

國 立 交 通 大 學

資訊科學系

碩 士 論 文

一個為異質系統仿真器以 LLVM為基準的二元轉譯器

An LLVM-based Binary Translator

For A Heterogeneous System Architecture Simulator

研 究 生：梁日滔

指導教授：徐慰中 教授

中 華 民 國 一 百 零 二 年 七 月

摘要

通用圖形處理單元（GPGPU）的計算可以更有效的方式與高度並行的加快程序運行。

然而，編程模型對程序員不太友好。內存模型是異質的，這樣的編程需要明確的數據傳

輸控制系統主內存和 GPU 設備內存。在另一方面，其他如基礎的除錯調試和代碼分發

缺乏支持。來自 AMD 的異構系統架構（HSA）以紓緩在 GPGPU 編程複雜性的軟件開

發。特色包括共享內存模型, 可用於不同廠商硬體上的中介語言（IR）及更具體的操作

控制，如控制 GPGPU 的環境中誇工作群的內存存取。在本文中，我們提出的以 LLVM

為基準開發的 HSA 轉譯器為了在一個 HSA 仿真器上提供一個快速的 HSAIL 轉譯。手

寫的 HSAIL benchmark 以及 HSAIL 的二元組譯器協助確認功能性上的正確性。

i

誌謝

 感謝這兩年裡面不斷支持與幫助我的每一個人。特別是我的指導教授,

徐慰中老師, 從他身上我不止學到做研究的學術知識與做研究的態度, 更

學習到很多的人生道理, 做人處事的態度, 讓我好好的學習了一門課。感謝

口試委員: 鍾葉青教授, 游逸平教授及楊武教授, 在口試時提出不同角度及

報告時的問題, 讓我了解到更多我沒有考慮到的地方。

 感謝清華大學鍾葉青教授的實驗室的研究生, 特別感謝郭舟東同學及

高崇閔同學, 在一起做整個計劃時不斷的與我學術交流及在友情上不斷的

支持我。感謝實驗室的同學, 大家都沒有介意一個澳門人跟他們一起共事,

包容我的澳門國語口音。

 感謝港澳會的各位同學, 在我這兩年的研究生生活中, 給了我很多的勉

勵及支持。

 最後, 感謝我的家人。在我離開家裡的七年歲月中, 我一直感到放眼世

界的美好。但畢業在即, 考慮到的是七年裡都沒有在家裡陪伴父母, 而父母

卻沒有對我有一絲意見, 只有不斷的鼓勵。

未來新一頁的故事, 有你們我才可以走下去, 感謝你們。

 梁日滔

2013/07/22

於國立交通大學

(EC446A)

ii

Agenda

ABSTRACT .. iv

1. INTRODUCTION .. 1

2. BACKGROUND ... 5

2.1 GPGPU (General-Purpose Graphical Processing Unit) Computation 5
2.2 Heterogeneous System Architecture (HSA) ... 7
2.3 HSAIL (Heterogeneous System Architecture Intermediate Language) 15
2.4 QEMU/PQEMU ... 19

3. RELATED WORK .. 22

4. PROJECT DESIGN ... 25

4.1. HSA Simulator .. 25
4.2. HSA Translator .. 28
4.3. HSA Link-loader .. 29
4.4. HSA Kernel Execution ... 30

5. IMPLEMENTATION ... 33

5.1 BRIG Generator .. 33
5.2 HSA Translator ... 34
5.3 HSA Link-loader ... 47

6. EXPERIMENTS AND DISCUSSION ... 49

6.1 Case A ... 50
6.2 Case B ... 52
6.3 Case C ... 54

Conclusions .. 58

Reference.. 59

iii

ABSTRACT
General purpose graphical processing unit (GPGPU) computation can speed

up the programs with high degree of parallelism in a more power efficient way.

However, the programming model is not programmer friendly. The memory model

is heterogeneous thus such programming needs explicit data transfer control

between system main memory and the GPU device memory from the programmers.

On the other hand, other infrastructures such as the debugging and the code

distribution are lack of support as well. The Heterogeneous System Architecture

(HSA) from AMD rises with such issues to ease the software development in the

GPGPU programming. Features including the shared memory model and the

re-targetable intermediate representation (IR) with more specific operation

controlling such as the cross work group controlling ease the software development

in the GPGPU environment. In this paper, we present the HSA Translator for the

fast simulation of the HSAIL in the functional level system mode simulator called

the HSA Simulator performing the simulation of the HSA environment. It consists

of the simulator based on the PQEMU for the simulation of the processing unit in

the GPGPU environment. The HSA Translator is implemented in the simulator for

the native code translation. The HSA Translator leverages the LLVM

infrastructure to translate the kernel source code from the Heterogeneous System

Architecture Intermediate Language (HSAIL) to the native re-locatable code. The

linking of the native binary is done by a self-implemented link-loader called the

HSA Link-Loader implemented in the simulator. The simulation of the kernel

processing device is performed by using the host threads in order to speed up the

simulation. We evaluate the simulation with the self-translated HSAIL benchmark

based on the Rodinia benchmark and the AMD OpenCL samples.

iv

1. INTRODUCTION
Applications having high data parallelism enjoy greater performance and

power efficiency from SIMD (Single Instruction Multiple Data) computing devices.

Consider the x86 architecture, for example, four operations in one SSE (Streaming

SIMD Extension) instruction and eight operations in one AVX (Advanced Vector

Extension) instruction can be processed simultaneously. Such performance and

power efficiency in SIMD processing has been further pushed up to GPGPU, where a

much greater number of cores can be used to compute in SIMD or SIMT (Single

Instruction Multiple Thread) fashion.

SIMT is the strategy of using a large of number of threads in parallel, but each

thread executes the same instruction on a different data section allocated to this

thread. Like SIMD processing, the overhead of instruction fetch, decode, and

speculation can be effectively eliminated, SIMT has a higher power efficiency. The

device memory hierarchy in GPGPU also contributes to the greater power efficiency

of SIMT processing. Using CPU and GPGPU collaboratively to achieve greater

performance and power efficiency is the current trend of computing. This is often

referred to as heterogeneous computing since the GPGPU is often using a different

ISA (Instruction Set Architecture) from the CPU.

CPU, as designed for general-purpose computing, is less power efficient for

SIMD processing. General purpose computing often incurs complex instruction

execution control flow, which requires sophisticated branch prediction, speculation,

out-of-order execution, and cache hierarchies. For processing a large and regular

section of data, SIMD or SIMT architecture could yield much greater power

efficiency. The motion for heterogeneous computing is to leave the logic control

portion of an application to the CPU and let the GPGPU handles the regular data

1

parallel sections.

One challenge of heterogeneous computing is how to program for the two

different ISAs within the same application. CUDA from NVIDIA is one of the earliest

programming model for heterogeneous computing. However, CUDA is designed for

NVidia devices only, not portable for other GPGPU devices. OpenCL (Open

Computing Language) is a programming model, initially developed by Apple, and

later promoted by the Khronos Group. As the open standard for heterogeneous

computing platforms. Early programming models for heterogeneous computing

platforms focus too much on the efficient use of device memory hierarchies. They

are not programmer friendly. For example, the current existing GPGPU

programming model requires explicit control of data transfers between the host

memory and the device memory. Furthermore, debugging based on such models is

difficult, as the kernel functions running on the device fails to provide the basic

debugging functions like the single step execution and break point setting. Due to

the separate memory spaces, a device memory pointer can access the device

memory only. Such difficulties calls for a revised programming model based on

HSA (Heterogeneous System Architecture) from AMD for heterogeneous computing

platforms.

The main idea of HSA is to make the GPGPU software development easier. The

memory model of HSA is called HUMA (Heterogeneous System Architecture), which

offers a shared virtual memory space between the host and the device. Since the

memory pointers are now shared, such sharing strategy allows programmers

accessing the device and host memory with the same memory pointers. Thus

software developers can focus more on computing algorithms rather than on

managing explicit memory copies between the separate address spaces. In addition,

2

http://en.wikipedia.org/wiki/Khronos_Group

HSAIL (Heterogeneous System Architecture Intermediate Language) is an

intermediate representation of HSA for machine independent code distribution.

The machine independent code distribution is achieved through the on device code

generation from HSAIL to the native code. The native code generated is linked and

loaded by an on device linker and loader. Precise definition of parallel data syntax,

no high level structure representations and a finite register set in HSAIL allow

programmers to get a more thorough understanding of their code. Vector

instructions in HSAIL offer chances of straightforward SIMD instruction generation

with less analysis in speeding up the device code generation. Cross work group and

cross lane operations in HSAIL also provide finer control on data computing. . The

rest of this paper uses the term agent for the host code following the terminology of

HSA.

Our work is to design a functional level system mode simulator for HSA. The

simulator runs two guest machines at the same time. One guest machine is an ARM

processor as the current embedded systems are mostly based on ARM processors.

The other guest machine we simulate is the GPGPU. Both the ARM guest machine

and the GPGPU are emulated by the x86-based host machine. The ARM guest is

emulated by one x86 core, while the GPGPU is emulated by many x86 cores on the

host machine. Therefore, the emulated GPU can make use of the multi-core power

available in the host machine in order to achieve faster simulation.

