
國 立 交 通 大 學 
 

機械工程學系 

 

博士論文 
 

卡氏座標下三維時變薛丁格方程式的平行化程式

發展及其於雷射與分子間交互作用應用之研究 

 

Parallel Solver for Three-dimensional Cartesian-grid Based 

Time-Dependent Schrödinger Equation and Its Applications in 

Laser-Molecule Interaction Study with Single-Action-electron Assumption 

 

 

 

 

研 究 生：李允民 

指導教授：吳宗信  博士 

江進福  博士 

 

中中中中    華華華華    民民民民    國國國國    九九九九    十十十十    八八八八    年年年年    六六六六    月月月月 



卡氏座標下三維時變薛丁格方程式的平行化程式發展及其於

雷射與分子間交互作用之應用研究 

 
Parallel Solver for Three-dimensional Cartesian-grid Based 

Time-Dependent Schrödinger Equation and Its Applications in 

Laser-Molecule Interaction Study with Single-Action-electron Assumption 

 

 

 

研 究 生： 李允民          Student： Yun-Min Lee 

指導教授： 吳宗信 博士     Advisor： Dr. Jong-Shinn Wu 

       江進福 博士     Dr. Tsin-Fu Jiang 

 

 

國 立 交 通 大 學 

機械工程學系 

博 士 論 文 

 

 

A Thesis 

Submitted to Department of Mechanical Engineering College of Engineering 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy in Mechanical Engineering 

June 2009 

 

Hsinchu, Taiwan 

 

 

中華民國九十八年六月 



 i 

卡氏座標下三維時變薛丁格方程式的平行化程式發展及其於

雷射與分子間交互作用之應用研究 

 

 

 

研 究 生： 李允民           Student： Yun-Min Lee 

指導教授： 吳宗信           Advisor： Jong-Shinn Wu 

      江進福       Tsin-Fu Jiang 

 

國立交通大學機械工程學系學系博士班 (熱流組) 

中文摘要中文摘要中文摘要中文摘要 

我們以有限體積法來離散化一個在卡氏座標中的三維時變薛丁格方程式

(TDSE)，假設分子的原子核不移動且只有一電子有作用(SAE)，並用一個交錯時間

法(stagger-time)來處理波方程式的實部與虛部在時間上演進，以平行計算的程式來

分析此三維時變薛丁格方程式，此程式利用多層圖型切割法來作區域切割(domain 

decomposition)，以此分配不同處理器(processor)的計算區域。此程式以一個 H2
+系

統來作驗證，在沒有雷射(laser)的交互作用下，總電子機率和總能量的守恆。與其

它二維薛丁格方程式的計算比較，在雷射的作用下離子化(ionization rates)的機率比

較。此程式的平行化效率在使用 128 顆處理器下可以達到 75%。最後以 H2
+系統，

原子核距離 9 au，電子在不同雷射入射角度(χ= 0° 和 90°)下的機率隨時間的分

佈，及原子核距離 2 au，和諧光譜(HHG)在不同雷射入射角度(χ= 0°, 30°, 60° and 
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90°)，以及不同雷射入射角度對 N2, O2及 CO2分子離子化機率的影響並和實驗資料

比較來說明此三維平行化的程式的能力以及應用。 
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Abstract 

A parallelized three-dimensional Cartesian-grid based time-dependent Schrödinger 

equation (TDSE) solver for molecules with single active electron assumption, assuming 

freezing the motion of nucleus is presented in this thesis. An explicit stagger-time 

algorithm is employed for time integration of the TDSE, in which the real and 

imaginary parts of the wave function are defined at alternative times, while a 

cell-centered finite-volume method is utilized for spatial discretization of the TDSE on 

Cartesian grids. The TDSE solver is then parallelized using domain decomposition 

method on distributed memory machines by applying a multi-level graph-partitioning 

technique. The solver is validated, using a H2
+
 molecule system, both by observing total 

electron probability and total energy conservation without laser interaction, and by 

comparing the ionization rates with previous 2D-axisymmetric simulation results with 
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an aligned incident laser pulse. Parallel efficiency of this TDSE solver is presented and 

discussed, in which the parallel efficiency can be as high as 75% using 128 processors. 

Finally, examples of temporal evolution of probability distribution of laser incidence 

onto a H2
+
 molecule at inter-nuclei distance of 9 a.u. (χ= 0° and 90°) and spectral 

intensities of harmonic generation at inter-nuclei distance of 2 a.u. (χ= 0°, 30°, 60° and 

90°) and the angle effect of laser incidence on ionization rate of N2, O2 and CO2 

molecules are presented to demonstrate the capability of the current TDSE solver.  
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Chapter 1. Introduction 

 

1.1 Background and Motivation  

In the past decade, the laser technology had been greatly improved. Technology of 

production of ultra-short laser pluses has been extensively developed and ultra-short 

high power laser pluses with durations about few optical cycles are now available to 

extend the science of atomic, molecular and optical physics [1]. In these cases, this had 

led to discovery of many new nonlinear nonperturbative optical phenomena and 

processes such as above threshold ionization (ATI), tunnelling ionization, and 

high-order harmonic generation (HHG). The frontier applications of these processes can 

provide a tool for molecule imaging [2-6], the light source in the region of X-ray to 

ultraviolet [7, 8].  From a theoretical viewpoint, such studies are extremely complex in 

the strong-field regime and have been of continuous interest for nearly two decades. In 

general, only results based on approximate theories such as the molecular strong-field 

approximation [9, 10] and tunnelling [11] models have been applied to calculate effects 

related to molecular orientation with respect to the light polarization vector. Such 

approximate theories are, however, often gauge dependent [10, 12] and limited in their 

applicability to describe complex processes. Despite several years of study, the 

interaction of intense laser pulses with atoms and molecules remains a very attractive 
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problem. Many problems in atomic-scale physics rely on the development of efficient 

numerical methods for the solution of the time-dependent Schrödinger equation (TDSE, 

introduced in chapter 2). Theoretical modelling of these phenomena is important to gain 

a fundamental understanding of atomic and optical processes at the microscopic level 

and to provide a scientific basis for the design and development of molecule imaging, 

light source in the region of X-ray to ultraviolet, which demands theoretical and 

large-scale computational modelling of all of these phenomena. 

 

1.2 Literature Survey 

There are numerous papers about laser-molecule interactions; we will arrange the 

papers according to the molecular system for systematic introduction.  

First is the one electron and two-nucleus-centers molecule; the hydrogen molecular 

ion. Hydrogen molecular ion is the only and the simplest molecule of one electron 

molecules. Because, the hydrogen molecular ion can be solved theoretically with 

Born-Oppenheimer approximation (BOA, introduced in chapter 2), that is why 

hydrogen molecular ion is two fundamental and prototypical systems which can be used 

to understand and extend these fields of physics.  

 Second are the multi-electron and multi-nuclear molecules, most of them are 

about the H2, N2, O2 and CO2 molecules which interact with laser. Multi-electron 
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molecular systems are much difficult than one electron systems on the view point of 

computation. For practically implementation in theoretical analysis is always with 

approximations and modelling. 

 

1.2.1 The hydrogen molecular ion 

H2
+
 is the simplest molecule.  It is usually used as a prototype of molecular 

physics like the hydrogen atom in atomic physics.  The quantum dynamics of H2
+
 and 

other small molecules under the interaction of strong laser pulse has been a subject of 

continuous interest for more than two decades. Interesting phenomena such as 

bond-softening, bond-hardening, above threshold dissociation and Coulomb explosion 

were studied by Posthumus [13]. Especially, a recent experiment clearly showed that 

the ionization rates of H2
+
 at some characteristic bond lengths are greatly enhanced with 

laser pulse of ∼1014
 w/cm2 and duration of several hundreds femtoseconds. When the 

molecule is ionized, the two positively charged bare ions repel each other with strong 

Coulomb repulsion due to the small separation between them. All of a sudden the two 

ions fly apart rapidly [14].  This dramatic phenomenon was named either Coulomb 

explosion or charge resonant enhanced ionization. 

From the computational viewpoint, the H2
+
 quantum system is not simple at all.  

The time evolution of H2
+
 under laser field is in general 9 degrees of freedom in space 
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plus the time variable.  This kind of time-dependent Schrödinger equation (TDSE) is 

unlikely to be solved even using the most advanced numerical scheme and computer, 

and the TDSE is very often be simplified by the Born-Oppenheimer approximation 

(BOA). This approximation will remove the dynamic effect of the two nuclei and 

reduce the dimension of the TDSE of H2
+
 from 9 to 3 degrees of freedom in space. All 

papers as below mentioned are using with the BOA unless specified. 

The H2
+
 has two fixed nuclei and a fast moving electron. With a linearly polarized 

electric field along the molecular axis, the system is cylindrical symmetric in spatial 

coordinates in addition to the time variable.  The time-dependent two-dimensional 

TDSE has been used often because it is computationally less demanding [e.g., 15-19].  

