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We investigate the nonequilibrium transport near a quantum phase transition in a generic and relatively

simple model, the dissipative resonant level model, that has many applications for nanosystems. We

formulate a rigorous mapping and apply a controlled frequency-dependent renormalization group

approach to compute the nonequilibrium current in the presence of a finite bias voltage V and a finite

temperature T. For V ! 0, we find that the conductance has its well-known equilibrium form, while it

displays a distinct nonequilibrium profile at finite voltage.
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In recent years, quantum phase transitions (QPTs) [1,2]
have attracted much attention at the nanoscale [3–8]. A
finite bias voltage applied across a nanosystem is expected
to smear out the equilibrium transition, but the current-
induced decoherence might act quite differently as com-
pared to thermal decoherence at finite temperature T,
resulting in exotic behavior near the transition. Non-
equilibrium effects at a quantum phase transition appear
as an emerging field both in experimental and theoretical
condensed matter physics [9–12]. Quantum impurity sys-
tems out of equilibrium are also extensively studied theo-
retically [13]. In this Letter, we aim to answer several
fundamental questions related to the nonequilibrium trans-
port in quantum dot settings, such as what is the scaling
behavior of the conductance at zero temperature and finite
bias voltage near the transition.

For this purpose, we employ a typical nanomodel com-
prising a dissipative resonant level (quantum dot). In this
model, the QPT separating the conducting and insulating
phase for the level is solely driven by dissipation, which
can be modeled by a bosonic bath. Dissipation-driven
QPTs have been addressed theoretically and experimen-
tally in various systems, such as: Josephson junction arrays
[14], superconducting thin films [15], superconducting
qubits [16], and biological systems [17].

Our Hamiltonian takes the precise form:

H ¼ X
k;i¼1;2

½�ðkÞ ��i�cykicki þ tic
y
kidþ H:c:

þX
r

�rðdyd� 1=2Þðbr þ byr Þ þ
X
r

!rb
y
r br; (1)

where ti is the (real) hopping amplitude between the lead i
and the quantum dot, cki and d are electron operators for
the (Fermi-liquid type) leads and the quantum dot, respec-
tively.�i ¼ �V=2 is the chemical potential applied on the
lead i, while the dot level is at zero chemical potential.

To simplify the discussion, we assume that the electron
spins have been polarized through the application of a
strong magnetic field. Here, b� are the boson operators
of the dissipative bath, that is governed by an ohmic
spectral density [4]: Jð!Þ ¼ P

r�
2
r�ð!�!rÞ ¼ �!. We

use units in which @ ¼ 1 and electric charge e ¼ 1.
In equilibrium (V ¼ 0), such a dissipative system com-

prising several leads maps onto the anisotropic one-
channel Kondo model; we denote by t the hopping ampli-
tude between the (effective) lead and the level. We intro-

duce the dimensionless transverse Kondo coupling gðeÞ?
which is proportional to t (the exact prefactor is given in

Refs. [4–6]) and the longitudinal coupling gðeÞz / 1� ffiffiffiffi
�

p
[4–6]. The model exhibits a Kosterlitz-Thouless (KT) QPT

from a delocalized (Kondo screened) phase for gðeÞ? þ
gðeÞz > 0, with a large conductance, G � 1=h (e ¼ 1 and
h ¼ 2�@ ¼ 2�), to a localized (local moment) phase for

gðeÞ? þ gðeÞz � 0, with a small conductance, as the dissipa-

tion strength is increased (see Fig. 1). For gðeÞ? ! 0, the KT

FIG. 1 (color online). Schematic phase diagram as a function
of temperature T, dissipation strength �, and bias voltage V.
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transition occurs at �c ¼ 1. As � ! �c, the Kondo tem-
perature TK obeys lnTK / 1=ð�� �cÞ [3].

