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Instabilities of Modulated Couette Flow and Taylor Vortex

Flow Between Concentric Rotating Cylinders

Student : Hau-Chieh Lin Advisor : Dr. Wen-Mei Yang

Department of Mechanical Engineering

National Chiao Tung University

ABSTRACT

Fluid flow between two concentric rotating cylinders has remained an important
topic in fluid dynamics, attracting scholars and researchers to date. In this study,
numerical methods are used to-analyze and simulate flows and stabilities, which are
characterized by a Reynolds number, under different radius ratios and modulated
effects.

This study focuses on (1) the. transition.of Couette flow to Taylor vortex flow under
different modulated amplitudes and frequencies, (2) the non-modulated and modulated
Taylor vortex flows, and (3) the transition of the non-modulated Taylor vortex flow to
wavy vortex flow.

First, the instability of modulated Couette flow before it transitions to modulated
Taylor vortex flow, as well as the effects of modulated amplitude and frequency are
studied. By using the Floquet theorem, perturbations are expanded into two series with
time periodical coefficients which has the same period as that of the modulation. By
following the work of Galerkin and using collocation methods, the equation is
transformed into an algebraic eigenvalue problem. The QZ algorithm is employed to

solve for the eigenvalues that determine the flow stability.
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Second, the primitive variables of modulated and non-modulated Taylor vortex
flows are solved numerically using the Crank-Nicolson and Adam-Bashforth methods to
discretize the linear and nonlinear terms, respectively, of the Navier-Stokes equations.

Finally, the stabilities of supercritical Taylor vortex flows are studied by perturbing
the nonlinear Taylor vortex flows. Using the same techniques as in part I, the marginal
curves of transition to wavy vortex flows are obtained for different radius ratios and
axial wave numbers. The resulting stability boundary curve for transition of
supercritical Taylor vortex flow is different from that obtained in previous studies, in

which the Reynolds number of the inner cylinder is assumed to increase quasi-statically.
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Chapter 1 Introduction

1.1 Motive of the Present Study

Fluid flow between concentric rotating cylinders, generally known as circular
Couette or Taylor-Couette flow (Couette[1]; Taylor[2]), is a classic problem in
hydrodynamic stability and has provided an important paradigm for the dynamics of
shear flows. This problem has been the focus of numerous theoretical and experimental
studies.

Taylor[2] went one step further and studied the instability when both cylinders rotate.
However, it is my opinion that the current problems concerning this instability (in
particular the nonlinear problems) are outlined more clearly in the simpler case in which
the outer cylinder is at rest. This strategy also is.in line with the scientific paradigm of
proceeding from the simple to the complex. Each additional variable makes the
theoretical explanation of a nonlinear problem significantly more difficult.

The present study focuses on.the centerpiece of the Taylor vortex problem, which is
the instability of an infinitely long fluid column between concentric rotating cylinders.
This instability is manifested in four ways: linear and nonlinear axisymmetric Taylor
vortex flow (TVF), wavy vortex flow (WVF), irregular or chaotic Taylor vortex flow,
and turbulent Taylor vortex flow. In this study, we only focus on the instability of the
Couette flow, Taylor vortex flow, and wavy vortex flow and pursue the lowest

instability boundary curves between these different types of flow.

1.2 Literatures Review
In this study, the behavior of flow motion for the following cases is investigated: (1)
rotation of an inner cylinder, which remains static in an outer cylinder, (2) the inner and

outer cylinders rotate at different speeds, and (3) the rotation of the inner cylinder is



periodic and modulated.

Donnelly[3] and Simon and Donnelly[4] utilized the torque produced in a cylinder
during viscous flow motion to measure the circular Couette flow at the critical point
between stable and unstable flow. As the rotational speed of the inner cylinder increases,
the torque suddenly changes when the fluid status changes from stable to unstable.
From this, the Reynolds number of the critical point can be acquired. The critical point
marks the transition from one-dimensional stable Couette flow to two-dimensional
Taylor vortex flow. Koschmieder[5], Burkhalter and Koschmieder[6], and Swinney and
Gollub[7] obtained the same result by observing flows. For inner and outer cylinders
with the same rotational speed and direction, Taylor[2] experimentally demonstrated
that when the rotational speed.increases: gradually to a speed exceeding the critical
speed, the flow still retains its one-dimensional flow status. In other words, the rotating
outer cylinder has inhibition to stable status. Coles[8], Schwarz et al.[9], and Nissan et
al.[10] obtained the same experimental result as Taylor. Moreover, Walsh and
Donnelly[11] demonstrated that when the rotational speed of the inner cylinder is fixed
and the outer cylinder undergoes periodic motion, the flow is stabilized. Gollub and
Swinney[12] and Walden and Donnelly[13] used the Laser Doppler Anemometer (LDA)
to investigate circular Taylor-Couette flow by measuring the radial temperature of flow
measurement points.

Through power-spectrum analysis, the time domain is transformed into a frequency
domain. The advantage of power spectrum analysis is that different characteristics of a
spectrum represent different flow states. When flow is periodic, peaks of a certain size
appear in the spectrum at relative and harmonic frequencies. When flow transitions into
quasi-periodic flow, a new frequency appears that is not associated with the original

frequency. The power spectrum analysis is an efficient approach for studying the



transformation between quasi-periodic and chaotic flows. Cole[14] experimentally
investigated the effect of cylinder height on flow stability and demonstrated that
cylinder height does not influence the critical point for transformation from a Couette
flow to a Taylor vortex flow, unless the aspect ratio between cylinder height and
interval is <8. Additionally, according to the study by Hall and Blennerhasset[15], when
the aspect ratio L/d >12 12, the numerical and experimental results are not
significantly different, indicating that the effect of cylinder height on flow stability is
negligible. Barenghi and Jones[16] and Murray et al.[17] obtained the same result
numerically. Walowit et al.[18] applied linear theory to derive the critical value for
different radius ratios and the ratio between inner and outer rotational speeds. To
examine the stability of a Couectte. flow between cylinders with different radial
temperatures, Snyder and Karlsson[19] experimentally determined the critical Taylor

number (Ta = 2d° R, (Q/v)*) under different temperatures with 7 = 0.958 . They found

that the result is stable over' a small temperature range. Outside of this range, the
positive and negative values of the critical Taylor number become unbalanced, and the
flow typically becomes unstable.

The present study focuses primarily on the influence of modulated amplitude and

frequency on flow stability between the cylinders. The rotational speed of the cylinder is

modulated by the factor £_2(1 +ecosmw't) to investigate the effects of flow stabilization

and destabilization. Donnelly[20] experimentally analyzed modulated flow stability and
found that when the outer cylinder remains static and the inner cylinder rotates
periodically, parameters such as interval, rotational frequency, and modulation
amplitude of the two cylinders can be modified to determine how the circular Couette
flow is affected by modulated rotation. Hall[21] utilized linear theory to determine low

and high frequencies and used non-linear theory to analyze the flow for high frequency



modulations. Hall demonstrated that flow is slightly destabilized regardless of
amplitude for low frequency modulations. Within a certain frequency range, the flow
becomes increasingly stable. When the rotation is modulated at high frequency, the
stability approaches the critical value of the non-modulated situation. Riley and
Laurence[22] utilized Galerkin expansion and Floquet theory for stability analysis and
investigated flow stability under modulated conditions with a narrow inter-cylinder gap.
The numerical result obtained by Riley and Laurence is the same as that acquired by
Hall[21]. Davis[23] developed the notion of the quasi-steady limit by showing that a
modulated inner cylinder destabilizes flow. Under extremely low frequency, the critical

stability value of a flow declines to 1/(1+¢) of the non-modulated situation. Carmi

and Tustaniwskyj[24] examined ‘modulated flow stability under small-gap conditions
and the influence of axis symmetry on modulated flow. In their study, the unstable
offset of the critical Reynolds number increases at low frequencies. At medium-to-high
frequencies, no stable critical value appears..Walsh-and Donnelly[11] analyzed the flow
between inner and outer cylinders with different radii using the photo voltage of
observation particles. They determined that the critical Reynolds number has a
relatively large offset at low frequency. In conclusion, a critical Reynolds number lower
than the theoretical value indicates that the flow is temporarily unstable, but not
permanently unstable. Therefore, the stable critical value is lower than the theoretical
value at low frequency.