However, to align the molecule totally oriented with the laser field is still very difficult 

(or impossible) experimentally and also the laser field may not be linearly polarized, 

which makes the time-dependent three-dimensional computation of TDSE strongly 

required in essence. Unfortunately, this kind of calculation is still very limited and still 

at its infancy due to the very high computational cost, even with the rapid advancement 

of computer technology.  Until very recently, there have been three types of numerical 

methods used in solving the 3D TDSE for the study of laser-molecular interaction, 

which include: 1) First transformed the 3D TDSE from Cartesian coordinates into 

spheroidal coordinates and then solved the transformed equation using basis expansion 
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technique with high-order Taylor’s series expansion for time propagation [20-21; 

Bandrauk’s group, 22-26] or Legendre pseudospectral discretization [Chu’s group, 20, 

27]. 2) Solved the 3D TDSE in spherical coordinates using spherical harmonics basis 

expansion technique with split operator for time propagation [Madsen’s group, 28-32]. 

3) Solved the 3D TDSE directly in Cartesian coordinates using parallel finite-difference 

method (FDM) [33] or finite-element method (FEM) [Collion’s group, 33-37; 

Bandrauk’s group, 38] with split operator or high-order Taylor’s series expansion for 

time propagation on distributed-memory machines.  The above techniques have been 

used successfully to study the variation of ionization rate, higher-order harmonic 

generation (HHG) and electron probability distribution due to changes of internuclear 

distance, angle of laser incidence and laser intensity.  For 3D problems, it is very 

time-consuming to apply methods of types 1 and 2 on a single-processor machine, 

however it is found difficult to parallelize the code on distributed-memory machines.  

In contrast, for FDM and FEM (type 3), it is relatively easy to parallelize the simulation 

code. However, it is well-known that with FDM it is rather clumsy to manipulate the 

grid distribution. On the other hand, it often requires matrix inversion using FEM [38], 

if non-orthogonal type basis functions are used, even with explicit time-marching 

scheme, which is very time-consuming and memory-demanding in practice.  If 

orthogonal polynomials are used as the basis functions in FEM [33-37], then matrix 
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inversion becomes unnecessary. Even so, the number of non-zero entries in the matrix 

(or memory storage) resulting from the spatial discretization and number of machine 

operations per time step (or computational time) using FEM are both large, as compared 

to the cell-centered finite-volume method, which will be introduced later in Section 2. 

Thus, a general numerical method without the above-mentioned shortcomings, which 

can be used to solve the truly 3D TDSE for general diatomic molecule (and possibly 

beyond) under strong laser pulse, is still strongly desired in the physics community.  

 

1.2.2 Multi-electron and multi-nuclear molecules 

Even if under Born-Oppenheimer approximation, when a molecular system 

contains more than one electron, the numerical difficulty is dramatically increasing due 

to the non-linearity of Schrödinger equation and enormously computational cost. The 

theoretical modelling for the multi-electron molecule system is unavoidable.  

There are some theoretical modelling analyses for a laser-molecule interaction 

system. The Ammosov-Delone-Krainov (ADK) theory [39] is based on the ionization 

rate of a hydrogen like atom in a static field, with modifications introduced. The ADK 

model can be used for atomic system and valid only for high laser intensity and low 

optical frequency [40]. The molecular-ADK (MO-ADK) theory [41] uses an ab-initio 

calculated ionization potential and some modifications for ADK theory to make 
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applications on molecular system such as N2 and O2 [42]. For low laser intensity and 

high optical frequency region, the lowest order perturbation theory (LOPT) can describe 

the ionization process. However, LOPT calculations are computationally demanding 

and thus only few systematic and correlated calculations are been performed [43]. 

Another popular model is strong field approximation (SFA). The traditional strong-field 

approximation is described as a transition from a field-free initial state to a final Volkov 

state ignoring thus the Coulomb interaction of the ejected electron with the remaining 

ion. Molecular effects have recently also been incorporated [44] into the model. And, 

there is some dispute about the use of length or velocity gauge and the applicability of a 

Coulomb-correction factor [9]. The above models have some intrinsically limitations. 

Such as, the ADK rate is optical frequency independent. The SFA does not contain any 

information on the possible influence of resonances.  

The Density functional theory (DFT) is the most common theory for multi-electron 

molecule system. In analogy the DFT, Time-dependent DFT (TDDFT) can deal with 

this multi-electron molecule system under strong laser field, but the accuracy of TDDFT 

is dependent on the choice of the time-dependent exchange-correction potential because 

of the adiabatic assumption of exchange-correction potential [45]. Full orbital TDDFT 

computation is also very time-consuming as electron number is large. Due to above 

reasons, there are very few full orbital TDDFT studies about multi-electron atom or 
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molecule system under strong laser field. Chu[46, 47] performed some TDDFT 

simulations for small diatom molecule. Although Chu’s method is good but it can only 

be applied on diatom molecule. Bauer and Koval [48] provided a TDDFT solver for 

intense laser–atom interaction, but Bauer and Koval’s program is only for atoms. 

 

1.3 Objectives 

After studied these papers about laser-molecule interacting phenomena, we found 

that there were very few studies for molecule with more than two nuclei because of the 

special spatial coordinates were used or basis overlap integration were time consuming. 

The general purpose parallel three dimension TDSE solver with the capability to deal 

with multi-electron and multi-nuclear molecular system was rarely to find. The 

objectives of this thesis are as followed. 

(1) To develop a parallelized 3D TDSE solver using Cartesian-grid based 

finite-volume method (FVM) and demonstrate and verify its capability 

by simulating the physics of H2
+
 under strong laser pulse. Then to 

compare the data with others published data before. 

(2) To make a model potential for multi-electron molecules. Then to couple 

with the developed parallel 3D TDSE solver and extended to treat 
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general polyatomic molecule with single-active-electron (SAE) under 

strong laser pulse. 

(3) To make numerical analysis on multi-electron and multi-nuclear 

molecular system with laser incidence. To compare the data with others 

published data before. 

This thesis begins with a basic introduction of quantum physics, derivation of 

model potential for multi-electron, then a detailed description of the finite-volume 

method used for discretizing the 3D TDSE. The development and implementation of 

parallelized TDSE solver is then outlined and simulations of a laser pulse incident along 

the axis of H2
+
 is then carried out to verify the accuracy of the codes. These simulations 

are compared to the results of other studies applying symmetric TDSE in the literature. 

Results of simulated instantaneous electron probability and spectrum of harmonic 

generations are then presented, in which the laser is incident at different directions with 

respect to H2
+
 axis, to demonstrate the capability of the new TDSE solver. And we show 

the applications of the new TDSE solver on multi-electron and multi-nuclear molecular 

system as: N2, O2 and CO2. Then make a comparison with other experimental and 

theoretical analysis data. Finally, make a recommendation on future studies.  
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Chapter 2. Fundamentals of Quantum Physics 

 

Quantum theory grew out of an interplay of ground-breading experiments and 

radical theoretical proposals that were not based on accepted classical physics. Now it is 

an important theory for nano-scale and ultrafast physics studied. Here we make a 

quickly introduction to the basic equation (Schrödinger equation) in quantum physics, 

and the derivation of model potential Schrödinger equation. 

 

2.1 Time-dependent Schrödinger equation  

Schrödinger equation is fundamental equation of quantum physics; it is also called 

Schrödinger wave equation. Schrödinger equation provides the description of motion 

and interaction of particles at the small scales where the discrete nature of matter 

becomes important. In this scale, classical physics is fundamental break because of the 

continuous assumption of matter broken down. 

Time dependent Schrödinger equation for n electrons and N nuclei in atomic unit 

can be expressed as: 

( )
( ) ( )1 1

1 1 1 1

,..., , ,..., ,
,..., , ,..., , ,..., , ,..., ,

n N

n N n N

r r R R t
i H r r R R t r r R R t

t

ψ
ψ

∂
=

∂

��� ���
� �

��� ��� ��� ���
� � � �

   (2-1) 
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i i i ir x i y j x k= + +
�� �� �

 is the position vector of i-th electron and j j j jR x i y j x k= + +
��� �� �

 is 

the position vector of j-th nuclear. The Hamiltonian ( )1 1,..., , ,..., ,n NH r r R R t
��� ���

� �

 is expressed 

as the sum of kinetic energy operator 2 2

1 1

1 1

2 2i j

n N

r R

i j im= =

− ∇ − ∇∑ ∑  for electrons and nuclei 

and coulomb potential of electron to electron 
' '

1n

i i i ir r≠ −
∑ � � , nuclear to nuclear 

'

' '

N
j j

j j j j

Z Z

R R≠ −
∑ �� ��  and electron to nuclear 

1 1

n N
j

i j i j

Z

r R= =

−
−

∑∑ ��
. Multi-particle time dependent 

Schrödinger equation is a non-linear equation and the dimension of multi-particle time 

dependent Schrödinger equation is equal to ( )3 1n N+ + . Because of the high dimension 

of the equation when ( ) 1n N+ > , it is not easy to do numerical or theoretical analysis 

without any assumption. 

 

2.2 Time independent Schrödinger equation  

If the Hamiltonian operator of Schrödinger equation is time independent 

( ( ) ( )1 1 1 1,..., , ,..., , ,..., , ,...,n N n NH r r R R t H r r R R=
��� ��� ��� ���

� � � �

). The Schrödinger equation can be 

solved by variables separation. The solution of the Time independent Schrödinger 

equation can be expressed as: ( ) ( )1 1 1 1,..., , ,..., , ,..., , ,...,
iE t

n N n Nr r R R t r r R R eψ ϕ − ⋅= ⋅
��� ��� ��� ���

� � � �

.  

