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摘要 

通用圖形處理單元（GPGPU）的計算可以更有效的方式與高度並行的加快程序運行。

然而，編程模型對程序員不太友好。內存模型是異質的，這樣的編程需要明確的數據傳

輸控制系統主內存和 GPU 設備內存。在另一方面，其他如基礎的除錯調試和代碼分發

缺乏支持。來自 AMD 的異構系統架構（HSA）以紓緩在 GPGPU 編程複雜性的軟件開

發。特色包括共享內存模型, 可用於不同廠商硬體上的中介語言（IR）及更具體的操作

控制，如控制 GPGPU 的環境中誇工作群的內存存取。在本文中，我們提出的以 LLVM

為基準開發的 HSA 轉譯器為了在一個 HSA 仿真器上提供一個快速的 HSAIL 轉譯。手

寫的 HSAIL benchmark 以及 HSAIL 的二元組譯器協助確認功能性上的正確性。 
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ABSTRACT 
General purpose graphical processing unit (GPGPU) computation can speed 

up the programs with high degree of parallelism in a more power efficient way. 

However, the programming model is not programmer friendly. The memory model 

is heterogeneous thus such programming needs explicit data transfer control 

between system main memory and the GPU device memory from the programmers. 

On the other hand, other infrastructures such as the debugging and the code 

distribution are lack of support as well. The Heterogeneous System Architecture 

(HSA) from AMD rises with such issues to ease the software development in the 

GPGPU programming. Features including the shared memory model and the 

re-targetable intermediate representation (IR) with more specific operation 

controlling such as the cross work group controlling ease the software development 

in the GPGPU environment. In this paper, we present the HSA Translator for the 

fast simulation of the HSAIL in the functional level system mode simulator called 

the HSA Simulator performing the simulation of the HSA environment. It consists 

of the simulator based on the PQEMU for the simulation of the processing unit in 

the GPGPU environment. The HSA Translator is implemented in the simulator for 

the native code translation. The HSA Translator leverages the LLVM 

infrastructure to translate the kernel source code from the Heterogeneous System 

Architecture Intermediate Language (HSAIL) to the native re-locatable code. The 

linking of the native binary is done by a self-implemented link-loader called the 

HSA Link-Loader implemented in the simulator. The simulation of the kernel 

processing device is performed by using the host threads in order to speed up the 

simulation. We evaluate the simulation with the self-translated HSAIL benchmark 

based on the Rodinia benchmark and the AMD OpenCL samples.

iv 



 

1. INTRODUCTION 
Applications having high data parallelism enjoy greater performance and 

power efficiency from SIMD (Single Instruction Multiple Data) computing devices. 

Consider the x86 architecture, for example, four operations in one SSE (Streaming 

SIMD Extension) instruction and eight operations in one AVX (Advanced Vector 

Extension) instruction can be processed simultaneously. Such performance and 

power efficiency in SIMD processing has been further pushed up to GPGPU, where a 

much greater number of cores can be used to compute in SIMD or SIMT (Single 

Instruction Multiple Thread) fashion.   

SIMT is the strategy of using a large of number of threads in parallel, but each 

thread executes the same instruction on a different data section allocated to this 

thread. Like SIMD processing, the overhead of instruction fetch, decode, and 

speculation can be effectively eliminated, SIMT has a higher power efficiency. The 

device memory hierarchy in GPGPU also contributes to the greater power efficiency 

of SIMT processing. Using CPU and GPGPU collaboratively to achieve greater 

performance and power efficiency is the current trend of computing. This is often 

referred to as heterogeneous computing since the GPGPU is often using a different 

ISA (Instruction Set Architecture) from the CPU.  

CPU, as designed for general-purpose computing, is less power efficient for 

SIMD processing. General purpose computing often incurs complex instruction 

execution control flow, which requires sophisticated branch prediction, speculation, 

out-of-order execution, and cache hierarchies. For processing a large and regular 

section of data, SIMD or SIMT architecture could yield much greater power 

efficiency. The motion for heterogeneous computing is to leave the logic control 

portion of an application to the CPU and let the GPGPU handles the regular data 
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parallel sections.   

One challenge of heterogeneous computing is how to program for the two 

different ISAs within the same application. CUDA from NVIDIA is one of the earliest 

programming model for heterogeneous computing. However, CUDA is designed for 

NVidia devices only, not portable for other GPGPU devices. OpenCL (Open 

Computing Language) is a programming model, initially developed by Apple, and 

later promoted by the Khronos Group. As the open standard for heterogeneous 

computing platforms. Early programming models for heterogeneous computing 

platforms focus too much on the efficient use of device memory hierarchies. They 

are not programmer friendly. For example, the current existing GPGPU 

programming model requires explicit control of data transfers between the host 

memory and the device memory. Furthermore, debugging based on such models is 

difficult, as the kernel functions running on the device fails to provide the basic 

debugging functions like the single step execution and break point setting. Due to 

the separate memory spaces, a device memory pointer can access the device 

memory only. Such difficulties calls for a revised programming model based on  

HSA (Heterogeneous System Architecture) from AMD for heterogeneous computing 

platforms.  

The main idea of HSA is to make the GPGPU software development easier. The 

memory model of HSA is called HUMA (Heterogeneous System Architecture), which 

offers a shared virtual memory space between the host and the device. Since the 

memory pointers are now shared, such sharing strategy allows programmers 

accessing the device and host memory with the same memory pointers. Thus 

software developers can focus more on computing algorithms rather than on 

managing explicit memory copies between the separate address spaces. In addition, 
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HSAIL (Heterogeneous System Architecture Intermediate Language) is an 

intermediate representation of HSA for machine independent code distribution. 

The machine independent code distribution is achieved through the on device code 

generation from HSAIL to the native code. The native code generated is linked and 

loaded by an on device linker and loader. Precise definition of parallel data syntax, 

no high level structure representations and a finite register set in HSAIL allow 

programmers to get a more thorough understanding of their code. Vector 

instructions in HSAIL offer chances of straightforward SIMD instruction generation 

with less analysis in speeding up the device code generation. Cross work group and 

cross lane operations in HSAIL also provide finer control on data computing. . The 

rest of this paper uses the term agent for the host code following the terminology of 

HSA. 

Our work is to design a functional level system mode simulator for HSA. The 

simulator runs two guest machines at the same time. One guest machine is an ARM 

processor as the current embedded systems are mostly based on ARM processors. 

The other guest machine we simulate is the GPGPU. Both the ARM guest machine 

and the GPGPU are emulated by the x86-based host machine. The ARM guest is 

emulated by one x86 core, while the GPGPU is emulated by many x86 cores on the 

host machine. Therefore, the emulated GPU can make use of the multi-core power 

available in the host machine in order to achieve faster simulation.  

As one of the first few groups developing for the HSA framework, we are facing 

many challenges. For example, no OpenCL/HSA compilers are available at this time. 

In order to test our HSA simulator, we must come up with our own HSAIL code.  

We have implemented a binary generator for translating HSAIL text into HSAIL 

binary code called Brig. This tool is called Brig generator. Following the HSA 
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specification, the communication between the host and the device is via queues 

which are explicitly managed through AQL (Architected Queuing Language). AQL 

packets are used to specify the required kernel execution information. In the 

QEMU-based HSA simulator, the simulation of GPGPU is based on binary translation, 

which the Brig code is translated into native binaries to be executed directly on the 

host machine. On a real heterogeneous machine, this step is called finalization 

which translate the Brig code into device code to be running on the GPGPU device. 

Since we do not know which GPGPU device will be used, the functionality of the 

device is simulated by the host machine. Therefore, the current finalizer simply 

translate the Brig code into native binaries to be executed on the host machine. This 

Brig-to-Host-binary translator is the main theme of this thesis work. It is built as a 

library for the QEMU, performs the device code generation. Native code is linked 

through the HSA link-loader implemented in the QEMU. Thereby, the HUMA and the 

HSAIL on device code generation requirements are met in our simulator. 

Our implementation of the HSA simulator follows the HSA 1.0 specification. In 

the rest of this thesis, we will introduce the background of this work in chapter 2. 

Related work will be introduced in chapter 3. Design of our project framework will 

be introduced in chapter 4. Implementation details will be described in chapter 5. 

Experimental results will be discussed in chapter 6 and conclusion as well as future 

work will be given in chapter 7. 
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2. BACKGROUND 

2.1 GPGPU (General-Purpose Graphical Processing Unit) Computation 
The GPGPU computation such as the CUDA and the OpenCL is the practice of 

the combination of the SIMT (Single Instruction Multiple Threads) and the SIMD 

(Single Instruction Multiple Data). The SIMT leverages the fact that the GPU has 

abundant number of cores providing parallel computation from collections of 

threads. Such parallel computation can be done due to the regularity of the kernel 

function instructions. Branch divergence is solved from the use of a control bit 

mask recording the jumping of basic block in each thread. Each thread dispatched is 

considered to be independent to each other. The SIMD vector units available in the 

cores improve each thread in each computation.  

