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摘要 

 

本論文之研究目的在於運用一個純旋轉自由度之運動平台，對於運動模

擬系統提出一個最佳化的設計與控制；對於 X 系列之運動控制平台結合最

佳工作空間以及機械效益的設計之可行性，作深入性的探討與分析。此研

究對於低成本之運動控制系統有其重要性。而最佳化目標函數之設計方法

亦將呈現。本文所提出之方法結合了某些主要的課題如：工作空間的大小、

工作空間的對稱性、以及驅動系統的輸出功率要求等。再者藉由採取一全

域最佳化之程序-基因演算法，以及運用「逆向/正向」運動學所推導之成

效指標所決定的展開角，可改善運動平台之靜態與動態的成效。此外，藉

由一以即時最佳化演算法推導之運動線索控制策略，運用在前述之運動模

擬系統-純旋轉自由度平台-可呈現翻滾、俯仰、偏轉、正衝以及側衝等五

個自由度之動作。而權函數在每一個取樣時間皆可適應性地自我調整以獲

得最佳歐拉角之解析解。此運動線索控制策略因其不需要遞迴地搜尋最佳

解故能呈現出極佳的效率。實驗結果呈現其對於五自由度之運動模擬之正
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確性及有效性。此運動策略配合軟硬體的實現已應用在 X2/X360 之運動模

擬系統上。 
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Optimal Design and Control for Motion Simulator System of 

Rotational Degrees of Freedom 

 

Student: Yang-Hung Chang  Advisor: Wei-Hua Chieng

Institute of Mechanical Engineering National Chiao Tung University 

 

Abstract 

This dissertation presents an optimal method for designing and controlling a novel 

motion simulator system with only rotational degrees of freedom (DOF). The feasibility of 

adopting the design of X-series motion platforms to combine optimal workspace and 

mechanical advantage, which is considered important for low-cost simulators, is investigated. 

A design method to optimize an objective function is also presented. The proposed method 

consolidates some major issues associated with workspace volume, workspace symmetry, and 

actuator power requirements. Performance indices obtained from inverse/forward kinematics 

are adopted within a global optimization procedure, a genetic algorithm (GA), to determine 

the designed spread-angle that improves static and dynamic performance. Furthermore, an 

optimal motion-cueing strategy is applied to the designed simulator system with three 

rotational DOF to perform the roll, pitch, yaw, surge, and sway motions via an online 

optimization algorithm. Weighting functions are adaptively tuned in each step, and the 

optimal Euler angles are obtained analytically. This motion-cueing algorithm is efficient as it 

requires no recursive search on the optimal solution. Experimental results demonstrating the 
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validity of the five DOF motion simulation are presented. The proposed algorithm is applied 

to X2/X360 motion simulators with software and hardware realization. 

Keywords: genetic algorithm, mechanism design, motion cueing; motion simulator, 

parallel mechanism, online optimization 
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Chapter 1 Introduction 

Interactive motion simulators are extensively utilized in not only flight simulation but 

also the entertainment field. A conventional flight simulator system with six degrees of 

freedom (DOF) successfully delivers excellent “sustained” and fair “onset” motion cues with 

long travel distance characteristics. However, the extremely expensive cost and large space 

requirement have limited their use for entertainment. 

Chiang and Chieng (1995) developed a prototype, the SP-120, based on the concept of 

the Steward platform. The new structure allows the SP-120 to generate improved onset cues 

and provide sustained motion. Additionally, the space requirement is much less than the 

conventional one. However, this prototype with six DOF remains too expensive for 

commercial use. Thus, reducing cost, simplifying the mechanism structure and reducing the 

order of the actuator system are worthy goals. 

This dissertation designs a low-cost motion simulator system. The new motion 

simulation system has two significant goals: (1) mechanism design for motion platform; and, 

(2) establish a motion-cueing control strategy. In this work, the optimal design of the new 

platform, called X-2, is based on a parallel kinematic mechanism structure, which is discussed 

in Chapter 2. Chapter 3 presents a motion-cueing control strategy for the proposed simulation 

system. 

Parallel manipulators have many benefits over conventional serial manipulators in terms 
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of accuracy, velocity, stiffness and payload capacity, and are therefore widely adopted in 

industry. Parallel manipulators [1]–[4] with fewer than six DOF have recently been 

extensively adopted for various uses as they maintain the advantages inherent in parallel 

mechanisms, and have several other benefits such as reduced total manufacturing and 

operation costs. 

Performance indices of a parallel kinematic machine (PKM) [5] may include workspace 

[6], [7], actuator capability, power transmission efficiency, architecture design [8]–[12] and 

possibly the best accuracy [13]. 

Various studies of manipulator performance focused on analyzing the manipulator’s 

kinematic properties represented by the Jacobian transformation. These efforts yielded 

important measures for and characterizations of kinematic properties [14]–[17] and static 

force capability [18].

Although many parallel mechanisms have been developed] [8], [19], [20], less attention 

is given to optimal design of a manipulator that has optimal workspace features, or the best 

mechanical advantages in motion relative to the rotational parallel mechanism. Notably, 

workspace features and mechanical advantages are significant characteristics in controlling 

parallel manipulators, particularly for those applied as motion platforms. 

Chapter 2 analyzes the global optimization of a two-prismatic-universal-universal 

(2-PUU) PKM to obtain the best synthetic properties of performance indices, and presents a 
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novel optimization procedure that, via the use of global optimal searching techniques,  

addresses some major issues associated with static (workspace) and dynamic (actuator 

capability) performance. The optimal parallel manipulator design solution is computed using 

a well-known global optimization algorithm, a genetic algorithm (GA) [21]–[23]. The 

performance index can be treated as a compromise between the optimal mechanical advantage 

design and optimal workspace design based on the weight of each term. 

 After the optimal design for the platform mechanism is obtained, an appropriate 

motion-cueing control strategy is applied on this platform. To form an optimal motion-cueing 

strategy for the simulation system, some basic concepts of motion-cueing theory should first 

be addressed. 

A motion simulator attempts a realistic impression of vehicle motion, such as that of an 

aircraft or racing car. Unfortunately, this goal is not easily achieved because simulators are 

limited by workspace features and actuator capabilities such as maximum torque and velocity. 

Engineers have improved simulator motion by developing motion-cueing strategies, known as 

“washout filtering.” Washout filtering is intended to transform trajectories generated by a 

dynamic virtual reality (VR) model incorporating very large displacements into driving 

system commands that generate realistic motion cues for a pilot within the simulator’s limited 

workspace. 

Washout separates motion cues into high- (onset) and low- (sustained) frequency 
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components, such that cues to be managed and displayed within the physical confines of a 

given platform system. Washout must provide a high-pass filtering system, which may be 

linear or nonlinear, to limit simulator cab excursions. Nonlinear designs include adaptive 

filters and other optimal control techniques that are applied based on various criteria.

Many schemes for motion-cueing control have been presented. Schmidt and Bjorn [24] 

analyzed motion drive signals for piloted flight simulators. Conrad and Schmidt [25] 

proposed techniques for calculating motion drive signals. Sinacori [26] proposed a practical 

approach for motion simulation. Bowles, Parrish and Dieudonne [27] applied coordinated 

adaptive washout to motion simulators. Sivan, Ish-shalom and Huang [28] applied an optimal 

control approach for the design of moving flight simulators. Ariel and Sivan [29] addressed 

false cue reduction in moving flight simulators. Reid and Nahon [30] developed an algorithm 

that drives a flight simulator. Nahon and Reid [31] developed simulator motion-drive 

algorithms. Reid, Nahon and Kirdeikis [32] developed adaptive simulator motion software 

that has supervisory control. Idan and Sahar [33] presented a robust controller for a simulator 

with six DOF. Pouliot, Gosselin and Nahon [34] analyzed motion simulation capabilities of 

flight simulators with three DOF. Moshe and Nahon [35] analyzed an offline comparison of 

classical and robust flight-simulator motion controls. Martin [36] considered the whole body 

motion of motion cueing. Liao and Chieng [37] proposed another novel washout filter 

algorithm for a motion simulator with six DOF. Chang, Liao and Chieng [38] developed a 
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master switching technique for electronic cam control with special reference to multi-axis 

coordinated trajectory following. 

The theory and development of an optimal algorithm for a flight simulator with six DOF 

have recently been discussed by Wu and Cardullo [39] and Telban and Cardullo [40]. Their 

approach incorporates a mathematical model of the human vestibular system that constrains 

pilot sensation of error between the simulated aircraft and platform motion dynamics. The 

problem is to determine a transfer function matrix that relates the desired simulator motion 

input to aircraft input, such that a cost function constraining pilot sensation error (between a 

simulator and plane) is minimized. 

However, the aforementioned studies focused on motion simulators with full spatial DOF, 

i.e., six DOF; the problem of real-time optimal motion-cueing techniques for simulating 

specific virtual reality (VR) motion in a motion simulator with limited DOF has rarely been 

addressed. 

To develop a motion-cueing control strategy for motion simulators with rotational DOF 

without loss of generality, a full rotational DOF platform, the X-360, which is a modified 

version of the X-2 platform, is adopted for experimental testing.

Chapter 3 presents a novel algorithm for evaluating a real-time optimal motion-cueing 

strategy for a motion simulator solely with three rotational DOF (yaw, pitch and roll). This 

algorithm optimizes the additional linear onset cues, providing the attitude and sustained cues 
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are remained. The proposed algorithm comprises a classical linear washout filter (CLWF), a 

yawing washout filter (YWF), an adaptive washout filter (AWF) and a real-time optimal 

motion-cueing algorithm (ROMA). The proposed algorithm individually transforms high- and 

low-frequency linear motions into output angles of a motion simulator with rotational DOF 

(3-DOF). These output angles are incorporated into the cockpit attitude control to achieve five 

DOF motion. The ROMA first defines a quadratic cost function to be minimized. This cost 

function, which corresponds to the performance index of five DOF motion, is then decoupled 

into three Euler angles associated with the three DOF simulator. The restrictions of workspace 

and actuator capabilities are represented as inequality constraints of the motion performance 

optimization problem. Since the cost function has a quadratic (convex) form, 

Karush-Kuhn-Tucker (KKT) conditions can be introduced to locate the global optimum. Prior 

to motion optimization via the ROMA, the YWF is applied to prevent simulator cab excursion 

from exceeding the workspace. After motion optimization via the ROMA, the AWFs are 

applied when necessary to reset simulator position gradually. All washout motions are 

performed in insensible acceleration or rate to the pilot. The remaining Euler angles of the 

three DOF simulator, i.e., pitch and roll, should simultaneously account for cockpit angular 

motion and residual tilt during linear motion. The bounds of pitch and roll angles are 

formulated implicitly, and are calculated during each sample time. Motor commands are 

obtained by substituting the desired Euler angles into an inverse kinematics model of the three 
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DOF simulator. 