And E in above equation is a real number. Then, we can rewrite eq(2-1) to: 

( ) ( ) ( )1 1 1 1 1 1,..., , ,..., ,..., , ,..., ,..., , ,...,n N n N n NE r r R R H r r R R r r R Rϕ ϕ⋅ = ⋅
��� ��� ��� ��� ��� ���

� � � � � �

   (2-2) 

Above equation is frequently called stationary Schrödinger equation or time 

independent Schrödinger equation. The stationary Schrödinger equation is an 
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eigenvalue equation, and the corresponding eigen-energy and eigen-function are the 

system energy and wave function of the Schrödinger equation. And the wave function 

( ( )1 1,..., , ,...,n Nr r R Rϕ
��� ���

� �

) is often used as the initial wave function 

( ( ) ( )1 1 1 1,..., , ,..., ,0 ,..., , ,...,n N n Nr r R R r r R Rψ ϕ=
��� ��� ��� ���

� � � �

) for a time-dependent computation. 

 

2.3 Expectation values (measurable physical quantities)  

 Wave function is not a measurable physical quantity. The measurable quantities 

can be obtained by defining the quantity operator ( )f r
�

. We consider a one-electron 

Schrödinger equation for example; the wave function is treated as a probability 

amplitude function. We can define a quantity operator ( )f r
�

, and the expectation value 

of the quantity operator can be obtained by integrating all coordinate space: 

( ) ( ) ( ) ( ) ( ) ( ) 3
F r f r r r f r r drψ ψ ψ ψ

∞
∗

−∞
= = ⋅ ⋅ ⋅∫

� � � � � �

. And the F  is the measurable 

quantity. Some quantity operators are listed:  

1. ( ) 1f r =
�

, F  is equal to total electron umber. 

2. ( ) ( )f r H r=
� �

, F  is equal to total system energy 

3. ( ) 21

2
f r

−
= ∇

�

, F  is equal to kinetic energy 
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2.4 The Born-Oppenheimer approximation (BOA) 

The calculations are often simplified with the Born-Oppenheimer approximation 

(BOA) where the nuclei are fixed during the light interaction, because the motions of 

nuclei are much slower than the electrons.  It is known that the BOA is applicable 

when the optical period is smaller than the vibrational period. The equation (2-1) can be 

simplified to 

( )
( ) ( )1

1 1

,...,
,..., , ,..., ,

n

n n

r r t
i H r r t r r t

t

ψ
ψ

∂
=

∂

� �

� � � �

        (2-3) 

by neglecting the movement of nuclei. 

 

2.5 Single-Active-Electron assumption (SAE)  

It is not easy and practical to directly solve the Schrödinger equation of 

multi-electron molecule because the electron-electron interaction and high dimension of 

Schrödinger equation. In order to simplify the multi-electron molecule problem, we use 

the single-active-electron (SAE) assumption [49]. In the SAE approximation, the 

time-dependent Schrödinger equation for a single electron moving in the effective field 

generated by the nuclei and all the other electrons is solved numerically. SAE models 

where one reduces the dimensionality of the multi-electron problem by freezing the core 

electrons have proven to be very useful in cases where multiple electronic excitations 

are insignificant, and the SAE approximation is probably the most widely used 
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approach when studying phenomena such as single ionization, above-threshold 

�ionization (ATI) and high-harmonic �generation (HHG) [50]. The key of SAE 

assumption is how to make a good effective potential, and the soft-coulomb potential 

method is the most common one.  

The basic ideal of soft-coulomb potential is to remove the singularity of coulomb 

potential and represent the screened electrons of core electron. The soft-coulomb 

potential can be written as: 

effZ

r R α

−

− +
� ��                (2-4) 

effZ  and α  are a tuneable parameter. 
effZ  and α  are usually modified to fit the 

ground state energy to atom or molecule system and the asymptotic behavior of 

coulomb potential at r → ∞
�

. The electron-nuclear coulomb potential and the 

electron-electron coulomb potential are replaced by the soft coulomb potential in the 

time dependent Schrödinger equation. Equation (2-4) is a simple and common 

approximation for soft coulomb potential, but sometimes the two tuneable parameters 

( effZ  and α ) can not satisfy both the ground state energy and the asymptotic behavior 

of coulomb potential at the same time. In order to overcome this problem, we further 

introduce the Yukawa potentials. Yukawa potentials had been studied for the bound 

states energy calculations [51]; it can provide a good model for screening effect of core 

electrons. The Yukawa potential can be written as follow. 
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rcoreZ
e

r

β−−
⋅�                (2-5) 

The Zcore in equation (2-5) is the effective charge of core nuclear. If we include the 

Yukawa potentials to soft-coulomb potential, we can rewrite equation (2-4) to: 

( ) r Rcore
yukawa

Z
V r e

r R

β

α

− −−
= ⋅

− +

� ���

� ��            (2-6a) 

and 

( ) ( )1
r Reff

yukawa core

Z
V r Z e

r R

β

α

− −−
= ⋅ + ⋅

− +

� ��
�

� ��         (2-6b) 

Now, there are four parameters (
effZ , 

coreZ , α  and β ) for fitting the ground state 

energy and the asymptotic behavior of coulomb potential at r → ∞
�

. Equation (2-6a) is 

used for screening effect of neutral atoms which interacts with electron in the mother 

molecule and the asymptotic behavior of coulomb potential at r → ∞
�

 will go to zero. 

And equation (2-6b) used for screening effect of ion with positive charge 
effZ  in the 

mother molecule and the asymptotic behavior of coulomb potential at r → ∞
�

 will 

become to 
effZ

r

−
� .  Theoretical analysis of one dimensional and two dimensional soft 

coulomb potential models had been used for helium atom [52] and hydrogen molecule 

[53], and the three dimension model had been used for characteristic analysis of 

coulomb singularity in HHG [54]. 
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Another type for the effective potential that is used for SAE model is the 

Hatree-Fork potential. The Hatree-Fork potential is calculated by time independent 

Hatree-Fork calculation. And the directly use it in the time dependent simulation. The 

potential is invariant during the time propagation. The Hatree-Fork potential for two 

electrons molecular system can be written as follow. 

( )
( )

2

3
'

'
'

i

HF

r
V r dr

r r

φ
=

−
∫∫∫

��

�

� �            (2-7) 

To our knowledge, the SAE model with Hatree-Fork potential was used only for two 

electrons system. The Hatree-Fork potential had been used for H2 molecule [50, 55] and 

for helium with basis expansion method [52]. 

 

2.6 Laser field in the Time-dependent Schrödinger equation 

If we neglect the relativistic and the non-dipole effects in laser-molecule 

interactions, the laser field will therefore be described in dipole approximation by a 

spatial homogeneous vector electric ( )A t
��

 or spatial homogeneous field ( )E t
��

 with 

( ) ( ) /E t dA t dt= − . The magnetic component ( )B t
��

 of the laser field, given by 

( ) ( )B t A t= ∇×
�� ��

, will vanished by the dipole approximation. Then the operator of laser 

filed in the Time-dependent Schrödinger equation can be written as follow. 

( ),E r t r⋅
�� � �

              (2-8) 
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Chapter 3. Numerical Methods 

 

3.1 Three-dimensional Time independent Schrödinger Equation 

If we use the single-active-electron assumption (use the Yukawa like soft-coulomb 

potential), then the time independent Schrödinger Equation can be rewritten by 

combining the Yukawa like soft-coulomb potential equation (2-6), and expressed as 

follow: 

( ) ( ) ( )21

2
yukawaE r V r rψ ψ

− 
⋅ = ∇ +  

� � �

         (3-1) 

where r xi yj xk= + +
� �� �

 is the position vector of the electron, and 21

2
− ∇  is the energy 

operator. If the coefficient α  and β  in equation (2-6) are both equal to zero, then 

Yukawa like soft-coulomb potential equation will becomes a regular coulomb potential. 

And the parameter set ( 0α β= = ) will be used in single electron molecule. 

Equation (3-1) is an eigenvalue problem, and the solution of equation (3-1) is used 

as the initial wave function of a time-dependent evolution.  

 

3.2 Three-dimensional Time Dependent Schrödinger Equation 

We consider the linear time-dependent Schrödinger equation (TDSE) for a 

molecule with single-active-electron (SAE) under the incidence of a laser field. The 

TDSE can then be written as, with ( ),E r t
�� �

 as the externally applied laser field, 
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( )
( ) ( ) ( )2

, 1
, , ,

2

r t
i H r t V r t r t

t

ψ
ψ ψ

∂  
= = − ∇ + 

∂  

�

� � �

      (3-2) 

and the Hamiltonian H is expressed as the sum of kinetic energy operator 21

2
− ∇  and 

potential energy operator ( ),V r t
�

. In addition, the potential energy operator under laser 

incidence can be generally expressed as  

( ) ( )
1

1
, ,

N

j j

V r t E r t r
r R=

= − + ⋅
−

∑
�� � �

�

��
          (3-3) 

where 
j

R
�

 and N are the position vector of nucleus j and number of nuclei of the 

molecule under consideration, respectively. And 
1

1N

j jr R= −
∑ ��

 is the electron-nuclear 

potential.  

