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The Theories of
Riemann Surfaces and Elliptic Functions

with Application to the sine-Gordon Equation

Student: Jian-Ze Chen Advisor: Jong-Eao Lee

Department of Applied Mathematics
National Chiao Tung University

Abstract

The Goal of this paper is to solve the sine-Gordon equation,

Ut — Ugy + sin[u(z, t)] = 0, where —oo < & < oo and ¢ > 0.

By using the method of substitution, we get

ugs + sinfu(s)] = 0,

which is a simple pendulum motion at time s with the angular displacement u, and it

implies us = /2[E + cos(u)], where E is constant.

But /2[E + cos(u)] is a two-valued function on C, so we introduce the theory of

the Riemann surface R such that it comes to a single-valued analytic function on this

surface.

Next, we introduce the classical theory of the elliptic functions, to solve us +

sin[u(s)] = 0, and analyze the associated properties.

June, 2013
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Chapter 1

Introduction

The Goal of this paper is to solve a second-order partial differential equation, that
of the sine-Gordon equation [1].

The sine-Gordon equation is
U — Uy + sinfu(z,t)] = 0, where —oo <z < oo and t >0,
and by letting s = aw — St with 8% — a? = 1, the original equation comes to
Uss + sinfu(s)] = 0.

We multiply an intergral factor u, on both sides, and integral it with respect to s,

1
we get ng —cos (u) = E, where E is constant, then u, = £1/2[E + cos(u)].

Assume without loss of generality that u, = /2[E + cos(u)], it is a two-valued

function on complex plane C, so we introduce the theory of the Riemann surface SR such
that \/2[E + cos(u)] is a single-valued analytic function on this surface [2].

Next, we discuss the situations of the modified value in the MATHEMATICA on
the Riemann surface SR [3][4], so that we can use this skill to solve us = \/2[F + cos(u)]
by approximation of cos(u) by the Taylor series at 0.
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d
We back to consider u, = d_u = \/2[E + cos(u)], we get
$

u(s) 1
°T /0 NPTk

and in order to solve it, we introduce the classical theory of the elliptic functions [5]. The

theory occurs on Riemann surfaces of genus 1.

Finally, we use this theory to find out the special solutions and the corresponding
periods of above integral problem on Riemann surfaces of genus 1.



Chapter 2

The Riemann Surfaces of Genus N

To begin with, we have z € C, and by using the polar form,

z = |z|(cos @ + isin0)

= |z]e®, for some 6, where e is an Euler’s number.
Now, let f(z) = /z, and notice that z = |z|e?? = |z]|e'®+?"7) v¥n € Z, then

HORNE

_ |Z| %ei 9+§n7r
| |zzez it s even,
"] —|z|z€fs  if nis odd.

| _91—271’
B DN 2T A
/ N / \
L N L . |
\ TR > \ 5 >
N /,
—[efteis

Fig. 2.1 f(2) =2

Thus, f(x) is a two-valued function, so we want to let f(z) become a single-valued
function. Now, we will modify its domain C to construct the corresponding new surface,
Riemann surface R, such that f(x) becomes a single-valued analytic function on fR.
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2.1 The Geometric Structure

Consider some nonzero complex number 2y = |2g|e®, for some a, we have
f(20) = V0
1l ,a
= | ZO| 20'2 .

Fixing |20|, and if « increases by 2, f(zo) comes to the value |z|ze!*2" =

—|zo|%ei%, which is precisely the negative of its original value. Continuing above way,
then « increases by 2w, f(zo) comes to its original value.

In this sense, we cut the extended complex plane along the line, re®, for all non-
negative r € R, and restrict the angle, we get two single-valued branches of f(z):

f(2) = I7]
f(z) = ||

Now, we take these two cut planes of the complex plane, and call them sheet-1 and

NI= N
~ .
[MECIES

, 0 €la—27,a),
0 e

e
e’ [, a0 + 27).

v)

sheet-11, and call the cut a branch cut.

Notice that, the cut on each sheet has two edges, we label the starting edge with
a +, and label the ending edge with a —. Then attach the + edge of the cut on one of
these two sheets, to the — edge of the cut on the other. Thus, whenever we cross the cut,
we pass from one sheet to the other.

sheet-1 sheet-11

A A
a, o+ 27)

R
NN Y

Fig. 2.2 Sheet-I and sheet-11
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This two-sheeted surface we cannot be realized in three-dimensional Euclidean
space, so we want to build a new surface.

To begin with, we use the stereographic projection, the two sheets to be the Rie-
mann spheres (Fig. 2.3).

sheet-1 sheet-1
_ A
+ /N
s
oo
sheet-11 sheet-11
_ A
+ —
A_- ..... ~,
{ S
V0 J

Fig. 2.3 Complex planes and the corresponding Riemann spheres

Furthermore, we pretend that the spheres are made of rubber, we separate the edges
of cuts (Fig. 2.4).

sheet-1 sheet-11

Fig. 2.4 Separating the edges of cuts on the spheres
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Finally, we deform each sheet into a hemisphere, and rotated each sheet so that the
opening of the hemipheres face each other (Fig. 2.5), and paste the edges marked + and
— each other. Therefore, we glue the two hemishperes together to be a sphere and call it

a Riemann surface R of genus 0 (Fig. 2.6).

sheet-1

0 \ 0
0 0
sheet-I1

Fig. 2.5 Opening of the hemipheres face each other

sheet-1

_zZ

sheet-11

Fig. 2.6 Riemann surface R of genus 0

Notice that, in this new surface R, the + edge of sheet-I is equivalent to the — edge
of sheet-II, and the — edge of sheet-II is equivalent to the + edge of sheet-I.
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Since f(z) = vz =+/z — 0, we call 0 a branch point.
Consider the different branch point z1, in the manner of f(z) = /z, we also have
the Riemann surface R of genus 0 (Fig. 2.7).

Fig. 2.7 ‘R with branch point z;

Before we discuss the general case of the construction of R, consider the following

situation.

We consider f(z) = \/H(z — 25 for distinct 25, € C, all arguments of z; are same,
and |z1| < |z| < ... < |zl i.e., for all z; on the same line orderly.

Now, we cut plane start from 2 to oo along this line. Recall that we pass to another
sheet when we cross the cut, and so f(z) is precisely the negative of its original value.
Therefore, if the path cross even cuts, we pass to the same sheet, that is, there’s no branch
cut; on the contrary, if the path cross odd cuts, there’s a branch cut (Fig. 2.8).

25 24 ZB ZZ Zl

o o o o |0
w L]
) (an : ; P - Zs R4 _ Ry RZa- X
! i + + +
wm |0 |m o
Y R 2 .
@ 1 @) 1 i
1) @) (1 @ an

Fig. 2.8 Cut plane and the corresponding branch cuts
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Now, we consider the general case,

H(z—zk)
= \/(z—zl)\/(z—zg)...\/(z—zn),

where 2 are distinct branch points, then we have m branch cuts:

1. 2125, 2324, . . - s Zam—122m, if n = 2m,
2. 2122, 2324, -+« y Zom_1 —> 00, if n =2m — 1.

In like manner, there are two sheets and the corresponding Riemann spheres, and

we separate the edges of cuts (Fig. 2.9).