As one of the first few groups developing for the HSA framework, we are facing

many challenges. For example, no OpenCL/HSA compilers are available at this time.

In order to test our HSA simulator, we must come up with our own HSAIL code.

We have implemented a binary generator for translating HSAIL text into HSAIL

binary code called Brig. This tool is called Brig generator. Following the HSA

3

specification, the communication between the host and the device is via queues

which are explicitly managed through AQL (Architected Queuing Language). AQL

packets are used to specify the required kernel execution information. In the

QEMU-based HSA simulator, the simulation of GPGPU is based on binary translation,

which the Brig code is translated into native binaries to be executed directly on the

host machine. On a real heterogeneous machine, this step is called finalization

which translate the Brig code into device code to be running on the GPGPU device.

Since we do not know which GPGPU device will be used, the functionality of the

device is simulated by the host machine. Therefore, the current finalizer simply

translate the Brig code into native binaries to be executed on the host machine. This

Brig-to-Host-binary translator is the main theme of this thesis work. It is built as a

library for the QEMU, performs the device code generation. Native code is linked

through the HSA link-loader implemented in the QEMU. Thereby, the HUMA and the

HSAIL on device code generation requirements are met in our simulator.

Our implementation of the HSA simulator follows the HSA 1.0 specification. In

the rest of this thesis, we will introduce the background of this work in chapter 2.

Related work will be introduced in chapter 3. Design of our project framework will

be introduced in chapter 4. Implementation details will be described in chapter 5.

Experimental results will be discussed in chapter 6 and conclusion as well as future

work will be given in chapter 7.

4

2. BACKGROUND

2.1 GPGPU (General-Purpose Graphical Processing Unit) Computation
The GPGPU computation such as the CUDA and the OpenCL is the practice of

the combination of the SIMT (Single Instruction Multiple Threads) and the SIMD

(Single Instruction Multiple Data). The SIMT leverages the fact that the GPU has

abundant number of cores providing parallel computation from collections of

threads. Such parallel computation can be done due to the regularity of the kernel

function instructions. Branch divergence is solved from the use of a control bit

mask recording the jumping of basic block in each thread. Each thread dispatched is

considered to be independent to each other. The SIMD vector units available in the

cores improve each thread in each computation.

The collection of threads in the GPGPU is divided into groups called

work-groups. Each work-group is executed by a group of cores in the GPU, which is

called the streaming multi-processor. Each thread in the work-group is called

work-item. Each work-item is executed by a core in the group of processor running

the work-group the work-item belongs to. A fixed number of work items executed in

parallel specified as the wavefront. The size of a wavefront is defined by the devices.

During the execution, work-groups can share the same memory space called global

memory. Within the same work-group, work-items in the same work-group shared

the memory space called local memory. Every work-item has a private memory

space for the data that no synchronization is needed. Whenever synchronization is

necessary, barrier calls are provided for the programmers to perform such data

synchronization activity. The barrier calls can be applied to the level of the local

memory or the whole global memory for the synchronization of the whole

execution or the synchronization of each work group. Different calls are specified by

5

specific API calls such that programmers can choose the suitable one to perform the

necessary synchronization.

Figure 2.1. The GPGPU computation model is an N-Dimensional Range. Each work group consists of a

group of work-item. Hardware specific wavefront size is decided by the size of work that can be

computed at a particular instance.

The memory model of the GPGPU computation is a heterogeneous memory

model consisting the main memory of the system and the device memory in the

graphics card. Before the kernel execution, data allocated in the host memory is

copied to the device memory via API (Application Programming Interface) calls

from programmers. When the kernel execution is done, another API call is needed

for the data transfer from the device memory to the host memory. Such messy API

calls are needed due to the limitation that the GPU can only access the GPU memory.

Which means, the device memory pointer can only access the device memory. Data

size exceeds the size of the device memory needs to do chunking by the logic of the

programmers. However, the CUDA has introduced the cudaHostAlloc API call in

order to solve the problem. The cudaHostAlloc API call performs pseudo-shared

virtual memory effect, such that the chunks can be manipulated by the runtime.

6

Nevertheless, the cudaHostAlloc has solved one of the difficult parts of memory

management, the difficulties in using explicit call syntax of reading and writing

device memory is still unchanged.

Figure 2.2. The GPGPU programming model consists of the device memory and the host memory. In

programmers’ view, these two memories should be maintained with two different syntaxes. All memory

allocations and memory movements need thorough understanding in order to prevent naïve

programming and errors.

2.2 Heterogeneous System Architecture (HSA)
With abundant number of cores favoring the practice of multi-thread

programming, the importance of the GPGPU grows within the past decade in both

the high performance computing and the practical application such as gaming and

the computation of the large data digesting programming such as the computational

fluid dynamics. However, several difficulties stop programmers in developing

application using such solution, including the explicit memory syntax, debugging

difficulties and the device dependent recompilation.

The data transfer is needed to be controlled by the programmers in the GPGPU

programming for the memory read/write from/to between the host memory and

7

the GPU device memory. For example, in order to have an array addition of 𝑎𝑎 + 𝑏𝑏 =

𝑐𝑐,

1. Three device memory allocation calls,

2. Three device memory writing calls. (Two for preparing the data in

array A and B, and one for the initialization of the buffer for array C)

3. One device memory reading call for the answer extraction of the array

C from the device memory to the host memory.

4. Three device memory release calls.

These data transfer controlling causes a difference with the traditional high level

language programming such as C/C++ and JAVA because the memory models are

different. The memory syntax in controlling the device memory is described as API

calls. Beginners cause severe performance decrease of the GPGPU program because

naïve writing of the data transfer controlling may lead to cyclic copying.

 Debugging is hard in the GPGPU program due to the incomplete definition of

the debugging features of the GPGPU framework. Current existing debugger from

the vendors fail to provide the debugging features of a traditional CPU program

debugger, such as break point, single-step execution and variable watches etc. These

features need some kind of a support in the compilation stage, as some of the

program information should be included in the program binary. However, the

current existing tool-chain provides no debugging features at all. Besides, the

current existing GPGPU programming model provides only single direction calls.

Debugging is nearly impossible if the bug is appeared in the side of the device

memory because there is no device to host call available.

 The GPGPU code needs to be recompiled if the code is shipped from one vendor

machine to another due to the binary compiled is for only a single vendor.

8

Toolchains provided by the vendors may not be able to compile the code for the

entire device. Vendor specific optimization also needs to be specified and

recompiled for each device specification. The virtual GPU ISA (Instruction Set

Architecture) such as the AMDIL (AMD Intermediate Language) and the PTX

(Parallel Thread Execution) can only be run on the AMD and NVIDIA graphics card

respectively. In addition, programmers may need to modify the code even though no

vendor specific optimization needed. No cross vendor re-targetable ISA is available

in order to ease the code distribution inconvenience.

 Solution called the Heterogeneous System Architecture (HSA) is carried out

from AMD in solving the software development difficulties. The HSA is aimed in

supporting CPUs and GPUs from multiple vendors. The vital idea is that

programmers can have an easier way to program the GPGPU code with only the

knowledge of the high-level language. System software manipulates the lower level,

such as the actual memory copy as well as making use of the programmable

compute elements from different vendors seamlessly.

 The implementation of the HSA includes both the hardware and the software.

The HSA conformed hardware implementation requirements in the specification 1.0

are,

I. Shared Virtual Memory Model between the CPU(s) and the GPU(s)

II. Cache Coherency Domains

III. Memory-Based Signaling and Synchronization

IV. User Mode Queuing

V. Preemptive HSA Component Context Switching

VI. Architected Queuing Language (AQL)

VII. HSA Component IEEE754-2008 Floating Point Exception Reporting

9

VIII. HSA Component Hardware Debug Infrastructure

IX. Efficient System Call Infrastructure

X. HSA Platform Topology Discovery

The shared virtual memory model is defined as the HUMA (Heterogeneous

Unified Memory Access). The need of the explicit device memory movement syntax

is due to the separate virtual memory space of the host virtual memory and the

device virtual memory. Thereby, the HUMA defines the shared virtual memory

space within the host and the device. The device can access all the shared memory

including the main memory if the HSA conformed hardware is used. Since the

programs with the HSA accesses the same virtual memory space, the explicit

memory syntax of the device memory can be replaced by the syntax of the host

memory. In the other words, programmers can use the same high-level language

memory syntax for both the host and the device memory operations. In addition,

the actual copy operation is controlled by the runtime functions instead of the

syntax from the programmers. Under this mechanism, programmers have the view

of a single piece of flat virtual memory. The unified syntax of the C/C++ style makes

the programming language be friendly to the programmers. Furthermore, since the

memory copy is done by the runtime functions, naïve memory copy such as cyclic

copying can be prevented. Software development using the HUMA feature can have

a neat and tidy view replacing a set of APIs. GPGPU computing beginners can catch

up quickly as the way of programming is the same as the high-level languages

instead of the necessity of learning sets of APIs.