 

3.3 Effective potential of core electrons in molecule 

 In order to simplify multi-electron molecule Schrödinger equation, we assume that 

the distribution of core electron do not change during the laser field is active because of 

the core electron are tightly bound to nuclear in most molecules. We use SAE model 

and treat the effect of core electron and nuclei as effective potential. We model the 

effective potential by soft-coulomb potential. The α  in equation (2-6a) and (2-6b) is 

determined by fitting the ground state energy of target molecule, and effZ  and β  are 

determined by fitting the asymptotic behavior of coulomb potential. For the Hatree-Fork 
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potential, GAMESS[56] is a free package for ab-initio calculations; it can provide the 

molecular orbital information ( )i
rφ
�

 and the index i is orbital number. We can 

calculate the Hatree-Fork potential ( )
( )

2

3
'

'
'

i

HF

r
V r dr

r r

φ
=

−
∫∫∫

��

�

� �  with this orbital 

information.  

Then we can modify the equation (3-3) to: 

( ) ( )
1

, ,
i i

coreN
r Ri

i i i

Z
V r t e E r t r

r R

β

α

− −

=

= − ⋅ + ⋅
− +

∑
� ���

�� � �
�

��
             (3-4a) 

( ) ( ) ( )
1

, 1 ,
i i

effN
r Rcorei

i

i i i

Z
V r t Z e E r t r

r R

β

α

− −

=

= − ⋅ + + ⋅
− +

∑
� ���

�� � �
�

��
      (3-4b) 

for an Yukawa like soft-coulomb potential. 

( ) ( ) ( )
1

1
, ,

N

HF

i i

V r t V r E r t r
r R=

= − + + ⋅
−

∑
� �� � �

�

��
               (3-4c) 

for Hatree-Fork potential. 

It will be a general form for TDSE with single-active-electron assumption. 

 

3.4 Discretization of the Three-dimensional Time independent Schrödinger Equation 

For a generalized eigenvalue problem, the QZ [57] algorithm is the most popular 

one to solve it. The QZ algorithm code or program can be easily found in many 
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numerical mathematical libraries, such as LAPACK and IMSL. Unfortunately, the QZ 

algorithm is not efficient for large matrix problem. The computational cost is 

proportional to cube of matrix size. For a large matrix (>3000), another efficient 

algorithm is implemented in this problem. The Jocobi-Davidson algorithm [58] is an 

iterative algorithm, which solves the generalized eigenvalue problem iteratively. It was 

found that it is very efficient for large matrix problem for the first few selected 

eigenstates. The Jocobi-Davidson algorithm is only capable of dealing with the 

symmetric matrix problem. If we use the FVM to discretize equation (3-1), equation 

(3-1) in matrix form is not a symmetric matrix because of the potential term. In this 

thesis, we have applied finite-element-method to discretize equation (3-1) to form a 

symmetric matrix, which the Jocobi-Davidson algorithm can handle efficiently. 

We use the finite-element method (FEM) to discretize equation (3-1) on structured 

non-uniform grid and the details are described as follows. A typical two-dimensional 

projected grid is shown in Figure 1. First, the wave function is approximated as 

( ) ( )i i

i

r c N rψ ∑
� �

�              (3-5) 

where the ( )iN r
�

 is the shape function or trial function for the ith grid point of 

computational mesh, and ic  is the weightings for shape function ( )iN r
�

. ( )iN r
�

 is 

equal to unity at grid point i and is equal to zero at any grid point j other than i, 

( ,
j

r r i j= ≠
� ��

). The summation of all shape functions at any point r
�

 is equal to 1 
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( ( ) 1i

i

N r =∑
�

). ( )iN r
�

 is equal to 0, when r
�

 is outside the corresponding element 

which is under consideration. 

 There are eight grid points within a hexahedron. Numbering and coordinating are 

shown schematically in Figure 2. We employ the Lagrange polynomials which can  

satisfy the general properties of shape function as described earlier. The shape functions 

of a hexahedron can be written as follows: 

( ) [ ][ ][ ]

( ) [ ][ ][ ]

( ) [ ][ ][ ]

( ) [ ][ ][ ]

( ) [ ][ ][ ]

( ) [ ][ ][ ]

( ) [ ][ ][ ]

( ) [ ][ ][ ]

1 1 1 1

2 0 1 1

3 0 0 1

4 1 0 1

5 1 1 0

6 0 1 0

7 0 0 0

8 1 0 0

1

1

1

1

1

1

1

1

N r x x y y z z
dV

N r x x y y z z
dV

N r x x y y z z
dV

N r x x y y z z
dV

N r x x y y z z
dV

N r x x y y z z
dV

N r x x y y z z
dV

N r x x y y z z
dV

= − − − −

= − − −

= − − − −

= − − −

= − − −

= − − − −

= − − −

= − − − −

�

�

�

�

�

�

�

�

         (3-6) 

where dV  is the volume of a hexahedron element. The parameters 0x , 0y , 0z , 1x , 

1y  and 1z  are the local coordinates of a hexahedron element in Figure 1. Subscript of 

a shape functions denotes the local node number in a typical element as shown in Figure 

2. 

By substituting equation (3-5) into equation (3-1), we can obtain: 
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( ) ( ) ( )21

2
i i yukawa i i

i i

E c N r V r c N r
 

⋅ = − ∇ +  
∑ ∑

� � �

       (3-7) 

Define the Galerkin weighted residual function as 

( ) ( ) ( )21
( ; )

2
i i i yukawa i i

i i

R r c E c N r V r c N r
 

= ⋅ − − ∇ +  
∑ ∑

� � � �

     (3-8) 

Next, by applying the Galerkin weighted residual condition ( 3( ; ) ( ) 0
i i

R r c N r dr =∫
� �

) on 

equation (3-8) for each hexahedron element in the computational domain, we can obtain 

the following:  . 

( ) ( ) ( ) ( ) ( )3 2 31

2
i i

i j j i yukawa j j

j j

E N r c N r dr N r V r c N r dr
Ω Ω

 
⋅ = − ∇ +  

∑ ∑∫ ∫
� � � � �

  (3-9) 

where i∂Ω  is the boundary of integration volume iΩ  and ( ) 0
iN r =
�

 on i∂Ω . 

Further, by applying the divergence theorem, equation (3-9) is reduced to 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

3

3

  

3

1 1

2 2

i

ii

i

i j j

j

i j j i j j

j jr on

i yukawa j j

j

E N r c N r dr

N r c N r N r c N r dr

N r V r c N r dr

Ω

Ω∂Ω

Ω

⋅ =

− ∇ + ∇ ∇

+

∑∫

∑ ∑∫

∑∫

�

� �

� � � �

� � �

    (3-10) 

since ( ) 0iN r =
�

 on i∂Ω . The equation (3-10) then becomes: 

( ) ( )

( ) ( ) ( ) ( ) ( )

3

3 31

2

i

i i

i j j

j

i j j i yukawa j j

j j

E N r c N r dr

N r c N r dr N r V r c N r dr

Ω

Ω Ω

⋅ =

∇ ∇ +

∑∫

∑ ∑∫ ∫

� �

� � � � �
    (3-11) 

By applying equation (3-11) to each hexahedron in the computational domain, we 

can construct a generalized eigenvalue matrix equation into the form as Ax Bxλ= , 

which can then be solved numerically. In the present study, initial spatial distribution of 

wave function for the time-dependent Schrödinger equation is obtained by numerically 
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solving the generalized eigenvalue matrix equation as mentioned in the above using the 

Jocobi-Davidson algorithm [58].  

 

3.5 Discretization of the Three-dimensional Time Dependent Schrödinger Equation 

As introduced in chapter 1 that very few studies have focused on direct real-space 

discretization of the TDSE, except those using FDM [33] and FEM by Collin’s group 

[33-37]. It is generally agreed that for solving PDEs the memory storage and 

computational time by using FEM would be higher as compared to the cell-centered 

FVM for achieving the same solution accuracy, as mentioned in chapter 1. In this thesis, 

we solve the 3D TDSE directly on real-space coordinates using cell-centered FVM, 

which is much simpler in practical implementation and faster in simulation speed as 

compared to those using FEM. 

