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Abstract
2D image/video quality assessment have been researched in the last decades. Since the popularity of
3D videos, quality assessmentmethods for-the 3D-contents become popular, too. The ISO/IEC Moving
Picture Expert Group (MPEG) is'in the process of specifying the 3D video coding (3DVC) standards
based on the multiple-view plus depth (MVD) format. With the standard.of 3D virtual view systems,
how to predict the quality of the synthesized views-becomesan important issue.

Most existing 3D image guality metrics use conventional 2D image quality assessment (IQA)
models to predict the 3D subjective guality. But.in a free.viewpoint television (FTV) system, the depth
map or color image errors often produce novel artifacts such as object shift, ghost artifact, sticker
artifact etc. on the synthesized pictures due to the use of Depth Image Based Rendering (DIBR)
technique. These artifacts are very different from the ordinary 2D distortions such as blur, Gaussian
noise, and compression errors, and the pixel based 2D IQA metrics are sensitive to that. Thus, we
describe a 3D databases with depth maps error.

We proposed an objective image QA model for depth map distortion. Proposed algorithm
evaluates two scores, the Image Quality Score (1QS) and the Edge Structural Distortion (ESD). 1QS
computes 2D color quality of the synthesized image with object shift compensation. ESD estimates

the degree of structural error by implying the Hausdorff distance. The final score of proposed model



is obtained by combining IQS and ESD together in the pooling stage. The experimental results show
that the proposed method enhances the correlation of the objective quality score to the 3D subjective
scores.

We also describe a 3D database with color distortion. There are two sets of view-synthesized
images in the database, Distortion-Synthesis (D-S) images and Synthesis-Distortion (S-D) images. The
most significant difference of these two kind of images is the distortion applied to images before
rendering process or after it. In our collected data, the SSIM scores of the D-S images with Gaussian
noise is much higher than those of the S-D images, that is, the view synthesis process can cover
Gaussian noise distortion. The D-S images with.Gaussian blur would produce the sticker artifact

around the different depth object boundaries.



+
(BN

gl

%
1\

BRI ks AR RS 4 0 A DR BRI g A I B R

RE B A BGEDERT o R EN - AT o - 4B Y W RS KERA L T

o=

w
W
i

W
o

(S %’E&ﬁ?}:ﬁ?ﬁ? ’ %h,f‘-{;f\"éﬁ: fgﬁ

¥oobo & g Commlab e E B B hipif AR Ok
#o X[ Picd EZE figrop B F P AFT RN SR om KR E R

e TRE E N RN SN N N B LI S A TR L gy

N R sl PRI 2 R o BNl O NN R S S S



Chapter 1

11
1.2
13

Chapter 2

2.1
2.2
2.3

Chapter 3

3.1
3.2
3.3
3.4
3.3

Chapter 4

4.1

4.2.
4.3.
44.
4.5.
4.6.

Chapter 5

5.1.
5.2.
5.3.

5.4.
Chapter 6
6.1.

CONTENTS

INEFOAUCTION ...ttt sttt sttt sa et be e 1
BaCKGIOUNG ...ttt nne 1
Motivation and CONtIDULION...........cccuerieiieieeeeeeee e 1
Organization Of the THESIS ......coieerieieeeee e 2
Introduction to 3D Video Coding SYStEM .....c.cccvivieriieiienierieeie e 3
OVEIVIBW ...ttt ettt st ettt et et s bt ebesbe et et entenaenaeee 3
Depth INFOrMALION........ccvieiicieceee et e 4
Depth Image Based Rendering (DIBR) .......c.ccceevieiiiieiecee et 5
Quality AsSeSSMENT (QA) ...eeeieeieeeeie ettt ettt et e e b e e ae s 7
Subjective QA MEthOdS ... i e i 7
Objective QA MOEIS .. o s esmrar s e e et 8
Evaluation of Objective Quality Assessment ModelS ..o ..ccovvevivecenieneeiennne 10
Structural Similarity (SSHM)-MELFIC .....cueveeiiiieatie et et see e seee e 11
3D Quality ASSESSIMENT DALADASES ... coveesuinrrereeeiaes e ibeeeeteaneesnseneesseessesseesseessesees 12
Proposed 3D Quality Assessment Model for Depth Map Distortion................... 16
3D Image Database with Depth Map DIStortion.............c..oveeeeveeeereecieseeeveenne. 16
Overview of Proposed 3D. IQAMOUE ..o i 17
Image Quality SCOIe (1QS) cuueiiteiieiiiiiiitienieevaeteeenreteeeereahsabrtinneesaeeeeesteereereesseeaeas 18
The Hausdorff DISTANCE ...ttt e dbaine e 22
Edge Structural DiStOrtIoN(ESD) .........coouveuiieeeciitaiiiine e 23
POOIING . e e s LU TR T s s ean e s aba e eeteeeteeteereesseeseensesseenseeneens 24
Experimental Results of Depth Map Distortion Database...........c.cccceevvevivevennenne 27
Test Image Database CONSLIUCLION. .......ccvevereerieeieseerieeie e 27
SUDJECTIVE TESE ..eiieeeeecieeie ettt st et teeneesseeseeneas 29
Parameters Of the MOEl ...........ooeeiiiiiie e 30
5.3.1.  Po0oling Proportion (1) ...cceeeeeeeeereereesieseeseesieseeseesieeeeseeesseseesseessesnens 31
5.3.2.  P0O0lING WEIGNT (@) 1.vveveeeeeeierieeiesieseee et 34
5.3.3. Modified Hausdorff Distance (DKLR) .....cccceeveeceeseeieeieseeieeeeseeie s 35
5.34.  Gaussian filter (CGAUSSIAN) ...cceveevreecieeeereeie et 38
5.35. WINAOW SIZE (IN) ceveieeeiieieseesieete sttt eteeee e te e ae e steeteenae e seeneas 44
Experimental Result and ANAIYSIS .........cooveveiiereeiieiereeese e 45
3D Quality Assessment for Color DiStOrtion...........cceeeeevereereecieseeseeeeseesveenens 56
Synthesized View Database with Color Distortion...........cccoeeveeveeveeecieenieeneenne, 56

Vi



6.2.
6.3.

Chapter 7

7.1.
7.2.

