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基於影像特徵點擷取結合深度資訊之 

即時手勢辨識系統設計 
 

學生: 吳仕政                 指導教授: 陳永平 教授 

國立交通大學電控工程研究所 

摘 要 

近年來，手勢辨識可應用的領域相當廣泛，因此受到重視且被深入的研究

與探討，例如人機溝通、遠距遙控等皆是。一般而言，手勢辨識系統先根

據手勢模型找出其特徵，再利用這些特徵來做辨識。本篇論文提出以 Kinect

之彩色及深度影像為基礎的手勢特徵擷取，來設計即時手勢辨識系統。整

個系統分成三個部分：前景偵測、特徵擷取及手勢識別。首先利用膚色偵

測配合聯通物件法濾掉背景並找出可能的手勢範圍；之後藉由距離轉換並

尋找距離轉換區域的最大值來萃取特徵點，進而利用特徵點找出手勢特徵，

包括手的方向、掌心位置、指尖位置及指向。最後，設計以手勢特徵為依

據之即時手勢辨識系統，從實驗結果可知，本論文所提之手勢辨識系統確

實可以達成具有成效之即時辨識功能。 
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Real-Time Hand Gesture Recognition System 

Design Based on Image Feature Points 

Extraction and Depth Information 

Student：Shi-Cheng Wu      Advisor：Prof. Yon-Ping Chen 

Institute of Electrical Control Engineering 

National Chiao-Tung University 

ABSTRACT 

In recent years, hand gestures recognition(HGR) approaches have been widely 

applied to a diversity of areas, like human-computer interface(HCI) and remote 

control systems. The HGR systems usually rely on a hand model to extract useful 

hand gesture features. This thesis proposes a robust and fast feature extraction method 

for hand gesture based on the depth and RGB information from Kinect to implement a 

real-time HGR system. The system is divided into three parts, including 

region-of-interest (ROI) selection, feature extraction and hand gesture recognition. 

First, the skin color detection and connected component labeling(CCL) are applied to 

select the potential ROIs. Then, pixels with local maximum 

distance-transformation-value in the potential ROIs can be extracted as feature points. 

Further, these feature points could be used to find hand gesture features such as hand 

orientation, palm center and fingertip positions and directions. Finally, the extracted 

hand gesture features are send into the HGR system. From the experimental results, 

the proposed hand gesture recognition system can perform in real-time and possess 

good recognition rates. 
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Chapter 1 

Introduction 

1.1 Preliminary 

In recent years, the hand gesture recognition(HGR) becomes a popular subject 

since it provides a natural and intuitive communication for human-computer 

interaction(HCI). There are many applications using HGR such as video games and 

robot control. However, HGR is a complex issue because our hands consist of many 

connected joints and high order degree of freedoms(DOFs). To reach a real-time HCI 

via hand gestures, it has to meet some requirements such as computation time, 

accuracy and robustness against different background. Earlier HGR researches used 

data gloves or makers to make image processing easier and more accurate [15], but 

they are not convenient for users and thus recent investigators pay more attentions to 

recognizing bare hand gestures without the aid of any gloves or makers. 

The HGR techniques can be classified into three categories: color-based 

algorithms, appearance-based algorithms, and 3-D hand model-based approaches. 

Color-based algorithms directly apply the image color to model the visual appearance 

of the hand by searching the skin colored regions in the image [1]. Although it has a 

good real-time performance, it's very sensitive to lighting condition and often results 

in false detection of other skin-like objects. As to the appearance-based algorithms, 

they compare these parameters of the selected features related to visual appearance or 

mathematical transformation of hands [4-11]. Most of the appearance-based methods 

are pixel based, so the computation cost is usually too high to implement in real time 

systems. For the 3-D hand model-based approaches, they depend on the 3-D 
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kinematic hand model with a large scale of DOFs and estimate the hand parameters 

by comparing the difference between input images and possible 2-D appearance 

projected by a 3-D hand model [3,16]. This model generally provides a rich 

information to recognize a wide class of hand gestures, but a huge image database is 

required to cover all the possible shapes under different views. Meanwhile, matching 

every input frame image with the whole image database will lead to a large amount of 

time consumption in computation. In this thesis, a color-based algorithms is used to 

select the image ROI. 

In general, the system could be separated into three stages: foreground 

segmentation, feature extraction, and hand gestures recognition. Foreground 

segmentation is implemented to select the region of interest(ROI) and filter out the 

background region. Therefore, the remaining search region would be reduced such 

that the processing speed could be highly enhanced. Furthermore, the appropriate 

features would be extracted to distinguish different gestures efficiency and correctly. 

Finally, the selected features would be used as the input of hand gestures recognition 

system to get the final result. The related methods would be introduced in the 

following sections. 
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1.2 System Overview 

For the hardware architecture, our system uses Xbox Kinect as the image sensor, 

including RGB image and depth information, and Table 1.1shows the specification of 

Kinect. In the depth image, the pixel with lower intensity indicates that the distance 

between object and camera is smaller, and all the points are set to 0 if the sensor is not 

able to measure their depth. The image captured by Kinect would be delivered into 

Personal Computer(PC) and then be processed to implement hand gesture recognition. 

The specification is Intel®  Core™ i5-3210M CPU @2.50GHz, 8GB memory, and 

Windows 7 operation system. The frame rate is about 30 frames per second and the 

frame is processed using C/C++ and Matlab. 

Table 1.1 Specification of Kinect 

 
Effective Range 

Depth sensor range 1m ~ 4m  

Field of view 
Horizontal field of view: 57 degrees 

Vertical field of view: 43 degrees 

Physical tilt range ±27 degrees 

Data stream 
320×240 16-bit depth @ 30 frames/sec 

640×480 32-bit color @ 30 frames/sec 

For the software architecture, Fig- 1.1 is the flowchart of the proposed system. 

At first, the system receives the RGB and depth images from Kinect and then selects 

the region-of-interest (ROI). After ROI selection, the feature extraction is 

implemented. At the final stage, the overall features are delivered into the hand 

gesture recognition system to distinguish different gestures. The experimental 

environment is our laboratory and the Kinect camera is at about 100cm height. 
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Moreover, there are two limitations when implementing the system: first, the 

detection distance is between 0.5m to 2m because of the hardware limitation of Kinect. 

Second, the system only focus on one-user implementation. 

 

Chapter 2 describes the related works of the system. Chapter 3 introduces the 

proposed system in detail. Chapter 4 shows the experimental results. Chapter 5 is the 

conclusions of the thesis and the future works. 

  

1.1 Software architecture 
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Chapter 2 

Related Works  

2.1 Hand Gesture Recognition Method 

In recent years, many hand gestures recognition approaches have been proposed. 

