
應用於線上社群網路分析之

雲端運算平行分群演算法

研究生: 謝子強 指導教授: 高榮鴻

國立交通大學電信工程研究所碩士班

摘要

隨著社群網路服務的興盛，營運商對於社群網路的資料分析十分感興

趣。然而，在大量資料的限制之下，傳統運行在單一電腦上的演算法已經

無法承受使用者所產生的海量資料。因此，如何設計雲端的平行演算法便

成為一項重要的課題。本文關注於設計高凝聚性子圖 (k − truss) 之雲端平
行分群演算法，我們提出了兩個演算法來降低計算的時間成本。以上的演

算法分別應用於兩種不同的情況，第一個演算法適用於靜態網路，意即對

於社群網路的一個時間點做分析；第二個演算法適用於動態網路，對於一

個社群網路選擇兩個較近的時間點，我們的演算法可以利用前一個時間點

的分析結果來加速當前的運算。在驗證的部分，我們分別測試了人工合成

的資料和實際的資料，包含了電子郵件網路、線上社群網路等。以真實的

資料測試靜態網路分群演算法，在特定的情況可以達到加速的效果，若是

處於效率較差的情形，演算法也可以自動切換成原始的法子避免計算成本

的增加。以人工合成的資料測試動態網路分群演算法，在網路變化不大的

情況之下可降低執行時間。

關鍵詞：社群網路服務、社群網路分析、雲端計算

i

Truss-Based Clustering Algorithms in MapReduce
for Analyzing Massive Online Social Networks

Student : Tzu-Chiang Hsieh Advisor : Rung-Hung Gau

Institute of Communications Engineering
National Chiao Tung University

Abstract

With the rise of social networking service, operators are very interested
in the data analysis of social network. However, due to the large data size,
traditional algorithms running on single computer cannot deal with it. Thus,
how to design an algorithm in MapReduce is an important issue. The thesis
focuses on designing algorithms for finding cohesive subgraph (k − truss)
in MapReduce. We propose two algorithms applied to two situations. The
first one is designed for static social networks. In other words, it can analyze
a social network at a snapshot. The second one is designed for dynamic
social networks. Given two close snapshots of a social network, we use the
analytical results of the first one to speed up the analysis of the second one.
We test the proposed algorithms by both synthetic data and real world data
including email communication network, online social network and so on.
The first algorithm is faster than the original one when applied to real world
data. In case the proposed algorithm does not improve the performance, our
algorithm can automatically switch to the original algorithm. We verify the
second algorithm using synthetic data. It is faster than the original one if
the change of networks is below a threshold.

keywords: social networking service, social network analysis, MapReduce

ii

Contents

Chinese Abstract i

English Abstract ii

Contents iii

List of Figures v

1 Introduction 1

2 Notations and Backgrounds 5
2.1 Notations . 5
2.2 The Definition of Truss . 6
2.3 MapReduce Overview . 7

3 Improve Truss Finding in MapReduce 9
3.1 The Existing Algorithm . 9
3.2 The Improved Algorithm . 10
3.3 Additional Conditions . 17

4 Adaptive Algorithm for Truss Finding in Dynamic Social
Networks 18
4.1 The Model of Adaptive Algorithm 18
4.2 Problem Formulation . 19
4.3 The Concept of The Algorithm 20

iii

4.4 Algorithm Description . 22

5 Experiment Results 29
5.1 Environment . 29
5.2 Test Data . 30

5.2.1 Synthetic Data . 30
5.2.2 Real World Data . 31

5.3 Correctness Verification . 32
5.4 Evaluate Improved Algorithm 33

5.4.1 Enron email . 34
5.4.2 Amazon . 36
5.4.3 Youtube . 38
5.4.4 LiveJournal . 40

5.5 Evaluating the Adaptive Algorithm 40

6 Conclusion 43

Bibliography 44

iv

List of Figures

2.1 Maximal trusses in the network (k = 3) 7
2.2 MapReduce execution framework 8

3.1 The graph for illustrating the improved algorithm 10
3.2 Preprocessing (phase 1) . 13
3.3 Triangle-based filter (phase 2) 14
3.4 Update support (phase 3) . 15
3.5 Merge records which have the same edge (phase 4) 16

4.1 The model of adaptive algorithm 19
4.2 A dynamic graph with two snapshots 22
4.3 The flowchat of adaptive algorithm 22
4.4 Find the changes of the network (phase 1) 23
4.5 Reserve Eadd and Eadj. Then, calculate their degrees. (phase 2) 24
4.6 Discard the edges not appearing in current graph (phase 3) . . 25
4.7 Discard the triangles not appearing in current graph (phase 4) 26
4.8 Delete redundant triangles (phase 5) 27

5.1 Visualize the runtime of Enron email 34
5.2 Visualize the runtime of Amazon 36
5.3 Visualize the runtime of Youtube 38
5.4 Visualize the runtime of adaptive simulation 1 41
5.5 Visualize the runtime of adaptive simulation 2 42

v

Chapter 1

Introduction

In recent years, social network analysis (SNA) becomes more and more
important because of the emergence of large scale social networking service
(SNS) such as Facebook, Twitter, LinkedIn and so on. According to statistic
of SocialBakers [1], there are close to 1 billion people in the world using Face-
book, and about 13 million users in Taiwan. To analyze the huge network,
one possible way is using MapReduce technology [2][3][4][5], and we will dis-
cuss it in section 2.3. By the way, there have been many works [6][7][8][9]
using MapReduce to deal with big data.

Given a social network, many researchers are interested in identifying
groups of closely bound people, or better known as cohesive subgroups. Typ-
ical examples of such groups in practice are formed by families and friends.
Furthermore, some researchers use it to identify terrorists or criminal orga-
nization. The most well-known cohesive graph is clique [10][11], which is a
complete graph. However, there are two problems for clique: first, the defini-
tion is too strict (in real world, not all members have relationship with each
other in many groups); Second, the time complexity of computing clique is
NP-hard. A relaxation version is k-clique [11][12], which is a maximal sub-
graph G′ of G such that the distance in G of any two vertices in G′ is equal
to or smaller than k. The disadvantages of k-clique are: 1⃝ The diameter of
a k-clique may be larger than k. 2⃝ A k-clique may be disconnected.

1

Thus, k-clan and k-club [11][12] were proposed in 1979. A k-clan of G is
a k-clique G′ of G such that the distance in G′ of any two vertices in G′ is
equal to or smaller than k. The other is k-club, which is a maximal subgraph
G′ of G such that the diameter of G′ is equal to or smaller than k. However,
because they are the modified version of clique, the problem of computational
difficulties in large scale networks is not solved. Another cohesive subgraph
is k-plex [13]. A k-plex with c vertices is a subgraph whose degree of each
vertex is between (c − 1) to (c − k). Unfortunately, it is also NP-hard for
computation.

To overcome the computational difficulties, Seidman proposed k-core [14]
in 1983. A k-core is a maximal subgraph whose degree of each vertex is equal
to or larger than k. By the way, a k order clique is also a (k-1)-core with
k vertex. Although k-core can be computed in polynomial time, the found
components are too numerous. Thus, Seidman described it as a “seedbed”
which can precipitate other cohesive graphs such as clique.