References

SUDJECTIVE TESE ..euiieiecteee ettt ettt e s e teenaesaeeseeneas 58

Experimental Results and ANalYSIS........ccvevueiiereerieeieseere e 60
Conclusions and FULUIe WOTKS ........cceveriririeieieiese e 66
CONCIUSIONS.......einiiieiieteet ettt ettt sbenre s 66
FULUIE WOTK ...ttt 67
.......................................................................................................................................... 68

Vil



List of Figures

FIGURE 1. FRAMEWORK OF 3DVC SYSTEM. .....ovvvvvooeeeeeeessesssseseeeeeeeeeeeseeseeesssssssssssssseeseessssssesseesssssssssssesessessssenene 3
FIGURE 2. AN ILLUSTRATION OF TRANSLATION BETWEEN DISPARITY AND DEPTH DISTANCE ................. 4
FIGURE 3. ILLUSTRATION OF SYNTHESIZING POINT P1 ON THE VIRTUAL IMAGE PLANE...........oooveoo....... 6
FIGURE 4. STRUCTURE OF SS. ....oovvooeeeeeeuessssesseeeeeesessseesseeessessssesseeeeesssssssssesesssessessessssessesssssssssseesssssessssesesessessssenene 8
FIGURE 5. 3D DATABASES ....ooovoooooeooeeeeeeeeeseseeeeeeeeeeesessseeessesesssesseeeeesesesssseseeseesssssseseseeeesessssssessesesssessssssseseeessssssnenes 13
FIGURE 6. ADDITIVE DISTORTIONS FOR THE VENUS MODEL [14]. .....coooeeeeeseeeeseeeeeeeeeeeeeeeeesessesssseseeseeeeeeeeeneee 13
FIGURE 7. SCENES OF THE DATABASE [15]. vvvvvvvveveeeeeeeeersessesseeeeeeeeesseeeseesssssssssssseeessessssssessesesssessssssssseesssessseenes 14
FIGURE 8. DIFFERENT DIBR ALGORITHMS FOR LOVEBIRD SEQUENCE [L4]. evvvvvvvvveeeeeeeeeeeeressssesseseeeeeeeeeneee 15
FIGURE 9. (A) ORIGINAL DEPTH MAP, (B) OFFSET, (C) QUANTIZATION, AND (D) GAUSSIAN_NOISE............. 17
FIGURE 10. FLOW CHART OF THE PROPOSED AQAMODELLL . ce..ovveeeeeeeeeeeeeesseeeseeeeeeeeeeeeeeeeeeessessssesseseeeeeeseeneees 18
FIGURE 11. THE PROPOSED COMPARISON SY STEM: ... titiees tevtsdorliteeeeeeseesseeeseeeeseeseeeeeeeeessssessssssseseeessssssnenes 18
FIGURE 12. (B) IS THE VIRTUAL VIEW SYNTHESIZED USING THE ORIGINAL DEPTH MAP (A)................... 19
FIGURE 13. QUALITY INDEX MAP EVALUATED.ON FIGURE 12(B) USING FIGURE 12(D). .......eveererrrrrrereeeee 19
FIGURE 14. FLOW CHART OF COMPUTING THE IMAGE QUALITY.SCORE (IQS). ...ovvvvveeeeeeeerrerssseeseseeeereeeeeeee 20
FIGURE 15. SOME LOW QS REGION-OF FIGURE 13. .....cccccuueeaitfioroootbossemmesmeo e st eeeeeeeeeeeeeeesssseesssesseseeeeseseenenes 21
FIGURE 16. (A) MAGNIFIED FROM FIGURE 12(B); (B) MAGNIFIED FROM FIGURE 12(D).......covvvvverererreeeeeeee 21
FIGURE 17. MODIFIED FLOW'CHART OF COMPUTINGAQS. oooceco.vveoeeeeeoeee ettt esesssseeeeeeeeeeeeeenenes 21
FIGURE 18. THE IQS INDEX MAP OF FIGURE 13 USING THE PROCESS SHOWN.IN FIGURE 17..................... 22
FIGURE 19. (A) A SPECIFIED MODEL (B)ATEST IMAGE (C) THE MATCHED RESULT .....ccoceeseeeenereeeeeeeeeeeee 23
FIGURE 20. AN ILLUSTRATION OF THE DIRECTED HAUSDORFF DISTANCE. ........oovvvveeeeeeeeeeresseseeeeeeeeeeeeeeeeee 23
FIGURE 21. FLOW CHART OF COMPUTING ESD. ........c.cco.reeeessssiflioaithommtiosseesseeesssesseeeesesseeeeeeeessssessssssseseeesseseenenes 24
FIGURE 22. EXAMPLE OF LOWER QUALITY PICTURE IN'USING THE MEAN AS THE FINAL SCORE. ........ 25
FIGURE 23. FLOW CHART OF THE POOLING STAGE. ......ererueeeeeeeeeeeeeeeeeeeeeeeesssessssseseeeeseessssseeeeassssessesesseseeesssseenene 26
FIGURE 24. MOS OF THE SUBJECTIVE TEST. .ovvvvvveeeeeeeeeeereessesseeeeeseeesseeeeseeessssssssssseeeesssssssseesssesssessssssseseesssessenene 29
FIGURE 25. VARIANCE OF THE SUBJECTIVE TEST..ccoooeueruuueeeeeeeeeeeeeeeeeeeeeeesssssesssseseeeesesssssseesessssessssssseseesssesesnenes 29
FIGURE 26. PARAMETERS OF THE PROPOSED MODEL. .......coooeooeeeeeeeeeeoeeseseesseeeseeeeseeseesseeeeessseesesesseseeeeeeseeneee 30
FIGURE 27. AN EXAMPLE OF SHIFT COMPENSATION WITH SEARCH_WINDOW=6 AND N=5. ....................... 30
FIGURE 28. AN EXAMPLE OF PKER. cecoooeeeeeeeeeeeeeeeeeveeeeeeseesssesssssseeeeeseeessseeeesesssseesssssseeeesssssssseseesesssessssessesesesseseenenes 31
FIGURE 29. THE RELATION BETWEEN @ AND THE PROPORTION OF 1QS AND ESD........ccceeoseemseeererereerereeeeee 31
FIGURE 30. DIFFERENT VALUE OF THE POLLING PROPORTION P AFFECTS PLCC.......ccooeereesssessereeeereeeeneee 32
FIGURE 31. ARTIFACT DUE TO GAUSSIAN_NOISE DEPTH MAP ERROR..........eeereeeeeeeeeeeeeeeeesseseesssesseeeeeeseeeeeene 32
FIGURE 32. POOLING PROPORTION P NEARBY 5% HAS BETTER PERFORMANCE UNDER DIFFERENT

POOLING WEIGHT . (N = 25, DKt = 70) ceoeoeeeeeoeeeeeeeeeeeessessseseseeeseeeeseseeseeeessesessssseeeeeseessssesesesessesessssseseeeee 33
FIGURE 33. ILLUSTRATION OF EYE DOMINATION. [B1]....eeeoreeeeeeeeeeeeeeeeeesssessseseseeeesesseseeeeeeeeeesessssesseseeesseeeeeeee 34
FIGURE 34. ANOTHER ILLUSTRATION OF EYE DOMINATION. [B1] covveeeeeeeereseeeeseeeeeeeeeeeeeeeeesssseesssesseeeeeseeeeeeene 34