Walsh et al.[25] measured the critical Reynolds number for concentric cylinders
with different radius ratios and, multiplying the result by a factor, obtained roughly the
same value as that calculated by Carmi and Tustaniwskyj[24]. Kuhlmann et al.[26]
utilized a low-dimensional model to examine the stability of circular Couette flow and

Taylor vortex flow under instability. They found that a large modulated amplitude



causes subharmonic perturbation. Ganske et al.[27] used a static outer cylinder and a
modulated vortex flow in the inner cylinder to investigate the influence on stability of
different amplitudes. They demonstrated that the modulated effect causes the flow to
become increasingly unstable, and that the effect of amplitude on flow stability is
significantly more important than the effect of frequency. When the amplitude is large,
the unstable effect increases and the critical stability value declines further. Meksyn[28]
used numerical methods to predict the occurrence of instability when the inner and outer
cylinders rotated in either the same or opposite directions. Sparrow et al.[29] also
applied numerical methods to investigate the same and opposite flows around inner and
outer cylinders for a radius ratio of 0.95-0.1. Youd er al.[30], who analyzed
zero-equivalent modulated flow raround concentric cylinders with a radius ratio of

n =0.75, identified the axis symmetry of the Taylor vortex.

After the Taylor vertex problem had approached nonlinearity for many years,
Coles[31] brought it decisively into nonlinearity in-reporting the non-uniqueness of the
wavy flow in the Taylor-Couette flow. The entire pattern of wavy vortices moves with
uniform velocity in the azimuthal direction. Because the term “wavy” is typically
associated with a motion that has periodic vertical oscillation, this study emphasizes that
wavy Taylor vortices move in the azimuthal direction as rings that have an integer

number k, of fixed sinusoidal upward and downward deformations (%, is the integer

number of azimuthal waves). An example of a wavy Taylor vortex flow, as observed by
Taylor[2], Lewis[32], Coles[31], and Schultz-Grunow and Hein[33], was not recognized
as a characteristic new feature of the flow. After Coles’ preliminary results were
published, wavy vortices were also observed by Nissan et al.[10]. Schwarz et al.[9]

reported experiments in which they observed an asymmetrical mode with &, =1.

Burkhalter and Koschmieder[6] concluded that the wavelength of axisymmetrical



vortices with large radius ratios is independent of the Reynolds number in fluid columns
of infinite length when the Reynolds number increases quasi-steadily. However, the
wavelength of Taylor vortices is constant only as long as the flow is quasi-static.
Jones[34] reported the stability boundary for wave number « =3.13, the critical value

of a quasi-static transition, for a wide range of 7.

Although Taylor analyzed the flow under supercritical conditions, Stuart[35]
concluded that the vortex size remains unchanged above the critical Reynolds number.
However, numerous studies (see Ahlers et al.[36], Andereck et al.[37], Park et al.[38],
Burkhalter and Koschmieder [6, 39], and Antonijoan[40]) have demonstrated the
importance of acceleration/deceleration in determining the final state of the flow. These
vortices have axial wavelengths that are shorter or longer than those obtained after a
quasi-static transition. This study-demonstrates that the lowest stability boundary occurs
at the critical wavelength of a quasi-static transition-and also in another. These solutions
are connected with standard Taylor vortices and can be obtained quasi-statically for

certain radius ratios when using.a mechanism to modify the axial wavelength (see Ref.

[41]).

1.3 Objective of This Study

The literatures reviewed above describes the transition between Couette flow and
supercritical Taylor vortex flow through experimental and theoretical work. However,
the lowest-stability boundary between supercritical axisymmetric Taylor vortex flow to
wavy vortex flow for different wave numbers and for various radius ratios is not clear.
In this study, therefore, we will pursue the objective of the lowest stability curve for
Taylor-Couette flow. This results will be compared with previous experimental and

theoretical research.



Chapter 2 Instability of Non-modulated and Modulated

Circular Couette Flow

2.1 General Features

This study analyzes both fluid flow of rotating cylinders and the stability of
modulated Couette flow by using numerical methods, under different modulated
amplitudes and frequencies, the unstable behaviour caused by fluid flow and the
influence to become a Taylor vortex flow is also studied. To investigate the change in
stability of a modulated Couette flow, Floquet theorem is used with numerical methods.
The amount of perturbation motion is divided into two progressions of time and space.
Galerkin and Collocation techniques are then utilized to transform the perturbation
motion formula into an algebraic- Eigenvalue problem. Then QZ method is applied to
solve the Eigenvalue problem. The factors of instability are determined by these

Eigenvalues.

2.2 Numerical Procedures
Figure 1 presents the physics model examined in this study. The two unlimited long
vertical and concentric cylinders are full of viscid fluids. The outer cylinder remains

static and the inner cylinder rotates at Q, (1+&coswt). When the inner cylinder rotates

at a fixed speed (& =0) that is very low, the flow between cylinders is one-dimensional
and stable. The fluid particles wind around the centre in a circular motion and is called a
circular Couette flow. When rotational speed is increased to a critical value, the flow
becomes unstable and forms a two-dimensional stable flow. At that time, the particles
wind around the centre in toroidal motion; this is called a Taylor vortex flow (TVF).

When the inner cylinder rotates in a modulated manner (& # 0) and average rotational



speed is very low, the flow remains one-dimensional; this is called a modulated circular
Couette flow. When average rotational speed is increased to the critical value, the flow

becomes unstable and is transformed into a two-dimensional flow. This critical

rotational speed is affected by modulated amplitude ¢ and modulated frequency o .
For the convenience of problem analysis, we assume the working fluid is Newtonian

fluid. Except for density, all other physical properties are fixed. The change in fluid

density satisfies the Boussinesq approximation for gravity and centrifugal force; other

items are ignored. The loss of fluid viscidly is also ignored. The governing equations

are as follows:

Continuity equation :

L0y )4 L2 OV o 2.1)
r or r o0 oz

Momentum equations :

6\/, +v %+V_9%+V %:_la_p+v|:(v_Ljvr _ia‘}r:| (22)

o0 "or r 00 . oz 0 -OF r’ > 00
8v9+Vr8v9+v_98v9+v28v5+vrv9=_ 1 8_p+v(v_ng_£6v,
ot or r 06 0z r p-r ol r’ r’ 00

(2.3)

8VZ +Vr%+v_‘9%+‘;z%: —la—p+vVvZ (24)
ot or r 06 oz p Oz

Boundary condition :

r=R : v =v =0, veleQl(l+ecosa)vt) (2.5)

0,10 18 &

= +——t— + 2.6
or* ror r*oe* oz° (2-6)

\%

where, p is density and v is the dynamic viscosity coefficient. Figure 2 presents



the definitions of coordinates. the following parameters to make governing equation

dimensionless:
R VA ‘0 RQ.d
r=—, z=—, rziz, a)=d @ , Re, =—"- 2.7)
d d d 1% v
= d = = d = d?
Vr:Vr N VHZV‘Q_, Vz:vz 5 P=p 3
v 1% v pv

where d =R, —R,.
When inner cylinder rotates in fixed speed and the rotational speed is very low, the

flow of cylinders is one-dimensional stable status and is called circular Couette flow. At

that moment

V,=0, Vo= Vzg(r,r),

AT

:=0 (2.8)
It is then substituted into_dimensionless equation. After the simplification, the

following is obtained:

dve (d* 1d. 1)-
B B L A 7 2.9
dr (dr2 rdr rzj ’ 29)

Boundary condition:

U

r=—-—

" r = I;z =0 1;9 =Re,(1+ gcoswr) (2.10)
n

<

7‘=—1 *=I;H=I;z=0
1-7n

<

from the equation above, we can solve and get:

= 1_ N
Va(r,f)=—77l(_n727)r+ (1—77277X1—77)r '+

KI(SFZ)II(SI")—II(SFZ)KI(SF) ior
Real{g Il(srl)Kl(srz)_ll(srz)Kl(srl)e } @10

1 .. .
where s=+io * 1= " T and r, = are the position of inner and outer
n



cylinders respectively. I, and K, are respectively the first and second kind first

order modulated Bessel functions.