Fig. 2.9 Complex plane and the corresponding Riemann sphere

Finally, we deform and rorate each sheet so that the opening of them face each
other (Fig. 2.10), and paste the edges marked + and — each other. Therefore, we glue
them together to be a Riemann surface R of genus m — 1, that is, m — 1 holes (Fig. 2.11).
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21 Y2 ZatZs 5t 2 Zn-5%2n-1 Zn-3" Zn-2 Zn-1* Zn
21 422 23424 254 26 Zn-54Zn-4 Zn-3+2n-2 Zn-t Zn

Fig. 2.10 Opening of the hemipheres face each other

Fig. 2.11 Riemann surface R of genus m — 1

Notice that, in this case, if f(z) has 2m or 2m — 1 branch points, we have m branch
cuts, and construct the Riemann surface R of genus m — 1.
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2.2 The Algebraic Structure

Now, in order to distinguish which sheet a path belongs when this path in the
complex plane, we define that the path in the sheet-I is solid line, and the path in the
sheet-1II is dash line.

sheet-1 sheet-11
A A
A <

Fig. 2.12 Deffrence of the same path in sheet-1 and sheet-II

The followings are some examples of those paths in C and the corresponding paths
in fRA.

Example 2.1. The path is start from point A on the + edge in the sheet-1, to point B
on the — edge in the sheet-I, and cross the cut to point C' on the — edge in the sheet-1I,
shown in Fig. 2.13.

sheet-I
_ A
+ ="~ :
C \\
B A\ \
nl ! |- 0
v\ T ®
\\ ,I
sheet-11

Fig. 2.13 Example 2.1, the path in C and the corresponding path in R

10
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Example 2.2. The path is start from point A in the sheet-1, to point B on the — edge in
the sheet-1, and cross the cut to point C'in the sheet-II, shown in Fig. 2.1/.

sheet-1

| .
Ll

+ e

sheet-I1

Fig. 2.14 Example 2.2, the path in C and the corresponding path in R

Example 2.3. The path is start from point A in the sheet-1, to point B on the + edge in
the sheet-1, and cross the cut to point C in the sheet-1I, shown in Fig. 2.15.

sheet-1
_ A .C
+ /’ = B
B ”/
/ - > 0 0
A
sheet-I1

Fig. 2.15 Example 2.3, the path in C and the corresponding path in R

11
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The followings are the different situations of same path in C with the different
branch points.
We consider the path is start from point A to point B, shown in Fig. 2.16.

A

i

v

Fig. 2.16 Path for case of the different branch points

Then, we consider the branch points 0 and z;, we get the different corresponding
paths in R, shown in Fig. 2.17 and 2.18.

+ —

B
Of_> o0 0

Fig. 2.17 Path in C and the corresponding path in (R, with the branch points 0

12
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- A
h =
X B
oINS > o0 21
A® 21

Fig. 2.18 Path in C and the corresponding path in (R, with the branch points z;

And, the followings are the different situations of same path in C with the different
branch cuts.
We consider the path is start from point A to point B, shown in Fig. 2.19.

A

?.B
/| y

Fig. 2.19 Path for case of the different branch cuts

Then, we consider the different branch cuts, we get the different corresponding
paths in R, shown in Fig. 2.20 and 2.21.

13



Chapter 2. The Riemann Surfaces of Genus N

Fig. 2.20 Path in C and the corresponding path in R, with the cut of first kind

»

A

/N
.peB
T~ 0 0

n .
0

A

Fig. 2.21 Path in C and the corresponding path in R, with the cut of second kind

2.3 The Paths on the Riemann Surfaces of Genus N

with Algebraic Structures

Notice that, by the Cauchy integral formula, for any closed path in R of genus m
is homotopic to an integral linear combination of the loop-cuts a; and b;, 1 = 1,2, ... ,m,
so we will consider the integrals of f(z) over a, b-cycles, in this paper, help us to obtain
the integrals.

14
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The followings are some examples of a, b-cycles in C and the corresponding cycles
in fR.

5
Example 2.4. Consider f(z) = H(u — uy), shown in Fig. 2.22.
k=1
And, we consider the cycles a; and as in C, and the corresponding cycles in R of

genus 2.

Fig. 2.22 Example 2.4, the cycles a; in C and the corresponding cycles in R

5
Example 2.5. Consider f(z) = H(u — ug), shown in Fig. 2.25.
k=1
And, we consider the cycle by and by in C, and the corresponding cycles in R of

genus 2.

Fig. 2.23 Example 2.5, the cycles b; in C and the corresponding cycles in R

15
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2.4 The Path Integrals on Riemann Surfaces

Consider the line with the slope m = tana, 0 < o < 7, and for any cuts on this
line, we define that

. re? 0 € [a—2m, «) iff 2 is in the sheet-I,
| re?, 6 € o, a0+ 2m) iff 2 is in the sheet-II.

To begin with, we consider the values in sheet-I and sheet-II.

If we have f(z) = /> (2 — z1), and by using the polar form,
\/ k=1

n

Z(z — z,) = re'® = retf2,

k=1

where #; and 05 is in sheet-I and sheet-II respectively, so that 6, = 6, + 2.
Therefore,

.0

F@)lan = Vre®
_ \/Fei91—02—27r
_ \/Fei%ei”

— —Vré = —[(2)|w,

where f(2)|r) and f(2)|r) denotes the value of f(z) with z in sheet-I and sheet-II re-
spectively.

Notice that the difference of argument between z in these two sheets is 27, so the
difference of argument between f(2)|) and f(2)|r) is 7, and this implies f(2)|qr) =

—f(2)|w)-

16
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If we could find the equivalent straight paths of a, b-cycles, it would be easier to
calculate the integrals over these cycles.
First, consider an a-cycle is shown in Fig. 2.24.

Fig. 2.24 Cycle a crossover a cut

We consider these paths are shown in Fig. 2.25.

ai

Fig. 2.25 Cycle a = a; U ay crossover a cut and some auxiliary paths

17
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Notice that, by the Cauchy’s integral theorem,

ljm+1f@:oilfmz—lfm
Kﬁ@+£ﬂhz®élﬁ@z—£ﬁu

Again, by the Cauchy integral theorem,

and

[ fdz+ [, fdz+ [ fdz+ f53 fdz =0
fa2fd2+j;1 fdz—i—ftzfdz+ft3fdzzo

U L fdet f fdzt [ fdet [ fdz =0
o, fdz— [ fdz+ [, fdz— [, fdz=0

:>/alfdz—i—/s2fdz+/@fdz—l—/tzfdz:o
:/afdz:—/sfdz—/tfdz

= /fdz = / fdz —|—/ fdz, where r; and ry are shown in Fig. 2.26.
a T1 T2

Fig. 2.26 Cycle a and the equivalent paths r; and ry

So, we get that the paths r; and ry are the equivalent paths of cycle a, i.e., a ~ r{Urs.
O

18



Chapter 2. The Riemann Surfaces of Genus N

Next, consider a b-cycle is shown in Fig. 2.27.

- - o,
- -

Fig. 2.27 Cycle b crossover two cuts

We consider these paths are shown in Fig. 2.28.