Vil



FIGURE 35. A AGAINST PLCC. (N = 25, DKtR = 70) c.eeertiieeriiieenieeeenttsteeeitsee sttt st 35

FIGURE 36. IQS DOMINATES THE PERFORMANCE IN GAUSSIAN_NOISE CASE. (N = 25,pKth = 70) ........... 35
FIGURE 37. THE EFFECT OF pKth WHEN a = 0.7. (WINDOW = 25,POOLING P = 5%) ..c.cceeeerenirinreiccnienee 36
FIGURE 38. THE EFFECT OF pKth WHEN a = 0.3. (WINDOW = 25,POOLING P = 5%) ..c.cceoveeninirinreicenene 36
FIGURE 39. pKth =35 AND pKth =70 HAVE CLOSE PERFORMANCE WHEN THE VALUE OF A IS

BETWEEN 0.2 TO 1. (WINDOW = 25, POOLING P = 5%0) ...c.eciiiiiiiiiiiinieeinneeeree e 37

FIGURE 40. (A) SYNTHESIZED IMAGE OF KENDO WITH OFFSET DISTORTION (OFFSET_VALUE=60). ........ 38
FIGURE 41. LEFT COLUMN SHOWS THE QUANTIZATION DISTORTED IMAGE OF SEQUENCE
POZNAN_STREET WITH GAUSSIAN FILTER USING DIFFERENT oGaussian VALUES. RIGHT COLUMN
IS THE CORRESPONDING 1QS MAPS. (A) NO GAUSSIAN FILTER, (B) gGaussian = 1, (C) oGaussian =
2, AND (D) GGAUSSIAT = 3. .ecueeeiiiieieieteierte ettt ettt b et b bbbt e bt b et e bt b et e st e b et e bt b et e st e benane 39
FIGURE 42. LEFT COLUMN SHOWS THE OFFSET DISTORTED IMAGE OF SEQUENCE BALLOONS WITH
GAUSSIAN FILTER USING DIFFERENT o¢Gaussian VALUES. RIGHT COLUMN IS THE

CORRESPONDING QS MAPS. ...t it i s et bt 40
FIGURE 43. PLCC HAS MAXIMUM VALUE WHEN oGaussian =2 FOR THE OFFSET AND THE
QUANTIZATION. (a = 0.3, WINDOW = 25, POOLING P-= 5%, pKth = 70) t..ccocereirrreiiireirinieineeeereeeeenes 41
FIGURE 44. oGaussian SHOULD BE CHOSEN.SMALLER WHEN a IS SMALL.........cc.ccccooniiiiniiiiiiiie, 42
FIGURE 45. LARGE oGaussian IS BETTER-FOR GAUSSIAN_NOISE DISTORTION. ........ccccooeiiiniininiiiie 42

FIGURE 46. LEFT COLUMN ;SHOWS THE GAUSSIAN_NOISE DISTORTED IMAGE OF SEQUENCE BALLOONS
WITH GAUSSIAN FILTER USING DIFFERENT VARIANCE PARAMETERS. RIGHT COLUMN IS THE
CORRESPONDING IQSIMAPS. (A) NO GAUSSIAN FILTER, (B) oGaussian= 1, (C) oGaussian = 2, AND
(D) GGAUSSIAN = 3..eeeineensitonse bt iasensee edlannensanenses e suannanesbesnestenensentesensenedaeshadiineesensesensentesensensenessensesessensenessensens 43

FIGURE 47. WINDOW SIZE DOES NOT AFFECT THE PERFORMANCE MUCH. .......c.cootiiiiiereeeeeeeeeeeeniene 44

FIGURE 48. EXECUTION TIME PER IMAGE DECREASES WHEN THE WINDOW SIZE BECOMES LARGER.. 45

FIGURE 49. SCATTER PLOT OF THE OBJECTIVE QUALITY SCORES AGAINST THE DMOS. (A) PSNR (B) SSIM

(C) MSSIM (D) VIF (E) VSNR (F) PROPOSED. (OFFSET AND QUANTIZATION)......ccoevveeereeeeeeeeseeeeeeseee 49
FIGURE 50. SCATTER PLOT OF THE OBJECTIVE QUALITY SCORES AGAINST THE DMOS. (A) PSNR (B) SSIM
(C) MSSIM (D) VIF (E) VSNR (F) PROPOSED. (GAUSSIAN_NOISE).......cceoveeeereeeseeeeseeeseeessseeseeesssseeseeeseeen 50
FIGURE 51. SCATTER PLOT OF THE OBJECTIVE QUALITY SCORES AGAINST THE DMOS. (A) PSNR (B) SSIM
(C) MSSIM (D) VIF (E) VSNR (F) PROPOSED. (OVERALL DATABASE).......vecoeeeeeeeseeeeeeeesseeseeessseesseessenn 53
FIGURE 52. STRUCTURE OF COMPUTING 2D QUALITY INDEX IN OUR MODEL. ......ccosorevveererereeecereeeereere 54
FIGURE 53. SCATTER PLOTS OF THE OBJECTIVE QUALITY SCORES AGAINST DMOS APPLIED TO THE LIVE
DATABASE. (A) SSIM, AND (B) GAUSSIAN FILTER + SSIM w..coveeoueeeeeereeeeeeeeeeeeseeeeeseseseeeessesesseeeesssesseeesssee 55
FIGURE 54. THE D-S IMAGE PRODUCING PROCESS AND ITS QUALITY EVALUATION. .....cccoovrevveerrrenrrrer. 57
FIGURE 55. THE S-D IMAGE PRODUCING PROCESS AND ITS QUALITY EVALUATION. .......ovvvoccererrrrreennnn 57
FIGURE 56. 3D SCENARIO AND 2D SCENARIO OF THE D-S IMAGES. ........vvvvoeeiosereeeeeeeeeseeseeeesoeeesssseseeseoeenns 59
FIGURE 57. 3D SCENARIO AND 2D SCENARIO OF THE S-D IMAGES. .......vvvvooeeeesereeeeeeeeeseeseeeesoeeeessseseeseoeennn 59
FIGURE 58. A SUMMARY OF THE DATABASE. ......oovoooeooroeeeeeeeeiosseeeeeeeeessessssessesssesssesssssssessssssssessoseeesssssessssnennon 61

IX



FIGURE 59. SSIM COMPARISON BETWEEN D-S AND S-D IMAGES. (2D SCENARIO) .....ccocevvinenineerenieene 62

