
國 立 交 通 大 學 
 

電子工程學系 電子研究所碩士班 

 

碩 士 論 文 
 

 

 

 

3D 合成視角基於深度或色彩失真的品質估測 

 

Quality Assessment of 3D Synthesized View with Depth 

or Color Distortion  

 

 

 

 

 研 究 生：蔡長廷 

 指導教授：杭學鳴 博士 

 

 

中 華 民 國 一 ○ 二 年 七 月



3D 合成視角基於深度或色彩失真的品質估測 

Quality Assessment of 3D Synthesized View with Depth or Color Distortion 

 

研 究 生:蔡長廷             Student: Chang-Ting Tsai  

指導教授:杭學鳴 博士            Advisor: Dr. Hsueh-Ming Hang 

 

國 立 交 通 大 學 

電子工程學系 電子研究所 

碩 士 論 文 

 

 

A Thesis 

Submit to Department of Electrical Engineering & Institute of Electronics 

College of Electrical and Computer Engineering 

National Chiao Tung University 

In Partial Fulfillment of the Requirements 

For the Degree of Master 

in 

Electronics Engineering 

 

July 2013 

Hsinchu, Taiwan, Republic of China 

中 華 民 國 一 ○ 二 年 七 月 



I 
 

3D 合成視角基於深度或色彩失真的品質估測 

 

研究生：蔡長廷                  指導教授：杭學鳴 博士 

 

國立交通大學 

電子工程學系 電子研究所碩士班 

 

摘要 

 

過去十幾年來，2D 影像品質估測的相關研究已經做了很多。隨著 3D 立體視

訊的快速發展，能提供 3D 影像品質的數學模型就成了迫切的工具。MPEG 國際標

準會議(ISO/IEC Moving Picture Expert Group)正在制定 3DVC(3D Video Coding)標準，

這使解碼端能用解完彩色影像及相對的深度圖合成出自由視角的色彩圖。如何有

效地衡量虛擬視角的品質為 3D影像品質相關研究裡重要的課題之一。 

大部分現存的 3D 品質估測模型是直接使用 2D 的方法來預測人類主觀的 3D

感受。但是對於 3D 自由視角的合成影像，解碼端產生的深度圖或者色彩圖若有

失真，將在合成影像上產生如物體的位移、鬼影、前景及背景交接處的不自然現

象……等等的現象。而這些現象和傳統的 2D雜訊相當不一樣，所以使用 2D品質

估測模型來評量 3D合成影像的品質是不適當的。 
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 本篇論文中，提出了深度失真所合成影像的主觀品質資料庫，並且建立一個

數學模型來評估這些合成影像。此模型分成兩個部分，一個是 IQS(Image Quality 

Score)，它負責衡量經過位移彌補的資訊的色彩品質；另一個 ESD(Edge 

Structural Distortion)使用 Hausdorff距離來計算鬼影的程度。實驗結果顯示，

我們的 3D影像品質模型分數比傳統 2D模型更能預測人類的主觀結果。 

 此論文中另外也建立了色彩失真所合成的自由視角影像的主觀品質資料庫，

主要是要探討，雜訊及合成這兩個步驟的先後順序對於合成影像的影響。我們從

實驗結果發現，對於高斯雜訊，先失真再合成會比先合成再失真有較高的 2D 品

質以及主觀的感受；另外，彩色影像如果有模糊的失真，這樣和為失真的深度圖

做合成會在合成影像前景及背景交接處的不自然現象。 
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Abstract 

2D image/video quality assessment have been researched in the last decades. Since the popularity of 

3D videos, quality assessment methods for the 3D contents become popular, too. The ISO/IEC Moving 

Picture Expert Group (MPEG) is in the process of specifying the 3D video coding (3DVC) standards 

based on the multiple-view plus depth (MVD) format. With the standard of 3D virtual view systems, 

how to predict the quality of the synthesized views becomes an important issue. 

Most existing 3D image quality metrics use conventional 2D image quality assessment (IQA) 

models to predict the 3D subjective quality. But in a free viewpoint television (FTV) system, the depth 

map or color image errors often produce novel artifacts such as object shift, ghost artifact, sticker 

artifact etc. on the synthesized pictures due to the use of Depth Image Based Rendering (DIBR) 

technique. These artifacts are very different from the ordinary 2D distortions such as blur, Gaussian 

noise, and compression errors, and the pixel based 2D IQA metrics are sensitive to that. Thus, we 

describe a 3D databases with depth maps error.  

We proposed an objective image QA model for depth map distortion. Proposed algorithm 

evaluates two scores, the Image Quality Score (IQS) and the Edge Structural Distortion (ESD). IQS 

computes 2D color quality of the synthesized image with object shift compensation. ESD estimates 

the degree of structural error by implying the Hausdorff distance. The final score of proposed model 
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is obtained by combining IQS and ESD together in the pooling stage. The experimental results show 

that the proposed method enhances the correlation of the objective quality score to the 3D subjective 

scores. 

We also describe a 3D database with color distortion. There are two sets of view-synthesized 

images in the database, Distortion-Synthesis (D-S) images and Synthesis-Distortion (S-D) images. The 

most significant difference of these two kind of images is the distortion applied to images before 

rendering process or after it. In our collected data, the SSIM scores of the D-S images with Gaussian 

noise is much higher than those of the S-D images, that is, the view synthesis process can cover 

Gaussian noise distortion. The D-S images with Gaussian blur would produce the sticker artifact 

around the different depth object boundaries. 
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Chapter 1 Introduction 

 

 

1.1 Background 

 

3D contents are becoming more popular recently and widely used in our life. The ISO/IEC 

Moving Picture Expert Group (MPEG) standardizes 3D video coding (3DVC) based on the 

multi-view plus depth (MVD) format. With the progress of 3D video coding, how to predict the 

quality of the synthesized images becomes an important issue.  

2D quality assessment (QA) is a popular research topic in last decade. Several well-known 

computation models have been proposed and some are still in used, for example, Peak Signal 

to Noise Ratio (PSNR), Structural Similarity (SSIM), and Visual Information Fidelity (VIF). 

However, unlike 2D QA, 3D QA is much more complex and has not been well-studied yet. 

 

1.2 Motivation and Contribution 

 

There are many challenges to evaluate a 3D images QA model [1]. Most of the proposed 

methods use the 2D image computation models to predict 3D subjective quality [2][3][4]. But 

for the free viewpoint television (FTV) system, errors in the depth map can cause object shift 

or produce ghost artifacts near object boundaries on the synthesized pictures after Depth Image 

Based Rendering (DIBR). These artifacts are different from those of the 2D distortions such as 

blur, Gaussian noise, and compression. Thus, the commonly used 2D quality computation 

metrics are not enough to assess the quality of synthesized images.  

 Because the pixel based 2D QA models are inadequate in measuring these artifacts, we 
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propose a new QA model to assess the quality of distorted image synthesized by the depth map 

distorted by different types of distortion. Our model uses block-matching algorithm to reduce 

the object shift effect. And the Hausdorff distance is used to determine the degree of ghost 

artifact. The experimental results show that the method enhances the correlation between the 

objective quality scores and the 3D subjective scores.   

 

1.3 Organization of the Thesis 

 

In this thesis, we fist introduce the standard 3D video coding system in chapter 2. And then in 

chapter 3 we briefly review the background of 2D quality assessment and introduce some public 

3D QA databases. We design and create our 3D QA database with depth distortion in chapter 4 

and also describe the proposed model. The experimental results, analysis and comparisons are 

shown and discussed in chapter 5. The second 3D QA database with color distortion and its 

discussion are put in chapter 6. Finally, conclusions and future work are briefly mentioned in 

chapter 7. 
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Chapter 2 Introduction to 3D Video 

Coding System 

 

 

2.1 Overview 

 

Figure 1 shows the framework of 3D video coding (3DVC) system. It assumes that the input 

video either 2-view or 3-view. Each view has its color image and corresponding depth map 

which can be captured by specific device or generated by a depth estimation method. Then, 

these data are compressed by 3D video encoder. After transmission, 3D video decoder decodes 

the data. Finally, the virtual view images are generated by a view synthesis algorithm. 

 

 

Figure 1. Framework of 3DVC system. 

 

 MPEG provides software to do depth estimation and view synthesis. They are Depth 

Estimation Reference Software (DERS) and View Synthesis Reference Software (VSRS). ATM 

(AVC Test Model) and HTM (HEVC Test Model) are AVC (Advance Video Coding) based and 

HEVC (High Efficiency Video Coding) based reference software of 3D video coding. The view 

synthesis algorithm used in ATM and HTM is called “1D-fast-VSRS.” 
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2.2 Depth Information 

 

Depth value indicates the distance between the camera and the object. It plays an important role 

in 3D video coding. Disparity is the horizontal shift of two pixels on the respective stereo 

pictures that project into the same point in the scene. Disparity can be computed from the known 

depth distance, baseline between two cameras, and focal length of the camera as shown in 

Figure 2. 