,‘———---‘\\
s N b2
\

Fig. 2.28 Cycle b = by U by crossover two cuts and some auxiliary paths

19
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Since
t; € — edge of sheet-II
= + edge of sheet-I = / Jdz = —/ fdz,
t1 S3
and

t3 € — edge of sheet-II

= + edge of sheet-I = / fdz = —/ fdz.
t3 S1
And, by the Cauchy integral theorem,

fblfdz+f51fdz+fs2fdz+fs3fdz:0

szfdz+ftlfdz—|—f,52fdz—|—ﬁsfdz:0
| b pdet [ fdst [ fde - f, fdz =0
Jop Fdz = [, fdz+ [, fdz = [, fdz =0

= fdz+/fdz+ fdz+/fdz:0
So bo to

b1

:>/bfdz:—/s fdz—/tfdz

= /fdz :/ fdz +/ fdz, where ry and ry are shown in Fig. 2.29.
b r1 T2

Fig. 2.29 Cycle b and the equivalent paths r; and ry

So, we get that the paths r; and ry are the equivalent paths of cycle b, i.e., b =~ r{Urs.
O

20
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Proposition 2.1. If f(z) = |/ >_ (2 — zx), where zx are distinct, and the paths 11 and ro
k=1

are shown in Fig. 2.30.

Fig. 2.30 Paths r; and ry for Pro. 2.1

/m F(2)dz = / F(2)dz

Prove that

Proof.
We know that

r1 € + edge of sheet-I
= — edge of sheet-II,

SO / fdz = / fdz, where 1 is a straight path from 2,4, to z, on the — edge of sheet-II.
And, since f(2)|ry = =f(2)|n)s / fdz = —/ fdz, where 71 is a straight path
71
from 24,1 to z; on the — edge of sheet-I.

Notice that, / fdz=— / f(2)dz, and this implies

| = [ s

21
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Proposition 2.2. If f(z) = |/ > (2 — zx), where zx are distinct, and the paths r1 and ro
\/ k=1

are shown in Fig. 2.31.

Fig. 2.31 Paths r; and r, for Pro. 2.2

/m f(z)dz = /T2 f(2)dz.
Proof.

We know that f(2)|r) = —f(2)|r), so

Prove that

/ f(z)dz = —/ f(2)dz, where 7} is a straight path from z,1 to 2z, in the sheet-I
9 !

_ / | ;:(z)dz.

22
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Sometimes the integrals over some complicated paths are difficult to compute, so we
want to use a computational software program, MATHEMATICA, to obtain the correct
value of the integrals over cycles.

Now, we have known the difference between the value in sheet-I and sheet-II of
theory, so we just discuss the difference between the value in the sheet-I of theory and in
MATHEMATICA, then we can modify the computation in MATHEMATICA such that
the numerical result we modified equals the numerical result of theory.

Notice that 6 € (—m,7] of re? in MATHEMATICA, so if ¢ ¢ (—m, 7| of re®,
MATHEMATICA will change re® into re?”, such that re’® = re®” and 0* € (-, 7).

Lemma 2.1. If z is in the sheet-I for a cut whose one of the end points is z.
If this cut on the line with the slope m =tana, 0 < a <,

VzZ =z = { VZ = ZilmaraEMATICA if arg(z — z,) € (=7, ),

—V/% — Zglmaraemarica  if arg(z — z) € o — 2w, —7).

Proof.
Let z be in the sheet-I, and using polar form, z — z, = re' for some 0 € [a — 27, ).
Notice that MATHEMATICA will change re? into re®” such that re? = re®”, and
g* € (—m, .

Case 1: arg(z — z;) =0 € (-, q)
Notice that 0 € (—m, ) C (—m, 7.
Then 6* = 0, and this implies /2 — 2x|(1) = /% — 2zk|marzEMATICA-

Case 2: arg(z — z;) =0 € [o — 27, —71]
Notice that § € [a — 27, —71] € (=, 7], so 6* = 0 + 27 € [, 7] C (—,7].

Then,
VE= a0 = Ve, and
m ‘MATHEMATICA = \/F ei%
= Jrel e
= Vi,
and this implies \/z — 2|y = =2 — zk|marHEMATICA. [
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Definition 2.1.

Define that
{ f(2) M f(2) means f(2)|) = f(2)|maraEMaTICA,
f(Z) MAzH. —f(z) means f(z)|([) = _f<z)|MATHEMATICA'

Next, we will discuss some situations of the domain such that the value in MATH-
EMATICA must be modified.

Case 1:
If z is in the sheet-I, and we consider a cut on the line /;(z) = 0 with the slope

m=tana, 0 < a <, from z; to oo, where z; = 21 +iy; € C (Fig. 2.32).

21

Fig. 2.32 Cut with end point z;

1. z € + edge of this cut:
o MATH.
arg(z — z1) = a — 2w implies /2 — 21~ =" —/z — z1.
2. z € — edge of this cut:
o MATH.
arg(z — z1) = aimplies vz — 21 =" /2 — 2.
3. z is not on this cut:

By the Lemma 2.1, /z — 2 "2 _\/z— 2 if arg(z — z1) € [a — 2w, —7] (Fig.
2.33).

Thus, if z € {z]z € C, l1(2) <0, y1 <1m(z)},
VzZi—2 MATH. —Vz— 2.
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Fig. 2.33 Modified-Value Domain for the cut with end point 2;

Case 2:

We consider a cut on the line /;(z) = 0 with the slope m = tana, 0 < a < 7.

Assume without loss of generality that end points of the cut are z; and zy, Vz, =
xr + iy, € C (Fig. 2.34).

V)

21

Fig. 2.34 Cut with end points 2z; and 29

Now, we want to find the domain where z belongs, such that

Vz—z21Vz2 — 2 MATH =27 — 2.

25



Chapter 2. The Riemann Surfaces of Genus N

1. z € + edge of this cut:

(a) arg(z — z1) = o — 27 implies /z — z; MAH
(b) arg(z — 2z3) = a — 7 implies /2 — 25 MR .

Therefore,

Vi—avzi—n 2 TV — 2.
2. z € — edge of this cut:

(a) arg(z — z1) = « implies \/z — z MATH. \/z — 21
(b) arg(z — z3) = o — 7 implies /2 — =N

Therefore,

VZ—21Vz — 29 MATH. Vz— 2z — 2.

3. z is not on this cut:

By the Lemma 2.1, we know that

V= BT _r=if arg(z — z) € [a — 2w, —7],

and in this sense, consider

(

Vima 2 a—aifz €8T,
Ve a "E itz e S5
Vi—z 2 am g ifz e T,
V= itz eT .

26

St ={z|z € C, arg(z — z1) € (—7, ), zis not in the cut},
ST ={z|z € C, arg(z — z1) € [a — 2w, —7], z is not in the cut},
Tt ={z|z € C, arg(z — 29) € (—m, @), z is not in the cut},

T- ={z|z € C, arg(z — 29) € [a — 27, —7], z is not in the cut}.
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Fig. 2.35 S*, S, T+, and T~

Then, /z — z1v/2z — 22 MATH —Vz—z1/z— 2z if and only if z € STNT™ or

ze ST NTT.

. _ MATH. .
Notice that ST NT~ =0, 80 \/z — z1/z2 — 20 = —+/z — 21/2z — 23 if and only
ifze S NT.

Therefore, if z € STNTT ={z]z € C, l1(2) <0, 11 <lm(z) < y2}, shown in Fig.
2.36,

\/Z—Zl\/Z—ZQ MA:TH —\/Z—Zl\/Z—ZQ.

Fig. 2.36 S—NT+
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Case 3:

We consider a horizontal cut from z; to oco.

Since the cut is horizontal, its slope m = tana = 0, and this implies & = 7 (Fig.
2.37).