By first dividing the volume of interest into several discrete cells and applying the 

standard finite-volume method [59] by taking volume integration to the TDSE, equation 

(3-2), in each discrete cell, we can obtain 

( ) ( ) ( )3 2 31
, , ,

2
i r t dr V r t r t dr

t
ψ ψ

Ω Ω

∂  
= − ∇ + 

∂  
∫ ∫
� � �

       (3-11) 

where Ω  represents the cell volume of interest. Next, by applying the divergence 

theorem, equation (3-11) is reduced to 
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( ) ( ) ( ) ( )3 31
, , , ,

2
i r t dr r t d s V r t r t dr

t
ψ ψ ψ

Ω ∂Ω Ω

∂
= − ∇ ⋅ +

∂ ∫ ∫ ∫
�

� � � �

     (3-12) 

where ∂Ω  represents the cell surfaces of interest. We then apply cell-centered 

finite-volume scheme, in which the variable of wave function ψ  is placed at the 

centroid of the cell. In the present thesis, we approximate the spatial part of equation 

(3-12) using Cartesian-grid based non-uniform hexahedral cells (or termed 

“non-conformal” mesh), which a typical sketch of mesh projected in two-dimensional 

plane is shown in Figure 3. Then, in each cell, equation (3-12) can be simply 

approximated as  

( ) ( ) ( ) ( )
1

1
, , , ,

2

sN

c m i c c

i

i r t V r t s V r t r t V
t
ψ ψ ψΩ Ω

=

∂
∆ = − ∇ ⋅∆ + ∆  ∂

∑
� � � �

    (3-13) 

where the subscript c and m represents the centroid of cell Ω  and surface is∆ , 

respectively. In addition, Ns and VΩ∆  represents number of surfaces and volume of the 

cell under consideration. Note the gradient terms at the cell interface can be further 

approximated by central difference scheme using values of ψ  at centroids of 

neighboring cells. 

The time propagation term on the left-hand side of equation (3-13) is approximated 

using an explicit stagger-time algorithm following the idea presented by Visscher [60] 

for 1D time-dependent Schrödinger equation, in which the algorithm was shown to be 

2
nd

-order accuracy in time for an uniform grid. The ideas are redescribed here for 

completeness. The TDSE can be rewritten as 
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( )
( )

R iI
i H R iI

t

∂ +
= +

∂
            (3-14) 

where ( , ) ( , ) ( , )r t R r t iI r tψ = +
� � �

, and R and I represents the real and imaginary part of 

the wave function ψ , respectively. By separating these two terms, equation (3-14) can 

be further reduced to 

R
HI

t

∂
=

∂
              (3-15a) 

I
HR

t

∂
= −

∂
             (3-15b) 

Then, we can propagate the equation (3-15a) and equation (3-15b) alternatively in time 

using a leap-frog like explicit scheme, termed as “explicit stagger-time scheme”, as the 

following: 

( )
1 1

, , , ,   0 ~
2 2

R r t t R r t t t HI r t t T
   

+ ∆ = − ∆ + ∆ ⋅ =   
   

� � �

    (3-16a) 

( )
1 1 1 1

, , , ,   ~
2 2 2 2

I r t t I r t t t HR r t t t T t
   

+ ∆ = − ∆ − ∆ ⋅ = − ∆ − ∆   
   

� � �

  (3-16b) 

where T is the total simulation time. Data are then synchronized by simple temporal 

interpolation of either R or I.  In addition, absorbing type boundary conditions [61] are 

employed at the outer boundaries of computational domain, which is similar to previous 

studies in this regard.  Note larger domain size is often necessary to delay the wave 

reflection from the numerical boundaries, which indeed is worthwhile of studying in the 

future. The present TDSE solver is designed to easily set up the arbitrary number of 

regions having different cell sizes centered around the molecule, where most refined 

cells are clustered in this region (as shown in Figure 3).  In generating the 
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non-conformal grid, we always set the ratio of cell length between two neigboring cells 

at the interface refined regions as two, which further ensures numerical accuracy using 

this kind of mesh. 

 

3.5. Parallel Implementation of TDSE Solver 

The above algorithm is readily parallelized through decomposition of the physical 

domain into groups of cells which are then distributed among the parallel processors.  

Each processor executes the explicit stagger-time scheme in serial for all cells in its own 

domain.  Parallel communication between processors is required when evaluating 

intrerfacial fluxes of wave function requiring cell-centered data to be transferred 

between processors.  To achieve high parallel efficiency it is necessary to minimize the 

communication between processors while maintaining a balance between the 

computational load on each processor.  In the present proposal, since we have adopted 

non-conformal mesh, it would be very difficult to have approximately equal number of 

cells in each processor simply using coordinate-based partitioning technique.  Instead, 

we have used a publicly available mutli-level graph-partitioning library [62] for 

decomposing the computational domain.  With this library, we can easily achieve the 

requirement of approximately having the same number of cells in each processor with 

any arbitrary non-conformal mesh.  Figure 4a-4c, respectively, shows a typical 

non-conformal mesh used in the present study (for 16 processors) cut through the 
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mid-plane for solving the TDSE, domain decomposition through the mid-plane, and 

surface domain decomposition for the 3D mesh. Most important of all, we would expect 

high parallel efficiency can be obtained since we have applied the explicit stagger-time 

scheme for time propagation having minimal communication load once the load is 

properly balanced among processors. 
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Chapter 4. Code Verification 

 

4.1. Ground state energy of H atom and H2
+
 ion molecule 

The hydrogen atom and hydrogen molecular ion are the simplest atomic system 

and molecular system, and the hydrogen atomic system has analytic solution. These are 

a good for verification casese. The exact eigen-energy for a hydrogen atom are 
2

1

2n

−
 

and n is the principle quantum number. The exact eigen-energy for a hydrogen 

molecular ion can be found in reference [63]. We first want to verify time independent 

Schrödinger equation solver (Jocobi-Davidson algorithm) by comparing the exact and 

calculated eigen-energy. The exact ground state energy (n=1) of hydrogen atom is -0.5, 

we make a ground state energy calculation for H atom, and use 343000 mesh elements. 

The calculated eigen-energy is -0.4994098 a.u. and compares to exact value -0.5. The 

difference between the two values is 0.1180%. 

For the H2
+
 ion molecule, we make a ground state energy calculation in different 

inter-nuclear distance from 0.2 to 3 a.u. The results are listed in table 1. These 

calculated eigen-energys are different from exact values [63] by less than 0.2%. 

These results are quite good as an initial state for a time-dependent Schrödinger 

equation problem. For higher accuracy requirement, it can be reached by increasing the 

mesh element number. We will use the Verified time independent Schrödinger equation 
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solver for the initial wave function calculation with model potential that conducted in 

chapter 3. 

 

4.2. Energy Conservation of H2
+
 Without Laser Incidence 

As a first verification of the implementation of the parallel TDSE solver, we have 

monitored the time evolution of total energy conservation of the H2
+
 molecule without 

laser interaction. Simulation conditions include: 2.5 million hexahedral cells, 192 a.u. of 

length in x and y directions and 288 a.u. length in z direction (molecular axis), time-step 

size of 0.01 a.u. and inter-nucleus distance (R) of 9 a.u. Number of processors is kept as 

16, unless otherwise specified. We calculated total energy as a function of time, in 

which the distribution of ground-state wave function is used as the initial condition.  

As figure 5 shows that total electron probability (1.0) and total energy (-0.6216 eV) are 

both nearly conserved with very small variance of 0.001% and 0.04%, respectively, 

even after long-time propagation (35 fs), which demonstrates the parallel TDSE solver 

is implemented correctly at least without considering the externally applied electric 

field. 

 

4.3. Ionization Rates of H2
+
 With Laser Incidence Along the H-H Axis 

As a further verification, we apply an intense laser pulse field to the H2
+
 molecule 

along the direction of H-H axis and compare the simulated ionization rates to those 
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predicted previously using axis-symmetric TDSE solvers.  Applied laser pulse is the 

same as that in [64], as shown in Figure 6, but related data are repeated here for 

completeness.  Envelope of the laser pulse is ( ) ( )0 cosE f t tω  and ( )f t  is defined 

as follows, 

( )

1

1

1 1 2

1 2 1 2

1

1
1 cos ,  0

2

1,  

1
1 cos ,  2

2

0,  

t
t

t
f t

t
t

other

π
τ

τ

τ τ τ

π
τ τ τ τ

τ

   
− ≤ ≤   

   
 ≤ ≤ +

= 
  

− + ≤ ≤ +  
  



, 1 25, 15τ τ= =    (4-1) 

Simulation conditions include: laser intensity of 10
14

 W/cm
2
, wavelength of 1064 nm, 

5.5~7.5 million hexahedral cells, 224~254 a.u. of length in z direction, and time-step 

size of 0.01 a.u..  Figure 7 illustrates the comparison of ionization rates as a function of 

inter-nuclei distance among different studies. We employed equation (6) of reference 

[64] to calculate the ionization rate as a function of time, and then obtained the   

presented ionization rate by averaging over time during which the evelope levels at 

highest amplitude (5-20 optical cycles). Results show that our results agree reasonably 

well with previous simulation data using axisymmetric TDSE codes. The well-known 

phenomenon, which has been observed experimentally, such as “Coulomb explosion” at 

R=9 a.u. is clearly reproduced by our simulation as others’ axisymmetric code.  Briefly 

speaking, these verifications prove the present parallelized solver for 3D TDSE using 

finite-volume method is accuate for both with and without laser incidence. 
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Chapter 5. Results and applications 

 

To demonstrate the capacity of the new parallel 3D TDSE solver to successfully 

simulate truly 3D laser-molecule interaction, a number of simulations are conducted as 

briefly described in the following. Firstly, we investigate the parallel performance of the 

TDSE solver. Secondly, simulations for single electron and multi-nuclear molecular 

system such as H2
+
 are conducted. In this case, weaker laser incidence with χ=0° and 

90° at R=9 a.u., where only snapshots of electron probability are shown for comparison. 