 

 

Figure 2. An illustration of translation between disparity and depth distance 

 

Depth map can be truncated as a gray-level image. It quantizes depth distance into 256 

levels. The Quantization levels of near field are denser than those of the far field. Because the 

human pay more attention on the foreground object, so its depth levels need to be represented 

with higher precision. The following equation shows the relation between the depth distance 

and the depth value. 
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 𝑧 =  
1

𝑣

255
∙(

1

𝑍𝑛𝑒𝑎𝑟
− 

1

𝑍𝑓𝑎𝑟
)+ 

1

𝑍𝑓𝑎𝑟

 (1 ) 

Where z is the physical depth, 𝑍𝑛𝑒𝑎𝑟  and 𝑍𝑓𝑎𝑟  are the nearest and the farthest depth 

distance of the 3D scene, and v is depth value. 

  

2.3 Depth Image Based Rendering (DIBR) 

 

Depth Image Base Rendering (DIBR) is the process of generating virtual views of a scene [5]. 

It projects the original view image points into the 3D world via its associated depth information. 

Then, these 3D world points are reprojected into the image plan of a virtual camera. The process 

can be illustrated as Figure 3. The pixel positions P1 and P2 in both two image plane can be 

defined: 

 λ1𝑃1 = 𝑲𝟏𝑹𝟏 (
𝑋
𝑌
𝑍

) −  𝑲𝟏𝑹𝟏𝑪𝟏 (2) 

 λ2𝑃2 = 𝑲𝟐𝑹𝟐 (
𝑋
𝑌
𝑍

) −  𝑲𝟐𝑹𝟐𝑪𝟐 (3) 

where R is the rotation matrix; C describe the coordinates of the camera center; K represents 

the 3x3 intrinsic matrix of the camera; λ is the scaling factor; and (X Y Z)T is the corresponding 

3D world point, and it can be written as 

 (
𝑋
𝑌
𝑍

) = (𝐊𝟏𝐑𝟏)−1 ∙ (λ1𝑃1 + 𝑲𝟏𝑹𝟏𝑪𝟏)  (4) 

 Then we obtain the pixel position of the virtual image plane 

 λ2𝑃2 = 𝑲𝟐𝑹𝟐(𝐊𝟏𝐑𝟏)−1 ∙ (λ1𝑃1 + 𝑲𝟏𝑹𝟏𝑪𝟏) −  𝑲𝟐𝑹𝟐𝑪𝟐 (5) 

 



6 
 

 

Figure 3. Illustration of synthesizing point P1 on the virtual image plane. 
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Chapter 3 Quality Assessment (QA) 

 

 

There are two quality assessment types: subjective and objective. Subjective quality assessment 

is done by human observers watching the test sequences and giving them quality scores. The 

subjective test is not only a costly and time consuming approach, but also cannot implement in 

a machine. Therefore, the objective measurements are very desirable. The goal of objective QA 

is to develop algorithms that can predict the visual quality of sequences does to that made by 

human.  

 

3.1 Subjective QA Methods 

 

Recommendation document ITU-R BT.500 [6] outlines a few subjective test processes to judge 

the quality of pictures. They are single stimulus (SS), double stimulus continuous quality 

(DSCQS), stimulus comparison (SC), and single stimulus continuous quality evaluation 

(SSCQE). We will describe the method used in this study. 

The testing sequence of a typical SS is shown as Figure 4. In each test, the trail number 

should be shown no longer than 3 seconds. Then, the test image or video sequence should be 

designed for around 10 seconds. Finally, the word “vote” should last long enough time so that 

a viewer has time for giving a rating. 
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Figure 4. Structure of SS. 

 

The rating for each sequence under experiment is termed “opinion score,” and the average 

of rating of all the observers is termed “mean opinion score” (MOS). The reference video 

sequences should be included in the test sequence. The arithmetic difference between the MOS 

of a processed picture and the corresponded reference image is called “difference mean opinion 

score” (DMOS). 

 

 𝑀𝑂𝑆𝑖 =
1

𝑁
∑ 𝑟𝑎𝑡𝑖𝑛𝑔𝑖,𝑜

𝑁
𝑜=1  (6) 

 𝐷𝑀𝑂𝑆𝑖 = 𝑀𝑂𝑆𝑖,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑀𝑂𝑆𝑖 (7) 

 

where 𝑟𝑎𝑡𝑖𝑛𝑔𝑖,𝑜 is the rating of the ith sequence given by the oth observer; N is the total 

number of observers in the experiment; and 𝑀𝑂𝑆𝑖,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is the MOS for the hidden 

reference, and the one relative to the ith sequence, 𝑀𝑂𝑆𝑖. 

 

3.2 Objective QA Models 

 

There are different categories or goals for objective QA models [7]. 
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(1) Reference 

(a) Full Reference (FR) 

 Most of the proposed QA models assume undistorted reference image exists and 

is available. And the distorted image is compare with the undistorted image.  

(b) No Reference (NR) 

 In many applications, QA system doesn’t receive the reference image. Therefore, 

quality of the distorted image is computed by itself. 

(c) Reduce Reference (RR) 

 In this type QA model, the undistorted image is not fully available. Instead, some 

features are extracted from the undistorted image, and QA model evaluate quality 

from the features as side information. 

(2) Purpose 

(a) General-Purpose 

 General-purpose QA model do not assume any specific types, and is designed 

for varied application. 

(b) Application-Specific 

 There are a lot of QA models are designed for specific applications, such as 

image and video compression is one of the largest applications.  

(3) Bottom-Up or Top-Down  

(a) Bottom-Up 

 The goal of a bottom-up system is to build a system that has the same functions 

to the human visual system (HVS). This approach studies each component of the 

HVS, simulates all components as basic blocks, and then combines them together. 

(b) Top-Down 

Top-down approach only concern about input-output relationship. So its 

system is not the same as the HVS. Instead, the HVS is treated as a black block. 
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2D QA methods have been proposed and work well in the last decades. Table 1 shows some 

popular 2D image QA algorithms. The simplest and most widely used 2D QA model is PSNR, 

but it has its limitation. Wang et al. [8] have proposed a full reference QA model, structural 

similarity index (SSIM), and it is more compatible to human perception than PSNR. We will 

describe later in this study.  

 

Table 1. 2D Objective QA models. 

Algorithm   Algorithm  

Peak Signal to Noise Ratio PSNR Universal Quality Index [10] UQI 

Structural Similarity index [8] SSIM Visual Information Fidelity [11] VIF 

Multi-scale SSIM [9] MSSIM Visual Signal to Noise Ratio [12] VSNR 

 

3.3 Evaluation of Objective Quality Assessment Models 

 

Video Quality Experts Group (VQEG) Full Reference Television (FRTV) Phase II report [13] 

recommends the process that measures the performance of the objective QA models. First, use 

the following logistic function for fitting the DMOS and objective score. 

 𝐷𝑀𝑂𝑆𝑝 =  
𝑏1

1+ 𝑒(−𝑏2(𝑠𝑐𝑜𝑟𝑒−𝑏3)) , (8) 

where "score" is the quality score predicted by objective QA model; 𝐷𝑀𝑂𝑆𝑝 is the DMOS 

value that transferred from the "score"  by the nonlinear regression function; and the 

𝑏1, 𝑏2, 𝑎𝑛𝑑 𝑏3 are the parameters that are obtained though the regression step to minimize the 

error between 𝐷𝑀𝑂𝑆 and 𝐷𝑀𝑂𝑆𝑝. Then, three common used index are defined as follow: 

 

(1) Pearson Linear Correlation Coefficient (PLCC) 
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 𝑃𝐿𝐶𝐶 =  
∑ (𝐷𝑀𝑂𝑆𝑖−𝐷𝑀𝑂𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝐷𝑀𝑂𝑆𝑝𝑖−𝐷𝑀𝑂𝑆𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑁

𝑖=1

√∑ (𝐷𝑀𝑂𝑆𝑖−𝐷𝑀𝑂𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑁
𝑖=1

2
√∑ (𝐷𝑀𝑂𝑆𝑝𝑖−𝐷𝑀𝑂𝑆𝑝̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑁

𝑖=1

2
 (9) 

(2) Spearman’s Rank Order Correlation Coefficient (SROCC) 

The raw scores 𝐷𝑀𝑂𝑆𝑖 and 𝐷𝑀𝑂𝑆𝑝𝑖 are converted to ranks 𝑥𝑖 and 𝑦𝑖, and 

SROCC is computed from: 

 𝑆𝑅𝑂𝐶𝐶 =  
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−y̅)𝑁

𝑖=1

√∑ (𝑥𝑖−𝑥̅)𝑁
𝑖=1

2
√∑ (𝑦𝑖−𝑦̅)𝑁

𝑖=1

2
 (10) 

(3) Root Mean Square Error (RMSE) 

 𝑅𝑀𝑆𝐸 =  √
1

𝑀
∑ (𝐷𝑀𝑂𝑆 − 𝐷𝑀𝑂𝑆𝑝)2𝑀

𝑖=1  (11) 

(4) Outlier Ratio (OR) 

 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =  
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑙𝑖𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠
 (12) 

  where an outlier point is defined as follow:  

 |𝐷𝑀𝑂𝑆 − 𝐷𝑀𝑂𝑆𝑝| > 2𝜎  (13) 

 

3.4 Structural Similarity (SSIM) Metric 

 

SSIM is designed based on the observation that HVS is highly adapted for the structure 

information of a scene in which pixels have strong inter-dependency. The SSIM index is 

composed by three components: luminance, contrast, and structure. 