According to the study by Carmi and Tustaniwskyj[24], axial symmetrical status is
easily become unstable than axial asymmetrical status. Therefore, this study only
considers disturbance as a symmetrical status. When the average rotational speed of a
one-dimensional modulated circular Couette flow exceeds the critical value, the flow is

transformed into a symmetrical two-dimensional flow. This flow can be considered a

one-dimensional flow (0,1}9,0, ]_’j plus a disturbance (V;,VH',VZ',P'). At that moment,

0/06 = 0. After substituting into the equation, simplification and ignoring the nonlinear

items, the following disturbance equation is.obtained:

Continuity equation:

L (e )ev: =0 (2.12)

r or

Momentum equations:

| - ov V.V, | .
aV’+Rel p o 2VoVs i oF V—izV, (2.13)
or 0z r or r
ov, Vo Vol . = o, ,
% | Re, Vo Vo V4V, —2|= (v-iz)Vg (2.14)
or or r 0z r
ov. V. - oV o
=+ Re,| V. or +V.—= :—ai+VVz (2.15)
or or 0z oz
Boundary condition:
n , \ \ 1 : , ,
r=—1l_ . V' =V, =V =0, r=—— : V. =V, =V =0 (2.16)
l-n -7

The variables P and V. in Egs. (2.12) - (2.15) can be cancelled out from algebraic



operation, and we can obtain

{8( AR aV)(a+lj}V;—£(Re12Vg)-a—%:(V—lJan”l
r Oz

oz dr-0z or-or or \or oz r =

(2.17)

&, +Re, Ve Vo yil= (v-izjlfg (2.18)
or or r 7

V. is the fourth order differential equation of 7, and the boundary conditions are:

Codv,
r=—t_ .y =Sy 20 (2.19)
-7 dr
PR )
l-n dr

The disturbance equation is.the differential equation of time and space. Furthermore,
time and periodic coefficients are included in the equation. According to Floquet theory
(Coddington and Levinson[42]]), the time item for disturbance can be divided into time

and an index function, which increases over time. If the disturbance equation is
described in normal mode, disturbance (V,',Ve',) in the equation can be assumed in the
axis direction and periodically distributed. Additionally, the index function increases

over time, and the disturbance amplitude uses time and space as its function. The

disturbance terms can be represented as

{V} _ [f (r, T)}emmz (2.20)

v, Le(r7)
where « is the axial wave number, and o is the growth rate of a complex
disturbance. The stability of basic flow can be determined by the real number of the

growth rate of a complex disturbance. When o, <0, the entire flow is stable. The

disturbance declines as time increases. When o, >0, the disturbance increases over
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time and the flow becomes unstable. When o, =0, the flow has neutral stability. The

characteristic value of flow stability can be determined using the disturbance growth
rate o in the characteristic equation.

This study utilizes the spectral method (Canuto ef al.[43]) to transform the
characteristic equation into an algebraic characteristic equation. The QZ numeric
method is then applied to solve the characteristic value of this equation group.
According to the Floquet theory, [f(r,7), g(r,7)] represents the disturbance value. The
second orders of time and space are expanded. Time is expanded via a complex Fourier

series of period 27/w. Space is expanded by the first type n orders of Chebyshev

polynomial (Fox and Parker[44]). The definition of Chebyshev polynomial is

T,(¢)= cos(n-cos_1 g‘) (2.21)

The defined domain ~.of # —in -the original equation is transformed from
n/ (1 - 77) <r<l/ (1 - 77) to —1<&<1 through the relational equation

E=2r- (1 +7)/ (l - 77) . The amplitude 1 normal mode can be expressed as

)= Ya, ¥, (e (2.22)

g&0)= > bt (E)e (2.23)

where a,, and b, are unknown coefficients, and ¥, and ¢ are basis functions.

The definition of the basis functions are as follows:

2 2
T, —%Tz +(%—1]To for even n
Y = - 24 n>4 for odd (2.24)
Tn_ng— T}J{n 8— _IJTI or odd n
T -T, for even n
@, = n>2 (2.25)
T, -1, for odd n
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The Galerkin and collocation methods are applied to make the characteristic equation
discrete, and can be represented by a matrix such as
AY =5 BY (2.26)

where o is the characteristic value used to determine flow stability in this study.
- All A12 - Bll BlZ - gl
A:|:A21 4% , B= B¥ pB% , Y= l; (2.27)

2.3 The Result of Non-modulated Effect on Couette Flow
Table 1 shows experimental results. The flow generates an unstable critical value

and average experimental value of Re, = 68.75. Compared with experimental results

obtained by other studies, the error rate 1s <-1.18%. If error deviation is added, then the

critical value is Re, = 68.75£1.1. The experimental results acquired by other studies

are within the error range in this experiment. The experimental result is the
experimental foundation of the 'modulated Couette flow. For measurement of wave
number «, only the total length of 10 cells in the middle of the flow (equivalent to the
total length of five wavelengths) were examined to avoid influence from upper and
lower boundaries in the experiment. The vortex size is averaged and then its
wavelength 4 is calculated. The precision of this measurement is within 0.1mm. Then,
the wavelength is calculated by A =27/«.

Table 1 shows the average wave number, which is « =3.19. The theoretical value
calculated for unlimited length is « =3.17. The error between the experimental result
and theoretical value is < 0.6%. Additionally, this experiment also examined different
aspect ratios, including /4 =24, 20 and 16. The experimental result does not change
obviously and the critical Re is within 68.75+1.1. Therefore, the aspect ratio does not

have a significant effect on the aspect ratio; this is the same experimental result obtained
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by Cole[14].

2.4 The Result of Modulated Effect on Couette Flow

Under a modulated effect, the inner cylinder rotates with the Qi(l1+&cosw?)

period. The stability of the modulated Couette flow is primarily affected by modulated
amplitude and modulated frequency. This study analyzed different aspect ratios, upper
and lower boundaries to determine how they affect the modulated Couette flow. To
compare modulated effect with the non-modulated effect, the change rate of the critical

Re; is defined here; A=(Re,—Re,)/Re,, A>0 represents the modulation has

stabilized.

The experimental value«was obtained using the optical measurement method and
flow observation method. The solid line on Fig. 3(a) is the theoretical result. At a low
frequency, when A <0, the critical Re is lower than that for a non-modulated effect.
The result demonstrates-that the modulated effect has an unstable effect on flow.
Additionally, when the frequency continues to decrease, A approached the quasi-static

limit —¢/(1+¢). At a medium-to-high frequency, A increases as frequency increases.

Generally, in this frequency range, the modulated effect destabilizes the flow. As
frequency decreases, destabilization increases.