In general, the overall methods could be roughly divided into three categories: 

color-based algorithms, appearance-based algorithms, and 3-D hand model-based 

approaches. 3-D hand model-based approach [3,16] relies on the 3-D kinematic hand 

model with a large scale of DOF and calculates the hand parameters by comparing the 

difference between the input images and the possible 2-D appearance projected by the 

3-D hand model. This approach is suitable for the realistic interactions in virtual 

environments since it provides a rich information to describe different type of gestures. 

However, the major drawback is that requires a huge image database to deal with the 

entire characteristic shapes under different views. 

The skin color are the image features that are frequently used for hand 

detection[1]. However, color-based algorithms face the difficult task that human arm 

and face have the similar color with hands. This methods also very sensitive to the 

lighting conditions. So when the lighting does not satisfy some environment 

requirements, this algorithm usually perform not well. 

For the appearance-based algorithms, shape descriptors are used to represent the 

hand shape. In [4] , Fourier descriptor and Zernike moments are used to recognize 

hand gesture, but the computational cost is too high since it's pixel based algorithm. [5] 

obtained the integrated hand contour and then computed the curvature of each point 
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on the contour, but the noise and the unstable illumination in the segmented 

background are the major problems for this method. The eigenspace is another 

technique, which provides an efficient representation using a set of basis vectors, but 

this method is not invariant to translation, scaling, and rotation. For the reason, a 

number of researchs on local invariant features, such as SIFT and Haar-like features, 

are proposed. In [6], SIFT features are used to achieve rotation invariant hand 

detection. The authors of [7] used Haar-like features, which describe the ratio between 

dark and bright regions rather than single pixel value, to reach a hand gestures 

recognition, but the computation cost makes it hard to implement on real-time 

systems. 

Another appearance-based approaches focus on building a hand model 

containing the palm and finger structures. [8] determined the fingertip positions and 

the center of the palm using the first moment of the 2-D probability distribution that 

based on the contour of the hand segmented region. [9] detected the fingertips using 

the momentum of the skin color region and used the Kalman filter to reach a robust 

finger tracking. Since there are a number of pixels on the contour or edges, so the 

computation cost for both [8] and [9] are considerably high. Template matching can 

also be used to detect fingertips and palms [10] , but the distance from camera to hand 

cannot be changed and a good hand segmentation results are also required. [11] 

proposed a method that combines particle filtering with particles random diffusion. 

However, the cost of this method is still too high to implement. 
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2.2 Skin Color Segmentation 

 This is an important step to extract all skin pixels from the Kinect sensor. Most 

skin color segmentation methods are based on the statistical approach, which can be 

divided into two categories: parametric and non-parametric. The parametric statistical 

approach, such as Gaussian model, Gaussian-mixture model, etc., represents the 

probability density function(PDF) of skin-color distribution in a parametric form. The 

main advantages of this approach are lesser computation time and no training data to 

be saved. However, a suitable parametric order, especially for Gaussian-Mixture 

model case, is hard to determined and may not fit the real skin-color distribution. 

Non-parametric approach uses quantized histogram to represent the PDF, or uses 

training data to estimate the skin-color density function, such as the kernel method or 

support vector machine(SVM). Although this approach can be evaluated intuitively 

and adequate to different training data sets, a major drawback is that it requires to 

keep a larger amount training data and costs a relatively high computation time. 

Consequently, model selection is a trade-off between proper fitting and computation 

complexity. 

 The choice of color space is considered as the primary step in skin-color 

segmentation. The statistical approaches usually use a suitable color space to reduce 

the effect of varying luminance and decrease the overlap between skin and non-skin 

pixels. Usually, HSV and YCbCr are most popular color space for skin detection due 

to the robustness of varying illuminant and the minimum overlap between skin-color 

and background-color [12] . 

 The parameters of the GMM can be obtained from the training data through the 

iterative expectation-maximization (EM) technique [13] . After proper parameter 
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estimation, both conditional probability densities for skin and non-skin colors are 

obtained, denoted as p(X | skin) and p(X | nonskin), where X = [Cr Cb]
T
. Given this 

class conditional probabilities of skin and non-skin models, a skin classifier can be 

built using Bayes classifier [14] . The classification boundary is determined where the 

likelihood ratio of p(X | skin) and p(X | nonskin) exceeds some threshold based on the 

ROC(receiver operating characteristics) curve. That is, for a given image pixel xn 

=[Cr(n) Cb(n)]
T
, it is classified as skin when it satisfies: 

  
 

 

   

   

| |

| |

n n

n n

p skin p skin p skin
K

p nonskin p nonskin p nonskin
 

x x

x x
 (2.1) 

where K is a constant and p(skin)  1p(nonskin). Rearranging (2.1), it becomes: 

  
 

 

 

 

|
'

| 1

n

n

p skin p nonskin
K K

p nonskin p nonskin




x

x
 

(2.2) 

The threshold K' is usually determined from the ROC curve, which shows the 

relationship between the true positives and false positives. The Bayes classifier has 

been widely used for skin segmentation since its simplicity and less computation time. 

We only need to compute the likelihood ratio in (2.2) and check whether it is larger 

than the threshold K'. 
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2.3 Classification From Linear Model to ANNs 

The goal of classification problem is to assign an input data xn  X, n = 1,2,...,N, 

in the database, to one of the K classes
kC , k = 1,2,..,K. Usually, these classes are 

disjoint such that xn is classified into at most one (or none of them). To simplify the 

discussion in this section, here we only consider the model for two-class classification 

problems.  

2.3.1 Linear Model 

To determine which class an input xn belongs to, the simplest decision function 

for two-class classification problems is usually given as the following linear model: 

  
0 0

T

n j nj

j

y w w x w   w x

 

(2.3) 
 

where w is called the weighting vector and w0 is the bias. Based on the linear model 

(1), first choose y=0 as the decision boundary, and then classify the inputs satisfying y

≧0 into the class 1, denoted as C1, and the other inputs into C2. An example for the 

above two-class classification is shown in Fig- 2.1 (a), where the decision boundary is 

included. However, this linear model does not work well when there exists an overlap 

between the two classes, such as the XOR problem depicted in Fig- 2.1 (b). To solve 

this problem, a generalized linear model is proposed. 

2.3.2 Generalized Linear Model 

The idea of generalized linear model is to transform the input data xn in the 

database X into another space, and then uses the transformed data as a substitute of xn 

in (2.3), described as below: 

    0

T

n
y w w φ x

 
(2.4) 
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where φ(‧) is a user defined basis function. In other words, the basis function 

transforms the database X to the linearly separable feature space. Moreover, an 

activation function f(‧) can be further introduced to modify (2.4) as below:  

      0 0( )T

n j j n

j

y f w f w w   w φ x x  (2.5) 

which y represents the predicted discrete class labels, or posterior probability lying in 

the range [0,1]. However, an adequate basis function φ(‧) is often difficult to 

determine. In order to apply the modified model (2.5) to a variety of problems, it is 

necessary to adapt the basis functions correspondingly. Recently, investigators have 

successfully adopted the feed-forward neural network to implement (2.5) due to the 

fact that the neural network uses fixed number of basis functions and allows them to 

be adjusted during training. The cost of this model is to face the nonconvex 

optimization problem during training stage which would stocked in the local 

minimum. 