 

 SSIM(𝐱, 𝐲) = [𝑙(𝒙, 𝒚)]𝛼 ∙ [𝑐(𝒙, 𝒚)]𝛽 ∙ [𝑠(𝒙, 𝒚)]𝛾 (14) 

 

 Let 𝐱 = {𝑥𝑖|i = 1,2, … , N} and 𝐲 = {𝑦𝑖|i = 1,2, … , N}  be the two windows extracted 

from the same location of the reference and the distorted images. Where 𝑥𝑖 and 𝑦𝑖 are the ith 

location in the window, and N is the number of pixels in a window. And α, β, and γ are three 

positive parameters used to adjust the relative importance of the three components. 
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 The luminance, contrast, and structure comparison functions 𝑙(𝒙, 𝒚), 𝑐(𝒙, 𝒚), and 

𝑠(𝒙, 𝒚) are defined as follow. 

 𝑙(𝒙, 𝒚) =  
2𝜇𝑥𝜇𝑦+𝐶1

𝜇𝑥
2+𝜇𝑦

2+𝐶1
 (15) 

 𝑐(𝒙, 𝒚) =  
2𝜎𝑥𝜎𝑦+𝐶2

𝜎𝑥
2+𝜎𝑦

2+𝐶2
 (16) 

 𝑠(𝒙, 𝒚) =  
𝜎𝑥𝑦+𝐶3

𝜎𝑥𝜎𝑦+𝐶3
 (17) 

where 𝜇𝑥 and 𝜇𝑦 are the means of 𝐱 and 𝐲; 𝜎𝑥 and 𝜎𝑦 are the standard deviations of 𝐱 

and 𝐲; and 𝜎𝑥𝑦 is the correlation coefficient between 𝐱 and 𝐲. Positive parameters 𝐶1, 𝐶2, 

and 𝐶3 avoid the denominators close to zero. 

 𝜇𝑥 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1  (18) 

 𝜎𝑥 = √
1

𝑁−1
∑ (𝑥𝑖 − 𝜇𝑥)2𝑁

𝑖=1  (19) 

 𝜎𝑥𝑦 =
1

𝑁−1
∑ (𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)𝑁

𝑖=1  (20) 

Finally, the overall image quality is evaluated from the mean SSIM (MSSIM). 

 MSSIM(𝐗, 𝐘) =
1

𝑀
∑ 𝑆𝑆𝐼𝑀(𝒙𝑗 , 𝒚𝑗)𝑀

𝑗=1  (21) 

where X and Y are the reference and the distorted images; 𝒙𝑗 and 𝒙𝑗 are the image contents at 

the jth local window; and M is the number of local windows of the image. 

  

3.3 3D Quality Assessment Databases 

 

There are several organizations that conduct the 3D quality research and publish their database 

on the website. For the purpose, we can classify these databases as shown in Figure 5. 
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Figure 5. 3D databases 

 

(1) Computer Graphics [14] 

 

Lavoue et al. [14] describes a 3D model database. 88 models between 40K and 50K 

vertices were generated from 4 reference objects. There are two types of distortion: noise and 

smoothing. Subjective evaluations are using the Single Stimulus (SS) method with 12 observers. 

 

 

Figure 6. Additive distortions for the Venus model [14]. 
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(2) Captured 3D Images [15] 

 

Goldmann et al. [15] presents a 3D image QA database which contains stereoscopic 

images with resolution of 1920x1088 pixels. 10 scenes with various textures and depth 

structures were captured. And each of the scenes has been captured with different baseline in 

the range 10-50 cm. 

 

 

Figure 7. Scenes of the database [15]. 

 

(3) Stereo-pair Images with Color Distortion [16]- [18] 

 

Benoit et la. [16] describes a database applied three different distortions (JPEG, 

JPEG2000, and blur) symmetrically to the stereo pair images. Urvoy et al. [17] distort the stereo 

pair images based on H.264 and JPEG2000 coding and typical image processing steps such as 

down sampling and sharpening. The distortions that Moorthy et al. [18] use include JPEG and 

JPEG2000 coding, additive white Gaussian noise, Gaussian blur, and a fast-fading model based 

on the Rayleigh fading channel. 

 

(4) Synthesis Algorithms [19] 

 

IRCCyN/IVC DIBR image database proposed by Bosc et al. [19] contains three different 

MVD sequences. And seven DIBR algorithms processed these three sequences to generate four 
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new viewpoints for each sequence. 

 

 

Figure 8. Different DIBR algorithms for lovebird sequence [14]. 

 

 The MPEG is in the process of specifying the 3D video coding (3DVC), but few databases 

discuss the distortions on it, only the database [19] research the different synthesis algorithms. 

Thus, in this thesis, we proposed two databases, the database with depth distortion and that with 

color distortion, based on 3DVC multiple-view plus depth (MVD) format. 
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Chapter 4 Proposed 3D Quality 

Assessment Model for Depth Map 

Distortion 

 

 

4.1 3D Image Database with Depth Map Distortion 

 

We produce a database that contains three types of depth map distortions, Offset, Quantization, 

and Gaussian_Noise as show in Figure 9. The distortions are added symmetrically to the left 

and right depth maps of input sequences. Then, the virtual view images are synthesized using 

the original images and distorted depth maps. Three types of distortion are described as follow: 

(1) Offset 

The Offset operation adds a constant value to the entire depth map, that is, 

 𝑑𝑜𝑓𝑓𝑠𝑒𝑡(𝑥, 𝑦) =  𝑑𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑥, 𝑦) + 𝑜𝑓𝑓𝑠𝑒𝑡_𝑣𝑎𝑙𝑢𝑒 (22) 

where 𝑑𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑥, 𝑦) and 𝑑𝑜𝑓𝑓𝑠𝑒𝑡(𝑥, 𝑦) denote the depth values of the original depth 

map and distorted depth map at (x,y), respectively; and the 𝑜𝑓𝑓𝑠𝑒𝑡_𝑣𝑎𝑙𝑢𝑒 is a selected 

integer.  

 

(2) Quantization 

The Quantization operation converts the depth value to a few specific levels. Usually, this 

is done by dividing the original depth value by a selected Quantization step. 

 𝑑𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑦) =  ⌊
𝑑𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑥,𝑦)

𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑒𝑝
⌋ ∙ 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑒𝑝 (23) 

where 𝑑𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑦) is the depth value at (x,y) after the Quantization operation is 

applied to the depth map; floor operation ⌊𝑥⌋ means the nearest integer smaller than or 
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equal to x; and 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑒𝑝 is a selected integer. 

 

 (3) Gaussian_Noise 

It adds white Gaussian noise with zero mean and σ2 variance to the depth map. 

 

 

(a)                (b)               (c)                (d) 

Figure 9. (a) Original depth map, (b) Offset, (c) Quantization, and (d) Gaussian_Noise 

 

4.2. Overview of Proposed 3D IQA Model 

 

Our proposed 3D IQA model, shown in Figure 10, can be divided into two parts. One is 

computing the Image Quality Score (IQS) with shift compensation which is a block-matching 

method. And the other part is generating the Edge Structural Distortion (ESD) by computing 

the Hausdorff distance. IQS evaluates the visual quality of the distorted image, and ESD 

estimates the degree of structural artifact. The final score of the proposed model is obtained by 

combining these two scores together in the pooling stage. In the following section, we will 

elaborate the details of IQS and ESD operations. To evaluate our model, a comparison system 

is constructed as Figure 11. The distortion system uses three types of distortion described in the 

previous section. 
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Figure 10. Flow chart of the proposed IQA model. 

