
 

 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 

 

 

 

 

雲端大型多人線上遊戲下基於玩家行為 

之資源分配 
 

 

Player Behavior-based Resource Allocation 

for MMOG Clouds 

 

 

 

 

研 究 生：賴寬嶧 

指導教授：王國禎  教授 

 

 

 

 

中 華 民 國  １０2  年  7  月 



 

 

雲端大型多人線上遊戲下基於玩家行為之資源分配 

Player Behavior-based Resource Allocation for MMOG Clouds 

 

 

 

研 究 生：賴寬嶧          Student：Kuan-Yi Lai 

指導教授：王國禎          Advisor：KuoChen Wang 

 

 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 
A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer Science 

 

July 2013 

 

Hsinchu, Taiwan, Republic of China 

 

 

 

中華民國 102 年 7 月 

 



 

i 

雲端大型多人線上遊戲下基於玩家行為之資源分配 

 

學生：賴寬嶧     指導教授：王國禎 博士 

 

國立交通大學資訊科學與工程研究所 

 

摘 要 

現今的大型多人線上遊戲(MMOG)已有超過數以千萬的用戶，其

中較受歡迎的遊戲可能有超過一萬人同時在線上。因此，為了解決遊

戲伺服器所產生的大量負載變動，許多大型多人線上遊戲的營運商，

企圖將他們的遊戲服務放到雲端平台上運行，以便善用雲端計算的優

點。遊戲伺服器的資源 (CPU、記憶體、網路頻寬) 需求量和玩家的

關注區域 (Area of Interest) 內有多少玩家，以及該玩家正在做什麼的

行為有很大的關係。資源分配不足 (under-allocation) 會導致玩家好

的遊戲體驗下降，使得玩家離開遊戲並刪除帳號。為了保證玩家有好

的遊戲體驗，現在大型多人線上遊戲的營運商大多都是採用超額配置 

(over-allocation) 資源這種策略。然而，過度的超額配置資源會導致



 

ii 

資源整體的使用率下降。為了解決這個問題，我們提出一個雲端大型

多人線上遊戲下基於玩家行為之資源分配 (PB-RA)方式。我們透過類

神經網路來預測未來地圖上各種行為的玩家人數，根據量測不同玩家

行為所產生的負載給定一個更精確的伺服器整體資源需求量，讓我們

在分配資源時可以更有效率。實驗結果證明，我們所提出的基於玩家

行為之資源分配方式，相對於只考慮玩家人數來分配資源的方法減少

74%的資源超額分配，相對於考慮玩家互動來分配資源的方法減少

50%的資源超額分配。此外，資源分配不足發生的次數相對於考慮玩

家互動來分配資源的方法也不超過 1.05 倍。據我們所知，目前並沒

有大型多人線上遊戲的資源分配方式有考慮到玩家行為。 

 

關鍵詞：雲端計算、大型多人線上遊戲、玩家行為、資源分配。 

 



 

iii 

Player Behavior-based Resource 

Allocation for MMOG Clouds 

 

Student: Kuan-Yi Lai   Advisor: Dr. Kuochen Wang 

Department of Computer Science 

National Chiao Tung University 

Abstract 

Today's Massively Multiplayer Online Games (MMOGs) have more than tens of 

millions subscriptions and the popular one may have over 10,000 active concurrent 

players. Therefore, many MMOG operators attempt to run their game services in 

clouds to take advantages of cloud computing, such as on-demand self-service and 

resource pooling characteristics, in order to handle large load variation in game 

servers. The amount of resource (CPU, memory, and network bandwidth) 

requirements for a player is related to how many players are in his Area of Interest 

(AoI) and what kind of player behavior. Resource under-allocation leads to 

degradation of game experience of players and may trigger player quitting and 

account closing. To guarantee the better players’ experience, resource over-allocation 

is the most commonly used resource allocation policy adopted by MMOG operators. 

However, resource over-allocation often results in low overall resource utilization. To 

address this deficiency, we propose a dynamic Player Behavior-based Resource 

Allocation scheme for MMOG clouds, called PB-RA. We predict the number of 

players for each behavior type in one map through a neural network-based predictor, 



 

iv 

and measure loads generated from different player behavior types. As a result, we can 

predict total resource requirements more accurately for players with different behavior 

types in the map. That is, we can allocate resources more efficiently. Experiment 

results show that the proposed PB-RA can reduce 74% and 50% of resource 

over-allocation compared to the method that only considers number of players and the 

method that considers interaction of players as well, respectively. Moreover, in terms 

of the number of resource under-allocation events, the proposed PB-RA is no more 

than 1.05 times compared with the method that considers interaction of players. To the 

best of our knowledge, there is no resource allocation scheme for MMOGs that 

considers player behavior. 

 

Keywords: cloud computing, MMOG, player behavior, resource allocation. 

 

 

 

 

 

 

 

 

 



 

v 

Acknowledgements 

Many people have helped me with this thesis. I deeply appreciate my thesis 

advisor, Dr. Kuochen Wang, for his intensive advice and guidance. I would like to 

thank all the members of the Mobile Computing and Broadband Networking 

Laboratory (MBL) for their invaluable assistance and suggestions. The support by the 

National Science Council under Grants NSC99-2221-E-009-081-MY3 and 

NSC101-2219-E-009-001 is gratefully acknowledged. Finally, I thank my family for 

their endless love and support. 