In 2008, Cohen [15] sought a substructure which can be computed in
polynomial time and is not overly-numerous. He created a new cohesive
graph called k-truss, in which a tie between two actors A and B is legitimate
only if it supported by at least k–2 other actors excluding A and B. A
maximal k-truss of graph G = (V,E) could be computed in polynomial time
and the size of the subgraph is between clique and k-core. Thus, we regard
it as a good cohesive graph and we will detailed introduce it in section 2.2.
To the best of our knowledge, there are only three algorithms for computing
k-truss [15][16][17]. In addition, only [16] is a MapReduce algorithm. We
propose an improved MapReduce algorithm for finding truss in chapter 3.
We summarize the above cohesive graphs in table 1.1.

2

Table 1.1: The analysis of cohesive graphs
Item Advantage Drawback
Clique Very tight Too strict, NP-hard
K-clique Tight Not intuitive, probably disconnected,

NP-hard
K-clan Tight NP-hard
K-club Tight NP-hard
K-plex Tight NP-hard
K-core Polynomial time Loose, numerous
K-truss Tight, polynomial time

Another topic in our thesis is about dynamic network. Most of the social
networks in reality change over time. The change rate of dynamic social net-
works is very quick, but the magnitude of the changes is slight. Because the
above characteristics, many researchers study it from different perspectives.
Some of them [18][19] focus on identifying the communities and tracking their
evolutions in dynamic networks. The basic idea is using some information
retrieved from a series of communities rather than using only one snapshot.
The information includes the changes of communities such as birth, death,
merging, splitting, expansion and contraction. [20] focuses on designing an
adaptive algorithm to reduce the run-time. Whenever the network updates,
they use the results of the previous snapshot to speed up the computational
time of current snapshot instead of re-calculating the network.

Our work is different from the above. First, we want to find k-trusses
instead of the communities without formal definition. Second, we focus on
the speed of the algorithm instead of comparing the results with ground-truth
because our algorithm is designed for finding particular structure. Third, our
algorithm can deal with big data but the above works cannot.

3

The rest of the thesis is organized as follows. In chapter 2, we define
notations frequently used, introduce the k-truss, and elaborate on MapRe-
duce. In chapter 3, we propose an improved algorithm for truss finding with
MapReduce. We first show the original algorithm and then illustrate our
algorithm. In chapter 4, we design an adaptive algorithm for truss finding
with MapReduce. In chapter 5, we evaluate our algorithm and compare it
with the original algorithm. The data set includes artificial and real world
data.

4

Chapter 2

Notations and Backgrounds

2.1 Notations

We first define some notations to analyze the problem. The notations are
described in table 2.1 and it will be used throughout the thesis.

Table 2.1: Notations
Notation Description
G = (V,E) An undirected, unweighted simple graph G
V (G) The vertex set of G
E(G) The edge set of G
|V | The number of vertices in G
|E| The number of edges in G
Tri(G) The triangle set including all triangles of G
Tk(G) The edge set composed of all maximal k-trusses of G
Gn The network observed at snapshot n
G0 The initial network
∆G The change between Gn and Gn−1. ∆G is composed

of ∆Gadd and ∆Gremove

∆Gadd The maximal edge set appearing in Gn, but not in
Gn−1

∆Gremove The maximal edge set appearing in Gn−1, but not in
Gn

G = {G0, G1,…, Gn} A dynamic social network including n+ 1 snapshots

5

2.2 The Definition of Truss

The concept of truss is originally proposed by Cohen [15] in 2008. The
basic idea of truss is as follow: if two actors are strongly tied in the community
structure, they are likely to share common actors. He created a new cohesive
graph called k-truss, in which a tie between two actors A and B is legitimate
only if it supported by at least k–2 other actors who are tied to both A and
B. Here are the formal definitions about k-truss:

Definition 1 A k-truss is a connected graph in which each edge is supported
by at least k–2 triangles including the edge. (k > 2)

Definition 2 A maximal k-truss of graph G is a k-truss T that is not con-
tained in a larger k-truss of G.

Definition 3 Given a parameter k, the truss finding problem is to identify
all maximal k-trusses of the graph.

K-truss also have many intuitive physical characteristics and the nature
of the graph theory [15][17]. We introduce some important properties of
them here: 1⃝ Truss can be considered as the relaxation version of clique.
The reason is that for each edge in clique, it must be supported by the other
nodes in the clique. However, for each edge in k-truss, it is only supported
by k−2 nodes. 2⃝ Each k-truss T of graph G is a subgraph of a (k-1)-core of
G. The reason is that each node in T has degree more than k−1, so T is also
a (k-1)-core. 3⃝ Truss finding problem can be computed in polynomial time
[15]. After realizing the properties of truss, let us visualize it. Figure 2.1
on the next page is an example for T3(G) in the network G. Colored nodes
represent 3-trusses, and different colors represent different maximal trusses.

6

Figure 2.1: Maximal trusses in the network (k = 3)

2.3 MapReduce Overview

MapReduce is a software framework for processing huge datasets in-
parallel on a large number of nodes; If all nodes are on the same local network
and use similar hardware, it is referred to a cluster; If the nodes are shared
across geographically distributed systems and use more heterogeneous hard-
ware, it is referred to a grid. Computational processing can occur on data
stored either in unstructured storage assets such as file systems or in struc-
tured storage assets such as databases. MapReduce can process data on the
storage assets or near it to decrease transmission of data.

The framework of MapReduce is shown in figure 2.2 on the next page. The
execution flow is as follow: 1⃝ When user program is executed, the program
will be cloned to the master and each worker. 2⃝ The master assigns which
workers are mappers and which workers are reducers. 3⃝ The data blocks
in distributed file system are assigned to mappers for Map. 4⃝ The results

7

Figure 2.2: MapReduce execution framework

of Map are stored into the local disk of workers. 5⃝ Remote read the result
which is sorted and merged from Map, and then execute Reduce on workers.
6⃝ Write the outputs which user demand.

Here, we introduce ”Map” and ”Reduce” step in detail. In ”Map” step:
the master takes the input file, divides it into many smaller sub-problems,
and assigns them to the mappers. Each mapper may do this again in turn,
leading to a multi-level tree structure. The mappers process the smaller sub-
problems and pass the answers back to their master node. In ”Reduce” step:
the master node gets the original answers from the reducers which combine
all the answer of related sub-problems. Note, the answers of the sub-problems
have been computed by the mappers.

8

Chapter 3

Improve Truss Finding in
MapReduce

3.1 The Existing Algorithm

We outline the truss finding algorithm proposed by Cohen [16] in algo-
rithm 1. The basic idea of step 1 is to reduce the computational complexity
of step 2. Let us explain it in detail: step 2 includes two phase; Phase 1
gets triads (unclosed triangle), and phase 2 combines triads with edges to
get triangles. For each vertex, the time and space complexity in phase 2
is proportional to square of the degree. Thus, if we choose the vertex with
lower degree as center node, the computational complexity can be reduced.