 

 

Figure 11. The proposed comparison system. 

 

4.3. Image Quality Score (IQS) 

 

In a synthesized image, the object shift is a phenomenon cause by object rendered with an error 

depth value then produces different disparity as its correct disparity. However, unlike 2D 

distortion, the object shift does not change subjective perception, but it may change observer’s 

3D perception.  Figure 12 is an example, the image (b) and (d) are synthesized by original 

depth maps like Figure 12(a) and depth maps which have Quantization distortion as shown as 

Figure 12(c) respectively. And Figure 12(d) leads to the object horizontal shift relative to the 

Figure 12(a). In fact, the subjective qualities of Figure 12(d) and Figure 12(b) are almost the 

same, but the SSIM index of Figure 12(d) is 0.701. This example indicates two facts. The first 
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is the object shift does not affect subjective image quality perception. The second is the 

conventional 2D QA models applied to pictures with the object shift like Figure 12(d) would 

result poor quality scores. The conventional pixel based 2D QA models penalize the object 

shifts as shown in Figure 13(a), where darker regions indicate lower quality index. 

 

 

(a)                                      (b) 

     

(c)                                      (d) 

Figure 12. (b) is the virtual view synthesized using the original depth map (a). 

 (d) is the virtual view synthesized using quantized depth map (c). 

 

(a)                                    (b) 

Figure 13. Quality index map evaluated on Figure 12(b) using Figure 12(d).  

(a) SSIM index map and (b) SSIM index map with object shift. 
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 For this reason, we shall consider object shifts before performing 2D quality evaluation. 

We use a block matching algorithm to do this. The shift vectors are found by matching an NxN 

block of distorted image (𝐷𝑖) with the corresponding block (𝑅𝑖) in the original image. Then, we 

compute the SSIM index between 𝐷𝑖 and 𝑅𝑖 to be the IQS of the ith block as equation (24). 

Therefore, the flow chart of computing IQS is shown in Figure 14. 

 IQS𝑖 = 𝑆𝑆𝐼𝑀(Di, Ri) (24) 

 

 

Figure 14. Flow chart of computing the image quality score (IQS). 

 

 In the example shown in Figure 12 and Figure 13, the subjective score of Figure 12(d) 

synthesized by the distorted depth map is higher than that of Figure 12(b), which is synthesized 

by the original depth map. But in Figure 13(b), there are some low quality regions, as mark in 

Figure 15, which decrease the overall IQS of Figure 12(d). And then, these regions impair the 

correlation of the objective scores to the subjective scores. One of these regions is enlarged as 

shown in Figure 16. The house window in Figure 16(a) is not identical to the window in Figure 

16(b). The difference is introduced by the rendering process due to depth map errors. Incorrect 

depth values let synthesized virtual view pick the neighbor color information of the pixel that 

should be project. Therefore, subjectively, both windows have similar subjective quality. In 

contrast, the pixel-differences are penalized by the traditional 2D IQA model. Thus, we apply a 

Gaussian filter before computing SSIM index as shown in Figure 17, and it results an IQS index 

map, Figure 18.    



21 
 

 

Figure 15. Some low IQS region of Figure 13. 

 

 

                 (a)                                      (b) 

Figure 16. (a) Magnified from Figure 12(b); (b) Magnified from Figure 12(d). 

 

 

Figure 17. Modified flow chart of computing IQS. 
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Figure 18. The IQS index map of Figure 13 using the process shown in Figure 17. 

 

4.4. The Hausdorff Distance 

 

The Hausdorff distance is used to measure the degree of mismatching of two sets. In the 

computer vision, this distance can be used to find a given model in an image [20] as shown in 

Figure 19. The Hausdorff distance of two finite sets, A and B, is defined as follows, 

 𝐻(𝐴, 𝐵) = 𝑚𝑎 𝑥(ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)) , and (25) 

 ℎ(𝐴, 𝐵) =  𝑚𝑎𝑥
𝑎∈𝐴

𝑑(𝑎, 𝐵) (26) 

where ℎ(𝐴, 𝐵) is called the directed Hausdorff distance from A to B; and 𝑑(𝑎, 𝐵) is the 

shortest distance from a point a in set A to point set B, and the definition of distance is 

application-dependent. For example, in Figure 20, the directed Hausdorff distance ℎ(𝐴, 𝐵) is 

equal to 𝑑(𝑎1, 𝐵). 

We can generalize the definition of directed Hausdorff distance ℎ(𝐴, 𝐵). The modified 

directed Hausdorff distance ℎ𝐾(𝐴, 𝐵) is given by considering the 𝐾𝑡ℎ ranked point of A. [21] 

 ℎ𝐾(𝐴, 𝐵) =  𝐾𝑎∈𝐴
𝑡ℎ𝑝 𝑑(𝑎, 𝐵) , 𝑎𝑛𝑑 (27) 

 
𝐾

𝑁𝐴
= 𝑝% (28) 
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where 𝐾𝑎∈𝐴
𝑡ℎ𝑝

 denotes the 𝐾𝑡ℎ ranked distance in A, K is a selected parameter; and 𝑁𝐴 is the 

number of points in set A. When p=50, in the example shown in Figure 20, the modified directed 

Hausdorff distance ℎ𝐾(𝐴, 𝐵) is equal to 𝑑(𝑎2, 𝐵); when p = 100, all the points are under 

considering, and the ℎ𝐾(𝐴, 𝐵) equals the directed Hausdorff distance ℎ(𝐴, 𝐵). 

 

 

     (a)                 (b)                                   (c) 

Figure 19. (a) A specified model (b) a test image (c) the matched result 

 

 

Figure 20. An illustration of the directed Hausdorff distance. 

 

4.5. Edge Structural Distortion (ESD) 

 

Due to human eyes are sensitive to distortion around object edge, for example, discontinuous 

structure on object boundary or ghost artifact which foreground textures are rendered to 

background area. We thus proposed a special metric to detect object edge distortion. We first 

apply the Canny edge detector to block 𝐷𝑖 and 𝑅𝑖. Then, we compute the Hausdorff distance 

of the two blocks to measure the edge structural distortion. 



24 
 

 𝐻(𝐷𝑖, 𝑅𝑖) =  𝑚𝑎𝑥 (ℎ(𝐷𝑖, 𝑅𝑖), ℎ(𝑅𝑖, 𝐷𝑖)) (29) 

The distance function used in our model is defined as follows, 

 𝑑(𝑎, b) =  |𝑥𝑎 − 𝑥𝑏| +  |𝑦𝑎 − 𝑦𝑏| (30) 

where 𝑥𝑎 and 𝑦𝑎 are the x and y coordinate of the point a . 

After obtaining the Hausdorff distance of each block, we normalize the distance between 

0 and 1.  

 𝐻𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐷𝑖, 𝑅𝑖) =  
𝐻(𝐷𝑖,𝑅𝑖)

2𝑁
 (31) 

where N is the width of block window. 

At the end, smaller Hausdorff distance should indicate less structural distortion. Therefore, 

the normalized Hausdorff distance is subtracted from 1 to produce the correct score. 

 ESDi =  1 − 𝐻𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐷𝑖, 𝑅𝑖) (32) 

 

 

Figure 21. Flow chart of computing ESD. 

 

4.6. Pooling 

 

In the pooling stage, image quality score (IQS) and edge structural distortion (ESD) are 

combined together. There is no evidence shows the two scores, IQS and ESD, should operate 

in what operator such as multiplication and addition. In our proposed model, we use addition 

not multiplication. Because multiplication includes the concept of “weight”. Since IQS 

measures conventional 2D distortions such as blur, noise, compression coding et al. and ESD 

estimates the degree of structural artifact. IQS and ESD do not have strong relation that we can 
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treat one to be the weight of the other one. Thus the final quality score can be computed as 

follows, 

 score = ∑ (α ∙ IQSi + (1 − α) ∙ ESDi)
𝐵
𝑖=1  (33) 

 𝑤ℎ𝑒𝑟𝑒 𝐵 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑏𝑙𝑜𝑐𝑘 𝑛𝑢𝑚𝑏𝑒𝑟. 

 Moorthy and Bovik [22] suggest that the performance of using the lowest p% quality 

scores in the pooling stage is better than using the average value of all scores. For example, 

there are many local low quality regions in Figure 22(a) and it has a lower subjective perception 

than Figure 22(b). But the mean SSIM score of Figure 22(a) is higher than the mean SSIM score 

of Figure 22(b). 

 In the virtual view images with distorted depth maps, object shifts and ghost artifacts often 

occur in specific region, especially the occlusion regions. Hence, using the lowest p% quality 

scores can provide more precise estimation than the average score of the frame, and the flow 

chart of pooling stage is shown as Figure 23. 