10

Figure 2.3. The shared virtual memory model of HUMA in programmers’ view

Data memory accesses in HSA can be available in any sharable regions. Current

existing GPGPU memory model raises the difficulties in cache/data coherency due

to the separate copy of the memory pointers. Nevertheless, the HSA exists actual

copying of the data from host to memory but the memory pointers exist in the same

memory space. Data access request to the host main memory from the device can

be done without any copies if the HSA conformed hardware are used. However,

read-only data needs to be constant during the execution, the copies still have to be

done. On the contrast, such constant data can skip the data coherence problem.

Thereby, the difficulties between the host and device memory coherency

maintenance can be solved.

 The synchronization in the HSA is done through the signaling raising in the

memory. Such signaling mechanism provides the ability of controlling a memory object,

there are four types of signaling may occur,

a. Allocation of a memory object.

b. Destruction of a memory object.

11

c. Control signal of a memory object, may occur when we need to do any

atomic operation in the HSAIL.

d. Waiting of a memory object, such as the resource waiting in a race

problem.

The signals are allocated by the runtime. Such allocations are triggered by the

HSAIL description. In addition, such mechanism is controlled and manipulated by

the HSA agents. Inter-process accessing is not supported such that data within

kernels are not the same copy.

Multi-level user queue are supported in the HSA. The necessity of this issue is

due to the multiple CPUs and GPUs support of the HSA. A single queue may cause

serious performance loss. Multi-level queue may practice several optimization

techniques such as priority queue in preventing the resource abundant device

running a resource non-thirsty kernel. The queue contains the packets in the

structure of the AQL (Architected Queuing Language), which we introduce in this

article later.

The context switch in the HSA including stopping running wave-fronts,

saving/restoring the current context state to/from memory, recovering the

execution from saved state. This requirement is defined in the preemption of the

components. The mechanism provide,

a. Preemption and forced exit of the currently running wave-fronts.

b. Saving the context on a per-compute-unit granularity.

c. Saving all the state and restoring to restart the preempted context.

The importance of such preemption exists due to the GPGPU computation needs the

full occupation of the device. Such that when users need to perform a computation

with another device needed action such as high-definition display, existing GPGPU

12

solutions are failed to provide full performance ensuring. Recovering the context

per-compute-unit can provide the availability of the computation in a more precise

granularity. In addition, Optimization with historical record needs the change in

HSA component context thus the support for the saving of all state and recovering

to restart the preempted context is vital in reaching better performance gain.

The communication between the host and the device codes in the shared are

defined by the AQL (Architected Queuing Language). The packet written in AQL

structure is manipulated by the host/agent providing the information to the device

in order to setup the kernel execution. The information in the AQL packet including,

i. The synchronization information, including native synchronization

function, the necessary cache flushing mechanism, cache level

action, performance counter sampling rate and the dimension of

the kernel dispatching.

ii. Completion object and Kernel object address. This is necessary

because the kernel code is provided in the shared virtual memory

space. The address in the AQL packet is needed for the device to

retrieve the kernel code. The kernel code available has already

translated to native code.

iii. Kernel arguments addresses. The kernel arguments are located in

the kernel argument segment (kernarg) of the shared virtual

memory.

iv. The size of the grid and work group is written in three dimensions.

v. The runtime-defined information including the size of the work

group segment, work item private segment, work item spill

segment, work item argument segment. The sizes of the segments

13

are in bytes.

The IEEE754 floating-point exception defines the unified format of the HSA

floating exception reporting. Five types of floating exception are defined,

 Exception code 0: INVALID OPERATION

 Exception code 1: DIVIDE BY ZERO

 Exception code 2: OVERFLOW

 Exception code 3: UNDERFLOW

 Exception code 4: INEXACT

The existing GPGPU programming model is hard to debug due the lack of

support in the hardware. In addition, the debugging features existing comparing to

that of the traditional high-level programming makes a great difference such as the

absence of the instruction breakpoints. Profilers require the information from the

performance monitor and the sampling information from the memory accesses.

Such information is limited in the current existing hardware as well. Such that the

debugging infrastructure in the HSA is defined to have the minimum requirement of

the instruction breakpoint mechanism and others are set to be implementation

defined. We expect the debugging infrastructure will be as thorough as usual in the

traditional CPU only application running environment.

The system call infrastructure in HSA supports the bi-directional system call

structure. Such that the device can raise various system call in order to mention the

current situation, such as the exceptions, the finish of the kernel execution etc. With

the bi-directional call, the execution is more efficient because there is no need for

the host to trace the device execution for minimizing the signaling of the kernel

return.

As a platform supporting CPUs and GPUs from multiple vendors, the discovery

14

of the HSA platform topology is vital for the execution of an application. An HSA

Memory Node (HMN) represents a set of HSA components. Each HMN can access to

the memory attached to such HMN and other regions with system-defined

attributes. The design of the memory access is an extension of the NUMA

(Non-Uniform Memory Access).

The software implementation of the HSA includes the high-level language

compiler, linker and loader, the finalizer and the HSAIL (Heterogeneous System

Architecture Intermediate Language). The HSA tends to support multiple CPUs and

GPUs from different vendors. To achieve this issue, the HSAIL is introduced as a

re-targetable intermediate representation and providing the necessary components

for on device linking. The software flow should be,

1. The high-level compiler compiles the high-level language to the

HSAIL.

2. The finalizer provides the native code translation from the HSAIL to

the native code.

3. The linker and loader link the native code with the native library to

have the native binary.

2.3 HSAIL (Heterogeneous System Architecture Intermediate

Language)
The HSAIL is the re-targetable intermediate language for the representation of

the kernel operations in the HSA. The major features are the memory model, the

fixed register set and the large number of operation codes with precise syntax for

the synchronizations. The binary format of the HSAIL is called Brig.

The memory resource in the HSAIL is divided into three types, the flat memory,

the registers and the image memory. The flat memory can be accessed through a

15

certain segment base address plus offset. The segments are divided the way data

can be shared and intended usages. Seven segments are divided as the following,

a. Global – shared by all the agents.

b. Group – shared by work-items of a work-group.

c. Private – local to a single work-item.

d. Kernarg – read only, used to pass arguments to kernel.

e. Readonly – holding the constants.

f. Spill – load or store register spill.

g. Arg – used to pass arguments in and out of functions.

The system software maintains the starting addresses of the segments. Image

memory is used for image operations only for current specification.

Figure 2.4. The segment memory model in HSAIL is divided into the global, group and private memory.

In between, the Kernarg and the readonly segments are implemented as part of the global memory

while the spill and arg segments are implemented as part of the private memory.

 Registers in the HSAIL are limited resources. Results from the all operations

are stored in the registers. Types of registers are divided into four categories by the

16

bit width in 1-bit, 32-bit, 64-bit, and 128-bit as shown in table 2.1. In addition, S, D

and Q registers can be used in the vector instructions. C is used for control signals.

Such limited register set favors the speed of the on device translation, as lesser

analysis needs to be performed in the register mapping. Syntax of the vector

instructions not only favors the programmers in exploiting the performance of the

GPGPU programs, translation to the on device SIMD (Single Instruction Multiple

Data) is more straightforward as mapping of the instructions is relatively easy. In

case the registers is not enough, spill memory segment works as a swap for the

registers.

Register types Number of registers Bit width

C 8 1

S 128 32

D 64 64

Q 32 128

Table 2.1. Limited registers with various bit width.

 The HSAIL has 133 operation codes in the HSA version 1.0. Operations are in

variable length. There are several categories,

1. Arithmetic operations

2. Memory operations

3. Image operations

4. Branch operations

5. Parallel synchronization and Communication operations

6. Operations related to functions

7. Special operations

17

One or more modifiers for the definition of each operation follow after the

operation codes. Compare to the current GPGPU programming language syntax,

HSAIL has special branch and synchronization syntax. Making use of the

fine-grained barrier, these two kinds of operation can follow by the fine-grained

barrier modifier to specify the number of the work items in performing the

branches and the barriers.

Both text and binary formats are supported in the HSAIL. The Brig, which is the

binary format of the HSAIL, has five sections. Each component in each section has a

corresponding byte offset for searching the information in the other sections.

Figure 2.5. Sections in Brig start with a section header to specify the size of the section. Different

components are encoded in the corresponding sections.

Comparing to the PTX, the HSAIL is more flexible in both programming and

easier for distribution. The PTX fails to provide precise syntax in some complex

logic needed operations such as cross lane, cross work groups. Lack of supports in

this syntax may cause serious difficulties in both debugging and programming since

programmers may not get thorough understanding of their code. Dealing with no

18

memory operations, using the HSAIL favors the beginners while the PTX does not.

Adding the support of bi-directional calls, dynamic memory can be allocated during

the kernel runtime. Since the HSAIL is re-targetable, PTX is able to be translated, but

not vice versa.

Comparing to the SPIR, which is the LLVM IR with OpenCL support from Intel.

The LLVM IR does not have a complete parallelism model. Acting as a re-targetable

IR, the LLVM IR is a good practice but may not be the case of GPGPU programming.

With the messy memory operations, programmers have to deal with the parallelism

model themselves. LLVM IR also raised debugging issue. High-level structures are

kept in the IR thus programmers are hard to debug without a debugger.

