國立交通大學

應用化學系分子科學碩士班

石自

論

文

利用步進式掃描傅式轉換紅外光譜法 研究氣態 CH₃OO 的紅外吸收光譜

Infrared absorption spectra of gaseous CH₃OO detected with

3915

step-scan Fourier-transform infrared spectroscopy

研究生:徐國翔 (Kuo-Hsiang Hsu) 指導教授:李遠鵬 博士 (Dr. Yuan-Pern Lee)

中華民國一百零二年七月

d利用步進式掃描傅式轉換紅外光譜法

研究氣態 CH₃OO 的紅外吸收光譜

Infrared absorption spectra of gaseous CH₃OO detected with

step-scan Fourier-transform infrared spectroscopy

Student : Kuo-Hsiang Hsu 研究生:徐國翔 Advisor : Yuan-Pern Lee 指導教授:李遠鵬 國 立 通 學 交 學 應 用 化 系 學 碩 + 班 分 碩士論文 A Thesis Submitted to M. S. Program in Molecular Science, Department of Applied Chemistry College of Science National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of Master

in

Applied Chemistry July 2013 Hsinchu, Taiwan, Republic of China

中華民國一百零二年七月

本實驗利用波長 193 nm 的雷射光解流動的 CH₃C(O)CH₃/O₂ 混和氣體及 波長 248 nm 的雷射光解流動的 CH₃I/O₂ 混和氣體,並利用步進式掃描時域 解析傅式轉換紅外光譜法搭配多重反射之 White cell 偵測共同之瞬態產物 CH3OO 之紅外吸收光譜。吾人觀測到於 3023.3 cm⁻¹、2954.3 cm⁻¹、1456.7 cm ⁻¹、1182.4 cm⁻¹、1118.0 cm⁻¹、910.7 cm⁻¹、3021.4 cm⁻¹和 1440.9 cm⁻¹之吸收 峰依序指派為V1、V2、V3、V5、V6、V7、V9和V10之振動模吸收,與黃登瑞 等人所觀測於氣態下之 CH3OO 紅外光譜所得之最大差異不超過 0.25 %。 此結果亦和 Nandi 等人於 Ar 間質環境下得到之結果平均差異小於1%和 Morrison 等人於 He 奈米液滴環境下之觀測 v1、v2、v9 高解析光譜之差異最 大不超過0.1%。與B3LYP/aug-cc-pVTZ非簡諧計算值平均差異於3%以內。 吾人以近似陀螺對稱分子之模式分析 CH3OO 的轉動譜線結構而得振動基 態之轉動常數,與Endo實驗組以微波測量之結果差異為5%。此外,吾人 根據 Just 等人計算 CH₃OO 之 C - O 單鍵內轉能障,並以 PGOPHER 軟體模 擬水2振動模與水12振動模之熱譜帶躍遷。水2振動模模擬光譜之轉動譜線與實 驗值吻合,但對於v,振動模Q分枝結果並不一致。透過內轉動振動模之熱 譜帶躍遷模擬後,吾人認為內轉動對於 CH3OO 振動模紅外吸收光譜之貢獻 是不可忽略的。

Abstract

Methylperoxy (CH₃OO), the simplest alkylperoxy radical, is an important intermediate in the oxidation of methane both in the $atmosphere^{1,2}$ and under combustion conditions³. In this work, CH₃OO radical were produced by irradiation of a flowing mixture of CH₃I and O₂ with KrF excimer laser at 248 nm. A step-scan time-resolved Fourier-transform spectrometer coupled with a multipath White cell was employed to record temporally resolved IR absorption spectra of reaction intermediate. Previously⁴, transient absorption bands with origins at 3032.3, 2954.3, 1456.7, 1182.6, 1118.1, 3021.4, and 1440.9 cm⁻¹ are assigned v_1 - v_3 , v_5 - v_6 , v_9 and v_{10} modes of CH₃OO, respectively. Recently, v_7 band is observed with origin at 910.7 cm⁻¹. Besides, higher resolution spectra are obtained by irradiation of a flowing mixture of CH₃C(O)CH₃ and O₂ with ArF excimer laser at 193 nm, so that rotational constants are available by using near prolate approximation model. The rotational contours of IR spectra of CH₃OO, simulated based on ratios of predicted rotational parameters for the upper and lower states and on experimental rotational parameters of the ground state, agree satisfactorily with experimental results; the mixing ratios of a-, b-, and c-types of rotational structures were evaluated based on the direction of dipole derivatives predicted quantum chemically. Since the contribution of torsional splitting is non-negligible, we apply hot band transiton to simulate v_2 band. Though the result does not perfectly match, Q branch of v_2 band improves quite a lot.

¹ G. Salisbury, A. R. Rickard, P. S. Monks, B. J. Allan, S. Bauguitte, S. A. Penkett, N. Carslaw, A. C. Lewis, D. J. Creasey, D. E. Heard, P. J. Jacobs, and J. D. Lee, J. Geophys. Res., [Atmos.] 106, 12669(2001), and references therein.

² G. S. Tyndall, R. A. Cox, C. Granier, R. Lesclaux, G. K. Moortgat, M. J. Pilling, A. R. Ravishankara, and T. J. Wallington, J. Geophys. Res., [Atmos.] 106, 12157 (2001), and references therein

³ G. S. Tyndall, R. A. Cox, C. Granier, R. Lesclaux, G. K. Moortgat, M. J. Pilling, A. R. Ravishankara, and T. J. Wallington, J. Geophys. Res., [Atmos.] 106, 12157 (2001), and references therein

⁴ D. R. Huang, L. K. Chu, and Y. P. Lee J. Chem. Phys. 127, 234318 (2007)

摘要	•••••		. i
第一章	緒論		1
參考	資料		2
第二章	實驗	原理和技術1	.4
2.1	傅式轅	·换紅外光譜法1	.4
2.2	麥克生	王干涉儀之基本原理與傅式轉換之關係1	5
2	2.2.1	麥克生干涉儀原理1	.5
	2.2.2	傅式轉換1	.6
2	2.2.3	削足函數1	7
2	2.2.4	相位校正2	20
2	2.2.5	取樣方式	22
2.3 1	FTIR	的優點	23
2	2.3.1	多重波長優點	23
2	2.3.2	高光通量優點2	24
2	2.3.3	波數準確優點	24
2	2.3.4	高解析度優點2	24
2	2.3.5	抑制散射光	25
2.4	步進式	·掃描時間解析傅式轉換紅外光譜法2	25
2	2.4.1	工作原理2	25
2	2.4.2	跳點取樣	26
2	2.4.3	數據擷取原理2	28
參考	資料		10
第三章	實驗	裝置、步驟與參數設定4	1
3.1	寳 驗裝	〔 <u>置</u> 4	1
	3.1.1	光解雷射系統4	1
	3.1.2	步進式掃描傅式轉換紅外譜儀4	1

	3.1.3	反應系統	42
	3.1.4	數據擷取與儀器時序控制系統	43
3.2	實驗條	件	46
	3.2.1	光解效率評估	46
3.3	實驗前	「準備工作	51
	3.3.1	反應槽中 White cell 對正	51
	3.3.2	更换偵測器	52
	3.3.3	移動鏡穩定時間量測	54
	3.3.4	光解雷射出光延遲時間量測	56
3.4	參數 語	受定	57
	3. <mark>4</mark> .1	連續式掃描模式參數設定	57
	3.4.2	步進式掃描模式參數設定	58
	3.4.3	手動操作傅式轉換	60
參	考資料		71
第四章	左 結果	與討論,	72
4.1	理論言	十算	72
4.2	反應並	途徑討論	73
4.3	對稱門	它螺剛體轉子(symmetric top rigid rotor)模型	76
4.4	實驗光	普指派和比較	78
	4.4.1	V9 振動模的分析	83
	4.4.0		0.4
	4.4.2	<i>V</i> ₂ 振動模的分析	54
	4.4.3	內轉動振動模(torsional mode)分析	86
	4.4.4	$ u_1$ 振動模的討論	87
4.5	新新		89
象:	老資料	1′	20
	1 スイト		-0

圖目錄

圖	1-1	甲烷光氧化的反應機構[5]	9
圖	2-2	不同光源之傳統光譜(右側)及其對應之干涉圖譜(左側)。	.31
圖	2-3	(a) 匣式截斷函數傅式轉換後之圖譜 $f(\widetilde{ u})$,其波形為 sinc 函數	.32
圖	2-4	干涉圖譜之取樣示意圖。實驗擷取單邊之 N 點干涉圖譜,並以零光程差點	与為
中	心,相	位校正時,左右各取n個點數以進行相位校正。	.33
啚	2-5	混疊示意圖	.34
圖	2-6	干涉圖譜及其對應之傳統光譜。(A)連續波長的紅外光源;(B) 氦氖雷射;	(C)
連	續白光	光源。	.35
圖	2-7	氦氖雷射之干涉圖譜。圖中實心方格為零光程差點,實心圓點為零交叉點	诰。 36
圖	2-8	步進式掃描時間解析傅式轉換光譜之數據擷取示意圖	.30 .37
圖	2-9	由 AC/DC 耦合擷取之信號導出時間解析吸收度差異譜(ΔA _t (<i>ν</i>))之步驟。	.38
圖	3-1	實驗儀器架設圖	.62
圖	3-2	反應槽簡圖	.63
圖	3-3	White cell 工作示意圖	.64
圖	3-4	Vertex 80v 進行時間解析紅外吸收光譜儀器時序控制圖(DC)	.65
圖	3-5	Vertex 80v 進行時間解析紅外吸收光譜儀器時序控制圖(AC)	.66
圖	3-6	類比/數位轉換器之辨識晶片排線比較圖	.67
圖	3-7	連續模式下 TA 鏡之氦氖雷射訊號	.68
圖	3-8	移動鏡穩定時間測量圖	.69
圖	3-9	觸發雷射後雷射延遲時間測量	.70
啚	4-1	利用 B3LYP/aug-cc-pVTZ 計算 CH3OO 的最佳幾何結構。	.90
圖	4-2	利用 B3LYP/aug-cc-pVTZ 預測 CH ₃ OO 的 12 個振動模。	.91
啚	4-3	800-3800 cm ⁻¹ 光區所測得之 CH ₃ OO 光譜及對前驅物 CH ₃ I 之吸收光譜.	.93
圖	4-4	800-970 cm ⁻¹ 光區所測得之 CH ₃ OO 光譜及對前驅物 CH ₃ I 之吸收光譜修	·正
			.94
圖	4-5	V7振動模之模擬光譜	.95
圖	4-6	1080-1230 cm ⁻¹ 光區所測得之 CH ₃ OO 光譜及前驅物 CH ₃ I 之吸收光譜	.96
圖	4-7	V_5 、 V_6 振動模之模擬光譜	.97
圖正	4-8	1360 – 1520 cm ⁻¹ 光區所測得之 CH ₃ OO 光譜及對前驅物 CH ₃ I 之吸收光譜	·修 .98
圖	4-9	$V_3 imes V_4 imes V_{10}$ 振動模之模擬光譜	.99

圖 4-10	V_3 、 V_4 振動模之模擬光譜	.100
圖 4-11	V ₁₀ 振動模之模擬光譜	.101
圖 4-12	以 248 nm 雷射光解 CH ₃ I/O ₂ 之光譜並於 2900 – 3100 cm ⁻¹ 光區觀測 CH ₃	00
之光譜及 圖 4-13	對則驅物 CH31 之吸收光譜修止 以 193 nm 雷射光解 CH3C(O)CH3/O2(~1/60)之光譜並於 2900 – 3100 cm ⁻	.102 ¹ 光
區觀測 CH	H ₃ OO 光譜及對前驅物 CH ₃ C(O)CH ₃ 之吸收光譜修正	.103
圖 4-14	V9振動模長柱形陀螺近似之能階指派	.104
周 4-15	V. 振動描A(K"2)對波數緣化圖	105
國 〒15	,g 派 助 伝 L L J J 放 英 支 化 固	.105
圖 4-16	V_2 振動模長柱形陀螺近似之能階指派	.106
圖 4-17	V2振動模基態轉動量子數J"對波數及譜線間隔之變化圖	.107
F 4 10		100
圖 4-18	V ₉ 振動模之模擬光譜	.108
圖 4-19	V ₂ 振動模之模擬光譜	.109
圖 4-20	V. 振動模之內轉動能障計質圖	.110
		. 110
圖 4-21	V_2 及含 V_{12} 振動模熱譜帶之躍遷模擬光譜	. 111
圖 4-22	V1振動模之光譜指派	.112
回 1 72	11 年赴村 21 村村 11 元	112
画 4-23	▶1 抓 判 任人任 我 兀 亩	. 115

表目錄

表 1-1	CH3OO之低溫與常溫實驗與理論計算振動模譜線結果比較表	11
表 2-1	常用之削足函數(apodization function)之削足效果與主峰半高寬之比較	•39
表 4-1	CH3OO 振動頻率之理論計算和實驗值之比較表	114
表 4-2	利用 B3LYP/aug-cc-pVTZ 計算 CH3OO 的振動激態(vi = 1)與基態(v = 0)轉動
常數之比	·例及激態轉動常數之修正值	115

表 4-3 V9振動模垂直躍遷譜線之指派、譜線間距和理論預測比較表116

表 4-4 V2之 P、R 分枝譜線位置、譜線間距和理論計算比較表......118

第一章 緒論

過氧化物自由基(ROO·,其中R表烷基團或醯基團)	是對流層
(troposphere)中碳氫化合物氧化的前期產物[1、2、3]。碳氫	化合物 RH 與
OH 等具強氧化力之自由基和碰撞,經過擷氫反應後,產生	6的有機自由基
(R•)會很快地與大氣中的氧氣進行三體反應而形成過氧化	物自由基[1]。
$RH + OH \rightarrow R + H_2O$	(1-1)
$R + O_2 + M \rightarrow ROO + M$	(1-2)
過氧化物自由基和 NO 反應後產生之 NO2, 其受紫外光照象	射後產生之氧原
子會進一步與 O2 反應形成臭氧(O3):	E
$ROO + NO \rightarrow RONO_2 \rightarrow RO + NO_2$	(1-3)
$NO_2 + hv (\lambda < 380 nm) \rightarrow NO + 0$	(1-4)
$0 + 0_2 + M \rightarrow 0_3 + M$	(1-5)
由於 NO 和碳氫化合物為燃燒後之重要產物,因此反應式(1-3)至式(1-5)將
導致工業區中煙霧(smog)的形成[5],此乃都市空氣污染的方	元兇之一。而本
次實驗觀測之過氧甲基自由基(CH3OO)是有機過氧自由基中	中結構最簡單者
為對流層和平流層(stratosphere)中甲烷消耗之重要中間體,	如圖 1-1 所示
[5] •	

近年來對於過氧甲基研究非常多。就理論方面,Walch[6]利用 CASSCF/ICCI 方法搭配 ANO 基底函數研究 CH₃和 O₂的反應位能面。他們 發現 CH₃和電子激態為¹Δ_g 之 O₂反應生成²A[']態的 CH₃OO,其對稱面上末 端氧的類 2p 軌域只有填一個電子,因此碳上的氫原子可遷移到氧上,分解

出 OH 基生成 H₂CO^o 而 CH₃ 和電子激態為 ${}^{3}\Sigma_{a}^{-}$ 之 O₂ 生成 ${}^{2}A^{"}$ 態的 CH₃OO, 有兩個電子填在末端氧的類 2p 軌域,導致氫原子難以遷移到末端氧上。雖 然如此, ${}^{2}A'$ 態的 CH₃OO 仍可經位能面交叉(curve crossing)通到 ${}^{2}A'$ 態 CH₃OO 的位能曲面,進而斷 O-O 鍵產生 H₂CO + OH。Jafri 和 Phillips[7] 利用擬二級組態作用法(pseudo-second-order configuration interaction)計算出 CH3OO的C-O和O-O鍵的平衡鍵長分別為1.454 Å和1.355 Å,以及CH3OO 斷 C-O 鍵生成 $CH_3 + O_2$ 的解離能為 194 kJ mol⁻¹。另外他們還利用擬一級 組態作用法(pseudo-first-order configuration interaction)計算出電子基態 $\tilde{X}^2 A''$ 到第一激發態 $\tilde{A}^{2}A'$ 的躍遷能量為 87 kJ mol⁻¹(7267 cm⁻¹)。他們由位能圖推測 CH_3OO 的第一電子激發態 \tilde{A}^2A' 是束縛態,也指出 CH_3OO 在 240 nm 附近的 UV 吸收峰是電子基態 $\tilde{X}^2 A$ 躍遷到第二電子激發態 $\tilde{B}^2 A$ 所造成。CH₃OO 被激發至第二電子激發態後,會沿著 $^{2}A'$ 態的排斥位能面(repulsive potential energy surface)斷 O-O 鍵生成 CH₃O+O。

甲基與氧氣作用的主要途徑有三種:

 $\begin{array}{c} {\rm CH}_3 + {\rm O}_2 + {\rm M} \to {\rm CH}_3 {\rm OO} + {\rm M} & \Delta {\rm H} = -129 \ {\rm kJ} \ {\rm mol}^{-1} & (1{\rm -6}) \\ \\ \to {\rm CH}_2 {\rm O} + {\rm OH} + {\rm M} & \Delta {\rm H} = -223 \ {\rm kJ} \ {\rm mol}^{-1} & (1{\rm -7}) \\ \\ \to {\rm CH}_3 {\rm O} + {\rm O} + {\rm M} & \Delta {\rm H} = 120 \ {\rm kJ} \ {\rm mol}^{-1} & (1{\rm -8}) \end{array}$

其中反應式(1-6)為無能障之三體反應(termolecular reaction),形成 CH₃OO 後 放熱 129.3 kJ mole⁻¹[8],其反應速率隨總壓而變。若 CH₃OO 擁有大於 57 kJ mole⁻¹之內能,則可越過能障進行反應式(1-7)生成 CH₂O和OH[6]。若反應 物具有 120 kJ mole⁻¹以上的能量則會發生反應式(1-8),生成 CH₃O 和 O[9]。 此外 Zhu 等人[10]利用 RRKM 理論計算出在大氣 壓力下,溫度 1500 K內, 反應式(1-6)產生 CH₃OO 為 CH₃ + O₂反應之主要途徑。當溫度提升後,反應 式(1-7)和反應式(1-8)逐漸變得重要,且二者相互競爭。他們預測溫度於 2000 K 以內,主要進行反應式(1-7)產生 H₂CO + OH,其反應速率常數約為 $k_7 = 1.14 \times 10^{-22}T^{2.86} \times exp(-5120/T) cm^3 molecule^{-1} s^{-1},當溫度超過$ 2000 K 時,反應式(1-8)之產物 CH₃O + O 的生成比例逐漸增加,其反應速 $率常數約為<math>k_8 = 1.01 \times 10^{-16}T^{1.54} \times exp(-13280/T) cm^3 molecule^{-1} s^{-1}$ (適用溫度為 1000 - 3000 K)。此外該研究亦指出熱力學上最穩定的產物為 CHO + H₂O,反應熱為-351.0 kJ mole⁻¹,但因為反應物需要越過的能障高達 200 kJ mol⁻¹,故以動力學觀點而言,該反應較難進行。

在實驗方面,對 CH₃OO 之光譜亦有許多研究。在 1967年, Thomas[11] 利用脈衝輻射分解 CH₃Br 產生 CH₃自由基,並且於系統中通入大量氧氣。 他在 240 nm 附近發現一寬頻(broad band)、不具結構的吸收峰,認為是 CH₃OO 之吸收。隨後 CH₃OO 於波長 200 - 300 nm 之 UV 吸收光譜也被陸 續觀測到[12、13、14]。

CH₃OO 的 UV 吸收光譜之所以沒有結構性,主要原因是電子躍遷到的 第二電子激發態 $\tilde{B}^2 A$ ["]為一排斥態(repulsive state),導致無法得到關於分子 結構的訊息[15], CH₃OO 躍遷至第一電子激發態 $\tilde{A}^2 A$ [']的光譜則有明顯的結 構[16-20]。Hunziker 和 Wendt[16]利用激發態的汞原子碰撞丙酮產生 CH₃,