The remainder of this dissertation is organized as follows. Chapter 2 describes the 

optimal design for the X-2 platform using a GA. Chapter 3 establishes the ROMA for the 

simulation system. Chapter 4 presents experimental setups and detailed results. Appendices A, 

B, C and D present the kinematics and Jacobian relations. Tables 1, 2 and 3 show all the 

electrical, mechanical and software parameters and setup. Synthesis of the characterization   

and measures into an optimization procedure is then discussed. Finally, the optimization 

procedure is applied to the design and control for a novel motion simulator system with 

rotational DOF. 
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Chapter 2 Optimal Design for X-series Motion Platform Using Genetic Algorithm 

Chapter 2 is organized as follows. Section 2.1 briefly describes the architecture of the 

X-2 motion platform. Section 2.2 then illustrates the performance indices built for the 

optimization. Section 2.3 introduces the global optimization technique and the practical 

procedure for the optimal design. 

 

2.1 Problem Statement 

The problem statement comprises the following parts: (1) the introduction to the 

presented motion platform, called the X-2 motion platform, and (2) the performance indices, 

which are used to determine the cost of optimization. 

 

2.1.1 Introduction to the 2-DOF Motion Platform, X-2 

The X-2 motion platform is designed for motion simulation with two rotational DOF 

(pitch and roll). The platform comprises two pairs of screws and sliders, which are actuated 

directly by servomotors, as shown in Fig. 1. Two linkages are connected between the upper 

plate and sliders with universal joints on both sides. The upper plate is supported by a 

universal joint, which constrains the yawing DOF. The spread-angle of the X-2 motion 

platform is defined as the intersection angle between the two sliders. The spread-angle 

determines most of the kinematic properties of the X-2 motion platform, which are described 
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in Section 2.2. Fig. 2 and Fig. 3 respectively depict the pitch and roll motion of the X-2 

motion platform. The platform pitches up and down when the sliders both go backwards and 

forwards. The platform exhibits a roll motion when one slider goes forward and the other one 

goes backward. 

 

2.1.2 Objective of Optimization on the X-2 Motion Platform 

The X-2 motion platform designed to perform the motion cue of reality is limited to the 

workspace boundary, capability of actuator, power efficiency, and dexterity of motion 

simulator. A tradeoff among these limitations is necessary to ensure an optimal design of the 

motion platform. This study defines several performance indices for the X-2 motion platform 

in terms of the spread-angle. The global search algorithm, GA, is then applied to find the 

optimal solution of the mechanical design numerically. 

 

2.2 Workspace and Mechanical Advantage Analysis of the X-2 Platform 

The performance indices of workspace and mechanical advantage are crucial to the 

mechanical design of the motion platform. The optimal workspace analysis concerns both the 

size of the workspace and the workspace symmetry. The mechanical advantage analysis is 

derived from the infinity norm of the kinetic energy, and the gradient of potential energy 

within the workspace. 
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2.2.1 Maximum Pitch/Roll Angle with Different Spread-Angle φ  

This study defines the maximum pitch or roll angle independently from the neutral 

(home) position. More specifically, one maximum angle is obtained within the workspace 

when the other angle is set to zero. According to the above definition, the maximum pitch 

angle is defined as 

 
1 2

0max
,

arg max
p p

γ γ
φ φ

β β β= =
=Φ =Φ

0
∞

≡ =   (2.1) 

Since the X-2 mechanism is symmetric about the X-Z plane in the fixed coordinate, the 

optimization can be reduced to a half-model, as derived in the following equations. According 

to the kinematics (Appendix A and B), 0γ
φ

β =
=Φ

 is formulated as 

2 2 1
0 1 1 1 1( , , ) cp p p c c p s h s c

u
γ
φ

β β φ β φ φ β φ=
=Φ

= = − ⋅ − ⋅ − ⋅ =   (2.2) 

Equation (2.2) is rearranged as 

 2 2 21
01 10

1 cp s c p s h s c
u

γγ φ
β φ φ β == =Φ

− − = + ⋅ + ⋅ φ   (2.3) 

Squaring both sides yields 

2
0 0 0A s B s Cγ γβ β

φ φ
β β= =

=Φ =Φ
⋅ + ⋅ + β =             (2.4) 

or 

2

0
4

2
B B A C

s
A

β β β
γ
φ β

β =
=Φ

− ± −
= β             (2.5) 

where 
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( ) ( )

2 4 2 2
1

2 1
1

2
2 22 21 1

1 1 12

A p c h c
h cB h p s c c

u
c cC p s p c p
u u

β

β

β

φ φ

φ φ φ

2sφ φ φ

= ⋅ + ⋅

⋅
= ⋅ ⋅ +

⎛ ⎞= + ⋅ − ⋅ + ⋅⎜ ⎟
⎝ ⎠

  

Since
2 4

2
B B A C

A
β β β

β

− − − β  and 
2 4

2
B B A C

A
β β β

β

− + − β  are skew solutions about the 

kinematic singularity, only the feasible solution is chosen, namely 

2
1

0
4

sin
2

B B A C
A

β β β β
γ
φ β

β −
=
=Φ

⎛ ⎞− − −
⎜=
⎜ ⎟
⎝ ⎠

⎟            (2.6) 

The maximum pitch angle has two possibilities: 

  max max
0

min min

( , ,
( , ,
p p
p p

γ
φ

β
β

β
=
=Φ ∞

)
)

Φ⎧
= ⎨ Φ⎩

                (2.7) 

Substituting the physical parameters in Nomenclature into the kinematic model in Appendices 

A and B verifies that 

0 min min( , ,p pγ
φ

β β=
=Φ ∞

)= Φ                  (2.8) 

Therefore, the first index is given by 

  0max min min( , ,p pγφ φ
β β β==Φ =Φ ∞

)= = Φ            (2.9) 

Following the similar line of reasoning, the maximum roll angle is derived as 

 
1 2

0max
,

arg max
p p

β β
φ φ

γ γ γ= =
=Φ =Φ

0
∞

≡ =            (2.10) 

Then 
0β

γ
=

 is formulated as a set of simultaneous equations: 

  

2 2 1
1 1

2 2 2
2 2

cp c p c s h s s
u
cp c p c s h s s
u

φ γ φ γ φ

φ γ φ γ φ

⎧− ⋅ − ⋅ + ⋅ =⎪⎪
⎨
⎪− ⋅ − ⋅ − ⋅ =
⎪⎩

          (2.11) 
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The maximum roll angle occurs when one slider reaches its limit, and the other slider is on the 

opposite side. The parameters of physical setting determine which slider reaches the 

maximum or minimum limitation. In this case, the maximum roll angle occurs only if one of 

the sliders reaches the “maximum” limitation, and the other slider position can be derived 

from (2.11). Since max φ
γ

=Φ
= min φ
γ

=Φ
 can be derived from the symmetry property, either one 

of the equations in (2.11) can be adopted to solve the roll angle. For instance, the first 

equation of (2.11) is applied to yield 

 2 2 1
0 0max max

cp c p c s h s s
u

β β
φ φ

φ γ φ γ φ= =
=Φ =Φ

− ⋅ − ⋅ + ⋅ =         (2.12) 

Equation (2.12) is rearranged as 

  22 21
0max max1 c

0p s s p c h s
u

β
φ φ

sβφ γ φ= =
=Φ =Φ

− ⋅ − = + ⋅ − ⋅ γ φ          (2.13) 

Squaring both sides yields 

2
0 0 0A s B s Cβ βγ γ

φ φ
γ γ= =

=Φ =Φ
γ+ + =            (2.14) 

or 

  
2

0
4

2
B B A C

s
A

γ γ γ
β
φ γ

γ =
=Φ

− ± −
= γ            (2.15) 

where 

2 2 2 4
max

2 1
1

2
2 2 4 21 1

max max max

2 2

2

A h s p s

cB h p s c h s
u

c cC p c p s p
u u

γ

γ

γ

φ φ

φ φ φ

4cφ φ φ

= ⋅ + ⋅

= − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅

⎛ ⎞= ⋅ ⋅ ⋅ − ⋅ + + ⋅⎜ ⎟
⎝ ⎠

 

Since
2 4

2
B B A C

A
γ γ γ

γ

− − − γ  and 
2 4

2
B B A C

A
γ γ γ

γ

− + − γ  are skew solutions about the kinematic 
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singularity, only the feasible solution is chosen, namely 

  
2

1
0

4
sin

2
B B A C

A
γ γ γ γ

β
φ γ

γ −
=
=Φ

⎛ ⎞− + −
⎜=
⎜ ⎟
⎝ ⎠

⎟           (2.16) 

According to (2.16), the second index is derived as 

  0max βφ φ
γ γ ==Φ =Φ ∞

=                    (2.17) 

 

2.2.2 Workspace Symmetry 

Workspace symmetry occurs when 0γ
φ

β =
=Φ ∞

= 0β
φ

γ =
=Φ ∞

 (or simply, max φ
β

=Φ
= max φ
γ

=Φ
) at 

a given angle φ .  A tradeoff exists between the workspace symmetry and the maximum 

roll/pitch angle. Thus, the third index for the workspace symmetry is determined by 

minimizing the following cost function as follows: 

  max max
2φ φ

β γ
=Φ =Φ =Φ

∆ ≡ −
φ

            (2.18) 

Individual indices in (2.9), (2.17), and (2.18) can be incorporated to yield a new 

multi-objective cost function. This multi-objective cost function associated max φ
β

=Φ
 and 

max φ
γ

=Φ
 via weights wp and wr. Thus, the third index is revised as 

  max max
2

r pw w
φ φ

β γ
=Φ =Φ =Φ

∆ ≡ ⋅ − ⋅
φ

          (2.19) 

By adjusting wp and wr, (2.19) can produce different workspace shapes for a variety of motion 

applications. 