In equilibrium, the scaling functions gðeÞ? ðTÞ and gðeÞz ðTÞ
at the quantum critical point are obtained via the
renormalization-group (RG) equations of the anisotropic

Kondo model: gðeÞ?;crðTÞ ¼ �gðeÞz;crðTÞ ¼ ½2 lnðTD=TÞ��1;

hereafter, we introduce the energy scale TD ¼ D0e
1=ð2g?Þ,

with D0 being the ultraviolet cutoff and we set the
Boltzmann constant kB ¼ 1. Having in mind a quantum
dot at resonance, D0 ¼ minð��;!cÞ, with �� being the
level spacing on the dot and !c the cutoff of the bosonic
bath; D0 is of the order of a few Kelvins. At the KT quan-
tum phase transition, the conductance drops abruptly [7]:

Geqð�c; T � D0Þ / ½gðeÞ?;crðTÞ�2 /
1

ln2ðT=TDÞ
: (2)

Below, we analyze the nonequilibrium (V � 0) transport at
the phase transition and in the localized phase.

First, we envision a nonequilibrium mapping revealing
that the leads are controlled by distinct chemical potentials.
Through similar bosonization and refermionization proce-
dures as in equilibrium [3–6], our model is mapped onto an
anisotropic Kondo model with the effective (Fermi-liquid)
left (L) and right lead (R) [18]:

HK ¼ X
k;�¼L;R;�¼";#

½�k ����cyk��ck��

þ ðJ1?sþLRS� þ J2?s
þ
RLS

� þ H:c:Þ þ X
�¼L;R

Jzs
z
��S

z;

(3)

where cykLðRÞ� is the electron operator of the effective lead

LðRÞ, with � the spin quantum number, Sþ ¼ dy, S� ¼ d,
and Sz ¼ Q� 1=2 where Q ¼ dyd describes the charge

occupancy of the level. Additionally, s��	 ¼P
�;�;k;k01=2c

y
k���

�
��ck0	� are the spin-flip operators be-

tween the effective leads � and 	, J1ð2Þ? / t1ð2Þ embody

the transverse Kondo couplings, Jz / 1=2ð1� 1=
ffiffiffiffiffiffiffiffiffi
2��p Þ,

and �� ¼ � V
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2��Þp

, where 1=�� ¼ 1þ �. It should

be noted that this mapping is exact near the phase transition
where � ! 1 or �� ! 1=2, and thus �� ¼ �V=2.

From the mapping, N1 � N2 ¼ ðNL � NRÞ, where Ni ¼P
kic

y
kicki represents the charge in lead i ¼ 1, 2, whereas

N� ¼ P
kc

y
k��ck�� represents the charge in the effective

lead � ¼ L, R. This allows us to check that the averaged
currents within the Keldysh formalism are the same in the
original and in the effective Kondo model. Thus, the cur-
rent I can be computed from the Kondo model.

The poor-man scaling equations of Anderson are gener-
alized to nonequilibrium RG equations by including the
frequency dependence of the Kondo couplings and the
decoherence due to the steady-state current at finite bias
voltage [19]. For the sake of clarity, we assume that the
resonant level (quantum dot) is symmetrically coupled to

the right and to the left lead, t1 ¼ t2. The dimensionless
Kondo couplings then have the extra symmetry (! is the
frequency): g?ðzÞð!Þ ¼ g?ðzÞð�!Þ where g?ðzÞ ¼
Nð0ÞJ?ðzÞ with Nð0Þ being the density of states per spin

of the conduction electrons. We obtain [19]:

@gzð!Þ
@ lnD

¼ � X
	¼�1;1

�
g?

�
	V

2

��
2
�!þ	V=2

@g?ð!Þ
@ lnD

¼ � X
	¼�1;1

g?
�
	V

2

�
gz

�
	V

2

�
�!þ	V=2;

(4)

where �! ¼ �ðD� j!þ i�jÞ, D<D0 is the running
cutoff, and � is the decoherence (dephasing) rate at finite
bias which cuts off the RG flow [19]. The configurations of
the system out of equilibrium are not true eigenstates, but
acquire a finite lifetime. The spectral function of the fer-
mion on the level is peaked at ! ¼ �V=2, and therefore
we have g?ðzÞð!Þ � g?ðzÞð�V=2Þ on the right hand side of
Eq. (4). Other Kondo couplings are not generated.
In the Kondo model, � corresponds to the relaxation rate

due to spin flip processes (which are charge flips in the
original model). From Ref. [19], we identify:

� ¼ �

4

X
�;�0;�

Z
d!½n�g2zð!Þf!���

ð1� f!���0 Þ

þ n�g
2
?ð!Þf!���

ð1� f!���0 Þ�; (5)

where f! is the Fermi function. Here, � ¼ �0 for the g2zð!Þ
terms while � � �0 for the g2?ð!Þ terms with �, �0 being L
or R. We have introduced the occupation numbers n� for
up and down spins satisfying n" þ n# ¼ 1 and Sz ¼
1=2ðn" � n#Þ. In the delocalized phase, we get n" ¼ n# ¼
1=2 in agreement with the quantum Boltzmann equation
[19]; at the phase transition we can use that g?ð!Þ ¼
�gzð!Þ and that

P
�n� ¼ 1, and finally in the localized

phase g? � �gz, n� satisfies jSzj ! 1=2 [3–6].
Following the scheme of Ref. [19], we solve Eqs. (4) and

(5) self-consistently. First, we compute g?ðzÞð! ¼ �V=2Þ
for a given cutoff D. Second, we substitute the solutions
back into the RG equations to get the general solutions for
g?ðzÞð!Þ at finite V, and then extract the solutions in the

limit D ! 0. When the cutoff D is lowered, the RG flows
are not cut off by V but continue to flow for �<D< V
until they are stopped for D< �.
At the KT transition, we both numerically and analyti-

cally solve Eqs. (4) and (5) (in the limit of D ! 0):

g?;crð!Þ¼X
	

�ðj!�	V=2j�VÞ 1

4ln½ TD

j!�	V=2j�
þ�ðV�j!�	V=2jÞ
�
�

1

ln½T2
D=Vmaxðj!�	V=2j;�Þ��

1

4lnTD

V

�
:

(6)

The solutions at the transition (denoted g?;cr and gz;cr) are
shown in Fig. 2. Since g?;crð!Þ decreases under the RG
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scheme, the effect of the decoherence leads to the minima;
the couplings are severely suppressed at the points ! ¼
� V

2 . We also check that g?;crð!Þ ¼ �gz;crð!Þ.
From the Keldysh calculation up to second order in the

tunneling amplitudes, the current reads:

I ¼ �

8

Z
d!

�X
�

4g?ð!Þ2n� � f!��L
ð1� f!��R

Þ
�

� ðL $ RÞ: (7)

At T ¼ 0, it simplifies as I ¼ �
2

RV=2
�V=2 d!g2?ð!Þ. Then, we

numerically evaluate the nonequilibrium current. The con-
ductance is obtained from GðVÞ ¼ dI=dV. The T ¼ 0
results at the KT transition are shown in Fig. 3. First, it is
instructive to compare the nonequilibrium current at the
transition to the approximate expression:

Ið�c; VÞ � �V

2

�
�

4
½g?;crð! ¼ 0Þ�2

�

þ �V

2

��
1� �

4

�
½g?;crð! ¼ V=2Þ�2

�
; (8)

where g?;crð! ¼ 0Þ � 2ð 1
lnð2T2

D=V
2Þ � 1

4 lnðTD=VÞÞ, and

g?;crð! ¼ V=2Þ � 1= lnðT2
D

�VÞ. We have treated g?;crð!Þ2
within the interval �V=2<!< V=2 as a semi-ellipse.

As demonstrated in Fig. 3, the conductance GðVÞ ob-
tained via the approximation in Eq. (8) fits very well with
that obtained numerically over a whole range of 0< V <
D0. In the low-bias V ! 0 (equilibrium) limit, since

g?;crð! ¼ 0Þ � gðeÞ?;crðT ¼ VÞ � 1, we have Ið�c; VÞ �
�V
2 ½gðeÞ?;crðT ¼ VÞ�2; therefore the scaling of Gð�c; VÞ is

reminiscent of the equilibrium expression in Eq. (2),

Gð�c; VÞ � �
2 ½gðeÞ?;crðT ¼ VÞ�2 ¼ �

8
1

ln2ðTD=VÞ . This agree-

ment between equilibrium and nonequilibrium conduc-
tance at low V persists up to a crossover scale
V � 0:01D0 (determined for the parameters used in
Fig. 3). At larger biases, the conductance shows a unique
nonequilibrium profile; see Eq. (8). We find an excellent

agreement of the nonequilibrium conductance obtained by
three different ways—pure numerics, analytical solution
Eq. (6), and the approximation in Eq. (8).
The distinct nonequilibrium scaling behavior seen here

is in fact closely tied to the nontrivial (nonlinear) V de-
pendence of the decoherence rate �ðVÞ. In particular, at the
KT transition, we find that �	 1