再與O2反應使生成CH3OO。他們用相位靈敏偵測技術偵測CH3OO躍遷至 第一電子激發態 $\tilde{A}^{2}A'$ 的光譜,並且指認出躍遷譜帶的起始點約在7375 cm⁻¹。 此外,他們亦觀測到離起始點約 120 cm^{-1} 的 v_{12} 振動模和 890 cm^{-1} 的 v_7 振動 模。Pushkarsky 等人[17]利用波長 193 nm 的雷射光解丙酮與氧氣之混合物 或以 248 nm 的雷射光解碘甲烷與氧氣之混合物, 使產生之 CH3 自由基與 $O_2 反應, 再以共振腔振盪衰減法得到 CH_3OO 躍遷至第一電子激發態<math>\tilde{A}^2 A'$ 的 光譜,他們得到電子基態和Ã²A'激發態的轉動常數,並指認譜帶起始位置 為 7382.5 ± 0.5 cm⁻¹, 其吸收截面積為 2.7 × 10⁻²⁰ cm³ molecule⁻¹。此外,他 們還得到了 CH₃OO 的自身反應速率常數: k = 4.9 × 10⁻¹³ cm³ molecule⁻¹ s⁻¹。 Blanksby 等人[18]利用光致游離(photodetachment)技術觀測 CH₃OO⁻和 CD₃OO⁻的光電子光譜,決定出 CH₃OO 躍遷至第一電子激發態Ã²A'的譜帶 起始點為: 0.914 ± 0.005 eV (7372 ± 40 cm⁻¹); 而 CD₃OO 躍遷至第一電子激 發態Ã²A'的譜帶起始點為: 0.913 ± 0.004 eV (7364 ± 32 cm⁻¹)。Fu 等人[19] 利用波長 193 nm 的準分子雷射光解超音射速中的 CH₃C(O)CH₃ 或 CD₃C(O)CD₃ 與氧氣和氦氣之混合物使生成 CH₃OO 或 CD₃OO, 先用一道近 紅外光雷射照射噴射流使 CH3OO 或 CD3OO 由電子基態躍遷到第一電子激 發態的各個振動能態,經過約 30 ns 後,再以另一道波長 118 nm 的真空紫 外光雷射使其游離成 CH₃OO⁺或 CD₃OO⁺。由於選用的吸收兩個光子的 CH₃OO 或 CD₃OO 有足夠內能從 CH₃OO⁺裂解為 CH₃⁺或由 CD₃OO⁺裂解為

CD3⁺,故當掃描紅外雷射波長並偵測 CH3⁺或 CD3⁺質譜訊號之改變,便可得 到 CH₃OO 或 CD₃OO 的 $\tilde{A}^{2}A' \leftarrow \tilde{X}^{2}A''$ 躍遷光譜。他們分別指派 CH₃OO 和 CD₃OO 的電子躍遷譜線原點為 7381 cm⁻¹ 和 7371 cm⁻¹。此外,他們還指派 了 CH₃OO 第一電子激發態 $\tilde{A}^{2}A'$ 的 v₆振動模和 v₇振動模分別為 1002 cm⁻¹、 898 cm⁻¹,以及 CD₃OO 第一電子激發態 $\tilde{A}^2 A'$ 的 v_3 到 v_7 振動模。其後,本實 驗室的鍾昭宇學長等人[20]利用共振腔振盪衰減法觀測到許多新的 $\tilde{A}^{2}A' \leftarrow \tilde{X}^{2}A''$ 電振躍遷譜線,分別指派 CH₃OO 在激發態 $\tilde{A}^{2}A'$ 的 v₈振動模和 v7 振動模為 378 cm⁻¹ 及 887 cm⁻¹; 而對 CD₃OO 而言,除了指派 348 cm⁻¹ 和 824 cm⁻¹ 為激發態 $\tilde{A}^2 A'$ 的 v8 振動模和 v7 振動模為外,還指派了 v5 振動模和 V_6 振動模分別為 954 cm⁻¹、971 cm⁻¹,這些振動波數的指派,均和 UB3LYP/aug-cc-pVTZ 之理論計算結果相近。上述各個實驗組對於 CH3OO 躍遷至第一電子激發態Â²A'的譜帶原點除了精確度不同外,結果是一致的。 在微波光區的研究中, Endo 等人[21]利用傅式轉換微波光譜法觀測到 CH3OO 之振動基態之轉動常數為A"=1.730 cm⁻¹, B"=0.379 cm⁻¹, $C'' = 0.330 \text{ cm}^{-1}$ °

共有三個研究組在低溫條件下觀測到CH₃OO的紅外光譜 [22、23、24]。 Ase 等人[22]熱解CH₃I或CH₃NNCH₃產生CH₃, CH₃再與O₂/Ar(1/10)作用, 產生CH₃OO自由基於低溫間質中。他們觀測到CH₃OO之v₃-v₁₀振動模的 吸收。Nandi[23]以二隻噴嘴交替注入由熱解CH₃NNCH₃/Ar(1/100)產生之 CH3自由基和O2/Ar (3/20)沉積於20K低溫靶, CH3與O2反應生成CH3OO, 再以傅式轉換紅外光譜儀觀測其對偏極化紅外光之吸收光譜。他們觀測到 CH₃OO 之十個振動模,其中 $v_1 - v_8$ 為 a'模, $v_9 \cdot v_{10}$ 為 a"模,其餘之 $v_{11} \cdot v_{12}$ 振動模未被觀測到。此外 Ase 等人和 Nandi 等人亦偵測了 CH₃OO 之同位素 ¹³CH₃OO、CH₃O¹⁸O¹⁸、CD₃OO 之光譜,其中 Ase 等人亦有觀測 CH₃¹⁸O¹⁶O、 CH3¹⁶O¹⁸O、¹³CH3¹⁸O¹⁸O、CD3¹⁸O¹⁸O、CD3¹⁸O¹⁶O、CD3¹⁸O¹⁸O之光譜,得 到同位素之位移資訊。Morrison 等人[24]熱解 di-tert-butyl peroxide 得到 CH3, CH3 再和 O2 反應後在 He 奈米液滴環境形成 CH3OO,利用可調變式紅外光 雷射(IR-OPO)掃描其 v₁(3034.7 cm⁻¹)、v₂(2955.5 cm⁻¹)及 v₉(3024.5 cm⁻¹)振動 模之紅外吸收光譜。由於此三實驗組觀測環境皆於低溫固態或液滴下,因 此無法得知轉動譜線。此外,間質環境造成的微擾使得振動譜線位置亦與 氣態光譜略有差異。在氣態 CH₃OO 的研究中,本實驗室的黃登瑞等人[25] 利用步進式掃描傅式紅外吸收光譜法研究 CH3OO 於電子基態的振動模。他 利用 248 nm 的雷射光光解 CH₃I 和 O₂ 之混合物,產生 CH₃OO 自由基,並 且觀測到 $v_1 - v_6 \cdot v_9$ 和 v_{10} 振動模。雖然其觀測到之 $v_1 \cdot v_2 \cdot v_9$ 與 $v_3 \cdot v_4 \cdot v_{10}$ 之振動模吸收相互重疊,仍可以藉由 SpecView 軟體模擬譜線形狀去適解得 到各自的振動波數,其結果與 B3LYP/aug-cc-pVTZ 之理論計算預測的振動 波數和相對強度大致吻合。其後,本實驗室之林震洋學長[26]使用 IR-OPO 產生紅外雷射光掃描和共振腔震盪衰減光譜法測得知 V1、V2、V9之高解析紅 外光譜,其振動波數分別為 3031.7 cm⁻¹、2953.4 cm⁻¹和 3020.7 cm⁻¹,並求 得 v₂振動模之B'與C'之平均值為 0.36 cm⁻¹, A'為 1.71 cm⁻¹,其結果與利用 Endo 研究組得到振動基態之轉動常數帶入理論計算得到之激態與基態之轉 動常數比值,所計算之激態轉動常數比值差異於 5 %以內。本實驗室所觀測 到之氣態 CH₃OO 之振動波數研究與 Ase 等人[22]、Nandi 等人[23]和 Mossison 等人[24]在低溫環境下觀測到的結果十分接近。吾人將上述各研究 組之結果列於表 1-1。

CH₃OO 的自身反應(self reaction)是造成其濃度衰減的主要原因之一。 有下列三種可能的途徑:

$2CH_3OO \rightarrow 2CH_3O + O_2$	$\Delta H = -6 \text{ kJ mol}^{-1}$	(1-9)
\rightarrow CH ₂ O + CH ₃ OH + O ₂	$\Delta H = -350 \text{ kJ mol}^{-1}$	(1-10)
$\rightarrow CH_3O_2CH_3+O_2$	$\Delta H = -166 \text{ kJ mol}^{-1}$	(1-11)

Lightfoot 等人[27]利用閃光光解法(flash photolysis)研究CH₃OO 在溫度248 – 573 K 間的自身反應,測得此溫度區間下 CH₃OO 的自身反應速率常數為 k = $1.3 \times 10^{-13} \times \exp(365/T)$ cm³ molecule⁻¹ s⁻¹; 在溫度 298 K 時, k = 4.4×10^{-13} cm³ molecule⁻¹ s⁻¹。反應式(1-9)和反應式(1-10)間呈現高度競爭 的情形,而反應式(1-11)可忽略。此二反應分支比和溫度有關: k₉/(k₁₀+k₁₁) = 45 × exp (-1470/T)(適用溫度為 388-573 K)。在 2005 年的文獻回顧[28] 列出。CH₃OO 在 298 K 時的自身反應速率常數為 k = 3.6×10^{-13} cm³ molecule⁻¹ s⁻¹,與 Lightfoot 等人的結果一致,其亦列出於 298 K 下反應分支比約為 k₉:

7

 $k_{10}: k_{11} = 0.375: 0.625: 0$ °

由於目前 CH₃OO 之氣態全光區(1000 - 4000 cm⁻¹)紅外光譜只有黃登瑞 研究過[25],但受限於當時之儀器訊雜比,其解析度僅只有 4 cm⁻¹,並無法 清楚解析 CH₃OO 各個振動模的轉動譜線;而本實驗室之林震洋利用可調頻 之紅外雷射搭配共振腔震盪衰減光譜法搭配測量 CH₃OO 之高解析紅外光 譜,但受限於紅外雷射系統之掃瞄範圍,僅能觀測到 C-H 伸展振動模之光 區,且共振腔震盪衰減光譜法波數校正不若 FTIR 精確。因此在本實驗中, 吾人使用 248 nm 雷射光解 CH₃I 和 193 nm 雷射光解丙酮產生 CH₃ 自由基, 並與 O₂ 反應生成 CH₃OO 自由基,並利用第二代的時間解析傳式轉換紅外 吸收光譜儀,以測得較黃登瑞學長[25]所得更高解析度及更優訊雜比的 CH₃OO 光譜,以得到更精確之振動波數,並且希望對其轉動譜線加以解析。

111

mode	mode description	Ar matrix ^a	Ar matrix ^a	He nanodroplet ^a	FTIR ^a	CRDS ^a	B3LYP/aug-cc-pVTZ ^{a,b}
ν_1	CH ₃ stretch		3032	3034.7	3033	3031.7	3150 (7.5)
v_2	CH ₃ symmetric stretch	2968 ^a	2954	2955.5	2954	2953.4	3050 (14.4)
v ₃	CH ₃ symmetric deformation	14 <mark>5</mark> 3	1448	FC	1453		1483 (9.6)
ν_4	CH ₃ umbrella	1414	1410		1408		1442 (1.6)
v_5	CH_3 rock + OO stretch	1183	1180	-	1183		1216 (9.7)
ν_6	CH ₃ rock + OO stretch	1112	1109		1117		1150 (2.0)
ν_7	CH ₃ –O ₂ stretch	902	902				912 (13)
ν_8	CH ₃ –O–O bend	492	492				490 (6.5)
v 9	CH ₃ stretch		3024	3024.5	3020	3020.7	3137 (10.2)
v_{10}	CH₃ antisym. deformation	1440	1434	189	5 1441		1473 (10.3)
ν_{11}	CH ₃ rock	unob	served ^c		unobserved ^c		1127 (0.8)
v ₁₂	CH ₃ torsion	-					134 (0.1)
reference		Ase <i>et al</i> .[22]	Nandi et al.[23]	Morrison <i>et al</i> .[24]	Huang et al.[25]	林震洋[26]	Huang et al. [25]

表1-1 CH₃OO 之低溫與常溫實驗與理論計算振動模譜線結果比較表

^a單位為 cm^{-1。b}此為簡諧振動模,括弧表紅外光強度。^c表示有觀測該光區卻未觀測到。

參考資料

[1] P. D. Lightfoot, R. A. Cox, J. N. Crowley, M. Destriau, G. D. Hayman, M. E. Jenkin, G. K. Moortgat, and F. Zabel, Atmos. Environ. **26A**, 1805 (1992).

[2] S. Madronich, J. Greenberg, and S. Paulson, in Atmospheric Chemistry and Global Change, edited by G. P. Brasseur, J. J. Orlando, and G. S. Tyndall (Oxford University Press, New York, 1999), pp. 325.

[3] G. L. Bras, in Chemical Processes in Atmospheric Oxidation (Springer, Berlin, 1997), Vol. **3**, pp. 13.

[4] S. B. Bertman, J. M. Roberts, D. D. Parrish, M. P. Buhr, P. D. Goldan, W. C. Kuster, F. C. Fehsenfeld, S. A. Montzka, and H. J. Westberg, Geophys. Res. **100**, 22805 (1995).

[5] J. R. Barker, *Progress and Problems in Atmospheric Chemistry*, World Scientific, Singapore (1995).

[6] S. P. Walch, Chem. Phys. Lett. 215, 81 (1993).

[7] J. A. Jafri and D. H. Phillips, J. Am. Chem. Soc. 112, 2586 (1990).

[8] I. R. Slagle and D. Gutman, J. Am. Chem. Soc. 107, 5342 (1985).

[9] J. M. W. Chase, C. A. Davies, J. J. R. Downey, D. J. Fruirip, R. A. McDonald,

and A. N. Syverud, J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985).

[10] R. Zhu, C.-C. Hsu, and M. C. Lin, J. Chem. Phys. 115, 195 (2001).

[11] J. K. Thomas, J. Phys. Chem. **71**, 1919 (1967).

[12] D. A. Parkes, D. M. Paul, C. P. Quinn, and R. C. Robson, Chem. Phys. Lett.23, 425 (1973).

[13] C. Anastasa, I. V. M. Smith, and D. Parkes, J. Chem. Soc., Faraday Trans. 1 74, 1693 (1978).

[14] H. Adachi and N. Basco, Int. J. Chem. Kinet. 14, 1125 (1982).

[15] E. N. Sharp, P. Rupper, and T. A. Miller, Phys. Chem. Chem. Phys. **10**, 3955 (2008).

[16] J. E. Hunziker and H. R. Wendt, J. Chem. Phys. 64, 3488 (1976).

[17] M. B. Pushkarsky, S. J. Zalyubovsky, and T. A. Miller, J. Chem. Phys. **112**, 10695 (2000).

[18] S. J. Blanksby, T. M. Ramond, G. E. Davico, M. R. Nimlos, S. Kato, V. M. Bierbaum, W. C. Lineberger, G. B. Ellison, and M. Okumura, J. Am. Chem. Soc. **123**, 9585 (2001).

[19] H. B. Fu, Y. J. Hu, and E. R. Bernstein, J. Chem. Phys. 125, 7 (2006).

[20] C.-Y. Chung, C.-W. Cheng, Y.-P. Lee, H. Y. Liao, E. N. Sharp, P. Rupper,

and T. A. Miller, J. Chem. Phys. 127, 14 (2007).

[21] Private communication with Prof. Y. Endo.

[22] P. Ase, W. Bock, and A.Snelson, J. Phys. Chem. 90, 2099 (1986).

[23] S. Nandi, S. J. Blanksby, X. Zhang, M. R. Nimlos, D. C. Dayton, and G. B. Ellison, J. Phys. Chem. A **106**, 7547 (2001).

[24] A. M. Morrison, J. Agarwal, H. F. Schaefer, and G. E. Douberly, J. Phys. Chem. A **116**, 5299 (2012).

[25] D. -R. Huang, L. -K. Chu, and Y. -P. Lee, J. Chem. Phys. **127**, 234318 (2007).

[26] 林震洋,國立交通大學碩士論文,民國一百零一年。

[27] P. D. Lightfoot, R. Lesclaux, and B. Veyret, J. Phys. Chem. 94, 700 (1990).
[28] D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data 34, 757 (2005).

第二章 實驗原理和技術

多數分子在紅外光譜中有特徵吸收,其獨特性就如人類的指紋般,可 用於分子的鑑定;若吸收強度經校正後,則可量測其濃度。分子吸收的頻 率則可推測所具有之官能基(functional group);若用適當的解析度觀測分子, 得到其轉動能階間距,便可計算分子的轉動常數得到其結構的訊息。由於 紅外光譜法易得知分子諸多特性,因此普遍用於環境科學、大氣化學、工 業生產等領域中。

2.1 傅式轉換紅外光譜法

在早期,一般是使用分光式光譜儀(dispersive spectrometer)來量測光譜。 而在 1891 年麥克生(A. A. Michelson, 1852-1931)發明干涉儀[1],開啟了光 譜量測的新方法。干涉儀主要由分光片(beam splitter)、移動鏡(moving mirror) 及固定鏡(fixed mirror)所組成,如圖 2-2 所示。光源經拋物面鏡後,形成平 行光並導向分光片。理想情況下,分光片將入射平行光平均分成強度相同 的兩道光束,其中一道光束穿透分光鏡,經由固定鏡反射後再經由分光片 反射導向偵測器,另外一道光束則由分光片反射至移動鏡,之後再經由移 動鏡反射後穿透分光片並導向偵測器。當移動鏡沿著光軸移動時,匯集於 偵測器之兩道光束所經過的光程便會不同,造成相位差(phase difference)的 改變,因而產生干涉現象。 對於單色光而言,當光程差為半波長的偶數倍($\delta = n \times \lambda/2$; n = 0, ± 2 , ± 4 , ...)時,兩道光束抵達偵測器時為同相位(in phase),形成建設性 (constructive)干涉,此時匯集之光強度最強;若光程差為半波長之奇數倍($\delta = n \times \lambda/2$; $n = \pm 1$, ± 3 , ...),則兩道光束抵達偵測器時為反相位(out of phase), 形成破壞性(destructive)干涉,光束強度最弱。當移動鏡以定速(v)來回移動 時,由於光程差的改變,匯集光束重複地經過建設性及破壞性干涉,而光 程差之變化為時間之函數($\delta = 2vt$),因此可由偵測器測得一隨時間變化之干 涉圖譜。此干涉圖譜可經由傳式轉換轉成傳統光譜。

2.2 麥克生干涉儀之基本原理與傅式轉換之關係

2.2.1 麥克生干涉儀原理

光是電磁波的一種,因此可利用電磁波的電場變化函數來表示:

$$E(r,t) = E_0 e^{(k \cdot r - \omega t + \varphi_0)} = E_0 e^{(k \cdot r - 2\pi c \,\tilde{v} \, t + \varphi_0)}$$
(2-1)

其中 k 為波向量(wave vector)、r 為位置向量(position vector)、 ω 為角頻率 (angular frequency)、t 為時間點(time)、 ϕ_0 為初始時間下的相位(phase)、c 為 光速、 \tilde{v} 為波數(wavenumber),而光束的強度 $I = \frac{1}{2} c \varepsilon_0 |E(r,t)|^2$ 成正比。以一 固定波數 \tilde{v} 的單色光源為例,當其經由分光片平分成兩道光束時,各個光束 的電場變化函數就改變為 $E(r,t) = \frac{1}{2} E_0 e^{(kr-2\pi c \tilde{v}t+\phi_0)}$,又光程為 $d = c \cdot t$,故上式可 改寫為 $E(r,d) = \frac{1}{2} E_0 e^{(kr-2\pi v d+\phi_0)}$ 。因此, 經由分光片分開最後匯集於偵測器 之光束強度為:

$$I(\delta) = \frac{1}{2} c \varepsilon_0 |E(r,d)|^2 = \frac{1}{2} c \varepsilon_0 |E(r,d_1) + E(r,d_2)|^2$$

$$= \frac{1}{2} c \varepsilon_0 \left| \frac{1}{2} E_0 e^{(k \cdot r - 2\pi \tilde{v} d_1 + \varphi_0)} + \frac{1}{2} E_0 e^{(k \cdot r - 2\pi \tilde{v} d_2 + \varphi_0)} \right|^2$$

$$= \frac{1}{2} (\frac{1}{2} c \varepsilon_0) E_0^2 [1 + \cos(2\pi \delta)]$$

$$= \frac{1}{2} I(0) + \frac{1}{2} I(0) \cos(2\pi \delta)$$

(2-2)

其中光程差 $\delta = d_1 - d_2$ 。即單色光的干涉圖譜為一個向上平移的餘弦函數, 其光程差變化與頻率的關係為 $f = c \cdot \tilde{v}$ 。圖 2-3 為不同光源及其對應的干涉 圖譜,圖 2-3 (a)為單色光源的干涉圖譜,為一餘弦波;圖 2-3 (b)為雨道頻 率相近之單色光源的干涉圖譜,可視為兩個餘弦函數疊加,因其具相近的 頻率、相位發生干涉現象可觀察到波包(wave packet)與波列(envelope),而 波包與波包之間相隔不遠;圖 2-3 (c)為一連續光源之干涉圖譜,因其為多 個強度、相位、頻率不同之餘弦函數疊加導致複雜的干涉現象。在 $\delta = 0$ 時, 所有頻率的光均為同相,因此可觀測到一極強的訊號,此點為零光程差點 (zero path difference);而 δ 漸漸變大時,各個頻率的光相互抵消,使光強度 減弱。

2.2.2 傅式轉換

利用傅式轉換方式即可將干涉圖譜轉換成傳統光譜,其數學式如下:

$$B(\tilde{\nu}) = \int_{-\infty}^{\infty} I(\delta) e^{i2\pi\tilde{\nu}\delta} d\delta$$