 

2.2.3 Mechanical Advantage Analysis 
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The velocity-dependent kinetic energy function of a rotational DOF motion platform is 

expressed as 

1
2

T = Tω Iω                (2.20) 

where 

  

d
dt
d
dt
d
dt

γ

β

α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ω   

and 

0 0
0 0
0 0

x

main y

z

I
I

I

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I  

The yawing velocity equals zero in the case of the 2- rotational-DOF platform, (2.20) gives 

2 21
2 x y

d dT I I
dt dt
γ β⎡ ⎤⎛ ⎞ ⎛ ⎞= +⎢ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⎥            (2.21) 

The derivative chain-rule produces 

2 2

1 2 1 2

1 2 1 2

1
2 x y

dp dp dp dpT I I
p dt p dt p dt p dt
γ γ β β⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥= + + +⎜ ⎟ ⎜∂ ∂ ∂ ∂ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
      (2.22) 

2 2

1 2 1 2
1 2 1 2

1
2 x yI p p I p p

p p p p
γ γ β β⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎢ ⎥= + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
& & & &  

The kinetic energy can be considered as an index of power requirement, meaning that the 

maximum kinetic energy should be minimized. The fourth index corresponding to the input 

velocity is then formulated as 
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  { }
1 2

max
,

arg max
p p

T
φ=Φ

≡ T              (2.23) 

The position-dependent potential energy function is expressed as 

  cV mg
φ=Φ

= h                (2.24) 

where 

  [ ] [ ]0 0 1 0 0 1 0
x

c x

z

H
h s

H
φ zH c c Hβ β γ
=Φ

⎡ ⎤
⎢ ⎥= = = − +⎢ ⎥
⎢ ⎥⎣ ⎦

RH R      (2.25) 

The gradient of potential energy associated with the input torque is undesirable and needs to 

be minimized. Therefore, a performance index associated with gravity is defined as the norm 

of the potential energy gradient. The fifth performance index corresponding to structural 

dimensions is given by 

{ }
1 2

max
,

arg max c
p p

V V V m g
φ φ φ=Φ =Φ =Φ =Φ

h
φ∞ ∞

∇ = ∇ = ∇ = ⋅ ⋅ ∇      (2.26) 

where 

( )

( )
1

2

x z

c

x z

s H c c H
p

h
s H c c H

p

β β γ

β β γ

∂⎡ ⎤− +⎢ ⎥∂⎢ ⎥∇ =
∂⎢ ⎥

− +⎢ ⎥∂⎣ ⎦

 

( ) ( )

( ) ( )
1

2 2

x z z

x z z

H c H s c H c s
1p p

H c H s c H c s
p p

β γβ β γ β γ

β γβ β γ β γ

∂ ∂⎡ ⎤− − + −⎢ ⎥∂ ∂⎢ ⎥=
∂ ∂⎢ ⎥

− − + −⎢ ⎥∂ ∂⎣ ⎦

        (2.27) 

 

2.3 Optimal Design for the X-2 Motion Platform 

The objective matrix is defined as a collection of three performance indices presented in 

 15



Section 2.2: 

{ }

{ }

{ }

{ }

1 2

1 2

max max
2

min

min max
,

min
max

,

arg min
arg min

arg min arg min arg max

arg min
arg min arg max

r p

p p

p p

w w

T T T
V V

V

φ φ

φ

φ

β γ
=Φ =Φ

Φ
Φ

=Φ
Φ Φ

Φ
=Φ

Φ

⎡ ⎤
⋅ − ⋅⎢ ⎥⎡ ⎤∆ ⎢ ⎥⎢ ⎥∆⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎧ ⎫⎢ ⎥ = = ⎢ ⎥⎨ ⎬⎢ ⎥⎢ ⎥ ⎩ ⎭⎢ ⎥⎢ ⎥⎢ ⎥∇⎣ ⎦ ⎢ ⎥∇⎢ ⎥ ⎧ ⎫⎣ ⎦ ⎢ ⎥∇⎨ ⎬

⎢ ⎥⎩ ⎭⎣ ⎦

   (2.28) 

Equation (2.28) is not a practical form of optimization, but has to be reformed in the aspect of 

“cost” or “fitness” for either minimization or maximization. 

 

2.3.1 Objective Matrix, Cost, and Fitness 

To “reduce cost”, a proper spread-angle of the X-2 mechanism must be found to 

minimize the cost. The objective function is formulated as a cost function, as follows: 

[ ]
min

min

min

cost b T Vf w w w T
V

∆⎡ ⎤
⎢= ⎢
⎢ ⎥∇⎣ ⎦

⎥
⎥            (2.29) 

Conversely, when considering “fitness”, the objective function is written as follows: 

  [ ]
min

min

min

expfitness b T Vf w w w T
V

⎛ ⎞−∆⎡ ⎤
⎜ ⎟⎢ ⎥= ⎜ − ⎟⎢ ⎥
⎜ ⎟⎢ ⎥−∇⎣ ⎦⎝ ⎠

          (2.30) 

The exponential function ensures that (2.30) is positive definite for the need in the following 

optimization procedure based on the genetic algorithm. 

 

2.3.2 Weights 
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The weights associated with different performance indices are assigned before the 

optimization process is performed. Individual terms of the cost function or fitness function 

should be non-dimensionalized before the weights are assigned. The first two indices in 

(2.29) denote “generating the maximum workspace” in the DOF of pitch and roll. Taking 

pitch as an example, one particular weight can be chosen as a ratio between the desired 

percentage of importance kp and the infinity norm of the referenced pitch-angle (the infinity 

norm of pitch at the referenced spread-angle, φ  = 45°, which is the middle value of the 

spread-angle φ ), that is 

 
0, 45

%p
p

k
w

γ φ
β

= = ∞

=
o

              (2.31) 

Similarly, the weight of the DOF of roll is given by 

 
0, 45

%r
r

kw
β φ

γ
= = ∞

=
o

              (2.32) 

where kr denotes the desired percentage of importance of roll-angle. 

In the same idea, the weight of workspace symmetry is formulated as 

  
0, 45 0, 45 2

%b
b

kw
γ φ β φ

β γ
= = = =∞ ∞

=
−o o

           (2.33) 

where kb denotes the desired percentage of importance of workspace symmetry. 

The indices associated with mechanical advantage employ the following terms of kinetic 

energy function and the norm of gradient of potential energy function. The weight of kinetic 

energy is given by 
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45

%T
T

kw
T

φ= ∞

=
o

              (2.34) 

where kT denotes the desired percentage of importance of kinetic energy. The weight of the 

norm of potential energy gradient is given by 

  
45

%V
V

kw
V

φ= ∞

=
∇ o

              (2.35) 

where kV  denotes the desired percentage of importance of norm of potential energy gradient. 

 

2.3.3 Optimal Analysis Using Genetic Algorithm 

A genetic algorithm (GA) is a probabilistic search technique based on the principles of 

genetics. Genetic algorithms are applied to the problem of this study as follows. Starting with 

an initial set of points in Ω, denoted as P(0), the initial population. The objective function is 

then evaluated at points in P(0). A new set of points P(0) may be obtained based on this 

evaluation. The creation of  involves certain operations on points in P(0), called 

crossover and mutation. This procedure is repeated iteratively until a suitable stopping 

criterion is reached. In summary, the genetic algorithm iteratively performs the operations of 

crossover and mutation on each population to generate a new population, until a chosen 

termination criterion is satisfied. 

(1)P

Genetic algorithms are described using terminology adopted from genetics. The 

algorithm has the following steps: 
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1. Chromosomes and Representation Schemes 

2. Selection and Evolution 

Step 0: Find P(0) and set k = 0. 

Step 1: Evaluate P(k), and update the best-so-far chromosome. 

Step 2: If stopping criterion is satisfied, then stop and output the solution. 

Step 3: Select M(k) from P(k). 

Step 4: Evaluate M(k) to P(k + 1). 

Step 5: Set k = k + 1, and return to Step 1. 

Fig. 4 shows the schematic procedure. 
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Chapter 3 Optimal Motion Cueing for Rotational-DOF Motion Simulators 

Chapter 3 is organized as follows. Section 3.1 describes the human perception and the 

performance index of motion cueing. Section 3.2 then briefly illustrates the motion cueing 

strategy for the X-2/X-360 motion simulator. Section 3.3 introduces the real-time optimal 

motion cueing algorithm (ROMA). Section 3.4 then finally presents the yawing and adaptive 

washout filtering. 

 

3.1 Human Perception and the Performance Index of Motion Cueing 

The motion cues within the motion simulation can be categorized into six components, 

namely the translations and rotations along x, y, and z axes, respectively. These rotation angles 

are known as the Euler angles (yaw, pitch, and roll). In flight, any aircraft rotates about its 

center of gravity, a point that is the average location of the mass of the aircraft. It can be 

defined as a three dimensional coordinate system through the center of gravity, with each axis 

perpendicular to the other two axes. The orientation of the aircraft can then be defined as the 

degree of rotation of the parts of the aircraft along these principal axes (x, y, and z axes), as 

shown in Fig. 5. 

Motion simulation attempts to provide task-critical motion and force information (i.e., 

“cues”) and any required components of the stressor-induced workload increment that would 

be present in flight or other vehicles [36]. In practice, a motion simulator focuses most 

strongly on “linear acceleration” and “angular velocity” [30]. Defining an error of motion can 
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help to construct a particular performance index for real-time processing of motion control. 

The error of a six DOF motion is defined as a vector of two norms of differences between the 

actual and required angular velocity/linear acceleration, as follows. 

2
ˆx xω ω

2

2

2

2

2

ˆ

ˆ

ˆ

ˆ

ˆ

y y

z z
overall

x x

y y

z z

E
a a

a a

a a

ω ω

ω ω

⎡ − ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⎢ ⎥
= ⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

                                              (3.1) 

Motion cueing attempts to minimize the above error vector. In this study, a motion 

simulator with three rotational DOF is concerned. This motion simulator is not naturally 

capable of performing any linear motion. To present the cues of linear acceleration to a pilot, 

the cockpit needs to be offset from the pivot of the simulator mechanism, and the rotational 

motion cue must be sacrificed. Moreover, only the linear accelerations greater than the 

indifference threshold [30] have to be transformed into angles. 

Figure 6 shows a 3-rotational-DOF motion simulator, X-360. The X-360 platform 

inherits most of the significant characteristics from the X-2 platform. The X-360 employs 

three rotational DOF. Since this motion simulator is pivoted by a ball joint, and the cockpit is 

supported on top of the pivot, the heave motion, i.e. linear motion along the z-axis, must be 

left behind during the error minimization. This study is concerned with the following five 

motion cues 
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2
ˆ

ˆ
x xω ω

ω ω

⎡ − ⎤
⎢ ⎥

−
⎥
⎥

2

2

2

2

ˆ
ˆ

ˆ

y y

total z z

x x

y y

E
a a

a a

ω ω
⎢ ⎥
⎢= −⎢
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

                                          (3.2) 

Since the surge and sway motion can only be induced by the pitch and roll motion of the 

motion simulator, the overall minimization problems can be divided into the following three 

sub-problems: yaw, longitudinal, and lateral as follows 

2
ˆ T

yaw z z yaw yaw yaw yawE f E Q Eω ω⎡ ⎤== − ⇒ =⎣ ⎦                 (3.3) 

2

2

ˆ

ˆ
y y T

longitudinal longitudinal longitudinal longitudinal longitudinal
x x

E f E Q
a a

ω ω⎡ ⎤−
⎢ ⎥= ⇒ =

−⎢ ⎥⎣ ⎦
E         (3.4) 

2

2

ˆ

ˆ
x x T

lateral lateral lateral lateral lateral
y y

E f E Q
a a

ω ω⎡ ⎤−
= ⇒ =⎢ ⎥

−⎢ ⎥⎣ ⎦
E               (3.5) 

The reference point is determined by offset from the pivot to the pilot’s head since the 

proposed algorithm is based on human’s Vestibular System. The Vestibular System comprises 

semicircular canals, which that respond to angular acceleration and velocity, and Otoliths, 

which are associated with gravity.