2.4 QEMU/PQEMU
The design of architecture requires certain level of evaluation. The cost of

manufacturing the real hardware for the evaluation only is non-cost effective.

Incredibly high capital in developing the hardware for a whole system is

considerably impossible using practical hardware evaluation. Nowadays, lots of

hardware design industries prefer software simulation to achieve the evaluation to

minimize the cost of the hardware design.

The simulation of a system should provide the system level evaluation. User

level simulation fails to provide the observation of some architectural details that

are vital to the design flow, such as memory access, device queuing etc. Thereby, the

importance of the full system simulation in simulating a specific architecture is a

crucial research area. The most remarkable open source full system simulator

should be the QEMU.

The QEMU is an open source system emulator, supporting the X86, X86_64,

ARM, MIPS and POWERPC environments system virtualization. The QEMU provides

19

the ability of running operating system with the support of the preferred

architecture below. The emulation of the QEMU runs through the dynamic binary

translation engine called TCG (Tiny Code Generator). The dynamic binary

translation achieves very good performance as the guest code is translated once

only. Certain translated code is stored in the code cache for future reuse. Such that,

the most time costly procedure is run in minimal time leads to a better performance.

However, the disadvantage of the QEMU is that the multi-thread support is limited.

The con due to the QEMU is developed in the era of single core. Multiple threads are

mapped to a single core even if the host machine is multi-core. With the growing

complexity of the operating system and the application, performance of the

simulators with sufficient multi-core support can be magnificent. Thereby, the

PQEMU[1] based on QEMU is introduced.

The PQEMU[1] (Parallel QEMU) is aimed to improve the multi-core support in

the QEMU. By extending the ability of emulating multi-core on multi-core, the

PQEMU[1] exploits the power of multi-core in the simulation of the multi-core

system. In addition, the unified code cache strategy minimizes the usage of the

memory from no sharing components duplication. Separate code cache is used for

the duplication of the sharing components for individual thread emulation. Such

mechanisms lead to a very good performance in the emulation of systems with

multi-thread support.

Comparing the model of the GPGPU device computation with the multi-thread

computation, the PQEMU[1] satisfies the issue in simulating such device. Therefore,

we decide to make use the PQEMU[1] in our simulation in the future. The simulator

in this article is based on the QEMU. We expect the performance of the simulator

can be speed up with the use of the PQEMU[1].

20

21

3. RELATED WORK
Our work is related to several research areas, such as dynamic binary

translation, GPGPU simulation and system emulation.

We use the LLVM infrastructure [5] introduced by Chris Lattner as a base of the

translation in our HSAIL converter. Translating HSAIL to LLVM IR is a new branch of

the LLVM frontend. Binary translator such as the LLBT[3] and LNQ[9] are binary

translation of executable binary. Our HSA Translator is a finalizer that translates the

HSAIL to LLVM IR and LLVM IR to native re-locatable object. We provide HSA

Link-Loader for the Linkage process to form a native executable binary.

GPGPU-sim [2] introduced by Tor Aamodt and his graduate students provides a

detailed simulation of a contemporary GPU running CUDA and OpenCL workloads

with an integrated power model at micro-architectural level. Barra-sim [6], a

simulator of GPGPU based on the UNISIM framework developed by Daumas M

running CUDA, does the simulation at functional level. Ocelot [7], developed by

Gregory Diamos is a modular dynamic compilation framework for heterogeneous

system, targeting to several back-ends with self-developed translator. AMD

FusionSim [8] based on GPGPU-sim[2] introduces a CUDA workloads simulation on

X86 systems with an additional cache simulation. Concurrently simulates an X86

out-of-order CPU, a CUDA-capable GPU and a CPU/GPU interconnect memory

system.

Most of the simulators mentioned above rely on CUDA or OpenCL runtime,

which is provided by each hardware vendor. The HSA is introduced to have support

multi-target, thus with the support of the HSA runtime the issue of relying unique

runtime can be solved. The full system simulation in our work provides verification

of the new runtime components in the future. In addition, the HSA supports

22

bi-directional calls that allows the GPU to access the I/O devices. The above works

are hard to achieve such simulation because this model is rather distinct with the

existing model. In our work, we achieve such system mode simulation with a QEMU

based full system simulator. Besides, re-targetable code is not provided. Linking to

the native library is available in our work as well to perform the on device linking.

GPGPU-sim[2] is micro-architectural level simulator while Ocelot[7],

Barra-sim[6] and our work are at functional level. On the contrast, only our work is

a system mode simulator. With the support of QEMU, we are able to simulate other

development board such as versatile Pico board, Panda board as well as

ARM-Vexpress.

Recompilation is not needed in all of the above cases. Unfortunately, except our

work all the simulators need an exceptional dynamic linking to the system’s vendor

supporting library, such as libcudart.so. Relinking is not needed in our approach as

once linking is done in the first run; linked code is stored in the code cache and

reused in the future.

The HSAIL is a brand new intermediate language to the existing simulators. We

preserve the opportunities of optimization in running the HSAIL, as the translator

of such intermediate language is self-developed. Unlike the existing simulators,

most of them use the vendor providing tool chain thus optimization may be

narrowed, but Ocelot[7] also implemented its own compiler from the LLVM IR to

native code.

GPGPU-sim[2] provides functional level simulation in PTX and NVIDIA native

ISA. We are not providing native GPU ISA simulation as GPU ISA keeps changing.

Also, HSAIL is an intermediate language targeting different native ISA, unlike PTX

only targeting its own vendor ISA.

23

Our work also provides a simulation to the current embedded system

environment. In the experiment we boot up with Linaro Linux images, simulating

the hardware of ARM-vexpress-a9 board. The GPGPU-sim[2], Barra-sim[6] and

Ocelot[7] target both agent and kernel code in the same environment as they are in

user mode simulation. System mode simulation raises chances to debugging,

profiling as well as further research in the embedded system.

24

4. PROJECT DESIGN
The main achievement of this work is the implementation of a translator called

the HSA Translator for the Heterogeneous System Architecture (HSA) functional

level simulator. An additional BRIG generator is implemented for the binary

generation of the HSAIL. The HSA Simulator and the HSA Link-loader are not the

achievement of this paper. The kernel execution in the HSA Simulator is explained

for the sense of readers may not understanding the use of the HSA Translator.

4.1. HSA Simulator
The HSA Simulator is a functional level system mode simulator that emulates

the HSA conformed GPGPU computation environment. The whole simulation is run

on the CPU without the support of the GPU. The implementation of the HSA

Simulator is based on the QEMU. In the HSA Simulator, the ARM guest performs the

role of the CPU in the GPGPU environment. The ARM guest runs with the TCG IR

provided in the QEMU. We emulate the GPU guest with a large number of host

thread in order to speed up the simulation. In addition, the GPU guest runs the

kernel function translated from the HSAIL. Therefore, we implement a finalizer

called the HSA Translator to do this task.

The shared virtual memory model requirement states that,

a. The full address range should be visible to all components,

b. Non-shared memory addresses are maintained by system software,

c. Virtual address translation is done by the system software,

d. Minimum 48-bit address length for 64-bit architecture and 32-bit address

length for 32-bit architecture.

Point (a) is achieved by the implementation of shared QEMU memory between the

emulated CPU and the emulated GPU. During the application execution, all sharable

25

QEMU memory is accessible through the use of QEMU memory helper functions

that perform the virtual address translation. Accesses to the non-shared virtual

memory such as Operation system preserved memory addresses are avoided by

these QEMU memory helper functions. Thus point (b) and (c) are achieved. For

point (d), we use 32-bit virtual address length in our implementation.

 Allocating and freeing the memory object in the agent code only achieve the

Memory-Based Signaling mechanism. Such that the agents have full control of the

entire memory object and no inter-process memory transaction occurs. The virtual

memory objects (aka. The registers in the HSAIL) is left to the LLVM analysis.

The current HSA Simulator emulates only one GPU device. Thus we consider

having the support for multi-level queue later as evaluation to the effect of the

multi-level queue is not convincible if we emulate only one device. Thereby, the

multi-level user queue is left to the future work.

The Architected Queuing Language (AQL) is a command interface for the

dispatch of the HSA components commands. This command interface allows

application to build and enqueue the HSA components own command packets,

enabling fast dispatch. These AQL packets provide the information including the

size of the grid, the addresses of the kernel arguments, the kernel object address etc.

We achieve this part by allowing the agent code writing this packet in the shared

virtual memory. The emulated GPU owning the AQL packet memory pointer gain

access to the packet. Thus the function of this AQL packet is achieved.

The efficient system call infrastructure requires the system call should be

resolved to the correct system call API, such as interrupts caused by instructions

during execution. This part we discuss in two categories, the CPU and the GPU. The

CPU is emulated using the ARM virtual machine. The interrupt handler is

26

implemented in the original QEMU. Therefore, we rely on the QEMU to solve this

task for the emulated CPU execution. The GPU emulating environment is the X86.

We modified to make the execution of the GPU code running directly on the host

machine. The host machine architecture is X86_64 architecture. Thus, we may rely

the host machine reacting to the exact interrupts.