= $\int_{-\infty}^{\infty} I(\delta) \cos(2\pi\tilde{\nu}\delta) d\delta + i \int_{-\infty}^{\infty} I(\delta) \sin(2\pi\tilde{\nu}\delta) d\delta$ (2-3)
= $\operatorname{Re}(\tilde{\nu}) + i \operatorname{Im}(\tilde{\nu})$

式(2-3)之實數部分可描述干涉圖譜經傅式餘弦轉換所得到之傳統光譜,如

下表示:

$$B(\tilde{\nu}) = \int_{-\infty}^{\infty} I(\delta) \cos(2\pi \tilde{\nu} \delta) d\delta$$
(2-4)

理想之干涉圖譜應為一左右對稱圖形,因此可將式(2-4)改寫成兩倍的 $\delta = 0$ 到+ ∞ 積分表示:

$$B(\tilde{\nu}) = 2\int_0^\infty I(\delta)\cos(2\pi\tilde{\nu}\delta)d\delta$$
 (2-5)

但實際上干涉譜的取樣點並非連續的,因此式(2-3)中的積分式應改成總和 式:

$$B^{\Delta x}(\tilde{v}) = \sum_{j=-\infty}^{\infty} I_j e^{-i2\pi\tilde{v} \cdot j\Delta x}$$
(2-6)

其中取樣區間為 Δx ,此方法稱為離散傅式轉換(discrete Fourier transform, DFT),此取樣方法得到的光譜會以 $\frac{1}{\Lambda r}$ 的週期出現,如下式: $B^{\Delta x}\left(\tilde{v}-\frac{p}{\Delta x}\right) = \sum_{i=-\infty}^{\infty} I_{j} e^{-i2\pi(\tilde{v}-\frac{p}{\Delta x})j\Delta x} = \sum_{i=-\infty}^{\infty} I_{j} e^{-i2\pi\tilde{v}\cdot j\Delta x} \cdot e^{i2\pi p\cdot j} =$ $\sum_{i=1}^{\infty} I_i e^{-i2\pi \tilde{v} \cdot j\Delta x}$ (2-7) $= B^{\Delta x}(\widetilde{\nu})$

此現象稱為混疊(folding)或失真(aliasing)。

削足函數 2.2.3

上述式子均含無限大的序列或積分範圍,然而移動鏡移動的距離有限, 光程差無法達到無限大,實驗上只能得到 $\delta = -\frac{L}{2}$ 到 $\frac{L}{2}$ 之間的干涉圖譜,其中 L 為移動鏡所能移動之最大距離。該干涉圖譜以 $I'(\delta)$ 表示,就如同理想之 干涉圖譜 $I(\delta)$ 乘上一匣式截斷函數(boxcar truncation function) $D(\delta)$,如圖 2-3 所示,而 $D(\delta)$ 的定義如下:

$$D(\delta) = 1 \qquad \text{ if } \delta \le \left| \frac{L}{2} \right|$$

$$D(\delta) = 0 \qquad \text{ if } \delta > \left| \frac{L}{2} \right|$$

$$(2-8)$$

因此, 偵測器所測得的光束強度隨光程差的變化函數可改寫成下式:

$$I'(\delta) = I(\delta) \cdot D(\delta) \tag{2-9}$$

即傳統光譜 B'(v)為

$$B'(\tilde{\nu}) = 2\int_0^\infty I(\delta)D(\delta)\cos(2\pi\tilde{\nu}\delta)d\delta$$
(2-10)

根據傅式分析卷積定理(convolution theorem of Fourier analysis),當f(x)和 g(x)均為可積分函數,則兩個函數之乘積的傅式轉換為此兩個函數個別傅式 轉換後之卷積(convolution),如下式所示: E(f(x)g(x)) = E(f(x)) * E(g(x)) (2.11)

11 III III am

$$F\{f(x)g(x)\} = F\{f(x)\} * F\{g(x)\}$$
(2-11)

其中*表示卷積。卷積數學式定義則如下式所示:

$$f(x) * g(x) = \int_0^t f(x)g(x-\tau)d\tau$$
 (2-12)

而匣式截斷函數 $D(\delta)$ 作傅式餘弦轉換後為一 sinc 函數 $f(\tilde{v})$,此函數稱為儀器譜線形狀函數(instrumental line shape function, ILS),其數學表示式如下:

$$f(\tilde{\nu}) = \frac{\mathrm{si}(\pi \tilde{\nu} L)}{\pi \tilde{\nu}} = L \mathrm{sin}(\pi \tilde{\nu} L)$$
(2-13)

I(δ)作傅式餘弦轉換後成為*B*(*ν*),因此,實驗所得到的真實光譜*B*'(*ν*)為理 想傳統光譜和儀器譜線形狀函數卷積的結果:

$$B'(\tilde{\nu}) = F\{I(\delta)D(\delta)\} = B(\tilde{\nu}) * f(\tilde{\nu})$$
(2-14)

對於單色光闪而言,上式可簡化為:

$$B'(\tilde{\nu}) = B(\tilde{\nu}) * f(\tilde{\nu}) = LB(\tilde{\nu}_1) \sin c [\pi(\tilde{\nu}_1 - \tilde{\nu})]L$$
(2-15)

因此,如圖 2-3 所示,原本應為單一波數 i 且無限窄頻寬的圖譜,由於移 動鏡無法移動至無限遠處而經匣式截斷函數修正,使得譜線變寬,主峰之 半高寬(full width at half maximum, FWHM)為 $\frac{0.605}{I}$,此半高寬常被用來表 示傅式紅外光譜的理論解析度(theoretical resolution)。此外,干涉譜經匣式 截斷函數修正及傅式轉換後所得之傳統光譜亦會在主峰兩側產生額外的側 波;側波最大振幅值(Hs, side lobe amplitude maximum, SLAM)與主峰高度 H_m 的比值為 $\left|\frac{H_s}{H_m}\right| = 21.7\%$,當主峰附近有其他微弱訊號則易與此側波混淆。 為了除去匣式截斷函數造成的側波干擾,可用其他函數取代匣式截斷 函數,其作用彷彿削去主峰旁的足部一樣,故稱此類函數為削足函數 (apodization function)[2]。表 2-1 列出幾種簡單的削足函數,從中可發現削 足函數雖然可以降低側波之干擾,但卻也導致主峰的頻寬增加。因此,如 果頻寬不是重要的考量,則可選擇 H. 值較小的削足函數;反之,若頻寬 是主要的考量因素,則可選用 FWHM 較小的削足函數。除了這些考慮因素 外,還要考量解析度與譜線密度,再選擇適合該實驗條件的削足函數。本

實驗使用的削足函數為 Blackmann-Harris 3-term 其 FWHM 為 $\frac{1.16}{L}$,而 $\left|\frac{H_s}{H}\right| = 0.04\%$

本實驗使用之光譜儀(Vertex 80v, Bruker)使用 triangular 削足函數定義

其儀器解析度,其主峰之半高寬為 $\frac{0.9}{L}$,而 $\left|\frac{H_s}{H_m}\right|$ =4.5%。此光譜儀之移動鏡 所能造成之最大光程差(optical retardation)L為12 cm,在未使用削足函數之 干涉譜,其實際解析度(nominal resolution) R 定義為最大光程差 L 之倒數: $R = \frac{1}{L} = \frac{1}{12} = 0.083 \text{ cm}^{-1}$ (2-16)

若使用 triangular 削足函數則可得解析度為 0.075 cm⁻¹;除了削足函數對解 析度有影響外,光圈大小也會影響到解析度,此稱為光圈增寬(aperture broadening)[3]。當光圈愈大則立體角愈大,此時通過光圈的離軸光(off-axis ray)會和正軸光(on-axis ray)干涉,當移動鏡移動距離愈長,光圈邊緣的光會 逐漸和光圈中心的光形成破壞性干涉,即使再增加移動鏡距離也無法增加 干涉譜的資訊,因此光圈大小和解析度之關係必須符合下式:

$$d = 2f \sqrt{\frac{R}{\widetilde{v}_{\text{max}}}} = 200 \sqrt{\frac{R}{\widetilde{v}_{\text{max}}}} \text{ (mm)}$$
(2-17)

其中d表示為光圈直徑、f為光源所使用之拋物面鏡焦距(f = 10 cm)、R為理 論解析度(未受削足函數影響)、 \tilde{v}_{max} 為觀測光區之最大波數。此稱為自削足 現象(self-apodization)[4]。假設欲觀測之光區最大波數為4000 cm⁻¹,觀測解 析度 $R = 1 \text{ cm}^{-1}$,則光圈大小至多為3.1 mm;若改變解析度 $R = 0.15 \text{ cm}^{-1}$, 則光圈大小至多為1.2 mm。

2.2.4 相位校正

由於電子濾波器、光學元件及不當取樣等因素會造成相位差(phase

error),影響干涉圖譜之對稱性。以電子濾波器為例,其對於不同頻率的光 會產生不同的相位延遲($\theta(\tilde{v})$, phase lag)效應,因此,必須利用相位修正 (phase correction)來修正此誤差。亦即式(2-4)必須加上 $\theta(\tilde{v})$ 以進行相位修正, 才能描述真實之干涉圖譜:

$$I(\delta) = \int_{-\infty}^{\infty} B(\tilde{\nu}) \cos[2\pi\tilde{\nu}\delta - \theta(\tilde{\nu})] d\tilde{\nu}$$

=
$$\int_{-\infty}^{\infty} B(\tilde{\nu}) [\cos(2\pi\tilde{\nu}\delta) \cos(\theta(\tilde{\nu})) + \sin(2\pi\tilde{\nu}\delta) \sin(\theta(\tilde{\nu}))] d\tilde{\nu}$$
 (2-18)

上式中之 $\theta(\tilde{v})$ 效應相當於原餘弦函數中引入一正弦函數成分,使原本以 $\delta = 0$ 對稱之干涉譜變得稍不對稱。如果只是以餘弦傅式轉換將會導致光譜 上的誤差,因此式(2-3)中,將干涉圖譜進行傅式餘弦及正弦轉換後即可得 相位角: $\theta(\tilde{v}) = -\arctan \frac{Im(\tilde{v})}{D_{v}(z)}$ (2-19)

以此資訊代入式(2-18),可進一步得到修正後之傳統光譜。

此外,不當取樣也會影響所量測之干涉圖譜。當理想的干涉圖譜對稱於 $\delta = 0$,但如果第一個取樣點並非於 $\delta = 0$,而是在 $\delta = -\varepsilon$ 時,實際之干涉圖 譜應修正表示為[5]:

$$I(\delta) = \int_{0}^{\infty} B(\tilde{\nu}) \cos[2\pi\tilde{\nu}(\delta - \varepsilon)] d\tilde{\nu}$$
(2-20)

此因素所造成的誤差也和有相位差類似。因此,無論是不當取樣或濾波等 因素所產生干涉譜的相位誤差均可以相位修正之數學步驟加以修正,以避 免光譜轉換後所得之傳統光譜發生嚴重的誤差。本實驗所使用的相位修正 方法為 Mertz method[6、7]。 通常實驗為了節省時間及縮短傅式轉換運算量和時間僅擷取單邊之干 涉圖譜(single-sided interferogram),故相位校正程序相當重要。實驗時於干 涉圖譜 $\delta = 0$ 左側多取 n 個數據點,得到一個含 2n 個數據點的雙邊干涉圖 譜,如圖 2-4 所示,再將對稱區域進行 FFT 轉換,以取得相位誤差資訊, 作為相位校正。如同 N 點數多寡決定光譜解析度,n 點數多寡決定隨波數 改變之相位解析度 $R_{\theta}(\tilde{\nu})$ (phase resolution)。所幸相位角 $\theta(\tilde{\nu})$ 隨波數變化緩慢, 因此 $R_{\theta}(\tilde{\nu})$ 不需和 $R(\tilde{\nu})$ 相若,一般而言, $R_{\theta}(\tilde{\nu})$ 約為 $R(\tilde{\nu})$ 的八倍。

2.2.5 取樣方式

一般的傅式轉換紅外光譜儀有三組不同光源之干涉儀,三組干涉儀共 用分光鏡和移動鏡,三組光源包括具連續波長的紅外光源、氦氛雷射以及 連續白光光源,分別做為偵測樣品光譜、測量取樣之相對光程差以及定義 零光程差之用途;圖 2-6 為其干涉圖譜及傳統光譜。氦氖雷射可提供頻率 極為穩定之單色光源(波長λ_{vacuum}= 632.9 nm),故其干涉圖譜為一餘弦函數, 如圖 2-7 所示。由於此餘弦波之頻率與移動鏡速率成正比,若移動鏡速率 稍有變動時,則餘弦波之頻率亦隨之改變。因此,電腦隨時調整取樣時間, 才能確保每一個取樣點之光程差的準確性。餘弦波每段波長有兩個零交叉 點(zero-crossing),其固定間隔為 316.5 nm,傅式轉換紅外光譜儀以氦氖雷 射干涉圖譜的零交叉點做為定位點,而不以固定時間間隔來取樣,可建立 一個固定光程差的量度法,並以之作為取樣的間隔。由於氦氖雷射只能定 位移動鏡位移每段距離的相對位置,故利用白光光源之干涉圖譜的最高點 作為零光程差位置的訂定。圖 2-6 (c)所示,連續波長的白光,其干涉圖譜 在δ=0時,為完全建設性干涉,強度最大,而δ>0時其強度迅速減弱,故 其干涉圖譜為一個強而窄的訊號,以此定位取樣的起始點。然而本實驗所 使用的 Bruker FTIR 是利用步進式馬達來驅動移動鏡,可精準地定位移動鏡 的位置,因此僅使用兩組干涉儀,不需使用連續白光干涉儀。在實驗正式 撷取數據前,先利用光譜儀的紅外光源對正(align)干涉儀,並儲存干涉圖譜 的波峰之光程差位置,作為零光程差的參考基準點,以確保每次干涉圖譜 撷取訊號的起始點一致,才可在多次掃瞄光譜時可以精確地疊加。

2.3 FTIR 的優點

相較於一般分光式光譜儀,傅式轉換光譜儀具有以下的優點: 2.3.1 多重波長優點

分光式光譜儀利用光栅把多色光分散開,透過狹縫選擇單一波長的光 出射,此單一波長光強度較容易不穩,因此訊雜比較差,且一次只能量測 單一波長,掃描一張光譜十分費時;而干涉儀得以同時量測欲偵測光區中 所有波長,光強度遠大於分光式光譜儀,且雜訊經過傅式轉換後會平均於 整張光譜中,因此光譜訊雜比較佳。而除上述外,透過此優點亦能在更短 時間內擷取完整光區之光譜。因此當使用同樣光譜擷取時間及光譜解析度, 干涉儀得以較分光式光譜儀多掃描N次並加以平均。如果雜訊以隨機形式 出現,則可將訊雜比 S/N 提升 N^{1/2}倍。此優點首次由 Fellgett 提出,又稱為 Fellgett 優點[8]。

2.3.2 高光通量優點

分光式光譜儀波長解析度取決於光栅的色散(dispersion)與狹縫的寬度, 為了維持波長解析度,入射光必須先經過一0.1-1 mm 寬的狹縫,因此便造 成可利用之光強度減弱。相較之下 FTIR 是使用 1-10 mm 之圓形光圈,其 入射的光量遠大於分光式光譜儀,所以偵測器測得的訊號強度亦遠大於一 般單光儀,靈敏度因而增加,此優點於 1954 年由 Jacquinot 提出,稱為 Jacquinot 優點[9、10]。

2.3.3 波數準確優點

分光式光譜儀的波數準確性是由外部標準波長校正、光柵角度控制的 穩定性和光學對正來決定。而干涉儀是透過內部的氦氖雷射波長為基準, 其頻率精確及穩定的特性精準地決定光程差,使光譜的準確度可達 0.001 cm⁻¹,此由 Connes 所提出,稱為 Connes 優點[11]。

2.3.4 高解析度優點

分光式光譜儀的光譜解析度受限於狹縫寬度及光柵的線性色散率倒數 (reciprocal linear dispersion of the grating),其解析度一般為 0.1 cm^{-1} ,而干 涉儀的解析度則主要取決於最大光程差L,目前市售 FTIR 所能達到最高解 析度< 0.001 cm^{-1} 。 2.3.5 抑制散射光

分光式光譜儀往往會受散射光的干擾,如果用 chopper,則只能以固定 頻率來調制,無法分出不同波長之散射光。而連續式干涉儀的移動鏡以一 個固定速率 v 移動,因此將訊號作調頻(modulation),一波數為 v 的單色光 經由干涉儀調頻後,偵測器測到的訊號頻率 f 為 2 v v ,其調制頻率隨波數 而變,故以適當的電子濾波器,可進一步過濾在待測光區外之散射光訊號。

2.4 步進式掃描時間解析傅式轉換紅外光譜法

2.4.1 工作原理

 一般而言,當光譜儀在連續掃描模式中,干涉儀的移動鏡是以同一速度 ν進行,光程差δ亦隨時間而變,可表示成δ=2vt。而連續掃描模式中,
 一張光譜需花數十毫秒到數秒不等,對短暫生命的物種無法偵測,也無法 做時間解析之偵測。

當干涉儀在步進式掃描模式下,移動鏡並非連續移動,而是在氦氖雷 射的零交叉點停下,並取時間解析之訊號,且可重複擷取以進行訊號平均。 接著移動鏡移動,在下一個零交叉點停止並如前一步驟記錄隨時間變化的 訊號。當移動鏡從第 x_{n-1} 個零交叉點移動至第 x_n 個零交叉點並於適當的穩 定時間(stabilization time)後,FTIR 會觸發內建的類比/數位轉換器 (analog-to-digital convertor, ADC),使其開始擷取於第 x_n 個零交叉點時間變 化的時間記錄(temporal profile),如圖 2-8(a)所示;當完成第 x_n個零交叉點 的訊號擷取後,移動鏡會移動到第 x_{n+1}個零交叉點處,進行相同步驟,直 到干涉譜的最後一點。移動鏡在氦氖雷射的第 x 個零交叉點所得到的時間 記錄,以陣列 I_x(t)表示,透過電腦內部重組成陣列 I_t(x),即時間 t 下之干涉 譜,如圖 2-8(b),而再將每個時間 t 下所擷取的干涉譜經過傳式轉換得到 一組時間解析的傳統光譜 A_t(*v*),如圖 2-8(c)。

目前,步進式掃描時間解析紅外光譜儀已經發展到相當成熟的階段。 在氣態研究中,其主要應用於放光光譜,探測因光分解或自由基反應中激 發態分子的放光,以研究反應動態學[12、13]。放光光譜法是測量零背景的 環境中之微小訊號,因此具有較高靈敏度。相較之下,吸收光譜法必須在 極大的背景訊號中擷取極微小的變化量,故實驗上較為困難。但藉由步進 式掃描時間解析紅外吸收光譜法可以獲得反應中間產物的吸收譜帶並進而 研究其反應動力學[14、15、16];如果可以得到轉動解析之光譜,尚可得知 分子的轉動常數。相較於放光光譜法無法提供的基態資訊與反應中間物的 鑑定,吸收光譜法具有相當大的應用價值。

2.4.2 跳點取樣

除前述僅擷取單邊干涉譜外,另一個節省時間的方法為跳點取樣。氦 氛雷射波長於真空中為 632.99 nm,每個零交叉點間距為 316.50 nm,假設 移動鏡在每個零交叉點取樣,則根據 Nyquist criterion[17],任何週期性訊號 的數位化取樣,其取樣頻率必須大於等於偵測訊號 2 倍以上之頻寬 (bandwidth)才可得到正確資訊,因此如於每個零交叉點取樣,可觀測光區範 圍為 0-15798.01 cm⁻¹;若每隔 2 個零交叉點取樣,則可觀測光區範圍為 0-7899.00 cm⁻¹ 及 7899.00 - 15798.01 cm⁻¹。跳點數和可測光區的關係可表示 為下式:

$$N_{s,under} = \frac{\widetilde{v}_{He-Nelaser}}{(\widetilde{v}_{\max} - \widetilde{v}_{\min})}$$
(2-21)

而離散干涉譜的點數由光區和解析度決定。假設欲觀測的光區範圍介於 \tilde{v}_{max} 和 \tilde{v}_{min} 之間,且解析度為 $\Delta \tilde{v}$,至少需要之總取樣點數 N_s 可表為下式: $N_s = \frac{2(\tilde{v}_{max} - \tilde{v}_{min})}{\Delta \tilde{v}}$ (2-22) 假設解析度為 0.15 cm⁻¹,取的光區為 0-1560 cm⁻¹,跳點數為 $N_{s,under}$

 $=\frac{15798.01}{1560-0}=10.13$,跳點數為 10 點,即每隔 5λ_{HeNe}取樣,表可能的觀測範圍 為 0-1579.8 cm⁻¹、1579.8-3159.6 cm⁻¹、3159.6-4739.4 cm⁻¹。可估算不 包含相位校正(phase correction)所需之取樣點數為 21064 個點。觀測 0-1579.8 cm⁻¹的光區中,如式(2-7)所示,訊號每次間隔 $\frac{1}{\Delta x}$ 訊號重複。在圖 2-5 中,F 為觀測區間之最大波數為 1579.8 cm⁻¹,若其中於 0-F、F-2F、2F-3F 區間有 A、B、C 之訊號,若不使用濾光片則於 F-2F 區間之訊號 B 會混疊 至 0-F 形成B'、在 2F-3F 區間之訊號 C 則會混疊至 F-2F 如C',而C'再 混疊至 0-F 形成C",因此若觀測光區為 0-F 則會觀測到實際之訊號 A、 混疊之訊號B'和C'、C",故為了避免發生混疊的現象必須加濾光片以限制所 能通過的光區使與所欲偵測之光區一致。