 

3.1.1 The Performance Index of Yaw Motion 

The yaw axis (z-axis) is perpendicular to the wings, and lies in the plane of the aircraft 

centerline. A yaw motion is a side-to-side movement of the nose of the aircraft. The error of 

yaw motion is defined as 
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, 1 , 1, 2
ˆyaw z k z k highpassE ω ω+ += −                 (3.6) 

In the discrete control domain, the above error may be formulated as 

, 1 , 1, 2
ˆ

yaw z k z k highpassE θ θ+ += −                  (3.7) 

where , 1, , , 1,
ˆ ˆz k highpass z k z k highpass Tθ θ ω+ += + ⋅ . 

According to (3.3), such two-norm error representing the performance index of yaw 

motion may be expressed as a quadratic equation: 

2

, 1 , 1,
ˆT

yaw yaw yaw yaw z k z k highpassf E Q E θ θ+ +
⎡ ⎤= = −⎣ ⎦              (3.8) 

Assume that 1yawQ = . 

 

3.1.2 The Performance Index of a Combination of Pitch and Surge Motions 

The pitch axis (y-axis) is perpendicular to the aircraft centerline, and lies in the plane of 

the wings. A pitch motion is an up or down movement of the nose of the aircraft. The 

3-rotational-DOF motion simulator with yaw, pitch, and roll controls can also yield a 

high-frequency (onset) linear acceleration in either the x or the y direction, because the 

cockpit is offset from the pivot of the simulator mechanism by a height distance. The linear 

motion in the x-axis may be induced due to the presence of pitch motion (rotation about the 

y-axis).  

This optimization problem attempts to improve the cues on the cockpit attitude and the 

linear onset cues along the x-axis simultaneously in real time. The tradeoff between these two 
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factors is determined by the weighting matrix . According to (3.4), the error vector 

can be expressed as 

longitudinalQ

, 1 , 1 2

, 1 , 1 2

ˆ

ˆ
y k y k

longitudinal

x k x k

E
a a

θ θ+ +

+ +

⎡ ⎤−
⎢=
⎢ ⎥−⎣ ⎦

⎥              (3.9) 

Additionally, the otolith organs in the human vestibular system sense both the 

acceleration and tilting of the pilot’s head with respect to the gravity vector [40]. Since the 

otoliths cannot discriminate between acceleration and tilt, this phenomenon, known as tilt 

coordination, can be adopted to improve motion simulation. This additional cue results from 

passing the vehicle acceleration through a low-pass filter to produce the desired long-duration 

tilt cue. Tilt coordination is implemented in a motion cueing algorithm by adding additional 

cross-feed channels with low-pass filters in the longitudinal (pitch/surge) and lateral 

(roll/sway) modes that produce the additional rotational cues. The low-frequency linear 

motion cues can thus be incorporated into the pitch angle to yield the following form of the 

error vector. 

, 1,
, 1 , 1

2

, 1, , 1, 2

ˆˆ

ˆ

x k lowpass
y k y k s

longitudinal

x k highpass x k highpass

a
k

gE

a a

θ θ +
+ +

+ +

⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟

= ⎝⎢
⎢ ⎥

−⎢ ⎥⎣ ⎦

⎠ ⎥         (3.10) 

The angle obtained from low-frequency linear motions of axis x is scaled by the constant sk  

based on the weight effect of the pilot. In the domain of discrete control, the above error 

vector can be expressed as 
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, 1,
, 1 , 1

2

, 1 , 1, 2

ˆˆ

ˆ

x k lowpass
y k y k s

longitudinal

y k y k highpass

a
k

gE
θ θ

θ θ

+
+ +

+ +

⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟
⎝⎢=

⎢ ⎥
−⎢ ⎥⎣ ⎦

⎠ ⎥         (3.11) 

The angular acceleration of the pitch can be expressed in the discrete form as 

 , 1, , , 1
, 1, 2

ˆ 2
ˆ y k highpass y k y k

y k highpass T
θ θ

α +
+

− +
=

θ −                                 (3.12) 

The relation between  and , 1,ˆx k highpassa + , 1,ˆ y k highpassα +  is 

 , 1,
, 1,

,

ˆ
ˆ x k highpass

y k highpass
pitch k

a
α +

+ =
l

                                           (3.13) 

where  denotes the moment arm to the axis y (with respect to pitch angle) at step k. 

Equations (3.12) and (3.13) can be combined to obtain 

,pitch kl

2

, 1, , 1, , , 1
,

ˆ ˆ 2y k highpass x k highpass y k y k
pitch k

T aθ + +

⎛ ⎞
= ⋅ + −⎜ ⎟⎜ ⎟
⎝ ⎠l

θ θ −  (3.14) 

The performance index of the pitch motion can be stated as 

,

1 0
0

T
longitudinal longitudinal longitudinal

longitudinal k

f E E
W

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (3.15) 

where 

, 1,
, 1 , 1

2

, 1 , 1, 2

ˆˆ

ˆ

x k lowpass
y k y k s

longitudinal

y k y k highpass

a
k

gE
θ θ

θ θ

+
+ +

+ +

⎡ ⎤⎛ ⎞
− −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥=

⎢ ⎥
−⎢ ⎥⎣ ⎦

 

The above equation can be expanded into  

2

, 1 , , 1longitudinal y k pitch k y k

2
f b W cθ θ+⎡ ⎤ ⎡= − + −⎣ ⎦ ⎣ + ⎤⎦          (3.16) 

where 

, 1 , 1,
ˆ ˆs

y k x k lowpass
kb a
g

θ + += − ⋅ , and 
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, 1,
ˆ

y k highpassc θ +=  

A particular weighting function is chosen as  ,

, , 1,ˆ e y kK
longitudinal k p x k highpassW K a e θ−

+= ⋅ ⋅ where 

pK  and  are constants. The linear onset motion is associated with a small weighting 

when the simulator cab excurses to the boundary of the workspace, and a progressive increase 

in weighting as the simulator cab approaches its home position. 

eK

 

3.1.3 The Performance Index of a Combination of Roll and Sway Motions 

The roll axis (x-axis) lies along the aircraft centerline. A roll motion is an up and down 

movement of the wings of the aircraft. According to (3.5), the performance index of the roll 

motion can be stated as 

1 0
0

T
lateral lateral lateral

lateral

f E E
W

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
  (3.17) 

where 

, 1,
, 1 , 1

2

, 1 , 1, 2

ˆˆ

ˆ

y k lowpass
x k x k s

lateral

x k x k highpass

a
k

gE
θ θ

θ θ

+
+ +

+ +

⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥=

⎢ ⎥
−⎢ ⎥⎣ ⎦

 

The angular acceleration of the roll can be expressed in the discrete form as 

 , 1, , , 1
, 1, 2

ˆ 2
ˆ x k highpass x k x k

x k highpass T
θ θ

α +
+

− +
=

θ −   (3.18) 

The relation between  and , 1,ˆy k highpassa + , 1,ˆx k highpassα +  is 

, 1,
, 1,

,

ˆ
ˆ y k highpass

x k highpass
roll k

a
α +

+ = −
l

 (3.19) 
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where  denotes the moment arm to the axis x (which is respect to roll angle) at step k. 

Equations (3.18) and (3.19) can be combined to obtain 

,roll kl

2

, 1, , 1, , , 1
,

ˆ ˆ 2x k highpass y k highpass x k x k
roll k

T aθ + +

⎛ ⎞
= − ⋅ + −⎜ ⎟⎜ ⎟
⎝ ⎠l

θ θ −

2

                       (3.20) 

The above equation can be expanded into  

2
, 1 , , 1lateral x k lateral k x kf b W cθ θ+⎡ ⎤ ⎡= − + −⎣ ⎦ ⎣ + ⎤⎦          (3.21) 

where 

, 1 , 1,
ˆ ˆs
x k y k lowpass

kb a
g

θ + += + ⋅  

, 1,x̂ k highpassc θ +=  

The weighting function may be chosen as ,
, , 1,ˆ e x kK

lateral k p y k highpassW K a e θ−
+= ⋅ ⋅ where pK  and 

 are constants. eK

 

3.2 Motion Cueing Strategy for the X-2/X360 Motion Simulator 

Figure 6 shows the X-360 motion platform. This 3 rotational-DOF platform is a modified 

version of the original X-2 prototype. Figure 6 indicates that the yaw motion is performed by 

rotating the turntable through the additional third motor. The rotation of turntable is 

independent of the rest of the connecting mechanism. The inverse kinematic equations shown 

in Appendices A and D are adopted to convert the Cartesian space motion into the joint space 

control commands. 

The workspace of the motion simulator is restricted by the mechanical structure. The 
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velocity of the motion simulator is limited by the driving system. A motion cueing strategy 

must be able to confine the simulator cab within the workspace, providing that the driving 

system is not over-speeding at all instances. Since different mechanisms and driving systems 

may yield different bounds and limitations, this study formulates the constraints in terms of 

the cockpit coordinates, i.e. Z-Y-X Euler angles, for general cases.  

 

3.2.1 Real-Time Motion Simulation Structure 

Figure 7 shows the real-time motion simulation structure of the 3-rotational-DOF motion 

simulator. The operator control inputs drive a mathematical model of the virtual reality (VR) 

system, generates the vehicle states. Passing vehicle states through the real-time motion 

cueing strategy produces the desired motion cues and platform states. The desired platform 

states are then transformed from DOF space to actuator space, generating the realized 

commands to the three actuators by kinematics transformation. The actuator motion 

commands serve as input to the platform dynamics, resulting in the actual simulator motion.  

 

3.2.2 Motion Cueing Strategy 

The proposed motion cueing strategy comprises three branches of motion cues, as shown 

in Fig. 8. All branches are fed into a real-time optimal motion cueing algorithm (ROMA) for a 

motion optimization process. The first branch of the motion cue is the high-frequency (onset) 
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linear motion; the second branch is the low frequency (sustained) linear motion, and the third 

branch is the angular motion cue. The classical washout filter (CLWF) converts the sustained 

motion into the residual tilt (rotation angle of the cockpit). The angular motion cue is then fed 

into the yawing washout filter, which is discussed in Section 3.4, and subsequently fed into 

the real-time optimal motion cueing algorithm (ROMA). 