The preemptive HSA component context switching and the HSA component

topology discovery are used when we have more than one homogeneous HSA

components, aka two or more CPUs, two or more GPUs. The current version of the

HSA Simulator emulates single CPU and single GPU environment. Thus we have not

implemented these two parts yet. The debug infrastructure, preemptive HSA

component context switching and the HSA component topology are considered as

the future works of this achievement.

The cache coherency domains refer to the data coherency in the cache level

within the HSA components. As the HSA Simulator performs a functional level

simulation, we do not provide the micro-architectural model for the cache

simulation.

The running flow of the HSA Simulator is shown in figure 4.1. Before execution,

both the agent and kernel binaries are placed in the ARM guest machine memory.

Users execute the agent binary in the ARM guest machine. When the kernel function

call in the agent binary is being executed, three steps are taken.

1. The kernel binaries have to be copied to the shared QEMU memory

because the two individual guest memory is not visible to each other.

The virtual address translation is performed by the QEMU.

2. The AQL packet information is written by the agent code.

3. The memory pointer of the AQL packet is transferred to the GPU

27

emulating guest machine. This triggers the emulated GPU to read the

necessary information to perform the kernel execution.

The kernel execution consists of three parts, the HSAIL to native code

translation, the native code linking and the native code execution.

4.2. HSA Translator
The start of the kernel execution is the kernel binary to native translation. The

HSA Translator translates the HSAIL binary format to the re-locatable native code.

Such task is categorized as the finalizer in the software implementation in the HSA

requirement. The task of a finalizer including the address translation, the native

operation translation and the register allocation.

The HSA Translator is implemented based on the LLVM infrastructure. The

translation is in a static form. Comparing to the TCG (Tiny Code Generator), we

prefer the LLVM infrastructure with the following reasons,

i. The design of TCG is for the system emulation. System binary is not

necessary to have a static translated binary because we may not have

such capability to keep the translated binary. On the contrast, the kernel

binary is relatively small in size.

ii. The optimization in TCG is not enough. The TCG is designed for fast

translation. Thus simple does fast. Comparatively, the LLVM

infrastructure is a relatively complete. With the support of the first

point, we may get more chances in optimization as the translation is

static.

iii. The Kernel function is more regular compare to the system emulation.

Optimization affects the performance more significantly in a regular

case as the analysis can be done easily and more straightforwardly.

28

The shared memory model is implemented using the QEMU memory. Such that

the memory translation needs the help of the QEMU virtual memory translation.

Thereby, the memory operation is translated to the self-implemented QEMU helper

functions. The helper functions load the necessary memory pages and perform the

load/store operations to the corresponding HSAIL memory operations.

The HSAIL operations are translated to the native operations with the help of

the LLVM. We map the HSAIL operations to the suitable LLVM operations. The

kernel functions are a group of HSAIL operations. Each kernel function is translated

to an LLVM module and the whole program is translated to the native code through

the LLVM Infrastructure.

The register allocations is achieved through the register mapping from the

HSAIL register to the LLVM register. Since the mapping is a fixed register set to the

infinite register set, a mapping table is necessary to be implemented in the HSA

Translator. The register allocations in the host environment is left to the LLVM

Infrastructure.

The generated re-locatable native code is linked by the HSA link-loader.

4.3. HSA Link-loader
The native code generated by the HSA Translator leaves several types of

function unlinked,

a. The QEMU memory helper functions

b. The native library functions, such as math library

The LLVM infrastructure aims to have IR as the media of re-targetable ability.

Whenever we need to generate a certain native code, we can use the LLVM

infrastructure performing the JIT (Just in Time) compilation, which is a dynamic

binary compilation. Thus, no linking methods are provided in static compilation.

29

In order to achieve a linking process for our re-locatable native code, we implement

a linker called the HSA Link-loader. This Link-loader is implemented in the QEMU.

After the process of the HSA Link-loader, the kernel function is linked and stored in the

code cache. The binary stored in the code cache can be reuse during the same execution

runtime. After the execution, the binary is released from the code cache.

Figure 4.1.The overall flow diagram of the HSA simulation starts with the running of the agent code.

First, the CPU simulating machine writes kernel execution required information into the AQL packet.

Second, the GPU simulating target will be triggered to read the AQL packet. Finally GPU simulating target

obtains the required information in the QEMU memory according to the AQL packet described and the

translation of the kernel code is started.

4.4. HSA Kernel Execution
The linked binary is run directly on the host machine. The number of thread

used to run the execution is stated by the boot up argument in the startup script of

the HSA Simulator.

During the execution, all the threads share the same virtual memory. Memory

helper function calls are used for the accesses of the memory for the load/store

30

operations. Memory addresses of data for an individual thread is computed in the

HSAIL in order to make use of the flat, shared virtual memory space.

Work groups are dispatched serially. Such that work items within a work group

is processed in parallel but only one work group can be processed at a time. When

threads within the processing work group have finished, synchronization is done at

the end. Barrier operation stated in the kernel function is executed with the help of

pthread_barrier_wait. The pthread_barrier_wait forces to have a barrier which all

the threads are not allowed to proceed before all the threads waits in the barrier.

 Figure 4.2. The work group dispatching loop.

The loop of dispatching work groups are done when the number of processed

work groups has reached the number of work groups calculated by dividing the

global size with the local size. Both the global size and the local size are stated by

the programmer in the agent code. When all the threads dispatched are

synchronized, the GPU guest machine triggers the CPU guest machine to collect the

output data from the shared virtual memory. After that, the GPU threads are said to

31

be idled and wait until the triggering from the CPU guest machine.

After the kernel execution, the AQL packet of the executed kernel is freed and

the next packet is on the role. Consequently, after all the packets in the queue are

processed, the queue is freed and the core of the program is said to be finished. The

system model simulator will remain idle before the next program execution. All the

threads will be destroyed and recreated in the next program execution.

32

5. IMPLEMENTATION
The implementation includes the BRIG generator and the HSA Translator. As

the HSA link-loader is closely related to our achievement, a brief explanation is

provided as well.

5.1 BRIG Generator
The BRIG generator is used to translate the HSAIL from text format to BRIG

format, which is the binary format of the HSAIL. The BRIG generator consists of the

HSAIL Lexical analyzer and the HSAIL rule parser. This implementation is based on

the LEX/YACC structure. Both these two components conform to the HSAIL 1.0

version.

The HSAIL Lexical analyzer takes in the HSAIL text code and passes the tokens

to the HSAIL rule parser for rule mapping. Tokens include the identifiers, the

constants, the operation codes and the modifiers etc. Rules written in the HSAIL

parser is implemented according to the EBNF (Extended Backus-Naur Form)

grammar rules in the HSAIL specification document.

The BRIG format stores the components into five sections. They are the string

section, the directive section, the code section, the operand section and the debug

section. Each section has a corresponding section header consists of a 32-bit integer

indicating the size of the section. Zeros are padded to the strings to make every

string writing in the file a multiple of four. Every IR structure size is also in multiple

of four. Therefore, the size of a BRIG file must be in multiple of four.

In addition, the HSAIL version 1.0 and the version before 1.0 have several

differences,

1. The writing format of the BRIG – the version before 1.0 has 5 offsets

33

indicating the sizes of the five sections appear at the beginning of the

BRIG. Instead, the sizes of the sections are located at the beginning of

each section.

2. The format of the encoding of the string section – the version before 1.0

deduces each string in the string section with the null character. Such

mechanisms makes the decoding to have a slower response due to the

sizes of the strings are unknown until the null characters are

encountered. In the version 1.0, each string has the corresponding size

before the string. In addition, the sizes of the strings are padded to the

multiple of four with zeros.

3. More native library functions – such as the floor and ceiling floating

point operations are unavailable in the version before 1.0.

According to the specification of the HSAIL, we need to preserve the order of

the sections in a BRIG file. For example, the string section is the first section and the

operand section is the fourth section. When we parse a register, the identifier of the

register should be in the string section and the register IR structure should be in the

operand section. In order to write the components to corresponding sections, the IR

structures and the strings are stored in the corresponding section buffers within the

generation instead of directly writing to the file. When the parsing of the HSAIL text

code is finished, buffers are written into the corresponding sections of the binary

file. The BRIG is used as the input of the HSA Translator in the GPU guest machine

for the HSAIL to native code translation.

This part is included in the scope of this paper.

5.2 HSA Translator
The execution of the GPGPU program with the HSA conformed simulation is

34

shown in figure 5.1. The BRIG binary and the ARM agent binary are placed in the

memory of the ARM guest machine. Users execute the agent code in in the ARM

guest machine. When the kernel call in the agent code is being executed, the BRIG is

copied to the QEMU physical memory. By reading the information in the AQL packet,

the GPU simulating target finds the BRIG file and calls the HSA Translator via a

library function call. The memory pointer pointing to the BRIG is the parameter of

the HSA Translator.

The BRIG format has a section header before every section. The section header

indicates the size of the section. The HSA Translator reads in the BRIG into five

buffers. The sizes of the buffers are allocated according to the size specified by the

section headers. Reading in the BRIG is necessary because we need to process

between sections frequently. Using file pointer to traverse the file may cause severe

overhead due to the frequent use of system call. Thus we sacrifice the space of

storing the BRIG file into several memory buffers instead of such system calls.