Algorithm 1: The original version of truss finding in MapReduce
Input: G
Output: Tk(G)

1 Augment the edges with vertex valences.
2 Enumerate triangles.
3 For each edge, record the number of triangles containing that edge.
4 Keep only the edges with sufficient support.
5 If step 4 dropped any edges, return to step 1.
6 Find the remaining graph’s components; each is a truss.

9

Recall that for a k-truss, each edge is contained in at least k–2 triangles.
Thus, the goal of Step 3-4 is to discard edges without sufficient support. The
above instructions are very intuitive, but in fact they abandon some useful
information at the same time. We will show that in section 3.2. Step 5 makes
sure that each edge has sufficient support (if some edges is dropped in step
4, the edges adjacent to them may has insufficient support). When no more
edge is dropped in step 4, we find the edge set Tk(G). However, we cannot
identify them because we don’t have their group identity. Thus, step 6 is
designed for traversing each component to solve the problem.

3.2 The Improved Algorithm

In the previous section, we have mentioned that the original algorithm
discards some useful information. Thus, we propose an improved algorithm to
deal with the problem. We will use the graph in figure 3.1 to illustrate our al-
gorithm. In the example, we want to find T4(G) = {(A,B), (A,C), (A,D), (B,C)

, (B,D), (C,D)}. In algorithm 1, step 3-4 abandon edges without sufficient
support and go back to step 1-2 to recalculate triangles (as long as there are
some discarded edges). If we can reserve some information in step 3-4, we
are able to avoid recalculating triangles by updating triangles and supports.

Figure 3.1: The graph for illustrating the improved algorithm

10

We write down our algorithm in pseudo codes and illustrate them later.

Algorithm 2: Prepocessing (MapReduce A)
Input: <recordId, triangle>
Output: <edge, support & triangle>

1 function map(recordId, triangle)
2 for i = 1 to 3 do
3 edge[i] ← getEdge(triangle, i)
4 EMIT(edge[i], triangle)
5 end
6 end function
7 function reduce(edge, triangle)
8 support ← the total number of edge
9 for each record do

10 EMIT(edge, support & triangle)
11 end
12 end function

Algorithm 3: Triangle-based filter (MapReduce B)
Input: <recordId, edge & support & triangle>
Output: <edge, support & triangle> or <edge, support-1>

1 function map(recordId, edge & support & triangle)
2 for each record do
3 EMIT(triangle, edge & support)
4 end
5 end function
6 function reduce(triangle, edge & support)
7 if the supports of all edges eqaul to ot larger than k-2 then
8 for each record do
9 EMIT(edge, support & triangle)

10 end
11 end
12 else
13 for each record does not have enough support do
14 EMIT(edge, support-1)
15 end
16 end
17 end function

11

Algorithm 4: Update support (MapReduce C)
Input: <recordId, edge & support & triangle> or <recordId, edge &

support-1>
Output: <edge, support & triangle>

1 function map(recordId, edge & support & triangle)
2 for each record do
3 EMIT(edge, support & triangle)
4 end
5 end function
6 function reduce(edge, two type records)
7 decreaseSupport ← the total number of <edge, support-1>
8 for each <edge, support and triangle> record do
9 EMIT(edge, (support-decreaseSupport) & triangle)

10 end
11 end function

Algorithm 5: Merge Duplicate Edges (MapReduce D)
Input: <recordId, edge & support & triangle>
Output: <edge, an empty string>

1 function map(recordId, edge & support & triangle)
2 for each record do
3 EMIT(edge, support & triangle)
4 end
5 end function
6 function reduce(edge, support & triangle)
7 EMIT(edge, an empty string)
8 end function

12

Figure 3.2: Preprocessing (phase 1)

When triangles have been calculated at least once, we want to retain the
edges with sufficient support. Our goal is to avoid recalculating triangles but
update them. A key point is to reserve triangle identities for each edge, and
we will explain how it works in the subsequent phase.

Figure 3.2 illustrates how phase 1 realizes the key point. The phase is
similar to step 3 in the original algorithm, but we reserve the triangle identity
for each edge in map and also reserve edges without sufficient support in
reduce. For each triangle record, the mapper emits three records. For each
record, its key is the edge and the value is the original triangle identity. Then,
the reducer calculates the support for each edge.

13

Figure 3.3: Triangle-based filter (phase 2)

In phase 2, we design a triangle-based filter to percolate edges with suf-
ficient support and legitimate triangles. Given the supports of edges for
each triangle, we can differentiate which triangle is legitimate. Then, we can
process them according to their situations.

In figure 3.3, the mapper changes the order of the text to prepare for
the next stage. The reducer operates according to four situations. For each
triangle, if all edges are legitimate, we retain all of them. If one or two edge(s)
do not have sufficient support, the reducer emits record sup−1 for the other
edge(s). It is for updating the support of the retained edge in the next phase.
If all of edges do not have sufficient supports, the reducer doesn’t emits any
record. Note that an edge may be included in several triangles.

14

Figure 3.4: Update support (phase 3)

In the third phase, we update the support of corresponding edges. More-
over, the formation of reducer’s output coincides with the input of Map A.
The example is shown in figure 3.4. An mapper is simply an identity map-
ping. The reducer is composed of two sub-phases; First it accumulates all
records with sup − 1, and then updating the support of the other type of
records. Note that the output format of Reduce C is the same with the
input format of Map B. We can use the property to update triangle and
support iteratively.

15

Figure 3.5: Merge records which have the same edge (phase 4)

The phase 2-3 in the previous paragraph can form a structure to update
triangle and support iteratively. Until there is no record with sup − 1 in
phase 3, the while loop terminates. Next, we have to merge records which
have the same edge for eliminating redundant messages (phase 4). The detail
is illustrated in figure 3.5. The mapper emits records by themselves, and the
reducer merges records which have the same edge but in different triangles.

Algorithm 6: The improved version of truss finding in MapReduce
Input: G
Output: Tk(G)

1 Augment the edges with vertex valences.
2 Enumerate triangles for remaining edge.
3 Preprocessing. (MapReduce A)
4 Triangle-based filter (MapReduce B)
5 Update support. (MapReduce C)
6 If there is any record with sup− 1, return to step 4.
7 Merge records which have the same edge. (MapReduce D)
8 Find the components of remaining graph; each is a truss.

16

We summarize our algorithm as follows. Step 1 and 2 are the same with
the original algorithm. Step 3-5 are the core, which avoids re-calculating
triangles in the loop. Step 5 ensures that all edges are legitimate and step 6
eliminates redundant messages. Finally, step 7 traverses all components.

3.3 Additional Conditions

After doing some experiments, we discover that our algorithm is better
than the original algorithm in some cases but worse than the original in other
cases. Thus, we try to explain the result and propose a method to deal with
it. The key point is the accuracy which the guessed triads are closed. In
the original algorithm, it guesses some potential closed triads and then tests
whether they are indeed closed. For the phase 2 and 3 in our algorithm, the
data size is 3 · |Tri(G)| and the complexity is proportional to it. Thus, if the
guessed accuracy of the original algorithm is larger than 1

3
, our algorithm is

worse than the original. Because of the restriction, we set a condition that
if the guessed accuracy is larger than 1

5
, we choose the original algorithm.