 

3.3 Real-time Optimal Motion Cueing Algorithm (ROMA) 

Optimization theory and methods select the best alternative in the sense of the given 

objective function [41]. The real-time optimal motion cueing algorithm (ROMA) in this study 

involves minimizing the motion error where the inequality constraints of concerns are not 

violated. 

 

3.3.1 K-K-T Conditions 

The KKT condition [41] is the necessary condition for the constrained optimization 

problem. Specifically, the points satisfying the KKT condition are considered as candidate 

minimizers. The cost (objective) function defined herein is in quadratic form, thus forming a 

convex optimization problem. The KKT condition also yields the sufficient condition of the 

global minimum. In sum, the KKT condition corresponding to the inequality constraints 

comprises four parts (two equalities and two inequalities): 
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(K1)  ≥*µ 0

(K2) ( ) ( )T TDf D∗ ∗ ∗+ =x µ g x 0  

(K3)  ( ) 0T∗ ∗ =µ g x
v

(K4) ( )∗ ≤g x 0  

 

3.3.2 Optimization on Yaw Motion 

The constraint vector of mechanical boundaries and velocity limitations can be expressed 

as follows: 

( )

2 2
, 1 ,

2 2 2
, 1 , ,

z k z bound

z k z k z bound T

θ θ

θ θ ω
+

+

⎡ ⎤−
⎢=

− − ⋅⎢ ⎥⎣ ⎦
g ⎥            (3.22) 

The optimization problem can be stated as 

min

. . 0

yawf

s t ≤g
               (3.23) 

The condition K1 yields 

1

2

µ
µ

∗

∗

⎡ ⎤
= ≥⎢ ⎥
⎣ ⎦

*µ 0                (3.24) 

The condition K2 yields 

, 1, 2 ,
, 1

1 2

ˆ

1
z k highpass z k

z k

θ µ θ
θ

µ µ

∗
+∗

+ ∗ ∗

+
=

+ +
            (3.25) 

The condition K3 yields  

( ) ( ) ( )2 22 2
1 , 1 , 2 , 1 , , 0z k z bound z k x k z boundTµ θ θ µ θ θ ω∗ ∗ ∗ ∗

+ +
⎡− + − −⎢⎣

⎤ =⎥⎦
        (3.26) 
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The condition K4 yields 

( ) ( )

2 2
, 1 ,

2 2
, 1 , ,

0

0

z k z bound

z k x k z boundT

θ θ

θ θ ω

∗
+

∗
+

⎧ − ≤⎪
⎨

− − ≤⎪⎩
           (3.27) 

Substituting the conditions of (3.27) into (3.26) indicates that conditions  and 

 cannot both exist simultaneously. Thus, the optimum solution can be obtained from 

one of the three cases as follows: 

1 0µ ∗ >

2 0µ ∗ >

Case 1: , . According to (3.25), we obtain that 1 0µ ∗ = 2 0µ ∗ =

, 1 , 1,
ˆ

z k z k highpassθ θ∗
+ +=               (3.28) 

Case 2: , . According to (3.25) and (3.26), we obtain that 1 0µ ∗ > 2 0µ ∗ =

, 1 ,z k z boundθ θ∗
+ = ±               (3.29) 

providing that 

, 1, , 1
1

,

ˆ
0z k highpass z k

z bound

θ θ
µ

θ

∗
+ +∗ −

= >                               (3.30) 

Case 3: , . According to (3.25) and (3.26), we obtain that 1 0µ ∗ = 2 0µ ∗ >

, 1 , ,z k z k z boundTθ θ ω∗
+ = ±              (3.31) 

providing that  

, 1, , 1
2

,

ˆ
0z k highpass z k

z boundT
θ θ

µ
ω

∗
+ +∗ −

= >                                (3.32) 

Figure 9 shows the yaw motion optimization process with the yawing washout filter discussed 

in Section 3.4. 
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3.3.3 Optimization on Pitch and Surge Motion 

The constraint vector of mechanical boundaries and velocity limitations can be expressed 

as follows: 

( )

2 2
, 1 ,

2 2 2
, 1 , ,

y k y bound

y k y k y bound T

θ θ

θ θ ω

+

+

⎡ ⎤−
⎢=
⎢ ⎥− − ⋅⎣ ⎦

g ⎥

0

           (3.33) 

The optimization problem can be stated as 

min

. . 0

longitudinalf

s t ≤g
              (3.34) 

The condition K1 yields 

1

2

µ
µ

∗

∗

⎡ ⎤
= ≥⎢ ⎥
⎣ ⎦

*µ                (3.35) 

The condition K2 yields 

, 2
, 1

, 1 21
longitudinal k y k

y k
longitudinal k

b W c
W

,µ θ
θ

µ µ

∗
∗

+ ∗ ∗

+ ⋅ +
=

+ + +
           (3.36) 

The condition K3 yields 

( ) ( ) ( )2 22 2
1 , 1 , 2 , 1 , , 0y k y bound y k y k y boundTµ θ θ µ θ θ ω∗ ∗ ∗ ∗

+ +
⎡− + − −⎢⎣

⎤ =⎥⎦
     (3.37) 

The condition K4 yields 

( ) ( )

2 2
, 1 ,

2 2

, 1 , ,

0

0

y k y bound

y k y k y boundT

θ θ

θ θ ω

∗
+

∗
+

⎧ − ≤⎪
⎨

− − ≤⎪⎩
            (3.38) 

Substituting the conditions of (3.38) into (3.37) indicates that conditions  and 

 cannot both exist simultaneously. Thus, the optimum solution can be obtained from 

one of the three cases as follows: 

1 0µ ∗ >

2 0µ ∗ >
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Case 1: , . According to (3.36), we obtain that 1 0µ ∗ = 2 0µ ∗ =

,
, 1

,1
longitudinal k

y k
longitudinal k

b W c
W

θ ∗
+

+ ⋅
=

+
             (3.39) 

Case 2: , . According to (3.36) and (3.37), we obtain that 1 0µ ∗ > 2 0µ ∗ =

, 1 ,y k y boundθ θ∗
+ = ±  

providing that  

( ), ,
1

,

1
0longitudinal k longitudinal k y k

y bound

b W c W θ
µ

θ

∗
+∗

+ ⋅ − +
= , 1 >         (3.40) 

Case 3: , . According to (3.36) and (3.37), we obtain that 1 0µ ∗ = 2 0µ ∗ >

, 1 , ,y k y k y boundTθ θ ω∗
+ = ±              (3.41) 

providing that 

( ), ,
2

,

1
0longitudinal k longitudinal k y k

y bound

b W c W
T

θ
µ

ω

∗
+∗

+ ⋅ − +
= , 1 >

⎥

        (3.42) 

Figure 10 shows the pitch motion optimization process. 

 

3.3.4 Optimization on Roll and Sway Motion 

The constraint vector of mechanical boundaries and velocity limitations can be expressed 

as follows: 

( )

2 2
, 1 ,

2 2 2
, 1 , ,

x k x bound

x k x k x bound T

θ θ

θ θ ω
+

+

⎡ ⎤−
⎢=

− − ⋅⎢ ⎥⎣ ⎦
g            (3.43) 

The optimization problem can be stated as 
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min

. . 0

lateralf

s t ≤g
               (3.44) 

The condition K1 yields 

1

2

µ
µ

∗

∗

⎡ ⎤
= ≥⎢ ⎥
⎣ ⎦

*µ 0                (3.45) 

The condition K2 yields 

, 2
, 1

, 1 21
lateral k x k

x k
lateral k

b W c
W

,µ θ
θ

µ µ

∗
∗

+ ∗

+ ⋅ +
=

+ + + ∗            (3.46) 

The condition K3 yields 

( ) ( ) ( )2 22 2
1 , 1 , 2 , 1 , , 0x k x bound x k x k x boundTµ θ θ µ θ θ ω∗ ∗ ∗ ∗

+ +
⎡− + − −⎢⎣

⎤ =⎥⎦
      (3.47) 

The condition K4 yields 

( ) ( )

2 2
, 1 ,

2 2

, 1 , ,

0

0

x k x bound

x k x k x boundT

θ θ

θ θ ω

∗
+

∗
+

⎧ − ≤⎪
⎨

− − ≤⎪⎩
           (3.48) 

Similarly, substituting the conditions of (3.48) into (3.47) indicates that conditions  

and  cannot both exist simultaneously. Thus, the optimum solution can be obtained 

from one of the three cases as follows: 

1 0µ ∗ >

2 0µ ∗ >

 

Case 1: , . According to (3.46), we obtain that 1 0µ ∗ = 2 0µ ∗ =

,
, 1

,1
lateral k

x k
lateral k

b W c
W

θ ∗
+

+ ⋅
=

+
             (3.49) 

Case 2: , . According to (3.46) and (3.47), we obtain that 1 0µ ∗ > 2 0µ ∗ =

, 1 ,x k x boundθ θ∗
+ = ±               (3.50) 
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providing that 

( ), , ,
1

,

1
0lateral k lateral k x k

x bound

b W c W θ
µ

θ

∗
+∗

+ ⋅ − +
= 1 >          (3.51) 

Case 3: , . According to (3.46) and (3.47), we obtain that 1 0µ ∗ = 2 0µ ∗ >

, 1 , ,x k x k x boundTθ θ ω∗
+ = ±              (3.52) 

        providing that 

( ), ,
2

,

1lateral k lateral k x k

x bound

b W c W
T

θ
µ

ω

∗
, 1+∗

+ ⋅ − +
=           (3.53) 

Figure 11 shows the roll motion optimization process. Figure 12 shows the procedure of 

applying the KKT condition in practice. 

 

3.3.5 Physical Meaning of Each Case of the Optimization 

 Each optimization task has three cases when applying the KKT conditions. Taking pitch 

motion as an example, if the pitch motion reaches its workspace bound then , 

otherwise . If the velocity of the pitch motion reaches its maximum allowable value, 

then , otherwise .  

1 0µ ∗ >

1 0µ ∗ =

2 0µ ∗ > 2 0µ ∗ =

Subject to individual optimization tasks, in case #1,  and , is applied at 

the instance of real-time computation that neither the workspace boundary nor the velocity 

constraint is violated, while in case #2,  and 

1 0µ ∗ > 2 0µ ∗ >

1 0µ ∗ > 2 0µ ∗ = , is applied at the instance that 

the velocity constraint is not violated when the workspace bound is reached. For example, the 
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pitch angle is sustained at its maximum pitch angle when the maximum allowable pitch angle 

is reached, otherwise the corresponding position constraint is violated. The case #3, 

and , is applied when the velocity constraint is violated, thus limiting the 

corresponding motion to the maximum velocity. 

1 0µ ∗ = 2 0µ ∗ >

 

3.4 Washout Filtering 

Washout must provide a high pass filtering scheme to limit the simulator cab excursions. 

The washout filters in the proposed algorithm include the yaw and adaptive filters as stated in 

the following sections. 