 

 

       (a)          (b) 

Figure 22. Example of lower quality picture in using the mean as the final score. 

(a) mean SSIM = 0.9497 (b) mean SSIM = 0.9043 [23] 
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Figure 23. Flow chart of the pooling stage. 
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Chapter 5 Experimental Results of 

Depth Map Distortion Database 

 

 

5.1. Test Image Database Construction 

 

All our test sequences are obtained from the ISO MPEG standard committee [24]. They are 

Poznan_Hall2 and Poznan_Street provided by Poznan University [25]; Kendo and Balloons 

provided by Nagoya University [26]; Lovebird1 provided by ETRI [27]; and Newspaper 

provided by GIST [28]. The sequences are used for experiment in the MPEG 3DVC contest. 

Their color images and associated depth maps are shown in Table 2. The processed frame 

numbers, input views, and output displayed stereo are shown in Table 3. They pretty much 

follow the specification.  

  The comparison system is illustrated in Figure 11. We choose one frame in each test 

sequence, then distort its left and right depth maps and render with undistorted color images to 

obtain distorted images. There are three types of distortion, Offset, Quantization, and Gaussian 

Noise, defined in section 4.1. The Offset_value we used is 60 and 100; Quantization_step is 60 

and 80; and the variance of Gaussian white noise is 0.01 and 0.05. So there are 7 (2*3+1) test 

images per sequence. Totally, there are 42 (7*6) stereo-pairs in our database. All the virtual 

color images are synthesized by the “1D-fast-VSRS” algorithm in the ITU/MPEG JCT-3D 

reference software HTM 3.1 [29].  
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Table 2. Test sequences. 

Poznan_Hall2 

(1920x1088) 

Kendo 

(1024x768) 

Lovebird1 

(1024x768) 

   

   

Poznan_Street 

(1920x1088) 

Balloons 

(1024x768) 

Newspaper 

(1024x768) 

   

   

 

Table 3. The information of the test sequences. 

Sequence Name Frame Input Views Output Stereo Pair 

Poznan_Hall2 90 7 - 6 6.5 - 6 

Poznan_Street 30 4 - 3 3.5 - 3 

Kendo 32 3 - 5 4 - 5 

Balloons 1 3 - 5 4 - 5 

Lovebird1 80 6 - 8 7 - 8 

Newspaper 100 4 - 6 5 - 6 
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5.2. Subjective Test 

 

In our experiment, the Toshiba 47TL515U 47-inch 3D monitor is used to display the materials. 

Twenty-two observers (20 males and 2 females), whose average age is 23.8, participated in our 

experiment. The experiment method we adopted is single stimulus (SS) specified by ITU-R 

BT.500 [6]. For each test image, the observers are asked to give a quality score (5: Excellent; 

4: Good; 3: Fair; 2: Poor; 1: Bad), which is called opinion score. The mean opinion score (MOS) 

and variance of all test images are shown in Figure 24 and Figure 25. 

 

 

Figure 24. MOS of the subjective test. 

 

 

Figure 25. Variance of the subjective test. 
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5.3. Parameters of the Model 

 

Figure 26 shows the operations and all the parameters in our proposed model.  

 

 

Figure 26. Parameters of the proposed model. 

 

From the front stage to the last stage, parameters are described as follows:  

(1) N is the width of a block.  

(2) search_window specifies the maximum value of shift vector in parallel block search. For 

example, in Figure 27, if the center of the processing block in distorted image is 

(𝑥𝑑𝑖𝑠, 𝑦𝑑𝑖𝑠) with N is 5 and search_window is 6. Then the search area in reference image 

is an N-by-(N+2*search_window) block with center (𝑥𝑑𝑖𝑠, 𝑦𝑑𝑖𝑠).  

 

 

Figure 27. An example of shift compensation with search_window=6 and N=5. 

 

(3) 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 is the standard deviation of the Gaussian filter with zero mean.  
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(4) In the edge detection stage, the Canny method, using 𝜎𝐶𝑎𝑛𝑛𝑦 as the standard deviation of 

the Gaussian filter.  

(5) 𝐾𝑡ℎ𝑝
 decides the number of points that are used to compute direct Hausdorff distance. 

Figure 28 shows an example with 𝐾𝑡ℎ𝑝
 equals to 100, 80, and 60.  

 

 

Figure 28. An example of 𝐾𝑡ℎ𝑝
. 

 

(6) 𝛼 decides the proportion of IQS and ESD, as shown in Figure 29.  

 

 

Figure 29. The relation between 𝛼 and the proportion of IQS and ESD. 

 

(7) Parameter p decides the number of blocks are used to compute the final quality score. 

We will discuss some of these parameters later. Due to the shift vector is often short, the 

search_window is set to 20 pixels, which is typically sufficient. And 𝜎𝐶𝑎𝑛𝑛𝑦  is relative to 

𝐾𝑡ℎ𝑝
 because larger 𝐾𝑡ℎ𝑝

, which indicates more edge points are considered, means smaller 

𝜎𝐶𝑎𝑛𝑛𝑦.  

 

5.3.1. Pooling Proportion (𝑝) 

 

Parameter p in the pooling stage decides how many blocks are used to compute the final quality 
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score. The gray curve with circular patterns in Figure 30 shows that generally p=5% leads to 

the highest PLCC for our database. That is, using 5% worst case blocks in an image best 

matches the subjective image quality. But when split our database into two parts: (1) 

Gaussian_Noise and (2) Offset + Quantization, we notice that Gaussian_Noise produces a 

rather blur-like artifacts on the entire synthesized image as shown in Figure 31. Therefore, as 

the orange curve with rectangular marks in Figure 30, we need to consider whole image 

(p=100%) to get a better performance. For Offset and Quantization, Figure 32 shows that if the 

depth map error produces structural artifacts such as object shift or ghost image, the pooling 

proportion p should be chosen near 5%, and the result is almost independent to 𝛼.  

 

 

Figure 30. Different value of the polling proportion p affects PLCC. 

(𝛼 = 0.5, 𝑁 = 25, 𝐾𝑡ℎ = 70𝑝
) 

 

 

Figure 31. Artifact due to Gaussian_Noise depth map error. 



33 
 

 

Figure 32. Pooling proportion p nearby 5% has better performance under different pooling 

weight 𝛼. ( 𝑁 = 25, 𝐾𝑡ℎ = 70𝑝
) 

 

Although the Gaussian_Noise distortion affects the whole color image, but from the 

subjective test, we found that the observers did not notice that the entire image was distorted in 

stereoscopic test. This phenomenon is discussed in [31], which states that the high frequency 

regions the subjective quality. For example, in Figure 33, if the left view of the stereo pair shows 

the left rectangle with horizontal high frequency as the original image. The experimental results 

show that the observers can still perceive the texture pattern of the left rectangle when the other 

view of the stereo pair shows the middle rectangle with low frequency as the distorted image. 

If the right view shows the right rectangle with vertical high frequency, the two patterns would 

interfere each other. Another illustration is shown in Figure 34. If the left view of the stereo pair 

shows the left rectangle with low frequency texture as the reference image and the right view 

shows the right rectangle with block effect, then observers can perceive the block artifacts in 

the stereoscopic test. 
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Figure 33. Illustration of eye domination. [31] 

 

 

Figure 34. Another illustration of eye domination. [31] 

 

5.3.2. Pooling weight (𝛼) 

 

In the equation (33), 𝛼 decides the weights of IQS and ESD. If 𝛼>0.5, it means we consider 

IQS more than ESD, and vice versa. From the previous sections, we find out that to evaluate 

Offset and Quantization, we choose p=5%; and for Gaussian_Noise, we pick p=100%. The blue 

curve with triangular patterns in Figure 35 shows that ESD has a higher impact on the PLCC 

index than IQS in the case of the Offset and the Quantization. And the best parameter value is 

α = 0.3. For the Gaussian_Noise, there is no apparent difference between IQS and ESD as 

shown as the orange curve with circular patterns in Figure 35, and IQS is slightly more 

important than ESD. And generally α = 0.5 leads to the higher performance for our database. 