2 I is a highly nonlinear

function in V, resulting in the deviation of the nonequilib-
rium scaling from that in equilibrium. For large bias volt-
ages V ! D0, since g?;crð!Þ approaches its bare value g?,
the nonequilibrium conductance increases rapidly and
reaches Gð�c; VÞ � G0 ¼ �

2 g
2
?. The nonequilibrium con-

ductance is smaller than the equilibrium one, Gð�c; VÞ<
Geqð�c; T ¼ VÞ, since g?ð! ¼ �V=2Þ< g?ð! ¼ 0Þ.
Additionally, in the delocalized phase for V 
 TK > 0,
the RG flow of g? is suppressed by the decoherence rate,
and G / 1=ln2ðV=TKÞ [19].
In the localized phase, the equilibrium RG equations of

the effective Kondo model can be solved analytically,

resulting in GðeÞ
locðTÞ ¼ �

2 ½gðeÞ?;locðTÞ�2, where

gðeÞ?;locðTÞ ¼
2cg?ðcþ jgzjÞ

ðcþ jgzjÞ2 � g2?ð TD0
Þ4c

�
T

D0

�
2c
; (9)

with c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2z � g2?

q
. We introduce the energy scale T� ¼

D0e
��=

ffiffiffiffiffiffiffiffiffiffiffi
g2z�g2?

p
(which vanishes at the KT transition) such

that gðeÞ?;locðTÞ / ðT=T�Þ2c for T ! 0, leading to GðeÞ
locðTÞ /

ðT=T�Þ4c.
For very small bias voltages V ! 0, we find that the

conductance reduces to the equilibrium scaling: GðVÞ !
GðeÞ

locðT ¼ VÞ / ðV=T�Þ4c [see Figs. 4(a) and 4(b)]. For

g?;loc � jgz;locj and �� ! 1=2, we get that the exponent

4c � 2�� � 1, in perfect agreement with that obtained in

equilibrium at low temperatures: GðTÞ / T2���1 [7]. At
higher bias voltages 0:01D0 < V <D0, the conductance
now follows a unique nonequilibrium form [consult
Fig. 4(c)].
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FIG. 2 (color online). g?;crð!Þ ¼ �gz;crð!Þ at � ¼ �c; the
bare couplings are g? ¼ �gz ¼ 0:1. We have set V ¼
0:066D0, 0:43D0, 0:75D0 and 0:99D0 where D0 ¼ 1 for all
the figures. The arrows give the values of g?;crð! ¼ 0Þ at these
bias voltages.
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FIG. 3 (color online). Nonequilibrium conductance at the KT
transition. G0 is the equilibrium conductance at the transition for
T ¼ D0: G0 ¼ Geqð�c; T ¼ D0Þ ¼ 0:005� with the bare cou-

plings g? ¼ �gz ¼ 0:1. Again, we set the charge e ¼ @ ¼ 1.
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We have also analyzed the finite temperature profile of
the nonequilibrium conductance at the transition. We dis-
tinguish two different behaviors. For V > T, the conduc-
tance GðV; TÞ follows the nonequilibrium form at T ¼ 0
[see Fig. 5(a)], while for V < T it follows the (V ¼ 0)
finite-temperature expression [see Fig. 5(b)]. These two
scaling behaviors have a crossover at V ¼ T.

In summary, we have investigated the nonequilibrium
transport at a QPT using a standard nanomodel, the dis-
sipative resonant level. We have used an exact mapping

and applied a controlled frequency-dependent renormal-
ization group approach to compute the current. For V ! 0,
the conductance G follows the equilibrium behavior; by
increasing V, the frequency dependence of the couplings
begins to play an important role and therefore we system-
atically find very distinct scalings. We have also analyzed
the finite temperature profile of GðV; TÞ at the transition
and identified two distinct behaviors at V > T and V < T.
Finally, our results have a direct experimental relevance for
dissipative two-level systems.
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