 

2.3.3 Artificial Neural Network 

ANNs have been successfully applied to some complicated problems, such as 

image analysis, speech recognition, adaptive control, etc. Usually, the ANNs will be 

adopted to implement human detection via intelligent learning algorithms. The basic 

Fig- 2.1 The examples for (a) linear separable set (b) linear inseparable set 

(a) (b) 
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structure of ANNs is called neuron, whose input-output relationship is shown in Fig- 

2.2 and described as 

  
0 0

1

( ) ( )
D

T

i i

i

z h w h w x w


   w x

 

(2.6) 

which has the same form as (1) with the output z and the input x =[x1,x2,...,xD]T  


D

. 

Usually, the activation function h(‧) is chosen to be logistic sigmoid function ,linear 

function, or tangent sigmoid function which are described as below： 

 (1) Logistic sigmoid function： 

  

1
( )

1 x
h x

e


  
(2.7) 

 (2) Tangent sigmoid function： 

  
( )

x x

x x

e e
h x

e e








  
(2.8) 

 (3) Linear function： 

  
( )h x x

 
(2.9) 

where (2.7) is range [0,1] and (2.8) is [-1,1]. In summary, a linear output is needed for 

regression problem while use logistic sigmoid output for classification problem. 

 

 
x1 

 

z 



Fig- 2.2 Basic structure of a neuron 

h(‧) 
w1 

wD 
xD 

1 

w0 
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A general ANN is composed of one input layer, one output layer, and one 

hidden layer, as shown in Fig- 2.3. The input layer just receives input signals, so each 

node in this layer is taken as a buffer. For the other two layers, their nodes are realized 

by the structure of neuron as depicted in Fig- 2.2. Each node in the second layer, i.e., 

the hidden layer, has the same form as (2.6) given by 

  (1) (1) (1) (1)

0 0

1

( ) ( )
D

T

j j n j ji ni j

i

z h w h w x w


   w x

 

(2.10) 

where j=1,...,D and the superscript (1) indicates that the weights are related to the first 

layer of ANNs. Similarly, the output of each neuron in third layer, called the output 

layer, is with the same form as previous: 

  

(2) (2) (2) (2)

0 0

1

( ) ( )
M

T

k k k kj j k

j

y f w f w z w


   w z

 

(2.11) 

where k=1,...,K. Substitute (2.10) into (2.11), then each output yk becomes: 

  

(2) (1) (1) (2)

0 0

1 1

( ( ) )
M D

k kj ji ni j k

j i

y f w h w x w w
 

   
 

(2.12) 

Comparing with (2.5), ANN use this structure to find an adequate basis function φ(‧) 

adaptive to the training data. As expected, ANNs are indeed able to deal with more 

complicated problems compared to generalized linear model.  

 

1 

w(1)
MD

wj0 xD 

x1 

1 

z1 y1 

yK 

kK 

w(2)
KM 

zM 

Fig- 2.3 ANN structure 
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2.4 Classification for Sequential Data 

The learning algorithms mentioned before such as linear model and ANN are 

primarily focused on the independent and identically distributed(i.i.d.) observations. 

The i.i.d. assumption allows us to express the likelihood function of all observations 

as: 

        1 2 1 2N Np , ,..., | p | p | p |   x x x x x x  (2.13) 

where xn is the observation at time n, n1,...,N, and  is a user-defined parameter. 

However, this assumption would fail in many applications when the observations are 

sequential and depend on the previous ones, like speech data, rainfall measurements, 

etc.. Therefore, it is necessary to consider the correlation among all observations. But 

in real application, it would be difficult to find a general dependence of present 

observation to all previous observations since the complexity would grow as time 

increases. To solve this problem, Markov model is proposed under the assumption 

that the present data xn only depends on the previous one xn-1. 

2.4.1 Markov Model 

Given N observations {x1,..., xN }, we can always use the product rule to express 

the joint distribution for this sequence of observations as below: 

 

         

   

1 1 2 1 3 1 2 1 1

1 1 1

2

,..., , ,...,

                   ,...,

x x x x | x x | x x x | x x

x x | x x

N N N

N

n n

n

p p p p p

p p









 
 (2.14)  

where Fig- 2.4 shows the fully dependent sequence, that is, the observation xn at time 

n is correlated to all the previous n1 observations. Assume that each of the 

conditional distribution only depends on the previous one, then the n
th

 conditional 
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distribution in (2.14) can be simplified as: 

     1 1 1| ,..., | ,     1,2,...,n n n np p n N  x x x x x  (2.15) 

Therefore, the joint distribution of N observations is rewritten as 

       1 1 1

2

,..., |
N

N n n

n

p p p 



 x x x x x  (2.16) 

which is known as the first-order Markov chain and shown in Fig- 2.5. In most 

practical applications, all the N1 conditional distributions are assumed to be equal, 

that is, the relation between any adjacent observations is the same. The model with 

this property is then called the homogeneous first-order Markov model. We can use a 

higher order Markov chain to provide more information from the previous samples, 

but it would need a large amount of computation time as the order increased. Rather 

than increasing the number of order, we can provide a rich information of the Markov 

model by introducing additional latent variables, which forms the so-called hidden 

Markov model (HMM) and has been widely used to solve the complicated 

classification problems. 

 

 

x1 

Fig- 2.5 Sequence of first-order Markov chain 

x2 xN xn 

x1 

Fig- 2.4 Sequence of fully dependent observations 

x2 xN xn 
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2.4.2 Hidden Markov Model 

The HMM depicted in Fig- 2.6 includes 1
st
-order Markov chain Z{z1 ,..., zN} 

where zn is the latent variable, or called hidden state, corresponding to the observation 

data xn, n1,...,N. It is obvious that zn is only related to the previous latent variable zn-1 

and the resulted joint distribution is given by: 

            1 1 1 1 1 2 1 1
x ,..., x ,z , ...,z z x | z z | z z | z x | z

N N N N N N
p p p p p p


  

     1 1

2 1

                                             z z | z |
N N

n n n n

n n

p p p x z


 

    (2.17) 

where pznzn-1pxnznare called the transition probability andthe emission 

probability, respectively. Nowadays, the HMM has been widely used in many 

territories, such as speech recognition, natural language modeling, on-line 

handwriting recognition, and HGR[15][16]. 

 

In real-time applications, there are two problems that must be solved for the use 

of HMM in (2.17) listed as below: 

Problem1: Given N observations X{x1 ,..., xN} and all the model parameters    

pz1pznzn-1and pxnzn, for n1,...,N, how to compute the 

posterior probability of each latent variable, p(znX)? 