FIGURE 60. THE COMPARISON OF AGN AND SGN. ....oiiiiiiiieieriinent ettt sttt st s 62
FIGURE 61. SUBJECTIVE EXPERIMENTAL RESULTS OF 2D SCENARIO. ..o 63
FIGURE 62. GAUSSIAN BLUR DISTORTION. (A) D-S IMAGE. (B) S-D IMAGE. ........cccecviiiniiicinecccee 64
FIGURE 63. AN ILLUSTRATION OF STICKER ARTIFACT. ..ottt sttt st s 64
FIGURE 64. SSIM COMPARISON BETWEEN D-S AND S-D IMAGES (3D SCENARIO). .....cccoviiiiiiiiiene 65
FIGURE 65. SUBJECTIVE COMPARISON BETWEEN D-S AND S-D IMAGES (3D SCENARIO). .....cccoceieinienenene. 65



List of Tables

TABLE 1. 2D OBJECTIVE QA MODELS. ...ttt e s 10
TABLE 2. TEST SEQUENCGES. ..ottt e s s 28
TABLE 3. THE INFORMATION OF THE TEST SEQUENCES. .......cccoiiiiiiiiiiiii e 28
TABLE 4. PARAMETERS SET TO EVALUATE THE DATABASE. ..ot 45
TABLE 5. PERFORMANCE COMPARISON OF OFFSET AND QUANTIZATION. ....ccociiiiiiiiiiiiincicce 47
TABLE 6. PERFORMANCE COMPARISON OF GAUSSIAN_NOISE. .......cccciviiiiiiiiiiniccic e 48
TABLE 7. PARAMETERS SET TO EVALUATE THE OVERALL DATABASE. ..ottt 51
TABLE 8. PERFORMANCE COMPARISON OF OVERALL DATABASE. ..o 52
TABLE 9. PERFORMANCE COMPARISON. ......oooiiiiiiiiiit ittt st e 54
TABLE 10. PARAMETERS USED IN OUR DATABASE........coc. il ittt s 58

Xl



Chapter 1Introduction

1.1 Background

3D contents are becoming more popular recently and widely used in our life. The ISO/IEC
Moving Picture Expert Group (MPEG) standardizes 3D video coding (3DVC) based on the
multi-view plus depth (MVD) format. With the progress of 3D video coding, how to predict the
quality of the synthesized images becomes an important issue.

2D quality assessment (QA)-is-apopular research topic in last decade. Several well-known
computation models.have been proposed and some are still in used, for example, Peak Signal
to Noise Ratio (PSNR), Structural Similarity (SSIM), and Visual Information Fidelity (VIF).

However, unlike 2D"QA, 3D QA is much-more complex and has not been well-studied yet.

1.2 Motivation and ' Contribution

There are many challenges to evaluate a 3D images QA model [1]. Most of the proposed
methods use the 2D image computation models to predict 3D subjective quality [2][3][4]. But
for the free viewpoint television (FTV) system, errors in the depth map can cause object shift
or produce ghost artifacts near object boundaries on the synthesized pictures after Depth Image
Based Rendering (DIBR). These artifacts are different from those of the 2D distortions such as
blur, Gaussian noise, and compression. Thus, the commonly used 2D quality computation
metrics are not enough to assess the quality of synthesized images.

Because the pixel based 2D QA models are inadequate in measuring these artifacts, we

1



propose a new QA model to assess the quality of distorted image synthesized by the depth map
distorted by different types of distortion. Our model uses block-matching algorithm to reduce
the object shift effect. And the Hausdorff distance is used to determine the degree of ghost
artifact. The experimental results show that the method enhances the correlation between the

objective quality scores and the 3D subjective scores.

1.3 Organization of the Thesis

In this thesis, we fist introduce the standard 3D video.coding system in chapter 2. And then in
chapter 3 we briefly review the background of 2D quality assessment and introduce some public
3D QA databases. We design and-create our 3D QA database with depth distortion in chapter 4
and also describe the proposed model. The experimental results, analysis and comparisons are
shown and discussed-in chapter 5. The second 3D QA database with color distortion and its
discussion are put in chapter 6. Finally, conclusions and future work are briefly mentioned in

chapter 7.



Chapter 2 Introduction to 3D Video
Coding System

2.1 Overview

Figure 1 shows the framework of 3D video coding (3DVC) system. It assumes that the input
video either 2-view or 3-view. Each view has its color image and corresponding depth map
which can be captured by. specific device or generated by a depth estimation method. Then,
these data are compressed by 3D video encoder. After transmission, 3D video decoder decodes

the data. Finally, the virtual view-images are generated by a view synthesis algorithm.

Left camera

SO ENH

Algorithm [ =p Virtual view

Figure 1. Framework of 3DVC system.

MPEG provides software to do depth estimation and view synthesis. They are Depth
Estimation Reference Software (DERS) and View Synthesis Reference Software (VSRS). ATM
(AVC Test Model) and HTM (HEVC Test Model) are AVC (Advance Video Coding) based and
HEVC (High Efficiency Video Coding) based reference software of 3D video coding. The view

synthesis algorithm used in ATM and HTM is called “1D-fast-VSRS.”
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2.2 Depth Information

Depth value indicates the distance between the camera and the object. It plays an important role
in 3D video coding. Disparity is the horizontal shift of two pixels on the respective stereo
pictures that project into the same point in the scene. Disparity can be computed from the known
depth distance, baseline between two cameras, and focal length of the camera as shown in

Figure 2.

[

Z:depth distance
B:baseline
f:focal length

Dy + Dy:disparity

_fB
Camera 2 D1+D2_7

D, Image plane D,

Figure 2. An illustration of translation between disparity and depth distance

Depth map can be truncated as a gray-level image. It quantizes depth distance into 256
levels. The Quantization levels of near field are denser than those of the far field. Because the
human pay more attention on the foreground object, so its depth levels need to be represented
with higher precision. The following equation shows the relation between the depth distance

and the depth value.



z= - 1)

v 1 1 + 1
255\ Znear Zfar Zfar

Where z is the physical depth, Z,., and Z,,. are the nearest and the farthest depth

distance of the 3D scene, and v is depth value.