Fig. 2.37 Cut with end point z;

1. z € + edge of this cut:
AN .. MATH.
arg(z — z1) = —m implies \/z2 — 21~ = —y/z — z1.
2. z € — edge of this cut:
arg(z — z1) = 7 implies \/z — z; MATH. iz — 2.
3. z is not in this cut:
Since z is not in this cut, arg(z — z1) € (—m, 7).

By the Lemma 2.1, we know that

VZ—21 MATH. VZ— 2.
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Case 4:

We consider a horizontal cut with end points are z; and z5.

Since the cut is horizontal, its slope m = tan« = 0, and this implies & = 7 (Fig.
2.38).

Fig. 2.38 Cut with end points z; and 2z,

1. z € + edge of this cut:

(a) arg(z — z1) = 0 implies /z — 21 MATH
(b) arg(z — z3) = —m implies \/z — 25 MALE. %

Therefore,

Vz—21VzZ— 2 iy —Vz — 2172 — 2.

2. z € — edge of this cut:

(a) arg(z — 2z1) = 0 implies /z — z; MAH .
(b) arg(z — z2) = 7 implies /2 — 23 MR .

Therefore,

Vz— 21z — 2 MATH. VZ—21Vz— 2.
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3. z is not on this cut:

Suppose that /2 — z1/2 — 23 MATH. —Vz — 212 — 29.

By the Lemma 2.1, we know that

vz — 2z MATH. —Vz — z ifarg(z — z) = —m,

and in this sense, /2 — z1/2 — 23 MATH —+v/2 — 21\/2 — 29 if and only if only one

of arg(z — z1) and arg(z — z5) is —.

Then, z is on the cut, but it is a contradiction.

So, for a horizontal cut with end points are z; and 2o,

V2 — 2172 — 2 MATH. —\/z — 213/2 — 2 if z € + edge of this cut.

For these different cases, we know that where z belongs for different cuts such that
the value in MATHEMATICA must be modified.
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Now, the followings are some examples.

| 7
First, we consider f(z) = (z — z1), where
k=1

(

7 =—1—1,

29 = —1 4 31,
z3 =0,

z4 = 2,

25 = 3 — 21,
2625—1—2, and
27 =6 —1.

\

And, we shown the branch cuts in Fg. 2.39.

2 +1-
+ -
g
N +

*———@

0173 + 24
2@ Y

Zs

Fig. 2.39 Branch points and the branch cuts of f(z)
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Example 2.6. Evaluate fCI f(2)dz, c1 is shown in Fig. 2.40.

Solution.

Fig. 2.40 Cycle ¢; and the equivalent paths ¢;; and cqo
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7 7
We have f(z) =4/ > (2 — z) = Y. vz — 2k, and notice that the cycle ¢; is simple
k=1 k=1

connected, so we use the equivalent paths, say ¢ = c11 U ¢12, shown in Fig. 2.40, such
that ¢; = ¢, where

c11 is the straight path on horizontal cut from z3 to z4 on the + edge of sheet-I, and

c12 is the straight path on horizontal cut from z4 to z3 on the — edge of sheet-I.

1. If z € 11

By the discussion in this subsection, we have

Ve—avz—z 2 e =2z — 2,

VimmVi—a 2 V= Ve —

VZ— 22—z B 2T 25\/Z — 25, and
VZ— o BT

so f(2) 2T —f(2).
Thus,

/ F(z)dz ME /Ozf(z)dz.

2. If z € ¢19:

By the Proposition 2.1,

Therefore,

/C e = fe
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Example 2.7. Evaluate fc2 f(2)dz, co is shown in Fig. 2.41.

Solution.

Co

~1

Fig. 2.41 Cycle ¢y and the equivalent paths co1, o9, 23, and coy

We consider the equivalent paths, say c¢5 = ca1 U coo U ca3 U a4, shown in Fig. 2.41,
such that ¢y = ¢, where

7
Co1 is the straight path on slant cut from zg to 3~ ¢t on the 4 edge of sheet-I,
7
Co9 is the straight path on slant cut from 5~ i to zg on the — edge of sheet-I,
7
Co3 is the straight path on slant cut from 5 t to z5 on the + edge of sheet-I, and

7
Co4 is the straight path on slant cut from z5 to 3~ 1 on the — edge of sheet-I.

1. If 2 € ¢oy:
Let

z:z6-+[(;—i)—z6]k

9
= (5 +1i) + (=1 — 2i)k, where k is from 0 to 1,

then dz = (—1 — 2i)dk.
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By the discussion in this subsection, we have

MATH.

Vi—avz—z = Vz— vz 2z,
MATH.

Vi—mVz—2 = Vi—mvVz— o,

N RV MATH. —v/2 — z57/2 — 2z, and

MATH.
vim M

so f(2) 2T f(2).
Thus,

/ Fz)dz MEH /0 f((g i) + (=1 — 20)k)(—1 — 2i)dk.

Iz € oo

By the Proposition 2.1,

f 2 € co3:
Let
7 7
1
e« (; —1)+ (—5 — 1)k, where k is from 0 to 1,

1
then dz = (—5 —1)dk.

By the discussion in this subsection, we have

Ve—avz—z 8 e = zVz — 2,

Vz— 2z — 2 B = 25\/z — 2,

VZ— 2z — 25 B —\/z = 23\/Z — 26, and
VTN

so f(2) "E" —f(2).

Thus,
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4. If z € coy:

By the Proposition 2.1,

/f(z)dz:/ f(z)dz.
Therefore,

Lf@ﬂz - LQVMZ

= [ s [ e [ g [ e
MATH. o /01 f((g +1) + (=1 = 20)k)(—1 — 2i)dk

1

—2 [ 15—+ (g =i —

Example 2.8. Evaluate fdl f(2)dz, dy is shown in Fig. 2.42.

Solution.

Fig. 2.42 Cycle d; and the equivalent paths dy1, di2, di3, and dyy
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We consider the equivalent paths, say dj = di; Udyo Udi3Udyy, shown in Fig. 2.42,
such that d; =~ dj, where

5
dq; is the straight path from zj5 to 3~ 7 in the sheet-I,
5
dyo is the straight path from 5~ 1 to z5 in the sheet-II,
5
dy3 is the straight path from 5~ 1 to z4 in the sheet-I, and

5
dy4 is the straight path from z4 to 3~ 7 in the sheet-I1.

1. If z € d11:
Let

z:z5+[(g—z’)—z5]k

1
=(3—-2i)+ (—5 + 1)k, where k is from 0 to 1,

1
then dz = (—5 + 1)dk.

By the discussion in this subsection, we have

MATH.
Vi— vz =2 = \Z—2VZ = 2,
MATH.
Vz—2vzi—z = Vz— vz — u,
VzZ— 25v2Z — 2 g —/z — z57/2 — 2z, and

MATH.

so f(2) "2 —f(2).

Thus,

/d Flz)dz M —/0 F((3 = 2i) + (—% + i)k)(—% + i) dk.

2. Ifz € d122
By the Proposition 2.2,

/d ) F(2)dz = N F(2)dz.
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3. If zZ € d132
Let
> . 5 .
Z=(§—Z)+[Z4—(§—Z)]k’
1
= (g —1)+ (—5 + i)k, where k is from 0 to 1,

1
then dz = (—5 +i)dk.