Problem2: Given N observations X {x1 ,..., xN}, how to estimate the parameters 

x1 

Fig- 2.6 Sequence of hidden Markov model 

x2 xN xn 

z1 z2 zn zN 



 

16 
 

      

pz1pznzn-1and pxnznfor n1,...,N? 

For the first problem, given the observations and all model parameters, (2.17) can be 

obtained and use the property described below: 

     | ,p Z X p Z X  (2.18) 

where X { x1 ,..., xN} and Z{ z1 ,..., zN}. Using the probability sum rule, the 

posterior can be intuitively calculated as: 

       
1 1 1

1

z z z z

z | z , z , ..., z ,
n n N

n n N
p X p X p X

 

     (2.19) 

for n1,...,N. It's an intuitive way to find the posterior probability, but it would need a 

vary large-scale computation time. Assume each latent variable zn is M-state discrete 

random variable, (2.19) would need N-1 times of M summation calculation and the 

computation order is O(M 
N-1

)! Due to this reason, a more efficient approach, the 

forward-backward algorithm[17] is used to reduce the computation time and the detail 

derivation is described in Appendix. A. To further speed up the calculation, the Viterbi 

algorithm is proposed that finding the most probable sequence of latent variables for a 

given observations X { x1 ,..., xN}. These two methods are based on the well-known 

model parameters, but in real applications, these parameters are unknown and should 

be proper estimated given observations. 

Problem 2 is a more difficult than previous since it need to determine a method 

to adjust the model parameters such that the likelihood function of the observations 

given model parameters, p(X|), where is model parameter, is maximum. However, 

given any observation sequence as training data, there's no close-form solution for 

estimating model parameters. Instead, an iterative procedure known as Baum-Welch 

method[18] or expectation-maximization (EM) algorithm is used to maximize the 
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likelihood function and obtain optimal parameters. Different initial values for the 

parameters would cause different result, so an suitable initial guess for these values is 

an important step when using EM algorithm. 
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Chapter 3 

Hand Gesture Recognition System 

3.1 Hand Region Detection 

It's important to detect the exact hand region in real-time applications. A number 

of research has been proposed to extract the hand region precisely, such as the 

Adaboost learning algorithm [16] and SIFT features [17], but the cost of the 

computation time make it hard to implement on the real-time detection system. Since 

the extraction of skin color regions is fast, this method is usually used in hand 

detection even though it is very sensitive to lighting conditions. Based on skin region, 

the system could implement ROI selection with connected component labeling (CCL) 

to increase detection rate. To further distinguish the hand and face regions, the scheme 

proposed in [19] is adopted. 

3.1.1 Skin Color Extraction 

With the use of Kinect, a suitable distance range from the user to the screen can 

be selected and the depth information with lower value implies a smaller distance. 

Besides, all the points are offset to 0 if the sensor is not able to measure their depth. In 

our proposed remote hand-gesture control system, it is required that the hands move 

in the range around 0.5m to 2.0m. There are many skin color extraction methods 

which have been described in Chapter 2.2. To speed up the processing, we use a 

look-up-table method in YCbCr color space and the result is shown in Fig- 3.1. There 

are still a lot of noise pixels in skin color, so a method to remove them is required. As 

observed, these noise pixels usually have a small region comparing with the hand and 
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face regions, and thus can be removed by the connected component labeling (CCL) 

method. 

Connected Component Labeling (CCL) [20] is a technique to identify different 

components and often used to detect connected regions in binary images. This thesis 

applies a 4-pixel connected component to label interesting regions. Furthermore, in 

addition to recognizing the connected regions, CCL also compute their areas. If the 

total number of a connected region is less than a threshold, it will be treated as a noise 

and then removed. As a result, only large enough connected objects are retained. To 

further improve the selected CCL objects, the dilation operator [20] is employed to fill 

the holes of connected components as shown in Fig- 3.2. The next step is to 

distinguish the hand region based on the feature points searched and extracted in the 

selected CCL objects. 

 

3.1.2 Feature Points Extraction 

There are many distance transformation (DT) algorithms to transform a binary 

image into a distance images, which are different in the way distances are computed 

Fig- 3.1 Skin Color Region. Fig- Fig- 3.2 The final CCL image 
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[21,22]. In this thesis, two-passed scanning distance transform is used in a binary 

image for its simplicity and efficiency in calculation, Fig- 3.3(a) given an example. To 

extract the feature points of distance transform image, a useful characteristics has 

been introduced in [19] based on two important qualities. First, the skeleton of an 

object can be extracted by distance transformation, as shown in Fig- 3.3(b), where the 

skeleton pixels are usually possessed of the local maximum distance transformation 

value. Second, the distance transformation value of skeleton pixels on the finger is 

usually not high comparing to the palm region. Based on these information, the 

system could implement feature points extraction in two steps, which are introduced 

as following paragraph. 

 

These distance transformation based feature points can be extracted with the 

following two steps. First, extract the local maximum pixels based on the distance 

transformation value. On the distance transformation image, a local maximum pixel 

would satisfy the following condition: 

      1
,

,
i j

G x i y j     (3.1) 

where i,j 1,0,1and the function G is defined as:  

            
   1     if 

0    otherwise

, ,
,

D x y D x i y j
G x i y j

   
   


  (3.2) 

Fig- 3.3 Examples of distance transform (a) Shown its distance value 

(b) Shown its skeleton  

(a) (b) 
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where D(x,y) is the distance transformation value at point (x,y). This condition implies 

that D(x,y) of the point at (x,y) is greater than or equal to those of its 8 neighborhood 

pixels, and thus a set of local maximum pixels can be extracted accordingly from the 

distance transformation image.  

 

Second, determine the feature points from the set of local maximum points. In 

Fig- 3.4, the red-labeled pixels represent the extracted local maximum points. It can 

be found that those in the middle regions of the palm and arm have bigger D(x,y) from 

20 to 50, so are those in the face. While along the contour, the pixels usually possess 

much lower D(x,y) from 2 to 5. For the local maximum pixels around the finger 

region, they have the middle distance transformation value satisfying the following 

condition: 

  10 3DV x y ,  (3.3) 

Significantly, (3.3) can be used as the condition to extracted the feature points which 

potentially contain the desired finger region. Fig- 3.5 also shows the extracted feature 

points, in blue. As shown in Fig- 3.5, we have found out the set of the feature points 

Fig- 3.4 The local maximum distance-based feature pixels in 

different regions 

(b) 
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still occurs in the wrist and face regions, so the depth information is used to detect the 

hand region. 