The guessed accuracy could be obtained at the first triangle round. Another
additional condition is that if the user number of social networks is smaller
than 1 million, we choose our algorithm.

17

Chapter 4

Adaptive Algorithm for Truss
Finding in Dynamic Social
Networks

4.1 The Model of Adaptive Algorithm

Just like most of conventional SNA algorithms [11][15], we focused on the
problem of static social networks in chapter 3. Although we have improved
the speed of truss finding algorithm, it spends many hours for large scale
networks. Many companies need to analyze social networks on a regular
basis. For example, large-scale social networking service company, online
shopping providers and telecommunication company. It costs a lot of time
for recomputing whenever the network updates. While the changes rate of
social networks could be fast, the amplitude of change might be slight. Thus,
we propose an adaptive algorithm that uses the previous results to speed up
the analysis of the current social graph.

18

Figure 4.1: The model of adaptive algorithm

Our model is similar to [20] and we illustrate it in figure 4.1. Blue dash
line represents the flowchat of original algorithm and red dash line repre-
sents adaptive algorithm. At time slot n, the adaptive algorithm utilizes
information Tri(Gn−1) and ∆G instead of only using Gn to get Tri(Gn) for
decreasing computational time.

4.2 Problem Formulation

Suppose the dynamic social network is represented by a time series of
graphs G = {G0, G1,…, Gn}. In particular, Gm is the social graph at the
m-th time slot. Our goal is to devise an algorithm to quickly identify k-truss
at any snapshot (exclude G0) utilizing the information from the previous
snapshot. For example, if someone wants to find Tk(Gn), our algorithm can
achieve the goal using the information including Gn−1, Gn and Tri(Gn−1).

19

4.3 The Concept of The Algorithm

We first elaborate on how truss structure changes according to social net-
work change. When a member joins the network, he or she may communicate
with other members in the network. There are four possibilities in the above
situation: the first one is the relationship ties and the ties adjacent to it form
a new truss; The second is new ties merges two or more trusses into a bigger
truss; The third is it expends the scale of the existed truss; The last one is
nothing happen.

If a member leaves the network, he or she may break relations between his
or her friends in the network. The event also includes four possibilities: the
first one is his or her original truss disappears from the network; The second
is his or her original truss splits into two or more smaller trusses; The third
is it reduces the scale of the existed truss; The last one is nothing happen.

Let us define four events using graph theory: add a node, remove a node,
add an edge, and remove an edge. They sequentially represent a member
joins; a member leaves; a relationship establish; a relationship break. In
fact, add a node is composed of many add an edge, and remove a node is also
composed of many remove an edge. Thus, we only discuss add an edge and
remove an edge in the following paragraph.

We first discuss add an edge. When an edge is added into the graph,
it may form a triangle with adjacent edges. If more than one edge adds
into the graph simultaneously, they may form triangles with adjacent edges
or form triangles by themselves. Let us describe the step in detail: when
adding an edge set Eadd into the original graph Gn−1, we first get the edge
set Eadj which is adjacent to Eadd in Gn. Then, the new triangle set in G

is Tri(Eadd

∪
Eadj). Thus, if merging Tri(Eadd

∪
Eadj) and Tri(Gn−1), we

can get T3(Gn) (recall the definition of 3-truss, each edge is supported by
at least one triangle). In fact, the method may produce redundant triangles
in a special case: Eadj may form triangles by themselves. Thus, we have to
remove the redundant triangles later.

20

If we want to get Tk(Gn) for k > 3 utilizing the same concept, we need
knowing all indestructible structures (e.g. k-clique) for k-truss. In [15]
Cohen proposed that a k-truss need not contain a clique of order k, and
he give an example for k = 4. Thus, if we cannot find all indestructible
structures excluding k-clique, we can’t use the same way. Fortunately, if
we use the improved algorithm proposed in Section 3.2, we can get Tk(Gn)

quickly after finishing the adaptive algorithm for 3-truss.
Now we consider remove an edge. When an edge is removed from the

graph, it may destroy a triangle, a triad or even a k-truss. If more than one
edge is removed from the graph simultaneously, the above phenomenon is
more likely to occur. Let us describe the step in detail: suppose removing
an edge set Eremove from the original graph Gn−1, we just delete the trian-
gles including them from Tri(Gn−1). Because edges in each triangle can be
repeated, we can get T3(Gn) using the above step. If we want to get Tk(Gn)

for k > 3 in removing phase, we can use the way like add an edge.

21

4.4 Algorithm Description

In this section we will introduce the adaptive algorithm for 3-truss in
MapReduce. To easily understand the algorithm, we illustrate it using figure
4.2 in the following paragraph. In the figure, green graph G0 represents
original graph and the blue one G1 represents the graph at next snapshot.

Figure 4.2: A dynamic graph with two snapshots

We first show the flowchat of our algorithm in figure 4.3. Note that the
capital letter represent MapReduce phase.

Figure 4.3: The flowchat of adaptive algorithm

22

Figure 4.4: Find the changes of the network (phase 1)

The basic idea of phase 1 is to recognize which edges are added and which
edges are removed. Let’s see figure 4.4, the inputs of mapper are divided
into two types which represent edges in Gn−1 and Gn respectively. The
mapper emits records by themselves. The mission of reducer is to recognize
which edges are added and which edges are removed. The processing method
according to three situations: if a record appears in both Gn−1 and Gn, the
reducer discards it; If a record appears in Gn−1 but not in Gn, the reducer
emits the edge is removed. If a record appears in Gn but not in Gn−1, the
reducer emits the edge is added. After processing each edge, we find the
changes of the network.

In this paragraph we discuss how to find new triangles utilizing edges
newly added. We want to reserve Eadd and Eadj in the phase. The inputs
of the map are the output of the previous stage and Gn. There are two
situations in Map F: if an edge contains ADD message, the mapper emits

23

Figure 4.5: Reserve Eadd and Eadj. Then, calculate their degrees. (phase 2)

two records whose keys are vertices of the edge and the values are reserve
messages; If an edge contains no useful information, the mapper emits two
records whose keys are vertices of the edge and the values are the edge. In
Reduce F, there are two situations: if no record contains reserve message,
the reducer emits nothing because there is no edge adjacent to newly added
edges; Otherwise, the reducer counts the degree of the vertex and attaches
it to the original record excluding reserve records. Note, the output format
of phase 2 is equal to the stage 1 of Cohen’s step 1 in algorithm 1. Thus, we
can use his algorithm to finish finding Tri(Eadd

∪
Eadj). Here, we can merge

Tri(Eadd

∪
Eadj) and Tri(Gn−1) to get T3(Gn) if there is no edge removed

in Gn (we will illustrate how to eliminate redundant triangles later). There
is still a detail when merging two half degree records. Some vertices’ degree
may be zero because the vertices is included by Eadj but not included by
Eadd. Fortunately, there is no interference for our algorithm.