  



 

vi 

Contents 
Abstract (Chinese) …………….……...………………………….…………………...i 

Abstract ....................................................................................................................... iii 

Contents ....................................................................................................................... vi 

List of Figures ........................................................................................................... viii 

List of Tables ................................................................................................................ ix 

Chapter 1 Introduction ................................................................................................ 1 

Chapter 2 Related Work ............................................................................................. 4 

Chapter 3 Preliminaries .............................................................................................. 8 

3.1 Game zone parallelization................................................................................ 8 

3.2 Player behavior .............................................................................................. 10 

3.3 Area of Interest ............................................................................................... 10 

Chapter 4 MMOG Load Modeling .......................................................................... 12 

4.1 CPU load model for a VM ............................................................................. 12 

4.2 Memory load model for a VM ....................................................................... 14 

4.3 Network load model for a VM ....................................................................... 14 

4.4 Complete load model for a VM ..................................................................... 14 

Chapter 5 Proposed Player Behavior-based Resource Allocation ......................... 15 

5.1 PB-RA architecture ........................................................................................ 15 

5.2 Neural network-based predictor ..................................................................... 16 

5.3 PB-RA flowchart for a zone ........................................................................... 18 

Chapter 6 Evaluation ................................................................................................. 20 

6.1 Data collection ............................................................................................... 20 

6.2 Simulation setup............................................................................................. 21 

6.3 Simulation results........................................................................................... 22 



 

vii 

Chapter 7 Conclusion ................................................................................................ 27 

7.1 Concluding remarks ....................................................................................... 27 

7.2 Future work .................................................................................................... 27 

References ................................................................................................................... 28 

  



 

viii 

List of Figures 
Figure 1. The subscriptions of popular MMOGs [1] ..................................................... 2 

Figure 2. Classification of MMOG cloud issues. .......................................................... 5 

 ....................................................................... 9 Figure 3. Game zone parallelization [11]

Figure 4. Proposed PB-RA Architecture ...................................................................... 16 

Figure 5. ANN-based predictor. ................................................................................... 17 

Figure 6. The flowchart of PB-RA. ............................................................................. 19 

Figure 7. The distribution of WoW clients ................................................................... 21 

Figure 8. Total resource requirements in Valley of the Four Winds of WoW. ............. 23 

Figure 9. Number of VMs used in Valley of the Four Winds of WoW. ....................... 24 

Figure 10. Over-allocation of each method. ................................................................ 25 

Figure 11. Number of under-allocation events of each method. .................................. 25 

 

file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306954
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306955
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306956
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306957
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306958
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306959
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306960
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306961
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306962
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306963
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306964


 

ix 

List of Tables 
Table I. Comparison of related work ............................................................................. 7 

Table II. Notation Definition. ....................................................................................... 13 

Table III. Simulation setup. .......................................................................................... 22 

Table IV. The detailed information of resource under-allocation rate. ........................ 26 

 

  

file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306985
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306986
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306987
file:///C:/Users/kuan/Dropbox/MMOG%20paper/one%20column/賴寬嶧_One_column%20(2013.07.23)_v10.docx%23_Toc362306988


 

1 
 

Chapter 1  

Introduction 

Players may interact with one another in various forms via avatars in the 

Networked Virtual Environment (NVE) through Internet. Massively Multiplayer 

Online Games (MMOGs) which is a famous example in NVEs brought the market 

capitalization exceeded $12 billion in 2012 [21]. World of Warcraft (WoW) has 

always been popular among MMOGs. In 2009, WoW achieved 12 million subscribers 

worldwide which is equivalent to the population of a small country, the monopoly 

exceeded 50% in the MMOG market [1], as shown in Figure 1. Therefore, a 

successful MMOG may attract a huge number of players and bring great business 

opportunities. The traditional MMOG is a client-server architecture which has a 

powerful server to handle all computations generated from a huge number of players. 

Due to the population of MMOG players grows explosively, the powerful machine 

becomes a bottleneck. MMOG operators gradually change the architecture from the 

client-server architecture to a distributed architecture. 

More and more game companies run their games in clouds to take advantages of 

cloud computing, such as on-demand self-service and resource pooling characteristics. 

It is wasteful if game operators did not use cloud resources efficiently. Thus, an 

efficient resource allocation solution is necessary. Some existing dynamic resource 

allocation policies for MMOGs were proposed [7], [8], [9], [10]. However, among 

those resource allocation methods, some of them only concern number of players and 

some take interactions of players into consideration additionally. In MMOGs, players 

may perform different behavior types in the virtual world. The gap between the loads 



 

2 
 

generated by various behavior may vary large. 

 

In this paper, we propose an efficient Player Behavior-based Resource Allocation 

(PB-RA) scheme for MMOG clouds. We measure loads generated from different 

types of player behavior, and use a neural network-based predictor to forecast number 

of players in different behavior types. According to the prediction results, we calculate 

how much resources the game server needed in a map by our load model. Different 

from existing dynamic resource allocation methods for MMOGs, our approach is 

under the premise of avoiding under-allocation events and reduce resource 

over-allocation. To the best of our knowledge, there is no resource allocation scheme 

for MMOGs that considers player behavior. 

The rest of this thesis is organized as follows. We review related dynamic 

resource allocation methods for MMOGs in Chapter 2. Preliminaries of dynamic 

resource allocation for MMOGs are described in Chapter 3. Chapter 4 shows the load 

model for our design approach. Chapter 5 presents the proposed PB-RA method. 

 

Figure 1. The subscriptions of popular MMOGs [1] 

0

2

4

6

8

10

12

14

1998 2000 2002 2004 2006 2008 2010 2012

WoW Global - SS

Aion Global - SS

Lineage Global - SS

Lineage II Global - SS

SWTOR West - SS

RuneScape Global - SS

WoW West - SS

WoW East - SSSu
b

sc
ri

p
ti

o
n

s 
in

  M
ill

io
n

s
Subscriptions (SS)  and Active  Accounts (AA) 
with  a  peak  above  one million



 

3 
 

Chapter 6 describes how we collect game data, set up experiment parameters, and 

discuss experiment results. Finally, some concluding remarks and future work are 

given in Chapter 7. 