 

3.4.1 Yawing Washout Filter 

The yawing washout filter is applied to prevent the yawing angle at step (k+1) from 

passing beyond the limits of the motion simulator workspace before the optimization process 

ROMA takes place, as shown in Fig. 8. If the norm of the new yawing angular velocity is less 

than the indifference threshold, then the proposed yawing washout motion is in action. 

If , 1, ,ˆ z k highpass z indiffω ω+ ≤  then 
( )

( )

, 1 , ,

, 1 , , ,

z k z k z indiff

z k z k z k z indiff

sign

and

sign T

ω θ ω

θ θ θ ω

+

+

⎧ = − ⋅
⎪⎪
⎨
⎪ ⎡ ⎤= − ⋅⎪ ⋅⎣ ⎦⎩

    (3.54) 

The yawing washout filter continuously returns the cockpit to its home position, where the 

dexterity of motion is highest. 
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3.4.2 Adaptive Washout Filter 

The optimization algorithm guarantees that the simulator cockpit not to exceed the 

workspace. However, this guarantee may fail in practice for the following reasons: 

(1) The sampling frequency may not be stable, due to the high CPU loading subjected to the 

VR rendering. 

(2) The workspace boundaries may be too complex to calculate the exact mechanical bounds. 

(see the kinematics in the Appendices A, B, C, and D).  

An adaptive washout filter, as shown in Fig. 8, is proposed to compensate for the 

insufficiency of the prior proposed optimization process, and this accommodates more severe 

restrictions, such as the small workspace and the limited driving current. For yaw motion, the 

washout filter is implemented as follows. 

( ), 1 , , ,z k z k z k z indiffsign Tθ θ θ ω+ ⎡ ⎤= − ⋅ ⋅⎣ ⎦  if , ,z k z softwareboundθ θ>       (3.55) 

The following filter is applied to prevent the hunting motion from being possibly associated 

with the washout motion. 

, 1 0z kθ + =  if 
, , 1

, 1

0z k z k

z k

or
θ θ

θ ε

+

+

⎧ ⋅ <
⎪
⎨
⎪ ≤⎩

             (3.56) 

where ε  denotes a sufficiently small number. For the pitch and roll motion, further motion is 

prohibited as soon as the software limit of the workspace (in contrast to the hardware limit 
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(actual boundary) of the workspace) is reached. These filters may be formulated as follows. 

, 1 ,x k x kθ θ+ =  if , ,x k x softwareboundθ θ>            (3.57) 

, 1 ,y k y kθ θ+ =  if , ,y k y softwareboundθ θ>            (3.58) 
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Chapter 4 Simulation and Experimental Results 

Figure 13 shows an experimental X-2 motion platform. The spread-angle range can be 

adjusted from 21° to 69°. Fig. 14 shows the maximum pitch and roll angles with different 

spread-angles, revealing that the maximum pitch angle rises and the maximum roll angle falls 

as the spread-angle rises. Fig. 15 shows the workspaces for different spread-angle settings. 

For instance, the maximum roll angle can reach about 21° but the maximum pitch angle falls 

to about 8° when the spread-angle φ  = 21°. The maximum pitch angle remains to 21° while 

the maximum roll angle falls to 7.5°, when the spread-angle reaches φ  = 69°. The different 

spread-angles result in a tradeoff between maximum roll and pitch angles. 

Figure 16 shows the spread-angle that satisfies the workspace symmetry condition. The 

intersection point indicates that the spread-angle of a symmetrical workspace is 41.9°. 

Figure 17 shows the variation of kinetic energy between different spread-angles, 

revealing that the kinetic energy rises as the spread-angle rises, and the slope becomes steeper 

for large spread-angles. 

Figures 18 and 19 show the potential energy and the variation of gradient of potential 

energy between different spread-angles. Fig. 18 shows the potential energy field for different 

spread-angles, in which the arrows point toward the direction of rising potential energy. Fig. 

20 shows the variation of the 2-norm of gradient of potential energy between different 

spread-angles. These figures indicate that the potential energy rises rapidly in two cases: when 

 39



both sliders go forward to their traversal limits, or when one slider goes forward and the other 

goes backward to the traversal limits. The first case presents a large pitch angle, and the 

second case exhibits a large roll angle. Thus, the slopes with maximum potential energy only 

occur at the maximum pitch or roll angle. Fig. 21 indicates that the maximum kinetic energy 

occurs at the largest spread-angle, and the minimum kinetic energy occurs at the smallest 

spread-angle. Fig. 22 indicates that the minimum variation of potential energy occurs at about 

φ  = 33°. 

The individual performance indices are described qualitatively in the previous sequels. 

The optimization was applied to cost function and fitness by the genetic algorithm for 

different purposes, and with different weights. Four sets of weights were adopted for different 

applications: (i) workspace symmetry, (ii) minimizing the infinity norm of the kinetic energy, 

(iii) minimizing the infinity norm of the gradient of potential energy, and (iv) multi-objective 

optimization. 

Application (i) emphasized the workspace symmetry, with weights wb = 80, wT = 10, wV 

= 10. The GA optimization yielded φ  = 41.94° after 100 generations of searching. 

Application (ii) emphasized minimizing the infinity norm of the kinetic energy, and 

adopted weights wb = 10, wT = 80, wV = 10. The GA optimization yielded φ  = 21.22° after 

100 generations of searching. 

Application (iii) emphasized minimizing the infinity norm of the gradient of potential 

 40



energy, and weights wb = 10, wT = 10, wV = 80. The GA optimization yielded φ  = 33.49° 

after 100 generations of searching. 

Application (iv) was subjected to a specific multi-objective optimization, and adopted 

weights of wb = 40, wT = 30, wV = 30. The GA optimization yielded φ  = 36.53° after 100 

generations of searching. 

Figures 23, 24, 25 and 26 show analytical results for individual applications. Subplot (a) 

shows how the genetic algorithm generates the new best so far solution at each generation. 

Subplot (b) shows the workspace. Subplot (c) shows the potential energy. Subplot (d) shows 

the gradient of potential energy. Subplot (e) shows the norm of the potential energy gradient. 

The Subplot (f) shows the kinetic energy. 

A simulation of Pseudo-Flight-Object (PFO) produced by IMON Corp. was applied in 

this study. The geocentric position and the body acceleration data of the aircraft produced 

from the equation of motion (EOM), were taken as inputs to the proposed motion cueing 

strategy in the PFO software. The outputs of the experiment were the motor position 

commands to the 3-rotational-DOF motion simulator, as shown in Fig. 27. The results were 

compared to the classical washout filter (CLWF). Figure 28 consists of four plots used to 

demonstrate the flight trajectory in 3-D view, front view, side view, and top view, respectively. 

The flight data including longitudinal (pitch + x-acceleration), lateral (roll + y-acceleration), 

and yaw motions. Data of individual Euler angles (yaw, pitch and roll) were provided 
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simultaneously to the proposed ROMA algorithm to yield the motion cue of the pilot. Hence, 

one complex simulation was performed to test all motion cues simultaneously. 

Various aspects of the experimental results are shown. The real-time optimal 

motion-cueing algorithm (ROMA) introduced in this paper is derived from the classical 

washout filter (CLWF), which is depicted in Fig. 8. ROMA should perform similar sustained 

motions, or low-frequency linear motions, to CLWF. The sustained motion activates only the 

attitude and the residual tilt control, for which the calculation is mainly derived from the 

CLWF method. There is merely difference when comparing the performances of sustained 

motion along the x and y axes between these two methods. 

However, the CLWF is designed for the general 6-DOF motion simulator. The ROMA is 

designed for a 3-DOF flight simulator, specifically the rotational motion simulator with 

insufficient spatial DOF. The CLWF shows poor performance on the high-frequency linear 

motion when implemented on the rotational motion simulator. 

Figures 29 and 30 show the comparison of the high-frequency (onset) linear motion cues 

along the x and y axes. In this case, the CLWF generates no output to the rotation motion. The 

proposed algorithm ROMA eventually converts the onset linear motion to a rotation command 

based on (3.14) and (3.20), and presents the onset linear motion on the motion simulator. 

Figures 31 and 32 show the error between VR commands and actual linear acceleration by 

different motion cueing algorithms. The data indicate that the error rises rapidly as the 
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frequency of the linear motion increases when adopting the classical method.  

Figures 33 and 34 show the results of a mixture of sustained and onset motion. The 

ROMA could optimize the motion cueing without violating the inequality equation, and 

remained within to the mechanical bounds of a motion simulator. The CLWF failed to do so; 

therefore, the mechanical structure of the motion simulator can be damaged by CLWF. 

Nevertheless, these figures indicate that the onset motion cue can be generated by ROMA 

rather than CLWF. 

Figure 35 illustrates the effect of the yawing washout and ROMA. The washout motion 

continuously returns the cockpit to its home position when the indifference threshold is 

detected as in (3.54). The washout motion moving the cockpit back to its home position is 

performed with a velocity at the indifference threshold, as revealed in Fig. 36. 
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Chapter 5 Conclusion 

This study first establishes a performance index for workspace and mechanical 

advantage. These performance indices are useful in designing motion platforms. Global 

optimal search techniques, based on GA, enable the desired motion platform to yield a large 

and symmetrical workspace, and reduce the power requirement. In addition to the 

optimization process, weighting functions were designed to correlate explicitly with the needs 

of different simulation applications. The X-series motion platforms are flexible, allowing 

manufacturers to adjust the spread-angle for different simulation scenarios. For instance, a 

video game application requires a symmetrical workspace to present sustained motion cues 

for low-frequency motion plus residual tilt. Accordingly, the spread-angle is recommended to 

be set at φ  = 41.94°. A professional motion simulation system needs to achieve high-G 

motion (the onset motion cue for high-frequency motion), and requires a spread angle of φ  = 

21.22° to increase the mechanical advantage. After designing and analyzing the structure of 

the mechanism, this study then establishes a performance index for the motion of the motion 

simulator. This motion performance index is useful for planning motion control. By 

introducing the constrained optimization algorithm ROMA, motion control yields a precise 

cue to the pilot, and avoids damaging the mechanical structure of the motion simulator. In 

addition to the motion optimization process, washout filters are employed to ensure motion 

dexterity, and prevent unexpected damage due to loss of control motions resulting from high 
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CPU loading. Repeated tests, which were performed online, indicate that the proposed 

motion-cueing strategy yields more realistic motion than the classical strategy via the motion 

simulator with three rotational DOF (3-DOF). The proposed motion-cueing strategy is 

applicable to all motion simulators with rotational DOF. 

The proposed method is designed for not only the X-series simulator, but also any other 

kinds of simulators with rotational DOF. Specifically, the rotational motion simulator has 

insufficient spatial DOF. The conventional motion cueing methods, such as the CLWF, failed 

to perform the high-frequency linear motion toward the rotational motion simulator. Thus, the 

aforementioned optimal algorithms based on CLWF are also not appropriate for 

3-rotational-DOF motion simulators. 