24

Figure 4.6: Discard the edges not appearing in current graph (phase 3)

Now let’s consider removing edges from Gn−1. Recalling section 4.3, we
propose if some edges are removed from the network, we can get T3(Gn) by
removing triangles containing the edges from Tri(Gn−1). In order to discard
the triangles, we first discard the edges not appearing in current graph. The
example is shown in figure 4.6; If the record contains RM message in Map
method, the mapper clones it; If the record represents a triangle, the mapper
emits three records whose key is an edge of the triangle and value is the
triangle. In Reduce method, there are two situations: if there is no RM
message, the reducer emits the original records; Otherwise, it emits nothing.

25

Figure 4.7: Discard the triangles not appearing in current graph (phase 4)

After discarding the edges not appearing in current graph, we can discard
the triangle containing these edges. The example is shown in figure 4.7; In
phase 4, the mapper changes the position of key and value to prepare for the
reducer. In Reduce method, if a triangle possesses three edges, the reducer
merges them to one triangle record; Otherwise, it emits no record. Here, we
can get T3(Gn) if there is no edge added in Gn.

When having the algorithm for adding and removing edges, we can cas-
cade them to process ∆G. Why? We can assume there exists an intermediate
graph Gn−0.5 between Gn−1 and Gn. It contains all the newly added edges
in Gn but not removing any edge from Gn−1. In this perspective, we can
explain why our algorithm is correct.

26

Figure 4.8: Delete redundant triangles (phase 5)

Recall that we have mentioned phase 2 (MapReduce F) may produce
redundant triangles. Thus, we think up a method to solve the problem in
this phase. An example is shown in figure 4.8 (it is not a correct example for
figure 4.2 in logic). The Map method is identity and the reducer only emits
one record for each triangle (key).

Algorithm 7: Adaptive algorithm for Truss finding in MapReduce
Input: Gn, Gn−1 and Tri(Gn−1)
Output: Tk(Gn)

1 Find the changes of the network. (MapReduce E)
2 Reserve Eadd and Eadj. Then, calculate their degrees. (MapReduce F)
3 The stage 2 of augment the edges with vertex valences.
4 Enumerate triangles for Tri(Eadd

∪
Eadj).

5 Discard the edges not appearing in current graph. (MapReduce G)
6 Discard the triangles not appearing in current graph. (MapReduce H)
7 Delete redundant triangles. (MapReduce I)
8 Preprocessing. (MapReduce A)
9 Triangle-based filter (MapReduce B)

10 Update support. (MapReduce C)
11 If there is any record with sup− 1, return to step 9.
12 Merge records which have the same edge. (MapReduce D)
13 Find the components of remaining graph; each is a truss.

27

Let us conclude the algorithm and it is shown in algorithm 7. The input
is Gn, Gn−1 and Tri(Gn−1). The output is Tk(Gn) (only complete adaptive
for k = 3). Step 1 finds the variations of the network. Step 2-4 find newly
added triangle in Gn. Step 5-6 delete non-existent triangles in Gn. Step 7
deletes redundant triangles. Step 8-12 find Tk(Gn). Finally, Step 13 traverses
all k-truss components.

28

Chapter 5

Experiment Results

5.1 Environment

The experiment cloud is composed of ten computers and the specifications
are shown in table 5.1. The version of hadoop is 1.0.4 and the setting is
default. In addition, the reducer number of our algorithm is set to eighteen.

Table 5.1: The computers’ specification of the cloud
ID CPU RAM HDD
1 Intel(R) Core(TM)2 Quad CPU Q9500 @ 2.83GHz 4.0GB 290GB
2 Intel(R) Core(TM)2 Quad CPU Q8200 @ 2.33GHz 2.0GB 460GB
3 Intel(R) Core(TM)2 i5 CPU 650 @ 3.20GHz 2.0GB 220GB
4 Intel(R) Core(TM)2 Quad CPU Q8300 @ 2.50GHz 2.0GB 460GB
5 Intel(R) Core(TM) i5-2300 CPU @ 2.80GHz 4.0GB 460GB
6 Intel(R) Core(TM)2 Quad CPU Q8300 @ 2.50GHz 2.0GB 460GB
7 Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 4.0GB 460GB
8 Intel(R) Core(TM) i5 CPU 760 @ 2.80GHz 2.0GB 460GB
9 Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz 4.0GB 460GB
10 Intel(R) Core(TM)2 Quad CPU Q8400 @ 2.66GHz 2.0GB 290GB

29

5.2 Test Data

In this section, we will introduce test data in detail. Data is divided
into two categories including artificial data and real world data. Synthetic
data refers to data generated from random graph generator, and real world
data refers to data obtained from real world (e.g. A graph crawled from
Facebook).

5.2.1 Synthetic Data

From the viewpoint of complexity, we do not want the model of test data
is too complex. Thus, we give priority to use Erdős–Rényi model [11]. An
Erdős–Rényi random graph ER(n, p) denotes an undirected graph in which
each two distinct vertices are connected by an edge with probability p. We
can use it to generate an initial random network. To test adaptive algorithm,
we design an algorithm to change the initial network. It is shown in algorithm
8 and we will introduce it in detail in the following paragraph.

To get the next snapshot of the original ER graph, we need changing edges
in the original graph (in this model we don’t consider adding or removing
vertices). First, we define the change rate for a graph as a fractional number
whose numerator is the total number of newly added and removed edges,
while denominator is the total number of the edges in the initial graph. Note
that x is the rate of removed edges, y is the rate of new edges, G0 represents
the initial random graph and E is the edge set for clique with parameter n.

Algorithm 8: Algorithm for changing Erdős–Rényi model
Input: G0 : ER(n, p)
Output: G1

1 Read the input file and construct data structure.
2 For each edge in G0, it has the probability c

2
removed from the graph.

3 For each edge not in G0 but in E, it has the probability p
2·(1−p)

· c
added into the graph.

4 Write the output file.

30

The values of x and y have to satisfy the following two conditions: 1⃝ The
change rate is equal to c. 2⃝ The total number of newly added edges equals
the total number of removed edges. Based on the above conditions, we have
the following two equations:

|E(G0)| · x% + (|E| − |E(G0)|) · y% = |E(G0)| · c% (5.1)

|E(G0)| · x% = (|E| − |E(G0)|) · y% (5.2)

Solving the above set of linear equations, we have

x =
|E(G0)|

2 · |E(G0)|
· c = c

2
(5.3)

y =
|E(G0)|

2 · (|E| − |E(G0)|)
· c ≈ p · |E|

2 · (1− p) · |E|
· c = p

2 · (1− p)
· c (5.4)

Finally, we set x and y to the probability c
2

and p
2·(1−p)

· c respectively.
Thus, our model could satisfy the above two conditions.