A BRIG IR structure always starts with a 32-bit integer indicating the size of the

structure. Following is a 32-bit integer indicating the kind of the structure. Making

use of this information and knowing which section we are reading, we can

distinguish all the structures. Decoding process starts with the decoding of the

directive section. Code section is accessed if the directive has a code body, such as

the kernel and function. Likewise, operand section is accessed if the operation in the

code section needs any operands.

(a) HSAIL vector addition kernel code:

 version 1:0:$large;

kernel &__OpenCL_vec_add_kernel(kernarg_u32 %arg_val0,

35

kernarg_u32 arg_val1, kernarg_u32 %arg_val2, kernarg_u32 %arg_val3) {

 @__OpenCL_vec_add_kernel_entry:

 ld_kernarg_u32 $s0, [%arg_val3];

 workitemabsid_u32 $s1, 0;

 cmp_lt_b1_u32 $c0, $s1, $s0;

 ld_kernarg_u32 $s0, [%arg_val2];

 ld_kernarg_u32 $s2, [%arg_val1];

 ld_kernarg_u32 $s3, [%arg_val0];

 cbr $c0, @BB0_2;

 brn @BB0_1;

 @BB0_1:

 ret;

 @BB0_2:

 shl_u32 $s1, $s1, 2;

 add_u32 $s2, $s2, $s1;

 ld_global_f32 $s2, [$s2];

 add_u32 $s3, $s3, $s1;

 ld_global_f32 $s3, [$s3];

 add_f32 $s2, $s3, $s2;

 add_u32 $s0, $s0, $s1;

 st_global_f32 $s2, [$s0];

 brn @BB0_1;

};

36

(b) LLVM Instructions:

; ModuleID = 'hsail'

define void @__OpenCL_vec_add_kernel(i32 addrspace(1)* %arg_val0, i32

addrspace(1)* %arg_val1, i32 addrspace(1)* %arg_val2, i32 addrspace(1)*

%arg_val3) nounwind {

entry:

 %addr = ptrtoint i32 addrspace(1)* %arg_val3 to i32

 %0 = alloca i32

 store i32 0, i32* %0

 store i32 %addr, i32* %0

 %1 = alloca i32

 store i32 0, i32* %1

 %2 = call i32 @helper_hsa_get_global_id(i32 0)

 store i32 %2, i32* %1

 %3 = alloca i1

 store i1 false, i1* %3

 %4 = load i32* %1

 %5 = load i32* %0

 %icmp = icmp ult i32 %4, %5

 store i1 %icmp, i1* %3

 %addr1 = ptrtoint i32 addrspace(1)* %arg_val2 to i32

 store i32 %addr1, i32* %0

37

 %addr2 = ptrtoint i32 addrspace(1)* %arg_val1 to i32

 %6 = alloca i32

 store i32 0, i32* %6

 store i32 %addr2, i32* %6

 %addr3 = ptrtoint i32 addrspace(1)* %arg_val0 to i32

 %7 = alloca i32

 store i32 0, i32* %7

 store i32 %addr3, i32* %7

 %8 = load i1* %3

 br i1 %8, label %"@BB0_2", label %"@BB0_1"

"@BB0_1": ; preds = %"@BB0_2",

%entry

 ret void

"@BB0_2": ; preds = %entry

 %9 = load i32* %1

 %shl = shl i32 %9, 2

 store i32 %shl, i32* %1

 %10 = load i32* %6

 %11 = load i32* %1

 %add4 = add i32 %10, %11

 store i32 %add4, i32* %6

 %12 = load i32* %6

38

 %13 = alloca float

 %callLoad32 = call i32 @_load_32(i32 %12)

 %Fcast = bitcast i32 %callLoad32 to float

 store float %Fcast, float* %13

 %14 = load i32* %7

 %15 = load i32* %1

 %add5 = add i32 %14, %15

 store i32 %add5, i32* %7

 %16 = load i32* %7

 %17 = alloca float

 %callLoad326 = call i32 @_load_32(i32 %16)

 %Fcast7 = bitcast i32 %callLoad326 to float

 store float %Fcast7, float* %17

 %18 = load float* %17

 %19 = load float* %13

 %fadd = fadd float %18, %19

 store float %fadd, float* %13

 %20 = load i32* %0

 %21 = load i32* %1

 %add8 = add i32 %20, %21

 store i32 %add8, i32* %0

 %22 = load i32* %0

 %23 = load float* %13

 %UIcast = bitcast float %23 to i32

39

 call void @_store_32(i32 %22, i32 %UIcast)

 br label %"@BB0_1"

}

define void @Kernel_Entry(i32 addrspace(1)* %parmaList) nounwind {

entry:

 %0 = ptrtoint i32 addrspace(1)* %parmaList to i64

 %1 = add nuw i64 %0, 0

 %2 = inttoptr i64 %1 to i32 addrspace(1)*

 %3 = load i32 addrspace(1)* %2

 %4 = inttoptr i32 %3 to i32 addrspace(1)*

 %5 = add nuw i64 %0, 4

 %6 = inttoptr i64 %5 to i32 addrspace(1)*

 %7 = load i32 addrspace(1)* %6

 %8 = inttoptr i32 %7 to i32 addrspace(1)*

 %9 = add nuw i64 %0, 8

 %10 = inttoptr i64 %9 to i32 addrspace(1)*

 %11 = load i32 addrspace(1)* %10

 %12 = inttoptr i32 %11 to i32 addrspace(1)*

 %13 = add nuw i64 %0, 12

 %14 = inttoptr i64 %13 to i32 addrspace(1)*

 %15 = load i32 addrspace(1)* %14

 %16 = inttoptr i32 %15 to i32 addrspace(1)*

 call void @__OpenCL_vec_add_kernel(i32 addrspace(1)* %4, i32 addrspace(1)*

40

%8, i32 addrspace(1)* %12, i32 addrspace(1)* %16)

 ret void

}

declare i32 @_load_32(i32) nounwind

declare i32 @helper_hsa_get_global_id(i32) nounwind

declare void @_store_32(i32, i32) nounwind

Figure 5.1. The mapping of the HSAIL operations and the corresponding LLVM operations

Most of the Arithmetic operations can be mapped to the LLVM operations using

one-to-one mapping. Some of them are mapped to combinations of LLVM

operations,

1. The 24-bit operations – 24-bit operations is absent in the LLVM

operations. We need to perform a bit mask of 24-bit after such

operations.

2. The bit string, copy and multimedia operations – Whilst the LLVM

operations does not provide such operations, we can achieve such

functions with a combinations of the arithmetic operations.

3. The segment checking and converting operations – These two kinds of

operations need the support from the environment. The current

version of HSA Simulator has no work group memory implementation.

Therefore, the segment checking and converting operations are left to

the future work.

4. Mathematic operations are defined by the host library. Thus helper

functions are implemented for the mathematic operations.

41

HSAIL operations Mathematic helper functions

*floor helper_Ffloor

*ceil helper_Fceil

sqrt helper_Fsqrt

fract helper_Fract

fma helper_Fma

cos helper_Fcos

sin helper_Fsin

log2 helper_Flog2

exp2 helper_Fexp2

rsqrt helper_Frsqrt

Table 5.2. The mathematic operations are implemented by the helper functions. The operations with “*”

is introduced after HSAIL version 1.0.

The memory operations class consists of the load, store and the atomic

operations. The load and store operations are translated to LLVM function call with

different function prototypes indicating the load/store performing to different

bit-width of data. In addition, due to the lack of support in work group memory, all

the memory accesses are treated as the memory accesses to the flat global memory.

In addition, each HSAIL memory operations load/store the data with the help of the

memory address parameters which are the memory addresses in the QEMU

memory space. Thus the memory helper functions take the memory addresses

provided in the HSAIL to compute the addresses of the data in the QEMU memory.

The load operations have the data bit-width data type and the store operations are

in void type. When loading a floating point data, an LLVM bit-casting operation is

needed to change the data type of the data from integer to floating point. Likewise,

42

the store operations need a bit-casting operation to change the data type of the data

from floating-point to integer type in order to perform the storing. Whilst the

operation is called bit-casting, the bit-width of the data is still unchanged and the

only difference is the operating data type in the LLVM IR stage. Furthermore, the

fine-grained syntax in the HSAIL for the memory operations are not supported in

the current version of the HSA Simulator. Every memory operation existing in the

kernel function is treated as the memory access that should be performed by every

work item. Atomic operations are not supported in the current version of the

simulator.

HSAIL operations Memory helper functions

ld 8 uint8_t load_8(u32 addr)

16 uint16_t load_16(u32 addr)

32 uint32_t load_32(u32 addr)

64 uint64_t load_64(u32 addr)

st 8 void store_8(u32 addr, uint8_t val)

16 void store_16(u32 addr, uint16_t val)

32 void store_32(u32 addr, uint32_t val)

64 void store_64(u32 addr, uint64_t val)

Table 5.2. The mapping table of HSAIL operations to the QEMU memory helper functions.