 

4 
 

Chapter 2  

Related Work 

To handle a large number of computations generated by game server, MMOG 

operators have changed the system architecture from client/server to multi-server 

which is the well-known architecture in MMOG clouds. In MMOG clouds, it 

partitions a game world into many zones where each zone has at least one virtual 

machine (VM) to support the computation it needs [11]. Hence, the computation load 

not just focuses on a single VM. Existing MMOG cloud issues focus on two parts, 

which are load balancing and resource allocation, as shown in Figure 2. There are 

two types of load balancing: zone-based and player-based. The zone-based method 

partitions a game zone into many microcells and adjusts these microcells to achieve 

load balancing [3], [4], [5]. The advantage of the zone-based method is easier to add 

VMs to each zone so that the zone-based method can reduce the communication cost 

between microcells. The player-based method partitions a zone based on the locations 

of avatars. The player-based method can maintain map completeness [4], [6]. The 

experiment results by Ahmed et al. show that the zone-based load balance method is 

better than the player-based method [4]. 



 

5 
 

Although load balancing increases a VM’s utilization, it may decrease the 

real-time experience of each player. Bad real-time experience makes players quit the 

game. To avoid the mentioned situation, MMOG operators focus on resource 

allocation gradually. We classify resource allocation in three categories which are 

considering number of players, considering interaction of players, and considering 

behavior of players, as shown in Figure 2. In the first category, it considers number of 

players to allocate resource, Briceño et al. create a fair environment which focuses on 

MMOG Cloud Issue

Load Balancing Resource Allocation

Zone - based

Player - based

D. Ahmed et al. [3][4]

B. Bossche et al. [5]

Considering Number 
of Players

L.  Briceño et al. [7]

M.  Marzolla et al. [8]

V.  Nae et al. [9][10]

PB-RA
(proposed)

C. Bezerra et al. [6]

D. Ahmed et al. [4]

Considering 
Interaction of Players

Considering Behavior 
of Players

 

Figure 2. Classification of MMOG cloud issues. 

 



 

6 
 

maintaining the QoS constraints [7]. It use P2P architecture that has a main server 

(MS) to handle the operation of the game and secondary server (SS) which is a user’s 

computer. The MS can offload calculation to SSs to guarantee response time will not 

violate and increase the number of players who can join the game through P2P 

architecture. In addition, Marzolla et al. describe a framework based on cloud 

architecture which satisfies the system response time constraints [8]. The main 

architecture is divided into three layers which are Gateway layer, Cell server layer, 

and Database server layer. The gateway layer is responsible for the game protocol 

checking and verification. The cell server layer are composed of many servers to 

manage the virtual world. The database server layer stores persistent game state 

information. They use a queuing network performance model to quickly estimate the 

system response time for different configurations. In [11], it introduces a real-time 

framework to allocate VMs for developing MMOGs. It automatically distributes the 

game state among participating servers and supports parallel state update 

computations. In addition, it also considers the region between overlapping zones. 

In order to increase efficiency of resource allocation, the secondary category of 

resource allocation considers interaction of players to allocate resources. Nae et al. 

divide player interaction into five degrees such as: 𝑂(𝑛), 𝑂(𝑛 ∙ log 𝑛), 𝑂(𝑛2), 𝑂(𝑛2 ∙

log 𝑛) and 𝑂(𝑛 )[9]. In their research, the higher degree of interaction has the higher 

computations by game servers. They also simulate five prediction algorithms 

including last value, moving average, exponential smoothing, sliding window median 

and neural network. Finally, the experimental results show that neural network has the 

highest accuracy and the lowest complexity characteristics. Furthermore, Nae et al. 

divide resources into three main types: CPU, memory and network bandwidth [10]. 

They consider different sizes of player interaction groups to define their load model. 

The requirements of resources that a game server needed are calculated according to 



 

7 
 

this load model. In this way, the load can close to the actual situation, and it may 

increase resources utilization. Therefore, the game operator is able to dynamically 

adjust the number of resources that a game server needs. 

 OnLive is a true games company which implements MMOGs on a cloud 

environment [12]. A user can use any device such as PC, tablet computer, and smart 

phone, etc., to play games at anywhere with a network connection. Users play games 

through video streaming just like watching YouTube. OnLive supports at most 4 

players cooperating in the same game session. We compare the proposed PB-RA with 

related work as shown in Table I. 

Table I. Comparison of related work. 

 OnLive 

[12] 

M. Marzolla 

[8] 

V. Nae 

[10] 

PB-RA 

(proposed) 

Game Scale 

Small 

(at most 4 

players) 

Large 

(MMOG) 

Large 

(MMOG) 

Large 

(MMOG) 

Cloud Gaming Yes No No Yes 

Load Prediction N/A None 
Neural 

Network 

Neural 

Network 

Resource 

Allocation 

Basis 

Number of 

Players 

N/A 

Yes Yes Yes 

Player 

Interaction 
No Yes Yes 

Player 

Behavior 
No No Yes 

 

 



 

8 
 

Chapter 3  

Preliminaries 

3.1 Game zone parallelization 

There are three main techniques to partition a virtual game world for 

parallelizing: zoning, replication, and instancing [11]. The MMOG adopts 

multi-server architecture which allows multiple VMs in parallel processing the game 

world instead of client/server architecture which processes the game world by only 

one powerful server through these three techniques. Thus, the multi-server 

architecture is more reliable. 