2.3 Depth Image Based Rendering (DIBR)

Depth Image Base Rendering (DIBR) is the process of generating virtual views of a scene [5].
It projects the original view image points into the 3D world via its associated depth information.
Then, these 3D world points are reprojected into the image plan of a virtual camera. The process
can be illustrated as Figure 3. The pixel positions Py and P, in both two image plane can be
defined:
X
APy =K R |Y | — K1R1C4 (2)
VA
X
APy = KaRz | Y | — KR, C, 3
Z
where R is the rotation matrix; C.describe the coordinates of the camera center; K represents
the 3x3 intrinsic matrix of the camera; X is the scaling factor; and (XY Z)T isthe corresponding
3D world point, and it can be written as
X
<Y> = (K4RD™" (M Py + KR Cy) 4)
Z

Then we obtain the pixel position of the virtual image plane

AP, = KRy (K4Ry) ™' - (A Py + K1R1C1) — K3R,C, (5)



L Virtual image plane
Original image plane

Figure 3. lllustration of synthesizing point P; on the virtual image plane.




Chapter 3 Quality Assessment (QA)

There are two quality assessment types: subjective and objective. Subjective quality assessment
is done by human observers watching the test sequences and giving them quality scores. The
subjective test is not only a costly and time consuming approach, but also cannot implement in
a machine. Therefore, the objective measurements are very desirable. The goal of objective QA
is to develop algorithms that can predict the visual quality of sequences does to that made by

human.

3.1 Subjective, QA Methods

Recommendation document ITU-R BT.500 [6] outlines a few subjective test processes to judge
the quality of pictures. They are single stimulus-(SS), double stimulus continuous quality
(DSCQS), stimulus comparisen (SC), and single stimulus. continuous quality evaluation
(SSCQE). We will describe the method used in this study.

The testing sequence of a typical SS is shown as Figure 4. In each test, the trail number
should be shown no longer than 3 seconds. Then, the test image or video sequence should be
designed for around 10 seconds. Finally, the word “vote” should last long enough time so that

a viewer has time for giving a rating.



Single stimulus method — Trial structure

Grey Sequence Grey
under test

“Trial #” “Tote”

<=3 s ~10s <=10s

Time

Figure 4. Structure of SS.

The rating for each sequence under experiment 1s termed.*‘opinion score,” and the average
of rating of all the observers is-termed “mean opinion score” (MOS). The reference video
sequences should be.included in the-test sequence. The arithmetic difference between the MOS

of a processed picture-and the corresponded reference image is called “difference mean opinion

score” (DMOS).

1 .
MOS; = ~ ¥, ratingi, (6)

DMOS; = MOSi,Reference — MOS; (7)
where rating;, is the rating of the ith sequence given by the oth observer; N is the total

number of observers in the experiment; and MOS; geference IS the MOS for the hidden

reference, and the one relative to the ith sequence, MOS;.

3.2 Objective QA Models

There are different categories or goals for objective QA models [7].
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1)

(@)

3)

Reference
(@) Full Reference (FR)
Most of the proposed QA models assume undistorted reference image exists and
is available. And the distorted image is compare with the undistorted image.
(b) No Reference (NR)
In many applications, QA system doesn’t receive the reference image. Therefore,
quality of the distorted image is computed by itself.
(c) Reduce Reference (RR)

In this type QA model, the undistorted image is not fully available. Instead, some
features are extracted from the undistorted image, and QA model evaluate quality
from the features as side information.

Purpose
(@) General-Purpose

General-purpose QA model do not assume any specific types, and is designed

for varied-application.
(b) Application-Specific

There are a lot of QA-models are-designed for specific applications, such as

image and video compression is one of the largest applications.
Bottom-Up or Top-Down
(@ Bottom-Up

The goal of a bottom-up system is to build a system that has the same functions
to the human visual system (HVS). This approach studies each component of the
HVS, simulates all components as basic blocks, and then combines them together.

(b) Top-Down
Top-down approach only concern about input-output relationship. So its

system is not the same as the HVS. Instead, the HVS is treated as a black block.
9



2D QA methods have been proposed and work well in the last decades. Table 1 shows some
popular 2D image QA algorithms. The simplest and most widely used 2D QA model is PSNR,
but it has its limitation. Wang et al. [8] have proposed a full reference QA model, structural
similarity index (SSIM), and it is more compatible to human perception than PSNR. We will

describe later in this study.

Table 1. 2D Objective QA models.

Algorithm Algorithm

Peak Signal to Noise Ratio PSNR Universal Quality Index [10] uQl

Structural Similarity index [8] SSIM Visual Information Fidelity [11] VIF

Multi-scale SSIM [9] MSSIM | Visual Signal to Noise Ratio [12] | VSNR

3.3 Evaluation of Objective Quality Assessment Models

Video Quality Experts Group (VQEG) Full Reference Television (FRTV) Phase Il report [13]
recommends the process that measures the performance of the objective QA models. First, use

the following logistic function for fitting the DMOS and objective score.

by
1+ e(=b2(score-b3))’ (8)

DMOS, =

where "score” is the quality score predicted by objective QA model; DMOS,, is the DMOS
value that transferred from the "score" by the nonlinear regression function; and the
b;, b,, and b are the parameters that are obtained though the regression step to minimize the

error between DMOS and DMOS,,. Then, three common used index are defined as follow:

(1) Pearson Linear Correlation Coefficient (PLCC)
10



¥ (DM0OS;—~DMOS)(DMOS,;—~DMOSp)

PLCC = 9)

\/Z?Izl(DMOSi—m)Z\/Zlivzl(DMOSpi—m)z
(2) Spearman’s Rank Order Correlation Coefficient (SROCC)
The raw scores DMOS; and DMOS,,; are converted to ranks x; and y;, and
SROCC is computed from:

N i T
SROCC = Zi=1(x12x)(3/l y) - (10)
\/Z{jvzl(xi_f) \/Zi\lzl(yl_y)

(3) Root Mean Square Error (RMSE)

RMSE = \/%Z?LI(DMOS — DMOS,,)? (11)

(4) Outlier Ratio (OR)

total number of outlier
L (12)

outlier ratio = -
total points

where an outlier point is-defined as follow:

|DMOS — DMOS,| > 20 (13)

3.4 Structural Similarity (SSIM) Metric

SSIM is designed based on.the observation that*HVS ‘is highly adapted for the structure
information of a scene in which pixels have strong inter-dependency. The SSIM index is

composed by three components: luminance, contrast, and structure.

SSIM(x,y) = [1(x, »)]* - [c(x, 1P - [s(x, Y] (14)

Let x={x;]i=12,..,N} and y = {y;|i= 1,2, ...,N} be the two windows extracted
from the same location of the reference and the distorted images. Where x; and y; are the ith
location in the window, and N is the number of pixels in a window. And a, 3, and y are three

positive parameters used to adjust the relative importance of the three components.

11



The luminance, contrast, and structure comparison functions I(x,y), c(x,y), and

s(x,y) are defined as follow.