By the discussion in this subsection, we have

MATH.
Vi—avz—z = Vz— vz 2,
MATH.
Vi—mVz—2 = Vz— sz,
Vz— z5v/2 — 2 S —\/z — 257/2 — 25, and

ATH.
\/Z—Z7M:TH —VZ — Zr,

so f(2) 2T f(2).
Thus,

varm, [t 5 . T N 1
f(2)dz "= /0f((§—z)+(—§—|-z)k)(—§+z)dk.

dis
4. If z € d142

By the Proposition 2.2,

/d14 f(z)dz = f(2)dz.

di3

Therefore,
f(z)dz = / f(2)dz
d1 d;

= f(z)dz+ f(z)dz + (2)dz + f(2)dz
dn di2 di3 di4

+ 2/0 FUG =)+ (=5 + )= + k.
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Example 2.9. Evaluate fd2 f(2)dz, dy is shown in Fig. 2.43.

Solution.

Fig. 2.43 Cycle dy and the equivalent paths dy, ci2, do1, doa, das, das, and das

We consider the equivalent paths, say d5 = dj U c12 U doy U dag U dag U day U das,
shown in Fig. 2.43, such that dy ~ d;, where
do1 is the straight path on horizontal cut from 23 to z; on the + edge of sheet-II,

1
doo is the straight path from z3 to -3 + ¢ in the sheet-I,
1
do3 is the straight path from 3 + 7 to z3 in the sheet-II,
1
do4 is the straight path from —3 + 1 to 29 in the sheet-I, and

1
do5 is the straight path from 2, to —3 + 4 in the sheet-II.
To start with, we know that ds; is also the straight path on horizontal cut from z3
to z4 on the — edge of sheet-1, that is, do; = —ci2, and this implies

/ f(z)dz+ f(z)dz=0
c12 d21

39



Chapter 2. The Riemann Surfaces of Genus N

1. If z € dgg:
Let

z=1z3+ [(—%+z) — z3lk

1
= (_§ + i)k, where k is from 0 to 1,

1
then dz = (—5 +1)dk.

By the discussion in this subsection, we have

MATH.
Vi—avz—z = Vzi— vz 2,
MATH.
Vi—mvVz—2 = Vi— vz,
Vz— 25v/2 — 2 SR —\/z — 257/7 — 25, and

ATH.
iz — 27 MATH —\/z — 27,

so f(z) "= f(2).
Thus,
varm, 1 1 1
/dmf(z)dz = /0 (=5 +Dk)(~3 +i)dk.
2. If z € d232

By the Proposition 2.2,

/d @iz [ e

da2
3. If 2 € day:
Let
= (2 i) 4 [ (2 4 i)k
3 3
= (—% +14) + (—; + 2i)k, where k is from 0 to 1,

2
then dz = (_5 + 24)dk.
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By the discussion in this subsection, we have

Vi avi—zm B = oz — 2,

V2 — 2372 — 2 MALH: V7 — 237z — 24,

Ve—zmVz—z 2z = 25\/Z — 2, and
Ve—z "ET iz,

so f(2) 2T —f(2).
Thus,

/@4 Flz)dz MET —/0 f((—% i)+ (—§ + 2@')1@)(—; + 24)dk.

4. If z € d252
By the Proposition 2.2,

/d25 f(z)dz = f(z)dz.

day

Therefore,

/d e = | sz

- /df(z)dz—|—/ f(z)dz + (2)dz + f(z)dz

H do1 da2

+ f(2)dz + (2)dz + f(z)dz

dos da4 das
MATH. ! 1 . 1 .
= /dif(z)dz+2/0 f(<—§+z)k)(—§+z)dk.
_9 /1 f((_% +1) + <_§ - 22’)k:)(—§ + 2i)dk.
0
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Chapter 3

The Pendulum Motion on Riemann

Surface

Recall that the sine-Gordon equation is

U — Uz + sinfu(z,t)] =0, where —oo <z < oo and t > 0.

If we let s = ax — Bt, by the Chain rule:

9 _0909s_ 0
) or  0sOx  0s’
ﬁ_ﬁ@_%ﬁ
L Ot 0sot T 0s
(Pu_00 L0
= or2 8x8mu_a 0s?’
Pu_ 00, a0
L 92 " atott T P o

Therefore, the Sine-Gorden equation comes to
B s — 0Py, + sinfu(s)] = 0.
We let 32 — a? = 1, the equation is written as
Uss + sinfu(s)] = 0. (3.1)

Notice that we can regard (3.1) as the simple pendulum motion at time s with the

angular displacement wu.
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Multiplying an integral factor u, to equation (3.1), and we integral it with respect
to s:

Ugs + sin(u) =0

= Ugllss + Ugsin(u) = 0

= /[ususs + ugsin(u)]ds = 0

1
= §u§ — cos(u) = F, where F is constant,

= us = ++/2[F + cos(u)].

Since ug is the angular velocity, the plus-minus sign means direction, and assume

without loss of generality that
us = \/2[E + cos(u)]. (3.2)

Next, using the skill in previous chapter, we will solve the problem of pendulum by
approximation.
Notice that, by the Taylor series of cosu at 0,

w? o wr Wb Wl

cosuzl—a—l—z—g-l-g-

w?  wt o oub wd
Then, the equation (3.2) comes to us = 1/2[E + 1 — o + TR + g]
Now, we consider the situation of £ = 0, and by usiné; the 'MAT'HEMATICA, we
have
w2t w08
w= =y
where

(uy = —4.8947 — 2.48691,
Uy = —4.8947 + 2.4869¢,

us = —4.2408,
uy = —1.5708,
us = 1.5708,
ug = 4.2408,

uy = 4.8947 — 2.4869¢, and
ug = 4.8947 + 2.4869:.
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Therefore, we get eight branch points and four branch cuts, shown in Fig. 3.1.

Us usg
® ®
+f - +qp -
% M_

Us + Uy O Us + Ug

o
U ur

Fig. 3.1 Branch points and the branch cuts of u,

For convience, we let f(u) =

Notice that, us = % = f(u), and
s

By the Cauchy integral formula, for any closed path in R of genus 3 is homotopic
to an integral combination of the loop-cuts a; and b;, © = 1,2, 3, so we will consider the

1
f(u)

integrals of over a, b-cycles.
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We shown a-cycles in Fg. 3.2.

i

U |@ @ s

U @ @ U

Fig. 3.2 a-cycles
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a,-cycle

We consider the equivalent paths, say a] = a1 U aq2, shown in Fig. 3.3, such that
ay =~ aj, where
ay1 is the straight path on vertical cut from us to u; on the 4+ edge of sheet-I, and

a1 is the straight path on vertical cut from u; to us on the — edge of sheet-I.

Us Ug
® o
A
+11]- +]-
% %
Us + Uy 0 Us + Ug
ai aijg
Yo ®

Ui Uq

Fig. 3.3 The equivalent paths of a;-cycle

We shown the detail of the integrals in Appendix A.1.

Therefore,
’ ot = /af
- / T / T

MATH. 1
[
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as-cycle

We consider the equivalent paths, say a5 = as; U ags, shown in Fig. 3.4, such that
as =~ ay, where
a9y is the straight path on horizontal cut from w3 to uy on the + edge of sheet-I, and
a9 is the straight path on horizontal cut from w4 to uz on the — edge of sheet-I.

Us Uus

® ®
+1 - +| -
— Q2

-— -
M M
——
us  + _da1 Ty 0 Us + Ug

| J ]

Ui Uq

Fig. 3.4 The equivalent paths of as-cycle

We shown the detail of the integrals in Appendix A.2.