Zoning partitions the game world into adjacent areas called zones (there are four 

zones in Figure 3). A zone usually has the following characteristics. First, avatars can 

move between zones, but no inter-zone events exist. Second, zones are not necessarily 

of same shape and size, but obstacles (mountains or sea) usually exist between 

adjacent zones to avoid too many entries in a zone. Third, it can simply add a VM to a 

zone to expand the virtual world. However, an excessive density of population in the 

same zone will generate huge load that may exceed a VM can handle. 

 Replication distributes copies of a game zone onto different VMs when the zone 

has a large density of avatars interacting with each other, as shown in . The Figure 3

entities (avatars or NPCs/bots) hosted by a VM in a distributed zone called active 

entities. The VM is responsible for the active entities state transferring and behavior 

processing. The entities which are active on other servers called shadow entities. All 

VMs will synchronize with each other periodically. 



 

9 
 

 Instancing separates a popular area into individual zones. It makes different 

avatars in different instances cannot see each other even they are located in the same 

location. That means instances are independent with each other. 

Figure 3. Game zone parallelization [11] 



 

10 
 

3.2 Player behavior 

Depending on different online games, players may have different actions in each 

online game [15]. In general, each Massively Multiplayer Online Role-Playing Game 

(MMORPG, which is a kind of MMOGs) can generalize in following four kinds of 

player behavior [15]: 

1) Fighting: Avatars combat with other avatars or monsters. In this action, 

players usually need the highest real-time requirement. If delay time is too long, it 

may trigger player quit the game. 

2) Questing: Avatars explore a map and experience the story of a game. In this 

action, players need the median real-time requirement. 

3) Trading: There are business interactions between avatars, or avatars collect 

materials for making avatars’ equipment. In this action, players need low real-time 

requirement. 

4) AFK: In the Away From Keyboard (AFK), players leave the screen over a 

period of time (5 minutes in WoW). In this mode, real-time experience is not 

important. 

 In Chapter 4, we assign a different weight level (highest to lowest: “Fighting”, 

“Questing”, “Trading”, and “AFK”) to each player behavior in our load model. 

3.3 Area of Interest 

An Area of Interest (AoI) is the area of concern to a player (in MMOG). Each 

avatar has its own AoI which is defines by its visibility scope. An avatar only can 

interact (fighting, trading or do nothing) with the entities which are in its AoI scope. 

In other words, avatars can see avatar A’s behavior when they are in the avatar A’s 

AoI. An area with several overlapping AoIs will become a hotspot that may generate 

large load in MMOGs. We can prevent load increasing by limiting the size of a 



 

11 
 

hotspot. However, limiting the size of the hotspot would be equal to limit the scope of 

the interaction between players. This approach will decrease the players’ game 

experience. Therefore, in this paper, we do not consider limiting the size of a hotspot. 

 



 

12 
 

Chapter 4  

MMOG Load Modeling 

There are three main types of resources used for MMOGs: CPU, memory, and 

network bandwidth [10]. Table II shows definition of notations that are used in our 

load models. We assume that the number of active avatars per VM in the same game 

zone is almost the same. We enhance Nae et al.’s load model [10] by considering 

player behavior. In this way, we can improve resource over-allocation. 

4.1 CPU load model for a VM 

For modeling the CPU load of a VM in a game zone, we summarize three factors 

of CPU time which are   ,   , and    for an MMOG server. We model the CPU 

time    as the time sending and receiving messages from a VMi to each client 

(active avatar) as 

           

The CPU time    spent for processing state updates from the VMi to the other VMs is 

   ∑ (    

 

   ,   

   )      

The CPU time    spent for computing the different behavior between different active 

avatars is 

   ∑  𝑜𝐼𝑘    
𝑘

𝑎𝑣𝑎𝑡𝑎𝑟𝑘∈{𝐴𝐸𝑖}

 



 

13 
 

Thus, the total CPU time spent in one tick is 

             

Finally, we define the CPU load function as: 

 𝑜      
  
  𝐴 

, 

where   𝐴  is a tick saturation threshold. 

Table II. Notation Definition. 

Notation Definition 

  Number of VMs for a game zone 

    Number of NPCs/bots for VMi, which is one of VMs serving in a game zone 

    Number of active avatars for VMi, which is one of VMs serving in a game zone 

{   } The set of active avatars for VMi 

 𝑜𝐼𝑘 Number of entities for avatark’s AoI 

   Processing time for a VM to process an event message from a client 

   Update time of entity states received from/sent to another VM 

B The set of four kinds of possible behavior types 

   Computation time of a behavior type,  ∈   

  
𝑘 Computation time for avatar k with behavior type b 

    The amount of memory needed for a VM to store the state of one avatar 

    The amount of memory needed for a VM to store the state of an NPC entity 

  𝑎   
The amount of memory a VM used for running the actual game engine with no 

game world loaded and no client connected 

   𝑟   The amount of memory a VM used with the game world being played 

     The amount of data received from a client 

    𝑡  The amount of data sent to a client 

    𝑡 The amount of data exchanged between VMs for updating a single entity state 

 



 

14 
 

4.2 Memory load model for a VM 

The memory load model is less complex than the CPU load model; we can 

define the memory load function for each VM as follow: 

 𝑜      
(∑    

 
               )    𝑎      𝑟  

𝑀𝑣 
, 

where 𝑀𝑣  represents the amount of memory available in a VM. Each VM requires 

the state information of all active avatars and NPCs/bots in the same Game Zone in 

order to synchronize each VM. 