5.2.2 Real World Data

The real data is obtained from the website [21] (Stanford Large Network
Dataset Collection). The detail of the dataset is shown in Table 5.2. For
Enron email, vertices represent email users, and edges represent the relation
which two users send at least an email to each other. For Amazon, vertices
represent products, and edges represent the relation which two products are
frequently co-purchased. For Youtube, vertices represent registered users,
and edges represent the relation which two users subscribe to each other.
For LiveJournal and Orkut, vertices represent users, and edges represent the
friend relation between two users. LiveJournal is a popular SNS in America
and Russia, while Orkut is a popular SNS in Brazil and India.

31

Table 5.2: Real world dataset
Name Nodes Edges Size Category
Enron email 36,692 367,662 3.86 MB Email communication

network
Amazon 334,863 925,872 12.0 MB Product network
Youtube 1,134,890 2,987,624 36.9 MB Online social network
LiveJournal 3,997,962 34,681,189 478 MB Online social network
Orkut 3,072,441 117,185,083 1.64 GB Online social network

5.3 Correctness Verification

Because the results of truss finding algorithms are also big data, we design
an algorithm in MapReduce to verify them. The inputs of the algorithm are
the results Tk(G) of original and improved algorithm in chapter 3 (or con-
ventional and adaptive algorithm in chapter 4). The output of the algorithm
is whether they are the same? Let’s describe the process. For each edge, the
mapper emits one record whose key is the edge that belongs to a truss and
value is an empty string. For each key in Reduce, the reducer doesn’t emit
anything if there are just two records. Otherwise, it emits a message. After
finishing the process, the output is set to they are the same if the reducer
doesn’t emit any record.

32

5.4 Evaluate Improved Algorithm

In this section, we focus on analyzing the runtime of datasets. For each
dataset, we give a range of k to compare the runtime between original and
improved truss finding algorithms. Furthermore, we show the runtime of
each phase to understand the bottleneck of two algorithms.

Table 5.3 shows the runtime of original and improved algorithm. The ta-
ble also shows the round number of the while loop used to find Tk(G) (loop1)
and which used to find components (loop2). It also shows the percentage of
vertices and edges which k-truss versus the original graph. Furthermore, we
visualize the runtime in figure 5.1 to make it easier to understand. In the
figure, we can discover two points: 1⃝ The runtime of both algorithms is
proportional to the round number of while loop. 2⃝ The round number and
k are not related. Finally, we show the accumulate runtime of each phase
for k = 4, 5 in table 5.4, 5.5 to give a detailed view. We use the framework
to show our experiment results from section 5.4.1 to 5.4.3. However, because
the runtime of LiveJournal (section 5.4.4) is too long, we only show the result
for k = 4.

Let us conclude our experiment results. When the user number of social
network is smaller than 1 million people, our algorithm is always better than
the original. The reason is that the communication cost between computers
cannot be ignored in this scale. Thus, our algorithm takes two phase to
update triangles is better than which takes five phase to update triangles.
When the user number of social network is larger than 1 million people, our
algorithm is equal to or better than the original algorithm. The above is
depend on the topology of social networks, in general, our algorithm has
better performance in social networks with lower fraction of closed triangles.

33

5.4.1 Enron email

Enron email is an email communication network. It includes about 37
thousand vertices and 368 thousand edges, furthermore, the size of the file is
3.86 MB and the fraction of closed triangles is 0.0853.

Table 5.3: The runtime of Enron email
K Original Improved loop1 loop2 Nodes Edges
3 13 min 23 sec 13 min 19 sec 1 8 67% 46%
4 27 min 49 sec 20 min 52 sec 6 8 56% 44%
5 33 min 53 sec 23 min 17 sec 8 8 39% 38%
6 37 min 4 sec 24 min 0 sec 9 7 28% 33%
7 46 min 55 sec 28 min 8 sec 12 8 20% 27%
8 51 min 26 sec 29 min 7 sec 14 6 11% 21%
9 52 min 39 sec 32 min 22 sec 14 7 8% 17%
10 60 min 48 sec 32 min 20 sec 17 6 6% 15%
11 67 min 10 sec 34 min 39 sec 19 6 5% 13%
12 91 min 45 sec 44 min 38 sec 27 6 4% 10%

3 4 5 6 7 8 9 10 11 12
10

20

30

40

50

60

70

80

90

100

K−truss

R
un

 ti
m

e
(m

in
ut

es
)

original algorithm
improved algorithm

Figure 5.1: Visualize the runtime of Enron email

34

Table 5.4: The detailed runtime of Enron email (k = 4)

Phase Original Improved
Degree1 3 min 32 sec (13%) 0 min 36 sec (3%)
Degree2 3 min 29 sec (13%) 0 min 35 sec (3%)

Triangle1 3 min 28 sec (12%) 0 min 35 sec (3%)
Triangle2 4 min 0 sec (14%) 0 min 40 sec (3%)
DropEdge 3 min 29 sec (13%)

Preprocessing 0 min 37 sec (3%)
TriangleBasedFilter 3 min 39 sec (17%)

UpdateSupport 3 min 42 sec (18%)
MergeEdge 0 min 35 sec (3%)

ComponentInit 0 min 35 sec (2%) 0 min 35 sec (3%)
Component1 4 min 40 sec (17%) 4 min 37 sec (22%)
Component2 4 min 36 sec (17%) 4 min 41 sec (22%)

Total 27 min 49 sec 20 min 52 sec

Table 5.5: The detailed runtime of Enron email (k = 5)

Phase Original Improved
Degree1 4 min 43 sec (14%) 0 min 35 sec (3%)
Degree2 4 min 37 sec (14%) 0 min 35 sec (3%)

Triangle1 4 min 39 sec (14%) 0 min 35 sec (3%)
Triangle2 5 min 20 sec (16%) 0 min 41 sec (3%)
DropEdge 4 min 40 sec (14%)

Preprocessing 0 min 38 sec (3%)
TriangleBasedFilter 4 min 45 sec (21%)

UpdateSupport 4 min 45 sec (21%)
MergeEdge 0 min 35 sec (3%)

ComponentInit 0 min 37 sec (2%) 0 min 34 sec (2%)
Component1 4 min 38 sec (14%) 4 min 36 sec (20%)
Component2 4 min 39 sec (14%) 4 min 38 sec (20%)

Total 33 min 53 sec 23 min 17 sec

35

5.4.2 Amazon

Amazon is a product network. It includes about 335 thousand vertices,
and 926 thousand edges. Furthermore, the size of the file is 12.0 MB and the
fraction of closed triangles is 0.2052.