Therefore,
1
——du = /
as f(u) a; f

- / T / T

MATH. 1

2] Fw
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as-cycle

We consider the equivalent paths, say a5 = as; U ass, shown in Fig. 3.5, such that
as =~ aj, where
ag; is the straight path on horizontal cut from w5 to ug on the + edge of sheet-I, and

ass is the straight path on horizontal cut from wug to us on the — edge of sheet-I.

Us Us
® ®
+1 - +1 -

B — a3
————o —
Us + Uy 0 e
o o

Ui Uq

Fig. 3.5 The equivalent paths of as-cycle

We shown the detail of the integrals in Appendix A.3.

Therefore,
1
—du = /
as f(u) az f
= —du
/ (u /6;32

MATH. 1
[
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We shown b-cycles in Fg. 3.6.

,—"—— ~,
- —m—--- S
—O'— o= Il 1S >,
i o= ~ S
g Pras - S,
- - Pr LN N
s d (N
' - ’ N
-7 -~ g N A
Us . 7 L’ / . us " \
4 H [}
]
'
'
] 1]
'
!
/ ,’
l' 4
4
’ ’, 4
4 Y4 I'
Ay
/
vl

@

Fig. 3.6 b-cycles
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bs-cycle
We consider the equivalent paths, say b5 = 031 U bse, shown in Fig. 3.7, such that

bs =~ b3, where
b1 is the straight path from ug to ug in the sheet-I, and
bs3s is the straight path from ug to ug in the sheet-II.

| o
Ui Uq
Fig. 3.7 The equivalent paths of bs-cycle
We shown the detail of the integrals in Appendix A.4
Therefore,
1 1
—du =
b (1) b f
1
/ —du + / —du
b31 (u b32

MATH

ol
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bs-cycle

We consider the equivalent paths, say b5 = b5 U agy U bay U bag U bas, shown in Fig
3.8, such that by ~ b3, where

b1 is the straight path on horizontal cut from ug to us on the — edge of sheet-II,

bas is the straight path from uy to us in the sheet-I, and

bog is the straight path from us to uy in the sheet-II.

+ —_
Uus Uy bg -
—_ <. ............... <. ............
e 8 >-. ?
3 0 bos " s + dst ug
+ —

o [
Ui Uuq
Fig. 3.8 The equivalent paths of by-cycle
We shown the detail of the integrals in Appendix A.5
Therefore,
L™ = L
bo f( b3 f(u
1 1 1
—du + / ——du + ——du + —du
b f(u) as1 f boy (W) bay f (1) bo f (1)
MATH. / 1 5 / 1
s T @
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bi-cycle

We consider the equivalent paths, say b = b5 U ag; U byp U bia U by3, shown in Fig
b11 is the straight path on horizontal cut from w4 to uz on the — edge of sheet-II,

3.9, such that b; ~ b], where
bis is the straight path from u; to uz in the sheet-I, and
bi3 is the straight path from ugz to u; in the sheet-II.

Fig. 3.9 The equivalent paths of b;-cycle

We shown the detail of the integrals in Appendix A.6

Therefore,
1
O o
1 1 1
—d —d —d —d
s F) “+/amf oo ) S T L T ™
MATH. 1 1
- / s () 2/ oM
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Chapter 4

The Elliptic Functions

4.1 Definition and Properties of Elliptic Functions

Definition 4.1. (Doubly-Period Function and Elliptic Function)
We call a function f: C — C, a doubly-period function with periods 2w, and 2ws,

where wy and wy in C with . ¢ R, if
%)

f(z+2w) = f(2), and f(z +2wy) = f(z), for any z € C.

And, a doubly-period function which is analytic except at poles, and which has no

singularities other than poles in finite part of the plane, is called an elliptic function.

We consider a parallelogram with vertices 0, 2wy, 2w,, and 2w; 4 2ws. If there is no
point w inside or on the boundary except vertices of this parallelogram such that

f(z4+w) = f(z), for any z € C,

this parallelogram is called a fundamental period-parallelogram for an elliptic function

with period 2w; and 2w,.

In addition, the whole plane may be covered with a network of parallelograms
equal to the fundamental period-parallelogram and similarly situated, notice that, all
vertices in the form of 2mw; + 2nws, Vm,n € 7Z, then these parallelograms are called
period-parallelograms. If there is no point w inside or on the boundary except vertices of

all parallelogram such that f(z+w) = f(z),Vz € C, these parallelograms are called cells.



Chapter 4. The Elliptic Functions

Proposition 4.1.
1. The number of poles of an elliptic function in any cell is finite.
2. The number of zeros of an elliptic function in any cell is finite.
3. The sum of the residues of an elliptic function, f(z), at its poles in any cell is zero.

4. (Liouville’s theorem) An elliptic function, f(z), with no poles in a cell is merely
a constant.

4.2 The Theta-Functions

Let 7 be a constant complex number with Im(7) is positive, and let ¢ = ™", so
that |¢| < 1.
To begin with, we let

Solzsa) = 3 (~1)"g >

=1+2 Z(—l)”q”2 cos(2nz),

n=1

and we use this function to define the Theta-functions.

Definition 4.2. (The Four Types of the Theta-Functions)
Define that

191('27(1) :190(2+%7T>Q)7
Da(z,q) = —ie=tamm (2 4 s7T,q), and
U3(2z,q) =Dz + 37, 4).

Thus, we have

Do(z,0) =1+2 3 (=1)"g" cos(2nz),
n=1

Di(z,q) =1+23 ¢ cos(2nz),

n=1

Da(z,q) =25 (=1)"¢™ 2 sin(2n 4 1)z, and
n=0

O5(z,q) =23 ¢ cos(2n + 1)z.

\ n=0

o6
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Since the parameter ¢ will usually not be specified, ¥;(z) will be written for 9;(z, q),
i=0,1,2,3. But if 7 is specified, it will be written as ¥(z|7). We also denote 9;(0) = 9,
and v,(0) =, i=0,1,2,3.

It is obvious that

Yo(z 4+ m) = Yo(2), and
o(z +77) = —q e o (2),

and so ¥g(z) is a quasi doubly-periodic function of z with multipliers 1 and —g 'e™%?%
associated with the periods m and 77 respectively.

In like manner, we get that

Yo(z + ) = Yo(2), o(z +77) = —q e o (2),
Vi(z + ) = V1(2), V1 (z + 77) = ¢ e 2 (2),
Da(z + ) = —a(2), 9o(z +77) = —q e y(2),
VU3(z + m) = —3(2), and V3(z + 7T) = ¢ re ?F5(2)

It is clear that if 2y be any zero of any one of these Theta-functions, so is
20 + MT + N7,

for all integral values of m and n, and by the Def. 4.2, we know that

( Yo(2) =0, if z = — +mm + nrr,
, 2 ar
V1(2) =0, 1fz:§+7 +mm + nnT,
Ua(2) =0, if 2=0 +mm + nrT, and
U3(2) =0, if z = g +mm + nrT.
\

Proposition 4.2.
1. 95(2)05 = U5(2)05 — 93(2)9]

2. V3(2)05 = 91(2)05 — 93(2)0]
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0 V3(2)0
Now, we consider 19223 and 3(52) (21)(2) , it is obvious that they both has multipliers
0 0
—1 and 1 associated with the periods 7 and 77 respectively, so do the derivative of the
former,
d [192(z)] _ 05(2)00(2) 4+ U2(2)95(2)
dz o (2) 93(2) '
d ’192(2’)
Notice that ( T, (2) is a doubly-periodic function with periods 7 and
- Rz)