4.3 Network load model for a VM 

The incoming network bandwidth usage for each VM in a game zone is as 

follows: 

𝐷            ∑ (       )      𝑡

 

   ,   

  

The outgoing network bandwidth usage for each VM in a game zone is defined as 

follows: 

𝐷  𝑡          𝑡  ( − 1)  (       )      𝑡. 

Therefore, we define the overall network load as follows: 

 𝑜   𝐸    𝑥 (
𝐷  
 𝑊  

,
𝐷  𝑡
 𝑊  𝑡

), 

where  𝑊   and  𝑊  𝑡  denote the input and output network bandwidths, 

respectively. 

4.4 Complete load model for a VM 

According to the above three load model, we derive the overall load for each VM 

by choosing the maximum load from each individual resource load shown as follows: 

 𝑜  𝑉𝑀    𝑥( 𝑜     ,  𝑜     ,  𝑜   𝐸 )  



 

15 
 

Chapter 5  

Proposed Player Behavior-based 

Resource Allocation   

5.1 PB-RA architecture 

Figure 4 shows the system architecture for our proposed Player Behavior-based 

Resource Allocation (PB-RA), which contains two parts: Main Server and Game 

Zones. An MMOG has a Main Server and several Game Zones. The Main Server is 

responsible for storing monitoring history records and according to these records to 

predict resource requirements for each game zone with the helping of a Neural 

Network-based predictor to ensure the experiences of players who are in a virtual 

machine (VM). Each Game Zone is connected to the Main Server to get the 

information for maintaining the game world. The following is a brief description of 

each module. History Storage stores the game data collected by Zone Handler. Neural 

Network-based Predictor predicts the number of players for each behavior in each 

zone via the neural network. Load Model calculates the server load of next time slot, 

which will be sent to Zone Handlers for adjusting number of VMs. Communication 

facilitates the exchange of messages between Game Zones or forwards VM adjusting 

information to Zone Handlers. Video Streamer is a component which transforms 

gaming graphics to streaming video. Zone Handler is a main controller to 

communicate with Main Server and to synchronize VMs and to process necessary 

computations of a game zone. If the overall load exceeds the capacity provided by 

current VMs, Zone Handler will add a Mirror VM to support the Zone Handler. 



 

16 
 

 

5.2 Neural network-based predictor 

A neural network (NN) is a simulation of biological neural network [14]. It 

simulates human’s brain by mathematical statistics techniques. The neural network 

connects many simple artificial nodes which called “neurons.” Neural networks have 

following features:  parallel process, fault tolerance, associative memory, solution 

History Storage

Neural Network-based Predictor 

Load Model

Main Server

Zone Handler
(VM1)

Mirror VM2

Game Zone 1

Communication

Video Streamer

Zone Handler
(VM1)

Game Zone 2

Video Streamer

Zone Handler
(VM1)

Mirror VM2

Game Zone 3

Video Streamer

Mirror VM3
Game Zones

Game Data

 

Figure 4. Proposed PB-RA Architecture. 



 

17 
 

optimization, etc [14]. 

In this paper, we choose a NN-based predictor because that predictor is based on 

the most suitable prediction method that was observed in [9], [10], [17]. We ran our 

NN-based predictor on MATLAB which is a high-level language and interactive 

environment for numerical computation, visualization, and programming [16]. Figure 

5 shows such a network with 24 network inputs and one network output. We input the 

number of players for each behavior from time slot 1 to time slot 24 and predict the 

number of players for each behavior at time slot 25. The neural network has a hidden 

layer, which has 10 neurons. Neurons in the hidden layer and the output layer perform 

calculations based on the following equations, respectively: 

ℎ  𝑓(∑𝑥 𝑤 ,    

24

   

) 

x1

x2

x24
∑∑

b10

∑∑

b2

∑∑

b1

ƒ (1)ƒ (1)

ƒ (1)ƒ (1)

ƒ (1)ƒ (1)

●

●

●

●

●

●

∑∑

b'

ƒ (2)ƒ (2)

w1,2

w1,1

w24,10

w24,2

w24,1

w2,10

w'1

w'2

w'10

x25

Input
Layer

Hidden
Layer

Output
Layer

Learning
signal

generator

Learning
signal

generator
Adjusting hidden layer weight

h1

h2

h10

 

Figure 5. ANN-based predictor. 



 

18 
 

𝑥25  𝑓(∑ℎ 𝑤 
′   ′

 0

   

) 

where       𝑓(𝑥)  {

1

1  𝑒−𝑥
 𝑓𝑜𝑟   ℎ𝑖  𝑒𝑛 𝑙 𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛  (𝑙𝑜𝑔-𝑠𝑖𝑔 𝑜𝑖 )

     𝑥          𝑓𝑜𝑟  𝑛 𝑜𝑢 𝑝𝑢  𝑙 𝑦𝑒𝑟 𝑛𝑒𝑢𝑟𝑜𝑛  (𝑙𝑖𝑛𝑒 𝑟)            
 

Note that ℎ  is the output of the hidden layer, 𝑥  is an input, 𝑤 ,  is a weight 

modifying 𝑥 , and    is the bias of the hidden layer. 𝑥25  is the output of the 

predictor, ℎ  is an input of the output layer, 𝑤 
′ is a weight modifying ℎ , and  ′ is 

the bias of the output layer. In addition, 𝑓(𝑥) is either a log-sigmoid transfer function 

for the hidden layer neurons, or a linear transfer function for the output layer neurons. 

We used this neural network-based predictor to predict the number of players in each 

behavior. 

5.3 PB-RA flowchart for a zone 

In our approach, each zone initializes a suitable VM size according to statistical 

results of history data. In general, the VMs are able to meet the requirements of 

players and guarantee the response time that satisfies the quality of player 

experiences.  