Figure 36 shows that, for all possible values of the pooling proportion p, IQS provides a higher 

PLCC. In the later experiment, we use α = 1 to test Gaussian_Noise. 
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Figure 35. α against PLCC. (𝑁 = 25, 𝐾𝑡ℎ = 70𝑝
) 

 

 

Figure 36. IQS dominates the performance in Gaussian_Noise case. (𝑁 = 25, 𝐾𝑡ℎ = 70𝑝
) 

 

5.3.3. Modified Hausdorff Distance ( 𝐾𝑡ℎ𝑝
) 

 

Value of 𝐾𝑡ℎ𝑝
 decides the number of ranked points that are used to compute ESD of each 

block. 𝐾𝑡ℎ𝑝 = 100  means that all points are in used, and the result is the conventional 

Hausdorff Distance.  
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From the Figure 36, ESD has little influence on the final performance for the 

Gaussian_Noise distortion type. Hence, in the case of Gaussian_Noise, we neglect the 

comparison of 𝐾𝑡ℎ𝑝
 in performance evaluation. For Offset and Quantization, Figure 37 and 

Figure 38 indicate that 𝐾𝑡ℎ𝑝
=70 has nearly the best result in these two cases for 𝛼 =

0.5 and 𝛼 = 0.3 . 

 

 

Figure 37. The effect of 𝐾𝑡ℎ𝑝
 when 𝛼 = 0.7. (window = 25, pooling p = 5%) 

 

 

Figure 38. The effect of 𝐾𝑡ℎ𝑝
 when 𝛼 = 0.3. (window = 25, pooling p = 5%)  
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One may notice that there is a peak near 𝐾𝑡ℎ𝑝
= 35. We discuss these two cases, 𝐾𝑡ℎ𝑝

=

35 and 𝐾𝑡ℎ𝑝 = 70, against the value of α as shown in Figure 39. Their performance is close 

between α = 0.1 and α = 1. Figure 40 gives a good account of this phenomenon. Figure 40(a) 

is a virtual view image with ghost artifacts synthesized by a distorted depth map with Offset 

distortion (offset_value=60). When 𝐾𝑡ℎ𝑝 = 70, the structural artifacts such as object edge 

distortion can be detected by our model as shown in Figure 40(b), but some non-structural 

distortion areas with rendering error are also observed. That is because 𝐾𝑡ℎ𝑝 = 70 is a strict 

threshold condition. When 𝐾𝑡ℎ𝑝
= 35, as shown in Figure 40(c), structural distortions areas 

are not identified well as 𝐾𝑡ℎ = 70𝑝
, but it has a better performance for non-structural 

distortion areas. 

 

 

Figure 39. 𝐾𝑡ℎ𝑝 = 35 and 𝐾𝑡ℎ𝑝 = 70 have close performance when the value of α is 

between 0.2 to 1. (window = 25, pooling p = 5%) 
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(a) 

 

(b)                              (c) 

Figure 40. (a) Synthesized image of kendo with Offset distortion (offset_value=60).  

(b) and (c) are ESD maps where darker blocks indicate lower ESD index.  

(b) 𝐾𝑡ℎ𝑝 = 70 (c) 𝐾𝑡ℎ𝑝 = 35. 

 

5.3.4. Gaussian filter (𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛) 

 

The main purpose of Gaussian filter in the proposed model is to reduce incorrect judgment due 

to the image rendering process for view synthesis. The value of 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 controls the blurring 

level. The 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 value should be large enough to eliminate rendering error, but the details 

would be lost if it is too large. Figure 41 and Figure 42 show the different 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 values 

and its corresponding IQS map. 
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Figure 41. Left column shows the Quantization distorted image of sequence Poznan_Street 

with Gaussian filter using different 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 values. Right column is the corresponding IQS 

maps. (a) No Gaussian filter, (b) 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 1, (c) 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 2, and (d) 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 3. 
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Figure 42. Left column shows the Offset distorted image of sequence Balloons with Gaussian 

filter using different 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 values. Right column is the corresponding IQS maps.  

(a) Without Gaussian filter, (b) 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 1, (c) 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 2, and (d) 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 3. 
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For the Offset and the Quantization distortion types, 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 2  has the best 

performance when 𝛼 = 0.3 as shown in Figure 43. And Figure 44 shows a result that when we 

select a smaller 𝛼 value, that is, weight IQS index less, the influence of 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 is getting 

smaller too, and the most appropriate 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 value is that also smaller. 

For the Gaussian_Noise distortion, unlike the Offset and the Quantization types, a larger 

𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 value shows better performance than the smaller ones as shown in Figure 46. The 

PLCC is increase with 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 comes larger. Because Gaussian_Noise introduces blur like 

artifact that we mention before. And from the subjective test, we discover that human have high 

acceptability to this artifact, but SSIM penalize it. So Gaussian filter blurs this artifact, and 

makes these regions more similar to blurring effect.   

 

 

Figure 43. PLCC has maximum value when 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 2 for the Offset and the 

Quantization. (𝛼 = 0.3, window = 25, pooling p = 5%, 𝐾𝑡ℎ𝑝 = 70) 
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Figure 44. 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 should be chosen smaller when 𝛼 is small. 

(window = 25, pooling p = 5%, 𝐾𝑡ℎ𝑝 = 70) 

 

 

Figure 45. Large 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 is better for Gaussian_Noise distortion. 

(window = 25, pooling p = 100%) 
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Figure 46. Left column shows the Gaussian_Noise distorted image of sequence Balloons with 

Gaussian filter using different variance parameters. Right column is the corresponding IQS 

maps. (a) No Gaussian filter, (b) 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 1, (c) 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 2, and (d) 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 3. 
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5.3.5. Window size (𝑁) 

 

Figure 47 shows that there is no special rule to decide the window size. When N=25, the 

performance is relatively higher than the other window sizes for the Offset and the Quantization 

types as the orange curve with triangular patterns in Figure 47. That is why we pick N=25 in 

the previous experiment. And from Figure 48, we can find out that the average execution time 

per image of N=25 is decreased by about 2 times than that of N=15. So N=25 not only has 

relative high performance but it also runs faster. 

 

 

 

Figure 47. Window size does not affect the performance much. 
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Figure 48. Execution time per image decreases when the window size becomes larger. 

 

5.4. Experimental Result and Analysis 

 

Based on the collected data in section 5.3, the parameters were used to test our database are 

shown in Table 4. We compare the proposed model with the commonly used 2D quality 

assessment metrics such as PSNR, SSIM [8], MSSIM [9], UQI [10], VIF [11], and VSNR [12]. 

They are implemented by the MeTriX MuX Visual Quality Assessment Package [30].  

 

Table 4. Parameters set to evaluate the database. 

 Offset and Quantize Gaussian_Noise 

Window Size (N) 25 25 

𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 2 3 

𝐾𝑡ℎ𝑝
 70 - 

α  𝟎. 𝟑 𝟏  

Pooling proportion (p) 5% 100% 
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Table 5 and Table 6 show the performance comparison in terms of Pearson Linear 

Correlation Coefficient (PLCC), Spearman’s Rank Order Correlation Coefficient (SROCC), 

Root Mean Square Error (RMSE), and Outlier Ratio (RO). The Tables show that our model 

increases about 30%-55% in PLCC and 30%-60% in SROCC, decreases about 0.3-0.4 in RMSE, 

and less outlier points for the Offset and Quantization types. For the Gaussian_Noise distortion, 

the enhancement is not obvious as the Offset and the Quantization types, our model increases 

about 5%-35% in PLCC and 35%-0% in SROCC, decreases about 0.01-0.2 in RMSE, and less 

outlier points. Especially compare with VIF metric, the performances are almost the same. 

That’s because the artifacts of Gaussian_Noise is similar to blur which is a kind of conventional 

2D distortion. Thus it doesn’t have clear advantage. Figure 49 and Figure 50 show the scatter 

plots which the horizontal axes are indexes of the objective quality assessment metrics and the 

vertical axes are the DMOS of our collected data. The regression formula of Figure 49(f) is 

y =  
2.528

1 + exp (50.5829(𝑥 − 0.894)) 
, 

and that of Figure 50(f) is 

y =  
2.5609

1 + exp (173.0846(𝑥 − 0.9919)) 
. 

 There is a defect for our model, from Figure 49(f) and Figure 50(f), we can see the ranges 

of final scores computed by proposed model are narrow. The scores is between 0.76 to 0.96 for 

the Offset and Quantization and 0.92 to 1 for the Gaussian_Noise. That is, the scores of the best 

quality and the worst images have no significant difference.  
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Table 5. Performance comparison of Offset and Quantization. 

(The red and bold numbers are comparisons between each 2D models and proposed model.) 

 

 

 

 

Metrics PLCC  SROCC RMSE OR 

PSNR 

0.5835 0.5400 0.6997 0.0417 

+0.3131 +0.3617 -0.4202 -0.0417 

SSIM 

0.3736 0.3930 0.7992 0.0833 

+0.5248 +0.5087 -0.4202 -0.0833 

MSSIM 

0.5120 0.5104 0.7400 0.0833 

+0.3864 +0.3913 -0.361 -0.0833 

UQI 

0.3955 0.2617 0.7925 0.1667 

+0.5029 +0.6400 -0.4135 -0.1667 

VIF 

0.5291 0.4409 0.7314 0.0833 

+0.3693 +0.4608 -0.3524 -0.0833 

VSNR 

0.3462 0.3478 0.8083 0.1667 

+0.5522 +0.5539 -0.4293 -0.1667 

Proposed 0.8984 0.9017 0.3790 0. 
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Table 6. Performance comparison of Gaussian_Noise. 

