中文摘要	I
英文摘要	····· II
誌謝	III
目錄	IV
表目錄	VII
圖目錄	IX
第一章 緒論	1
1-1 研究動機	1
1-2 研究目的	2
1-3 研究方法及流程	2
1-4 本論文之架構	4
第二章 文獻回顧	5
2-1 Epoxy Coated Reinforcement相關文獻	5
2-1-1 Epoxy 簡介	5
2-1-2 ECR簡介	5
2-1-3 Epoxy的玻璃相位轉換與熱劣解現象	6
2-2 握裹力基本原理	7
2-2-1 握裹破壞模式及影響因素	9
2-2-2 環氧樹脂防蝕披覆對握裹強度之影響	11
2-2-3 混凝土性質對握裹強度之影響	12
2-3 混凝土之一般性質及熱學性質	14
2-3-1 水泥之組成成分及其性質	14
2-3-2 水泥浆體與水泥砂浆受熱後之變化	14

	2-3-3 骨材之熱學性質15	
	2-3-4 骨材熱學性質對混凝土性質的影響16)
	2-3-5 混凝土之熱學性質17	,
2-4	混凝土受高温作用下之性質變化18	3
	2-4-1 高溫作用下混凝土之物理化學變化18	I
	2-4-2 高温作用下混凝土之抗壓強度19	1
	2-4-3 混凝土之爆裂與剝落19	I
	2-4-4 升温速率及延時對混凝土之影響	1
	2-4-5 火害後混凝土之應力應變關係21	
第三章	試驗計畫與試驗方法	ŀ
3-1	試驗計畫24	ļ
3-2	試驗變數	1
3-3	試驗材料	5
3-4	試體規劃)
	3-4-1 試體製作	
	3-4-2 試驗養護、烘乾29	ļ
	3-4-3 抗壓試驗	I
3-5	試驗設備30)
3-6	試驗設置及步驟3]	L
第四章	試驗結果與討論	,
	前言	3
4-1	試體的破壞模式	}
	4-1-1 常溫下拉拔試驗試體之破壞模式	
	4-1-2 100℃下拉拔試驗試體之破壞模式	

4-1-3 200℃下拉拔試驗試體之破壞模式	35
4-1-4 D19 400℃(D13 300℃)下之破壞模式	35

- - 4-2-1 埋置於加熱與未加熱試體的一般鋼筋在拉出後之外

觀	••••••		••••••	36
---	--------	--	--------	----

4-2-2 埋置於加熱與未加熱試體的ECR鋼筋在拉出後之外

背	見	 	
	-		

4-3-3 握裹強度的折減情形......40

- 4-4 ECR與鋼筋的外觀幾何形狀對握裹行為之影響.......40
- 4-5 拉拔試驗之握裹滑移量......41第五 結論與建議......43

表目錄

表 3-1 本試驗所使用混凝土配比資料50
表 3-2 本試驗所使用混凝土配比資料50
表 3-3 D19(#6)節頂環氧樹脂單層塗層厚度51
表3-4 D19(#6)節頂環氧樹脂雙層塗層厚度52
表 3-5 D19(#6)節底環氧樹脂單層塗層厚度53
表 3-6 D19(#6)節底環氧樹脂雙層塗層厚度54
表 3-7 D13(#6)節頂環氧樹脂單層塗層厚度55
表 3-8 D13(#6)節頂環氧樹脂雙層塗層厚度,
表 3-9 D13(#6)節底環氧樹脂單層塗層厚度57
表3-10 D13(#6)節底環氧樹脂雙層塗層厚度58
表3-11鋼筋化學成分表
表3-12 D13、D19鋼筋幾何形狀相關尺寸59
表 4-1 常溫下拉拔試驗試體之破壞模式60
表4-2100℃下拉拔試驗試體之破壞模式60
表 4-3 200℃下拉拔試驗試體之破壞模式61
表4-4 D19:400℃(D13:300℃)下拉拔試驗試體之破壞模式62
表 4-5 D19:600℃以及 D13:400℃)下拉拔試驗試體之破壞模式62
表 4-6 D19 試驗組的極限拉拔力(T)63