2Uxthy+C
W) = e (15)
20,0, +C
@y = e (16)
s(x,y) = 225 (17)
Y) = 0x0y+C3

where p, and u, arethe meansof x and y; o, and o, are the standard deviations of x
and y; and oy, isthe correlation coefficient between x and y. Positive parameters C;, C,

and C; avoid the denominators close to zero.

1

Uy = Ezliv=1 Xi (18)
O = |~ I (= 112)? (19)
Ory = ——= T (51 — 1) (Vi — t1y) (20)

Finally, the overall image quality is evaluated from the mean SSIM (MSSIM).
1
MSSIM(X,Y) = Ez;”’:lsslM(xj, v (21)

where X and Y are the reference and the distorted images; x; and x; are the image contents at

the jth local window; and M is the number of local windows of the image.

3.3 3D Quality Assessment Databases

There are several organizations that conduct the 3D quality research and publish their database

on the website. For the purpose, we can classify these databases as shown in Figure 5.

12



Hr'l

LIRIS/EPFL 3D
Model database l i
Computer Nature
Graphics Images
| ! | MMSPG database
3DVC Stereo-pair Capture
Synthesis Images LIVE database
IRCCyN/IVC database
IRCCyN/IVC database
Color Image Depth Map Synthesis
Algorithms

Figure 5. 3D databases

(1) Computer Graphics [14]

Lavoue et al. [14] describes a 3D model database. 88 maodels between 40K and 50K

vertices were generated from 4.reference objects. There are two types of distortion: noise and

smoothing. Subjective evaluations are using the Single Stimulus (SS) method with 12 observers.

Aq

\
¥

~ |

-

A

-l

(a) Original
model

(b) High noise on
smooth areas

(¢) High noise
uniform

(d) High smoothing
uniform

Figure 6. Additive distortions for the Venus model [14].
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(2) Captured 3D Images [15]

Goldmann et al. [15] presents a 3D image QA database which contains stereoscopic
images with resolution of 1920x1088 pixels. 10 scenes with various textures and depth
structures were captured. And each of the scenes has been captured with different baseline in

the range 10-50 cm.

Figure 7.-Scenes of the database [15].

(3) Stereo-pair Images with Color Distortion [16]- [18]

Benoit et la. [16] describes a database applied” three different distortions (JPEG,
JPEG2000, and blur) symmetrically to the stereo pair images. Urvoy et al. [17] distort the stereo
pair images based on H.264 and JPEG2000 coding and typical image processing steps such as
down sampling and sharpening. The distortions that Moorthy et al. [18] use include JPEG and
JPEG2000 coding, additive white Gaussian noise, Gaussian blur, and a fast-fading model based

on the Rayleigh fading channel.

(4) Synthesis Algorithms [19]

IRCCyN/IVC DIBR image database proposed by Bosc et al. [19] contains three different

MVD sequences. And seven DIBR algorithms processed these three sequences to generate four
14



new viewpoints for each sequence.

Figure 8. Different DIBR algorithms for lovebird sequence [14].

The MPEG is in the process of specifying the 3D video coding (3DVC), but few databases
discuss the distortions on it, only the database [19] research the different synthesis algorithms.
Thus, in this thesis, we proposed two databases, the database with depth distortion and that with

color distortion, based on 3DVC multiple-view plus depth (MVD) format.
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Chapter 4 Proposed 3D Quality
Assessment Model for Depth Map
Distortion

4.1 3D Image Database with Depth Map Distortion

We produce a database that contains three types of depth-map distortions, Offset, Quantization,
and Gaussian_Noise as show in Figure 9. The distortions are added symmetrically to the left
and right depth maps-of input sequences. Then;the virtual view.images are synthesized using
the original images and distorted depth maps. Three types of distortion are described as follow:
(1) Offset
The Offset operation adds a constant value to the entire depth map, that is,
doffset(%,Y) = dorigimai(X,y) + of fset_value (22)
where doriginai (%, y) and d,rrsec(x, y) denote-the depth values of the original depth
map and distorted depth map at (X,y), respectively; and the of fset_value is a selected

integer.

(2) Quantization
The Quantization operation converts the depth value to a few specific levels. Usually, this

is done by dividing the original depth value by a selected Quantization step.

doriginal(*,y)
quantization_step

dquantization(x: y) = l J s quantization_step (23)

where dgyantization(X,y) s the depth value at (x,y) after the Quantization operation is

applied to the depth map; floor operation |x] means the nearest integer smaller than or
16



equal to x; and quantization_step is a selected integer.

(3) Gaussian_Noise

It adds white Gaussian noise with zero mean and o2 variance to the depth map.

(b) (c) (d)
Figure 9. (a) Original depth:map, (b) Offset, (¢) Quantization, and (d) Gaussian_Noise

4.2. Overview of Proposed 3D 1QA Model

Our proposed 3D IQA model, shown-in Figure 10, can be divided into two parts. One is
computing the Image Quality Score (1QS) with-shift compensation which is a block-matching
method. And the other part is generating the Edge Structural Distortion (ESD) by computing
the Hausdorff distance. 1QS evaluates. the visual quality of the distorted image, and ESD
estimates the degree of structural artifact. The final score of the proposed model is obtained by
combining these two scores together in the pooling stage. In the following section, we will
elaborate the details of 1QS and ESD operations. To evaluate our model, a comparison system
is constructed as Figure 11. The distortion system uses three types of distortion described in the

previous section.
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.

original depth,

Distortied virtual image

original depthg

Figure 11. The proposed comparison system.

4.3. Image Quality'Score (1QS)

In a synthesized image, the object shift is a phenomenon cause by object rendered with an error
depth value then produces different disparity as its correct disparity. However, unlike 2D
distortion, the object shift does not change subjective perception, but it may change observer’s
3D perception.  Figure 12 is an example, the image (b) and (d) are synthesized by original
depth maps like Figure 12(a) and depth maps which have Quantization distortion as shown as
Figure 12(c) respectively. And Figure 12(d) leads to the object horizontal shift relative to the
Figure 12(a). In fact, the subjective qualities of Figure 12(d) and Figure 12(b) are almost the

same, but the SSIM index of Figure 12(d) is 0.701. This example indicates two facts. The first

18



is the object shift does not affect subjective image quality perception. The second is the
conventional 2D QA models applied to pictures with the object shift like Figure 12(d) would

result poor quality scores. The conventional pixel based 2D QA models penalize the object

shifts as shown in Figure 13(a), where darker regions indicate lower quality index.

(c) (d)
Figure 12. (b) is the virtual view.synthesized using the original depth map (a).
(d) is the virtual view synthesized using quantized depth map (c).

(a) (b)
Figure 13. Quality index map evaluated on Figure 12(b) using Figure 12(d).