The error of result in this experiment and theoretical value are relatively large at a
medium frequency (Fig. 3(a)). At a high frequency, A approaches but remains slightly
lower than 0. At that moment, modulated frequency has slightly destabilized the flow.
Figure 3(b) presents the curve of medium stable critical Re at different modulated
amplitudes. When the flow is unstable, the disturbance has three statuses. For any

amplitude, disturbance o, =0 at a low frequency is synchronous. After the flow

becomes unstable, the frequency of the flow and base status are the same. As frequency
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increases, disturbance changes to a quasi-periodic state. At that moment, o, #0 and

the ratio of the flow frequency to base status frequency is not a rational number. When

the frequency increases to an ultra-high frequency, o, is multiple times the base status

frequency. At that moment, disturbance returns to synchronous.

Figure 4 shows the relationship between relative variable A of the Re and
amplitude under different frequencies. The solid line in the graph is the experimental
result derived using the numerical method. The dotted line in Fig. 4(a) is the

quasi-steady limit —&/(1+¢)when @ — 0. At an extra low frequency, if the amplitude
is high, destabilization is also high. If the critical Re approaches Re /(1+&) when

frequency is @ = 0.063, amplitude increases from 0 to 1.0, and the variable A of the
Re; gradually decreases to around —0.5. Additionally, based on the graph, the

experimental result and-quasi-static ‘limit —g&/(1+¢) are extremely close. When the

modulated frequency is® @ =0.628 ‘and @ = 6.28 (Figs. 4(b) and 4(c), respectively),
the relative variable A of the Re; will decrease as modulated amplitude increases.
When the modulated amplitude is high, the relative variable A of the Re decreases and
the flow becomes increasingly unstable. However, the degree of instability is lower than
that at a low frequency.

At a high frequency (Fig. 4(d)), when modulated frequency is w=062.8, the
different modulated amplitude does not have a significant effect on relative variable A
of the Re. The modulated amplitude does not significantly influence flow stability.

For different radius ratios 7, Fig. 5 presents the experimental result obtained by
this study and Walsh ef al.[25]. The graph includes different radius ratios 7, which
include 7 = 0.4833, 0.719, 0.88, and a modulated amplitude of 0.5. Regardless of the

radius ratio, the stable critical value increases as frequency increases, and approaches a
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stable critical value Re, under the non-modulated effect. At a low frequency, the
stable critical value approaches Re /(1+¢).

This study investigated the influence of several aspect ratios 4 on the stable
critical value. Figure 6 presents numerical results. When aspect ratio /# decreases, A
also decreases and flow destabilization increases. When frequency is high, the rate
reduction is obvious.

This experiment chose three different cylinder boundary conditions: fixed on sides,
top free bottom fix, and top rotate bottom fix. The aspect ratio is /4 =24. Figure 7
presents the numerical result. The measured results for the three conditions are similar.
The flow is not affected by the upper and lower boundaries. The possible reasons are
that measurement points for the optical measurement method are at the middle of the
cylinder and the aspect.ratio is sufficiently large. Therefore, the effect caused by
boundaries near measurement points is extremely small.

For the non-modulated effect, the experimental result for wave number of the stable
critical value is « =3.19. When the flow is modulated, the flow observation method is
used to measure the wave number when flow exceeds a stable state, and determine
whether the wave number changes under a modulated effect. Figure 8 shows numerical
results. The wave number first decreases as the modulated frequency increases. The
wave number is not a fixed value and changes for different modulated frequencies. The
degree of change to experimental data is not as large as the theoretical value; however,
the tendencies are the same.

Figure 9 presents the relationship between critical wave number &, and frequency

for different radius ratios and modulated amplitudes. When the flow transforms
disturbance from synchronous to quasi-periodic, a discontinuous point exists at

amplitude. The axial wave number increases as modulated frequency increases. When
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the frequency exceeds the first discontinuous point, axial wave number suddenly
decreases and then increases again. When the axial wave number reaches a maximum
value, the critical Re also reaches a maximum value, the decrease as modulated
frequency increases. Finally, the axial wave number approaches the value of
non-modulated rotation at an extra high frequency.

Figure 10 presents the relationship between the Re; and frequency when amplitude
is (a)¢ =1 and (b)e =2 under different radius ratios 7. When radius ratio 7 is
small, the change to the critical Re under medium-to-high frequency becomes steep; at a

stable status, the offset is large.
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Table 1 Comparison list of results from this study and other scholars under the condition

of a non-modulated Couette flow

Aspect Radius  Critical  Wave
Study method
ratio ratio value number
h n Re, a
Huang[45] Flow visualization and 24 0.4833  68.75 3.19
Optical method
Torsion measurement
Donnelly[3] 4 0.5 68.28
method
Donnelly[46] Flow visualization 5 0.5 68.57 3.10
Simon and Torsion‘measurement
5 0.5 68.23
Donnelly[4] method
Sparrow et
Numerical method Infinite 0.5 68.19 3.16
al.[29]
Present Numerical method Infinite 0.4833 6794 3.17
Present Numerical method Infinite 0.5 68.186 3.16
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Figure 3 (a) The relationship of relative variable A vs modulated frequency is showing under modulated effect ¢ =1
(b) A chart showing the variation of Re; on different modulated amplitudes vs frequencies. (17 =0.4833)
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Figure 4 Relationship between relative variable A of the Re; and amplitude under different modulated effects.
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Figure 5 Different inner and outer radius ratios, and the relationship between critical Re and frequency.
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Figure 6 Influence of aspect ratio (h) on variable A of the critical Re (see Huang[45]).
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Figure 8 Relationship between wave number of the modulated Couette flow under a stable critical number and modulated frequency;
upper and lower fixed boundaries are £ =0.5and 7 =0.4833, respectively.
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Figure 10 Relationship between the relative variable of the critical Re and frequency under different radius ratios.
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Chapter 3 Taylor Vortex Flow

3.1 General Description of the TVF

Fluid motion between two concentric rotating cylinders is often investigated in the
field of fluid dynamics. This section uses numerical methods to analyze and simulate
flow patterns and relevant flow characteristics between two concentric rotating
cylinders. Coles[8] was the first researcher to definitively consider Taylor vortex flow to
be nonlinear, although several researchers had previously speculated that the Taylor
vortex problem could be solved by considering nonlinear flow. Donnelly[47] and Hu[48]
experimentally analyzed modulated flow stability. When the outer cylinder remains
stationary and the inner cylinder rotates periodically, parameters such as interval,
rotational frequency, and the modulated amplitude of the two cylinders can be varied to
determine how the flow is affected by modulated rotation. Hall[21] utilized linear
theory to determine low and high frequencies and used nonlinear theory to analyze the
flow under a high frequency: Carmi and Tustaniwskyj[24] examined modulated stability
under a limited gap and the influence of axial symmetry and asymmetry on modulated
flow. In a former study, it was shown that the critical Reynolds number exhibits an
increased unstable offset under low frequency. Marques and Lopez[49] and Lopez and
Marques[50] introduced and studied more cases of time-modulated Taylor—Couette
problems in which the inner cylinder moves periodically along the axial direction. Youd
et al[30, 51], who analyzed zero-equivalent modulated flow around concentric

cylinders with a radius ratio of 7=0.75, defined as 7=R,/R, where R, and R,,

are the inner and outer radii of cylinders, identified the formation of reversing and
non-reversing modulated Taylor—Couette flow. The main objectives of the study

investigate the instability of modulated Taylor vortices flow by utilizing a numerical
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method. It is practical to focus attention on the transition based on varying modulated

amplitudes and frequencies.

3.2 Numerical Method
3.2.1 Model description

The flow is described by the incompressible, three-dimensional Navier-Stokes
equations with cylindrical coordinates (R, €, Z) in an absolute frame of reference
according to the velocity-pressure formulation. The dimensionless factors », z are

the radial and axial coordinates, 7 1is the time and @ is the modulated frequency with

corresponding dimensional quantities are ¢+ and @ ; Re is the Reynolds number of

the inner cylinder and « is.the axial wave number; the velocity components and

pressure are V., Vo, Vz:,jand P.