Table 5.6: The runtime of Amazon
K Original Improved loop1 loop2 Nodes Edges
3 61 min 47 sec 62 min 12 sec 1 47 79% 77%
4 67 min 59 sec 57 min 19 sec 8 36 49% 50%
5 41 min 1 sec 26 min 26 sec 10 9 22% 23%
6 31 min 10 sec 18 min 30 sec 7 5 5% 6%
7 20 min 42 sec 12 min 53 sec 4 3 0.1% 0.1%
8 15 min 1 sec 9 min 4 sec 3 1 0% 0%
9 14 min 58 sec 9 min 10 sec 3 1 0% 0%
10 11 min 49 sec 9 min 5 sec 3 1 0% 0%
11 11 min 47 sec 9 min 3 sec 3 1 0% 0%
12 11 min 45 sec 7 min 44 sec 2 1 0% 0%

3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

K−truss

R
un

 ti
m

e
(m

in
ut

es
)

original algorithm
improved algorithm

Figure 5.2: Visualize the runtime of Amazon

36

Table 5.7: The detailed runtime of Amazon (k = 4)

Phase Original Improved
Degree1 4 min 45 sec (7%) 0 min 41 sec (1%)
Degree2 4 min 37 sec (7%) 0 min 35 sec (1%)

Triangle1 4 min 39 sec (7%) 0 min 35 sec (1%)
Triangle2 5 min 24 sec (8%) 0 min 43 sec (1%)
DropEdge 4 min 37 sec (7%)

Preprocessing 0 min 38 sec (1%)
TriangleBasedFilter 4 min 54 sec (9%)

UpdateSupport 4 min 57 sec (9%)
MergeEdge 0 min 35 sec (1%)

ComponentInit 0 min 34 sec (1%) 0 min 34 sec (1%)
Component1 22 min 12 sec (33%) 22 min 4 sec (38%)
Component2 21 min 11 sec (31%) 21 min 3 sec (37%)

Total 67 min 59 sec 57 min 19 sec

Table 5.8: The detailed runtime of Amazon (k = 5)

Phase Original Improved
Degree1 5 min 59 sec (15%) 0 min 41 sec (3%)
Degree2 5 min 48 sec (14%) 0 min 35 sec (2%)

Triangle1 5 min 48 sec (14%) 0 min 35 sec (2%)
Triangle2 6 min 36 sec (16%) 0 min 40 sec (3%)
DropEdge 5 min 50 sec (14%)

Preprocessing 0 min 37 sec (2%)
TriangleBasedFilter 5 min 51 sec (22%)

UpdateSupport 5 min 52 sec (22%)
MergeEdge 0 min 35 sec (2%)

ComponentInit 0 min 35 sec (1%) 0 min 35 sec (2%)
Component1 5 min 12 sec (13%) 5 min 14 sec (20%)
Component2 5 min 13 sec (13%) 5 min 11 sec (19%)

Total 41 min 1 sec 26 min 26 sec

37

5.4.3 Youtube

Youtube is a video-sharing web site that includes a social network. It
includes about 1.13 million vertices, and 2.99 million edges. Furthermore,
the size of the file is 36.9 MB and the fraction of closed triangles is 0.0062.

Table 5.9: The runtime of Youtube
K Original Improved loop1 loop2 Nodes Edges
3 21 min 41 sec 21 min 38 sec 1 13 23% 47%
4 49 min 53 sec 36 min 52 sec 11 10 8% 28%
5 58 min 44 sec 39 min 5 sec 15 8 4% 18%
6 77 min 44 sec 45 min 56 sec 20 9 2% 13%
7 72 min 41 sec 42 min 23 sec 20 6 1% 9%
8 69 min 43 sec 39 min 58 sec 19 6 0.7% 7%
9 90 min 37 sec 49 min 9 sec 26 6 0.5% 5%
10 121 min 36 sec 60 min 58 sec 36 6 0.4% 4%
11 80 min 47 sec 43 min 35 sec 23 6 0.3% 3%
12 101 min 25 sec 50 min 59 sec 30 5 0.2% 2%

3 4 5 6 7 8 9 10 11 12
20

40

60

80

100

120

140

K−truss

R
un

 ti
m

e
(m

in
ut

es
)

original algorithm
improved algorithm

Figure 5.3: Visualize the runtime of Youtube

38

Table 5.10: The detailed runtime of Youtube (k = 4)

Phase Original Improved
Degree1 7 min 1 sec (14%) 1 min 19 sec (4%)
Degree2 6 min 31 sec (13%) 0 min 38 sec (2%)

Triangle1 7 min 37 sec (15%) 0 min 45 sec (2%)
Triangle2 8 min 39 sec (17%) 1 min 4 sec (3%)
DropEdge 7 min 6 sec (14%)

Preprocessing 0 min 47 sec (2%)
TriangleBasedFilter 9 min 21 sec (25%)

UpdateSupport 9 min 9 sec (25%)
MergeEdge 0 min 41 sec (2%)

ComponentInit 0 min 35 sec (1%) 0 min 38 sec (2%)
Component1 6 min 17 sec (13%) 6 min 14 sec (17%)
Component2 6 min 7 sec (12%) 6 min 16 sec (17%)

Total 49 min 53 sec 36 min 52 sec

Table 5.11: The detailed runtime of Youtube (k = 5)

Phase Original Improved
Degree1 9 min 13 sec (16%) 1 min 15 sec (3%)
Degree2 8 min 43 sec (15%) 0 min 40 sec (2%)

Triangle1 9 min 44 sec (17%) 0 min 50 sec (2%)
Triangle2 11 min 25 sec (19%) 1 min 0 sec (2%)
DropEdge 9 min 33 sec (16%)

Preprocessing 0 min 49 sec (2%)
TriangleBasedFilter 12 min 6 sec (31%)

UpdateSupport 11 min 36 sec (30%)
MergeEdge 0 min 39 sec (2%)

ComponentInit 0 min 34 sec (1%) 0 min 35 sec (2%)
Component1 4 min 48 sec (8%) 4 min 53 sec (12%)
Component2 4 min 44 sec (8%) 4 min 42 sec (12%)

Total 58 min 44 sec 39 min 5 sec

39

5.4.4 LiveJournal

LiveJournal is an online social network. It includes about 4.00 million
vertices, and 34.7 million edges. Furthermore, the size of the file is 478 MB
and the fraction of closed triangles is 0.1154. In this dataset, our algorithm
detects the performance of our algorithm may worse than the original so it
automatically switches to the original algorithm to avoid increasing compu-
tational cost.

Table 5.12: The detailed runtime of LiveJournal (k = 4)

Phase Original Improved
Degree1 40 min 19 sec (6%) 40 min 2 sec(6%)
Degree2 31 min 8 sec (4%) 31 min 28 sec (4%)

Triangle1 2 hour 12 min (19%) 2 hour 16 min (19%)
Triangle2 4 hour 54 min (42%) 4 hour 52 min (42%)
DropEdge 2 hour 29 min (21%) 2 hour 32 min (21%)

ComponentInit 1 min 57 sec (0.3%) 1 min 56 sec (0.3%)
Component1 28 min 49 sec (4%) 28 min 50 sec (4%))
Component2 25 min 58 sec (4%) 26 min 5 sec (4%)

Total 11 hour 43 min 11 hour 48 min

5.5 Evaluating the Adaptive Algorithm

In this section, we use the synthetic data described in section 5.2.1 to
evaluate the performance of the adaptive algorithm. In addition, k is set to
three and the change rate is from 1% to 8%. Note, we don’t consider finding
components because the adaptive algorithm doesn’t focus on it. Adaptive
algorithm is better than the original if the change rate is less than five. Ac-
tually, our algorithm has some limitations. Recall our algorithm is composed
of adding triangle and removing triangle phase. In the adding triangle phase,
the time complexity is proportional to Tri(Eadd

∪
Eadj). In the removing tri-

angle phase, the time complexity is proportional to 3 · |Tri(G)| as in chapter
3.