(The red and bold numbers are comparisons between each 2D models and proposed model.) 

Metrics PLCC  SROCC RMSE OR 

PSNR 

0.7247 0.7455 0.5207 0 

+0.0548 0 -0.0478 0 

SSIM 

0.5655 0.5182 0.6224 0.0909 

+0.214 +0.2273 -0.1495 -0.0909 

MSSIM 

0.6798 0.5455 0.5535 0 

+0.0997 +0.2000 -0.0806 0 

UQI 

0.4631 0.5000 0.6688 0 

+0.3164 +0.2455 -0.1959 0 

VIF 

0.7691 0.7273 0.4831 0 

+0.0104 +0.0182 -0.0102 0 

VSNR 

0.4314 0.3909 0.6809 0.0909 

+0.3481 +0.3546 -0.208 -0.0909 

Proposed 0.7795 0.7455 0.4729 0 
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Figure 49. Scatter plot of the objective quality scores against the DMOS. (a) PSNR (b) SSIM 

(c) MSSIM (d) VIF (e) VSNR (f) Proposed. (Offset and Quantization) 
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Figure 50. Scatter plot of the objective quality scores against the DMOS. (a) PSNR (b) SSIM 

(c) MSSIM (d) VIF (e) VSNR (f) Proposed. (Gaussian_Noise) 
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For overall database, the parameters were used to test are shown in Table 7. It is similar to 

the parameter values of test Offset and Quantization. The only difference is the parameter α. 

From Figure 35, the best performance is near α = 0.5. Table 8 shows the performance 

comparison, and it shows that our model increases about 21%-52% in PLCC and 25%-50% in 

SROCC, decreases about 0.16-0.27 in RMSE, and less or equal to other 2D metrics in OR. 

Figure 51 shows the scatter plots which the blue circular points are Offset and Quantization 

distortions and the green star marks are Gaussian_Noise data. The regression formula of Figure 

51(f) is 

y =  
2.5849

1 + exp (24.7015(𝑥 − 0.8948)) 
. 

 

 

Table 7. Parameters set to evaluate the overall database. 

 Overall 

Window Size (N) 25 

𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 2 

𝐾𝑡ℎ𝑝
 70 

α  𝟎. 𝟓 

Pooling proportion (p) 5% 
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Table 8. Performance comparison of overall database. 

(The red and bold numbers are comparisons between each 2D models and proposed model.) 

 

 

Metrics PLCC  SROCC RMSE OR 

PSNR 

0.5233 0.5114 0.7084 0.0857 

+0.2509 +0.2597 -0.1819 -0.0571 

SSIM 

0.4235 0.4091 0.7531 0.0571 

+0.3507 +0.3620 -0.2266 -0.0285 

MSSIM 

0.4213 0.4090 0.7539 0.0571 

+0.3529 +0.3621 -0.2274 -0.0285 

UQI 

0.3648 0.3088 0.7744 0.1143 

+0.4094 +0.4623 -0.2479 -0.0857 

VIF 

0.5575 0.5173 0.6903 0.0286 

+0.2167 +0.2538 -0.1638 0 

VSNR 

0.2535 0.2625 0.8042 0.2000 

+0.5207 +0.5086 -0.2777 -0.1714 

Proposed 0.7742 0.7711 0.5265 0.0286 
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Figure 51. Scatter plot of the objective quality scores against the DMOS. (a) PSNR (b) SSIM 

(c) MSSIM (d) VIF (e) VSNR (f) Proposed. (Overall database) 
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We also note that adding a Gaussian filter before calculating SSIM, as shown as Figure 52, 

has no apparent benefit in evaluating the 2D image quality, but it improves in our 3D image 

testing. We applied the model shown in Figure 52 with a zero mean and 𝜎𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 = 2 

Gaussian filter to LIVE Image Quality Assessment Database available from the Laboratory for 

Image & Video Engineering (LIVE) from the University of Texas at Austin [32]-[34]. The 

results in Table 9 show that PLCC index and RMSE decrease about 0.5% and 0.2 respectively 

though the model in Figure 52. But it increases about 2.8% in SROCC. And the scatter plots 

are shown in Figure 53. The figure shows that the model in Figure 52 lets the objective scores 

converge on the high-rank region because high frequency distortion such as block effect and 

noise would be filtered by the Gaussian filter. 

 

 

Figure 52. Structure of computing 2D quality index in our model. 

 

Table 9. Performance comparison. 

 PLCC (%) SROCC (%) RMSE 

SSIM 91.71 92.50 9.2845 

Gaussian filter + SSIM 91.25 95.37 9.5033 
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                    (a)                                 (b) 

Figure 53. Scatter plots of the objective quality scores against DMOS applied to the LIVE 

database. (a) SSIM, and (b) Gaussian filter + SSIM 
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Chapter 6 3D Quality Assessment for 

Color Distortion 

 

 

In section 3.3, some stereoscopic color distortion databases were introduced. The databases 

[16]-[18] include the popular types of color distortion, such as Gaussian blur, JPEG coding, 

JPEG2000 coding, Gaussian noise etc., symmetrically on the stereo-pair images. Differ to these 

databases, we produce a database containing color distortion for view synthesis system. We 

consider Gaussian blur, JPEG coding, and Gaussian noise, in the 3DVC system based on 

multiple-view plus depth (MVD) format.  

 

6.1. Synthesized View Database with Color Distortion  

 

There are two sets of view-synthesized images with color distortion in our database, Distortion-

Synthesis (D-S) images and Synthesis-Distortion (S-D) images. Their most significant 

difference is how the distorted color image is used to produce the synthesized images. We 

describe these two image synthesis processes below.  

 

(1) Distortion-Synthesis (D-S) images  

Figure 54 shows the structure of D-S synthesis process. Both the left and right color images 

are distorted by the color distortion process first. The color distortion process distorts both 

images by the same type of distortion and parameter independently. Then, the distorted virtual 

view image is synthesized based on the distorted color images and corresponding non-distorted 

depth maps using the 1D-fast-VSRS in reference software HTM version 3.1 [29]. 
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Figure 54. The D-S image producing process and its quality evaluation. 

 

(2) Synthesis-Distortion (S-D) images 

The D-S image synthesis procedure is shown in Figure 55. The original left and right color 

images and depth maps are used to produce the virtual view image via the 1D-fast-VSRS. Then, 

the color distortion process distorts the synthesized virtual view images. The S-D image 

generation is very similar to that of the conventional 2D image quality assessment set-up. Both 

systems evaluate the image quality index by an original image and its distorted image. The only 

difference is the original images in the S-D images are the synthesized virtual view images not 

the original images. 

 

 

Figure 55. The S-D image producing process and its quality evaluation. 
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Three commonly used types of distortion we use in the color distortion system are 

Gaussian blur, JPEG compression coding, and Gaussian noise. Table 10 shows the parameters 

of these distortions in our database. Two parameter values are selected for Gaussian blur and 

JPEG coding distortion respectively; and three selected parameter values for Gaussian noise 

distortion. The difference on the numbers of selected parameter is based on the subjective 

experience. The Gaussian noise produces more apparent difference between the D-S images 

and the S-D images. Thus, there are in total 7 distorted images for each test sequence. Note that 

the Gaussian noise distortions for left and right views in the D-S images of our database are not 

identical, but with the equal variance. 

 

Table 10. Parameters used in our database. 

Type of distortion  Parameter 

Gaussian blur Zero mean and σ = 2 and 4  

JPEG Quality = 15 and 20 

Gaussian noise Zero mean and σ = 0.005, 0.01 and 0.05 

 

6.2. Subjective Test 

 

We are interested in the difference between 3D stereoscopic viewing and 2D viewing with color 

distortion. Thus, there are two test scenarios in our subjective experiment, 2D scenario and 3D 

scenario. As illustrated in Figure 56, for D-S images, the 3D scenario shows the left input 

original view with distortion to the left eye and the synthesized virtual view synthesized by 

distorted left and right views to the right eye; and the 2D scenario shows the synthesized virtual 

view to both eyes. For S-D images, the 3D scenario shows the left input original view with 

distortion to the left eye and the synthesized virtual view which synthesized by the original left 
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and right views with distortion to the right eye; and the 2D scenario shows the distorted 

synthesized virtual view to both eyes. 