2.4.3 數據擷取原理

本實驗系統的偵測器將訊號分成 AC 耦合與 DC 耦合[18], 如圖 2-9 所 示,因其輸出之訊號通常很小,通常會先經過前置放大器(pre-amplifier)放 大後才輸入至類比/數位轉換器轉換為數位訊號,然而內建類比/數位轉換器 無法於一次量測中同時取得 AC 和 DC 耦合訊號,只得做單一頻道(single channel)訊號記錄,故必須先在第一次量測中取無雷射激發之 DC 干涉譜, 再於第二次量測中使用脈衝產生器觸發雷射以擷取 AC 干涉譜,而透過脈衝 產生器之儀器時序將於第三章 3.1.4 中詳述。DC 耦合端取得樣品在未受到 雷射激發之干涉譜 $I_0(\delta)$,此干涉譜經傅式轉換後可得到樣品的背景光譜 $B_t(\tilde{\nu})$ 與其相對的相位 $\theta_t(\tilde{\nu})$ 。而 DC 譜之訊號未受雷射干擾因此訊號,前者 可經由平均後降低雜訊,以 B₀(*v*)表示,後者可用來提供 AC 耦合干涉譜作 相位校正(phase correction)之用;由AC 耦合端得到的訊號則會反映雷射激 發後反應槽內分子對紅外光的吸收度變化,在每一特定光程差 δ 可測得一 組時間解析之 AC 訊號 $\Delta I_{\delta}(t)$,當掃描完所需的光程差後可得到一組完整的 AC 訊號資料陣列,經重組後則可得到每一特定時間 t 之干涉譜變化訊號 $\Delta I_i(\delta)$, $\Delta I_i(\delta)$ 經相位修正及傅式轉換後,得到每一特定時間 t 之光譜強度變 化量 $\Delta B_t(\tilde{v})$, 並依照下式計算 AC 和 DC 差異吸收光譜(difference spectrum) $\Delta A_t(\tilde{v})$
$$\Delta A_{t}(\tilde{\nu}) = -\log\left[1 + \frac{\Delta B_{t}(\tilde{\nu})}{B_{0}(\tilde{\nu})}\right]$$
(2-23)

而 AC 耦合訊號通常較 DC 耦合訊號來的小,因此 AC 耦合訊號之放大倍率 會大於 DC 耦合訊號之放大倍率;假設 AC 耦合訊號放大 j 倍、DC 耦合訊 號放大 k 倍,則計算吸收度時須將式(2-23)改為:

$$\Delta A_t(\tilde{\nu}) = -\log\left[1 + \frac{\Delta B_t(\tilde{\nu})}{B_0(\tilde{\nu})} \times \frac{k}{j}\right]$$
(2-24)

本實驗偵測器之前置放大器放大倍率於 3.1.4 中詳述。因此,當有新生成之 產物吸收紅外光,使光譜變化量ΔS_t(*ṽ*)為負值,而吸收度變化量 ΔA_t(*ṽ*)會 呈現正值;反之當反應物消失時,使ΔS_t(*ṽ*)為正值,故ΔA_t(*ṽ*)會呈現負值。

圖 2-1 干涉儀儀器配置示意圖

(a) 單色光源 (b) 強度相同,波數相近之兩單色光源 (c) 連續光源。

圖 2-3 (a) 匣式截斷函數傅式轉換後之圖譜 $f(\tilde{\nu})$,其波形為 sinc 函數

(b) 在移動鏡之有限位移±L下,單色光波數V₁之干涉圖譜以匣式截斷函 數進行傅式轉換後之圖譜B(V)。其中H_m為主波強度之絕對值;H_s為測 波強度之絕對值

圖 2-4 干涉圖譜之取樣示意圖。實驗擷取單邊之 N 點干涉圖譜,並以零光程

差點為中心,相位校正時,左右各取n個點數以進行相位校正。

圖 2-6 干涉圖譜及其對應之傳統光譜。(A)連續波長的紅外光源;(B) 氦氖雷射;(C) 連續白光光源。

圖 2-7 氦氖雷射之干涉圖譜。圖中實心方格為零光程差點,實心圓點為零交叉

點。

圖 2-8 步進式掃描時間解析傅式轉換光譜之數據擷取示意圖

(a)各曲線為光程差為 Xn 時所得之時間解析信號

(b)數據重組後,各曲線表示 tm 時間下的干涉譜;

(c)經 FT 後所得之時間解析光譜。

之步驟。

表2-1 常用之削足函數(apodization function)之削足效果與主峰半高寬之比較。

Function	Formula	FWHM (%) ^c	SLAM (%)	^d Ref.
Boxcar	1	60	2	
Triangular (Bartlett)	1 - D ^e	89	4.5	[19]
N-B ^a weak	$0.548 - 0.0833(1-D^2) + 0.5353(1-D^2)^2$	72	5.8	[20]
N-B medium	$0.261 - 0.154838(1-D^2) + 0.894838(1-D^2)^2$	84	1.4	[20]
N-B strong	$0.09 + 0.5875(1-D^2)^2 + 0.3225(1-D^2)^3$	97	0.3	[20]
Hamming	$0.54 + 0.46\cos(\pi D)$	91	0.71	[19]
(Happ-Genzel)				
B-H ^b 3-term	$0.42323 + 0.49755\cos(\pi D) + 0.07922\cos(2\pi D)$	116	0.04	[19]
B-H 4-term	$0.35875 + 0.48829\cos(\pi D) + 0.14128\cos(2\pi D) +$			[19]
	$0.01168\cos(3\pi D)$			

^a表示 Norton-Beer,^o表示 Blackman-Harris,^c表示吸收峰的半高寬比(單色光主峰之半高寬與所要求削足解析度之比值)

^d最大側波高度與主峰高度之比值, $^{\circ}D = 光程<math>\dot{z}(\delta) /$ 最大光程 $\dot{z}(L)$

參考資料

[1] A. A. Michelson, Phil. Mag., Ser. 5, 31, 256 (1891).

[2] C. A. Carere, W. S. Neil, and J. J. Sloan, Appl. Opt. 35, 2857 (1996).

[3] J. Kauppinen and J. Partanen, *Fourier transforms in spectroscopy*, 1st edition, Wiley-VCH (2001).

[4] E. G. Codding and G. Horlick, Appl. Spectrosc. 27, 85 (1973).

[5] P. R. Griffith and J. A. de Haseth, Fourier Transform Infrared Spectroscopy

(John Wiley & Sons, Inc., New York, 1986).

[6] L. Mertz, Transformations in Optics, Wiley, New York (1965).

[7] L. Mertz, Infrared Phys. 7, 17 (1967).

[8] P. B. Fellgett, J. Phys. Radium 19, 187 (1958).

[9] P. Jacquinot, Rep. Progr. Phys. 23, 267 (1960).

[10] P. Jacquinot, XVII ème Congrès du G.A.M.S., Paris (1954).

[11] J. Connes, and P. Connes, J. Opt. Soc. Am. 56, 896 (1966).

[12] C.-K. Huang, Z.-F. Xu, M. Nakajima, Hue M. T. Nguyen, M. C. Lin, S.

Tsuchiya, and Y.-P. Lee, J. Chem. Phys. 137, 164307 (2012).

[13] A. Bagchi, Y.-H. Huang, Z. F. Xu, P. Raghunath, Y. T. Lee, C.-K. Ni, M. C. Lin, and Y.-P. Lee Chem. Asian J. **6** 2961 (2011).

[14] P. Y. Chen and R. A. Palmer, Appl. Spectrosc. **51** 580 (1997).

[15] P. Y. Chen, R. A. Palmer, and T. J. Meyer, J. Phys. Chem. A **102**, 3042 (1998).

[16] J. Eberhard, P. S. Yeh, and Y.-P. Lee, J. Phys. Chem. 107, 649 (1997).

[17] H. Nyquist, AIEE Trans. 617 (1928).

[18] W. Uhmann, A. Becker, C. Taran, and F. Siebert, Appl. Spectrosc. **45**, 390 (1991).

[19] E. H. W. Meijering, W. J. Niessen, and M. A. Viergever, Medical Image Analysis 5, 111 (2001).

[20] R. H. Norton and R. Beer, J. Opt. Soc. Am. 66, 259 (1976).

第三章 實驗裝置、步驟與參數設定

3.1 實驗裝置

圖 3-1 為本實驗系統之儀器裝置示意圖,其主要有:(1)光解雷射系統、 (2)步進式掃描傳式轉換紅外譜儀(step-scan Fourier-transform spectrometer)、 (3) 反應系統、(4)數據擷取與儀器時序控制系統,茲分述如下:

3.1.1 光解雷射系統

本實驗使用準分子雷射(Coherent Compex Pro 102F)之波長 193 nm 和 248 nm 的雷射光來光解前驅物以產生待測分子。當波長為 193 nm 時,每發 雷射光束到達反應槽的窗口前能量約為 100 mJ,其雷射光束形狀為一長方 形光圈(雷射光解面積約為 3 cm × 1 cm)。當波長使用 248 nm 時,每發雷射 光束到達反應槽的窗口前能量約為 200 mJ,其雷射光束形狀為一長方形光 圈(雷射光解面積約為 1.5 cm × 1.1 cm)。吾人使用兩平面反射率為 95 %之雷 射反射鏡(3 cm × 12.5 cm)分別置於反應槽後方與前方的光解光窗口,用以 增加雷射通過反應槽的次數,藉此增加雷射光的光解效率以提高訊號強 度。

3.1.2 步進式掃描傅式轉換紅外譜儀

吾人使用 Bruker Vertex 80v 的步進式傅式轉換紅外光譜儀,其最高解析 度可至 0.075 cm⁻¹ (削足函數為 triangular)。光譜儀為可抽真空型,利用真空 幫浦可將 FTIR 腔體抽至~2.6 Torr 以避免水氣及二氧化碳等干擾。光源可選用 tungsten (NIR)或 globar (MIR);本實驗因光區分為二區而使用不同的分光 片及偵測器:針對 1800 cm⁻¹以上之光區,分光片使用 CaF₂(1250 – 14500 cm⁻¹)而偵測器使用光電壓型的 InSb (1×1 mm² 的偵測面積, Indium antimonide, InfraRed Associates, Inc., D413/6),對於 1800 cm⁻¹以下的光區, 分光片則使用 KBr(350 – 7400 cm⁻¹)且偵測器為 MCT(1×1 mm²的偵測面積, Mercury Cadmium Telluride, Kolmar Technology, KV-100-B7/190)。二者使用前均需充填液態氮降低溫度至 77 K。

3.1.3 反應系統

反應系統使用的反應槽為不鏽鋼材質,體積約為 1370 cm³,且反應槽 底座有兩片圓形 KBr 光窗,可將反應槽內氣體與外界隔離,但可使偵測的 紅外光穿透。反應槽之設計如圖 3-2 所示,為一圓柱體側接二面長方形之氣 體進出管路板以及二面長方形光窗。圓柱體反應槽外為一長方體金屬外層, 可通入高溫或低溫流體來改變反應槽內氣體之溫度。前驅物氣體由圖中右 邊(y 軸)進入反應槽,入口處有二片金屬片所形成約 1 mm 的狹縫,使氣體 進入反應槽時較均勻散佈,可減少反應槽內的擾流(turbulence)發生,以減少 光譜的雜訊。反應槽於圖中左邊接上 1/2 英吋之抽氣管路將氣體抽走。光解 雷射自 x 軸方向進入石英光窗;光窗兩側通入 purge 氣體,用以沖刷光窗來 減緩光解產生的碳化物附著在石英光窗上,可避免光解雷射通過光窗之能 量逐步遞減。紅外光偵測方向為圖中 z 軸。為增加反應所產生之瞬態產物 之吸收度,反應槽內放置 White cell 鏡片來增加吸收路徑。如圖 3-3 所示, White cell 包含了三片表面鍍金且相同曲率半徑(15 cm)的球面鏡,其中兩片 由一面球面鏡切為兩半圓形(M2 及 M3),另一片由另一面球面鏡切為 T 形 (M1)。M1 與 M2、M3 鏡的距離為 15 cm(即焦距的二倍)。IR 光源由 T 型鏡 的缺口處導入,在 T 型鏡與兩半圓鏡間進行 24 次反射,即行進了 3.6 m, 再由另一缺口射出。若要改變 IR 光束之反射次數,可調整兩個半圓鏡之夾 角。通常 White cell 中所使用反射 IR 的球面鏡需要有很高的反射率,因此 用高反射率的金做為鍍膜(coating)材質。本實驗系統所用的金鏡,其反射率 在 2.5-20 μm 之光區約大於 98 %, IR 光經過反射 24 次後仍有 62 %以上的 強度。

反應槽上接電容式壓力計(capacitance manometer, MKS, model 626A13TEE, 1000 Torr)測量系統壓力。反應樣品的流量使用針閥控制,鋼 瓶的氣體則透過質量流量控制器(mass flow controller, MKS, model 1179A-27472,最大流量為1500 STP cm³ min⁻¹)控制。反應槽內連接抽氣速 率約1600 / min⁻¹的乾式幫浦(dry pump, Hanbell, model PS80-A)保持氣體 流動。

3.1.4 數據擷取與儀器時序控制系統

本實驗系統使用的 Bruker Vertex 80v 步進式傅式轉換紅外光譜儀之偵

測器訊號擷取方式可分為 AC 耦合和 DC 耦合。AC 耦合模式用來偵測反應 槽內紅外光強度隨時間之變化量,輸出訊號利用內建的前置訊號放大器進 行放大。本實驗所使用 MCT 之前置放大器(LN-MCT Photovoltaic 1mm 8H Fast Sn:MCP0183{4102-2})AC 訊號端放大倍率為2.2, DC 訊號端並不放大, 而 InSb 之前置放大器(LN-InSb Fast Sn:ISB0073 {K-21981-IS})AC 訊號端放 大倍率為 5.1 倍, DC 訊號端並不放大。放大後之訊號經由內建的 24 位元類 比/數位轉換器(ADC, analog-to-digital convertor, 8×10⁴ sample s⁻¹)進行轉換。 DC 耦合模式用來偵測未受雷射激發之背景光譜,其訊號處理作用模式同 AC 耦合模式,唯其訊號並不放大。

儀器時序控制分為 DC 耦合訊號和 AC 耦合訊號二部分。DC 耦合訊號 透過 FTIR 內部觸發(internal trigger)來取干涉譜, 實驗開始時, 測量驅動訊 號(measurement trigger)保持為 high 直到實驗結束,如圖 3-4 所示。當測量 驅動訊號為 high 後, FTIR 便觸發移動鏡移動訊號(step trigger),當其為 high 時,移動鏡開始移動,約需時 8 ms。移動到定點後,移動鏡移動訊號則會 降為 low,並等待移動鏡穩定時間 T(stabilization time,其量測方法於 3.3.3 中詳述)後,接著 FTIR 觸發序列驅動訊號(sequence trigger)時間,經過 25 ms 延遲後開始每隔時間解析度(time resolution)12.5 µs 之觸發取樣訊號 (sampling point trigger)撷取訊號,取樣結束後,經過 25 ms 序列驅動訊號變 為 low。此序列驅動訊號即為於此取樣點之時間解析譜。間隔 4 ms 之撷取 關閉時間(acquisition closure time)後 FTIR 可再次觸發序列驅動訊號,並擷取 訊號。同一移動鏡位置處可重複觸發序列驅動訊號數次,並平均所得序列 訊號以降低雜訊;而訊號平均的次數由 OPUS 軟體控制,於 3.4.2 中詳述。 接著 FTIR 會再次觸發移動鏡移動訊號(step trigger),使移動鏡開始移動並經 過移動鏡穩定時間 T後,繼續下一點取樣,上述步驟會重複直至干涉譜擷 取完成。除了前述透過在同一移動鏡位置取樣多次降低雜訊外,由於 DC 譜是偵測未照射雷射之背景光譜,因此不論何者時間點下 DC 譜結果均應一 致,便可將此 DC 譜平均。若 DC 譜時間解析之間隔為 12.5 μs,且取樣數 通常於軟體中設定為 800 張,平均後便可得到雜訊較低之 DC 光譜。若如 2.3.1 所述,雜訊以隨機形式存在,則訊雜比可提升約 28 倍。

AC 耦合訊號則透過脈衝產生器(pulse generator, Stanford Research Systems, DG535)於外部觸發,此觸發訊號其阻抗為 high impedance、波形 TTL、形狀 normal (正值)。和 DC 耦合訊號不同的是測量驅動訊號 (measurement trigger)只有在為 high 時才會接收來自 DG535之訊號。如圖 3-5 所示,觸發訊號 E1,雖其訊號阻抗、波形、形狀正確,但此時測量驅動訊 號訊號為 low,故此觸發訊號將被 FTIR 忽略,無法正確觸發取樣訊號。待 FTIR 之測量驅動訊號為 high 後,以 DG535 產生 E2 訊號,才可成功觸發 FTIR 之序列驅動訊號(sequence trigger),待約 40 ns 後以每次間隔 12.5 µs 取樣,記錄 AC 訊號隨時間的變化,並且於同一移動鏡位置處重複觸發序列 驅動訊號擷取隨時間改變之訊號,並平均之以降低雜訊。當 FTIR 的序列驅 動訊號觸發後, 吾人控制 DG535 觸發雷射光解先驅物。但為確定 AC 訊號 穩定,會在觸發雷射前取得二十張空白 AC 光譜,即 12.5 µs × 20 = 250 µs, 此光譜訊號應小於 0.001。DG535 延遲觸發雷射(laser trigger delay)約 248.3 µs(另外的 1.7µs 為雷射觸發後出光之延遲時間,測量方法於 3.3.4 詳述)。經 序列驅動訊號因此吾人可由 FTIR 中得到 AC 受雷射激發後訊號隨時間的變 化。完成擷取此移動鏡位置之重複取樣次數後, FTIR 會觸發移動鏡移動訊 號(step trigger),使移動鏡開始移動並經過移動鏡穩定時間 T後,繼續下一 點取樣,不斷重複至干涉譜擷取完成。

3.2 實驗條件

3.2.1 光解效率評估

本實驗透過兩種方法產生 CH₃自由基分子,第一種方法利用波長 248 nm的雷射光解 CH₃I;第二種方法使用波長 193 nm的雷射光解 CH₃C(O)CH₃, 二者產生之 CH₃ 再和 O₂反應產生 CH₃OO。

0

在使用 CH₃I和 O₂的實驗中, CH₃I的分壓為 2 Torr, O₂的分壓為 98 Torr, 總壓維持在約 100 Torr,反應溫度維持在 298 K,在標準狀態下總流速為 25 STP cm³ s⁻¹。雷射光到達反應窗口前,其能量約為 200 mJ pulse⁻¹、光束截 面積約為 1.5 × 1.1 cm²、雷射頻率為 7 Hz,並且使用一面長方形反射鏡(3 cm × 12.5 cm)使其在反應腔體中來回反射 4 次,而反應槽長度為 14 cm,因此 雷射光解氣體體積為 92 cm³,以增加產生 CH₃自由基的濃度。然而在波長 248 nm 雷射光通過石英光窗時,部分能量會被其吸收,能量穿透率為 90 %, 而雷射反射鏡反射率 95 %。但反應槽內氣體亦會吸收能量,故雷射能會隨 著雷射進入反應槽能量開始遞減,導致光解率亦會下降,若不考慮雷射發 散的情況,可預估雷射初進入反應槽能量為 200×0.9=180 mJ pulse^{-1。} 吾人 定義在反應槽入口前,每個光子能量為 EJ photon⁻¹,雷射光通量(fluence)為 FJ cm⁻²,雷射光解截面積為 A cm²,光子通量為 F/E photon cm⁻²,前驅物 在波長 λ nm 下之吸收截面積為 σ cm² molecule⁻¹,量子產率為 Φ ,反應槽長 度為 l cm。根據 Beer-Lambert law,吾人可估計在離入口 x cm 處,雷射初 入反應槽雷射之光解產率 y 可表示為:

$$y = \frac{F}{E} \times e^{-\sigma cx} \times \sigma \times \Phi \tag{3-1}$$

在波長 248 nm下,每個光子能量 E 為 8.02×10^{-19} J photon⁻¹,雷射光通量 (fluence) F 在能量 180 mJ pulse⁻¹ 時為 1.1×10^{-1} J cm⁻²,光子通量 F/E = 1.32×10^{17} photon cm⁻²。CH₃I 在波長 248 nm下之吸收截面積為(absorption cross section) 8.45×10^{-19} cm² molecule⁻¹[1],假設量子產率 $\Phi = 1$ (一個碘甲烷分子 光解後產生一個 CH₃自由基分子),將式(3-1)積分後可得到第一道雷射之平 均光解產率:

$$\frac{\int_{0}^{14} y dx}{l} = \frac{\int_{0}^{14F} e^{-\sigma cx} \times \sigma \times \Phi dx}{l} = \frac{\int_{0}^{14} 0.112 \times e^{-0.0548x} dx}{14} = 7.8\%$$
(3-2)