The internuclear distance is intentionally chosen close to where the ionization rate is the 

largest, as shown in Figure 7, which makes the comparison of electron probability 

distribution between χ=0° and 90° more distinct. In addition, stronger laser incidence 

having different wavelengths and envelope shapes with χ=0°-90° at R=2 a.u are 

conducted., where the spectra of harmonic generations are demonstrated for 

comparison. 

Thirdly, simulations for multi-electron and multi-nuclear molecular system are 

conducted. The angular effect of laser incidence on ionization rate of multi-electron 

molecules which include N2, O2 and CO2 molecules is performed and compared with 

previous experimental and numerical data wherever is available. In order to compare 
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with experimental data, we use the same laser parameters as those employed in 

Domagoj’s paper [65].  

5.1 Parallel Performance of the 3D TDSE Solver 

Parallel performance of the parallel TDSE solver was tested on a PC-cluster 

system using Intel Itanium-2 (1.5 GHz) processors with Quadric networking at National 

Center of High-performance Computing of Taiwan. Simulation conditions are the same 

as those presented in Section 3.2 but with R=9 a.u. Figure 8 shows the parallel 

performance (speedup and efficiency) as a function of the processors for two problem 

sizes (2.54 and 14.8 million cells). Minimum number of processors used in this study is 

two because of memory constraint. Results show that the parallel performance, as scale 

to two processors, can reach approximately 90% and 75% at 64 and 128 processors, 

respectively, for both problem sizes which clearly shows the parallel implementation is 

very efficient. Timing breakdown for computation and communication using various 

numbers of processors are summarized in Table 2.  Reduction of the parallel efficiency 

with increasing number of processors is mainly caused by the bottleneck of 

communication time (~1-4 seconds) regardless of the number of processors.  Results 

show that timing for computation is much larger than that for communication between 

processors, which is a distinct characteristics of explicit temporal scheme, as adopted in 

the present study. 
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5.2 Results of single electron and multi-nuclear molecular system 

5.2.1 Instantaneous Electron Probability Distribution of H2
+
 molecule 

Important simulation conditions for laser incident at χ=0° and 90°, include: laser 

intensity of 10
14

 W/cm
2
, wavelength of 1064 nm, and R=9 a,u. are summarized in Table 

3 along with other simulation conditions.  The computational domain consists of ~7 

million hexahedral cells which are in turn divided into five regions with different size of 

cells.  All domain boundaries were set as absorbing boundary conditions similar to 

those in previous section.  A time step of 0.01 a.u. was used, ~10
5
 time steps were 

simulated, which required 12.5 hours of simulation time using 32 processors on a PC 

cluster similar to that described in section 5.1.  

Figure 9~14 and Figure 15~20 shows a series of snapshots of electron probability 

distirbution for χ=0° and 90°, respectively, with inter-nuclei distance of 9 a.u.. Figure 

9~14 show that, as laser field is parallel to the molecular axis (χ=0°), initially electron is 

driven, oscillates almost in phase with laser field mostly in the z-direction, as shown in 

Figures 11 and 12, and is eventually ionized with high probability from nuclei in the 

z-direction. For example, near the end of the laser pulsed (t=24.57 optical cycles), as 

shown in Figure14, the electron probability near the nuclei is much smaller than that 

initially (t=0) and the total electron probability is greatly reduced to 0.245, in which 

ionization occurs.  Similarly, Figure 15~20 show that ,as laser field is perpendicular to 
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the molecular axis (χ=90°), initially electron is driven, oscillates almost in phase with 

laser field in the y-direction, as shown in Figures17 and 18, and is eventually ionized 

with very low probability in the y-direction, as Figures 15 and 20 are almost 

indistinguishable. For example, near the end of the laser pulsed (t=24.57 optical cycles), 

as shown in Figure 20, the total electron probability is still as high as 0.858. By 

comparing the above two cases, we can conclude it is much easier to ionize the H2
+
 

molecule if laser field is aligned with the molecular axis than laser field incident in 

other directions. This is understandable from viewpoint of classical physics since the 

Coulomb force acting on the electron due to the two nuclei is lower as the laser is 

parallel to than perpendicular to the molecular axis, if the electron is at the same 

distance from the molecular center. 

 

5.2.2 Spectra of Harmonic Generations of H2
+
 molecule 

Figure 21 shows the harmonic spectra of electron probability as a function of 

harmonic order (up to 50) at various angles of laser incidence with respect to the 

molecular axis. Note the harmonic spectrum 
2

( ) ( )eS Aω ω∝ , where ( )eA ω  is defined 

as equation (3) in Kamta and Bandrauk [22]. Important simulation conditions include: 

laser intensity of 5 x 10
14

 W/cm
2
, wavelength of 800 nm, R=2 a.u., and  various angles 

of incidence of χ=0°-90°, which is the same as those by Kamta and Bandrauk [22], and 
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are summarized in Table 4 along with other simulation conditions. Laser pulse is the 

same as employed in reference [22], in which there are 10 pulse cycles with a 

sinuoidal-like envelope. Results show that the spectra intensity at some specific 

harmonic order generally decreases with increasing angle of laser incidence with respect 

to the molecular axis. In addition, the intensity decreases with increasing harmonic 

order for a fixed angle of incidence. Importantly, distinct peaks appear at the 3
rd

, 5
th

, 7
th

 

and 9
th

 harmonic orders for angles of incidence generally shows similar trend to those 

predicted by Kamta and Bandrauk [22]. However, the spectral peaks become smeared 

out at χ=90° because of the much smaller ionization rate at this angle. 

 

5.3 Multi-electron and multi-nuclear molecular system 

For the multi-electron system, we first want to construct the Yukawa like 

soft-potential for the molecules with equation (2-6a) and (2-6b) all for N2, O2 and CO2. 

We had try out parameter sets of (2-6a) or (2-6b) for each molecule. The parameter set 

are tried out by both fitting ground state energy with the ionization energy of molecule 

and the fitting shape of molecule orbital with highest occupied molecule orbital 

(HOMO). The HOMO of N2 molecule is σg type orbital and the HOMO of O2 and CO2 

molecules are πg type orbital. 
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5.3.1 The oriental effect of laser incidence on ionization rate of multi-electron and 

two-nuclear molecular system: N2  

The bond length of N2 molecule is 2.075 a.u. and first ionization energy is 0.5728 

a.u. N2 molecule is a homogenous diatom molecule and the tuneable parameters of 

Yukawa like soft-potential for each nitrogen nuclear can be assumed as the same. The 

asymptotic behaviour of Yukawa like soft-potential at r → ∞
�

 is equal to 
1

r

−
� . We can 

use equation (2-6b) for the nitrogen nuclei in N2 molecule and assume the 
effZ  is equal 

to 0.5. The fitting parameters of Yukawa like soft-coulomb potential for N2 molecule 

are listed in table 5. We use these parameters to construct the Yukawa like soft-coulomb 

potential for N2 molecule and calculate the eigen-energy. Figure 22 shows the slice 

contour topology of Yukawa like soft-coulomb potential for N2 molecule on x=0 plane. 

The maximum value of the potential is about 4.16. Figure 23 is 3D iso-surface contour 

of 5
th

 calculated orbital of N2 molecule. The orbital is a σg type orbital, and σg type 

orbital is symmetric to molecule center and molecule axis. The 5
th

 eigen-energy of 

calculated orbital is -0.5748 a.u. These results are close to real N2 molecule, and we use 

the results to model the N2 molecule. 

The incidence laser wave length and intensity are 820nm and 1.5 x 10
14

 W/cm
2
 for 

the N2 molecule. Laser incidence duration is 10 optical cycles (~27.3 fs). The incidence 
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laser envelope is same as equation (4-1) described, but replace 1τ  to 2.5 and 2τ  to 7.5. 

The detail simulation conditions are listed in table 8.  

Figure 24 shows ionization yield to laser incidence angle in every 15∘for N2 

molecule. The ionization yield is generally decreasing with increasing laser incidence 

angle but not smoothly decreasing. For comparison, we extract the experimental data of 

ionization yield of N2 molecule from Domagoj’s paper [65]. Figure 25 is Domagoj’s 

data for N2 molecule. The definition of α in reference 65 is equivalent to χ in this thesis. 

The red solid line in figure 25 is the ionization signal converted form experimental data; 

the green dotted line is from MO-ADK calculation. We compare figure 24 and 25, 

generally my results have the sane trend with experimental and MO-ADK data. The 

non-smooth of our results might be improved by increasing the computational grid 

quality. Figure 26(a) and 26(b) are initial and temporary electron probability density 

distribution of N2 molecule at t=5 optical cycle (~13.78 fs). We compare to figure 26(a) 

and 26(b) and we found that there is some deformation of HOMO but not very much. 