64	4-7 D19 試驗組的極限拉拔力(T)	表
64	.4-8 D13 試驗組的平均握裹應力	表
65	4-9 D19 試驗組的平均握裹應力(kgf/cm ²)	表

圖目錄

圖1-1 鋼筋銹蝕反應示意圖	66
圖 2-1 環氧樹脂塗佈鋼筋之幾何形狀 [38]	66
圖 2-2 鋼筋混凝土握裹應力分布	67
圖 2-3 梁終端拉拔試驗圖【14】	67
圖 2-4 水泥漿體之受熱長度變化【43】	68
圖 2-5 水泥漿體的熱膨脹係數與相對濕度之關係 【44】	68
圖2-6 不同齡期水泥砂漿之膨脹係數【44】	69
圖 2-7 矽質骨材(石英)之溫度與線性膨脹關係【45】	69
圖 2-8 溫度與石英質混凝土 【46】	70
圖 2-9 被加熱混凝土強度之自然回復【36】	70
圖2-10 火害後應力應變圖【35】	71
圖2-11 混凝土強度折減圖【37】	71
圖2-12 火害後混凝土應力應變圖【43】	72
圖2-13 鋼筋握裹應力元素圖【38】	72
圖 2-14 各種材料熱分解過程的"重量-溫度關係"圖	73
圖 3-1 Surface Testing Instruments manufactured by Elekt	roPhysik
Company	73
圖 3-2 普通鋼筋在環氧樹脂塗佈前後之外觀	74
圖 3-3 K Type Thermocouple	74
圖 3-4 拉拔試驗試體規格及鋼筋埋置方式	75
圖 3-5 灌漿模具(實體)	75
圖 3-6 拉拔試驗試體實體圖	75

圖 3-7	油壓千斤頂	76
圖 3-8	電動油壓泵浦	76
圖 3-9	電熱式圓桶高溫爐	77
圖 3-10	拉拔試驗特製夾具	77
圖 3-11	LVDT 模組及套圈	78
圖 3-12	UCAM10B 型資料擷取器及 USB20A 型擴大器	78
圖 3-13	移動式資料擷取器	79
圖 3-14	實驗設備架設示意圖	79
圖 3-15	架上圓柱墊塊	80
圖 3-16	安置千斤頂	80
圖 3-17	放上一號墊片	80
圖 3-18	安置 Load Cel1	80
圖 3-19	放上二號墊片	80
圖 3-20	上夾具	80
圖 3-22	安置LVDT,裝設完成開始加熱	81
圖 3-23	實驗設備架設完成圖	81
圖 3-24	拉拔後的試體外觀	81
圖 4-1	未加熱的D13試體拉拔破壞模式(上視圖)	82
圖 4-2	未加熱的D13試體拉拔破壞模式(側視圖)	82
圖 4-3	未加熱的D19試體在各個塗厚下的開裂程度	83
圖 4-4	未加熱的 D19 雙層塗裹厚度 ECR 試體其破壞模式(爆裂式	劈
裂破壞〉)	83
圖 4-5	100℃下D19未塗裹埋深10¢試體的破壞模式	84

圖 4-6 100°C下D19 未塗裹鋼筋埋深15 ψ 試體破壞模式84
圖 4-7 100℃下 D19 未塗裹鋼筋埋深 20 ¢ 試體破壞模式
圖 4-8 100℃ D19 試體單層及雙層塗裹 ECR 在埋深 20 ψ 時的破壞模
式
圖 4-9 200℃ D19 未塗裹鋼筋埋深 10 ¢ 試體的燒裂情形
圖 4-10 200℃ D19 未塗裹鋼筋埋深 15 ¢ 試體的燒裂情形86
圖 4-11 200℃ D19 單層塗裹 ECR 埋深 10 ¢ 試體的劈裂情形(左
圖)
圖 4-12 200℃ D19 單層塗裹 ECR 埋深 15 ¢ 試體的劈裂情形(右
圖)
圖 4-13 200℃ D19 雙層塗裹 ECR 埋深 15 ¢ 試體的劈裂情形87
圖 4-14 中心溫度 400℃, D19 一般鋼筋埋深 10 ¢ 試體的劈裂情 形
圖 4-15 中心溫度 400°C, D19 一般鋼筋埋深 15 ψ 試體的劈裂情
形
圖 4-16 中心溫度 400℃, D19 ECR 埋深 15 ¢ 試體的劈裂情形88
圖 4-17 600℃ D19 15 ¢ 試體頂面外觀
圖 4-18 600℃ D19 15 ∉ 試體側面外觀
圖 4-19 加熱與未加熱試體埋置的一般鋼筋拔出後外觀
圖 4-20 各種加熱溫度下 ECR 鋼筋拔出後的外觀
圖 4-21 常溫下 ECR 與一般鋼筋拔出後的外觀90
圖 4-22 D19 試體組在各溫度下鋼筋及 ECR 拉拔後之外觀91
圖 4-23 D13 試體組在各溫度下鋼筋及 ECR 拉拔後之外觀