3.2.2 Governing Equations

The basic flow type is ‘the one-dimensional Couette flow with the modulated
amplitude and frequency of azimuthal velocity between two concentric cylinders. Then
the inner cylinder rotates with the increasing Reynolds number Re, and the outer
cylinder is considered to be at rest under all conditions. The dimensionless

Navier-Stokes and continuity equations are as follows:

6_V+(;.vj;:_v13+iﬁ, V.V =0 (3.1)
ot Re

where V = (Vr,VH,sz . The time scheme is semi-implicit and second-order
accurate. It corresponds to a combination of the Crank-Nicolson scheme (for the linear

term) and an explicit Adam-Bashforth scheme (for the nonlinear terms).

37



Cole [14] demonstrated that cylinder height does not influence the critical point for
transformation from a Couette flow to a Taylor vortex flow unless the aspect ratio
between cylinder height and interval is less than 8. We assume infinite cylinders and a

periodic solution in the axial direction. The boundary conditions are

rzli . V,=V.=0, Vo =Re,(l+ccosor)

re—— V=0 (3.2)

n
1

n
where ¢ and @ are the modulated amplitude and frequency, respectively.

The flow velocity and pressure profile of the Taylor vortices can be regarded as a

one-dimensional flow with a perturbation and can be expressed as:

V,=0+V (r,z,7) (3.3)
Vo=Volro)+ Vil z7) (3.4)
V.=0+V.(r,z7) (3.5)
P=0+p(rz7) (3.6)

The perturbations are determined using a pseudo-spectral Fourier-Chebyshev
collocation method, taking advantage of the orthogonality properties of Chebyshev
polynomials and assuming exponential convergence (see Daoyi and Gerhard H.[52],

Speetjens and Clercx[53]).

X M-1N+1
V, =224, W, (&)cos maz (3.7)

m=0 n=2

. M-1IN+1
V, = B, (r ; (f)cosmaz (3.8)

m=0 n=2

, M N+1
V.=>>C,.(c)8,(&)sinmaz (3.9)

3
I
—_
=
I
[\S]
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M-1N-1

p' = ZZDmn(r)Tn((f)cosmaz (3.10)

=0

(=}
=

o
Here, M and N are the number of terms in the Fourier series expansion and

Chebyshev polynomial expansion, respectively, and A B C,,and D are

mn 2 mn > mn >

amplitude coefficients. The definitions of 7, and ¢, are listed in section 2. I;a(r,r)

is the velocity of one-dimensional Couette flow.
Substituting Egs. (3.3)—(3.6) into the Eq. (3.1), the equations are transformed into an

algebraic equation, which can be expressed as a matrix equation:

All 0 0 A14 Amn E
. o 0 4, 0 0 B, F,
AX'W =F"7, A= , X = , F = (3.11)
A33 A34 Cmn F3
A41 0 A43 O Dmn 0
where A is a matrix of coefficients and vector X =(4,,.B,,.C,, .D,, ) . The

unknown values of vector F , F =(F1,F2,F3,O)T , are the summation of radial,

azimuthal and axial velocity components for linear term at time ¢, and nonlinear term

at time ty-
A4, = {I—Q(Dz +lD—mzoz2 —%ﬂ@
r r
4, :dT(DTn)
A,, = 1—ﬁ(z)2 Ao —izﬂ;zﬁn
r r
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n mn

F = {1—%(D2 Apoma —Lj}é A’ —%(3R’V,'j —Rj"llf,fj_l,cosmaz)

n mn n mn

ni -l de( -7 ; -/ -
-—WBV,” =V, ,cosmaz e 6Vog, B —-2Vo ¢ B

n mn

F, = [1—%(D2 +lD—m2a2j $.C/ —%(3R-"Vz"j —R-"’le'jfl,cosmaz)

where -2 4 =D", "=V,'j£+VZ'ji and
or" dé" or 0z
o raln
(frg)=rfog="—], g
T almw

The coefficients 4 . B . C

mn mn mn

and D, .are determined iteratively until the

convergence condition is satisfied. 'When the inner cylinder rotates with a fixed

rotational speed, the convergence condition is

<10 (3.12)

XJ+1

‘X-’” _x/

We adopt the tolerance (10™*) to avoid the computation process becomes time
consuming and larger error ratio compared with those obtained by Jones [54]. When the
pressure coefficient is converging to the tolerance (10, the other coefficients in
velocity components had been converging and lower to the tolerance (10™). The
coefficient that satisfies the convergence condition is substituted in the appropriate
equation among Eqgs. (3.3)—(3.6); the speed and pressure in each time interval can then

be determined. If the cylinder rotates periodically, the largest value of axial speed
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attained in a particular time interval at a selected observation point in the flow is
compared with the axial speed in the preceding time interval, the convergence condition

is
—VZ <107 (3.13)

where i is the periodic counter. If the difference is less than 107, then the

convergence condition is considered to be satisfied.

3.2.3 Model Validation

Prior to the computation of the flow field, we analyze the degree of accuracy, which
serves as the basis for the post computation. In theory, the greater the number of terms
expanded, the higher is the accuracy; however, the limit to the increase of the number of
terms will come from the round-off error and the computation process becomes time
consuming. Therefore, the best option is to-use the expansion with the least number of
terms for which a certain dégree of accuracy can be guaranteed. The results computed
from the expanded number of terms, M and N in the computation mode of Taylor
vortices, were compared with the results obtained by Jones[54] when the inner cylinder
rotated at a constant velocity. Jones[54] used the Taylor number to obtain the rotating
velocity of the inner cylinder, as shown in Table 2. For a low Re value (Re = 72.5),
the radial velocity at the point of observation can be converged with the expanded terms
6 x 6. The difference ratio compared with the expanded terms 6 x 6 and 7 x 7 is
converging to 0.19%. However, for a high Re value (Re =259.8), the radial velocity
at the point of observation can be converged with the expanded terms 10*10. The
difference ratio compared with the expanded terms 10 x 10 and 11 x 11 is converging to

0.14%. These results are in agreement with those obtained by Jones[54]. For the
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computation in this study, both M and N were expanded to 10 terms.

3.3 The Onset of Taylor Vortices under Modulated Effect

Fig. 11 presents the relationship between offset A and modulated frequency w.
At a low frequency, the modulation effect has significant and unstable effect on flow.
This experimental result agrees with the experimental result obtained by Carmi and
Tustaniwskyj[24]. Under the same conditions, the value acquired by numerical
calculation and the experiment value are compared. At an extremely high frequency, the

offset approaches 0, indicating that the critical Reynolds number Re, approaches the
critical Reynolds number Re, under a non-modulated effect. As the modulated

frequency decreases, the calculated result becomes similar to that acquired by Riley and
Laurence[22]. However;. the difference between the experimental value and linear
theoretical value increases.

Figure 12 shows a graph of the relationship between the rotating outer and inner
cylinders. From experimental observations, When the inner and outer cylinders rotate,

the critical Reynolds number Re, of the inner cylinder increases as Re, increases.

The derived critical Reynolds number is slightly higher than the theoretical value.
However, the error is only about 5%. When the inner and outer cylinders rotate in

opposite directions, the Reynolds number Re_ of the inner cylinder also increases as
Re, increases. However, the slope is smaller than when the cylinders are rotating in
the same direction. The critical Reynolds number Re, obtained experimentally agrees

with the theoretical value.