(@) SSIM index map and (b) SSIM index map with object shift.
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For this reason, we shall consider object shifts before performing 2D quality evaluation.
We use a block matching algorithm to do this. The shift vectors are found by matching an NxN
block of distorted image (D;) with the corresponding block (R;) in the original image. Then, we
compute the SSIM index between D; and R; to be the IQS of the ith block as equation (24).

Therefore, the flow chart of computing IQS is shown in Figure 14.

Original Shift SSIM .

image Compensation | index - Image Quality Score (1QS)
Distorted t:lj XNk

image o

partition

Figure 14. Flow chart-of computing the image quality score (1QS).

In the example shown in Figure 12 and Figure 13, the subjective score of Figure 12(d)
synthesized by the distorted depth map is higher-than that of Figure 12(b), which is synthesized
by the original depth map. But.in Figure 13(b), there are.some low quality regions, as mark in
Figure 15, which decrease the averall-1QS of Figure 12(d). And then, these regions impair the
correlation of the objective scores to the subjective scores. One of these regions is enlarged as
shown in Figure 16. The house window in Figure 16(a) is not identical to the window in Figure
16(b). The difference is introduced by the rendering process due to depth map errors. Incorrect
depth values let synthesized virtual view pick the neighbor color information of the pixel that
should be project. Therefore, subjectively, both windows have similar subjective quality. In
contrast, the pixel-differences are penalized by the traditional 2D IQA model. Thus, we apply a
Gaussian filter before computing SSIM index as shown in Figure 17, and it results an 1QS index

map, Figure 18.
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(@) (b)
Figure 16. (a) Magnified from Figure 12(b); (b) Magnified from Figure 12(d).

Original Shift Gaussian SSIM
image Compensation Filter I . Image Quality Score (1QS)

Distorted
image

partition

Figure 17. Modified flow chart of computing 1QS.
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Figure 18. The 1QS index map of Figure. 13 using the process shown in Figure 17.

4.4. The Hausdorff Distance

The Hausdorff distance is used to measure the degree of mismatching of two sets. In the
computer vision, this distance can be used to find a given model in an image [20] as shown in

Figure 19. The Hausdorff distance of two finite sets, Acand B, is defined as follows,

H(A,B) = max(h(4,B),h(B,4)),and (25)
h(4,B) = maxd(a,B) (26)

where h(A,B) is called the directed Hausdorff distance from A to B; and d(a, B) is the
shortest distance from a point a in set A to point set B, and the definition of distance is
application-dependent. For example, in Figure 20, the directed Hausdorff distance h(4, B) is
equal to d(a4, B).

We can generalize the definition of directed Hausdorff distance h(A4, B). The modified

directed Hausdorff distance hy (4, B) is given by considering the K** ranked point of A. [21]

hg(A,B) = PK!!, d(a,B),and (27)
K
N, = p% (28)
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where PK!", denotesthe K" ranked distance in A, K is a selected parameter; and N, is the
number of points in set A. When p=50, in the example shown in Figure 20, the modified directed
Hausdorff distance hy (4, B) is equal to d(a,, B); when p = 100, all the points are under

considering, and the hg (A, B) equals the directed Hausdorff distance h(A, B).

[] PARTE N > O ™

(a) (b) ()

Figure 19. (a) A specified model (b) a test image (c) the matched result

bz.
by
d(ay,B)

aq

Figure 20. An illustration of the directed Hausdorff distance.

4.5. Edge Structural Distortion (ESD)

Due to human eyes are sensitive to distortion around object edge, for example, discontinuous
structure on object boundary or ghost artifact which foreground textures are rendered to
background area. We thus proposed a special metric to detect object edge distortion. We first
apply the Canny edge detector to block D; and R;. Then, we compute the Hausdorff distance

of the two blocks to measure the edge structural distortion.
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H(Dy, R;) = max(h(D;, Ry), h(R;, Dy)) (29)
The distance function used in our model is defined as follows,
d(a,b) = [xq = xp| + 1Yo — ypl (30)
where x, and y, are the x and y coordinate of the pointa.
After obtaining the Hausdorff distance of each block, we normalize the distance between

Oand 1.

Hyormatize(Dis Ri) = % 31)
where N is the width of block window.
At the end, smaller Hausdorff distance should indicate less structural distortion. Therefore,

the normalized Hausdorff distance is subtracted from 1.to produce the correct score.

ESDy="1+ Hysrmaiize (Di' Ri) (32)

Original Shift
image Compensation

NxN Compute

Distorted Edge Edge Structural
. block 2 , Hausdorff ‘ . .
image partition detection Distance Distortion (ESD)
Figure 21.-Flow chart of-computing ESD.
4.6. Pooling

In the pooling stage, image quality score (IQS) and edge structural distortion (ESD) are
combined together. There is no evidence shows the two scores, 1QS and ESD, should operate
in what operator such as multiplication and addition. In our proposed model, we use addition
not multiplication. Because multiplication includes the concept of “weight”. Since IQS
measures conventional 2D distortions such as blur, noise, compression coding et al. and ESD

estimates the degree of structural artifact. IQS and ESD do not have strong relation that we can
24



treat one to be the weight of the other one. Thus the final quality score can be computed as
follows,
score = Y2 (a-1QS; + (1 — ) - ESD;) (33)
where B is the total block number.

Moorthy and Bovik [22] suggest that the performance of using the lowest p% quality
scores in the pooling stage is better than using the average value of all scores. For example,
there are many local low quality regions in Figure 22(a) and it has a lower subjective perception
than Figure 22(b). But the mean SSIM score of Figure 22(a) is higher than the mean SSIM score
of Figure 22(b).

In the virtual view images with distorted depth-maps; object shifts and ghost artifacts often
occur in specific region, especially the occlusion regions. Hence, using the lowest p% quality
scores can provide more precise-estimation than the average scoreof the frame, and the flow

chart of pooling stage'is shown as Figure 23.

(@) (b)

Figure 22. Example of lower quality picture in using the mean as the final score.

(@) mean SSIM = 0.9497 (b) mean SSIM = 0.9043 [23]
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Figure 23. Flow chart of the pooling stage.
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Chapter 5 Experimental  Results  of
Depth Map Distortion Database

5.1. Test Image Database Construction

All our test sequences are obtained from the ISO MPEG standard committee [24]. They are
Poznan_Hall2 and Poznan_Street provided by Poznan University [25]; Kendo and Balloons
provided by Nagoya University [26]; Lovebirdl provided by ETRI [27]; and Newspaper
provided by GIST [28]..The segquences are used for experiment in the MPEG 3DVC contest.
Their color images and ‘associated-depth-maps-are-shown in Table 2. The processed frame
numbers, input views, and output displayed stereo are shown in Table 3. They pretty much
follow the specification.