The collection of threads in the GPGPU is divided into groups called 

work-groups. Each work-group is executed by a group of cores in the GPU, which is 

called the streaming multi-processor. Each thread in the work-group is called 

work-item. Each work-item is executed by a core in the group of processor running 

the work-group the work-item belongs to. A fixed number of work items executed in 

parallel specified as the wavefront. The size of a wavefront is defined by the devices. 

During the execution, work-groups can share the same memory space called global 

memory. Within the same work-group, work-items in the same work-group shared 

the memory space called local memory. Every work-item has a private memory 

space for the data that no synchronization is needed. Whenever synchronization is 

necessary, barrier calls are provided for the programmers to perform such data 

synchronization activity. The barrier calls can be applied to the level of the local 

memory or the whole global memory for the synchronization of the whole 

execution or the synchronization of each work group. Different calls are specified by 
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specific API calls such that programmers can choose the suitable one to perform the 

necessary synchronization.  

 
Figure 2.1. The GPGPU computation model is an N-Dimensional Range. Each work group consists of a 

group of work-item. Hardware specific wavefront size is decided by the size of work that can be 

computed at a particular instance. 

The memory model of the GPGPU computation is a heterogeneous memory 

model consisting the main memory of the system and the device memory in the 

graphics card. Before the kernel execution, data allocated in the host memory is 

copied to the device memory via API (Application Programming Interface) calls 

from programmers. When the kernel execution is done, another API call is needed 

for the data transfer from the device memory to the host memory. Such messy API 

calls are needed due to the limitation that the GPU can only access the GPU memory.  

Which means, the device memory pointer can only access the device memory. Data 

size exceeds the size of the device memory needs to do chunking by the logic of the 

programmers. However, the CUDA has introduced the cudaHostAlloc API call in 

order to solve the problem. The cudaHostAlloc API call performs pseudo-shared 

virtual memory effect, such that the chunks can be manipulated by the runtime. 
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Nevertheless, the cudaHostAlloc has solved one of the difficult parts of memory 

management, the difficulties in using explicit call syntax of reading and writing 

device memory is still unchanged. 

 

Figure 2.2. The GPGPU programming model consists of the device memory and the host memory. In 

programmers’ view, these two memories should be maintained with two different syntaxes. All memory 

allocations and memory movements need thorough understanding in order to prevent naïve 

programming and errors. 

2.2 Heterogeneous System Architecture (HSA) 
With abundant number of cores favoring the practice of multi-thread 

programming, the importance of the GPGPU grows within the past decade in both 

the high performance computing and the practical application such as gaming and 

the computation of the large data digesting programming such as the computational 

fluid dynamics. However, several difficulties stop programmers in developing 

application using such solution, including the explicit memory syntax, debugging 

difficulties and the device dependent recompilation. 

The data transfer is needed to be controlled by the programmers in the GPGPU 

programming for the memory read/write from/to between the host memory and 
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the GPU device memory. For example, in order to have an array addition of 𝑎𝑎 + 𝑏𝑏 =

𝑐𝑐, 

1. Three device memory allocation calls, 

2. Three device memory writing calls. (Two for preparing the data in 

array A and B, and one for the initialization of the buffer for array C) 

3. One device memory reading call for the answer extraction of the array 

C from the device memory to the host memory. 

4. Three device memory release calls. 

These data transfer controlling causes a difference with the traditional high level 

language programming such as C/C++ and JAVA because the memory models are 

different. The memory syntax in controlling the device memory is described as API 

calls. Beginners cause severe performance decrease of the GPGPU program because 

naïve writing of the data transfer controlling may lead to cyclic copying.  

 Debugging is hard in the GPGPU program due to the incomplete definition of 

the debugging features of the GPGPU framework. Current existing debugger from 

the vendors fail to provide the debugging features of a traditional CPU program 

debugger, such as break point, single-step execution and variable watches etc. These 

features need some kind of a support in the compilation stage, as some of the 

program information should be included in the program binary. However, the 

current existing tool-chain provides no debugging features at all. Besides, the 

current existing GPGPU programming model provides only single direction calls. 

Debugging is nearly impossible if the bug is appeared in the side of the device 

memory because there is no device to host call available.  

 The GPGPU code needs to be recompiled if the code is shipped from one vendor 

machine to another due to the binary compiled is for only a single vendor. 
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Toolchains provided by the vendors may not be able to compile the code for the 

entire device. Vendor specific optimization also needs to be specified and 

recompiled for each device specification. The virtual GPU ISA (Instruction Set 

Architecture) such as the AMDIL (AMD Intermediate Language) and the PTX 

(Parallel Thread Execution) can only be run on the AMD and NVIDIA graphics card 

respectively. In addition, programmers may need to modify the code even though no 

vendor specific optimization needed. No cross vendor re-targetable ISA is available 

in order to ease the code distribution inconvenience.  

 Solution called the Heterogeneous System Architecture (HSA) is carried out 

from AMD in solving the software development difficulties. The HSA is aimed in 

supporting CPUs and GPUs from multiple vendors. The vital idea is that 

programmers can have an easier way to program the GPGPU code with only the 

knowledge of the high-level language. System software manipulates the lower level, 

such as the actual memory copy as well as making use of the programmable 

compute elements from different vendors seamlessly.  

 The implementation of the HSA includes both the hardware and the software. 

The HSA conformed hardware implementation requirements in the specification 1.0 

are,  

I. Shared Virtual Memory Model between the CPU(s) and the GPU(s) 

II. Cache Coherency Domains 

III. Memory-Based Signaling and Synchronization 

IV. User Mode Queuing 

V. Preemptive HSA Component Context Switching 

VI. Architected Queuing Language (AQL) 

VII. HSA Component IEEE754-2008 Floating Point Exception Reporting 
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VIII. HSA Component Hardware Debug Infrastructure 

IX. Efficient System Call Infrastructure 

X. HSA Platform Topology Discovery 

The shared virtual memory model is defined as the HUMA (Heterogeneous 

Unified Memory Access). The need of the explicit device memory movement syntax 

is due to the separate virtual memory space of the host virtual memory and the 

device virtual memory. Thereby, the HUMA defines the shared virtual memory 

space within the host and the device. The device can access all the shared memory 

including the main memory if the HSA conformed hardware is used. Since the 

programs with the HSA accesses the same virtual memory space, the explicit 

memory syntax of the device memory can be replaced by the syntax of the host 

memory. In the other words, programmers can use the same high-level language 

memory syntax for both the host and the device memory operations. In addition, 

the actual copy operation is controlled by the runtime functions instead of the 

syntax from the programmers. Under this mechanism, programmers have the view 

of a single piece of flat virtual memory. The unified syntax of the C/C++ style makes 

the programming language be friendly to the programmers. Furthermore, since the 

memory copy is done by the runtime functions, naïve memory copy such as cyclic 

copying can be prevented. Software development using the HUMA feature can have 

a neat and tidy view replacing a set of APIs. GPGPU computing beginners can catch 

up quickly as the way of programming is the same as the high-level languages 

instead of the necessity of learning sets of APIs. 
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Figure 2.3. The shared virtual memory model of HUMA in programmers’ view 

Data memory accesses in HSA can be available in any sharable regions. Current 

existing GPGPU memory model raises the difficulties in cache/data coherency due 

to the separate copy of the memory pointers. Nevertheless, the HSA exists actual 

copying of the data from host to memory but the memory pointers exist in the same 

memory space. Data access request to the host main memory from the device can 

be done without any copies if the HSA conformed hardware are used. However, 

read-only data needs to be constant during the execution, the copies still have to be 

done. On the contrast, such constant data can skip the data coherence problem. 

Thereby, the difficulties between the host and device memory coherency 

maintenance can be solved.  

  The synchronization in the HSA is done through the signaling raising in the 

memory. Such signaling mechanism provides the ability of controlling a memory object, 

there are four types of signaling may occur, 

a. Allocation of a memory object. 

b. Destruction of a memory object. 
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c. Control signal of a memory object, may occur when we need to do any 

atomic operation in the HSAIL. 

d. Waiting of a memory object, such as the resource waiting in a race 

problem. 

The signals are allocated by the runtime. Such allocations are triggered by the 

HSAIL description. In addition, such mechanism is controlled and manipulated by 

the HSA agents. Inter-process accessing is not supported such that data within 

kernels are not the same copy.  

Multi-level user queue are supported in the HSA. The necessity of this issue is 

due to the multiple CPUs and GPUs support of the HSA. A single queue may cause 

serious performance loss. Multi-level queue may practice several optimization 

techniques such as priority queue in preventing the resource abundant device 

running a resource non-thirsty kernel. The queue contains the packets in the 

structure of the AQL (Architected Queuing Language), which we introduce in this 

article later. 