Branch operations except the fine-grained modifier function are mapped to the

LLVM branch operations. The HSAIL function body operations are present in basic

blocks. Therefore, the branch operations in the HSAIL can be mapped to the LLVM

IR as the LLVM also uses the basic block as the basic component for the container of

the operations. However, the compare and branch operation in the HSAIL has to be

mapped to one compare and one conditional branch in the LLVM IR as there is no

43

such operation in the LLVM IR.

Synchronization operations such as the barriers are implemented by the helper

functions. Thus we translate the barriers to helper function call. In addition, the

current version of the HSA Simulator only provides the work group level thread

synchronization. The fine-grained barrier is considered as the future work.

The special functions such as the work group id queuing and the work item

absolute id queuing are implemented by the helper functions. Thereby we translate

such operations to helper function call.

HSAIL operations Special helper functions

workitemid helper_workItemId

workitemabsid helper_workItemAid

workgroupSize helper_workGroupSize

gridsize helper_workGridSize

gridgroups helper_wordGridGroups

laneid helper_laneId

maxwaveid helper_maxDynWaveId

maxcuid helper_maxCuId

dispatched helper_dispatchId

dim helper_workDim

workitemabsflatid helper_workItemaidFlat

workitemflatid helper_workItemidFlat

 Table 5.3. Operation mapping of the HSAIL special operation to the helper functions.

According to the specification of the HSAIL, all operation destinations must be

registers. In order to maintain the values in the registers, we do a register table

44

through a set of memory pointers. In the LLVM IR, the operand types and the

destination allocated type must be the same, such as floating-point operations must

have floating-point destination registers and floating-point source registers. On the

contrast, the HSAIL has no specific floating-point registers. Therefore, we do the bit

casting in order to meet such restriction. The bit casting is done when we need a

floating-point value from an integer value with the same bit width, such as 32-bit

floating-point value to 32-bit integer value, or vice versa. Whenever a value is going

to be written into a register, we check the type of the value with the type of the

allocation of the register. If they are not the same, we use the LLVM allocation

instruction to have a new allocation with the type of the being written value for the

register. This new memory pointer replaces the memory pointer of such register in

the register table. The truncations and the extensions of each type of the values are

also implemented to make sure the values generated fit the bit width of the

destination registers. The native registers manipulation is left to the LLVM

Infrastructure.

Vector types are supported in the HSAIL. We translate these types to the LLVM

vector types. The LLVM can generate the native SIMD instructions easily by the

explicit use of the LLVM vector types and vector type operation.

45

Figure 5.2. First, the BRIG is copied to the QEMU physical memory. Second, the X86 target obtains the

QEMU physical memory address of the BRIG through the reading the AQL packet. Third, the memory

pointer pointing to the BRIG is passed to the HSA Translator. After the translation, a re-locatable object

code is outputted to the QEMU physical memory.
A wrapper function called kernel entry in the generated LLVM IR for the pass of

the memory addresses. When the kernel code is being executed, the wrapper is

called first and the actual kernel function will be called by the wrapper. The

wrapper is added because,

a. Parameters passing to the kernel function are in pointer types as the

operations in the kernel code perform direct reading and writing

from/to certain memory addresses. The number of the parameters

passing to the kernel function are unable to be determined in before

runtime stating. Thus we need a wrapper for the parameter passing to

the actual kernel function.

b. The kernel function prototype and identifier is runtime stated. The

QEMU cannot call a function with undetermined pointer name.

Therefore, we provide a fixed wrapper function pointer for calling the

46

kernel function.

The LLVM infrastructure does not have the linker support. Thus the HSA

Translator generates these helper function calls and leaves them unlinked. Finally a

re-locatable native object code with helper functions unlinked is outputted to the

QEMU physical memory.

This part is included in the scope of this paper.

Figure 5.3. The running flow of the HSA Translator starts with the decoding of the directive section. Any

instructions in the directive is available code section decoding is invoked. Necessary operands will be

accessed through the section pointer in the operations. Finally the re-locatable object is generated after

the translation. The current use ISA is X86 because the simulator uses an X86 target for GPU simulation.

5.3 HSA Link-loader
The generated re-locatable object code is placed in the QEMU physical memory.

The design of the LLVM infrastructure is for re-targetable use, thus no linking

process is provided. In order to have a linked kernel function binary, we

implemented a link-loader called HSA link-loader in the QEMU.

The link-loader does the linking of the helper functions. To resolve the

addresses of the helper functions, linker scans the symbol table of the re-locatable

47

object code and fills the addresses of the helper functions in the object code. The

addresses are found by searching the QEMU binary easily as the link-loader is run

within the same QEMU runtime. Addresses remain unchanged in the same runtime.

The helper functions are not preferred to use the in-lining approach because

the code sizes of the helper functions are huge. In addition, the functions have to be

translated to the LLVM IR first before any linking process. Such translation causes

loss information of the global variables and global structures in the QEMU. These

reasons give rises to the approach of implementing a link-loader in the QEMU for

the HSA simulation.

Because the addresses are not going to be changed during the same runtime,

no second linking process should be done to the same object code. Leveraging such

linking strategy, the linked object code is stored in the code cache for later use. The

linked native kernel function binary is ready to be executed at this moment.

This part is excluded the scope of this paper. On the contrast, we explain the

HSA link-loader for giving a more thorough understanding of the translation to the

readers.

48

6. EXPERIMENTS AND DISCUSSION
This section presents the results from the evaluation of the HSA Simulator with

the HSA Translator compiled with LLVM version 3.2. Evaluation is performed on

two servers both running Ubuntu 12.04.1 LTS. One is powered by four AMD Opteron

CPU totally twenty-four cores. Another one is powered by Intel Xeon E5-2620 CPU

totally six cores with hyper-threading technology support.

We develop the benchmarks ourselves due to no existing compiler supports the

HSAIL backend. The current benchmarks are developed based on some of the

benchmarks from the Rodinia Benchmark Suite[10] and the samples in the AMD

OpenCL SDK[11]. The benchmarks are modified to use the features of the HSA

provided, such as shared virtual memory space.

Benchmark Base Domains

KMEANS Rodinia Data Mining

Nearest neighbor Rodinia Data Mining

Fast Fourier Transform AMD Samples Bio-Informatics

Prefix Sum AMD Samples Counting

Reduction Sum AMD Samples Mathematics

SAXPY - Mathematics
Table 6.2 List of the benchmarks.

The elapsed time of programs is less important for measuring as the I/O

acquires most of the time. In addition, our simulation is done in system mode.

Applications are run above the virtual machine. I/O time varies from time to time

with the operating system scheduling and interrupts handling. Thereby, the time

listed in the graphs below is the kernel execution time.

Every program time listed below is the average of five execution times. Sizes of

the work groups and wave fronts are the same as the original benchmarks. We

divide these benchmarks into three cases,

49

A. Kernels with multi-kernel and no barriers.

B. Kernels with single kernel and no barriers.

C. Kernels with barriers.

6.1 Case A
This case includes the KMEANS. This benchmark has two kernels

demonstrating the communication between the CPU and the GPU. Table 6.1 shows

the number of operations and the number of helper functions used in the kernels.

Kernel name Number of operations Number of helper functions

KMEANS_Swap 32 3

KMEANS_Core 70 4
Table 6.1. Number of operations presents each kernel in KMEANS.

The KEMANS is a multi-kernel program. The agent calls the swap kernel to

have parallel data copying. After the swap kernel returns, the agent calls the core

kernel several times to perform the computation. The core kernel is called three

times in this experiment. The input data size is 116MB.

The result illustrates that the simulator reflects the actual relationship between

the number of threads and cores. The performance increases proportionally with

the increasing number of threads. Saturation occurs at 24 threads and 8 threads for

the 24-core AMD machine and 6-core Intel machine with hyper-threading

respectively.

The Intel CPU runs approximately double performance of the AMD CPU. In the

circumstances of the number of threads are lesser than twelve, which is the number

of the Intel CPU hyper-threading can support, the performance is always double of

the AMD CPU. The corner of this situation happens when the number of threads

greater than 8. The AMD CPU performance keeps increasing until the number of

threads is 24, which is the number of the physical cores.

50

In addition, the multi-kernel GPGPU program with each kernel has a significant

execution time favors the machine with more cores. Whilst the Intel CPU has a

stronger computation power, the AMD CPU has more cores for each kernel

computation having a higher performance gain in return. Furthermore, favoring the

number of cores only exists when the computation time is significant. Furthermore,

the data size is critical issue. Data size affects the number of work items needed in

the kernel execution directly. The kernel execution time is calculated by the sum of

the execution time of each work item plus the synchronization time before

returning to the agent. In another words, if the number of the work items is small,

the time of the synchronization acquires an inevitable percentage in the kernel

execution. In case the synchronization time enjoys no percentage gain from the

increasing number of threads, the kernel execution time saturates earlier in return.

The KMEANS case demonstrates the percentage of the execution in the work items

acquires most of the percentage of the kernel execution time.

Figure 6.1. The KMEANS running on 24-core AMD machine versus 6-core Intel machine.