 

3.1.3 Hand Classifier 

After several experiment, we have found two important facts: First, under the 

same depth value, the total number of feature points on the face or other noise region 

is usually smaller than that on the open hand. Therefore, with the same number of 

contour, the hand region would have more feature points than that on face. Second, 

the total number of feature points is effected by the depth value. Due to these two 

observations, the relationship between the depth and FPs ratio(feature point 

number/total contour number) is needed and shown in Fig- 3.6, where the 1873 red 

crosses indicate the region only contain hand and the 1252 green crosses would 

contain the part of the forearm. The x-axis is the total feature points of the connected 

component divided by the total contour number while the y-axis is the mean depth of 

the object. To enhance the processing speed, a Gaussian likelihood model for hand 

detection is used for this thesis. This model makes the distribution of the hand as a 2-d 

Gaussian, and the model parameter can be found using the collecting hand training 

Fig- 3.5 Feature points extraction 
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data. This method provides an intuitive way to determine the similarity between input 

CCL object and the hand training data. 

 

To determine connected component object is hand or not, the probability 

distribution of the hand is defined as follows: 

      

1

2
11 1

2 2

                  

x x μ x μ
T

k kp |C exp
| |

   
     

   
 (3.4) 

where x x1 x2
T
,and x1 is the FPs ratio and x2 is the mean depth of the connected 

component object and C indicates the hand class. The two parametersΣ andμ is 

covariance matrix and mean vector. Assume the training data are i.i.d., and the 

likelihood function can be found as below: 

    xn

n

p X |C p |C  (3.5) 

where X is the training data set. Use the maximum likelihood estimation, these two 

parameters can be obtained and shown as below: 

Fig- 3.6 FPs ratio V.S. Depth 
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1

μ x j

jN
   (3.6) 

 
  

1

                  

x μ x μ
T

j j

jN
     

(3.7) 

where N denotes the total number of training data. The CCL object is classified as 

hand when (3.4) is granter than a threshold The choice of value is a trade-off 

between the true and false positives, and the ROC curve via different is shown in 

Fig- 3.7. The result shows that the true positive rate can reach 95% while the false 

probability is less than 1%. To further avoid the false alarm situation, a CCL object is 

detected as hand when satisfies the following condition: 

 
1

1
M

m

m

HF


   

where HFm indicates the hand detection flag at time sequence m and the function is 

defined as: 

 
 1      if 

0     otherwise

xm

m

p |C
HF


 


 (3.9) 

The bigger M would cause a lower false alarm detection but slower down the 

processing speed. To reach a real-time HCI, M is chosen to be 8 in this thesis that 

meets both accuracy and processing speed requirements. The detection results shows 

in Fig- 3.8, where the green rectangle is the selected ROI region. Under a indoor 

lighting environment, there are not much noises appeared on the detected image and 

performs very fast. But some errors occur when there are overlaps between the hand 

and the other skin color object, like face and skin color suits shown as Fig- 3.9. To 

overcome this problem, a refining process is proposed using the depth distribution 

information. 

 



 

25 
 

 

 

3.1.4 Depth Cutting 

Some miss detection situation happens when there is a overlapping problem 

since the CCL algorithm would take the whole connected skin region as a same 

component. In general, two different skin color object exist in two different depth 

plane, so a hand detection processing under different depth level can be used to 

Fig- 3.9 The miss detected results where the hand and (a) face (b) skin color suits 

are overlapping. 

(a) (b) 

Fig- 3.7 ROC curve under 

different threshold 

Fig- 3.8 The hand detection result. 
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separate these objects. Based on the depth information of skin color image, the system 

could implement histogram in three steps, which are introduced as following: 

Step 1:After a skin-color extraction on whole image, first use CCL algorithm to filter 

out the skin color noise which has small area of connected points. This step 

clear out the small skin color background of the whole depth level. 

Step 2:The system computes the depth histogram of the skin color image where the 

intensity levels is on the range [0, 255], where Fig- 3.10 shows the example. 

The depth distribution of Fig- 3.10 (b) is shown as Fig- 3.10 (c), which can be 

divided into two clusters: one is the right hand part that close to the camera; 

the other is face and the left hand regions. Let the depth histogram of the skin 

color image be: 

  1 255h h h  (3.10) 

where hi is histogram number related to intensity i, i1~255. The k-th depth 

region cutting would satisfy the following condition: 

 1
k

k

U

j

j L

h


  (3.11) 

where Lk and Uk indicate the lower and upper bound of k-th depth cutting 

region, respectively. With the aid of the cutting region, we can process skin 

color detection and CCL operation corresponding to different cutting region 

such that the overlapping skin color regions can be separated. 



 

27 
 

 

Step 3:Assume there are K depth searching regions, the selected depth search level is 

determined by the following algorithm: 

 
 

 

 1

        2

            

         7

             7

       

             

k k

k k

k k

k k

for k ~ K

if U L

continue;

else if L U

Search Level L ,L ;

else

Search Level L ,U ;

end



 

 

 



 

This algorithm stats that we will skip searching when the depth continuous 

distribution  region is too small, and the maximum depth search interval is 7 

since the hand is usually the closest object to the camera. The system then 

implements the feature points extraction and hand classifier respect to different 

depth cutting regions. Using the refining step can solve this overlapping 

problem and the Fig- 3.11 shows the result. 

Fig- 3.10 (a) The original image.  (b) The skin color region after CCL 

thresholding  (c) Depth histogram of image. 

(a) 

(b) 

(c) 
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Using the depth cutting refining can overcome the overlapping problem, and 

once it has been detected, the searching region is determined around the depth of the 

detected hand. However, the detected hand region still include the forearm part, which 

is not helpful for the HGR. So the next step is the forearm cropped procedure and find 

useful hand features to further increase the processing speed. 

  

Fig- 3.11 The correct detection result even when hand 

and face are overlapping. 
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3.2 Hand Feature Extraction 

After hand region detection, the system has to extract useful features to increase 

the detection rate and decrease the computational cost. Based on the distance-based 

feature points extracted from the previous section, a hand feature with the center of 

the palm, the hand direction and the five fingertip positions can be extracted fast and 

precisely. These features are very important parameters for both gesture recognition 

and hand tracking. 

3.2.1 Hand Direction and Hand Region 

The direction of the hand is an important cue for recognition. With the usage of 

the feature point and the binary hand region, this feature can be obtained in these two 

steps. First, the CCL center can be obtained by calculating the central moment on a 

binary segmented hand image I(x,y), where the I(x,y)Then the center point 

(xCCLMean , yCCLMean) can be determined using: 

 

 

 

 

 
, ,

, ,

, ,

,
, ,

x x y x x y

mean mean

x y x y

x I x y y I x y

x y
I x y I x y

 

   

 
 (3.12) 

Second, using the same equation (3.12), calculate the feature points mean, denote as 

(xFPMean , yFPMean). The direction is the line the connects the hand center and feature 

points mean, and the degree of the hand direction is determined by using the 

following function: 

 2 CCLMean FPMean

CCLMean FPMean

y y
HD arctan

x x

 
   

 
 (3.13) 

where arctan2 function returns the positive angle for counter-clockwise angles (upper 

half-plane, y > 0), and negative for clockwise angles (lower half-plane, y < 0). Fig- 
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3.12 shows the result, where the blue, green, and black pixels are feature points, 

feature mean point, and CCL center, respectively. These figures show that even 

through the CCL object contains the forearm part, the hand direction can be extracted 

precisely. The next step is to exclude the forearm region from the CCL object. 