The context switch in the HSA including stopping running wave-fronts, 

saving/restoring the current context state to/from memory, recovering the 

execution from saved state. This requirement is defined in the preemption of the 

components. The mechanism provide, 

a. Preemption and forced exit of the currently running wave-fronts.  

b. Saving the context on a per-compute-unit granularity. 

c. Saving all the state and restoring to restart the preempted context. 

The importance of such preemption exists due to the GPGPU computation needs the 

full occupation of the device. Such that when users need to perform a computation 

with another device needed action such as high-definition display, existing GPGPU 
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solutions are failed to provide full performance ensuring. Recovering the context 

per-compute-unit can provide the availability of the computation in a more precise 

granularity. In addition, Optimization with historical record needs the change in 

HSA component context thus the support for the saving of all state and recovering 

to restart the preempted context is vital in reaching better performance gain. 

The communication between the host and the device codes in the shared are 

defined by the AQL (Architected Queuing Language). The packet written in AQL 

structure is manipulated by the host/agent providing the information to the device 

in order to setup the kernel execution. The information in the AQL packet including, 

i. The synchronization information, including native synchronization 

function, the necessary cache flushing mechanism, cache level 

action, performance counter sampling rate and the dimension of 

the kernel dispatching. 

ii. Completion object and Kernel object address. This is necessary 

because the kernel code is provided in the shared virtual memory 

space. The address in the AQL packet is needed for the device to 

retrieve the kernel code. The kernel code available has already 

translated to native code. 

iii. Kernel arguments addresses. The kernel arguments are located in 

the kernel argument segment (kernarg) of the shared virtual 

memory. 

iv. The size of the grid and work group is written in three dimensions.  

v. The runtime-defined information including the size of the work 

group segment, work item private segment, work item spill 

segment, work item argument segment. The sizes of the segments 
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are in bytes. 

The IEEE754 floating-point exception defines the unified format of the HSA 

floating exception reporting. Five types of floating exception are defined, 

 Exception code 0: INVALID OPERATION  

 Exception code 1: DIVIDE BY ZERO 

 Exception code 2: OVERFLOW 

 Exception code 3: UNDERFLOW 

  Exception code 4: INEXACT 

The existing GPGPU programming model is hard to debug due the lack of 

support in the hardware. In addition, the debugging features existing comparing to 

that of the traditional high-level programming makes a great difference such as the 

absence of the instruction breakpoints. Profilers require the information from the 

performance monitor and the sampling information from the memory accesses. 

Such information is limited in the current existing hardware as well. Such that the 

debugging infrastructure in the HSA is defined to have the minimum requirement of 

the instruction breakpoint mechanism and others are set to be implementation 

defined. We expect the debugging infrastructure will be as thorough as usual in the 

traditional CPU only application running environment. 

The system call infrastructure in HSA supports the bi-directional system call 

structure. Such that the device can raise various system call in order to mention the 

current situation, such as the exceptions, the finish of the kernel execution etc. With 

the bi-directional call, the execution is more efficient because there is no need for 

the host to trace the device execution for minimizing the signaling of the kernel 

return. 

As a platform supporting CPUs and GPUs from multiple vendors, the discovery 
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of the HSA platform topology is vital for the execution of an application. An HSA 

Memory Node (HMN) represents a set of HSA components. Each HMN can access to 

the memory attached to such HMN and other regions with system-defined 

attributes. The design of the memory access is an extension of the NUMA 

(Non-Uniform Memory Access). 

The software implementation of the HSA includes the high-level language 

compiler, linker and loader, the finalizer and the HSAIL (Heterogeneous System 

Architecture Intermediate Language). The HSA tends to support multiple CPUs and 

GPUs from different vendors. To achieve this issue, the HSAIL is introduced as a 

re-targetable intermediate representation and providing the necessary components 

for on device linking. The software flow should be, 

1.  The high-level compiler compiles the high-level language to the 

HSAIL.  

2. The finalizer provides the native code translation from the HSAIL to 

the native code.  

3. The linker and loader link the native code with the native library to 

have the native binary.  

2.3 HSAIL (Heterogeneous System Architecture Intermediate 

Language) 
The HSAIL is the re-targetable intermediate language for the representation of 

the kernel operations in the HSA. The major features are the memory model, the 

fixed register set and the large number of operation codes with precise syntax for 

the synchronizations. The binary format of the HSAIL is called Brig. 

The memory resource in the HSAIL is divided into three types, the flat memory, 

the registers and the image memory. The flat memory can be accessed through a 
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certain segment base address plus offset. The segments are divided the way data 

can be shared and intended usages. Seven segments are divided as the following, 

a. Global – shared by all the agents. 

b. Group – shared by work-items of a work-group. 

c. Private – local to a single work-item. 

d. Kernarg – read only, used to pass arguments to kernel. 

e. Readonly – holding the constants. 

f. Spill – load or store register spill. 

g. Arg – used to pass arguments in and out of functions. 

The system software maintains the starting addresses of the segments. Image 

memory is used for image operations only for current specification. 

 
Figure 2.4. The segment memory model in HSAIL is divided into the global, group and private memory. 

In between, the Kernarg and the readonly segments are implemented as part of the global memory 

while the spill and arg segments are implemented as part of the private memory. 

 Registers in the HSAIL are limited resources. Results from the all operations 

are stored in the registers. Types of registers are divided into four categories by the 
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bit width in 1-bit, 32-bit, 64-bit, and 128-bit as shown in table 2.1. In addition, S, D 

and Q registers can be used in the vector instructions. C is used for control signals. 

Such limited register set favors the speed of the on device translation, as lesser 

analysis needs to be performed in the register mapping. Syntax of the vector 

instructions not only favors the programmers in exploiting the performance of the 

GPGPU programs, translation to the on device SIMD (Single Instruction Multiple 

Data) is more straightforward as mapping of the instructions is relatively easy. In 

case the registers is not enough, spill memory segment works as a swap for the 

registers.  

 

 

 

Register types Number of registers Bit width 

C 8 1 

S 128 32 

D 64 64 

Q 32 128 

Table 2.1. Limited registers with various bit width. 

 The HSAIL has 133 operation codes in the HSA version 1.0. Operations are in 

variable length. There are several categories, 

1. Arithmetic operations 

2. Memory operations 

3. Image operations 

4. Branch operations 

5. Parallel synchronization and Communication operations 

6. Operations related to functions 

7. Special operations 
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One or more modifiers for the definition of each operation follow after the 

operation codes. Compare to the current GPGPU programming language syntax, 

HSAIL has special branch and synchronization syntax. Making use of the 

fine-grained barrier, these two kinds of operation can follow by the fine-grained 

barrier modifier to specify the number of the work items in performing the 

branches and the barriers. 

Both text and binary formats are supported in the HSAIL. The Brig, which is the 

binary format of the HSAIL, has five sections. Each component in each section has a 

corresponding byte offset for searching the information in the other sections.

 

Figure 2.5. Sections in Brig start with a section header to specify the size of the section. Different 

components are encoded in the corresponding sections. 

Comparing to the PTX, the HSAIL is more flexible in both programming and 

easier for distribution. The PTX fails to provide precise syntax in some complex 

logic needed operations such as cross lane, cross work groups. Lack of supports in 

this syntax may cause serious difficulties in both debugging and programming since 

programmers may not get thorough understanding of their code. Dealing with no 
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memory operations, using the HSAIL favors the beginners while the PTX does not. 

Adding the support of bi-directional calls, dynamic memory can be allocated during 

the kernel runtime. Since the HSAIL is re-targetable, PTX is able to be translated, but 

not vice versa.  

Comparing to the SPIR, which is the LLVM IR with OpenCL support from Intel. 

The LLVM IR does not have a complete parallelism model. Acting as a re-targetable 

IR, the LLVM IR is a good practice but may not be the case of GPGPU programming. 

With the messy memory operations, programmers have to deal with the parallelism 

model themselves. LLVM IR also raised debugging issue. High-level structures are 

kept in the IR thus programmers are hard to debug without a debugger. 

2.4 QEMU/PQEMU 
The design of architecture requires certain level of evaluation. The cost of 

manufacturing the real hardware for the evaluation only is non-cost effective. 

Incredibly high capital in developing the hardware for a whole system is 

considerably impossible using practical hardware evaluation. Nowadays, lots of 

hardware design industries prefer software simulation to achieve the evaluation to 

minimize the cost of the hardware design. 

The simulation of a system should provide the system level evaluation. User 

level simulation fails to provide the observation of some architectural details that 

are vital to the design flow, such as memory access, device queuing etc. Thereby, the 

importance of the full system simulation in simulating a specific architecture is a 

crucial research area. The most remarkable open source full system simulator 

should be the QEMU. 