1
§7T7', then by the Liouville’s theorem and as z — 0, it is a constant, that is 9¥2.

d 192( )7 _ g2Y3(2)01(2) _ v (2) :
Therefore, — ——=———=|, by letting £ = , and using the propo-
sition 4.2, it comes to
dg |5
(2 = (73 =€) = 92, (11)
. . [ 4 5191 o 2 - 79 2
Finally, we write y = R 207, and k = (19—) the equation (4.1) with the
3 1
0
particular solution 2(2) may be written
o(2)
dy s 2 2,2
— ) =(1- 1—k
()= (1 - )1~ 1)
=
with the particular solution y = ﬁ%
V3 Vo (udd]?)

o8
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4.3 The Jacobian Elliptic Functions

d
Notice that, in above section, the differential equation (d—y)2 = (1 -y — k%%
u
has the particular solution
o 191 Q92(U191_2)

Y 05 0w )

The differential equation may be written

v 1
‘o /0 VA =2)(1 - k?t?)dt’

1
and we let y = sn(u, k) or simply y = sn(u). Notice that, occurs on

NI

Riemann surface of genus 1.
The function y = sn(u) is known as a Jacobian elliptic function of u.

29
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Chapter 5

The sine-Gordon Equation

5.1 The Special Solutions of the sine-Gordon Equa-

tion

Recall that the sine-Gordon equation is
U — Uy + sinfu(z,t)] =0, where —oo <z < oo and t > 0.
In chapter 3, we use the method of substitution such that it comes to
Uss + sinfu(s)] = 0,
and it implies
1, .
gls ~ cos(u) = F, where F is constant, (5.1)
= us = £+/2[F + cos(u)].

We focus on uy = /2[E + cos(u)], and since cos(u) = 1 — 2sin*(%), we have

Uy = \/Q[E +1- 2sm2(§)]

- \/2(E+ 1) —4sin2(%). (5.2)

Then we can obtain

1

u(s)
o /0 V2AE+1) - 4sin2(%)dU )
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By the equation (5.1), we have

1
§u§ +[1 —cos(u)] = E + 1,

1
and regard it as a energy system with the kinetic energy 2u the potential energy 1 —
cos(u), and the total energy £+ 1. Obvious that, all of them are greater than 0, but, since
0 < [1 —cos(u)] <2, so we will discuss in four cases by given E in different conditions,

BRI =0;
O0<E+1<2,
EF+1=2, and
E+1>2.

Case1l: F+1=0

When E + 1 = 0, means the total energy is 0, so the pendulum is stationary, and
it implies u(s) = 0.

Case 2: 0O< E+1<2

By the equation (5.3),

1
— 4sin*(¥)
1

du

u(s)
s:/
0 \/2 E+1)

dU

/ \/2E+ \/1 2 sin2(¥)

dU.

E+1

\/Tﬂ/ \/1——sm ()
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2 U 1 1

Now, we let t = sin(—), so that = , and
EF+1 (2) 1_Ezlsin2(%) N
+

I8
~
Il
(\V]

(@]
O
N

(v

&S|
+

NI NI~ N~ N

=hEh
—_ —
|
[\)
&
:[\’)
2
QU
3

%
$
|
L.
=
no
b
QU
d

tlj[\')

L7 o =
| +
~ [
no

Therefore,

dU

S

1

\/2(E+1)/0 v1-—1t2
1 / a1 2
_ 12
V2(E+1)Jo V1—t \/E%l—tz

’/Til sin(ugs)) 1 2

:/ dt
0 V1—12\/4—2(E+ 1)

u(s) 1
E

dt

u(s

1 1

)
< dt
1—¢2 E4+1 '
VI=£ 1 By

/‘w / E—zl sin(
B 0

And, let k = E—, then

1 1

% sin(=;
= dt 5.4
’ /0 V1—t2y/1 — k%2 (54)

1
Finally, by the Jacobian elliptic function, sn(s, k) = Esin(%s)) with 0 < k < 1,

and this implies that

u(s) = 2arcsin[ksn(s, k)].
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Case 3: £E+1=2
By the equation (5.3),

1 [ 1
5= —/ ——dU.
2 Jo 1 —sin*(¥)
1

= and

1
\/1 —sinQ(%) V1-1?

U
Let t = sin(a), so that

1
dt = 5 cos(—)dU
1 U
=3 1— sinz(E)dU
1 ——
= dU = 2 dt
RV
Therefore,
1 e
5= = dUu
) view
e B P
- 5/0 VI VI—¢
Sln(u(;)) 1 1
\ / (5.5)
0 V1I—t2/1 =1t
Finally, by the Jacobian elliptic function for & = 1, sn(s, 1) = sin(@), and this

implies that

u(s) = 2arcsin[sn(s, 1)].
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Case 4: F+1>2
By the equation (5.3),

dU.

S =

\/Tﬂ/ \/1——8111 ()

E+1

2 U 1 1
il and t = sin(E), so that = Vi and
1— E_+1 sin (%) — k%t

Let £ =

QL
~
I
Q
]
wn
—
2|
QU
3

1— sinQ(g)dU
2
V1 —t2dU

2
= dU = —=dt.
1— 2

N RN~ N~

Therefore,

/ 1w

\/ (E+1) 1— k2t2
gt 2

== dt
2/0 V1—k221—1¢2

sin(u(s)) 1 1
:k/ ’ dt
0 V1—124/1— k22

=

sin( )) 1 1
-/ it
0 V1—121— k2

> ®»

k) = Sin(@) with 0 < k < 1, and

Finally, by the Jacobian elliptic function, Sn(f, 5

k
this implies that

u(s) =2 arcsin[sn(%, k)].
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5.2 The Periods of Those Solutions

To begin with, suppose that the pendulum released with no initial velocity, and has

the period T
Notice that, when this pendulum first passes through to bottom equilibrium posi-

T
tion, it spent the time T and so the initial angle is U(Z)

Case 1: E4+1=0
Since the pendulum is stationary, T' = 0.

Case 2: 0 < EF+1<2

E+1
Notice that, in the discussion of above section, k = —;_ .
We consider the initial position, the energy system is
T
1-— cos[u(z)] =FE+1
T
u —
= 2 sin?| (24)] = 2k*
T .
= U(Z) = +2arcsin k.

T
Assume without loss of generality that U<Z) = 2arcsin k.
By the equation (5.4),

T = 4(

T
7

u<§>)

4/}Csin( 5 1 "
L V1= 21— k22

L sin(arcsin k) 1 1
2
=4 / dt
0 V1—12y1— k2
1
1

! dt
o V1I—12V1—k%2

=4

1 1
dt
1—12V1 — k2

1
So, the period is 4/
oV
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Case 3: E+1=2
We consider the initial position, the energy system is

1— cos[u(%)] =E+1

= cosfu(

T
Assume without loss of generality that U(Z) =.
By the equation (5.5),

So, the period is co.

Case 4: F+1>2
Now, we want to find out the exact period, but the equation (5.2) always positive

for E+1 > 2, and this means that the pendulum doesn’t change the direction, and always
have velocity for every position. Thus, the pendulum will never stop, and never swing
back, so this implies it have no periodicity.
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Chapter 6

Conclusion

Notice that the sine-Gordon equation,
Ut — Uy + sinfu(z, t)] = 0, where —oo < x < oo and ¢ > 0,

can be transformed to uss + sinfu(s)] = 0, a simple pendulum motion at time s.
In above chapters, we have introduced the theory of the Riemann surface, and
solved the problem of pendulum motion by approximation, which precisely occurs on

Riemann surface.