Since the optimal motion cueing for rotational DOF motion simulators has not yet been 

uncovered; the result is only compared with CLWF to avoid bias judgments of different 

approaches. Nevertheless, the detail experimental setup data and hardware specifications are 

provided to assist future work on rotational DOF motion simulators by enabling researchers to 

compare their results with those of ROMA in our study. 

The computation time of the motion control is indeed less than 1% of CPU time steadily. 

Table 3 indicates that the CPU time for VR rendering process is in the range 50%–60%, 

depending on the graphical complexity. The graphical output of the simulation is based on the 

DirectX environment. Different number of polygons and their texture patches need to be onto 
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the screen for different scenes, such as the runway and buildings. Thus, the VR rendering time 

can vary.  Notably, the motion control remains stable at the graphical loading shown in Table 

3. 

Figure 37 includes subjective feedback with five significant characteristics of flight 

simulators from different users. The result shows that the proposed algorithm performs more 

realistic cues in longitudinal and lateral acceleration/deceleration and also the special effect of 

the onset cues. 

To perform a realistic human-machine interactive motion for entertainment demands, this 

dissertation finally describes the realization of the system integration. Figure 38 shows the 

complete framework of the electrical and mechanical system of the aforementioned X-series 

motion simulator. This framework is applicable to the lost-cost flight simulation purpose. 

Figure 39 shows a complete implementation of the simulator system. This simulator system is 

a single/double-seat version suitable for either entertainment use or training entry-level pilots. 
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Appendix 

A. Inverse Kinematics of the X-2 Motion Platform 

 

The rotation matrix is expressed as 

(0, , ) 0
c s s s c

c s
s c s c c

β β γ β γ
β γ γ γ

β β γ β γ

⎡ ⎤
⎢= ⎢
⎢ ⎥−⎣ ⎦

R ⎥− ⎥

⋅

⋅

            (A1) 

Derived from the geometrical relation, it is obtained that 

, , ,

T

i i x i y i z i,initialu u u u u⎡ ⎤= =⎣ ⎦
G G G G GRv v ,               (A2) 

  , , , ,   i i x i y i z i initialu u u u u⎡ ⎤= = +⎣ ⎦
O O O O GOG R

uuuuv
,         (A3) 

  ,               (A4) ( ) 1cos 1 sin 0i
i ip p φ φ+⎡= −⎣
v ⎤

⎦

i  ,                      (A5) i i= u - pOv v v
l

where i ip p= v . According to the cosine law we have 
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   2 2 2 2        2 T
i u ih p r u+ = + − ⋅G

i

vv
l l

=

.           (A6) 

Equation (A6) is rearranged as 

  ,        (A7) 

2 1
, ,

2 2 2
, , , , , ,

  2( cos   ( 1) sin )

  - - 2( ) 0

G i G
i i x i y i

B

i x i x i y i y i z i z

C

p u u p

h   u   l   u u  + u u  + u u

φ φ+− + − ⋅

+ + ⋅ ⋅ ⋅G O G O G O

144444424444443

1444444442444444443

to yield 

   ( )2- -4ip B B C= ± / 2 .                 (A8) 

Since (A8) are skew solutions about the kinematic singularity, only the feasible solution is 

chosen, namely 

   ( )2- -4ip B B C= + / 2

i i

.                 (A9) 

 

B. Forward Kinematics of the X-2 Motion Platform 

 

According to the cosine law yields 

   2 2 2 2 2ih p u u+ = + − ⋅
vv

l l                  (B1) 

h
v

 

y-axis 

2

v
l

2uv

1uv  

2pv

φ
1

v
l x-axis 

1pv
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where 

1, 2i =  

,0i iu u= Rv v  

,0i iu h= + −R
vv v v

l ip  

Equation (B1) can be expanded into 

   ( ) ( ) 2 2 2
,0 ,02 i i iu u h p u h 2

ip⋅ + − = + − −R R
vv v v

l ,                (B2) 

we have 

  2 2 2 2
,0( ) ( ) ( ) /

ii

i i i

cb

u h p h p u⋅ − = − − −R
v

2
vv v

l
14243 144424443

.             (B3) 

Equation (B3) yields 

,0
T

i ib u c=R
v v

i ,                    (B4) 

where 

( ) 1
,0 1 0

Ti
iu u c sφ φ+⎡ ⎤= −⎣ ⎦
v  

( )
T11 0i

i ip p c sφ φ+⎡ ⎤= −⎣ ⎦
v  

[ ]T0 0h h=
v

 

( )
T11 i

i i i ib h p p c p s hφ φ+⎡ ⎤= − = − − −⎣ ⎦
v v v . 

Equations (A1) and (B4) give 

( ) ( ) 11 0 1

0

T

i

i i
i

p c cc s s s c
c

p s c s s
u

h s c s c c

φ φβ β γ β γ

φ γ γ φ

β β γ β γ

+

−

− − −

−

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

i
= .         (B5) 

Equation (B5) is then expanded into 
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2 2

1

(

  ( 1) ( 1) ) /
i i

i i
i i

p c c p c s hs c

p s s s c hc s s c u

β φ γ φ β φ

β γ φ φ β γ φ+

− − −

+ − + − =
,                (B6) 

which is summarized into 

  
{ {

{ {

2 1
2

1 1

2 2
2

2 2

v v V

w w W

ch hc t s s t c s t c s
p c p c up c

ch hc t s s t c s t c s

1

2p c p c up

β φ β γ φ γ β φ β γ

c

φ φ φ

β φ β γ φ γ β φ β γ
φ φ φ

⎧− − − − + =⎪
⎪
⎪
⎨
⎪− + − − − =
⎪
⎪⎩

123

123

       (B7) 

Equation (B7) is rearranged as follows: 

   .         (B8) 
( )
( )

2

2

t c t vc t s s c vs V

t c t wc t s s c ws W

φ γ φ β φ β γ β β

φ γ φ β φ β γ β β

⎧− + − = + +⎪
⎨
− + − + = + +⎪⎩

Equation (B8) gives 

  .         (B9) 
t vc s c c vs V

t
t wc s s c ws W
φ β β γ β β

φ
φ β β γ β β

− − + +⎡ ⎤ ⎡ ⎤ ⎡
=⎢ ⎥ ⎢ ⎥ ⎢− − + + +⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

Equation (B9) yields 

  
1

1c t vc s c vs
s t wc s c ws Wt
γ φ β β β β
γ φ β β β βφ

−− − + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦

V
,        (B10) 

then (B11) is given by 

( )
( )

2

2

2 2

2

I s J c s K c L s
t M s Nc

s t I c s

β β β β β
φ βγ

γ φ β β

⎡ ⎤I⋅ ⋅ + ⋅ ⋅ − ⋅ + ⋅ −
⎢ ⎥− ⋅ −⎡ ⎤ ⎣ ⎦=⎢ ⎥ ⋅ −⎣ ⎦

,       (B11) 

where 

I v w= +  

1J w= − v  

K wV vW= +  
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L V W= +  

M w v= −  

N W V= − . 

According to (B11) and the following relation 

              (B12) 2 2 2 2sin cos 1s cγ γ γ γ+ = + =

L

4

yields 

          (B13) 
4 3 2

4 3 2 1 0
3 2

3 2 1 0   0

s s s s s s s s s

t c s t c s t c s t c

β β β β

β β β β β β β

⋅ + ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅ + ⋅ =

where 

2 2
4 4 4s I J= −  

3 4 4s JK I= +  

4 2 2 2 2 2 2
2 ( 4) 4 4s t I J K L t M tφ φ φ= − + − + + −  

2
1 4 2 2s JK IL t Mφ= − − + N

N

J

JL

L

K

 

4 2 2 2 2
0 (1 )s t I K tφ φ= − + +  

3 8t I=  

2 4 4t IK= − +  

4
1 4 4 2t t I IJ Kφ= − −  

0 2t I= . 

Equation (B13) is then rewritten as 
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  ,         (B14) 

4 3 2
4 3 2 1 0

3 2
3 2 1 0

( )

        ( ) 0
X

Y

s s s s s s s s s

t s t s t s t c

β β β β

β β β β

+ + + +

+ + + + =

144444424444443

14444244443

which gives 

               (B15) 2 2 2 2 0X Y Y sβ− + =

sin β  is determined by (B15), and β  can be obtained using function arc-sin. γ  is then 

obtained by Substituting the obtained β  into (B5) 

 

C. Jacobian of the X-2 Motion Platform 

 Equations (A1)-(A6) give 

  2 2 2 2
,0( ) ( ) / 2 ( ) /

i

i i i

cb

u h p p h u⋅ − + = − −R
v

2
vv v

l
144244314243

.          (C1) 

Equation (C2) is then given by 

1( 1) 0 ( 1)
2

0

T
i

i i
i

p c c s s s c c
p cp s c s s
u u

h s c s c c

φ β β γ β γ φ
φ γ γ φ

β β γ β γ

+

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

i + = ,       (C2) 

which is summarized into  

2
1 1 1 1 2

2
2 2 2 2 2

cp c t p s s t p c vs t vc s wp
uc

cp c t p s s t p c vs t vc s wp
uc

β φ β γ φ γ β φ β γ
φ

β φ β γ φ γ β φ β γ
φ

⎧− − − − + + =⎪⎪
⎨
⎪− + − − − + =
⎪⎩

      (C3) 

where 

/v h cφ=  

21/ 2w ucφ= . 
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Differentiating (C3) with respect to 1p  and 2p  yields (C4) and (C5) as 

  111 12 13

21 22

1

0
pA A A

A A
p

β

γ

∂⎡ ⎤
⎢ ⎥∂⎡ ⎤ ⎡⎢ ⎥ =⎢ ⎥ ⎢∂⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥∂⎣ ⎦

⎤
⎥              (C4) 

  211 12 13

21 22

2

0

pB B B
B B

p

β

γ

∂

∂
=

∂

∂

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥
⎣ ⎦

.             (C5) 

Equations (C6) and (C7) are then obtained as follows: 

  
1

1 11 12 13

21 22

1

0
p A A A

A A
p

β

γ

−
∂⎡ ⎤
⎢ ⎥∂ ⎡ ⎤ ⎡⎢ ⎥ = ⎢ ⎥ ⎢∂⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥∂⎣ ⎦

⎤
⎥              (C6) 

  
1

2 11 12 13

21 22

2

0
p B B B

B B
p

β

γ

−
∂⎡ ⎤

⎢ ⎥∂ ⎡ ⎤ ⎡⎢ ⎥ = ⎢ ⎥ ⎢∂⎢ ⎥ ⎣ ⎦⎣ ⎦
⎢ ⎥∂⎣ ⎦

⎤
⎥ ,             (C7) 

where 

11 1 1
2

12 1 1
2

13

21 2 2
2

22 2 2

A p s t p c s v c t v s s

A t p s t p s c t v c c

A c t c t s s w
A p s t p c s v c t v s s

A t p s t p s c t v c c

β φ β γ β φ β

φ γ φ β γ φ β γ

β φ γ φ β γ

γ

β φ β γ β φ β

φ γ φ β γ φ β γ

= ⋅ − ⋅ ⋅ − ⋅ − ⋅ ⋅

= ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅

= + ⋅ + ⋅ −
= ⋅ + ⋅ ⋅ − ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅

γ

    

11 2 2
2

12 2 2
2

13

21 1 1

B p s t p c s v c t v s s

B t p s t p s c t v c c

B c t c t s s w
B p s t p c s v c t v s s

β φ β γ β φ β

φ γ φ β γ φ β γ

β φ γ φ β γ

γ

β φ β γ β φ β

= ⋅ + ⋅ ⋅ − ⋅ + ⋅ ⋅

= ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅

= + ⋅ − ⋅ −
= ⋅ − ⋅ ⋅ − ⋅ − ⋅ ⋅ γ

   

2
22 1 1B t p s t p s c t v c cφ γ φ β γ φ β γ= ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ . 
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D. Additional Kinematics for X-360 (based on X-2) 

α , β , and γ  denote the Euler angles of X-360 (3-DOF platform); α′ , β ′ , and γ ′  

denote the based-angle (Euler angles of the original X-2 platform) of X-360. 