 

Obviously, if the object is farer from the camera, the object would have smaller 

size in the image. Therefore, the detected hand size would be influenced by different 

distances. The relation between the size of the hand in the image and the distance 

from object to camera as shown in Fig- 3.13, where x-axis is the width of the hand 

and y-axis is the corresponding depth value. Due to this characteristic, the hand size 

can be modeled as a linear function of the depth value shown as below: 

 W a Depth b     (3.14) 

where a,b are positive parameters. The hand region can be obtained in two steps. First, 

determine two points (xd,yd) and (xp,yp) on the hand direction line and satisfy the 

following conditions: the distance from (xFPMean , yFPMean) to point (xd,yd) is 0.45 times  

the hand width W, and the point is on the same side of the hand direction, while point 

(xp,yp) is 0.55W and on the opposite side of hand direction. Consequently , (xd,yd) and 

(xp,yp) can be calculated as below: 

Fig- 3.12 The hand direction (a) without forearm (b) 

with forearm. 

(a) (b) 
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 

 

0 45

0 45

d FPMean

d FPMean

x x . W cos HD

y y . W sin HD

   


  

 (3.15) 

 
 

 

0 55

0 55

p FPMean

p FPMean

x x . W cos HD

y y . W sin HD

   


  

 (3.16) 

Therefore, the hand direction line can be determined by the two points. Second, 

determine a line passing through (xp,yp) with length W and is perpendicular to the 

hand direction. This line is near the wrist which can be used to separate the fingers 

and palm from the wrist and arm as Fig- 3.14. These two lines can determine a 

rectangle region that excludes the forearm region shown in Fig- 3.15, where the green 

rectangle is the CCL region and blue one is selected hand region. Therefore, the palm 

center, (xcenter,ycenter), can be determined by calculating the mean point within the blue 

rectangle area. 

 

The process above usually takes a little time since the total number of 

distance-based feature points is usually small. The next step is to search the fingertips 

location. 

Fig- 3.13 The hand size under 

different depth value 

Fig- 3.14 The process separating the 

forearm part. 
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3.2.2 Fingertip Positions 

As shown in Section 3.1.2, there are many feature points in the fingertips region, 

and these points can be used to determine the fingertips position quickly and 

accurately. Fig- 3.16 (a) shows the detected hand region, where red pixels are the skin 

color and blue pixels are feature points, and the fingertips position can be found by 

the following steps. 

Step1: Extract the feature points in Fig- 3.16 (a), shown as Fig- 3.16 (b), and then 

implement dilation operation to connect the discontinuous feature points, and 

the result shown as Fig- 3.16 (c). 

Step2: Use CCL to label connected region and compute each CCL region. Only larger 

enough CCL area is considered as fingers, and the area is related to the 

distance from camera to the hand. Fig- 3.17 shows the average connected 

region of finger corresponding to different depth value. The other CCL region 

which is less than one deviation value would be taken as noise, and the Fig- 

3.16 (c) shows the result. 

Fig- 3.15 The result finding hand region (a) without forearm part (b) 

with forearm. 

(a) (b) 
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Step3: Calculate the mean and standard deviation of each CCL object, and two 

candidate fingertip positions, CTi,1 and CTi,2, i=1~5, can be calculated, shown 

as Fig- 3.16(d). Calculate the distance between the candidate fingertip and 

wrist line, which is obtained by Chapter 3.2.1. The point which is far from the 

wrist line is the selected fingertip position, and the result shown in Fig- 3.16(e). 

And the fingertip angle is the connection from CTi,1 and CTi,2. 

  

With the proposed method, the hand feature extraction process will determined 

the all outstretched hand direction, fingertip positions and the palm center. Once these 

features are obtained, the recognition system can grasp the posture of the hand more 

easily, and the hand tracking process can be also performed more easily and precisely. 

Fig- 3.16 The procedure of finding fingertips position (a) detected 

hand region (b) the feature points (c) implement dilation (d) 

mean and standard deviation corresponding to each CCL 

object (e) the selected fingertips. 

(a) 

(d) 

(b) (c) 

(e) 
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In detail, the set of the features includes: 

1. The position of palm center, (xcenter,ycenter). 

2. The displacement of palm center. 

3. The hand direction, HD
。
. 

4. Total detected fingertips number and its positions.(from 1 to 5). 

5. Direction of each finger. 

6. The depth mean of the hand. 

7. The change of the mean depth. 

8. The mean distance from (xcenter,ycenter) to each fingertip. 

From the above hand features, a hand recognition model can be built. Moreover, 

these features can be exploited not only by HGR system but also by hand tracking 

system. 

  

Fig- 3.17 The procedure of finding fingertips position (a) detected  
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3.3 Hand Gesture Recognition 

After hand region detection, the system has to judge recognize different gestures 

based on the extracted features. To test the ability of variation tolerance, both 

sequential and non-sequential training method. This thesis adopts discriminative 

classification model, neuron network and hidden Markov model to implement the 

HGR systems. The features which are extracted in chapter 3.2 are sent into these HGR 

systems and compare their recognition rate and processing speed. The resolution in 

the experiments are 640×480 at 20 frames-per second. These approaches would be 

introduced below and their performances would be compared in Chapter 4. This 

experiment test 6 hand gestures to be recognized, including moving left, right, upward, 

downward, open and click. 

3.3.1 Discriminative Model 

The discriminative model directly assume the posterior probability of class Ck 

as a logistic sigmoid acting on a linear function of the input vectors: 
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 (3.17) 

where x is input vector and w is the weighting vector. Given the data set {xn,tn}, 

n=1~N, where tntn,1 tn,2... tn,K-1 

and tn,k1 when xn belongs to class k while the 

others are 0,the likelihood function can be written as below: 

   ,

1

1 1 ,

1 1

| ,...,w w n k

N K
t

K n k

n k

p T y




 

  (3.18) 

where yn,k=p(Ck| x). As usual, define the error function by taking the negative 
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logarithm of (3.18), which gives the cross-entropy function in the following form: 

  
1

1 1 , ,

1 1

,..., lnw w
N K

K n k n k

n k

E t y




 

   (3.19) 

The error function can be minimized by the Newton-Raphson iterative optimization 

method, which uses a local quadratic approximation to the log likelihood function. 