Figure 13 shows the radius ratio 7 = 0.937; inner cylinder Q, = él; outer cylinder

rotating with a non-zero mean modulated rotation Q,=g-Q, cosw? ; different
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amplitudes, ¢ =0.5, 1.0 and 1.5; and the effects of experimental and theoretical values
under different modulated frequencies on critical Reynolds number of the inner cylinder.
The graph shows that the critical Reynolds number offset A of the inner cylinder
approaches 0 at a low frequency. The A value then increases as frequency increases
until @w~0.8, and A reaches the highest value. Then A value decreases as the
frequency increases. The A approaches 0 again at a high frequency.

In Fig. 14 and Fig. 15, the outer cylinder is fixed and amplitude of the inner cylinder
is modulated at £ =1 and & =2, respectively. The axial speed changes with time at

different values of Reynolds number and modulated frequency when & =0.5. For low

frequency, the dimensionless time t becomes time consuming to obtain the iterative
convergence under different Reynolds number. But for high frequency, the computation
process is rapidly converged. When the inner cylinder rotates at low frequency, the flow
has sufficient time to change with the velocity. Once the rotation speed of the inner
cylinder exceeds the threshold value for one=dimensional flow, the flow is transformed
from one-dimensional circular Couette flow to axisymmetrical Taylor vortex flow.
When the instantaneous Reynolds number reaches the maximum value, the Taylor
vortex flow disappears in process of time; this phenomenon is referred to as transient
stability, as shown in Fig. 14(a)~(b) and Fig. 15(a)~(b). With an increase in the
modulated frequency, transient stability disappears because a Stokes layer is produced
near the wall. The flow beyond the Stokes layer cannot completely reflect the velocity
change in the inner cylinder (Figs. 14(c), 15(c)). Meanwhile, we can employ a larger
Reynolds number and ensure that Taylor vortex flow occurs at an earlier time period.
The plots in Figs. 14(d), 15(d) show the flow sustain the more stable Taylor vortex flow
at high frequency. It is worth noting that subharmonic flow exists at intermediate and

high frequencies when £=2, as shown in Fig. 15(c). However, no such flow is
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observed when & =1. The phenomenon is similar to Youd et al.[30, 51].

3.4 Conclusion

This study used numerical analysis to investigate the behavior of flow between two
concentric cylinders. The unstable Couette flow was transformed to Taylor vortex flow
by considering the flow under non-zero averaged rotation speed at different modulated
amplitudes and frequencies. In general, the flow generates larger instability at
low-frequency modulation. At intermediate and high frequencies, the flow instability
shows a gradually decreasing trend; when the modulated amplitude is sufficiently large,
the period of flow at intermediate frequency is twice that of the rotational period of
cylinders, which is 47 /@ of subharmonic flow.

In addition to the modulated eftects will affect the instability of Taylor vortices flow,
most of the unstable state of supercritical Taylor vortices flow between concentric
cylinders are the wavy. form, so-called Taylor wavy vortices, at higher Reynolds
numbers of the cylinders. The.transition from Taylor vortices to wavy vortices takes
place via a number of intermediate flow form, and this paper will be a milestone to

investigate the phenomenon of Taylor wavy vortices.
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Table 2 Radial velocity at the point of observation (&£ =0, z=0) for 7 =0.5as the outer

cylinder is fixed and the inner cylinder rotates at a constant velocity. The

definition of 7, is represented by 7, =2(1—7)Re’/(1+7)

Re 72.5 106.1 150 212.1 259.8
(Ta ) (3500) (7500) (15000) (30000) (45000)
MxN
4 x4 4.6991 17.5775 - - -
5x5 3.9956 17.1988 30.5700 41.92323 -
6%x6 4.2333 17.8566 32.8350 52.7493 67.0024
7x7 4.2253 17.9733 33.5851 52.8491 69.8342
8§ x8 4.2340 17.9840 33.5712 54.9975 70.7955
9%x9 4.2376 17.9733 33.6452 55.5914 71.8347
10 x 10 4.2354 17.9840 33.6900 55.6550 72.2764
11 x11 4.2347 17.9840 33.6754 55.6763 72.3803
12 x 12 4.2354 17.9840 33.6754 55.6975 72.4063
13 x13 4.2354 17.9840 33.6754 55.6975 72.4063
Study of
4.2336 17.9733 33.6768 55.7187 72.2764
Jones[54]
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Chapter 4 Transition to Wavy Vortex Flow

4.1 The Second Transition of Taylor-Couette Flow

After the Taylor vortex problem had teetered on the brink of being classified as a
nonlinear problem for many years, Coles[8] was the first to report on the nonuniqueness
of the wavy flow in the Taylor-Couette flow. The entire pattern of wavy vortices moves
with a uniform velocity in the azimuthal direction. Since the term “wavy” is typically
associated with motion that includes periodic vertical oscillations, this study emphasizes

that wavy Taylor vortices move in the azimuthal direction as rings that have &, fixed

sinusoidal upward and downward deformations, where k, is an integer number of

azimuthal waves. Wavy Taylor vortices: were observed by Taylor[2], Lewis[32], and
Schultz-Grunow and Hein[33]; however; they were not recognized as a characteristic
feature of the flow. After Coles’ preliminary results were published, wavy vortices were
also observed by Nissan et'al.[10].

Burkhalter and Koschmieder[39] found thatin.the case of large radius ratios, the
wavelength of axisymmetrical vortices is independent of the Reynolds number in fluid
columns of infinite length if the Reynolds number in such fluid columns increases
quasi-steadily. Jones[34] presented the stability boundary for a wavenumber of 3.13, the
critical value for a quasi-static transition, for a wide range of radius ratios. Jones [34]
considered the problem of calculation of nonlinear axisymmetrical Taylor vortices. A
spectral method combines with Newton-Raphson iterations was used to solve the
nonlinear algebraic equations. While Taylor’s study analyzed such flow under
supercritical conditions, Stuart[35] observed that the shape, i.e., the size, of the vortices
remains unchanged above the critical Reynolds number. Numerous studies (see Ahlers

et al.[36], Andereck et al.[37], Park et al.[55]) have demonstrated the importance of
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considering the acceleration/deceleration of the flow in determining the final state of the
flow. These vortices have axial wavelengths that are different from those of vortices
observed after a quasi-static transition. The study demonstrates that the stability
boundary occurs at a critical wavelength corresponding to the quasi-static transition in
addition to another wavelength. These solutions are related to the standard Taylor
vortices and can be obtained quasi-statically for certain radius ratios when a mechanism

is used for modifying the axial wavelength, see [36].

4.2 Numerical Method
4.2.1 Model Description

The system geometry is specified by the inner and outer radii, R, and R,, of
cylinders with an infinite aspect ratio and the dimensionless parameter in the problem is

the radius ratio 77 = R, /R, The inner cylinder rotates with the Reynolds number Re,,
Re, =RQ,d/v and the .outer cylinder rotates with the Reynolds number Re,,
Re, =R,Q,d /v where v isthe dynamic viscosity, Q is the angular velocity of the
cylinders rotation and d = R, — R, is the gap of the cylinders, respectively. First, the

TVF is solved numerically. The velocity components and pressure profile of TVF are

solved previously in section 3.

