth the effort to pursue these obviously very difficult 

nonlinear aspects of the Taylor vortex problem. The answer to this question seems to be 

yes, because in the case of TVF we can pursue the formation of turbulence from laminar 

flow to full turbulent with great precision in all detail through a number of very 

characteristic stages. In other words, basic theoretical work can be done on this problem, 

which, in the end, rank as high as the pioneering studies that we have examined in this 

study. 
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