 

 

Figure 56. 3D scenario and 2D scenario of the D-S images. 

 

 

Figure 57. 3D scenario and 2D scenario of the S-D images. 
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The test sequences used in our database are Poznan_CarPark, Poznan_Hall1, 

Poznan_Hall2 and Poznan_Street provided by Poznan University [25], Kendo and Balloons 

provided by Nagoya University [26], Lovebird1 provided by ETRI [27], and Newspaper by 

GIST [28]. Poznan_CarPark, Poznan_Hall1, Poznan_Hall2 and Poznan_Street are used in 2D 

test scenario due to their equivalent resolution (1920x1088), and Kendo, Balloons, Lovebird1, 

and Newspaper are used in 3D test scenario with resolution 1024x768. 

There are 7 distorted images for a sequence with three types of color distortion and 28 

(7*4) distorted images for each test scenario for either D-S or S-D images. Thus, there are 56 

(28*2) distorted images for each test scenario. Totally, 60 (56 distorted images + 4 reference 

images) pictures in either 3D or 2D test scenarios.  

For the subjective test, 20 observers (16 males and 4 females) participated in the 

experiment. The display we used is 23” LG D237IPS 3D display. And Single Stimulus (SS) 

method with five discrete scores was used according to the document ITU-R BT.500 [6]. 

In the 3D subjective test, the “main eye” of observers was record. Because all the stereo 

images in the database have the synthesized virtual view images for right eye and left original 

view images for left image, different main eye may lead to different quality perception. For 

example, the subjective quality perception of an observer, whose main eye is right eye will be 

dominated by quality of the synthesized virtual images. In our subjective test, there are 10 

observers with the right main eye, and 10 with the left. 

 

6.3. Experimental Results and Analysis 

 

According to the types of distorted images and viewing scenarios, our database can be divided 

into 4 classes as the blue blocks in Figure 58. There are two aspects can be discussed: (1) the 

difference between the D-S and the S-D distorted images (orange rectangle in Figure 58) and 
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(2) the difference between 3D and 2D viewing scenarios (green rectangle in Figure 58). 

 

 

Figure 58. A summary of the database. 

 

It is an interesting issue to see the difference in applying the distortion to images before 

rendering process or after it. Before doing subjective test, we wonder the effects of SSIM 

indexes on different types of color distortion, the D-S and S-D images may produce different 

result on SSIM. Figure 59 shows the SSIM score variation between the D-S and S-D images in 

the 2D viewing scenario. Each blue point indicates a type of distortion (Gaussian blur/JPEG 

coding/Gaussian noise) with a selected parameter value. The horizontal axis is the SSIM index 

applied to the D-S images, and the vertical axis is the SSIM index applied to the S-D images. 

Every samples locate on the red lines have the same SSIM indexes from the D-S and S-D images, 

and we called the red line equalization line.  

 In Figure 59(a), we find out that blurring color images before the synthesis step or after it 

does not have obvious difference using SSIM. But for the Gaussian noise and JPEG coding, 

Figure 59(b) and Figure 59(c), the D-S images lead to higher SSIM index than the S-D images. 

After all, SSIM is a 2D QA model, it may not be able to predict the subjective quality of our 

3D color distortion database. 

 As mentioned before, the Gaussian noise distortions for left and right views in the D-S 

images of our database are not identical, but with the equal variance, called asymmetric 

Gaussian Noise (AGN). Then, what would happen for the symmetric Gaussian Noise (SGN), 
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which adds the same Gaussian noise pattern to the both views? Figure 60 shows the points of 

AGN and SGN both locate on the lower right side of chart. This means that SSIM indexes of 

the D-S images are higher than those of the S-D’s. In addition, SGN produces better quality of 

the D-S images in SSIM than ASN.   

 

 

             (a)                       (b)                       (c) 

Figure 59. SSIM comparison between D-S and S-D images. (2D scenario) 

(a) Gaussian blur (b) JPEG coding (c) Gaussian noise. 

 

 

Figure 60. The comparison of AGN and SGN.  

BLUE: AGN; GREEN: SGN 
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In the subjective test, we find out that for the JPEG coding and Gaussian noise distortions, 

as shown in Figure 61(b) and (c), the results are similar to SSIM does. The axes of Figure 61 

are the mean opinion score (MOS) between 0 and 5. The D-S images have higher subjective 

quality than the S-D images. This phenomenon is caused by the late step of synthesis process, 

blending. Blending step mergers two rendered color images from left and right views into one 

image. Thus, the distortions of the synthesized images would be “averaged.” On the other hand, 

for the Gaussian blur as shown in Figure 61(a), some points marked in red locate on the left 

side of the equalization line, that is, the D-S images produce lower subjective quality than the 

S-D images. One of these images are shown in Figure 62. There exist unnatural contour around 

the boundary of different depth plane in Figure 62(a), and we call this phenomenon “sticker 

artifact.” The cause of sticker artifact is in the synthesis process. A blurred color image 

synthesized with a perfect depth map with sharp boundaries produce significant distortions 

along object boundaries. Figure 63 illustrates this type of distortion due to the view synthesis 

procedure.  

 

 

              (a)                      (b)                     (c) 

Figure 61. Subjective experimental results of 2D scenario. 

(a) Gaussian blur (b) JPEG coding (c) Gaussian noise. 

 

The sticker artifact can be perceived in both 2D and 3D viewing scenarios. Figure 64 and 

Figure 65 show the comparison of D-S and S-D images. It is similar to Figure 59 and Figure 61 
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in that most points locate on the right side of the equalization line. And some images with 

sticker artifact are perceivable by observers.  

 Conclude the experimental results above, the SSIM scores of the D-S images with 

Gaussian noise is higher than those of the S-D images, that is, the view synthesis process can 

cover Gaussian noise distortion. The D-S images with Gaussian blur would produce the sticker 

artifact around the different depth object boundaries. And the sticker artifact can be perceived 

even if the image of the other eye do not contain this artifact in 3D viewing. 

 

  

(a) (b) 

Figure 62. Gaussian blur distortion. (a) D-S image. (b) S-D image. 

 

 

Figure 63. An illustration of sticker artifact. 
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Figure 64. SSIM comparison between D-S and S-D images (3D scenario). 

 

 

Figure 65. Subjective comparison between D-S and S-D images (3D scenario). 
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Chapter 7 Conclusions and Future 

Works 

 

 

7.1. Conclusions 

 

Objective quality assessment (QA) model is a desirable tool in multimedia applications. It 

reduces the complexities in measuring the subjective image quality. As 3D contents and 

applications are widely used, developing objective QA models to assess 3D image becomes an 

important issue. The ISO/IEC Moving Picture Expert Group (MPEG) is specifying 3D video 

coding (3DVC) based on the multiple-view plus depth (MVD) format. Each view contains a 

color image and its corresponding depth map. At the receiver, the virtual view images are 

generated by a view synthesis algorithm. The virtual view synthesizing process introduces new 

artifacts, such as shift, ghost, and sticker. These artifacts are different from those of the D 

distortion. Thus, the conventional pixel-by-pixel 2D objective QA model could not predict the 

quality of synthesized images precisely. In this thesis, we proposed an objective image QA 

model for depth map error induced distortions. The model evaluates two scores, the image 

quality score (IQS) and the edge structural distortion (ESD). IQS computes 2D color quality of 

the synthesized image and considers object shift. ESD estimates the degree of structural artifact 

by employing the Hausdorff distance. The final score of the proposed model is obtained by 

combining IQS and ESD together in the pooling stage. The experimental results show that 

proposed model has higher PLCC and SROCC (both increase about 20%) and less RMSE and 

outlier ratio than the 2D models. 

  For color distortion, we designed a database with two distortion systems based on the 
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MVD format. They are the distortion-synthesis (D-S) and synthesis-distortion (S-D). From the 

experimental results, we found out the D-S system has higher SSIM quality score than the S-D 

system for the Gaussian noise distortion. They show similar subjective quality for the JPEG 

coding and Gaussian blur. We also found out if we blur the left and right color images before 

the rendering process, a so-called sticker artifact would appear around the object boundaries.  

 

7.2. Future Work 

 

This thesis proposed an objective QA image model to assess the synthesized virtual images with 

depth map errors. Also, we did some researches on synthesized image quality evaluation due to 

(texture) color distortion. Developing a QA model to assess color distortion is the next essential 

work. To generalize the 3D image QA model, a model to evaluate artifacts due to depth and 

color distortion has to be constructed to replace the 2D QA model. Furthermore, the QA model 

for 3D video is also an interesting topic to study. In this case, in addition to the depth 

information, the temporal information needs to be considered. 
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