 

5.3.2 The oriental effect of laser incidence on ionization rate of multi-electron and 

two-nuclear molecular system: O2  

The bond length of O2 molecule is 2.28 a.u. (~121 pm) and first ionization energy 

is -0.4448 a.u. (~1313.9 KJ/mol). The O2 molecule is also a homogenous diatom 
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molecule same as N2 molecule is. The same ideal for constructing the model potential of 

N2 molecule can use in O2 molecule. The fitting parameters of Yukawa like 

soft-coulomb potential for O2 molecule are listed in table 6. Figure 27 shows the slice 

contour topology of Yukawa like soft-coulomb potential for O2 molecule on x=0 plane. 

The maximum value of the potential is about 7.4. Figure 28 is 3D iso-surface contour of 

7
th

 calculated orbital of O2 molecule. The orbital is a πg type orbital, and πg type orbital 

is symmetric to molecule center and anti-symmetric to molecule axis. The 7
th
 

eigen-energy of calculated orbital is -0.4435 a.u. These results are close to real O2 

molecule, and we use the results to model the O2 molecule. 

The incidence laser wave length and intensity are 820nm and 1.3 x 10
14

 W/cm
2
 for 

the O2 molecule. Laser incidence duration is 20 optical cycles (~54.7 fs). The incidence 

laser envelope is exact the same as equation (4-1) described. The detail simulation 

conditions are also listed in table 8. Figure 29 shows the ionization yield to laser 

incidence angle in every 15∘for O2 molecule. The ionization yield is generally 

increasing with increasing laser incidence from χ~0° to χ~20°, then decreasing with 

increasing laser incidence from χ~20° to χ~90°. Figure 30 is Domagoj’s data for O2 

molecule. we compare figure 29 and 30, generally our results have the sane trend with 

experiment and MO-ADK data, have local minimum at laser incidence angle parallel 

and perpendicular to the molecule axis but different in the angle of maximum yield. 
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Experimental data have maximum value about incidence angle χ~45°, the MO-ADK 

data have maximum value about incidence angle χ~40°, and our results have maximum 

value about incidence angle χ ~ 20°. The results are not quite good by comparing with 

experimental data. This problem can be improved by doing parametrical study to find 

more suitable parameters for the modelled Yukawa like soft-potential or by increasing 

the computational grid quality. Figure 31(a) and 31(b) are initial and temporary electron 

probability density distribution of O2 molecule at t=10 optical cycle (~27.57 fs). We 

compare to figure 31(a) and 31(b) and we found that there is great deformation of 

HOMO.. Initially, there are four regions with high electron probability density. One of 

the four regions is shrank especially in the cases of laser incidence angle χ=30∘and 

χ=60∘ after the laser illuminating at t= t=10 optical cycle. 

 

 

5.3.3 The oriental effect of laser incidence on ionization rate of multi -electron and 

three-nuclear molecular system CO2 

For the CO2 molecule, the incidence laser wave length and intensity are 820nm and 

1.1 x 10
14

 W/cm
2
. The incidence laser envelope is also the same as equation (4-1) 

described. Laser incidence duration is 20 optical cycles (~54.7 fs). The same ideal is 

applied to construct the Yukawa like soft-potential for CO2 molecule. The bond length 

of CO2 molecule in equivalent distance is 2.192 a.u, and the first ionization energy 
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calculated by GAMESS code is -0.5443 a.u.. The oxygen atoms in CO2 molecule use 

equation (2-6b) and carbon atom in CO2 molecule uses equation (2-6a). Detail values of 

these parameters of Yukawa like soft-coulomb are listed in table 7. Figure 32 is the slice 

contour topology of Yukawa like soft-potential for CO2 molecule on x=0 plane. Figure 

33 is 3D iso-surface contour of 8
th

 calculated orbital of CO2 molecule. The orbital is a πg 

type orbital that is same as O2 molecule and the eigen-energy of calculated orbital is 

-0.5511 a.u. Figure 34 shows the ionization yield to laser incidence angle in every 15∘

for CO2 molecule. The ionization yield is generally increasing with increasing incidence 

angle from χ~0° to χ~32° and reaches to maximum at incidence angle χ~32°. Then the 

ionization yield is generally decreasing with increasing incidence angle till χ=90°. The 

ionization yield of CO2-laser interaction also have local minimum at laser incidence 

angle parallel and perpendicular to the molecule axis. Figure 36 is the ionization signal 

converted form experimental data of CO2 molecule from reference 65. We compare 

figure 34 and figure 35, the results are also have the same trend but different in angle of 

maximum yield. For the CO2 case, experimental data have maximum yield at incidence 

angle χ~46°, MO-ADK data have maximum yield at incidence angle χ~25°, and our 

results have maximum value about incidence angle χ~32°. Our result is more close to 

the experimental data than MO-ADK predicted. Figure 36(a) and 36(b) are initial and 

temporary electron probability density distribution of CO2 molecule at t=10 optical 
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cycle (~27.57 fs). We compare to figure 36(a) and 36(b) and we found that there is 

some deformation of HOMO. Electron probability density is oscillating with laser 

incidence. In the cases of laser incidence angle χ=30∘and χ=60∘, the iso-surface are 

shrank much than the cases of laser incidence angle χ=0∘and χ=90∘ are. 
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Chapter 6. Conclusion 

 

6.1 Summary of the major findings 

1. Parallel efficiency can reach 75% using 128 processors of IBM-1350 for a 

typical simulation. 

2. Validation against H2
+
 shows that the 3D-TDSE code is able to reproduce the 

ionization rate faithfully and the high harmonic spectra qualitatively. 

3. Application of the TDSE code to N2-laser interaction show that the predicted 

ionization agrees qualitatively with experimental data but a little non-smooth probably 

due to coarse mesh. 

4. Application of the code to O2-laser interaction show that the predicted ionization 

rates agree qualitatively with experimental data probably due to problematic soft 

Coulomb parameters and coarse mesh. 

5. Application of the code to CO2-laser interaction show that the predicted 

ionization rates agree better with experimental data than other available methods such as 

ADK. 

6.2 Recommendation of future studies 

1. The key to accurately predict the interaction of laser and multi-electron 

molecular system under the current framework of TDSE solver is to construct the 
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effective potential pertinent to the real physical system. There are no systematic studies 

about how to choose the parameters for a model potential. Systematic study soft 

Coulomb potential parameters is strongly recommended to further improve the 

applicability of the developed TDSE solver. 

2. Current studies do not include the spin effect of electron, spin effect should be 

taken into account. Then the model potential will be more general and capable to deal 

the spin correlated problem. 
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Inter-nuclear 

distance (R) 

Cell number of 

computational mesh 
J-D solver (a.u.) Exact (a.u.) [76] Difference (%) 

0.2 569,600 -1.9254908379592 -1.9286202 0.1623% 

1 569,600 -1.4502284265718 -1.4517863133781 0.1073% 

2 569,600 -1.1009589141748 -1.1026342144949 0.1519% 

3 608,000 -0.9097227973807 -0.9108961973823 0.1288% 

 

Table 1. Ground state eigen-energy of H2
+
 molecule in different inter-nuclear distance. 

The eigen-energy are calculated by J-D solver and compared to exact value listed in 

reference 76. These calculated eigen-energy are different from exact values [76] by less 

than 0.2%. 
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Number of 

processors 

Computation 

time (s) 

Communication 

time (s) 
Total time(s) Efficiency (%) 

2 528.071 1.380444 529.4514 100 

4 264.4042 2.596778 267.001 99.1478 

8 132.1166 4.322556 136.4391 97.0124 

16 68.39622 2.587222 70.98344 93.235 

32 33.80311 0.985111 34.78822 95.1205 

64 17.212 1.773333 18.98533 87.1481 

128 9.512111 1.399333 10.91144 75.8165 

 

Table 2. Timing breakdown of a typical parallel simulation for 400 timesteps (2,545,548 

cells, time step size=0.01 a.u., laser intensity = 1014 W/cm2, and  wave length 

=1064nm.). 
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 Case 1 Case 2 

Angle of incidence 

(degree) 
0 90 

Laser intensity (10
14

 

W/cm
2
) 

1 1 

Wave length (nm) 1,064 1,064 

Cell number 7,366,758 7,366,758 

Simulation domain size 

(a.u.) 
X<|96|, Y<|96|, Z<|112| X<|96|, Y<|96|, Z<|112| 

Time step size (a.u.) 0.01 0.01 

Inter nuclei distance 

(a.u.) 
9 9 

Pulse cycles 25 (88.589 fs) 25 (88.589 fs) 

 

Table 3. Simulation conditions for weaker laser incidence onto a H2
+
 molecule at χ=0° 

and 90°. 
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 Case A Case B Case C Case D 

Oriental angle 

(degree) 
0 30 60 90 

Laser intensity 

(10
14

 W/cm
2
) 

5 5 5 5 

Wave length 

(nm) 
800 800 800 800 

Cell number 13,461,224 13,461,224 13,461,224 13,461,224 

Simulation 

domain size 

(a.u.) 

X<|112|, 

Y<|112|, 

Z<|128| 

X<|112|, 

Y<|112|, 

Z<|128| 

X<|112|, 

Y<|112|, 

Z<|128| 

X<|112|, 

Y<|112|, 

Z<|128| 

Time step size 

(a.u.) 
0.01 0.01 0.01 0.01 

Inter nuclei 

distance (a.u.) 
2 2 2 2. 