The QEMU is an open source system emulator, supporting the X86, X86_64, 

ARM, MIPS and POWERPC environments system virtualization. The QEMU provides 
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the ability of running operating system with the support of the preferred 

architecture below. The emulation of the QEMU runs through the dynamic binary 

translation engine called TCG (Tiny Code Generator). The dynamic binary 

translation achieves very good performance as the guest code is translated once 

only. Certain translated code is stored in the code cache for future reuse. Such that, 

the most time costly procedure is run in minimal time leads to a better performance. 

However, the disadvantage of the QEMU is that the multi-thread support is limited. 

The con due to the QEMU is developed in the era of single core. Multiple threads are 

mapped to a single core even if the host machine is multi-core. With the growing 

complexity of the operating system and the application, performance of the 

simulators with sufficient multi-core support can be magnificent. Thereby, the 

PQEMU[1] based on QEMU is introduced. 

The PQEMU[1] (Parallel QEMU) is aimed to improve the multi-core support in 

the QEMU. By extending the ability of emulating multi-core on multi-core, the 

PQEMU[1] exploits the power of multi-core in the simulation of the multi-core 

system. In addition, the unified code cache strategy minimizes the usage of the 

memory from no sharing components duplication. Separate code cache is used for 

the duplication of the sharing components for individual thread emulation. Such 

mechanisms lead to a very good performance in the emulation of systems with 

multi-thread support. 

Comparing the model of the GPGPU device computation with the multi-thread 

computation, the PQEMU[1] satisfies the issue in simulating such device. Therefore, 

we decide to make use the PQEMU[1] in our simulation in the future. The simulator 

in this article is based on the QEMU. We expect the performance of the simulator 

can be speed up with the use of the PQEMU[1]. 
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3. RELATED WORK 
Our work is related to several research areas, such as dynamic binary 

translation, GPGPU simulation and system emulation. 

We use the LLVM infrastructure [5] introduced by Chris Lattner as a base of the 

translation in our HSAIL converter. Translating HSAIL to LLVM IR is a new branch of 

the LLVM frontend. Binary translator such as the LLBT[3] and LNQ[9] are binary 

translation of executable binary. Our HSA Translator is a finalizer that translates the 

HSAIL to LLVM IR and LLVM IR to native re-locatable object. We provide HSA 

Link-Loader for the Linkage process to form a native executable binary. 

GPGPU-sim [2] introduced by Tor Aamodt and his graduate students provides a 

detailed simulation of a contemporary GPU running CUDA and OpenCL workloads 

with an integrated power model at micro-architectural level. Barra-sim [6], a 

simulator of GPGPU based on the UNISIM framework developed by Daumas M 

running CUDA, does the simulation at functional level. Ocelot [7], developed by 

Gregory Diamos is a modular dynamic compilation framework for heterogeneous 

system, targeting to several back-ends with self-developed translator. AMD 

FusionSim [8] based on GPGPU-sim[2] introduces a CUDA workloads simulation on 

X86 systems with an additional cache simulation. Concurrently simulates an X86 

out-of-order CPU, a CUDA-capable GPU and a CPU/GPU interconnect memory 

system.  

Most of the simulators mentioned above rely on CUDA or OpenCL runtime, 

which is provided by each hardware vendor. The HSA is introduced to have support 

multi-target, thus with the support of the HSA runtime the issue of relying unique 

runtime can be solved. The full system simulation in our work provides verification 

of the new runtime components in the future. In addition, the HSA supports 
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bi-directional calls that allows the GPU to access the I/O devices. The above works 

are hard to achieve such simulation because this model is rather distinct with the 

existing model. In our work, we achieve such system mode simulation with a QEMU 

based full system simulator. Besides, re-targetable code is not provided. Linking to 

the native library is available in our work as well to perform the on device linking. 

GPGPU-sim[2] is micro-architectural level simulator while Ocelot[7], 

Barra-sim[6] and our work are at functional level. On the contrast, only our work is 

a system mode simulator. With the support of QEMU, we are able to simulate other 

development board such as versatile Pico board, Panda board as well as 

ARM-Vexpress.  

Recompilation is not needed in all of the above cases. Unfortunately, except our 

work all the simulators need an exceptional dynamic linking to the system’s vendor 

supporting library, such as libcudart.so. Relinking is not needed in our approach as 

once linking is done in the first run; linked code is stored in the code cache and 

reused in the future. 

The HSAIL is a brand new intermediate language to the existing simulators. We 

preserve the opportunities of optimization in running the HSAIL, as the translator 

of such intermediate language is self-developed. Unlike the existing simulators, 

most of them use the vendor providing tool chain thus optimization may be 

narrowed, but Ocelot[7] also implemented its own compiler from the LLVM IR to 

native code. 

GPGPU-sim[2] provides functional level simulation in PTX and NVIDIA native 

ISA. We are not providing native GPU ISA simulation as GPU ISA keeps changing. 

Also, HSAIL is an intermediate language targeting different native ISA, unlike PTX 

only targeting its own vendor ISA. 
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Our work also provides a simulation to the current embedded system 

environment. In the experiment we boot up with Linaro Linux images, simulating 

the hardware of ARM-vexpress-a9 board. The GPGPU-sim[2], Barra-sim[6] and 

Ocelot[7] target both agent and kernel code in the same environment as they are in 

user mode simulation. System mode simulation raises chances to debugging, 

profiling as well as further research in the embedded system. 
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4. PROJECT DESIGN 
The main achievement of this work is the implementation of a translator called 

the HSA Translator for the Heterogeneous System Architecture (HSA) functional 

level simulator. An additional BRIG generator is implemented for the binary 

generation of the HSAIL. The HSA Simulator and the HSA Link-loader are not the 

achievement of this paper. The kernel execution in the HSA Simulator is explained 

for the sense of readers may not understanding the use of the HSA Translator. 

4.1. HSA Simulator 
The HSA Simulator is a functional level system mode simulator that emulates 

the HSA conformed GPGPU computation environment. The whole simulation is run 

on the CPU without the support of the GPU. The implementation of the HSA 

Simulator is based on the QEMU. In the HSA Simulator, the ARM guest performs the 

role of the CPU in the GPGPU environment. The ARM guest runs with the TCG IR 

provided in the QEMU. We emulate the GPU guest with a large number of host 

thread in order to speed up the simulation. In addition, the GPU guest runs the 

kernel function translated from the HSAIL. Therefore, we implement a finalizer 

called the HSA Translator to do this task.  

The shared virtual memory model requirement states that, 

a. The full address range should be visible to all components, 

b. Non-shared memory addresses are maintained by system software, 

c. Virtual address translation is done by the system software, 

d. Minimum 48-bit address length for 64-bit architecture and 32-bit address 

length for 32-bit architecture. 

Point (a) is achieved by the implementation of shared QEMU memory between the 

emulated CPU and the emulated GPU. During the application execution, all sharable 
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QEMU memory is accessible through the use of QEMU memory helper functions 

that perform the virtual address translation. Accesses to the non-shared virtual 

memory such as Operation system preserved memory addresses are avoided by 

these QEMU memory helper functions. Thus point (b) and (c) are achieved. For 

point (d), we use 32-bit virtual address length in our implementation. 

 Allocating and freeing the memory object in the agent code only achieve the 

Memory-Based Signaling mechanism. Such that the agents have full control of the 

entire memory object and no inter-process memory transaction occurs. The virtual 

memory objects (aka. The registers in the HSAIL) is left to the LLVM analysis. 

The current HSA Simulator emulates only one GPU device. Thus we consider 

having the support for multi-level queue later as evaluation to the effect of the 

multi-level queue is not convincible if we emulate only one device. Thereby, the 

multi-level user queue is left to the future work. 

The Architected Queuing Language (AQL) is a command interface for the 

dispatch of the HSA components commands. This command interface allows 

application to build and enqueue the HSA components own command packets, 

enabling fast dispatch. These AQL packets provide the information including the 

size of the grid, the addresses of the kernel arguments, the kernel object address etc. 

We achieve this part by allowing the agent code writing this packet in the shared 

virtual memory. The emulated GPU owning the AQL packet memory pointer gain 

access to the packet. Thus the function of this AQL packet is achieved.  

The efficient system call infrastructure requires the system call should be 

resolved to the correct system call API, such as interrupts caused by instructions 

during execution. This part we discuss in two categories, the CPU and the GPU. The 

CPU is emulated using the ARM virtual machine. The interrupt handler is 
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implemented in the original QEMU. Therefore, we rely on the QEMU to solve this 

task for the emulated CPU execution. The GPU emulating environment is the X86. 