4.2.2 Governing Equations
The stabilities of supercritical TVF are studied by introducing disturbances in the

TVE. This flow type is expressed as follows:

10T Vop)= (VW ol o 1 0 007p) @

where j_’ denotes the flow velocity and pressure profile of the supercritical TVF
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and f represents the perturbations. The equations employed for the analysis, only

out-of-phase wavy modes are investigated, of perturbations in normal modes are as

follows:
. 0 S+l
V.= z aq3¢é sm qaz - exp[0'7+z(k9+k z)] (4.2)
g=1 s=2
S+l
Vv, = quﬁ &)singaz -exp[ar+i(k10+kzz)] 4.3)
gq=1 5=2
0-15+1
Vv, = cqb¢§ Jeosqoz - -explor +i(k6 +kyz)] (4.4)
q=0s=2
) 0 S-1
p = z quTS(f)sinqaZ ~exp[0'z'+i(k1<9+kzz)] 4.5)
q=1 5=0

Here, Q and S are the number of térms in the Fourier series expansion and
Chebyshev polynomial expansion, respectively. /&, (an integer) and k, (areal number)
are wavenumbers of the perturbations in the azimuthal-and axial directions, respectively,

and a,, b,, c,,and d  are amplitude coefficients.
The dimensionless Navier-Stokes-and continuity equations are as follows:

0. f+ [V f=-VptAf, V-f=0 (4.6)

The boundary conditions are

£ =0 at r=—"— and po
I=n I=n

Substituting Eq. (4.1) into Eq. (4.6) and linearizing the dimensionless Navier-Stokes
equation, we can obtain the linear perturbation equations :

Continuity equation :

lg(ﬂ/’% 10V, +aV

p—

- - 4.7
r 00 0z (4.72)

v Oor

Momentum equations :
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ov, oV, - OV, VedV .oV, - oV, 2VeV,

~—+(, +V, =)+ ——+ (. +V.—")—
or or or r 00 Oz Oz 7
, | o
_oP . (v-izjm 2% (4.7b)
or r r:- o6
ov, +(Vr' oV _”}r 8V9)+Q8V5 +(VZ, oV +I}z 8V9)+ ViVy+V. Vo _
or or or r 06 Oz 0z r
oP' 1) . 20V
_ v, -2 4.7¢
00 {( 7’2]9 7’ ae} (79
ov. A ov - T 8VZ)+&8VZ s ov - LY. aVZ)z 8P LYV (4.7d)
or or or r 060 0z 0z 82

And the characteristic perturbation equations, which constitute a generalized

eigenvalue problem:

Ay Ag—Ay - Ay B, 0 0 0 Ay

AX —oBX . A= Ay F Ay Ay Ay . B= 0 B, 0 0 X = b,
Ay 0 Ay Ay, 0 0 By 0 Crs

Ay Ay A0 0O 0 0 0 d,,

(4.8)

Here, A and B are complex matrices that depend on &, and k,, and the

eigenvector X contains the amplitudes of the eigenfunctions.

M—-1N+

S+1

A, D¢, (E)cosmaz * ZZaqb (£)-singaz

m=0 n=2 q=1 s=2

M-IN+1 S+1
- ZZAmn¢n (é‘ cosmaz * ZZaqSDQ (f)-sinqaz

m=0 n=2 =] s=2

lk = M-1N+1 " Q0 S+1

—+ (V( )+>.>'B,.4 cosmaz) * > > a,0,(E) singaz

r m=0 n=2 =1 s=2

M N+1 0 S+l '
DMRAOTITNED » TRICE

m=1 n=2 gq=1 s=2
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Dk +1 ¢, g .
+(D2+—— — —k;jz a,4,(&)singez —q’a’

r r q=1 s=2
0 S+l
> > a,4,(&)-singaz
g=1 s=2
2 (= M-1N+1 R S+l
A12 = (V(l")"‘ an¢n (é)cosmazj * z Zb”¢s (g) Sin raz
r m=0 n=2 r=l s=2
0 S+1
2)1(1(2 Zqus¢s -sinqoz
q=1 s=2
M-1N+I O-1 5+1
A13 == (_ ma Amn¢n (é:)Sln maz] * c‘]5¢s (6) cos qaZ
m=0 n=2 q=0 5=2
0 S-1
A14 = _Z dquTv (é:) SIanZ
g=1 s=0
Q0 S+1
Bll = Z aqs¢s (5) SIanZ
g=1 s=2

m=0n=2

4, = [ N M-IN31 B,,Dg, (g)COSmaz} * i%aqﬁs (5) sin oz

M 1IN+ O S+l
ZZ cosmaz *ZZaqs¢s(§)-sinqaz
m=0 n=2 g=1 s=2
0 S+l
Zlk Z:i:aqs smqaz
g=1 s=2
M-1N+1 0 S+l
Amn¢5 cosmaz * ZquSD¢ smqaz
m=0 n=2 g=1 s=2

_ [lkl V(r) ' ﬁszﬂann¢n (é)COSmaZJ ' i %H bq3¢s (C"E) ‘sin 90z

r V=0 n=2 q=1 s=2
M N+l 0 S+l
->.2.C,.8,(&)sinmaz * [qaZqusqﬁs (&) cosqazj
m=1 n=2 q=1 5=2
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1 M-1N+1 S+1
-—— A, ¢ (&)cosmaz * Zqusqﬁ )-singaz
V' =0 n=2 q=1 s=2
2 S+1
+[D2+D k +1 JZquﬁ £)-singoz —q’a’
r q=1 s=2
S+1
Zqus(,lﬁs -singoz
g=1 s=2
M-1N+1 0-1 541
A4, = maZZan¢n (&)sinmaz * ZZcqs¢s(§)-cosqaZ
m=0 n=2 q=0 s=2
ik, 2 &l )
A24 = _7 ZquST;(é:)‘SlnqC{Z
g=1 s=0
O S+l
B, = z qu¢s(§) singaz
q=1 s=2
M N+l sS4l
A4, = —Z CmnD¢n smmaz * Z:Z:aqv sinqaz
m=1 n=2 q=1 s=2
M-IN+1 0-18+1
Ay, =-— Amn¢n( S Jcosmoz * ZZcqu¢ -cosqaz
m=0 n=2 q=0 5=2

_ [_ikl rir) + &AIZ_‘:%BW@ (&)cos mazj * % %cqﬁs (¢)-cosgaz

r V' =0 n=2 g=0 s=2

M N+1 0-1 S+1
—ma)..C,4,(5)cosmaz + Y Y c, ¢,(&) cosqaz

m=1 n=2 q=0 s=2

M N+1 0-1 S+1
—Z C,.9, (cf)sm maz * (— qazz%@ -sin qazj
m=1 n=2 q=0 s=2
2 0-1 5+1
+(D2+2—k—‘2—k§j 3 ¢, 8,(&) cosqaz —q’a’
r r q=0 s=2
0-1 S+1
¢y, (&) cosqoz
q=0 s=2
Q0 S-1
A34 = _qazqusTs (CJE) COSgaZ
g=1 s=0
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B33 = cqs¢s (5) - COs qaZ

Q
tn
b

S+1

Y
A, = % > > a,4,(&) singaz+> > a, D (£) singez

g=1 s=2 g=1 s=2

S+l1

ik, & .
Ap === 22 b,8.(¢)-singaz

q=1 s=2

0-1 5+1
A43 = _qazchs¢s (é:).sulqaz
q=0 s=2
2 2
where i=2i=D and a—2=22 dz =D?.
or dé or dé

4.2.3 Solution Method and Definition of Instability
The stability of the flow can be determined by the real part of the growth rate of a

complex disturbance. When wo, < 0, the entire flow is stable. The disturbance
decreases with an increasean time.-When .o, > 0, the disturbance increases with time

and the flow becomes unstableWhen_o,. =0, the flow has neutral stability.

The eigenvalue of the generalized eigensystem is obtained by using the subroutine
DGVLCQG in the IMSL library, which determines all eigenvalues with a high level of
accuracy. Re is searched on the neutral stable curve, i.e., the curve on which the real
part of the most unstable eigenvalue vanishes, using the secant method; this method
requires two initial guesses. The iteration is not terminated until the real part of the most
unstable eigenvalue is less than 107°. The Re values for different wavenumbers can
be obtained for neutral stable states. The minimum Reynolds number is called the

critical Reynolds number and corresponds to the critical wavenumber.
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4.3 Lowest Instability of the Wavy Vortices under Inner Cylinder Rotation which
IS Re,
Fig. 16 shows the numerical result (with &k, = 0) together with the experimental
data obtained by Ahlers et al.[36]. Each symbol (solid circle) corresponds to a solution

in their study (onset of the WVF at &, = 3). The range of wavenumbers considered is
2.6-4.0 and the range of Re/Re, 1s 0.8-2.0. Re, is the critical value of Re, i.e., the

value at which the TVF occurs. The model used in the present study assumes that the
wavy Taylor vortices are perfectly periodic in the axial direction and thus ignores the
end effects. This model is similar to that developed by Ahlers et al.[36].