( ): the Euler angles are known. The base-angles of X-360 (pitch & roll angles of the 

original X-2) are found as follows. 

0
0
1

0
0
1

c c c s s s c c s c s s
s c s s s c c s s c c s

s c s c c

c c c s s s c c s c s s
s c s s s c c s s c c s

s c s c c

α β α β γ α γ α β γ α γ
α β α β γ α γ α β γ α γ
β β γ β γ

α β α β γ α γ α β γ α γ
α β α β γ α γ α β γ α γ
β β γ β γ

− +⎡ ⎤
⎢ ⎥′ + −⎢ ⎥
⎢ ⎥−⎣

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′− +⎡ ⎤
⎢ ⎥′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + −⎢ ⎥

′ ′ ′ ′ ′⎢ ⎥−⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦ ⎣ ⎦

⎡ ⎤
⎢
⎢
⎢⎣ ⎦

⎥
⎥
⎥

       (D1) 

Since 0α′ = , we obtain 

c s c s s c s c s s
s s c c s s s c c s

c c c c

α β γ α γ α β γ α γ
α β γ α γ α β γ α γ

β γ β γ

′ ′ ′ ′ ′+ +⎡ ⎤ ⎡
⎢ ⎥ ⎢

⎤
⎥′ ′ ′ ′ ′− = −⎢ ⎥ ⎢

′ ′⎢ ⎥ ⎢⎣ ⎦ ⎣
⎥
⎥⎦

⎤
⎥
⎥
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          (D2) 

then 

1

2

3

s c c s c s s r
s s s c c s r

c c c c r

β γ α β γ α γ
γ α β γ α γ

β γ β γ

′ ′ +⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢′− = − =⎢ ⎥ ⎢ ⎥ ⎢

′ ′⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣

           (D3) 

yields 

1 1

3

tan r
r

β − ⎛ ⎞
′ = ⎜ ⎟

⎝ ⎠
, ( )1

2sin rγ −= −             (D4) 

( ): the base-angles are known. The Euler angles are found as follows (notice that the yaw 

angle is known). 

= z z zR(α,β,γ) R (α)R (β)R (γ)  
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we have 
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Fig. 1.  2-DOF motion platform, X-2 
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Fig. 2.  Pitch motion of X-2 platforms in the view of (a) 3D view and (b) side view. 
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Fig. 3.  Roll motion of X-2 platforms in the view of (a) 3D view and (b) side view. 
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Fig. 5.  Coordinates on an aircraft 
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Fig. 9.  Block diagram of Optimization process of yaw motion 
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Fig. 11.  Block diagram of Optimization process of roll and sway (lateral) motion 
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Fig. 12.  Procedure of applying KKT conditions in practice 
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Fig. 13.  Experimental 
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Fig. 17.  Comparison of kinetic energy with (a
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Fig. 18.  Comparison of potential energy with (a) 
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Fig. 19.  Comparison of gradient of potential ene y with (a) rg φ  = 21°, (b) φ  = 45°, (c) φ  = 

60°, and (d) φ  = 69°. 
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Fig. 20.  Comparison of 2-norm of gradient of potential energy with (a) φ  = 21°, (b) φ  = 

45°, (c) φ  = 60°, and (d) φ  = 69°. 
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(e)   (f) 

Fig. 23.  GA optimization, emphasized the workspace symmetry, with weights 80bw = , 
. This figure shows (a) best-so-far solution during GA recursive 

searching, (b) workspace, (c) potential energy, (d) gradient of potential energy, (e) 
norm of gradient of potential energy, and (f) kinetic energy as the optimal solution is 

10Tw = , 10Vw =

φ  = 41.94°. 
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(e)  (f) 

Fig. 24.  GA optimization, emphasized the infinity-norm of kinetic energy, with weights 
.  This figure shows (a) best-so-far solution during GA 

recursive searching,  (c) potential energy, (d) gradient of potential 
energy ergy, and (f) kinetic energy as the optimal 
solution is 

10bw = , 80Tw = , 10Vw =

 (b) workspace,
, (e) norm of gradient of potential en

φ  = 21.22°. 
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(e)  (f) 

Fig. 25.  GA optimization, emphasized the infinity-norm of kinetic energy, with s 
, , 80Vw = .  This figure shows (a) best-so-far solution during GA 

recursive searching, (b) workspace, (c) potential energy, (d) gradient of potential 
energy, (e) norm of gradient of potential energy, and (f) kinetic energy as the optimal 

lution is 

weight

so

10bw = 10Tw =

φ  = 33.49°. 
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(e)  (f) 

Fig. 26.  GA optimization, emphasized the infinity-norm of kinetic energy, with weights 
, , .  This figure shows (a) best-so-far solution during GA 

recursive searching, (b) workspace, (c) potential energy, (d) gradient of potential 
energy, (e) norm of gradient of potential energy, and (f) kinetic energy as the optimal 
solution is 

40bw = 30Tw = 30Vw =

φ  = 36.53°. 
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Fig. 27.  Implementation of the control and driving system 

      (X-360, Courtesy of IMON Corp.) 
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(a) 

    

   (b)       (c)      (d) 

Fig. 28.  Trajectory of flight simulation in the view of 

(a) 3-D view 

(b) Top view (X-Y plane) 

(c) Front view (Y-Z plane) 

(d) Side view (X-Z plane) 

 

 89



 

 

 

 

 

0 5 10 15

-10

-5

0

5

10

High-Freq. Acceleration, x-axis (Original VR)

0 5 10 15

-10

-5

0

5

10

High-Freq. Acceleration, x-axis (CLWF)

ac
ce

le
ra

tio
n 

(m
/s

2 )

0 5 10 15

-10

-5

0

5

10

High-Freq. Acceleration, x-axis (ROMA)

time (sec)

 

Fig. 29.  Comparison of linear high-frequency acceleration along x-axis between 

(a) original VR dynamic output,  

(b) simulator output using classical washout filter (CLWF) and  

(c) simulator output using proposed algorithm (ROMA) 
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Fig. 30.  Comparison of linear high-frequency acceleration along y-axis between 

(a) original V put,  

(b) simulator out filter (CLWF) and  

(c) simulator output using proposed algorithm (ROMA). 
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Fig. 31.  S ency (onset) acceleration along x-axis using 

 

egmental error of linear high-frequ

classical method (CLWF) and the proposed algorithm (ROMA) 
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Fig. 32.  Seg cy (onset) acceleration along y-axis using the 

 

mental error of linear high-frequen

classical method (CLWF) and the proposed algorithm (ROMA) 
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Fig. 33.  Comparison of simulator output, longitudinal-motion: 

 (a) Linear acceleration, x-axis (high-frequency) 

(d) Pitching-speed, using classical washout filter (CLWF) 

(e) Pitching-speed, using proposed algorithm (ROMA) 

(b) Pitch-angle, using classical washout filter (CLWF) 

(c) Pitch-angle, using proposed algorithm (ROMA) 
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Fig. 34.  Comparison of simulator output, lateral-motion: 

 (a) Linear acceleration, y-axis (high-frequency) 

(d) Rolling-speed, using classical washout filter (CLWF) 

(e) Rolling-speed, using proposed algorithm (ROMA) 

(b) Roll-angle, using classical washout filter (CLWF) 

(c) Roll-angle, using proposed algorithm (ROMA) 
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Fig. 35.  Comparison of simulator output, yaw-motio

(a) Yawing-speed, using proposed algorithm (ROMA) 

(b) Yaw-angle, using proposed algorithm (ROMA) 
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Fig. 36  (YWF) 

 

 

 

.  Yawing-speed and yaw-angle after washout filtering
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Fig. 37.  acteristics of flight 

 

Subjective feedback from users with five significant char

simulators using proposed algorithm (ROMA) 
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Fig. 38.  Complete framework of the entire electrical and mechanical system 
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Fig. 39.  Complete implementation of the system 

(Courtesy of IMON Corp.) 
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Specification Unit Value 

pmin m 0.203 

pmax m 0.2925 

hc m 0.156 

m 0.183 

u m 0.170 

l  

φ  ° 21 

[Hx    Hy    Hz] m [0.25    0    0.5] 

~ 69 

Table 1.  Experime chanica

 

Specification Unit Value 

ntal Setup of Me l System 

Rated Output kW 1.5 

Rated Speed  rpm 3000 

Max. Speed rpm 5000 

Rated Voltage  V 3∮, 200V 

Rated Current 9

Max. Current 28.

Rated Torque N*m 4.78 

Max. Torque N*m 14.3 

Rotor Inertia kg*m2 4.51*10-4

Insulation Class F Class F 

Weight kg 7 

Ambient Temp. C -10~+40 

A 

A 

.6 

8 

 

o

Table

 

 2.  Experimental Setup of Servo-Drive System 
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Specification  

Interrupt of Motion Control (ROMA) 

Programming 

10 ms 

Interrupt of Virtual Reality (PFO) 

rogramming 

30 ms 

Calculation Time of Motion Control 

(ROMA) 

less than 1ms 

CPU Load less than 1%(motion control) + 50~60% (VR 

rendering process) 

P

Table 3.  Experimental Setup of Software System 

 (CPU: PENTIUM D, 3.20GHZ, RAM: 2.00GB) 
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