We modified to make the execution of the GPU code running directly on the host 

machine. The host machine architecture is X86_64 architecture. Thus, we may rely 

the host machine reacting to the exact interrupts. 

The preemptive HSA component context switching and the HSA component 

topology discovery are used when we have more than one homogeneous HSA 

components, aka two or more CPUs, two or more GPUs. The current version of the 

HSA Simulator emulates single CPU and single GPU environment. Thus we have not 

implemented these two parts yet. The debug infrastructure, preemptive HSA 

component context switching and the HSA component topology are considered as 

the future works of this achievement. 

The cache coherency domains refer to the data coherency in the cache level 

within the HSA components. As the HSA Simulator performs a functional level 

simulation, we do not provide the micro-architectural model for the cache 

simulation.  

The running flow of the HSA Simulator is shown in figure 4.1. Before execution, 

both the agent and kernel binaries are placed in the ARM guest machine memory. 

Users execute the agent binary in the ARM guest machine. When the kernel function 

call in the agent binary is being executed, three steps are taken.  

1. The kernel binaries have to be copied to the shared QEMU memory 

because the two individual guest memory is not visible to each other. 

The virtual address translation is performed by the QEMU. 

2. The AQL packet information is written by the agent code.  

3. The memory pointer of the AQL packet is transferred to the GPU 
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emulating guest machine. This triggers the emulated GPU to read the 

necessary information to perform the kernel execution. 

The kernel execution consists of three parts, the HSAIL to native code 

translation, the native code linking and the native code execution.  

4.2. HSA Translator 
The start of the kernel execution is the kernel binary to native translation. The 

HSA Translator translates the HSAIL binary format to the re-locatable native code. 

Such task is categorized as the finalizer in the software implementation in the HSA 

requirement. The task of a finalizer including the address translation, the native 

operation translation and the register allocation.  

The HSA Translator is implemented based on the LLVM infrastructure. The 

translation is in a static form. Comparing to the TCG (Tiny Code Generator), we 

prefer the LLVM infrastructure with the following reasons, 

i. The design of TCG is for the system emulation. System binary is not 

necessary to have a static translated binary because we may not have 

such capability to keep the translated binary. On the contrast, the kernel 

binary is relatively small in size.  

ii. The optimization in TCG is not enough. The TCG is designed for fast 

translation. Thus simple does fast. Comparatively, the LLVM 

infrastructure is a relatively complete. With the support of the first 

point, we may get more chances in optimization as the translation is 

static. 

iii. The Kernel function is more regular compare to the system emulation. 

Optimization affects the performance more significantly in a regular 

case as the analysis can be done easily and more straightforwardly.  
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The shared memory model is implemented using the QEMU memory. Such that 

the memory translation needs the help of the QEMU virtual memory translation. 

Thereby, the memory operation is translated to the self-implemented QEMU helper 

functions. The helper functions load the necessary memory pages and perform the 

load/store operations to the corresponding HSAIL memory operations. 

The HSAIL operations are translated to the native operations with the help of 

the LLVM. We map the HSAIL operations to the suitable LLVM operations. The 

kernel functions are a group of HSAIL operations. Each kernel function is translated 

to an LLVM module and the whole program is translated to the native code through 

the LLVM Infrastructure.  

The register allocations is achieved through the register mapping from the 

HSAIL register to the LLVM register. Since the mapping is a fixed register set to the 

infinite register set, a mapping table is necessary to be implemented in the HSA 

Translator. The register allocations in the host environment is left to the LLVM 

Infrastructure. 

The generated re-locatable native code is linked by the HSA link-loader.  

4.3. HSA Link-loader 
The native code generated by the HSA Translator leaves several types of 

function unlinked, 

a. The QEMU memory helper functions 

b. The native library functions, such as math library 

The LLVM infrastructure aims to have IR as the media of re-targetable ability. 

Whenever we need to generate a certain native code, we can use the LLVM 

infrastructure performing the JIT (Just in Time) compilation, which is a dynamic 

binary compilation. Thus, no linking methods are provided in static compilation.  
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In order to achieve a linking process for our re-locatable native code, we implement 

a linker called the HSA Link-loader. This Link-loader is implemented in the QEMU. 

After the process of the HSA Link-loader, the kernel function is linked and stored in the 

code cache. The binary stored in the code cache can be reuse during the same execution 

runtime. After the execution, the binary is released from the code cache. 

 
Figure 4.1.The overall flow diagram of the HSA simulation starts with the running of the agent code. 

First, the CPU simulating machine writes kernel execution required information into the AQL packet. 

Second, the GPU simulating target will be triggered to read the AQL packet. Finally GPU simulating target 

obtains the required information in the QEMU memory according to the AQL packet described and the 

translation of the kernel code is started. 

4.4. HSA Kernel Execution 
The linked binary is run directly on the host machine. The number of thread 

used to run the execution is stated by the boot up argument in the startup script of 

the HSA Simulator. 

During the execution, all the threads share the same virtual memory. Memory 

helper function calls are used for the accesses of the memory for the load/store 
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operations. Memory addresses of data for an individual thread is computed in the 

HSAIL in order to make use of the flat, shared virtual memory space. 

Work groups are dispatched serially. Such that work items within a work group 

is processed in parallel but only one work group can be processed at a time. When 

threads within the processing work group have finished, synchronization is done at 

the end. Barrier operation stated in the kernel function is executed with the help of 

pthread_barrier_wait. The pthread_barrier_wait forces to have a barrier which all 

the threads are not allowed to proceed before all the threads waits in the barrier.

 

 Figure 4.2. The work group dispatching loop. 

The loop of dispatching work groups are done when the number of processed 

work groups has reached the number of work groups calculated by dividing the 

global size with the local size. Both the global size and the local size are stated by 

the programmer in the agent code. When all the threads dispatched are 

synchronized, the GPU guest machine triggers the CPU guest machine to collect the 

output data from the shared virtual memory. After that, the GPU threads are said to 
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be idled and wait until the triggering from the CPU guest machine. 

After the kernel execution, the AQL packet of the executed kernel is freed and 

the next packet is on the role. Consequently, after all the packets in the queue are 

processed, the queue is freed and the core of the program is said to be finished. The 

system model simulator will remain idle before the next program execution. All the 

threads will be destroyed and recreated in the next program execution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32 



 

 

 

5. IMPLEMENTATION 
The implementation includes the BRIG generator and the HSA Translator. As 

the HSA link-loader is closely related to our achievement, a brief explanation is 

provided as well. 

5.1 BRIG Generator 
The BRIG generator is used to translate the HSAIL from text format to BRIG 

format, which is the binary format of the HSAIL. The BRIG generator consists of the 

HSAIL Lexical analyzer and the HSAIL rule parser. This implementation is based on 

the LEX/YACC structure. Both these two components conform to the HSAIL 1.0 

version. 

The HSAIL Lexical analyzer takes in the HSAIL text code and passes the tokens 

to the HSAIL rule parser for rule mapping. Tokens include the identifiers, the 

constants, the operation codes and the modifiers etc. Rules written in the HSAIL 

parser is implemented according to the EBNF (Extended Backus-Naur Form) 

grammar rules in the HSAIL specification document.  

The BRIG format stores the components into five sections. They are the string 

section, the directive section, the code section, the operand section and the debug 

section. Each section has a corresponding section header consists of a 32-bit integer 

indicating the size of the section. Zeros are padded to the strings to make every 

string writing in the file a multiple of four. Every IR structure size is also in multiple 

of four. Therefore, the size of a BRIG file must be in multiple of four.  

In addition, the HSAIL version 1.0 and the version before 1.0 have several 

differences, 

1. The writing format of the BRIG – the version before 1.0 has 5 offsets 
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indicating the sizes of the five sections appear at the beginning of the 

BRIG. Instead, the sizes of the sections are located at the beginning of 

each section.  

2. The format of the encoding of the string section – the version before 1.0 

deduces each string in the string section with the null character. Such 

mechanisms makes the decoding to have a slower response due to the 

sizes of the strings are unknown until the null characters are 

encountered. In the version 1.0, each string has the corresponding size 

before the string. In addition, the sizes of the strings are padded to the 

multiple of four with zeros.  

3. More native library functions – such as the floor and ceiling floating 

point operations are unavailable in the version before 1.0. 

According to the specification of the HSAIL, we need to preserve the order of 

the sections in a BRIG file. For example, the string section is the first section and the 

operand section is the fourth section. When we parse a register, the identifier of the 

register should be in the string section and the register IR structure should be in the 

operand section. In order to write the components to corresponding sections, the IR 

structures and the strings are stored in the corresponding section buffers within the 

generation instead of directly writing to the file. When the parsing of the HSAIL text 

code is finished, buffers are written into the corresponding sections of the binary 

file. The BRIG is used as the input of the HSA Translator in the GPU guest machine 

for the HSAIL to native code translation. 