A comparison of the model used in the present study with the models developed by
Park[38] and Jones[56] indicates «that "the . agreement between experimental and
theoretical values for &, =2isgood (see Table 3).

The plots in Figs. 17(a)=(1) show the stability boundaries at the onset of wavy Taylor
vortices with 4, in the range 1-3 in the parameter plane (a,Re/ Rec). Every plot has
been compared with the plots” obtained by -Jones[34], and good agreement has been
observed.

For # in the range 0.7-0.74605, the lowest stability of the transition from TVF to
WVF depends strongly on « , which is less than 3.13. For 7 =0.76 and 7 =0.78415,
the dominant transition occurs at k, = 3, which is below a certain . When 7 is
increased above 0.78415, a new transition curve with &, =1, for which « is equal to
approximately 3.13, represents the lowest stability boundary.

Fig. 18 presents the wavenumbers of the lowest stability boundary for various 7
values. For the transition from TVF to WVF, « is less than 3.13 for three sections: the

first section is 0.76 <7 <0.7842 with an upper branch of &, = 1, the second section
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is 0.7<7<0.7248 with k, = 2, and the third section is 0.7248 <7 <0.7842 with

k, = 3 (see Figs. 19). The critical Reynolds number shifts to values of « that are
substantially less than 3.13, i.e., waves are easily generated. Fig. 20 also shows the new
stability boundary curves for the transition from TVF to WVF and presents different

stability boundary curves for axisymmetrical TVF when 7 is lower than

approximately 0.7842.

4.4 The Lowest Instability Curve of the Transition from TVF to WVF under the
Condition of Concerntric Rotating Cylinders
The regime diagram of the onset of WVF was determined by Coles[8] (see Fig. 21).
The Coles’ result is a remarkable confirmation of Taylor’s[2] stability diagram for the
onset of axisymmetric TVF .as a function of the rotation rate of both cylinders. The
axisymmetric TVF will be transformed to WVFE when the rotational speed of the

cylinders exceeds the critical value Re_, the instability boundary will be changed with

different axial wavelength, rotational direction and speed of the cylinders. In this study,
we consider the case wherein 7 = 0.88, a = 2.7-3.5, and k, = 1-3, and we solve
the lowest instability boundary of TVF for two concentric rotating cylinders. Fig. 22(a)
shows that the TVF is more stable during corotation rather than counterrotation of the
cylinders. In the case of flow in corotational cylinders, the lowest instability occurs
when Re/Re, =2-4 for 0 < R, <400; however, Re/Re, =131 for R, =0. The
numerical result is in good agreement with that obtained by Coles[8]. However, with
regard to the flow in the case of counterrotating cylinders, the instability boundary, with
various azimuthal wavenumbers k, = 1-3 and axial wave numbers a = 2.7-3.5, is

different from that of axisymmetric TVF. Fig. 22(b) shows that the lowest TVF
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instability boundary occurs when the rotational speed of the outer cylinder is (1)
—-290<R, <0 for kK, = 1 or 2, (2) —1000<R,<-290 for k, = 3, and (3)
—1300< R, <-1000 for k, = 2 or 3. When R, (—4000<R,<-1300) increase
gradually for any value of k,, the instability of TVF is occurred immediately by

Re/Re, =1.006-1.06.

4.4 Results Summary

The effect of a variation in the wavenumber of a TVF on the stability of the flow can
be studied by the infinite cylinder approximation. The wavenumber is considered as an
external parameter and is not determined theoretically, but is measured experimentally.
In some apparatuses such as those used by King and Swinney[57], fluid can be added or
removed even when the cylinders are rotating, thereby allowing direct control of the
wavelength. The present study determines a new lowest stability boundary curve for the
transition from a supercritical TVF to a WVF. This curve differs from that obtained by
Jones[34], who assumed that the Reynolds number of the inner cylinder increases
quasi-statically. This study also investigates the lowest stability boundary for different
wavenumbers and various radius ratios ranging from the ratio corresponding to a
supercritical TVF to that corresponding to a WVF. The variation in the wavenumber is
found to affect the stability of the flow for radius ratios less than 0.7842 (at Re; of the
inner cylinder).

We also investigated the lowest stability boundary in the case of different azimuthal

wavenumbers k, corresponding to a axisymmetric TVF that is transformed to a WVF.

The axial wavenumber is considered as an external parameter and is not determined
theoretically, but is measured experimentally. In the present study, we determined a new

lowest stability boundary curve for the transition from a supercritical TVF to a WVF at
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the rotating cylinders. This curve differs from that obtained by Coles [8], who assumed

that the Reynolds number of the cylinders increased quasi-statically.
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Table 3 Comparison of experimental and theoretical data of Re values for 7 =0.782

Experiment Theory
Park[38] Jones[56] Present
Onset of k=1 Not seen 110 109.5
Onset of &, =2 137.3 120 119.5
k,=2 gone 161.3 163 167.5
k,=1 gone Not seen 169 167.8
Onset of &,=3 3% None None
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Figure 16 Combines both numerical and experimental results for the onset of WVF for 7 =0.893.
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Chapter 5 Concluding Remarks

Looking back on what we have learned about TVF since Taylor’s[2] original paper,
what seems to be most impressive is the tremendous progress that has been made in the
experimental field. Foremost among the modern experimental discoveries is the
observation of the WVF by Coles[31].

This study analyzes both the fluid flow of rotating cylinders and the stability of the
modulated Couette flow by numerical methods; under different modulated amplitudes
and frequencies, the unstable behavior caused by fluid flow influences the Couette flow
to become TVF.

Then this study investigates the instability analysis of modulated TVF by utilizing a
numerical method. Based on_the consideration that the outer cylinder is fixed and the
inner cylinder rotates at a'non-zero averaged speed under varying modulated amplitudes
and frequencies, the flow is converted from one-dimension Couette flow to TVF. When
the modulated amplitude’is greater than-one-and the rotation speed of the inner cylinder
exceeds the threshold value for-one-dimensional flow, the flow will be more stable at
intermediate and high frequencies. When the modulated amplitude is sufficiently large
and the inner cylinder rotates at medium frequency, subharmonic flow arises.

When the rotational speed of cylinders exceeds the threshold value of stable TVF,
the flow will be transformed from TVF to WVF. First, we numerically investigate the
lowest stability boundary of TVF for flows with different wavenumbers and for various
radius ratios under the inner cylinder rotates at a fixed speed and outer cylinder is
stationary. The variation in the wavenumber of a supercritical TVF will cause the
various stability of the flow and the wavenumber of Taylor vortices is constant only as
long as the flow is quasi-static. The variation in the wavenumber is examined and found

to be important when the radius ratio is less than 0.7842. And then we consider the case
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wherein 7 = 0.88, a = 2.7-3.5, and k, = 1-3, and we solve the lowest instability

boundary of TVF for two concentric rotating cylinders.

One may ask whether it is worth the effort to pursue these obviously very difficult
nonlinear aspects of the Taylor vortex problem. The answer to this question seems to be
yes, because in the case of TVF we can pursue the formation of turbulence from laminar
flow to full turbulent with great precision in all detail through a number of very
characteristic stages. In other words, basic theoretical work can be done on this problem,
which, in the end, rank as high as the pioneering studies that we have examined in this

study.
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