此時能量氣體吸收而能量遞減,根據 Beer-Lambert law 可計算第一道雷射出

反應槽前之光子通量 F/E 為:

1.32×10¹⁷×exp(-8.45×10⁻¹⁹×14×2×3.24×10¹⁶)=6.13×10¹⁶ J/pulse (3-3)
接著雷射穿透過石英光窗,經由反射鏡反射,並再次穿透石英光窗,則可
推估第二道雷射進入反應槽前之光子通量 F/E 為:

$$6.13 \times 10^{16} \times 0.9^2 \times 0.95 = 4.72 \times 10^{16} \tag{3-4}$$

由此類推,第二道雷射平均光解率為2.8%,第三道雷射平均光解率為1%, 第四道雷射平均光解率為0.3%,故總共之平均光解率為3%。因此吾人推 算於雷射體積內CH₃之真實濃度為:

2 Torr× 3.24×10^{16} molecule Tor⁻¹ cm⁻³×3% =1.9×10¹⁵ molecule cm⁻³ (3-5) 但實際情況則因雷射光解區域與偵測之紅外光體積不完全重疊,故必須考 慮紅外光總體積對重疊區域的稀釋參數。但紅外光經過多重反射後其體積 估計不易,因此吾人以 White cell 內雷射光解體積除以 White cell 體積當作 其稀釋參數。吾人將 White cell 當作直徑 4.5 cm,高 15 cm,體積為 239 cm³ 之圓桂體,而雷射光解體積於 White cell 內為 $1.5 \times 1.1 \times 4.5 \times 6 = 30$ cm³, 考慮第一道之光解率為:

 $\frac{\int_{4.75}^{9.25} y dx}{4.5} = \frac{\int_{4.75}^{9.25} \frac{F}{E} \times e^{-\sigma cx} \times \sigma \times \Phi dx}{4.5} = \frac{\int_{4.75}^{9.25} 0.112 \times e^{-0.0548x} dx}{4.5} = 7.6\%$ (3-6) 同理,第二道雷射平均光解率為 2.7%,第三道雷射平均光解率為 1%,第 四道雷射平均光解率為 0.4%,故總共之平均光解率為 2.9%。 吾人便可推測雷射光解後 CH₃ 平均濃度為: 2 Torr×3.24×10¹⁶ molecule Torr⁻¹ cm⁻³×2.9% × $\frac{30}{239}$ = 2.36×10¹⁴ molecule cm⁻³ (3-7)

此實驗流速為 25 STP cm³ s⁻¹, 在總壓 100 Torr 之下流速為 25 × 760 /100 = 207 cm³ s⁻¹, 且反應槽體積為 1370 cm³, 可得知將反應槽中氣體翻新需時 6.6 秒。而雷射重覆率為 7 Hz, 可計算翻新氣體所需時間內總光解率為:

$$6.6 \times 7 \times \frac{92}{1370} \times 3\% = 9.3\% \tag{3-8}$$

因此可以確保每一發光解雷射進入反應槽時,反應槽內有足夠的先驅物 CH₃I。

在使用 CH₃C(O)CH₃和 O₂ 的實驗中,丙酮的分壓為 1.6 Torr,O₂ 的分 壓為 99 Torr,總壓維持在約 100.6 Torr,反應溫度維持在 298K,在標準狀 態下流速為 25 STP cm³ s⁻¹。雷射到達反應槽前能量約為 100 mJ pulse⁻¹、光 束截面積約為 3×1 cm²、雷射頻率為 13 Hz,並使用二面長方形反射鏡(3 cm ×12.5 cm)使其在反應腔體中來回反射 3 次,而反應槽長度為 14 cm,因此可 估算雷射光解氣體體積為 126 cm³。然而在波長 193 nm 雷射光通過石英光 窗時,部分能量會被其吸收,能量穿透率約為 90%,而雷射反射鏡反射率 約 95%。但反應槽內氣體亦會吸收能量,且雷射能會隨著雷射進入反應槽 能量開始遞減,導致光解率亦會下降,若不考慮雷射發散的情況,因此可 預估第一道雷射剛進入反應槽能量為100×0.9=90 mJ pulse⁻¹,而每個光子 能量 E 為 1.03×10^{-18} J photon⁻¹, 雷射光通量(fluence) F 為 3×10^{-2} J cm⁻², 光子通量 F/E = 8.74×10^{16} photon cm⁻²,在波長 193 nm 下,丙酮的吸收截面 積為 2.36×10^{-18} cm² molecule⁻¹[2], 量子產率 $\Phi > 1.9$ [3], 取其值為 $\Phi = 1.9$ (一 個丙酮分子光解後產生 1.9 個 CH₃ 自由基分子), 同前面 CH₃I 之計算, 雷 射第一道之光解率為 6.3 %, 第二道雷射平均光解率為 0.9 %, 第三道雷射 平均光解率為 0.1 %, 因此平均光解率為 2.4 %。因此吾人推算於雷射體積 內 CH₃之真實濃度為:

1.6 Torr
$$\times 3.24 \times 10^{16}$$
 molecule Torr⁻¹ cm⁻³ $\times 2.4\% = 1.2 \times 10^{15}$ molecule cm⁻³ (3-9)

同上必須考慮紅外光總體積對重疊區域的稀釋參數。假設 White cell 體積為 239 cm³之圓柱體,而雷射光解體積於 White cell 內為 3×1×4.5×3=41 cm³, 吾人便可推測雷射光解後 CH₃平均濃度為:

1.6 Torr
$$\times 3.24 \times 10^{16}$$
 molecule Torr⁻¹ cm⁻³ $\times 2.4\% \times \frac{41}{239} = 2.1 \times 10^{14}$ molecule cm⁻³ (3-10)

此實驗流速為 25 STP cm³ s⁻¹, 在總壓 100 Torr 下流速為 25×760/100 ×298/273 = 207 cm³ s⁻¹, 且反應槽體積為 1370 cm³, 可得知將反應槽中氣體 翻新需時 6.6 秒, 且雷射頻率為 13 Hz、CH₃C(O)CH₃ 光解率為 2.4%, 可計 算翻新氣體所需時間內總光解率為:

$$6.6 \times 13 \times \frac{126}{1370} \times 1.2\% = 9.5\% \tag{3-11}$$

因此可以得知每一發光解雷射進入反應槽時,反應槽內有足夠的先驅物 CH₃C(O)CH₃。

本實驗所使用的樣品,如: CH₃I (99.5%, KANTO CHEMICAL CO.)、 CH₃C(O)CH₃ (99.8%, J.T. Baker)及 O₂ (99.999%, Chiah-lung)均直接使用, 並未經進一步純化。

3.3 實驗前準備工作

3.3.1 反應槽中 White cell 對正

由於人眼看不見紅外光束,因此校正 White cell 內紅外光時必須先將光 譜儀的光源切換成 NIR,並更換成 CaF2 分光片,調整適當的光圈大小,以 方便作初步對正:

- 調整 white cell 入射光窗下方反射鏡的角度,如圖 3-1 之 F₁鏡,使可見光 東聚焦於反射鏡 M1 的延伸平面上,如圖 3-3 中標記為 0 的位置,並且 使光束由該聚焦點發散後的光束能處在 M2 鏡的中央。
- 2. 藉由調整 M2 背面的三顆螺絲來改變 M2 的角度,使光聚焦於 M1 上標 記為1的位置。
- 藉由調整 M1 背面的三顆螺絲來改變 M1 的角度,使得反射後再次發散 的光束能處於 M3 中央。
- 4. 藉由調整 M3 背面的三顆螺絲來改變 M3 的角度,使得可見光再次聚焦於 M1 上標記為 2 的位置。
- 5. 微調 M2 與 M3 的反射角度,使得光束在 M1 上呈現兩列平行排列的聚 焦點,在反射達 24 次後導到出口光窗。此時必須檢查 M1 上的聚焦點形 狀與大小是否完全一致,若大小不同,則須繼續微調螺絲直到形狀大小

均一致為止。

- 調整出口光窗下方反射鏡的角度,直到偵測器測得之可見光強度於 check signal 視窗中的 amplitude 數值達到最大。
- 7. 微調偵測器前方的反射鏡,直到偵測器所測的可見光強度達到最大。
- 將光源切換成 MIR 光,更換成 KBr 分光片,設定光圈值並比較先前光譜 數值並判斷是否 amplitude 數值相同。

以 MCT 偵測器(Kolmar, model: KV-100-B7/190, NO. 4102-2)為例, 分光片使用 KBr,使用 MIR 光源下,在 internal position 處之 amplitude 數值 為 8000;若轉為 right exit position 處時,在不考慮 internal position 和 right exit position 處紅外光反射鏡反射率之影響,僅考慮受到 White cell 之金鏡反射 率的影響,其穿透率僅 62%,因此 amplitude 數值約為 5000;若使用 InSb 偵測器(Infrared Associates, Inc., model: D413/6, S/N: M-28516-IS),分光 片採用 CaF2,使用 MIR 光源下光圈為 0.25 mm 時,其 amplitude 數值於 internal position 為 11000,而於 right exit position 處時為 7000。

3.3.2 更換偵測器

在進行實驗時,通常會先以較低解析度取得較大光區(850-4000 cm⁻¹) 的光譜資訊,之後再進一步針對窄光區處取得較高解析度或較佳訊雜比之 光譜。相較於 InSb 偵測器, MCT 偵測器具有較廣的可觀測光區,而若欲觀 測的光區大於 1800 cm⁻¹時,因 InSb 偵測器之偵測靈敏度較 MCT 偵測器高, 因此得到廣光區之光譜後(850-4000 cm⁻¹),需要更換偵測器和其對應之類 比/數位轉換器。由於 FTIR 內部之偵測器位置(internal position)已經含有辨 識偵測器之晶片而外部偵測器位置(right exit position)處不含辨識晶片,因此 必須將辨識偵測晶片更換,其步驟如下:

- 將 InSb 偵測器(Infrared Associates, Inc., model: D413/6, S/N: M-28516-IS)
 和其對應之 ADC(LN-InSb Fast, Sn: ISB0073{K-21981-IS})或 MCT 偵測器(Kolmar Technology, model: KV-100-B7/190, NO. 4102-2)和其對應之ADC (LN-MCT Photovoltaic 1 mm 8H Fast, Sn: MCP0183{4102-2})配對。
 將 InSb 偵測器對應之類比/數位轉換器背面打開,並且拆下 ADC 板上之四顆螺絲,找到排線,如圖 3-6(a)所示,此為無辨識晶片之 ADC 板,將原本 MCT 偵測器之 ADC 板拆開,則會如圖 3-6(b)所示,排線上多了一個辨識晶片。將 InSb 偵測器之 ADC 板上排線拆下,如圖 3-6(c)所示, 由 MCT 偵測器之 ADC 板上排線拆下則如圖 3-6(d)所示,將排線二二互換並把螺絲轉緊,使新裝之偵測器能被 FTIR 辨識。
- 3. 因 DC 耦合訊號之零點(offset)會隨著光強度而變,因此改變光圈大小或 放置濾光片均會對零點產生影響,需要透過軟體去控制前置放大器之偏 壓及電流。開啟 Internet Explorer,點選 Service,接著點選 Edit hardware configuration,再點選 Edit ANA 15 board data。
- 4. 進入畫面後,找到辨識晶片之位置 Board address: DTC=0x4160, 並且對

Left channel 打勾開啟 DC 耦合訊號頻道,並且找到下方之前置放大器之 Digit Bias Current、Digit Bias Voltage 設定,將調整電流值至 DC 耦合訊 號之零點接近 0。調整有二種方法,調整 Digit Bias Current 或 Digit Bias Voltage,而半導體對於偏壓變化非常敏銳,因此通常會先調整 Digit Bias Current。而原廠之 MCT 偵測器(Kolmar, model: KV-100-B7/190, NO.4102-2)設定為: Digit Bias Current = 47、Digit Bias Voltage = 97;原 廠之 InSb 偵測器(Infrared, model: D413/6, S/N: M-28516-IS)則無此設 定,無法更改其 DC 零點。

3.3.3 移動鏡穩定時間量測

本實驗使用的 FTIR 示意圖如圖 3-1 所示,與一般干涉儀不同的是其多 裝一面鏡子(TA, True Alignment)於移動鏡光徑處。當移動鏡移動時,晃動 是無法避免的,因此會導致移動鏡和光徑不呈垂直,而透過電腦藉由監控 氦氖雷射訊號微調這面鏡子便可將偏差校正。在連續掃描模式中,如圖 3-7(a) 所示,透過比較 TA 鏡上中心參考點之氦氖雷射訊號及相位和鏡上 x 軸、y 軸處是否相同,以得知移動鏡是否確實垂直於光徑移動;若 x 軸或 y 軸與 參考點處的相位不同,則會觀測到如圖 3-7(b)之訊號,則必須找工程師校正。 在步進式掃描模式中,由於實驗觀測光區不同而使得跳點取樣的跳點數不 同,因此必須量測移動鏡從 x_{n1}點移至 x_n點時,需要多少穩定時間 (stabilization time)T 才可正確地得到數據。步驟如下:

- 將 laser alignment tool 接於 FTIR, 且將另一端訊號接至示波器,如圖 3-8(a)
 所示, A 表示用以定與 ZPD 點之距離並產生取樣點之氦氖雷射訊號
 (sampling signal); B 則為 TA 鏡上參考點訊號; X 和 Y 則分別表示為 TA
 鏡上 x 軸和 y 軸上訊號。
- 將 FTIR 調整為步進式掃描模式且在 OPUS 軟體中設定實驗參數,可參 考本章 3.4.2,並掃描光譜。
- 3. 結果如同圖 3-8(b),當移動鏡移動時,即圖 3-5 中移動鏡移動訊號(step trigger)為 high 時,移動鏡正往下個取樣點移動,移動時間約為8ms,因 此產生取樣點之氣氛雷射訊號(sampling signal)調變,到達定點時此訊號 則會消失。但因移動鏡稍不穩產生偏移,此時TA 鏡會進行微調直到TA 鏡之氣氛雷射訊號逐漸回復至零,所需時間即為移動鏡穩定時間T。圖 中量測到的T為100ms,然而示波器觀測之訊號是以伏特為單位,而 AC 耦合訊號可觀測之極限為毫伏特至數百微伏特,因此示波器上看似 穩定之訊號並無法代表移動鏡穩定,故吾人仍需於步進式掃描模式下, 取一張無反應物及無雷射之空白 AC 光譜。因 AC 訊號是觀測微小訊號 之變化,在無化學反應下且無雷射激發下,此張空白 AC 光譜應無任何 訊號,其訊號值須小於0.001,否則必須增加移動鏡穩定時間,通常為量 測值之 2-4 倍,以此例而言即 200-400 ms。

3.3.4 光解雷射出光延遲時間量測

雷射經過觸發之後,會延遲一段時間後才射出光束並到達反應槽,故 需利用響應速度快的光電二極體(photodiode)測量反應延遲時間,方法如 下:

- 完成脈衝產生器的設定:內部觸發、13 Hz;T₀輸出端:阻抗 high impedance; 波形 TTL;形狀 normal (正值);D輸出端:阻抗 high impedance;波形 TTL;形狀 normal (正值)。設定D輸出端時間延遲為零,即D=T₀+0。
 如圖 3-9(a)所示,將DG535 之 T₀輸出端連接至光解雷射之外部觸發輸入 端,D輸出端連接至示波器之頻道1,並將偵測雷射光的光電二極體連 接至示波器之頻道2。設定示波器利用頻道1 觸發。
- 3. 將光電二極體置於反應槽的入口光窗旁,量測光解雷射進入反應槽時, 由光窗反射的散射光。觀察示波器上頻道A與頻道B訊號之時間間隔, 即為觸發光解雷射的反應時間。如圖 3-9(b)所示,本實驗所使用的光解 雷射受到觸發後,需經1.67 µs 後輸出之雷射光才會抵達反應槽。本實驗 系統中,雷射出口至反應槽之距離約為1.3 m,故吾人估算光移動之時間 大約為4.3 ns,因此雷射經觸發後抵達反應槽之延遲時間,主要來自於 雷射中 thyratron 放電所造成之延遲時間。

3.4 参數設定

3.4.1 連續式掃描模式參數設定

啟動 OPUS 軟體,點選 Advanced data collection 圖示進行連續式掃描模 式之參數設定。光區設定為本次實驗條件,以下為欲測解析度 $0.4 \, \mathrm{cm}^{-1}$ 的實 驗參數設定: Advanced $R = 0.4 \text{ cm}^{-1}$ Sample sacn time : 20 scans Save data from 3410 to 2750 cm^{-1} (此參數決定儲存之光區範圍,但不影響干涉譜長短及跳點數,干涉譜長短 由解析度及相位解析度決定,因此此設定僅影響傳統光譜之光區範圍) Data block to be saved : 1111 Single channel 和 sample interferogram 打勾 optics Source setting : NIR Beamsplitter : CaF_2 Aperture setting : 2 mm Measurement channel : Right Detector setting : LN-InSb FAST AC/DC

Scanner velocity : 20k Hz

Sample gain $: \times 1$

Acquisition

FT

Wanted high frequency limit $: 3434 \text{ cm}^{-1}$

Wanted low frequency limit $: 2748 \text{ cm}^{-1}$

(此參數決定移動鏡之跳點數及觀測光區範圍)

Acquisition mode : single-sided

Phase resolution : 3 cm^{-1}

Phase correction mode : Mertz

Apodization function : Blackman-Harris 3-term

Zerofilling factor: 4

完成參數設定後,點選第一個 Basic 標籤,並按下 Sample Single Channel 按 鈕即可以連續式掃描模式擷取光譜。

0

3.4.2 步進式掃描模式參數設定

首先要先進入步進式掃描模式,啟動 Internet Explorer 程式,並打入 FTIR 之 IP 位置:10.10.0.1 以控制 FTIR,在 Direct command entry 中輸入: adm = 0 進入連續掃描模式,再輸入 adm = 11 進入步進式掃描模式,而為了 確認已進入步進式掃描模式,輸入 sse = 12,此時 FTIR 會對移動鏡進行步 進式移動測試 12 秒,可得到移動鏡移動最大標準差值和方均根標準差值, 而方均根標準差值通常小於 1,否則須去除干擾來源,通常為噪音或震動。 完成上述步驟後,啟動 OPUS 軟體,點選 Time resolved step-scan 圖示進行 步進式掃描模式之參數設定。光區設定為本次實驗條件,以下為解析度 0.4 cm⁻¹的實驗參數設定:

Recorder setup Device : Internal ADC Time resolution : 12.5 µs Number of timeslices : 300 Timebase : Linear Input range $:\pm 10 \text{ V}$ Repetition/coadd count : 15 Trigger mode : External Positive Edge 111 Stabilization time after stepping : 600 ms Advanced $R = 0.4 \text{ cm}^{-1}$ Save data from 3410 to 2750 cm^{-1} optic Source setting : NIR Beamsplitter : CaF_2

Aperture setting : 2 mm

Measurement channel : Right

Detector setting : LN-InSb FAST AC/DC

Sample gain $: \times 1$

Acquisition

Wanted high frequency limit : 3434 cm⁻¹ Wanted low frequency limit : 2748 cm⁻¹ Acquisition mode : single-sided *FT* Phase resolution : 3 cm⁻¹ Phase correction mode : Mertz Apodization function : Blackman-Harris 3-term Zerofilling factor : 4 完成參數設定後,點選第一個 basic 標籤, 並按下 Start Step Scan Time Resolved Measurement 按鈕即可連續是掃描模式撷取光谱。

3.4.3 手動操作傅式轉換

由於 AC 譜中相位資訊須從 DC 譜中得到,但因光譜處理軟體 OPUS 自版本 6.5 以來程式自動轉換 AC 干涉譜至傳統光譜時無法取得 DC 相位資 訊,故具有無法判斷訊號正負之程式瑕疵(bug),必須透過手動方式轉換光 譜,步驟如下:

- 1. 使用 interferogram to spectrum 功能,先轉 DC 干涉譜,於 store 標籤下輸 入正確的光區參數並且勾選儲存相位資訊。
- 於 apodization 標籤下選擇 Blackman-Harris 3-term 之削足函數和 zerofilling 點數;於 limit data 標籤下填入該 DC 譜中所使用的解析度和 相位解析度。
- Peak search 標籤中選擇 Absolute largest value; non linearity 標籤下打勾 (photocurrent MCT 才需要); detector cutoff (此值為偵測器偵測最小波長): 500; modulation efficiency : 0.9; phase correction 標籤下選擇 Mertz。 按下轉換便可得到三維之 DC 傳統光譜及相位圖譜。
- 對著轉出來的三維相位圖譜按下右鍵,點選 show report,找尋 lpkl_fw 的數值,其意義為 DC 干涉譜中絕對值最大值,即零光程差的位置。
- 5. 將 AC 譜依相同步驟轉換並做下列更動:於 store 標籤下不需儲存相位資訊; peak search 標籤下 No peak search 打勾並輸入 DC 相位圖譜中 lpkl_fw 的數值;在 phase correction 標籤中選擇 Mertz / stored phase 並且拖曳 DC 相位譜於其下方視窗中,完成轉換。

圖3-2 反應槽簡圖

圖3-3 White cell 工作示意圖

圖3-5 Vertex 80v 進行時間解析紅外吸收光譜儀器時序控制圖(AC)

圖3-6 類比/數位轉換器之辨識晶片排線比較圖 (a)不具辨識晶片 (b) 具有辨識晶片

(c) 不具辨識晶片之排線 (d) 具有辨識晶片之排線

(a) TA 鏡上 X、Y 軸之訊號和參考點同相位

(b) TA 鏡上 X 軸之訊號與參考點相位不同

68

圖3-8 移動鏡穩定時間測量圖

(a)Bruker laser alignment tool 使用示意圖

(b)示波器訊號。T表移動鏡穩定時間,圖中橫軸一格為25ms,縱軸一格為2V。

圖3-9 觸發雷射後雷射延遲時間測量

(a)示波器接法示意圖

(b)示波器訊號。T表雷射出光延遲時間,圖中橫軸一格為 250 ns,其觸發時間差值大約為 1.67 μs。

參考資料

[1] S. Eden, P. Limão-Vieira, S. V. Hoffmann, and N. J. Mason, Chem. Phys. **331**, 232 (2006).