This part is included in the scope of this paper. 

5.2 HSA Translator 
The execution of the GPGPU program with the HSA conformed simulation is 
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shown in figure 5.1. The BRIG binary and the ARM agent binary are placed in the 

memory of the ARM guest machine. Users execute the agent code in in the ARM 

guest machine. When the kernel call in the agent code is being executed, the BRIG is 

copied to the QEMU physical memory. By reading the information in the AQL packet, 

the GPU simulating target finds the BRIG file and calls the HSA Translator via a 

library function call. The memory pointer pointing to the BRIG is the parameter of 

the HSA Translator. 

The BRIG format has a section header before every section. The section header 

indicates the size of the section. The HSA Translator reads in the BRIG into five 

buffers. The sizes of the buffers are allocated according to the size specified by the 

section headers. Reading in the BRIG is necessary because we need to process 

between sections frequently. Using file pointer to traverse the file may cause severe 

overhead due to the frequent use of system call. Thus we sacrifice the space of 

storing the BRIG file into several memory buffers instead of such system calls. 

A BRIG IR structure always starts with a 32-bit integer indicating the size of the 

structure. Following is a 32-bit integer indicating the kind of the structure.  Making 

use of this information and knowing which section we are reading, we can 

distinguish all the structures. Decoding process starts with the decoding of the 

directive section. Code section is accessed if the directive has a code body, such as 

the kernel and function. Likewise, operand section is accessed if the operation in the 

code section needs any operands.   

(a) HSAIL vector addition kernel code: 

 version 1:0:$large; 

kernel &__OpenCL_vec_add_kernel(kernarg_u32 %arg_val0,  
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kernarg_u32 arg_val1, kernarg_u32 %arg_val2, kernarg_u32 %arg_val3) { 

 @__OpenCL_vec_add_kernel_entry: 

      ld_kernarg_u32 $s0, [%arg_val3]; 

      workitemabsid_u32 $s1, 0; 

      cmp_lt_b1_u32 $c0, $s1, $s0; 

      ld_kernarg_u32 $s0, [%arg_val2]; 

      ld_kernarg_u32 $s2, [%arg_val1]; 

      ld_kernarg_u32 $s3, [%arg_val0]; 

      cbr $c0, @BB0_2; 

      brn @BB0_1; 

 @BB0_1: 

      ret; 

 @BB0_2: 

      shl_u32 $s1, $s1, 2; 

      add_u32 $s2, $s2, $s1; 

      ld_global_f32 $s2, [$s2]; 

      add_u32 $s3, $s3, $s1; 

      ld_global_f32 $s3, [$s3]; 

      add_f32 $s2, $s3, $s2; 

      add_u32 $s0, $s0, $s1; 

      st_global_f32 $s2, [$s0]; 

      brn @BB0_1; 

}; 
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(b) LLVM Instructions: 

; ModuleID = 'hsail' 

 

define void @__OpenCL_vec_add_kernel(i32 addrspace(1)* %arg_val0, i32 

addrspace(1)* %arg_val1, i32 addrspace(1)* %arg_val2, i32 addrspace(1)* 

%arg_val3) nounwind { 

entry: 

  %addr = ptrtoint i32 addrspace(1)* %arg_val3 to i32 

  %0 = alloca i32 

  store i32 0, i32* %0 

  store i32 %addr, i32* %0 

  %1 = alloca i32 

  store i32 0, i32* %1 

  %2 = call i32 @helper_hsa_get_global_id(i32 0) 

  store i32 %2, i32* %1 

  %3 = alloca i1 

  store i1 false, i1* %3 

  %4 = load i32* %1 

  %5 = load i32* %0 

  %icmp = icmp ult i32 %4, %5 

  store i1 %icmp, i1* %3 

  %addr1 = ptrtoint i32 addrspace(1)* %arg_val2 to i32 

  store i32 %addr1, i32* %0 
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  %addr2 = ptrtoint i32 addrspace(1)* %arg_val1 to i32 

  %6 = alloca i32 

  store i32 0, i32* %6 

  store i32 %addr2, i32* %6 

  %addr3 = ptrtoint i32 addrspace(1)* %arg_val0 to i32 

  %7 = alloca i32 

  store i32 0, i32* %7 

  store i32 %addr3, i32* %7 

  %8 = load i1* %3 

  br i1 %8, label %"@BB0_2", label %"@BB0_1" 

 

"@BB0_1":                                         ; preds = %"@BB0_2", 

%entry 

  ret void 

 

"@BB0_2":                                         ; preds = %entry 

  %9 = load i32* %1 

  %shl = shl i32 %9, 2 

  store i32 %shl, i32* %1 

  %10 = load i32* %6 

  %11 = load i32* %1 

  %add4 = add i32 %10, %11 

  store i32 %add4, i32* %6 

  %12 = load i32* %6 
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  %13 = alloca float 

  %callLoad32 = call i32 @_load_32(i32 %12) 

  %Fcast = bitcast i32 %callLoad32 to float 

  store float %Fcast, float* %13 

  %14 = load i32* %7 

  %15 = load i32* %1 

  %add5 = add i32 %14, %15 

  store i32 %add5, i32* %7 

  %16 = load i32* %7 

  %17 = alloca float 

  %callLoad326 = call i32 @_load_32(i32 %16) 

  %Fcast7 = bitcast i32 %callLoad326 to float 

  store float %Fcast7, float* %17 

  %18 = load float* %17 

  %19 = load float* %13 

  %fadd = fadd float %18, %19 

  store float %fadd, float* %13 

  %20 = load i32* %0 

  %21 = load i32* %1 

  %add8 = add i32 %20, %21 

  store i32 %add8, i32* %0 

  %22 = load i32* %0 

  %23 = load float* %13 

  %UIcast = bitcast float %23 to i32 
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  call void @_store_32(i32 %22, i32 %UIcast) 

  br label %"@BB0_1" 

} 

 

define void @Kernel_Entry(i32 addrspace(1)* %parmaList) nounwind { 

entry: 

  %0 = ptrtoint i32 addrspace(1)* %parmaList to i64 

  %1 = add nuw i64 %0, 0 

  %2 = inttoptr i64 %1 to i32 addrspace(1)* 

  %3 = load i32 addrspace(1)* %2 

  %4 = inttoptr i32 %3 to i32 addrspace(1)* 

  %5 = add nuw i64 %0, 4 

  %6 = inttoptr i64 %5 to i32 addrspace(1)* 

  %7 = load i32 addrspace(1)* %6 

  %8 = inttoptr i32 %7 to i32 addrspace(1)* 

  %9 = add nuw i64 %0, 8 

  %10 = inttoptr i64 %9 to i32 addrspace(1)* 

  %11 = load i32 addrspace(1)* %10 

  %12 = inttoptr i32 %11 to i32 addrspace(1)* 

  %13 = add nuw i64 %0, 12 

  %14 = inttoptr i64 %13 to i32 addrspace(1)* 

  %15 = load i32 addrspace(1)* %14 

  %16 = inttoptr i32 %15 to i32 addrspace(1)* 

  call void @__OpenCL_vec_add_kernel(i32 addrspace(1)* %4, i32 addrspace(1)* 
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%8, i32 addrspace(1)* %12, i32 addrspace(1)* %16) 

  ret void 

} 

 

declare i32 @_load_32(i32) nounwind 

declare i32 @helper_hsa_get_global_id(i32) nounwind 

declare void @_store_32(i32, i32) nounwind 

Figure 5.1. The mapping of the HSAIL operations and the corresponding LLVM operations 

Most of the Arithmetic operations can be mapped to the LLVM operations using 

one-to-one mapping. Some of them are mapped to combinations of LLVM 

operations,  

1. The 24-bit operations – 24-bit operations is absent in the LLVM 

operations. We need to perform a bit mask of 24-bit after such 

operations. 

2. The bit string, copy and multimedia operations – Whilst the LLVM 

operations does not provide such operations, we can achieve such 

functions with a combinations of the arithmetic operations. 

3. The segment checking and converting operations – These two kinds of 

operations need the support from the environment. The current 

version of HSA Simulator has no work group memory implementation. 

Therefore, the segment checking and converting operations are left to 

the future work. 

4. Mathematic operations are defined by the host library. Thus helper 

functions are implemented for the mathematic operations. 
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HSAIL operations Mathematic helper functions 

*floor helper_Ffloor 

*ceil helper_Fceil 

sqrt helper_Fsqrt 

fract helper_Fract 

fma helper_Fma 

cos helper_Fcos 

sin helper_Fsin 

log2 helper_Flog2 

exp2 helper_Fexp2 

rsqrt helper_Frsqrt 

Table 5.2. The mathematic operations are implemented by the helper functions. The operations with “*” 

is introduced after HSAIL version 1.0. 