Next, still on Riemann surface, we study the classical theory of elliptic functions,

and solve the special case of the sine-Gordon equation.

The following list is of the special solutions and the periods.

O<E+1<2 E+1=2 E+1>2
Modulus k E 1 L
2 E+1

ar — [t

Solution U(z,t) 2arcsin[ksn(ax — ft, k)]  2arcsin[sn(ax — ft,1)] 2arcsin[sn(

1
1 1
Period 4 dt 00 No periodicit
/0 V1—121— k22 P Y

k)]
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Appendix A

The Integrals over a, b-cycles

By Chapter 3, we have the a, b-cycles in Fg. 3.2 and 3.6.
The follwing are the detail of the integrals over a, b-cycles.

A.1 a;-cycle

We consider the equivalent paths, say aj = a1 U a12, shown in Fig. 3.3, such that
ay =~ aj, where
ay1 is the straight path on vertical cut from us to u; on the 4+ edge of sheet-I, and
a1 is the straight path on vertical cut from u; to us on the — edge of sheet-I.

1. If z € ay1:

By the discussion in previous chapter, we have

\/u—ulx/u—uzMAZTH'—\/U—ulx/u—um
MATH.

\/U—U3\/U—U4 = \/U_US\/U_U4>

VU — us\/u — ug MATH. VU — usv/u — ug, and

MATH.
\/U—U7\/U—U8 = _\/U_U7\/U_U8a

so f(u) MAH f(u).

Thus,

1 marg. [ 1
/ o™ - / 7™
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2. If z € apo:

By the Proposition 2.1,

1 1
/m ™= Fw™

/a1 —du = /a )
= /au f(lu du + L ﬁdu
MAH 2/u2 ﬁdu

Therefore,

A.2 as-cycle

We consider the equivalent paths, say aj = as; U ags, shown in Fig. 3.4, such that
ay =~ ay, where
a9y is the straight path on horizontal cut from w3 to us on the 4+ edge of sheet-I, and
a9o 18 the straight path on horizontal cut from uy to us on the — edge of sheet-I.

1. If 2 € ag;:

By the discussion in previous chapter, we have

MATH.
Vu—uyvu—uz =" VU — urvu — ug,
Vi —uzvu—ug 2T U= usva —
VU — us\/u — ug MATH. VU — us\/u — ug, and

MATH.
Vu—urvu—us =" —Vu— ugvu — us,

so f(u) "ET f(u).
Thus,

1 marg. (M1
/ o™ - / T ™

IT
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2. If z € ag:

By the Proposition 2.1,

1 1
/m ™= Fw™

/a2 ﬁdu N /% f(u)
= /@1 f(lu du + . ﬁdu
MATH. 2/u3 ﬁdu

Therefore,

A.3 as-cycle

We consider the equivalent paths, say aj = as; U ase, shown in Fig. 3.5, such that
as =~ az, where
agy is the straight path on horizontal cut from us to ug on the 4+ edge of sheet-I, and
ago is the straight path on horizontal cut from ug to us on the — edge of sheet-I.

1. If z € as:

By the discussion in previous chapter, we have

MATH.
Vu—uvu—uy =" VU — urvu — g,
MATH.
VU —uzyV/u—ug = VU — uzy/u — ug,
VU — us\/u — ug MATH. —v/u — usv/u — ug, and

MATH.
Vu—urvu—ug =" =Vu— urvu — ug,

so f(u) "ET f(u).
Thus,

1 marg. [0 1
/ o™ - / T ™

I1I
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2. If z € as:

By the Proposition 2.1,

1 1
/m Fw™= ) Fw™

L = |
as a§ U

1

Therefore,

? f(;i —du + o ﬁdu

f(u

MATH
2

A.4 bs-cycle

We consider the equivalent paths, say b5 = b3; U bsa, shown in Fig. 3.7, such that
bs ~ b5, where
bsy is the straight path from wug to ug in the sheet-I, and
bso is the straight path from wug to ug in the sheet-II.

1. If 2 S bgli

By the discussion in previous chapter, we have

MATH.
Vu—21/u— 2" =" Vu— z21v/u — 2,
MATH.
VU —2z3/u—24" =" Vu— z3v/u — 24,
VU — zs/u — 26 MATH. Vu — z5n/u — 2z, and

ATH.
N N

so f(2) 2T —f(2).
Thus,

1 marn. "1
/b31 mdu = /u(i f(u) du

IV
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2. If z € b321
By the Proposition 2.2,

/b32 %u)du = /631 ﬁdu.

Therefore,
/bs ﬁdu _ /fidu
L

1
b31 (u b32

ug

A.5 bs-cycle

We consider the equivalent paths, say b5 = b5 U as; U bay U bya U by3, shown in Fig.
3.8, such that by ~ b3, where
b1 is the straight path on horizontal cut from ug to us on the — edge of sheet-II,
bos is the straight path from w4 to us in the sheet-I, and
bog is the straight path from us to uy in the sheet-II.

To start with, we know that bs; is also the straight path on horizontal cut from ug
to us on the + edge of sheet-I, that is, bs; = —as1, and this implies

1 1
—d ——du =20
as1 f( ) “r ba1 f(u) !

1. If z € b222

By the discussion in previous chapter, we have

MATH.
VU —uivu —uy =" VU — ui/u — uy,
MATH.
VU —uzy/u —ug =" VU — uzv/u — ug,
VU — usy/u — ug MATH. VU — usv/u — ug, and

Vu — uy MATH. —V/u — uy,

so f(2) 2T —f(2).
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Thus,

I ol

2. If z € b232
By the Proposition 2.2,

/b% ﬁdu - /b ﬁdu

Therefore,

1
b | b% f(“
du+ du+/ —du+/ —du
as1 f ba1 f b22 b23

MA:TH'/ ﬁdu—Q/ ﬁdu

Il
@\
~
ST F-2

QU

N

+
\

A.6 bi-cycle

We consider the equivalent paths, say bj = b5 U ag; U by U byo U by, shown in Fig.
3.9, such that b, =~ 0], where
bi1 is the straight path on horizontal cut from uy to us on the — edge of sheet-II,
bis is the straight path from u; to ugz in the sheet-I, and
b1 is the straight path from ugz to u; in the sheet-II.

To start with, we know that by, is also the straight path on horizontal cut from uy
to ug on the + edge of sheet-1, that is, by;; = —a21, and this implies

1
[t ), e

1. If 2 S b121

By the discussion in previous chapter, we have
Vu — uiy/u — s MALH: VU — uVu — ug,
Vi —gv/u—ug T2 = ug/u — g,
VU — ug\/u — ug MATH. Vu — ug\/u — ug, and

MATH.
VU — Uy = —\/Uu — UuUr,

VI
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so f(2) 2T —f(2).
Thus,

I A

2. If z € b131

By the Proposition 2.2,

1 1
/bm Fw™= ), Fa™

Therefore,
1
b S bt / (U
1
= —du + / —du + —du + —du + —du
b} f(u a2 b11 b12 b13
MATH. 1 1
- 2 —du
/b; f (U) , f(u)

VII
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