[2] M. Nobre, A. Fernandes, F. Ferreira da Silva, R. Antunes, D. Almeida, V. Kokhan, S. V. Hoffmann, N. J. Mason, S. Eden, and P. Limao-Vieira, Phys. Chem. Chem. Phys. **10**, 550 (2008).

[3] D. Lightfoot, S. P. Kirwan, and M. J. Pilling, J. Phys. Chem. 92, 4938 (1988).

第四章 結果與討論

4.1 理論計算

本實驗室黃登瑞學長等人[1]藉由 Gaussian 09 軟體[2]以密度泛函理論 (density functional theory)之 B3LYP[3、4]方法搭配 aug-cc-pVTZ 基底函數預 測 CH₃OO 在平衡位置時的構形及轉動常數、振動基態(v_i=0)和振動激發態 (v;=1)之轉動常數、簡諧及非簡諧振動波數、紅外吸收強度。CH₃OO分子 轉軸和其平衡位置之結構如圖 4-1 所示。由計算結果得知 CH3OO 屬於 Cs 點群, 共有 12 個振動模(normal mode), 全部都具有紅外光之活性(infrared active)。振動模振動時各原子的位移向量(displacement vector,以細箭頭表 示)及偶極矩導數(dipole derivative,以粗箭頭表示)在分子a、b、c 轉軸上的 投影向量如圖 4-2 所示。吾人實驗值與其他研究組的理論計算[5、6、7、8] 以及不同實驗環境下[1、8、9、10]觀測到的振動波數比較表如表 4-2 所示。 其中Ase 等人[9]利用Ar 作為間質之間質隔離光譜中指認於 2968 cm⁻¹ 的V₉ 吸收峰應為V2吸收峰。比較 B3LYP[1]和 CCSD(T)[8]方法所計算出的簡諧 振動頻率,可以發現其結果接近,且和 Ase[9]、Nandi[10]、Morrison[8]實 驗組透過低溫條件觀測及本實驗室的黃登瑞學長等人[1]和林震洋學長[11] 於室溫下觀測之實驗結果一致。若同樣利用 B3LYP 方法比較不同基底函數 之計算結果,可發現使用 aug-cc-pVTZ 基底函數得到的振動頻率比其他基

底函數更接近實驗值,但其數值均與和實驗值有著3%之差異。吾人使用 B3LYP/aug-cc-pVTZ 得到之非簡諧振動頻率和實驗值平均差異為 0.96%, 最大差異為為4%,與 Morrison[8]等人利用 CCSD(T)/aug-cc-pVTZ 得到之 非簡諧頻率一致;後者與實驗值平均差異為 0.35%,最大差異小於1%。

吾人透過理論計算 B3LYP/aug-cc-pVTZ 預測 CH₃OO 於振動基態(v=0) 及激態(v_i = 1)之轉動常數並與 Endo[12]實驗組透過傅氏轉換微波光譜法之 基態轉動常數比較,其差異小於2%,如表4-2所示。為了得到更精確之振 動激態轉動常數,吾人以理論計算得到之激態轉動常數除以基態轉動常數 之比例乘以 Endo 實驗組得出之基態轉動常數,便可得到修正後的激態轉動 常數,如表4-2 所示。

4.2 反應途徑討論

實驗中的 O₂除了當作反應物與 CH₃ 反應生成 CH₃OO 外,亦可當作淬 熄體(quencher),將 CH₃OO 多餘的能量帶走,延長 CH₃OO 的存活時間並減 少光譜中熱譜帶(hot band)的干擾。CH₃+O₂形成 CH₃OO 屬於三體反應 (termolecular reaction):

$$CH_3 + O_2 + M \xrightarrow{k_0} CH_3OO + M$$
(4-1)

.

$$\frac{[CH_3OO]}{dt} = k_0[CH_3][O_2][M]$$
(4-2)

其中 M 為第三體(third body), k₀為低壓極限下之三級反應速率常數。由文 獻[13]中可大約估計在 298 K 與壓力 100 Torr 下,此反應速率常數尚在 fall-off region,但接近於高壓極限;在 fall-off region 的速率常數不像在低壓 極限時與第三體壓力成正比,亦不同於高壓極限時與第三體壓力無關。利 用修正過的 Lindemann-Hinshelwood 公式[14、15、16]即可求得在 298 K, $P_M = 100$ Torr 時的速率常數:

$$k^{T} = \frac{k_{0}^{T}[M]}{1 + \frac{k_{0}^{T}[M]}{k_{\infty}^{T}}} F_{C}^{\{1 + [\log \frac{k_{0}^{T}[M]}{k_{\infty}^{T}}]^{2}\}^{-1}}$$
(4-3)

其中 k_0^r 為溫度 T K 時的低壓極限速率常數, k_{α}^r 為溫度 T K 時之高壓極限速 率常數, F_c 為 center broadening factor。由於文獻中僅有[M] = N₂之 $k \gtrsim F_c$ 值[17], 若假設 O₂和 N₂之淬熄效果相似,則將文獻值 k_0^{298} =1.02×10⁻³⁰ cm⁶ molecule⁻² s⁻¹, k_{α}^{298} =1.79×10⁻¹² cm³ molecule⁻¹ s⁻¹ $\gtrsim F_c$ = 0.27 代入式(4-3) 便可估計 k^{298} (100 Torr) = 4.4×10⁻¹³ cm³ molecule⁻¹ s⁻¹。本實驗中 O₂壓力為 100 Torr,由理想氣體方程式推知在實驗溫度 298 K 下約為 3.24×10¹⁸ molecule cm⁻³,把此數值和上述之 k^{298} (100 Torr)代入式(4-2)可推出在擬一級反應 (pseudo-first order)的反應速率常數 $k' = k^{298} \times O_2 = 1.4 \times 10^6 s^{-1}$,亦即 t = 1.62µs 後,已有 90%的 CH₃OO 生成。

本實驗以二種方法產生 CH₃OO:透過波長 248 nm 之雷射光解 CH₃I 和 O₂之混合物以及透過波長 193 nm 之雷射光解 CH₃C(O)CH₃和 O₂之混合物。 以 248 nm 雷射光解 CH₃I/O₂,可能之反應途徑如下:

$$CH_3I + h\nu \rightarrow CH_3 + I \tag{4-4}$$

$CH_3 + O_2 \xrightarrow{M} CH_3OO$	$k_5 = 4.4 \times 10^{-13}$		(4-5)			
$\begin{array}{r} \mathrm{CH}_3\mathrm{OO} + \ \mathrm{CH}_3\mathrm{OO} \ \rightarrow 2\mathrm{CH}_3\mathrm{O} + \mathrm{O}_2\\ \mathrm{CH}_3\mathrm{OO} + \ \mathrm{CH}_3\mathrm{OO} \ \rightarrow \mathrm{H}_2\mathrm{CO} + \mathrm{CH}_3\mathrm{OH} + \mathrm{O}_2 \end{array}$			(4-6) (4-7)			
$CH_3OO + CH_3 \xrightarrow{M} 2CH_3O$	$k_8 = 4.5 \times 10^{-11}$	[18]	(4-8)			
$CH_3 + CH_3 \xrightarrow{M} C_2H_6$	$k_9 = 4.2 \times 10^{-11}$	[19]	(4-9)			
$I + I \xrightarrow{M} I_2$	$k_{10} = 7.5 {\times} 10^{-11}$	[20]	(4-10)			
$CH_3 + I \xrightarrow{M} CH_3I$	$k_{11} = 1.0 \times 10^{-11}$	[21]	(4-11)			
$I + 0_2 \xrightarrow{M} I00$		2	(4-12)			
$CH_3OO + I \xrightarrow{M} CH_3OOI$		E	(4-13)			
由於實驗時 O_2 之濃度為 CH_3I 之50倍,	CH3和I之濃	度小方	♦ O ₂ 約8000			
倍,詳細之光解產率評估列於3.2.1,因此由自由基-自由基反應生成之C ₂ H ₆ 、						
I2、CH3I之濃度遠小於CH3和O2反應生成CH3OO之濃度。因此吾人可預						
期光譜中所觀測之吸收,主要的貢獻來自於 CH3OO。						
以 193 nm 雷射光解 CH ₃ C(O)CH ₃ /O ₂ ,可能之反應途徑如下:						
$CH_{3}C(0)CH_{3} + h\nu \rightarrow 2CH_{3} + CO$ $CH_{3}C(0)CH_{3} + h\nu \rightarrow CH_{3}CO + CH_{3}$ $CH_{3}C(0)CH_{3} + h\nu \rightarrow CH_{3}C(0)CH_{2} + H$	$\Phi > 0.95$ $\Phi < 0.05$ $\Phi < 0.01$	[22] [22] [22]	(4-14) (4-15) (4-16)			
$CH_3 + O_2 \xrightarrow{M} CH_3OO$	$k_{17} = 4.4 \times 10^{-13}$		(4-17)			
$\begin{array}{l} \mathrm{CH}_3\mathrm{OO} + \ \mathrm{CH}_3\mathrm{OO} \ \rightarrow \ 2\mathrm{CH}_3\mathrm{O} + \mathrm{O}_2 \\ \mathrm{CH}_3\mathrm{OO} + \ \mathrm{CH}_3\mathrm{OO} \ \rightarrow \ \mathrm{H}_2\mathrm{CO} + \mathrm{CH}_3\mathrm{OH} + \mathrm{O}_2 \end{array}$			(4-18) (4-19)			
$CH_3 + CH_3 \xrightarrow{M} C_2H_6$	$k_{20} = 4.2 \times 10^{-11}$	[19]	(4-20)			
$CH_3 + CH_3C(0)CH_3 \xrightarrow{M} CH_4 + CH_3C(0)CH_2$	$k_{21} = 4.5 \times 10^{-19}$	[23]	(4-21)			

$CH_3 + CH_3CO \xrightarrow{M} CH_4 + H_2CCO$	$k_{22}\!=1.0\!\!\times\!\!10^{11}$	[24]	(4-22)
$0_2 + h_\nu \rightarrow 20$	$\sigma = 3.9 \times 10^{-23}$	[25]	(4-23)
$CH_3C(0)CH_3 + 0 \xrightarrow{M} CH_3C(0)CH_2 + OH$	$k_{24} = 1.1 {\times} 10^{-15}$	[26]	(4-24)
$0_2 + 0 \xrightarrow{M} 0_3$	$k_{25} = 3.0 \times 10^{-14}$	[27]	(4-25)
$CH_3 + 0 \xrightarrow{M} CH_3 0$	$k_{26} = 2.6 \times 10^{-14}$	[28]	(4-26)

由反應(4-14)至(4-16)知, CH₃C(O)CH₃被193 nm 光解後,可能產生CH₃ 和 CH₃CO 自由基,根據文獻 CH₃之量子產率應大於1.9,而 CH₃CO 產率僅 只有0.05[22]。於實驗時O₂之濃度為 CH₃C(O)CH₃之 60 倍,考慮光解率後, CH₃之濃度小於O₂約5000倍,因此由自由基-自由基反應生成之C₂H₆、CH₃O 之濃度遠小於 CH₃和O₂反應生成 CH₃OO 之濃度。此外,193 nm 之雷射會 同時光解淬息體O₂,形成氧原子,但因其吸收截面積僅只有3.9×10⁻²³,故 吾人將氧原子之生成量忽略不計。因此吾人可預期光譜中所觀測之吸收, 主要的貢獻來自於 CH₃OO。

4.3 對稱陀螺剛體轉子(symmetric top rigid rotor)模型

CH₃OO 為一非對稱陀螺分子,在此不考慮轉動離心力所造成之離心變 形(centrifugal distortion),以剛體轉子討論此分子。一般而言,非對稱陀螺 剛體轉子在 Schrödinger 方程式沒有通用分析解(general analytical solution), 其躍遷譜線的分析較對稱陀螺分子複雜。然而根據 Endo 研究組之數據,如 圖 4-2 所示, CH₃OO 的結構相當接近對稱陀螺分子,其非對稱性參數 (asymmetric parameter) κ 值接近於-1:

$$\kappa = \frac{2B - A - C}{A - C} = -0.93 \tag{4-27}$$

故 CH₃OO 分子近似於長柱形(prolate)陀螺,分子陀螺軸大致上沿著 a 軸轉動。在此假設下,其振動-轉動能階可表示為:

$$F_{np}(v, J, K) = v + \left(A - \frac{1}{2}(B + C)\right)K^2 + \frac{1}{2}(B + C)J(J + 1)$$
(4-28)

其中 np 為 near prolate 之縮寫、V 為振動波數、J 為轉動量子數、K 即為 K_a, 為轉動角動量投影於 a 軸分量之量子數,A、B、C 為對應於 a、b、c 轉軸 之轉動常數。對於近似於長柱形陀螺分子而言,B、C 可視為相等,因此將 B和C平均得到 B,因此將式(4-2)改寫如下:

$$F_{np}(v, J, K) = v + (A - \overline{B})K^2 + \overline{B}J(J + 1)$$
 (4-29)

躍遷所對應的譜線的表示法為 $\Delta K \Delta J_{K''}(J'')$,其中J''為躍遷之低能階的轉動量 子數,K''為躍遷之低能階轉動角動量投影於 a 軸的分量之量子數。 $\Delta J = 0$ 躍 遷所獲得之譜線稱為 Q 分枝(Q-branch); 而 $\Delta J = +1$ 、-1分別稱之為 R 分 枝(R-branch)與 P 分枝(P-branch)。對於對稱陀螺剛體轉子而言,當其進行振 動-轉動躍遷時,若偶極矩改變的向量和分子主轉軸平行,則 $\Delta K = 0$,此為 平行躍遷(parallel transition),其振轉躍遷能量可表示如下:

$$Q \,\,\widehat{\beta} \,\,\overline{k} \qquad \nu^Q = \nu_0 + (\Delta A - \Delta \overline{B}) K^{"^2} + \Delta \overline{B} J"(J"+1) \tag{4-30}$$

P 分枝 $\nu^P = \nu_0 + (\Delta A - \Delta \overline{B})K''^2 + [\Delta \overline{B}J'' - (\overline{B}' + \overline{B}'')]J''$ (4-31)

R 分枝
$$\nu^R = \nu_0 + (\Delta A - \Delta \overline{B})K''^2 + (\Delta \overline{B}J'' + 2\overline{B})(J'' + 1)$$
 (4-32)

其中 $\Delta A \ A A' - A'', \Delta B \ A B' - B'', A' n B'代表振動激態的轉動常數, n A'' n B'代表振動基態的轉動常數。反之, 若當偶極矩改變的向量不和分子主轉軸平行, 而於另兩分子軸有投影量時, 其遵守<math>\Delta K = \pm 1$ 規則, 稱為垂直躍 遷(perpendicular transition)。垂直躍遷之次譜帶(sub band, 對應特定之K'' 及 ΔK)起點躍遷能量可表示為:

 $v^{sub} = v_0 + (A' - B') \pm 2(A' - B')K'' + [(A' - B') - (A'' - B'')]K''^2$ (4-33) 式子中之+號對應到 $\Delta K = +1$, -號對應到 $\Delta K = -1$ 。吾人先以對稱陀螺 剛體轉子模型對 CH₃OO 各振動模的轉動譜線做一簡單分析,再利用光譜模 擬軟體 PGOPHER 程式以 asymmetric top rigid rotor model 得到各振動模之模 擬光譜,並和實驗光譜做比較。

4.4 實驗光譜指派和比較

800-3800 cm⁻¹ 全光區之低解析光譜

本實驗透過光解兩種前驅物產生 CH₃OO 自由基:以波長 248 nm 之準 分子雷射光解 CH₃I 及 O₂之混合物(~1/50) 和以波長 193 nm 之準分子雷射 光解 CH₃C(O)CH₃及 O₂之混合物(~1/60);兩者實驗均於溫度 298 K下進行, 光解後產生之 CH₃自由基會和 O₂反應產生 CH₃OO 自由基分子。在大光區 (800 - 3800 cm⁻¹)實驗中,儀器解析度為 R = 0.9/L = 4 cm⁻¹ 削足函數使用 Blackman-Harris 3-term 時,實際譜線半高寬為 5.2 cm⁻¹。前驅物之吸收光譜 如圖 4-3(a)所示,以波長 248 nm 之雷射光解 CH₃I 及 O₂之混合物(~1/50), 並以 FTIR 記錄雷射激發後 0 – 800 µs 之差異光譜,以 200 µs 為間隔的時間 解析,結果如圖 4-3(b)所示。由時間解析光譜可觀測到於 910 cm⁻¹、995 cm⁻¹、 1150 cm⁻¹、1450 cm⁻¹及 3000 cm⁻¹處有新的生成物生成。 吾人發現於 910 cm⁻¹、1150 cm⁻¹、1450 cm⁻¹、3000 cm⁻¹處訊號隨時間增加而減少;而 995 cm⁻¹ 處之吸收峰強度則隨時間增加而增強,比較前人之 CH₃OO 光譜可知 910 cm⁻¹、1150 cm⁻¹、1450 cm⁻¹、3000 cm⁻¹處之訊號為 CH₃OO 自由基訊號。 對於其他隨時間增加而增加的副產物吸收峰,經過比對後可分別指派為 CH₃OOI 之 OO 伸展模(995 cm⁻¹)吸收、CH₃OH 之 CO 伸展模(1033 cm⁻¹)、 H₂CO 之 CO 伸展模(1746 cm⁻¹)、CH₃OH 的三個 CH₃ 伸展模(2844 cm⁻¹、2960 cm⁻¹、3000 cm⁻¹)、H₂CO 之二個 CH₂ 伸展模(2783 cm⁻¹、2843 cm⁻¹)的吸收。 800 – 1500 cm⁻¹ 光區之高解析光譜

而針對低於 1500 cm⁻¹之光區,則因 CH₃I 對於 CH₃OO 之訊號干擾較 CH₃C(O)CH₃小,因此吾人使用儀器解析度為 R = 0.9/L = 4 cm⁻¹;實際譜線 半高寬為 0.52 cm⁻¹(削足函數為 Blackman-Harris 3-term)觀測。在光譜模擬方 面,吾人透過 PGOPHER 軟體模擬非對稱陀螺模型之紅外光譜,參數則使 用理論預測之激態(v = 1)和基態(v = 0)轉動常數的比例,並透過 Endo 研究 組以微波測量振動基態的轉動常數及上述中加以修正激態的轉動常數,列 於表 4-2 及理論計算預測之 a、b、c 型躍遷之比例,列於圖 4-2。 (a) 800 - 970 cm⁻¹之光區 吾人所得之光譜如圖 4-4 所示。在圖 4-4(a)是前驅物 CH₃I 之吸收;而 圖 4-4(b)是原始光譜,吾人可觀測到於 910.7 cm⁻¹處有一明顯之 Q 分枝吸收 峰,其轉動譜線之受到前驅物 CH₃I 嚴重干擾,導致難以分辨;圖 4-4(c)為 補償 CH₃I 吸收減少後之光譜結果。在此光區中根據 B3LYP/aug-cc-pVTZ 的 計算結果,吾人預期₇振動模之吸收位於 912 cm⁻¹,且根據 Ase[9]、Nandi[10] 實驗組於 Ar 間質中觀測到之₇振動模皆位於 902 cm⁻¹,因此吾人指派特徵 峰值為 910.7 cm⁻¹之譜帶為₇振動模。由理論預測得到之₇振動模躍遷比例 (即偶極矩導數之平方)為 a: b = 69:31,吾人透過 PGOPHER 程式模擬₇振 動模,並且與實驗結果比較示於圖 4-5。由圖中可看出 Q 分枝與 P 及 R 分 枝相對強度差異,在理論計算中發現 Q 分枝的強度遠高於 P 及 R 分枝 方