The memory operations class consists of the load, store and the atomic 

operations. The load and store operations are translated to LLVM function call with 

different function prototypes indicating the load/store performing to different 

bit-width of data. In addition, due to the lack of support in work group memory, all 

the memory accesses are treated as the memory accesses to the flat global memory. 

In addition, each HSAIL memory operations load/store the data with the help of the 

memory address parameters which are the memory addresses in the QEMU 

memory space. Thus the memory helper functions take the memory addresses 

provided in the HSAIL to compute the addresses of the data in the QEMU memory. 

The load operations have the data bit-width data type and the store operations are 

in void type. When loading a floating point data, an LLVM bit-casting operation is 

needed to change the data type of the data from integer to floating point. Likewise, 
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the store operations need a bit-casting operation to change the data type of the data 

from floating-point to integer type in order to perform the storing. Whilst the 

operation is called bit-casting, the bit-width of the data is still unchanged and the 

only difference is the operating data type in the LLVM IR stage. Furthermore, the 

fine-grained syntax in the HSAIL for the memory operations are not supported in 

the current version of the HSA Simulator. Every memory operation existing in the 

kernel function is treated as the memory access that should be performed by every 

work item. Atomic operations are not supported in the current version of the 

simulator. 

HSAIL operations Memory helper functions 

ld 8 uint8_t load_8(u32 addr) 

16 uint16_t load_16(u32 addr) 

32 uint32_t load_32(u32 addr) 

64 uint64_t load_64(u32 addr) 

st 8 void store_8(u32 addr, uint8_t val) 

16 void store_16(u32 addr, uint16_t val) 

32 void store_32(u32 addr, uint32_t val) 

64 void store_64(u32 addr, uint64_t val) 

Table 5.2. The mapping table of HSAIL operations to the QEMU memory helper functions.  

Branch operations except the fine-grained modifier function are mapped to the 

LLVM branch operations. The HSAIL function body operations are present in basic 

blocks. Therefore, the branch operations in the HSAIL can be mapped to the LLVM 

IR as the LLVM also uses the basic block as the basic component for the container of 

the operations. However, the compare and branch operation in the HSAIL has to be 

mapped to one compare and one conditional branch in the LLVM IR as there is no 
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such operation in the LLVM IR. 

Synchronization operations such as the barriers are implemented by the helper 

functions. Thus we translate the barriers to helper function call. In addition, the 

current version of the HSA Simulator only provides the work group level thread 

synchronization. The fine-grained barrier is considered as the future work.  

The special functions such as the work group id queuing and the work item 

absolute id queuing are implemented by the helper functions. Thereby we translate 

such operations to helper function call. 

 

HSAIL operations Special helper functions 

workitemid helper_workItemId 

workitemabsid helper_workItemAid 

workgroupSize helper_workGroupSize 

gridsize helper_workGridSize 

gridgroups helper_wordGridGroups 

laneid helper_laneId 

maxwaveid helper_maxDynWaveId 

maxcuid helper_maxCuId 

dispatched helper_dispatchId 

dim helper_workDim 

workitemabsflatid helper_workItemaidFlat 

workitemflatid helper_workItemidFlat 

 Table 5.3. Operation mapping of the HSAIL special operation to the helper functions. 

According to the specification of the HSAIL, all operation destinations must be 

registers. In order to maintain the values in the registers, we do a register table 
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through a set of memory pointers. In the LLVM IR, the operand types and the 

destination allocated type must be the same, such as floating-point operations must 

have floating-point destination registers and floating-point source registers. On the 

contrast, the HSAIL has no specific floating-point registers. Therefore, we do the bit 

casting in order to meet such restriction. The bit casting is done when we need a 

floating-point value from an integer value with the same bit width, such as 32-bit 

floating-point value to 32-bit integer value, or vice versa. Whenever a value is going 

to be written into a register, we check the type of the value with the type of the 

allocation of the register. If they are not the same, we use the LLVM allocation 

instruction to have a new allocation with the type of the being written value for the 

register. This new memory pointer replaces the memory pointer of such register in 

the register table. The truncations and the extensions of each type of the values are 

also implemented to make sure the values generated fit the bit width of the 

destination registers. The native registers manipulation is left to the LLVM 

Infrastructure. 

Vector types are supported in the HSAIL. We translate these types to the LLVM 

vector types. The LLVM can generate the native SIMD instructions easily by the 

explicit use of the LLVM vector types and vector type operation.  

45 



 

 
Figure 5.2. First, the BRIG is copied to the QEMU physical memory. Second, the X86 target obtains the 

QEMU physical memory address of the BRIG through the reading the AQL packet. Third, the memory 

pointer pointing to the BRIG is passed to the HSA Translator. After the translation, a re-locatable object 

code is outputted to the QEMU physical memory. 
A wrapper function called kernel entry in the generated LLVM IR for the pass of 

the memory addresses. When the kernel code is being executed, the wrapper is 

called first and the actual kernel function will be called by the wrapper. The 

wrapper is added because, 

a. Parameters passing to the kernel function are in pointer types as the 

operations in the kernel code perform direct reading and writing 

from/to certain memory addresses. The number of the parameters 

passing to the kernel function are unable to be determined in before 

runtime stating. Thus we need a wrapper for the parameter passing to 

the actual kernel function. 

b. The kernel function prototype and identifier is runtime stated. The 

QEMU cannot call a function with undetermined pointer name. 

Therefore, we provide a fixed wrapper function pointer for calling the 
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kernel function.  

The LLVM infrastructure does not have the linker support. Thus the HSA 

Translator generates these helper function calls and leaves them unlinked. Finally a 

re-locatable native object code with helper functions unlinked is outputted to the 

QEMU physical memory.  

This part is included in the scope of this paper. 

 
 

Figure 5.3. The running flow of the HSA Translator starts with the decoding of the directive section. Any 

instructions in the directive is available code section decoding is invoked. Necessary operands will be 

accessed through the section pointer in the operations. Finally the re-locatable object is generated after 

the translation. The current use ISA is X86 because the simulator uses an X86 target for GPU simulation. 

5.3 HSA Link-loader 
The generated re-locatable object code is placed in the QEMU physical memory. 

The design of the LLVM infrastructure is for re-targetable use, thus no linking 

process is provided. In order to have a linked kernel function binary, we 

implemented a link-loader called HSA link-loader in the QEMU.  

The link-loader does the linking of the helper functions. To resolve the 

addresses of the helper functions, linker scans the symbol table of the re-locatable 
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object code and fills the addresses of the helper functions in the object code. The 

addresses are found by searching the QEMU binary easily as the link-loader is run 

within the same QEMU runtime. Addresses remain unchanged in the same runtime. 

The helper functions are not preferred to use the in-lining approach because 

the code sizes of the helper functions are huge. In addition, the functions have to be 

translated to the LLVM IR first before any linking process. Such translation causes 

loss information of the global variables and global structures in the QEMU. These 

reasons give rises to the approach of implementing a link-loader in the QEMU for 

the HSA simulation.  

Because the addresses are not going to be changed during the same runtime, 

no second linking process should be done to the same object code. Leveraging such 

linking strategy, the linked object code is stored in the code cache for later use. The 

linked native kernel function binary is ready to be executed at this moment.  

This part is excluded the scope of this paper. On the contrast, we explain the 

HSA link-loader for giving a more thorough understanding of the translation to the 

readers. 
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6. EXPERIMENTS AND DISCUSSION 
This section presents the results from the evaluation of the HSA Simulator with 

the HSA Translator compiled with LLVM version 3.2. Evaluation is performed on 

two servers both running Ubuntu 12.04.1 LTS. One is powered by four AMD Opteron 

CPU totally twenty-four cores. Another one is powered by Intel Xeon E5-2620 CPU 

totally six cores with hyper-threading technology support.  

We develop the benchmarks ourselves due to no existing compiler supports the 

HSAIL backend. The current benchmarks are developed based on some of the 

benchmarks from the Rodinia Benchmark Suite[10] and the samples in the AMD 

OpenCL SDK[11]. The benchmarks are modified to use the features of the HSA 

provided, such as shared virtual memory space. 

Benchmark Base Domains 

KMEANS Rodinia Data Mining 

Nearest neighbor Rodinia Data Mining 

Fast Fourier Transform AMD Samples Bio-Informatics 

Prefix Sum AMD Samples Counting 

Reduction Sum AMD Samples Mathematics 

SAXPY - Mathematics 
Table 6.2 List of the benchmarks. 

The elapsed time of programs is less important for measuring as the I/O 

acquires most of the time. In addition, our simulation is done in system mode. 

Applications are run above the virtual machine. I/O time varies from time to time 

with the operating system scheduling and interrupts handling. Thereby, the time 

listed in the graphs below is the kernel execution time.  