The Newton-Raphson update for minimizing error function takes the following form: 

  1
W W W

new old H E    (3.20) 

where W=[w1 w2... wK-1]
T
 is the whole weighting vector and H is the Hessian matrix 

whose elements contain the second derivatives of E(W) with respect to each wj. The 

each component of the gradient is given as below: 

        
1 2 1w w wW W W W

K

T

E E E E


        (3.21) 

where 

    , ,

1

W x
j

N

w n j n j n

n

E y t


    (3.22) 

The each component of Hessian matrix is computed using the following: 
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    
 
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 (3.23) 

where 

    , , ,

1

w w W I x x
k j n

N
T

n k k j n j n

n

E y y


      (3.24) 

The Hessian matrix for the multiclass classification problem is positive definite and 

the error function can converge to a unique minimum. In this thesis, K is chosen to be 

6 to recognize the defined gestures. 

3.3.2 Neural-Network-Based Recognition 

 The structure of neural network is shown in Fig- 3.18, which contains one input 
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layer with O neurons, one hidden layer with P neurons, and one output layer with Q 

neuron. After feature extraction, these features are sent into the neural network as 

inputs. The O neurons of the input layer are represented by x. The i-th input neuron is 

connected to the j-th neuron, j1,2,…,P, of the hidden layer with weighting wj
(1)

. 

Besides, the j-th neuron of the hidden layer is also with an extra bias wj0
(1)

. Finally, the 

j-th neuron of the hidden layer is connected to k-th output neuron with weighting wk
(2)

, 

k=1,2,…,Q, and a bias wk0
(1)

 is added to the output neuron. 

 Let the activation function of the hidden layer be the hyperbolic 

tangent-sigmoid transfer function and the output vector of hidden layer is expressed as 

 1 2[ ]T

Pz z zz  (3.25) 

where 

 
   
   
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j T T
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z j P
  

 
  

w x w x

w x w x
 (3.26) 

Let the activation function of the output layer be the softmax function and the output 

is expressed as 

 1 2[ ]T

Qy y yy  (3.27) 

where 
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
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

w z

w z
 (3.28) 

The above operations are shown in Fig- 3.18. The weights of neural network would be 

adjusted through the process of back-propagation learning algorithm. After learning, 

the HGR system can be recognized according to the output value of neural network. 
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The final recognition result is made using the following decision strategy: 

 arg max , 1,2,...,q
q

HG y q Q   (3.29) 

In this experiment, the number of neuron in each layer are 8, 10, 6 corresponding to 

input, hidden, and output layer. 

 

3.3.3 HMM-Based Recognition 

As a hand gesture is basically an action composed of a sequence of hand 

postures that are connected by continuous motions, thus describing the hand gestures 

in terms of a sequential input is suitable in HGR systems. HMM have been applied to 

HGR tasks with success. The classification of the input sequence proceeds by 

computing the sequence's similarity to each of the gesture class models. The joint 

distribution is given by: 

1 

x1 

xO 

1 

zP yQ 

y1 

kK 

z1 

Fig- 3.18 HGR ANN structure 
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p p p p x z


 

  x , ..., x ,z , ..., z z z | z |  (3.30) 

where pznzn-1pxnznare called transition andemission probability, respectively. zn 

is the latent variable, or called hidden state, corresponding to the input data xn. An 

iterative expectation-maximization (EM) algorithm procedure is used to maximize the 

likelihood function and obtain optimal parameters. To speed up the calculation, the 

Viterbi algorithm is used that finding the most probable sequence of latent variables 

for a given observations X {x1 ,..., xN}. The posterior probability of time t is 

proportional to the jointly probability: 

 
1 1 1 1( ,..., | ,..., ) ( ,..., , ,..., )t t t tp z z x x p z z x x  (3.31) 

Let z1,...,zt≡z1:t and x1,...,xt≡x1:t, and the message passed in the max-sum algorithm 

are given by: 
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z p z x
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p x z p z z z
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  

 

 (3.32) 

The Viterbi algorithm consider explicitly all of the exponentially many paths, evaluate 

the probability for each and then select the path having the highest probability. In this 

experiment, the latent variable zn has 6 states and N is chosen to be 10. 

This experiment test 6 hand gestures to be recognized, including moving left, 

right, upward, downward, open and click, and Fig- 3-19 shows the defined gestures. 

The hand gestures are defined in natural way rather than in particular ordered hand 

pose. The palm center difference between the current and previous frames can be used 

to recognize the these gestures. The above three algorithms are used to recognize 

these six hand gestures. 
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Fig- 3.19 The defined hand gestures. 
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Chapter 4 

Experimental Results 

In the previous chapters, the three main steps of the proposed HGR system are 

introduced. In this chapter, the experiment results of each step will be shown in detail 

and the results of the proposed algorithm will be obtained by MATLAB R2010b and 

OpenCV 2.2. 

4.1 Hand Region Detection 

To examine the reliability of hand region detection, the system is tested in many 

different situations, including different distances, the skin color background, 

overlapping by other skin object and more than one human, and the results are shown 

from Fig- 4.1 to Fig- 4.4, respectively. The left column contains the skin color images, 

the middle one shows the ROI images, and the right one represents the skin color 

regions with large enough area, where the white pixel indicates skin color and red 

represents the depth searching region. Note that the green rectangles in the middle are 

the selected ROIs. Fig- 4.1 shows even though human keeps moving away from the 

camera, the system would not fail to extract hand region. The distance between the 

human and camera is from 0.5m to 2m. In Fig-4.2, there are some skin color objects 

in the images, and the system also could detect the hand 

regions.
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(b) (c) 

Fig- 4.1 Results of hand region detection in different distances. (a) The original 

skin color region (b) The ROI images (c) skin color regions with large 

enough area. Note that the green rectangles in (b) are the selected ROIs. 
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The situations in Fig- 4.3 and Fig- 4.4 are more complex. In Fig- 4.3, there are 

overlapping between the hand and the other skin-color object, like face and shirt. The 

results show that system still could extract hand regions and even when suffering 

from serious overlapping problem. In Fig-4.4, there are more than one human 

standing in front of the camera, and the system could filter out these regions to reduce 

the number of ROI and still success to extract the hand regions. The programming 

tools are Visual Studio 2010 and OpenNi for controlling the Kinect, and the resolution 

of the video is 640×480 pixels. The average processing speed is 0.2ms which is fast 

enough to be used in a real-time HCI system. 

(a) (b) (c) 

Fig- 4.2 Results of complex skin color background. 
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(a) (b) (c) 

Fig- 4.3 Results of hand region detection in the condition of overlapping 

between the hand and other skin color objects. 
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(a) (b) (c) 

Fig- 4.4 Results of hand region detection in the condition of multiple users. 
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4.2 Feature Extraction 

 In this section, the experimental results are presented in three parts. The first 

part focuses on the forearm cropping. The second part focuses on the performance of 

different hand orientation. The third part shows the results of finding fingertip 

positions.  