51

6.2 Case B
This case includes the Nearest Neighbor, the Fast Fourier Transform and the

SAXPY. All these three programs have one kernel only. The information of the

programs is listed in table 6.2.

Kernel name Number of operations Number of helper functions

Nearest Neighbor 52 5

Fast Fourier Transform 20 5

SAXPY 22 5
Table 6.2. Number of operations presents in Nearest Neighbor, Fast Fourier Transform and SAXPY.

The Nearest Neighbor kernel computes the distances between nodes and

stores them into an output array. After kernel returns, agent computes the shortest

in between. The Fast Fourier Transform performs a mathematical computation of

Fourier Transformation. The SAXPY computes the multiplication and addition of

two long vectors. The input data sizes are 768KB, 256MB and 256MB respectively.

Figure 6.2. The Nearest Neighbor running on 24-core AMD machine versus 6-core Intel machine.

52

Figure 6.3. The Fast Fourier Transform running on 24-core AMD machine versus 6-core Intel machine.

Figure 6.4. The SAXPY running on 24-core AMD machine versus 6-core Intel machine.

The performance of the Nearest Neighbor and the Fast Fourier Transform are

the same as the KMEANS. The Intel machine has a better computation power that

makes the performance beating the AMD machine before the hyper-threading

saturates. With more threads can support, even though the AMD machine has less

powerful computation unit, the large data size leads to a large number of work

53

items which leverage the increasing number of threads. Whilst the cores are less

powerful, the individual work item execution time is improved having a overall

improvement of the Intel machine.

Comparing to the result of the SAXPY, the SAXPY illustrates a difference. The

data sizes of the SAXPY and the Fast Fourier Transform are the same. Instead, the

performance gain from the 24-core is less than the 6-core. The reasons of this

phenomenon are,

1. The computation of the SAXPY is simpler than the Fast Fourier

Transform. Though there are more operations in SAXPY, the cycle cost

computations such as the arithmetic and memory operations own

72.7%. The percentage of the Fast Fourier Transform is 90%. There are

more chances for the AMD machine to speed up in each work item in the

Fast Fourier Transform, as the computation operations are much more.

2. The multiplication and division operations are more cycle costing than

the addition and the subtraction. The percentage of the multiplication

and the division operations are 4.5% and 20% in the SAXPY and the

Fast Fourier Transform respectively. Such percentage cost much more

cycles with more threads parallel computing the work items, much

more overhead due to the limited resource of the CPU computation unit

can be hidden.

6.3 Case C
This section demonstrates result of the kernels with barriers. The benchmarks

are the Reduction Sum and the Prefix Sum.

The Reduction Sum performs a Summation of a vector with a parallel reduction

in each work group adding a part of data. Summation in each work group needs to

54

wait for the duplication of the data to a buffer as well as the synchronization of all

the work groups before adding up all the result. Thereby, there are two barriers

present in the Reduction Sum kernel.

The Prefix Sum performs a Summation of the data in the current index and the

previous index. When summation preforming in index (i), the summation of the

index (i-1) must be ready. According to the parallel Prefix Sum algorithm, there are

two barriers existing.

Kernel name Number of operations Number of helper functions

Reduction Sum 109 37

Prefix Sum 108 21
Table 6.3. Number of operations presents in Reduction Sum and Prefix Sum.

The input data sizes of the Reduction Sum and the Prefix Sum are 256KB and

128KB respectively.

Figure 6.5. The Reduction Sum running on 24-core AMD machine versus 6-core Intel machine.

55

Figure 6.6. The Prefix Sum running on 24-core AMD machine versus 6-core Intel machine.

The Reduction Sum benchmark evaluates the work group barrier

synchronization of the HSA Simulator. There is no performance gain with the

increasing number of threads due to the two barriers in the work group level. We

leverage the multi-threads from parallel execution of the work items in the Case A

and B. On the contrast, in current case we are hard to benefit from the threads

because the barriers always stop the work group from parallel processing until all

the work groups have processed to the synchronization point. Whilst the threads

within a work group process concurrently before the barriers, only one work group

is allowed to process in each work group dispatching loop instance. Theoretically,

the execution time with different number of threads in this case should be no

change. However, due to the unlikely dispatching and synchronization of the

pthreads in the operating system every time, the graph shows like a zigzag in

return.

Unlike the Reduction Sum, the Prefix Sum illustrates an extreme case of the use

of barriers, which helps to evaluate the work item level barrier of the HSA Simulator.

The Reduction Sum needs to synchronize due to the problem of the race condition,

56

which is necessary to prevent two or more threads in rewriting the same data.

However, the Prefix Sum is the problem of the dependency within the work items.

Every work item must be done after the previous work item finishing the data write

in. Thereby, such extreme case of synchronization demonstrates as the graph shows.

The zigzag like graph can apply the explanation from the Reduction Sum.

57

Conclusions
 This paper presents a translator of a re-targetable IR HSAIL to the native code

called the HSA Translator for the fast simulation using in the HSA Simulator. The HSA is

the software development solution carried out from the AMD aimed to ease the GPGPU

programming. With the shared memory model and the vector instructions, the HSA

provides an easier way to the GPGPU programmers. The HSA Translator is implemented

based on the LLVM Infrastructure and performs a runtime translation for the HSAIL to

the native re-locatable object. In addition, the output of the HSA Translator is a

re-locatable object due to the absent of linker support in the LLVM. We cover this linker

problem with the HSA Link-loader which is not the achievement of this paper. However,

no existing compiler can generate the HSAIL code. Thereby, another achievement of this

paper is to implement a Brig generator for the generation of the HSAIL binary format

called the Brig from the HSAIL text format. The text format HSAIL is written manually

and five of the six programs are one of the achievement of this paper. The HSA

Translator works as a finalizer in the HSA Simulator. Experimental result shows the

evaluation of the HSA Translator. Two different servers are used to evaluate the HSA

Translator. Two servers with different number of cores show the scalability. With the

memory bandwidth difference, the memory scalability is illustrated to have

performance difference.

58

Reference
[1] Jiun-Hung Ding, Po-Chun Chang, Wei-Chung Hsu, Yeh-Ching Chung, "PQEMU: A

Parallel System Emulator Based on QEMU," icpads, pp.276-283, 2011 IEEE 17th

Internatio-nal Conference on Parallel and Distributed Systems, 2011.

[2] A. Bakhoda, G. L. Yuan, W. L. Fung, H. Wong, and T. M. Aamodt. Analyzing CUDA

workloads using a detailed GPU simulator. In Proceedings of 2009 IEEE International

Symposium on Performance Analysis of Systems and Software, April 2009.

[3] Bor-Yeh Shen, Pei-Shiang Hung, Jyun-Yan You, Wei Chung Hsu, Wuu Yang, National

Chiao Tung University, Taiwan, LLBT: and LLVM-based static binary translator,

Proceedings of the 2012 international conference on Compilers, architectures and

synthesis for embedded systems.

[4] Thomas B. Jablin, Prakash Prabhu, James A. Jablin, Princeton University, Brown

University, Automatic CPU-GPU Communication Management and Optimization,

[5] Chris Lattner, LLVM: A Compilation Framework for Lifelong Program Analysis &

Transformation, UIUC, CGO’04.

[6] Sylvain Collange, Marc Daumas, David Defour, David Parello. Barra: A Parallel

Functional Simulator for GPGPU. 18th Annual IEEE/ACM International Symposium

on Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS), 2010.

[7] Gregory Diamos, Ocelot: A Dynamic Optimization Framework for Bulk-Synchronous

Applications in Heterogeneous Systems, Georgia Tech, PACT 2010.

[8] Vitaly Zakharenko, FusionSim: Characterizing the Performance Benefits of Fused

CPU/GPU Systems, Toroto MS Thesis, 2012.

[9] Chun-Chen Hsu, Pangfeng Liu, Chien-Min Wang, Jan-Jan Wu, Ding-Yong Hong,

Pen-Chung Yew, Wei-Chung Hsu, LnQ: Building High Performance Dynamic Binary

Translators with Existing Compiler Backends.

[10] https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Main_Page

[11] http://developer.amd.com/tools-and-sdks/heterogeneous-computing/

amd-accelerated-parallel-processing-app-sdk

59

https://www.cs.virginia.edu/%7Eskadron/wiki/rodinia/index.php/Main_Page
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/

	ABSTRACT
	1. INTRODUCTION
	2. BACKGROUND
	2.1 GPGPU (General-Purpose Graphical Processing Unit) Computation
	2.2 Heterogeneous System Architecture (HSA)
	2.3 HSAIL (Heterogeneous System Architecture Intermediate Language)
	2.4 QEMU/PQEMU

	3. RELATED WORK
	4. PROJECT DESIGN
	4.1. HSA Simulator
	4.2. HSA Translator
	4.3. HSA Link-loader
	4.4. HSA Kernel Execution

	5. IMPLEMENTATION
	5.1 BRIG Generator
	5.2 HSA Translator
	5.3 HSA Link-loader

	6. EXPERIMENTS AND DISCUSSION
	6.1 Case A
	6.2 Case B
	6.3 Case C

	Conclusions
	Reference