圖 4-24 D13 5 ψ 試體在各種中心溫度下的極限握裹強度變化圖9) 2
圖 4-25 D13 10 ∉ 試體在各種中心溫度下的極限握裹強度變化圖9) 2
圖 4-26 D13 15 ∉ 試體在各種中心溫度下的極限握裹強度變化圖9) 2
圖 4-27 D19 10 ∉ 試體在各種中心溫度下的極限握裹強度變化圖9) 3
圖 4-28 D19 15 ∉ 試體在各種中心溫度下的極限握裹強度變化圖9) 3
圖 4-29 D19 20 ϕ 試體在各種中心溫度下的極限握裹強度變化圖9) 3
圖 4-30 D13 普通鋼筋在各種中心溫度下的極限握裹強度變	化
圖9	4
圖 4-31 D13 單層塗厚 ECR 在各種中心溫度下的極限握裹強度變化	化
圖9	4
圖 4-32 D13 雙層塗厚 ECR 在各種中心溫度下的極限握裹強度變化	化
圖9	4
圖 4-33 D19 普通鋼筋在各種中心溫度下的極限握裹強度變	化
圖9	5
圖 4-34 D19 單層塗厚 ECR 在各種中心溫度下的極限握裹強度變化	化
圖9	5
圖 4-35 D19 雙層塗厚 ECR 在各種中心溫度下的極限握裹強度變化	化
圖9	5
圖 4-36 D13 5 ∉ 試體在各種中心溫度下的握裹強度殘餘率9) 6
圖 4-37 D13 10 ∉ 試體在各種中心溫度下的握裹強度殘餘率9) 6
圖 4-38 D13 15 ∉ 試體在各種中心溫度下的握裹強度殘餘率9) 6
圖 4-39 D19 10 ∉ 試體在各種中心溫度下的握裹強度殘餘率9	€7
圖 4-40 D19 15 ¢ 試體在各種中心溫度下的握裹強度殘餘率9) 7

圖 4-41	D19 20 ¢ 試體在各種中心溫度下的握裹強度殘餘率97
圖 4-42	D13 試體組在各種中心溫度下的握裹強度殘餘率98
圖 4-43	D19 試體組在各種中心溫度下的握裹強度殘餘率98
圖 4-44	D13 5 ¢ 試體在各種中心溫度下的握裹強度折減率99
圖 4-45	D13 10 ¢ 試體在各種中心溫度下的握裹強度折減率99
圖 4-46	D13 15 ¢ 試體在各種中心溫度下的握裹強度折減率99
圖 4-47	D19 10 \$ 試體在各種中心溫度下的握裹強度折減率100
圖 4-48	D19 15¢試體在各種中心溫度下的握裹強度折減率100
圖 4-49	D19 20 ¢ 試體在各種中心溫度下的握裹強度折減率100
圖 4-50	D13 試體組在各種中心溫度下的握裹強度折減率101
圖 4-51	D19 試體組在各種中心溫度下的握裹強度折減率101
圖 4-52	ECR 以及一般鋼筋竹節的幾何形狀比較102
圖 4-53	微觀下鋼筋竹節處的握裹應力元素及其關係102
圖 4-54	拉出破壞時的握裹滑移曲線103
圖 4-55	劈裂破壞時的握裹滑移曲線103
圖 4-56	爆裂式劈裂破壞時的握裹滑移曲線104
圖 5-1 ;	試體中心及試體外部爐溫的升溫歷時104