由B3LYP/aug-cc-pVTZ之計算結果可預測CH₃OO有三個振動模的基頻 吸收在此光區中,分別是 $v_5 \times v_6 \times v_{11}$,其預測之基頻位置分別為1216 cm⁻¹、 1150 cm⁻¹及1127 cm⁻¹。而Ase[9]、Nandi[10]實驗組於Ar間質中觀測 v_5 之 結果分別為1183 cm⁻¹、1180 cm⁻¹; v_6 分別為1112 cm⁻¹、1109 cm⁻¹;而本 實驗室黃登瑞學長等人[1]於氣態下觀測 $v_5 \times v_6$ 低解析光譜之躍遷原點為 1183 cm⁻¹和1117 cm⁻¹。三組實驗組皆未觀測到 v_{11} 振動模,可能之原因為 理論預測 v_{11} 振動模之紅外吸收度遠低於 v_5 及 v_6 振動模。實驗光譜和光譜模 擬結果示於圖 4-6。於圖 4-6(a)中為前驅物 CH₃I 之吸收;圖 4-6(b)為原始光 譜,圖 4-6(c)為吾人亦將前驅物干擾補償所得之結果,並且可觀測到於 1182.4 cm⁻¹和 1118.0 cm⁻¹有明顯之吸收峰。因此吾人指派位於 1182.4 cm⁻¹ 和 1118.0 cm⁻¹之吸收分別為*v*₅及*v*₆振動模之躍遷原點。由理論預測得到之 *v*₅振動模躍遷比例(即偶極矩導數之平方)為a:b=36:64;而*v*₆振動模躍 遷比例為a:b=83:17。個別之a、b、c型之躍遷模擬光譜列於圖 4-7,並 且將*v*₅及*v*₆模擬光譜列於圖 4-6(d)以利比較。如同*v*₇振動模一樣,Q分枝與 P及R分枝的相對強度在模擬光譜及實驗光譜差異較大。而在*v*₆振動模中, 理論計算之紅外光強度較低,導致模擬光譜之*v*₆振動模強度不及*v*₅振動 模。

(c) 1360-1520 cm⁻¹之光區

CH₃OO 由 B3LYP/aug-cc-pVTZ 之理論預測有 $v_3 \times v_4 \times v_{10}$ 之基頻振動 位於此光區,其位置分別於 1483 cm⁻¹、1442 cm⁻¹、1473 cm⁻¹。而 Ase[9]、 Nandi[10]實驗組於 Ar 間質中觀測 $v_3 \times v_4 \times v_{10}$ 之結果分別為 1453 cm⁻¹、1414 cm⁻¹、1440 cm⁻¹和 1448 cm⁻¹、1410 cm⁻¹、1434 cm⁻¹。本實驗室黃登瑞學 長等人[1]於氣態下觀測 $v_3 \times v_4 \times v_{10}$ 之躍遷原點為 1453 cm⁻¹、1408 cm⁻¹、 1441 cm⁻¹。本實驗之光譜及模擬光譜比較如圖 4-8 所示。圖 4-8(a)為前驅物 CH₃I 之吸收光譜;圖 4-8(b)為原始光譜,於 1440.9 cm⁻¹處有一明顯吸收峰, 吾人指派為 v_{10} 振動模之吸收。比較(a)和(b)圖後發現其受前驅物干擾極大,

因此吾人將其移除後得到之光譜,如圖 4-8(c) 所示。V10 振動模之模擬光譜 如圖 4-9(c)所示, 與圖 4-9(e)之光譜相較後發現 1470 cm⁻¹處有類似 R 分枝 的吸收,吾人認為其可能為水振動模之貢獻。根據理論和實驗組的結論, 吾人應於 1483-1442 cm⁻¹處觀測到 v₃振動模的位置,因此吾人根據較強之 吸收峰 1471.0 cm⁻¹ 和 1474.4 cm⁻¹ 為 v₃ 振動模可能之吸收峰,再以 PGOPHER 軟體模擬其光譜,推測v,振動模之躍遷原點為 1456.7 cm⁻¹。然 而吾人於光譜中並未觀測到以振動模之位置,吾人推測因以振動模之紅外 吸收強度較低,約為V3、V10振動模五分之一。由理論預測得到之V3振動模 躍遷之比例為 a:b=0.22:0.78; v_{4} 振動模躍遷之比例為 a:b=0.31:0.69; V_{10} 振動模則為純 c 型躍遷。個別之 $a \cdot b \cdot c$ 型之躍遷模擬光譜列於圖 4-10、 圖 4-11。若和模擬光譜比較,吾人依照各個振動模之理論預測紅外光吸收 強度進行光譜模擬, v3、v4個別模擬之結果如圖 4-9(a)、圖 4-9(b),將其v3、 V4、V10振動模之總和示於圖 4-9(d)。由於未觀測到V4振動模,因此V4振動 模之模擬光譜之躍遷原點 1408 cm⁻¹ 是參考本實驗室黃登瑞學長等人[1]所 觀測結果,但因其紅外光吸收強度為 1.6 km/mole,因此難以觀測。 (d) 2900 - 3100 cm⁻¹ 光區之高解析光譜

為了得到更清晰的轉動譜線結構之光譜,吾人針對訊號較強的 3000 cm⁻¹處之光區,分別擷取前驅物為 CH₃I/O₂和 CH₃C(O)CH₃/O₂之較高解析 度光譜;儀器解析度為 0.15 cm⁻¹,在削足函數使用 Blackman-Harris 3-term

時,實際譜線半高寬為 0.19 cm⁻¹。在 CH₃I/O₂之實驗中,光譜如圖 4-12 所 示,可發現 CH₃I 的強烈干擾,使得轉動譜線結構受到限制而無法區分 CH₃I 之訊號和 CH₃OO 之訊號。相較之下,在 CH₃C(O)CH₃/O₂ 之實驗中,如圖 4-13,雖有 CH₃C(O)CH₃之背景值,但是可發現其平滑之曲線對於轉動譜線 結構影響不大,因此吾人後述之光譜分析均使用光解 CH₃C(O)CH₃/O₂之光 譜。值得注意的是除了反應前驅物的干擾外,二者光譜均含有 C₂H₆之吸收, 而在丙酮之實驗中並產生了少量的 CH₄,因此必須扣除光譜中之副產物。 4.4.1 v₉振動模的分析

CH₃OO 之 v,振動模運動模式為 CH₂ 非對稱伸展,根據 B3LYP/aug-cc-pVTZ 之預測,此振動模躍遷原點為 3137 cm⁻¹,和為純 c 型 躍遷。而 Nandi[10]實驗組於 Ar 間質中觀測 v,之結果為 3024 cm⁻¹, Morrison[8] 實驗組使用 He 奈米液滴則觀測 3024.5 cm⁻¹。本實驗室黃登瑞學長等人[1] 使用時間解析傳式轉換紅外吸收光譜法和林震洋學長[11]使用共振腔震盪 衰減光譜法於氣態下觀測 v,之躍遷原點分別為 3020 cm⁻¹和 3020.7 cm⁻¹。吾 人以不同前驅物得到之實驗光譜如圖 4-12、圖 4-13,可發現於 3021.4 cm⁻¹ 處有明顯 Q 分枝吸收峰,因此吾人指派 v,振動模之躍遷原點為 3021.4 cm⁻¹。

吾人使用對稱陀螺剛體轉子模型,c型躍遷近似於垂直躍遷,其各個譜線之指派如圖 4-14 所示,而各譜線位置和躍遷能量公式列於表 4-3,其中

3017 cm⁻¹至 3028 cm⁻¹處之光區吾人認為是 v_1 振動模之吸收,將於 4.4.4 中 之討論。將譜線間隔對相鄰譜線的 K["]平方值之差值做線性分析,如圖 4-15 所示,則分別由截距和斜率得到2(A['] - B['])和(A['] - B[']) - (A["] - B["])之值。由 於截距和斜率分別為 2.75 和 - 0.005,故知(A['] - B[']) = 1.375 ± 0.025, (A['] - B[']) - (A["] - B["]) = -0.005 ± 0.003,因此(A["] - B["]) = 1.38。由 Endo 研究組結果得知(A["] - B["]) = 1.376,差異小於1%;若與表 4-2 之理論計算 所得之轉動常數比例比較,則可得到(A['] - B[']) = 1.372、(A['] - B[']) -(A["] - B["]) = -0.004,其差異約為1%。 4.4.2 v_2 振動模的分析

CH₃OO 的v₂之振動模為 CH₃對稱伸展,根據 B3LYP/aug-cc-pVTZ 計算 之結果,其躍遷原點為 3050 cm⁻¹和 a、b、c 型躍遷比例為 a:b:c=91:9: 0。Ase[9]和 Nandi[10]實驗組於 Ar 間質中觀測v₂之位置分別為 2968 cm⁻¹ 及 2954 cm⁻¹, Morrison[8]實驗組使用 He 奈米液滴則觀測為 2955.5 cm⁻¹; 本實驗室黃登瑞學長等人[1]使用時間解析傳式轉換紅外吸收光譜法和林震 洋學長[11]使用共振腔震盪衰減光譜法於氣態下觀測v₂之躍遷原點分別為 2954 cm⁻¹及 2953.4 cm⁻¹。吾人以不同前驅物得到之實驗光譜如圖 4-12、圖 4-13,可發現於 2954.3 cm⁻¹。

若根據對稱陀螺剛體轉子模型, v2主要為水平躍遷。根據式(4-31)及式

(4-32),且從表 4-2 修正後之激態轉動常數和 Endo 組測量之基態轉動常數 之差,得到 $\Delta A - \Delta \overline{B} = -0.004 \ \mathcal{B}\Delta \overline{B} = -0.0001$,因其值極小,因此可把 式(4-31)中的($\Delta A - \Delta \overline{B}$) $K''^2 + \Delta \overline{B}J''^2$ 忽略,簡化後如下式所示:

$$\nu^{P} = \nu_{0} - (\overline{\mathbf{B}}' + \overline{\mathbf{B}}'') J''$$
(4-34)

經過運算後可計算 P 分枝能量間隔之能差,如下式所示:

$$\Delta E^{P} (v = 0, J'' \rightarrow v=1, J'=J''-1) = -(\overline{B}' + \overline{B}'')$$
(4-35)

而可將式(4-32)中 $(\Delta A - \Delta \overline{B})K''^2 + \Delta \overline{B}''J''(J'' + 1)$ 忽略,可得簡化成如下式:

$$v^R = v_0 + 2\overline{B}'(J'' + 1)$$
 (4-36)

經過運算後可計算 R 分枝能量間隔之能差,如下式所示:

$$\Delta E^{R} (v = 0, J'' \to v=1, J'=J''+1) = 2\overline{B}'$$
(4-37)

因此相鄰兩 P 分枝的能量間隔為 $\overline{B}' + \overline{B}'';$ 相鄰兩 R 分枝的能量間隔為 $2\overline{B}'$ 。 實際光譜轉動譜線指派如圖 4-16 所示,而觀測到之光譜峰值則列於表 4-4。 圖 4-17(1)是將轉動能階與轉量量子數J''作圖,得到 $\overline{B}' + \overline{B}'' = 0.73 \pm 0.06;$ 圖 4-17(2)是將轉動能階與轉量量子數J''作圖,得到 $2\overline{B}' = 0.70 \pm 0.07$ 。因此 利用 P 分枝和 R 分枝之結果可得到 $\overline{B}' = 0.35 \pm 0.03 \times \overline{B}'' = 0.38 \pm 0.035,$ 相較於 Endo 組得到之 $\overline{B}'' = \frac{1}{2}(B'' + C'') = 0.355, 其差異約為7%。$

吾人發現於表 4-2 中, $\nu_2 \mathcal{R} \nu_9$ 振動模修正後之激態(v = 1)轉動常數一致,因此吾人使用對稱陀螺剛體轉子模型於 4.4.1 和 4.4.2 之分析結果,藉以模擬光譜。其參數A" = 1.728、 \overline{B} " = 0.38、A' = 1.72、 \overline{B} ' = 0.35, ν_9 和 ν_2 之

模擬結果如圖 4-18(1)、圖 4-19(1)所示。除了其他吸收物質造成的影響外, 第二個可能造成吾人推得之轉動常數B'和B"和理論計算及其他實驗組之差 異在於對稱陀螺轉子模型並不完全符合 CH₃OO。故吾人使用 PGOPHER 軟 體模擬非對稱陀螺轉子之光譜,參數列於表 4-2, v₉ 和v₂ 振動模吸收之模 擬結果則如圖 4-18(2)、圖 4-19(2)所示。

4.4.3 內轉動振動模(torsional mode)分析

根據 Just [29]研究組的結果, CH3OO 具有對 C-O 單鍵的內轉動,透過 各種理論計算得到之 CH₃OO 於基態的轉動能障介於 250 cm⁻¹ 和 550 cm⁻¹ 之間。在室溫下 CH₃OO 的平均能量不足以克服轉動能障進行自由轉動(free rotation),但甲基和氧氧單鍵的相對位置卻可藉由穿隧效應而改變。如圖 4-20(1)所示,此穿隧效應會造成內轉動振動能階分裂成A和E二種對稱性, 由於實驗溫度保持在 298 K下,因此可利用波茲曼分布(Boltzmann distribution) 推測在各個能階下佈居數的相對值。OA 表 A 對稱性下內轉振動 量子數V12=0;而0E表E對稱性下內轉振動量子數V12=0,以此類推。 其中之 0A/0E、1A/1E、2A/2E、3A/4A 之能量差異不大,將其視為簡併, 因此可將模型簡化,如圖 4-20(2)所示,從基態至第四激發態之能量為 0 cm⁻¹、 125 cm⁻¹、214 cm⁻¹、292 cm⁻¹、354 cm⁻¹,因此可計算自基態到第四激發態 佈居數(population)之比例分別為1、0.55、0.36、0.24、0.18,第五激發態其 佈居數之比例小於 0.1,故忽略不計其貢獻。吾人便可透過V1,振動模佈居數

差異並且結合v,振動模以熱譜帶躍遷(hot band transition)進行光譜模擬。由 於 CH₃OO 並非是對稱陀螺轉子,為了得到合理之模擬光譜,吾人透過 PGOPHER 軟體中非對稱陀螺模型進行轉動譜線之模擬,使用之參數如表 4-5 所示,其中12¹2¹表示分子由 v_{12} =1, v_{2} =0 → v_{12} =1, v_{2} =1振動模 於振動第一激發態時v,振動模從振動基態(v,=0)躍遷至振動激態(v,=1), 以此類推。而理論計算所得到之 avbvc 型之躍遷比例為 a:b:c=91:9:0。 對於V1,振動模振動激態之轉動常數,吾人先以試誤法得到V1,第一激發態之 轉動常數與其波長位移,再透過等差遞減得到1/2於其他激態時之轉動常數。 吾人得到第一激發態之轉動常數A"=1.7231,其轉動常數公差d為 1.7272 - 1.7231 = 0.0041, 波長之公差 e 為-0.73 cm⁻¹; 因此第二激發態 轉動常數即1.7272-0.0041×2=1.7190,而波長位移2954.22-0.73× 2 = 2952.76,光譜模擬程式之參數為T = 298 K、Gaussian width = 0.19 cm^{-1} · Lorentzian width = 0.10 cm^{-1} · band origin = 2954.22 cm⁻¹ · J_{max} = 100。個別模擬結果列於圖 4-21(1), 加總之結果則如圖 4-21(2)所示, 結果可知透過熱譜帶躍遷進行模擬對於轉動譜線的位置是十分一致,且對 於12振動模之Q分枝而言亦有相當大的改進,但仍無法完全模擬。

4.4.4 V₁振動模的討論

根據 Nandi[10]及 Morrison[8]等人在間質隔離的研究和常溫下本實驗室 之黃登瑞學長等人[1]的結果, v₁ 位於 3032 – 3034 cm⁻¹ 之光區內。然而本實 驗室之林震洋學長[11]使用共振腔震盪衰減光譜法,於常溫中並未觀測到V 之躍遷原點,僅透過一位於3015 cm⁻¹處之吸收峰,再透過模擬光譜指派V, 之躍遷原點於 3031.7 cm⁻¹。然而共振腔震盪衰減光譜法對於波長校正係透 過一光聲效應(photoacoustic cell),测量已知樣品,藉以定出波長絕對值, 但其所定之 ν_{o} 振動模吸收位置於 3020.7 cm⁻¹,而吾人觀測為 3021.4 cm⁻¹。 因此吾人直接將其光譜藍位移 0.7 cm⁻¹, 位移後吾人認為林震洋學長所觀測 之V,振動模吸收位置為 3032.4 cm⁻¹。吾人比對本實驗室林震洋學長[11]透過 共振腔震盪衰減光譜法觀測之結果和本次實驗使用 CH3C(O)CH3/O2 之實驗 後得到之 CH3OO 之光譜和於圖 4-22(a)、(b),而v。振動模之模擬光譜列於 圖 4-22(c)。根據 B3LYP/aug-cc-pVTZ 之理論計算結果預測, v,振動模之躍 遷為 a: b=0.26: 0.74, 且透過表 4-2 列之修正之轉動常數並使用 PGOPHER 軟體模擬V1之a、b、c型躍遷及a、b混合躍遷結果如圖 4-23(a)-(d)。吾人 觀測於 3032.3 cm⁻¹ 位置處有一吸收峰,其並不屬於v。振動模之躍遷,雖其 吸收強度與模擬光譜強度不同,但吾人推測理論計算之紅外光強度誤差造 成此結果,因此吾人指派振動模之吸收位置於 3032.3 cm⁻¹。獨立之V₁振動 模之模擬光譜列於圖 4-22(d);而Vi振動模和Vo振動模模擬光譜之加總於圖 4-22(e)。v1其他振轉動躍遷譜線和v。之c型振轉動躍遷譜線位置過於接近, 故吾人僅可指派位於心躍遷原點附近處,如圖 4-22 虛線所示。若比較 Morrison 等人[8]在 He 奈米液滴(nanodroplet)環境下的實驗,其VI吸收位置

88

於 3034.7 cm⁻¹與吾人觀測 3032.3 cm⁻¹較接近,且與同樣於常溫下觀測氣態 CH₃OO 得黃登瑞學長等人[1]CH₃OO 之 3033 cm⁻¹ 符合,因此吾人指派 3032.3 cm⁻¹處之吸收峰為*v*₁振動模。

4.5 結論

吾人分別利用波長為193 nm之雷射光光解CH3C(O)CH3/O2混合流動氣 體和利用波長 248 nm 之雷射光解 CH₃I/O₂ 混合流動氣體,並以步進式掃描 時域解析傅式轉換紅外光譜法偵測到共同產物 CH3OO 之瞬態紅外吸收光 譜·和本實驗室之黃登瑞學長等人[1]得到之氣態環境下之 CH3OO 低解析度 紅外吸收光譜做比較後,並且將解析度及訊雜比大幅提升後,吾人將位於 3032.3 cm^{-1} 2954.3 cm⁻¹ 1456.7 cm⁻¹ 1182.4 cm⁻¹ 1118.0 cm⁻¹ 910.7 cm⁻¹ 3021.4 cm⁻¹ 及 1440.9 cm⁻¹ 的吸收譜帶依序指派為 CH₃OO v₁ - v₃、 v₅ - v₇、 v₉ 及Vin之振動模吸收。這些氣態光譜吸收峰位置和 Ase 實驗組[9]及 Nandi 實 驗組[10]使用 Ar 間質所觀測之結果平均差異在 1%以內,與 Morrison 實驗 組[8]使用 He 奈米液滴之高解析光譜所得之結果差異最大不超過 0.1%。和 B3LYP/aug-cc-pVTZ 非簡諧計算值平均差異於 3%以內。吾人依據微波光譜 所得之振動基態轉動常數及理論計算振動激態(vi=1)與振動基態(v=0)轉 動常數比值,利用 PGOPHER 光譜模擬軟體模擬Via振動模於振動基態至第 四振動激發態時, Vo振動模之譜帶躍遷,所得之結果於轉動譜線處十分吻 合,唯獨V,Q分枝處無法得到完全一致的模擬結果。

圖4-1 利用 B3LYP/aug-cc-pVTZ 計算 CH₃OO 的最佳幾何結構。
(a) (b) (c)分別顯示鍵長、鍵角、立體角。 (d)為 CH₃OO 的分子轉動軸示意
圖。

(b)

(a)

圖4-2 利用 B3LYP/aug-cc-pVTZ 預測 CH₃OO 的 12 個振動模。 並標示振動模之位移向量(細箭頭)及偶極矩導數(粗箭頭)以及偶極矩導數; 分子轉動軸以虛線箭頭表示。

 v_{11} (a : b : c = 0 : 0 : 1)

 v_{12} (a : b : c = 0 : 0 : 1)

續圖 4-2 利用 B3LYP/aug-cc-pVTZ 預測 CH₃OO 的 12 個振動模 並標示振動模位移向量(細箭頭)及偶極矩導數(粗箭頭)以及偶極矩導數;分 子轉動軸以虛線箭頭表示。