Figure 6 shows the flowchart of PB-RA. At first, Main Server obtains the 

number of players in this zone and stores the collected data to History Storage. After 

that, Main Server determines the zone type. If the zone type is one of Dungeon, Raid 

or Battlefield, the NN-based predictor only predicts the number of players in this zone. 

In these types of zones, avatars always combat with each other, and they require the 

highest real-time experience. Therefore, we always assume the player behavior is 

“Fighting” so that satisfy QoS requirements. If the zone type is Home City or Normal 

Map, the NN-based predictor will predict the number of players for each behavior. 

Then we will assign different weights for different behavior types and the priority 



 

19 
 

order is “Fighting” > “Questing” > “Trading” > “AFK” that is based on the measures 

in WoW. Next, Main Server derives the maximum load according to our load model 

described in Chapter 4. Afterwards, Main Server passes the load information to Zone 

Handler. 

After receiving the load information form Main Server, Zone Handler checks the 

load of each VM in the Game Zone. If the predicted load is greater than the capacity 

of total VMs in this Game Zone, Zone Handler will add a mirror VM to lighten the 

load of Game Zone. If the predicted load is smaller than the current capacity of VMs, 

Zone Handler will decide which working VMs can be merged. Finally, if the number 

of working VMs in Game Zone is greater than two, Zone Handler will synchronize 

the VMs’ state of avatars and monster information. 

  

Start End

Determine
zone type

History 
Storage

Can VMs
 be merged?

Check load

Number of VMs > 1

Predict the 
number of players
for each  behavior 

type

Predict the 
number of players

Derive the 
maximum load 

according to our 
load model

Obtain the number 
of players in this 

zone

Merge VMs
VMs 

synchronization

Add a VM

≤ capacity of VMs

Zone HandlerMain Server
Yes

No

No

Yes

> capacity of VMs

Dungeon, Raid, 
Battlefield

Home City, 
Normal Map

Predictor

 

Figure 6. The flowchart of PB-RA. 



 

20 
 

Chapter 6  

Evaluation 

In this chapter, we first describe how to collect game data, show simulation setup 

and then discuss simulation results. 

6.1 Data collection 

In our simulation, we used World of Warcraft (WoW) as a case study, which is 

the most famous MMOG in the world; according to statistics, it has 10.2 million 

subscribers in February 2012 [1]. We collected game data from WoW clients for two 

weeks, from April 22 to May 7, and the collected data are recorded every five minutes. 

The details of our game data collection are described in the following. First, we chose 

the map named Valley of the Four Winds as our collecting area, which is a popular 

map for avatars of level-90. Because this map is abundant in natural resources which 

are requirements for producing equipment, the avatar density and behavior diversity 

are higher than the other maps. Next, we distributed 21 WoW clients over this map, 

and log the state information of each client by typing the /combatlog command. 

Combatlog is a kind of log, which records combat actions and results within the 

radius of 200 yards from each WoW client, as Figure 7 shows. Combatlog may also 

includes results of profession activities of nearby characters [22]. Last, we parsed and 

analyzed all the combat log derive the number of players for each behavior. 



 

21 
 

 

6.2 Simulation setup 

Table III shows our simulation setup. Although parsing the Combatlog can derive 

the number of players for each behavior, the location of each player is still unknown. 

Therefore, we randomly generated the location for each player at the beginning to 

distribute avatars uniformly in a game zone and update the direction and mobile 

distance for each avatar in each timeslot to simulate a real game zone environment. 

According to the game data we collected in History Storage, we predicted the player 

behavior for each avatar in the next timeslot by using a neural network-based 

predictor in MATLAB. We applied the prediction results to our load model in order to 

predict the number of VMs required in the next timeslot. Then, we used ColudSim 

which is a famous cloud simulation tool to simulate PB-RA. In our simulation, we 

assumed one VM can support 31 avatars [18], each VM had 512 MB memory and 10 

 

Figure 7. The distribution of WoW clients. 



 

22 
 

Mbps bandwidth, and VM startup time was 100 seconds [19]. The radius of AoI was 

set to 50 yards which is the default vision range in WoW. We implemented our load 

model introduced in Chapter 4 on CloudSim and follow the flowchart of PB-RA to 

adjust number of VMs used. 

6.3 Simulation results 

In our simulation, we collected the game data from WoW clients for two weeks 

from April 22 to May 7. However, a full week is enough to reflect the ecological cycle 

because the story events will be reset every week in WoW. Therefore, we only used 

one week data in our simulation. According to our load models in Chapter 4, we 

compare the proposed PB-RA with the methods considering number of players and 

interaction of players [10] in terms of total resource requirement, number of VMs 

used, resource over-allocation rate, and resource under-allocation rate in a WoW’s 

map which is called Valley of the Four Winds. The calculation of the represent the 

resource over/under allocation rate is as follows: 

δ  𝑛𝑣 
( 𝑟  )  100% − 𝜆  𝑎  ,    

Table III. Simulation setup. 