Every program time listed below is the average of five execution times. Sizes of 

the work groups and wave fronts are the same as the original benchmarks. We 

divide these benchmarks into three cases, 
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A. Kernels with multi-kernel and no barriers. 

B. Kernels with single kernel and no barriers. 

C. Kernels with barriers. 

6.1 Case A 
This case includes the KMEANS. This benchmark has two kernels 

demonstrating the communication between the CPU and the GPU. Table 6.1 shows 

the number of operations and the number of helper functions used in the kernels. 

Kernel name Number of operations Number of helper functions 

KMEANS_Swap 32 3 

KMEANS_Core 70 4 
Table 6.1. Number of operations presents each kernel in KMEANS. 

The KEMANS is a multi-kernel program. The agent calls the swap kernel to 

have parallel data copying. After the swap kernel returns, the agent calls the core 

kernel several times to perform the computation. The core kernel is called three 

times in this experiment. The input data size is 116MB. 

The result illustrates that the simulator reflects the actual relationship between 

the number of threads and cores. The performance increases proportionally with 

the increasing number of threads. Saturation occurs at 24 threads and 8 threads for 

the 24-core AMD machine and 6-core Intel machine with hyper-threading 

respectively.  

The Intel CPU runs approximately double performance of the AMD CPU. In the 

circumstances of the number of threads are lesser than twelve, which is the number 

of the Intel CPU hyper-threading can support, the performance is always double of 

the AMD CPU. The corner of this situation happens when the number of threads 

greater than 8. The AMD CPU performance keeps increasing until the number of 

threads is 24, which is the number of the physical cores. 
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In addition, the multi-kernel GPGPU program with each kernel has a significant 

execution time favors the machine with more cores. Whilst the Intel CPU has a 

stronger computation power, the AMD CPU has more cores for each kernel 

computation having a higher performance gain in return. Furthermore, favoring the 

number of cores only exists when the computation time is significant. Furthermore, 

the data size is critical issue. Data size affects the number of work items needed in 

the kernel execution directly. The kernel execution time is calculated by the sum of 

the execution time of each work item plus the synchronization time before 

returning to the agent. In another words, if the number of the work items is small, 

the time of the synchronization acquires an inevitable percentage in the kernel 

execution. In case the synchronization time enjoys no percentage gain from the 

increasing number of threads, the kernel execution time saturates earlier in return. 

The KMEANS case demonstrates the percentage of the execution in the work items 

acquires most of the percentage of the kernel execution time.  

 
Figure 6.1. The KMEANS running on 24-core AMD machine versus 6-core Intel machine. 
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6.2 Case B 
This case includes the Nearest Neighbor, the Fast Fourier Transform and the 

SAXPY. All these three programs have one kernel only. The information of the 

programs is listed in table 6.2. 

Kernel name Number of operations Number of helper functions 

Nearest Neighbor 52 5 

Fast Fourier Transform 20 5 

SAXPY  22 5 
Table 6.2. Number of operations presents in Nearest Neighbor, Fast Fourier Transform and SAXPY. 

The Nearest Neighbor kernel computes the distances between nodes and 

stores them into an output array. After kernel returns, agent computes the shortest 

in between. The Fast Fourier Transform performs a mathematical computation of 

Fourier Transformation. The SAXPY computes the multiplication and addition of 

two long vectors. The input data sizes are 768KB, 256MB and 256MB respectively. 

 
Figure 6.2. The Nearest Neighbor running on 24-core AMD machine versus 6-core Intel machine. 
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Figure 6.3. The Fast Fourier Transform running on 24-core AMD machine versus 6-core Intel machine. 

 
Figure 6.4. The SAXPY running on 24-core AMD machine versus 6-core Intel machine. 

 

The performance of the Nearest Neighbor and the Fast Fourier Transform are 

the same as the KMEANS. The Intel machine has a better computation power that 

makes the performance beating the AMD machine before the hyper-threading 

saturates. With more threads can support, even though the AMD machine has less 

powerful computation unit, the large data size leads to a large number of work 
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items which leverage the increasing number of threads. Whilst the cores are less 

powerful, the individual work item execution time is improved having a overall 

improvement of the Intel machine.  

Comparing to the result of the SAXPY, the SAXPY illustrates a difference. The 

data sizes of the SAXPY and the Fast Fourier Transform are the same. Instead, the 

performance gain from the 24-core is less than the 6-core. The reasons of this 

phenomenon are, 

1. The computation of the SAXPY is simpler than the Fast Fourier 

Transform. Though there are more operations in SAXPY, the cycle cost 

computations such as the arithmetic and memory operations own 

72.7%. The percentage of the Fast Fourier Transform is 90%. There are 

more chances for the AMD machine to speed up in each work item in the 

Fast Fourier Transform, as the computation operations are much more. 

2. The multiplication and division operations are more cycle costing than 

the addition and the subtraction. The percentage of the multiplication 

and the division operations are 4.5% and 20% in the SAXPY and the 

Fast Fourier Transform respectively. Such percentage cost much more 

cycles with more threads parallel computing the work items, much 

more overhead due to the limited resource of the CPU computation unit 

can be hidden. 

6.3 Case C 
This section demonstrates result of the kernels with barriers. The benchmarks 

are the Reduction Sum and the Prefix Sum.  

The Reduction Sum performs a Summation of a vector with a parallel reduction 

in each work group adding a part of data. Summation in each work group needs to 
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wait for the duplication of the data to a buffer as well as the synchronization of all 

the work groups before adding up all the result. Thereby, there are two barriers 

present in the Reduction Sum kernel. 

The Prefix Sum performs a Summation of the data in the current index and the 

previous index. When summation preforming in index (i), the summation of the 

index (i-1) must be ready. According to the parallel Prefix Sum algorithm, there are 

two barriers existing.  

 

 

Kernel name Number of operations Number of helper functions 

Reduction Sum 109 37 

Prefix Sum 108 21 
Table 6.3. Number of operations presents in Reduction Sum and Prefix Sum. 

The input data sizes of the Reduction Sum and the Prefix Sum are 256KB and 

128KB respectively. 

 
Figure 6.5. The Reduction Sum running on 24-core AMD machine versus 6-core Intel machine. 
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Figure 6.6. The Prefix Sum running on 24-core AMD machine versus 6-core Intel machine. 

The Reduction Sum benchmark evaluates the work group barrier 

synchronization of the HSA Simulator. There is no performance gain with the 

increasing number of threads due to the two barriers in the work group level. We 

leverage the multi-threads from parallel execution of the work items in the Case A 

and B. On the contrast, in current case we are hard to benefit from the threads 

because the barriers always stop the work group from parallel processing until all 

the work groups have processed to the synchronization point. Whilst the threads 

within a work group process concurrently before the barriers, only one work group 

is allowed to process in each work group dispatching loop instance. Theoretically, 

the execution time with different number of threads in this case should be no 

change. However, due to the unlikely dispatching and synchronization of the 

pthreads in the operating system every time, the graph shows like a zigzag in 

return. 

Unlike the Reduction Sum, the Prefix Sum illustrates an extreme case of the use 

of barriers, which helps to evaluate the work item level barrier of the HSA Simulator. 

The Reduction Sum needs to synchronize due to the problem of the race condition, 
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which is necessary to prevent two or more threads in rewriting the same data. 

However, the Prefix Sum is the problem of the dependency within the work items. 

Every work item must be done after the previous work item finishing the data write 

in. Thereby, such extreme case of synchronization demonstrates as the graph shows. 

The zigzag like graph can apply the explanation from the Reduction Sum. 
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Conclusions 
 This paper presents a translator of a re-targetable IR HSAIL to the native code 

called the HSA Translator for the fast simulation using in the HSA Simulator. The HSA is 

the software development solution carried out from the AMD aimed to ease the GPGPU 

programming. With the shared memory model and the vector instructions, the HSA 

provides an easier way to the GPGPU programmers. The HSA Translator is implemented 

based on the LLVM Infrastructure and performs a runtime translation for the HSAIL to 

the native re-locatable object. In addition, the output of the HSA Translator is a 

re-locatable object due to the absent of linker support in the LLVM. We cover this linker 

problem with the HSA Link-loader which is not the achievement of this paper. However, 

no existing compiler can generate the HSAIL code. Thereby, another achievement of this 

paper is to implement a Brig generator for the generation of the HSAIL binary format 

called the Brig from the HSAIL text format. The text format HSAIL is written manually 

and five of the six programs are one of the achievement of this paper. The HSA 

Translator works as a finalizer in the HSA Simulator. Experimental result shows the 

evaluation of the HSA Translator. Two different servers are used to evaluate the HSA 

Translator. Two servers with different number of cores show the scalability. With the 

memory bandwidth difference, the memory scalability is illustrated to have 

performance difference. 
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