Experiment 1: 

 

To evaluate the ability of the proposed method to crop the forearm region, and 

Fig- 4.5 shows the results, where the green rectangles are boundary of detected CCL 

(a) (b) 

Fig- 4.5 Results of forearm cropped in condition of (a) different postures (b) 

different distances. 
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objects and blue ones are hand regions. The result of Fig- 4.5 (a) shows that even 

though the hands are not open, the forearm regions are still be cropped. In order to 

examine the function of normalization, the experiment test different distances between 

the human and camera including 0.5m, 1.0m, 1.5m and 2m, and Fig- 4.5 (b) shows the 

result,. Obviously, the influence of distance is highly reduced. 

Experiment 2: 

 

This experiment shows the hand direction can be detected with fast processing 

speed and accurate rate. These information can be applied in a sequential HGR 

process. 

(a) (b) 

Fig- 4.6 Results of different hand direction. 
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Experiment 3:  

 

The fingertip positions are shown in Fig- 4.7 (c), where the red and yellow 

(a) 

(b) 

Fig- 4.7 Results of finding fingertip positions. 

(b) (c) 
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points denote palm center and fingertips, respectively. This experiment shows the 

fingertip positions can be extracted fast and precisely.  

4.3 Hand Gesture Recognition 

In this section, the hand recognition system would be tested in algorithms to 

examine the performance and reliability. This thesis adopts discriminative 

classification model, neuron network and hidden Markov model to implement the 

HGR systems. This experiment test 6 hand gestures to be recognized, including 

moving left, right, upward, downward, open and click. The performances of these 

methods in different algorithm are shown in Table 4.1, which include 4483 training 

dataset.  

 

This experiment shows that the hand feature extraction method can be used in 

different recognition method and posses good performance, and the result shows in 

Fig- 4.9. Furthermore, a hand gesture composed of a sequence of hand postures that 

are connected by continuous motions can be recognized using the extracted features. 

Table 4.1 Recognition Results of Different Classifier 

 Correct rate(%) Process Time(s) 

Discriminative 85.6 0.09 

NN-based Approach 89.83 0.24 

HMM-based Approach 91.06 0.31 
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It is obvious that the accuracy rate of HMM-based HGR system is higher than 

that of the other two HGR systems. However, the computational cost of HMM-based 

is lower than other two HGR systems and the average executing time of Set-I is lower 

than 0.1sec. This experiment shows that the proposed hand feature extraction method 

is useful and meaningful for the HGR system, no matter what the classifier is. Fig- 4.9 

shows the decision boundary of the four moving direction using NN-based algorithm. 

Fig- 4.8 Results of HGR systems. 
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The next experiment test a real application on HCI, which use the HGR system 

to control the direction and position of the mouse, and Fig- 4.10 shows this 

implementation. For more defined gestures, the mouse control can process more 

complicated movement. 

 

  

Fig- 4.10 Application of controlling mouse. 

Fig- 4.9 Decision boundary of four moving direction 
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Chapter 5 

Conclusions and Future Works 

This thesis proposes a fast and robust hand feature extraction method based on 

depth and RGB information generated by Kinect that can be used in real-time HGR or 

hand tracking. The system is divided into three parts, including ROI selection, feature 

extraction and HGR. First, the skin color detection and connected component labeling 

(CCL) are applied to select the potential ROIs. Through distance transformation, the 

system could extract feature points that can be used to find hand features, which 

includes direction, fingertip positions, and palm center. Finally, these features are sent 

into several HGR systems. From the experimental results, there are some conclusions 

listed as below: 

 The ROI selection could detect hand region with accuracy rate higher than 90% 

and the average executing time about 0.2sec/frame. Besides, with the help of depth 

image, the system could also detect hands correctly even suffering from the 

overlapping between the target hand and other skin color object. 

 The feature points extracted by this thesis can be used to find useful hand features 

for HGR. With the depth information, the forearm could be cropped and these 

feature points could generate the fingertip positions and hand direction. These hand 

features are useful and meaningful for the usage of human-computer 

interaction(HCI). 

 The extracted features are sent into the HGR system, which is implemented by 

different algorithms. The experimental results show that the proposed hand feature 

extraction method is useful and meaningful for HGR system and can work in 
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real-time and possess high recognition rate. 

The proposed feature extraction method has been demonstrated to be successful 

in HGR system, which is an important function in the field of HCI. With this HGR 

system, the HCI could be more accurate and natural. There are two primary future 

works to further investigate which are presented as below: 

 The ROI selection could not only detect outstretched hands but hands with curved 

fingers. Furthermore, with the depth distribution information of a CCL object, the 

3-D direction can be estimated to build up a hand model. 

 Two or more users can appear in the screen to allow a more complicated hand 

gestures. Therefore, the ROI selection and HGR system should have the ability to 

discriminate these hand gestures when faces occlusion problem. Furthermore, the 

more robust HGR system should be designed to handle the hand gestures with 

ambiguous movement. 
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Appendix. A:Forward-Backward Algorithm 

Given observation sequence X { x1 ,..., xN} and the joint probability of HMM 

as below: 

         1 1

2 1

, z z | z |
N N

n n n n

n n

p X Z p p p x z

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    (A.1) 

where all the model parameters pz1pznzn-1and pxnznare known and Z z1 ,..., 

zN}. Assume zn is M-state discrete random variable, where n1,...,N. The posterior 

probability of latent variable can be decoupled as: 
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(A.2)

 

since { xn+1 ,..., xN } is conditional independence with { x1 ,..., xn } given zn and where 

we have defined: 
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where α(zn) is called forward message that accumulated from the previous n 

observations and β(zn) is backward message of all future data from time n+1 to N. The 

α(zn) can be expressed in terms of α(zn-1) as follows: 
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since xn is conditional independence with { x1 ,..., xn-1, zn-1} given zn and zn is 

conditional independence with { x1 ,..., xn-1} given zn-1, α(zn) can be simplified as: 
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where pznzn-1and pxnznare known parameters. To start this recursion, the initial 

forward message is given by 

      1 1 1 1 1 1
( ) x ,z z x | zz p p p   (A.4) 

Therefore, the overall cost of evaluating these quantities for n=1,...,N is of 

O(NM
2
).Similarly, the backward message β(zn) can find a recursion relation as: 
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because { xn+2 ,..., xN }is conditional independence with { xn+1, zn} given zn+1, this 

would become: 

 

     

   

1

1

2 1 1 1 1

1

1 1 1 1

1

( )

        ( )

z

z

x , ..., x | z x | z z | z

z x | z z | z

n

n

M

n n N n n n n n

M

n n n n n

z p p p

p p









    



   









  (A.5)

 

also, a backward message β(zn) can be evaluated in terms of β(zn+1), and for nN-1, 

the backward message is: 
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from (A.5), this term is: 
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