Game data 
Collected from World of Warcraft (WoW) 

(version 5.2.0) 

Prediction technique Neural network 

Prediction tool MATLAB (version 7.11.0) 

Evaluation period 2013/04/22 15:43 ~ 2013/05/07 15:36 

Cloud simulation tool CloudSim 3.0 

VM startup time 100 sec. [19] 

VM capacity 31 avatars [18] 

VM memory 512 MB (CloudSim default value) 

VM incoming bandwidth 10 Mbps (CloudSim default value) 

VM outgoing bandwidth 10 Mbps (CloudSim default value) 

Radius of AoI 50 yards in WoW 

 



 

23 
 

 {
𝑖𝑓 𝛿 ≥ 0, 𝑜𝑣𝑒𝑟- 𝑙𝑙𝑜𝑐  𝑖𝑜𝑛   
𝑖𝑓 𝛿 < 0, 𝑢𝑛 𝑒𝑟- 𝑙𝑙𝑜𝑐  𝑖𝑜𝑛

 

where 𝑛𝑣 
( 𝑟  )

 is the predicted number of VMs required and 𝜆  𝑎   is the 

actual usage of resources. We calculated 𝜆  𝑎   via using actual number of players 

for each behavior calculated by our load model introduced in Chapter 4. In Figure 8 

and Figure 9, we show the total resource requirements and number of VMs in the 

Valley of the Four Winds of WoW, repectively. In both figures, we can see that the 

required number of VMs will vary with time. The number of VMs required achieves 

the minimum at 6:00 a.m. and the maximum at 8:00 p.m. every day. Furthermore, 

adjusting the number of VMs dynamically is better than that statically. In addition, in 

terms of the number of VM need in a zone, the proposed PB-RA is 55% lower than 

the method only considering number of players and 33% lower than the method 

considering interaction of players [10]. 

 

 

Figure 8. Total resource requirements in Valley of the Four Winds of WoW. 

0

100

200

300

400

500

600

700

800

900

1000

08:00 08:00 08:00 08:00 08:00 08:00 08:00

Considering
Number of
Players

Considering
Interaction
of Players
[10]

Considering
Behavior of
Players
(proposed)

4/25 4/26 4/27 4/28 4/29 4/30 5/1

To
ta

l  
R

e
so

u
rc

e
  R

e
q

u
ir

e
m

e
n

t 
(%

)

Time



 

24 
 

Finally, we evaluate the resource over-allocation rate and resource 

under-allocation rate of the proposed PB-RA. Resource over-allocation means that the 

allocated resources exceed the resource requirements of a zone and resource 

under-allocation means that the allocated resources do not meet the resource 

requirements of a zone. Figure 10 shows the over-allocation rate of PB-RA is lower 

than the other methods. The result shows that PB-RA can reduce 74% of resource 

over-allocation rate compared to the method that only considers number of players 

and 50% compared to the method that considers interaction of players [10] as well. 

Figure 11 shows the number of under-allocation events over two weeks for each 

method. Although the method only considering number of players did not has 

under-allocation, its over-allocation is too high. The proposed PB-RA’s number of 

resource under-allocation events is no more than 1.05 times compared with the 

method that considers interaction of players [10]. Table IV shows the average 

under-allocation rate and the percentage of events with the under-allocation rate 

 

Figure 9. Number of VMs used in Valley of the Four Winds of WoW. 

0

1

2

3

4

5

6

7

8

9

10

08:00 08:00 08:00 08:00 08:00 08:00 08:00

N
u

m
b

e
r 

 o
f 

 V
M

s
Consider
Number of
Players

Consider
Interaction
of Players
[10]

Consider
Behavior of
Players
(proposed)

4/25 4/26 4/27 4/28 4/29 4/30 5/1
Time



 

25 
 

higher/lower than the average under-allocation rate per VM. 

 

 

 

  

 

Figure 10. Over-allocation of each method. 

0

100

200

300

400

500

600

700

800

900

08:00 08:00 08:00 08:00 08:00 08:00 08:00

Considering
Number of
Players

Considering
Interaction
of Players
[10]

Considering
Behavior of
Players
(proposed)

4/25 4/26 4/27 4/28 4/29 4/30 5/1
Time

O
ve

r-
al

lo
ca

ti
o

n
  (

%
)

 

Figure 11. Number of under-allocation events of each method. 

0

75
79

0

10

20

30

40

50

60

70

80

90

Considering Number
of Players

Considering Interaction
of Players [10]

Considering Behavior
of Players (proposed)

Number of under-allocation events (total 4256 records)

(1.66%)
(1.71%)



 

26 
 

 

  

Table IV. The detailed information of resource under-allocation rate. 

 
Average 

Higher than 

average 

Lower than 

average 

Considering Number of Players 0 0 0 

Considering Interaction of Players [10] 4.08% 
35% 

(26/75) 

65% 

(49/75) 

Considering Behavior of Players 

(proposed PB-RA) 
3.97% 

35% 

(28/79) 

65% 

(51/79) 

 



 

27 
 

Chapter 7  

Conclusion 

7.1 Concluding remarks 

We have presented a Player Behavior-based Resource Allocation (PB-RA) 

scheme for MMOG clouds. The behavior of players is classified into four types: 

Fighting, Trading, Questing and AFK. We used WoW as a case study to illustrate the 

proposed PB-RA that is applicable to MMOGs and each behavior type results in a 

different load. We predict the number of players for each behavior type in one map 

through a neural network-based predictor and measure loads generated from different 

player behavior types. As a result, we can predict total resource requirements more 

accurately for players with different behavior types in the map. That is, we can 

allocate cloud resources more efficiently. Experiment results have show that the 

proposed PB-RA can reduce 74% of resource over-allocation compared to the method 

that only considers number of players, and 50% compared to the method that 

considers interaction of players [10] as well. Moreover, in terms of the number of 

resource under-allocation events the proposed PB-RA is no more than 1.05 times 

compared with the method that considers interaction of players [10]. 

7.2 Future work 

In this paper, we collected the game data only from MMOG clients. In the future, 

we may obtain the real data of game servers to have more accurate evaluation. In 

addition, we will implement the Video Streamer to achieve real cloud gaming. 

 



 

28 
 

References 

[1] “MMOGs Subscription,” [Online]. Available: http://mmodata.net/. 

[2] “Cloud Gaming,” [Online]. Available: 

http://en.wikipedia.org/wiki/Cloud_gaming/. 