40

The first test graph is an ER random graph with 1 million vertices and
the average degree is 20. In addition, the size of the file is 293MB and the
fraction of closed triangles is smaller than millionth.

Table 5.13: The runtime of adaptive simulation 1

Change rate Original Adaptive Gain
1% 10 min 9 sec 7 min 20 sec 28%
2% 9 min 27 sec 7 min 28 sec 21%
3% 10 min 5 sec 7 min 10 sec 29%
4% 9 min 40 sec 7 min 56 sec 18%
5% 10 min 0 sec 9 min 17 sec 7%
6% 9 min 25 sec 10 min 18 sec -9%
7% 9 min 49 sec 10 min 32 sec -7%
8% 9 min 36 sec 10 min 49 sec -11%

1 2 3 4 5 6 7 8
7

7.5

8

8.5

9

9.5

10

10.5

11

Change rate (%)

R
un

 ti
m

e
(m

in
ut

es
)

original algorithm
adaptive algorithm

Figure 5.4: Visualize the runtime of adaptive simulation 1

41

The second test graph is an ER random graph with 4 million vertices and
the average degree is 20. In addition, the size of the file is 599MB and the
fraction of closed triangles is smaller than millionth.

Table 5.14: The runtime of adaptive simulation 2

Change rate Original Adaptive Gain
1% 12 min 26 sec 8 min 10 sec 34%
2% 11 min 57 sec 8 min 47 sec 26%
3% 12 min 35 sec 9 min 43 sec 23%
4% 12 min 53 sec 11 min 16 sec 13%
5% 13 min 0 sec 11 min 38 sec 11%
6% 11 min 32 sec 12 min 18 sec -7%
7% 12 min 1 sec 13 min 43 sec -14%
8% 12 min 40 sec 13 min 52 sec -10%

1 2 3 4 5 6 7 8
8

9

10

11

12

13

14

Change rate (%)

R
un

 ti
m

e
(m

in
ut

es
)

original algorithm
adaptive algorithm

Figure 5.5: Visualize the runtime of adaptive simulation 2

42

Chapter 6

Conclusion

In this thesis, we focus on designing MapReduce clustering algorithm for
analyzing massive online social networks. K-truss is a cohesive subgraph
which can be computed in polynomial time. In addition, it could be used
to represent a community in a social network. We propose two algorithms
applied to two situations. The first one designed is for static social networks.
In other words, it can analyze a social network at a snapshot. The second one
is designed for dynamic social network. Given two close snapshots of a social
network, we use the analytical results of the first one to speed up the analysis
of the second one. The basic idea of our algorithms is to reuse the information
and avoid unnecessary recomputing. The experimental results show that the
first algorithm is is faster than the original algorithm if user population is
less than 1 million or the guessed accuracy is larger than 1

5
. In addition,

we propose an efficient method to predict if the proposed algorithm could
improve the performance. For the second algorithm, the simulation results
show that our algorithm is better than the original one if the change rate is
less than five percent. Future works include applying our algorithms to real
dynamic social networks. There exist some obstacles such as most of social
networks has different properties from ER random graph and may out of our
limitations.

43

Bibliography

[1] “Socialbakers.” Retrieved May 15, 2013 from the web: http://www.
checkfacebook.com/.

[2] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Communications of the ACM, vol. 51, pp. 107–113,
January 2008.

[3] “Hadoop mapreduce tutorial.” Retrieved May 15, 2013 from the web:
http://hadoop.apache.org/docs/r1.0.4/mapred_tutorial.html.

[4] “Wiki mapreduce.” Retrieved May 15, 2013 from the web: http://en.
wikipedia.org/wiki/MapReduce.

[5] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce.
April 2010.

[6] J. McGlothlin, M. Masud, L. Khan, and B. Thuraisingham, “Heuristics-
Based Query Processing for Large RDF Graphs Using Cloud Comput-
ing,” IEEE Transactions on Knowledge and Data Engineering, vol. 23,
pp. 1312–1327, September 2011.

[7] I. Palit and C. K. Reddy, “Scalable and Parallel Boosting with MapRe-
duce,” IEEE Transactions on Knowledge and Data Engineering, vol. 24,
pp. 1904–1916, October 2012.

[8] S. Sehrish, G. Mackey, P. Shang, J. Wang, and J. Bent, “Supporting
HPC Analytics Applications with Access Patterns Using Data Restruc-

44

turing and Data-Centric Scheduling Techniques in MapReduce,” IEEE
Transactions on Parallel and Distributed Systems, vol. 24, pp. 158–169,
January 2013.

[9] A. Nandi, C. Yu, P. Bohannon, and R. W Ramakrishnan, “Data Cube
Materialization and Mining over MapReduce,” IEEE Transactions on
Knowledge and Data Engineering, vol. 24, pp. 1747–1759, October 2012.

[10] R. D. Luce and A. D. Perry, “A method of matrix analysis of group
structure,” Psychometrika, vol. 14, pp. 95–116, June 1949.

[11] M. van Steen, Graph Theory and Complex Networks: An Introduction.
January 2010.

[12] R. J. Mokken, “Cliques, clubs and clans,” Quality and Quantity, vol. 13,
pp. 161–173, April 1979.

[13] S. B. Seidman and B. L. Foster, “A graph-theoretic generalization of the
clique concept,” Journal of Mathematical Sociology, vol. 6, pp. 139–154,
1978.

[14] S. B. Seidman, “Network structure and minimum degree,” Social Net-
works, vol. 5, p. 269–287, September 1983.

[15] J. Cohen, “Trusses: Cohesive Subgraphs for Social Network Analysis,”
technical report, pp. 1–29, 2008.

[16] J. Cohen, “Graph twiddling in a mapreduce world,” IEEE Computing
in Science and Engineering, vol. 11, pp. 29–41, July-August 2009.

[17] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
ACM Proc. VLDB Endowment (PVLDB), vol. 5, pp. 812–823, May
2012.

45

[18] D. Greene, D. Doyle, and P. Cunningham, “Tracking the Evolution
of Communities in Dynamic Social Networks,” IEEE/ACM ASONAM,
pp. 176–183, August 2010.

[19] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “FacetNet:
A Framework for Analyzing Communities and Their Evolutions in Dy-
namic Networks,” WWW ’08 Proceedings of the 17th international con-
ference on World Wide Web, pp. 685–694, 2008.

[20] N. Nguyen, “Adaptive Algorithms for Detecting Community Structure
in Dynamic Social Networks,” IEEE INFOCOM, pp. 2282–2290, April
2011.

[21] “Stanford large network dataset collection.” Retrieved May 30, 2013 from
the web: http://http://snap.stanford.edu/data/.

46