(f) V1、V2及V9振動模之模擬光譜,個別之模擬光譜分別於圖 4-23、圖 4-19 及圖
 4-18,其參數列於表 4-2。

4-18,其參數列於表 4-2。

圖4-14 V9振動模長柱形陀螺近似之能階指派

- (a) 林震洋學長[11]使用共振腔衰減光譜法觀測 CH₃OO 之光譜。以 193 nm 光 解 CH₃C(O)CH₃/O₂之混合物,觀測光解後 50 µs 之光譜,其解析度為 0.15 cm⁻¹。虛線為長柱形陀螺近似法指派之躍遷譜線。
- (b)本次實驗結果。虛線為長柱形陀螺近似法指派之躍遷譜線。

- (a) 林震洋學長[11]使用共振腔衰減光譜法觀測 CH₃OO 之光譜。以 193 nm 光 解 CH₃C(O)CH₃/O₂之混合物,觀測光解後 50 µs 之光譜,其解析度為 0.15 cm⁻¹。虛線為長柱形陀螺近似法指派之躍遷譜線。
- (b)本次實驗結果。虛線為長柱形陀螺近似法指派之躍遷譜線。

圖 $4-17 v_2$ 振動模基態轉動量子數J"對波數及譜線間隔之變化圖 (1) v_2 振動模 P 分枝轉動量子數J"對譜線間格作圖。平均間格為 0.73 ± 0.06 cm⁻¹,而直線為譜線間隔之平均值。

(2) v_2 振動模 R 分枝轉動量子數J"對譜線間格作圖。平均間格為 0.70 ± 0.07 cm⁻¹,而直線為譜線間隔之平均值。

(1)

圖4-20 V₁₂振動模之內轉動能障計算圖

(1)因穿隧效應產生之內轉動能階圖[29]。其垂直線原為論文中於ν₁₂振 動模中不同能階下之電子躍遷譜線示意圖,僅截取電子基態之內轉 動能階。Θ表示甲基上的氫與氧之二面角(dihedral angle),縱軸表示

4E

3E

3A/4A

2A/2E

1E/1A

0A/0E

能量,單位為 cm⁻¹。 (2) 簡化後之內轉動能階圖。

圖4-21 V2及含V12振動模熱譜帶之躍遷模擬光譜

(1) 個別熱譜帶躍遷模擬光譜。由上至下為2¹₀、12¹₁2¹₀、12²₂2¹₀、12³₃2¹₀、12⁴₄2¹₀。
(2) 圖之上方為以 CH₃C(O)CH₃/O₂(~1/60)之實驗光譜,下方為模擬光譜之結果。

(e) V1和V9振動模之模擬光譜。括弧內為紅外光吸收強度值,單位為 km/mole。

表4-1	CH ₃ OO	振動頻率	率之理論	計算和	實驗值	直之比較表

]	B3LYP/	B3LYP/	B3LYP/	CCSI	D(T)/			TR-FTIR	CRDS	He	TR-FTIR
	aug	g-cc-pVTZ ^a	aug-cc-pVDZ ^b	6-311G(<i>d</i> , <i>p</i>) ^b	aug-cc-	-pVTZ ^a	Armautx	Ar maurix Ar maurix		gas phase	nanodroplet	gas phase
$v_1(a')$	3003	3150 (7.5)	3166	3156	3022 (7.7)	3168 (9.0)		3032	3033	3031.7	3034.7	3032.3
$v_2(a')$	2977	3050 (14.4)	3052	<u>3049</u>	2956 (17.4)	3061 (16.8)		2954	2954	2953.4	2955.5	2954.3
$v_3(a')$	1455	1483 (9.6)	1451	1484	1456 (5.9)	1497 (8.2)	1453	1448	1453			1456.7
$v_4(a')$	1426	1442 (1.6)	1414	1446	1417 (2.8)	1449 (1.4)	1440 ^c	1410	1408			unobserved
$v_5(a')$	1183	1216 (9.7)	1211	1218	1181 (9.2)	1212 (10.5)	1183	1180	1183			1182.6
$v_6(a')$	1121	1150 (2.0)	1149	1156	1128 (9.4)	1160 (9.5)	902 ^d	1109	1117			1118.1
$v_7(a')$	876	912 (13)	910	914	917 (13.8)	949 (14.7)	1112 ^d	902	-			910.7
$v_8(a')$	489	490 (6.5)	491	294	493 (6.3)	493 (6.2)	492	492				
v ₉ (a")	2990	3137 (10.2)	3152	3140	3011 (12.6)	3159 (13.1)	2968 ^e	3024	3020	3020.7	3024.5	3021.4
v ₁₀ (a")	1431	1473 (10.3)	1440	1469	1440 (6.3)	1484 (7.5)	1414 ^c	1434	1441			1440.9
v ₁₁ (a")	1102	1127 (0.8)	1111	1129	1118 (1.1)	1144 (1.1)	unobserved	unobserved	unobserved			unobserved
$v_{12}(a'')$	123	134 (0.1)	129	135	131 (0.1)	149 (0.2)						
reference	Hu	ang <i>et al</i> .[1]	Blanksby et al.[[6] Fu et al.[7]	Zhu <i>et al</i> [5]	Morrisor	n et al[8]	Ase et al.[9]	Nandi <i>et al.</i> [10]	Huang et al.[1]	林震洋 [11]	Morrison et al.[8]	this work

^a該欄位實心線左側為非簡諧振動頻率;右側為簡諧振動頻率;括弧內為紅外吸收強度(km/mole)。

^b為簡諧振動頻率。 $^{c}v_{4}$ 和 v_{10} 應調換。 $^{d}v_{6}$ 和 v_{7} 應調換。 e 應為 v_{2} 。

振動模	理論計算激態轉	專動常數除以基態	轉動常數之比值	修正後之振動激態 $(v_i = 1)$ 轉動常數 (cm^{-1})		
	A'/A" ^a	B'/B" ^a	C'/C" ^a	A'	B′ ^b	C′ ^b
$v_1(a')$	0.9999	1.0000	1.0001	1.730	0.379	0.330
$v_2(a')$	0.9976	0.9997	0.9999	1.726	0.379	0.330
$v_3(a')$	1.0337	1.0029	1.0120	1.788	0.380	0.334
$v_4(a')$	0.9811	0.9843	0.9869	1.697	0.373	0.326
$v_5(a')$	1.0026	0.9984	0.9998	1.734	0.378	0.330
$v_6(a')$	1.0016	0.9964	0.9930	1.733	0.378	0.328
$v_7(a')$	0.9980	0.9925	0.9920	1.727	0.376	0.327
$v_8(a')$	1.0119	0.9991	0.9967	1.751	0.379	0.329
$v_{9}(a'')$	0.9974	1.0002	1.0003	1.726	0.379	0.330
$v_{10}(a'')$	0.9841	1.0115	1.0005	1.702	0.383	0.330
$v_{11}(a'')$	0.9896	0.9946	0.9968	1.712	0.377	0.329
$v_{12}(a'')$	1.0032	0.9950	0.9996	1.736	0.377	0.330

表4-2 利用 B3LYP/aug-cc-pVTZ 計算 CH₃OO 的振動激態($v_i = 1$)與基態(v = 0)轉動常數之比例及激態轉動常數之修正值

^a理論計算之基態轉動常數 A"=1.7672,B"=0.3716,C"=0.3262 (cm⁻¹);Endo 組實驗之基態轉動常數值A"=1.730,B"=0.379,C"=0.330 (cm⁻¹) ^b 吾人透過理論計算所得之激態(v=1)之轉動常數除以基態(v=0)之轉動常數得到之激態與基態轉動常數比A'/A"、B'/B"、C'/C"之值, 乘以Endo 組所得到之基態轉動常數值。

光譜指派	光譜譜線 ^b	光譜間隔 ^b	能量表示法 "	理論預測譜線位置 ^b	觀測-理論預測 ^b
^P Q ₁₅	2980.62	2.85	$\nu_9 - 29(A' - \overline{B}') + 225[(A' - \overline{B}') - (A'' - \overline{B}'')]$	2980.75	-0.13
^P Q ₁₄	2983.47	3.00	$\nu_9 - 27(A' - \overline{B}') + 196[(A' - \overline{B}') - (A'' - \overline{B}'')]$	2983.61	-0.14
^P Q ₁₃	2986.48	2.85	$\nu_9 - 25(A' - \overline{B}') + 169[(A' - \overline{B}') - (A'' - \overline{B}'')]$	2986.46	0.01
^P Q ₁₂	2989.33	2.97	$\nu_9 - 23(A' - \overline{B}') + 144[(A' - \overline{B}') - (A'' - \overline{B}'')]$	2989.31	0.02
^P Q ₁₁	2992.30	2.87	$\nu_9 - 21(A' - \overline{B}') + 121[(A' - \overline{B}') - (A'' - \overline{B}'')]$	2992.14	0.16
^P Q ₁₀	2995.17	2.66	$\nu_9 - 19(A' - \overline{B}') + 100[(A' - \overline{B}') - (A'' - \overline{B}'')]$	2994.97	0.20
PQ9	2997.83	2.53	$\nu_9 - 17(A' - \overline{B}') + 81[(A' - \overline{B}') - (A'' - \overline{B}'')]$	2997.79	0.04
PQ8	3000.36	2.86	$\nu_9 - 15(A' - \overline{B}') + 64[(A' - \overline{B}') - (A'' - \overline{B}'')]$	3000.60	-0.24
PQ ₇	3003.23	3.20	$\nu_9 - 13(A' - \overline{B}') + 49[(A' - \overline{B}') - (A'' - \overline{B}'')]$	3003.40	-0.18
PQ ₆	3006.43	2.65	$\nu_9 - 11(\mathbf{A}' - \overline{\mathbf{B}}') + 36[(\mathbf{A}' - \overline{\mathbf{B}}') - (\mathbf{A}'' - \overline{\mathbf{B}}'')]$	3006.20	0.23
PQ ₅	3009.08	2.87	$\nu_9 - 9(A' - \overline{B}') + 25[(A' - \overline{B}') - (A'' - \overline{B}'')]$	3008.98	0.10
PQ4	3011.95	2.91	$\nu_9 - 7(A' - \overline{B}') + 16[(A' - \overline{B}') - (A'' - \overline{B}'')]$	3011.76	0.19
PQ ₃	3014.86	2.67	$\nu_9 - 5(\overline{A'} - \overline{B'}) + 9[(\overline{A'} - \overline{B'}) - (\overline{A''} - \overline{B''})]$	3014.53	0.33

表4-3 V9振動模垂直躍遷譜線之指派、譜線間距和理論預測比較表

 ${}^{a}v_{9}$ 之躍遷原點為 3021.43 cm⁻¹, (A' - \overline{B}') = 1.37 ± 0.03 cm⁻¹和(A' - \overline{B}') - (A'' - $\overline{\overline{B}}''$) = -0.005 ± 0.004 為圖 4-15

之分析結果。^b單位為 cm^{-1} 。

續表 4-3 V9振動模垂直躍遷譜線之指派、譜線間距和理論預測比較表

光譜指派	光譜譜線 ^b	光譜間隔 b	能量表示法 ^a	理論預測譜線位置 ^b	觀測-理論預測 ^b
^R Q ₃	3031.19	2.46	$\nu_9 + 7(\mathbf{A}' - \overline{\mathbf{B}}') + 9[(\mathbf{A}' - \overline{\mathbf{B}}') - (\mathbf{A}'' - \overline{\mathbf{B}}'')]$	3030.99	0.20
^R Q ₄	3033.65	2.74	$\nu_9 + 9(\mathbf{A}' - \overline{\mathbf{B}}') + 16[(\mathbf{A}' - \overline{\mathbf{B}}') - (\mathbf{A}'' - \overline{\mathbf{B}}'')]$	3033.71	-0.06
^R Q ₅	3036.39	2.74	$\nu_9 + 11(A' - \overline{B}') + 25[(A' - \overline{B}') - (A'' - \overline{B}'')]$	3036.41	-0.02
^R Q ₆	3039.14	2.74	$\nu_9 + 13(\mathbf{A}' - \overline{\mathbf{B}}') + 36[(\mathbf{A}' - \overline{\mathbf{B}}') - (\mathbf{A}'' - \overline{\mathbf{B}}'')]$	3039.11	0.02
^R Q ₇	3041.88	2.75	$\nu_9 + 15(\mathbf{A}' - \overline{\mathbf{B}}') + 49[(\mathbf{A}' - \overline{\mathbf{B}}') - (\mathbf{A}'' - \overline{\mathbf{B}}'')]$	3041.80	0.07
^R Q ₈	3044.37	2.93	$\nu_9 + 17(\mathbf{A}' - \overline{\mathbf{B}}') + 64[(\mathbf{A}' - \overline{\mathbf{B}}') - (\mathbf{A}'' - \overline{\mathbf{B}}'')]$	3044.49	0.14
^R Q ₉	3047.56	2.16	$\nu_9 + 19(\mathbf{A}' - \overline{\mathbf{B}}') + 81[(\mathbf{A}' - \overline{\mathbf{B}}') - (\mathbf{A}'' - \overline{\mathbf{B}}'')]$	3047.16	0.40
^R Q ₁₀	3049.72	2.17	$v_9 + 21(A' - \overline{B}') + 100[(A' - \overline{B}') - (A'' - \overline{B}'')]$	3049.83	-0.11
^R Q ₁₁	3051.89	2.98	$v_9 + 23(A' - \overline{B}') + 121[(A' - \overline{B}') - (A'' - \overline{B}'')]$	3052.49	-0.60
^R Q ₁₂	3054.87		$v_9 + 25(A' - \overline{B}') + 144[(A' - \overline{B}') - (A'' - \overline{B}'')]$	3055.14	-0.27

^a v_9 之躍遷原點為 3021.43 cm⁻¹, (A' - \overline{B}') = 1.37 ± 0.03 cm⁻¹ 和(A' - \overline{B}') - (A'' - \overline{B}'') = -0.005 ± 0.004 為圖 4-15

之分析結果;^b單位為 cm^{-1} 。

表4-4 V2之 P、R分枝譜線位置、譜線間距和理論計算比較表

		P branch ^a		R branch ^b			
J"	光譜譜線 [°]	計算譜線位置 ^c	光譜譜線— 計算譜線 [。]	光譜譜線 [°]	計算譜線位置 ^c	光譜譜線—計 算譜線 ^c	
0	2954.34	2954.34		2954.25	2954.25		
1		2953.63			2955.67		
2		2952.92		2956.37	2956.38	-0.01	
3		2952.21		2957.09	2957.09	0.00	
4	2951.70	2951.50	0.19	2957.70	2957.79	-0.09	
5	2950.83	2950.80	0.03	2958.39	2958.50	-0.11	
6	2949.98	2950.09	-0.11	2959.28	2959.21	0.06	
7	2949.25	2949.38	-0.13	2959.85	2959.92	-0.07	
8	2948.51	2948.67	-0.16	2960.54	2960.63	-0.09	
9	2947.72	2947.96	-0.24	2961.18	2961.34	-0.16	
10	2947.01	2947.25	-0.24	2961.88	2962.05	-0.17	
11	2946.29	2946.54	-0.25	2962.63	2962.76	-0.12	
12	2945.59	2945.83	-0.24	2963.34	2963.47	-0.13	
13	2944.85	2945.12	-0.27	2964.07	2964.17	-0.10	
14	2944.18	2944.41	-0.24	296 <mark>4</mark> .77	2964.88	-0.12	
15	2943.41	29 <mark>4</mark> 3.71	-0.29	2965.43	2965.59	-0.16	
16	2942.73	2943.00	-0.26	2966.22	2966.30	-0.08	
17	2941.98	2942.29	-0.31	2966.92	2967.01	-0.09	
18	2941.30	2941.58	-0.28	2967.60	2967.72	-0.12	
19	2940.54	2940.87	-0.33	2968.24	2968.43	-0.19	
20	2939.83	2940.16	-0.33	2968.89	2969.14	-0.25	
21	2939.06	2939.45	-0.40				
22	2938.33	2938.74	-0.41				
23	2937.52	2938.03	-0.51				
24	2936.87	2937.33	-0.45				
25	2936.13	2936.62	-0.49				
26	2935.46	2935.91	-0.45				
27	2934.71	2935.20	-0.49				
28	2934.07	2934.49	-0.42				
29	2933.44	2933.78	-0.34				
30	2932.79	2933.07	-0.28				

^a利用式(4-31)分析($\overline{B}' + \overline{B}''$) = 0.726 cm⁻¹,其躍遷原點為 2954.34 cm⁻¹。^b利用式(4-33) 分析 \overline{B}' = 0.35 cm⁻¹,其躍遷原點為 2954.25 cm⁻¹。^c單位為 cm⁻¹。

	2_0^{-1}	$12_1^{1}2_0^{1}$	$12_2^2 2_0^1$	$12_3^{3}2_0^{1}$	$12_4^{4}2_0^{1}$		
A" ^a			1.730	10			
B" ^a			0.379				
C" ^a			0.330				
A' ^a	1.7272	1.7231	1.7190	1.7149	1.7108		
B'a		-	0.3783		1		
C ^{'a}			0.330				
energy	0	125	214	292	354		
Boltzmann		0.55	0.36	0.25	0.18		
factor	1	0.55	0.50	0.25	0.10		
band	2954.28	2953.55	2952.82	2952.09	2951.36		
origin							
Gaussian			0.19				
linewidth"			200				
Lorentzian		\wedge	0.10	2 // .			
linewidth ^a			0.10				
T ^b			298				
J _{max}			50				
^a 單位為 cm ⁻¹ 。 ^b 單位為 K。							

表4-5 V2及V12振動模之熱譜帶躍遷模擬光譜參數表

參考資料

- [1] D. R. Huang, L. K. Chu, and Y. P. Lee, J. Chem. Phys. **127**, 234318 (2007).
- [2] M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 09,
- Revision A. 02, Gaussian, Inc., Wallingford, CT (2009).
- [3] C. Lee, W. Yang, and R. G. Parr, Phys. Rev B 41, 785 (1998).
- [4] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
- [5] R. Zhu, C. C. Hsu, and M. C. Lin, J. Chem. Phys. 115, 195 (2001).
- [6] S. J. Blanksby, T. M. Ramond, G. E. Davico, M. R. Nimlos, S. Kato, V.

M. Bierbaum, W. C. Lineberger, G. B. Ellison, and M. Okumura, J. Am. Chem. Soc. **123**, 9585 (2001).

[7] H. B. Fu, Y. J. Hu, and E. R. Bernstein, J. Chem. Phys. **125**, 184309 (2006).

[8] A. M. Morrison, J. Agarwal, H. F. Schaefer, and G. E. Douberly, J. Phys. Chem. A **116**, 5299 (2012).

[9] P. Ase, W. Bock, and A.Snelson, J. Phys. Chem. 90, 2099 (1986).

[10] S. Nandi, S. J. Blanksby, X. Zhang, M. R. Nimlos, D. C. Dayton, and G. B. Ellison, J. Phys. Chem. A **106**, 7547 (2001).

[11] 林震洋,國立交通大學碩士論文,民國一百零一年。

[12] Private communication with Prof. Y. Endo.

[13] D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just, J. A. Kerr,

M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, J.

Phys. Chem. Ref. Data 34, 757 (2005).

[14] J. Troe, J. Phys. Chem. 83, 114 (1979).

[15] J. Troe, Ber. Bunsenges. Phys. Chem. 87, 161 (1983).

[16] R. G. Gilbert, K. Luther, and J. Troe, Ber. Bunsenges. Phys. Chem. 87, 169 (1983).

[17] D. Lightfoot, S. P. Kirwan, and M. J. Pilling, J. Phys. Chem. 92, 4938 (1988).

[18] M. J. Pilling, and M. J. C. Smith, J. Phys. Chem. 89, 4713 (1985).

[19] G. Hancock, V. Haverd, and M. Morrison, Phys. Chem. Chem. Phys. 5, 298, (2003).

[20] H. Hippler, K. Luther, and J. Troe, Ber. Bunsenges. Phys. Chem. 77, 1104 (1973).

[21] T. F. Hunter, and K. S. Krisjansson, J. Chem. Soc. Faraday Trans. 2 78, 2067, (1982).

[22] D. L. Baulch, C. T. Bowman, C. J. Cobos, R. A. Cox, T. Just, J. A. Kerr, M. J. Pilling, D. Stocker, J. Troe, W. Tsang, R. W. Walker, and J. Warnatz, J. Phys. Chem. Ref. Data **34**, 757 (2005).

[23] A. C. Kinsman, and J. M. Roscoe, Int. J. Chem. Kinect. 26, 191 (1994).
[24] E. Hassinen, K. Kalliorinne, and J. Koskikallio, Int. J. Chem. Kinet. 22, 741 (1990).

[25] M. Ogawa, J. Chem. Phys. 54, 2550 (1971).

[26] C. Faubel, K. Hoyermann, and H.Gg. Wagner, Z. Phys. Chem. **130**, 1 (1982).

[27] A. Jowko, K. Wnorowski, and K. Wojciechowski, J. Radioanal. Nucl. Chem. **275**, 201 (2008).

[28] A. M. Dean, and P. R. Westmoreland, Int. J. Chem. Kinet. **19**, 580 (1987).

[29] G. M. Just, A. B. McCoy, and T. A. Miller, J. Chem. Phys. **127**, 044310 (2007).