[3] D. T. Ahmed and S. Shirmohammadi, “A Microcell Oriented Load Balancing 

Model for Collaborative Virtual Environments,” in Proc. IEEE Conference on 

Virtual Environments, Human-Computer Interfaces and Measurement Systems, 

VECIMS’08, pp. 86- 91, July 2008. 

[4] D. T. Ahmed and S. Shirmohammadi, “Uniform and Non-Uniform Zoning for 

Load Balancing in Virtual Environments,” in Proc. IEEE International 

Conference on Embedded and Multimedia Computing, EMC’10, pp. 1-6,  Aug. 

2010. 

[5] B. V. D. Bossche, B. D. Vleeschauwer, T. Verdickt; F. D. Turck, B. Dhoedt, and 

P. Demeester, “Autonomic Microcell Assignment in Massively Distributed Online 

Virtual Environments,” Journal of Network and Computer Applications, vol. 32, 

no. 6, pp. 1242-1256, Nov. 2009. 

[6] C. E. B. Bezerra, J. L. D. Comba, and C. F. R Geyer, “A Fine Granularity Load 

Balancing Technique for MMOG Servers Using a KD-Tree to Partition the Space,” 

in Proc. VIII Brazilian Symposium on Games and Digital Entertainment, 

SBGAMES’09, pp. 17-26, Oct. 2009. 

[7] L. D. Briceño, H. J. Siegel, A. A. Maciejewski, Y. Hong, B. Lock, M. N. Teli, F. 

Wedyan, C. Panaccione, C. Klumph, K. Willman, and C. Zhang, “Robust 

Resource Allocation in a Massive Multiplayer Online Gaming Environment,” in 

http://mmodata.net/
http://en.wikipedia.org/wiki/Cloud_gaming/


 

29 
 

Proc. ACM 4th International Conference on Foundations of Digital Games, 

FDG’09, pp. 232-239, 2009. 

[8] M. Marzolla, S. Ferretti, and G. D'Angelo, “Dynamic Resource Provisioning for 

Cloud-based Gaming Infrastructures,” in ACM Computers in Entertainment - 

Theoretical and Practical Computer Applications in Entertainment, CIE’12, vol. 

10, no. 3, pp. 1-20, Dec. 2012. 

[9] V. Nae, A. Iosup, S. Podlipnig, R. Prodan, D. Epema, and T. Fahringer, “Efficient 

Management of Data Center Resources for Massively Multiplayer Online Games,” 

in Proc. IEEE International Conference on High Performance Computing, 

Networking, Storage and Analysis, SC’08, pp. 1-12, Nov. 2008. 

[10] V. Nae, A. Iosup, and R. Prodan, “Dynamic Resource Provisioning in Massively 

Multiplayer Online Games, ” IEEE Transactions on Parallel and Distributed 

Systems,   vol. 22,   no. 3, pp. 380-395, March 2011. 

[11] F. Glinka, A. Ploβ, J. Müller-lden, and S. Gorlatch, “RTF: A Real-Time 

Framework for Developing Scalable Multiplayer Online Games,” in Proc. ACM 

6th SIGCOMM Workshop on Network and System Support for Games, 

NetGames’07, pp. 81-86, Setp. 2007. 

[12] “OnLive,” [Online]. Available: http://www.onlive.com/. 

[13] “CloudSim,” [Online]. Available: http://www.cloudbus.org/cloudsim/. 

[14] “Artificial Neural Network,” [Online]. Available:                            

http://en.wikipedia.org/wiki/Artificial_neural_network/. 

[15] M. Suznjevic, I. Stupar, and M. Matijasevic, “MMORPG Player Behavior Model 

Based on Player Action Categories,” in Proc. IEEE 10th Annual Workshop on 

Network and Systems Support for Games, NetGames’11, pp. 1-6, Oct. 2011. 

[16] “MATLAB,” [Online]. Available: http://www.mathworks.com/products/matlab/. 

http://www.onlive.com/
http://www.cloudbus.org/cloudsim/
http://en.wikipedia.org/wiki/Artificial_neural_network
http://www.mathworks.com/products/matlab/


 

30 
 

[17] R. Prodan and V. Nae, “Prediction-based Real-time Resource Provisioning for 

Massively Multiplayer Online Games,” Journal of Future Generation Computer 

Systems, vol. 25, no. 7, pp. 785-793, July 2009. 

[18] Y. Lee and K. Chen, “Is server consolidation beneficial to MMORPG? a case 

study of World of Warcraft,” in Proc. IEEE 3rd International Conference 

on Cloud Computing, CLOUD’10, pp. 435-442, July 2010. 

[19] M. Mao and M. Humphrey, “A Performance Study on the VM Startup Time in 

the Cloud,” in Proc. IEEE  5th International Conference on Cloud Computing, 

CLOUD’12, pp. 423-430, June 2012. 

[20] D. T. Ahmed and S. Shirmohammadi, “A Dynamic Area of Interest Management 

and Collaboration Model for P2P,” in Proc. IEEE/ACM 12th International 

Symposium on Distributed Simulation and Real-Time Applications, DS-RT’08, pp. 

27-34, Oct. 2008. 

[21] “MMOGs market capitalization,” [Online]. Available:          

http://www.thealistdaily.com/news/global-mmo-games-spending-over-12-billion-r

eport/. 

[22] “Combat Log,” [Online]. Available: http://www.wowwiki.com/Combat_Log/. 

 

http://www.thealistdaily.com/news/global-mmo-games-spending-over-12-billion-report/
http://www.thealistdaily.com/news/global-mmo-games-spending-over-12-billion-report/