Pulse cycles 10 (26.6 fs) 10 (26.6 fs) 10 (26.6 fs) 10 (26.6 fs) 

 

Table 4. Simulation conditions for stronger laser incidence onto a H2
+
 molecule at 

different angles of incidence (χ=0°, 30°, 60° and 90°). 
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Fitting type 
Ionization energy & 

molecular orbital shape 

Atom type N 

Equation used for 

Yukawa like 

soft-coulomb 

potential  

2-6b 

Zeff 0.5 

Zcore 7.0 

α  1.35 

β  0.51 

Orbital energy -0.5748(5
th

 MO) 

Table 5. Fitting parameters of Yukawa like soft-coulomb potential for N2 molecule. 
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Fitting type 
Ionization energy & 

molecular orbital shape 

Atom type O 

Equation used for 

Yukawa like 

soft-coulomb 

potential  

2-6b 

Zeff 0.5 

Zcore 15.0 

α  1.36 

β  0.94 

Orbital energy -0.4435(7
th

 MO) 

Table 6. Fitting parameters of Yukawa like soft-coulomb potential for O2 molecule. 
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Fitting type 
Ionization energy & 

molecular orbital shape 

Atom type C O 

Equation used for 

Yukawa like 

soft-coulomb 

potential  

2-6a 2-6b 

Zeff X 0.5 

Zcore 4 7 

α  1.5 0.57 

β  1.0 0.54 

Orbital energy -0.5511(8
th

 MO) 

Table 7. Fitting parameters of Yukawa like soft-coulomb potential for CO2 molecule. 
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 N2 O2 CO2 

Oriental angle 

(degree) 
0~90 0~90 0~90 

Laser intensity (10
14

 

W/cm
2
) 

1.5 1.3 1.1 

Wave length (nm) 820 820 820 

Cell number 2,153,704 1,163,158 1,902,752 

Simulation domain 

size (a.u.) 

X<|100.8|, 

Y<|100.8|, 

Z<|100.8| 

X<|54.6|, 

Y<|54.6|, 

Z<|58.8| 

X<|60|, 

Y<|60|, 

Z<|64| 

Time step size (a.u.) 0.005 0.0025 0.005 

Inter nuclei distance 

(a.u.) 

2.075 

(N-N) 

2.28 

(O-O) 

2.192 

(O-C-O) 

Pulse cycles 10 (27.3 fs) 20 (54.7 fs) 20 (54.7 fs) 

Table 8. Simulation conditions for laser incidence onto the N2, O2 and CO2 molecule at 

different angles of incidence. 
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Figure 1. Sketch of the typical finite-element grid system projected in 

two-dimensional space. 
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Figure 2. Local number and coordinates of the finite-element grid system. 
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Figure 3. Sketch of the typical finite-volume grid system projected in 

two-dimensional space. 
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Figure 4. (a)Typical grid system for 3D TDSE simulation (a slice through the 

midplane). 
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Figure 4. (b) Typical slice of domain decomposition through midplane (16 

processors). 
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 (c)  

Figure 4. (c) Typical surface domain decomposition (16 processors). 
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Figure 5. Total electron probability and total energy variance of H2
+
 molecule 

without laser incident, the internuclear distance is 9 au.  
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Figure 6. Applied electric field to the H2
+
 molecule along the H-H axis as a function 

of time. Laser intensity  = 10
14

 W/cm
2
, and  wave length =1064nm. 
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Figure 7. Comparison of the ionization rates as a function of inter-nucleous distance, 

obtained by the present parallelized 3D TDSE solver and previous 

2D-axisymmetric TDSE solver for an aligned sub-femto-second linearly 

polarized laser pulse interacting with a H2
+
 molecule (power 

intensity=10
14

W/cm
2
, wave length=1064nm, pulse duration=25 cycles). 
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Figure 8. Parallel efficiency of the present parallelized 3D TDSE solver as a 

function of the number of processors. Case 1: 2.54M cell grid and case2: 

14.8M cell grid. Speedup is normalized by 2 processor data. 
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Figure 9. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=0 a.u. (0.00 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=0°). 
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Figure 10. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=450 a.u. (3.07 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=0°). 
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Figure 11. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=810 a.u. (5.53 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=0°). 
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Figure 12. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=900 a.u. (6.14 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=0°). 

 



 72 

 

 

Figure 13. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=2250 a.u. (15.36 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=0°). 
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Figure 14. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=3600 a.u. (24.57 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=0°). 
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Figure 15. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=0 a.u. (0.00 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=90°). 
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Figure 16. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=450 a.u. (3.07 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=90°) 
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Figure 17. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=810 a.u. (5.53 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=90°) 
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Figure 18. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=900 a.u. (6.14 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=90°). 
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Figure 19. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=2250 a.u. (15.36 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=90°). 
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Figure 20. Typical snapshots of the electron probability distribution over the 

axisymmetric plane for a normally incident sub-femto-second linearly 

polarized laser pulse interacting when t=3600 a.u. (24.57 cycle) with a H2
+
 

molecule (R=9) (power intensity=10
14

W/cm
2
, wave length=1064nm, pulse 

duration=25 cycles, angle of incidence=90°). 
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Figure 21. Harmonic spectra of H2
+
 for different orientation angles: χ=0~90°. Laser 

intensity = 5*10
14

 W/cm
2
, and wave length = 800nm. Internuclear distance 

=2.0 a.u. 
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Figure 22. Slice contour topology of Yukawa like soft-coulomb potential for N2 

molecule on x=0 plane. The maximum value of the potential is about 4.16. 
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Figure 23. The 3D iso-surface contour of initial wave function for laser-N2 

molecule interaction. The black dots are the positions of the nuclear of N2 

molecule. This is a σg type orbital. The orbital is symmetric to molecule 

center and molecule axis. 
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Figure 24. The ionization yield to laser incidence angle in every 15∘for N2 

molecule. Laser intensity = 1.5*10
14

 W/cm
2
, and wave length = 820nm. 

Internuclear distance =2.075 a.u. 
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Figure 25. Ionization signal S(α) converted from measured ionization yield as a 

function of the angleα between the polarization axes of the aligning and the 

ionizing beams for N2, and The peak laser intensities is1.5*10
14

 W/cm
2
. 

This data is from reference [65]. Red solid line and orange dash dotted line 

are converted form experimental data by different method, green dotted line 

is from MO-ADK calculation.  
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(a)

(b) 

Figure 26 Electron probability density distributions of N2 molecule under different 

laser incidence angle on x=0 plane at t=5 optical cycle (~13.78 fs). (a) initial 

(b)laser incidence angle of χ=0∘, 30∘, 60∘and 90∘. 
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Figure 27. The slice contour topology of Yukawa like soft-potential for O2 

molecule on x=0 plane. The maximum value of the potential is about 7.4. 
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Figure 28. The 3D iso-surface contour of initial wave function for laser-O2 

molecule interaction. The black dots are the positions of the nuclear of O2 

molecule. This is a πg type orbital. The orbital is symmetric to molecule 

center and anti-symmetric to molecule axis. 
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Figure 29. The ionization yield to laser incidence angle in every 15∘for O2 

molecule. Laser intensity = 1.3*10
14

 W/cm
2
, and wave length = 820nm. 

Internuclear distance =2.28 a.u. 
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Figure 30. Ionization signal S(α) converted from measured ionization yield as a 

function of the angleα between the polarization axes of the aligning and the 

ionizing beams for O2, and The peak laser intensities is1.3*10
14

 W/cm
2
. 

This data is from reference [65], Red solid line and orange dash dotted line 

are converted form experimental data by different method, green dotted line 

is from MO-ADK calculation.  
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(a) 

(b) 

Figure 31. 3D iso-surface contour of electron probability density distributions of O2 

molecule under different laser incidence angle at t=10 optical cycle (~27.57 

fs). (a) initial (b)laser incidence angle of χ=0∘, 30∘, 60∘and 90∘. 
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Figure 32. Slice contour topology of Yukawa like soft-coulomb potential for CO2 

molecule on x=0 plane. The maximum value of the potential is about 5.66. 
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Figure 33. The 3D iso-surface contour of initial wave function for laser-CO2 

molecule interaction. The black dots are the positions of the nuclear of CO2 

molecule. This is a πg type orbital. The orbital is symmetric to molecule 

center and anti-symmetric to molecule axis. 
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Figure 34. The ionization yield to laser incidence angle in every 15∘for CO2 

molecule. Laser intensity = 1.3*10
14

 W/cm
2
, and wave length = 820nm. 

Internuclear distance =2.28 a.u. 
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Figure 35. Ionization signal S(α) converted from measured ionization yield as a 

function of the angleα between the polarization axes of the aligning and the 

ionizing beams for CO2, and The peak laser intensities is1.3*10
14

 W/cm
2
. 

This data is from reference [65]. Red solid line and orange dash dotted line 

are converted form experimental data by different method, green dotted line 

is from MO-ADK calculation.  
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(a) 

(b) 

Figure 36. 3D iso-surface contour of electron probability density distributions of 

CO2 molecule under different laser incidence angle at t=10 optical cycle 

(~27.57 fs). (a) initial (b)laser incidence angle of χ=0∘, 30∘, 60∘and 

90∘. 