The comparison.system is Hlustrated.in Figure 11. \We choose one frame in each test
sequence, then distort its left and right depth maps and-render with undistorted color images to
obtain distorted images. There are three types of distortion, Offset, Quantization, and Gaussian
Noise, defined in section 4.1. The Offset_value we used is 60 and 100; Quantization_step is 60
and 80; and the variance of Gaussian white noise is 0.01 and 0.05. So there are 7 (2*3+1) test
images per sequence. Totally, there are 42 (7*6) stereo-pairs in our database. All the virtual
color images are synthesized by the “1D-fast-VSRS” algorithm in the ITU/MPEG JCT-3D

reference software HTM 3.1 [29].
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Table 2. Test sequences.

Poznan_Hall2 Kendo Lovebirdl
(1920x1088) (1024x768) (1024x768)

Poznan_Street Balloons Newspaper
(1920x1088) (1024x768) (1024x768)

Table 3..The information of the test sequences.

‘@ N
Sequence Name mut Views Output Stereo Pair

Poznan_Hall2 90 7-6 6.5-6

Poznan_Street 30 4-3 35-3
Kendo 32 3-5 4-5
Balloons 1 3-5 4-5
Lovebirdl 80 6-8 7-8
Newspaper 100 4-6 5-6
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5.2. Subjective Test

In our experiment, the Toshiba 47TL515U 47-inch 3D monitor is used to display the materials.

Twenty-two observers (20 males and 2 females), whose average age is 23.8, participated in our

experiment. The experiment method we adopted is single stimulus (SS) specified by ITU-R

BT.500 [6]. For each test image, the observers are asked to give a quality score (5: Excellent;

4: Good; 3: Fair; 2: Poor; 1: Bad), which is called opinion score. The mean opinion score (MOS)

and variance of all test images are shown in Figure 24 and Figure 25.
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Figure 24. MOS of the subjective test.
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Figure 25. Variance of the subjective test.
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5.3. Parameters of the Model

Figure 26 shows the operations and all the parameters in our proposed model.

OGaussian

search window

compute
SSIM
index

Reference Shift
image Compensation

Average
lowest p%
blocks

Gaussian
Filter

Edge
detection

Quality
Score

Compute
Hausdorff
Distance

NxN

— block
partition

Distorted
image

N O-Canny pK th

Figure 26.-Parameters of the proposed model.

From the front stageto the last stage, parameters are described as follows:

(1) N is the width of a block.

(2) search_window specifies the maximum value of shift vector. in parallel block search. For
example, in Figure 27, if the center of the processing block in distorted image is
(xais» Vais) With N is 5 and search_window is 6. Then the search area in reference image

is an N-by-(N+2*search_window) block with center (xg;s, Yais)-

search_window search_window

MM

‘H - II
=f-
emeadl,
|| I

(xdiSJydiS)\ 1T 11

Distorted image

Reference image

Figure 27. An example of shift compensation with search_window=6 and N=5.

(3) Ogaussian 1S the standard deviation of the Gaussian filter with zero mean.
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(4) Inthe edge detection stage, the Canny method, using o¢qnn, as the standard deviation of
the Gaussian filter.
(5) PK®™ decides the number of points that are used to compute direct Hausdorff distance.

Figure 28 shows an example with PK*" equals to 100, 80, and 60.

PKth=100

PKth=60 +—
mA.o[o o0 0 9 0

PKth=80 ~—-

Figure 28. An example of K",

(6) «a decides the proportion of 1QS-and ESD, as shown in Figure 29.

(24
7 o
[10S P

Figure 29. The relation between « and the proportion.of 1QS and ESD.

(7) Parameter p decides the number of blocks are used to compute the final quality score.
We will discuss some of these parameters later. Due to the shift vector is often short, the
search_window is set to 20 pixels, which is typically sufficient. And o¢gnp, is relative to

PKth because larger PK'" which indicates more edge points are considered, means smaller

JCanny-

5.3.1. Pooling Proportion (p)

Parameter p in the pooling stage decides how many blocks are used to compute the final quality
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score. The gray curve with circular patterns in Figure 30 shows that generally p=5% leads to
the highest PLCC for our database. That is, using 5% worst case blocks in an image best
matches the subjective image quality. But when split our database into two parts: (1)
Gaussian_Noise and (2) Offset + Quantization, we notice that Gaussian_Noise produces a
rather blur-like artifacts on the entire synthesized image as shown in Figure 31. Therefore, as
the orange curve with rectangular marks in Figure 30, we need to consider whole image
(p=100%) to get a better performance. For Offset and Quantization, Figure 32 shows that if the
depth map error produces structural artifacts such as object shift or ghost image, the pooling

proportion p should be chosen near 5%, and-the result is almost independent to a.

0.9

N P\\\k"-ﬂ—‘—‘——ﬁ——ﬁ—f—ﬁ
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g ~a ) )
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p

Figure 30. Different value of the polling proportion p affects PLCC.

(¢ = 0.5,N = 25, PK™" = 70)

Figure 31. Artifact due to Gaussian_Noise depth map error.
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Figure 32. Pooling proportionp nearby 5% has better performance under different pooling

weight a. (N = 25, PK"™=70)

Although the Gaussian_Noise distortion affects the whaole color image, but from the
subjective test, we found that the observers did not notice that the entire image was distorted in
stereoscopic test. This phenomenon is-discussed-in-[31]; which states that the high frequency
regions the subjective quality. For example, in Figure 33, if the left view of the stereo pair shows
the left rectangle with horizontal high-frequency as-the original image. The experimental results
show that the observers can still perceive the texture pattern of the left rectangle when the other
view of the stereo pair shows the middle rectangle with low frequency as the distorted image.
If the right view shows the right rectangle with vertical high frequency, the two patterns would
interfere each other. Another illustration is shown in Figure 34. If the left view of the stereo pair
shows the left rectangle with low frequency texture as the reference image and the right view
shows the right rectangle with block effect, then observers can perceive the block artifacts in

the stereoscopic test.
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Figure 33. lllustration of eye domination. [31]

Figure 34. Another illustration of eye domination. [31]

5.3.2. Pooling weight («)

In the equation (33), a decides the weights of 1QS and ESD. If @>0.5, it means we consider
IQS more than ESD;-and vice versa. From the previous sections, we find out that to evaluate
Offset and Quantization, we choose p=5%; and for Gaussian_Noise, we pick p=100%. The blue
curve with triangular patterns in Figure 35 shows that ESD_ has a higher impact on the PLCC
index than 1QS in the case of the Offset and the Quantization. And the best parameter value is
a = 0.3. For the Gaussian_Noise, there is no apparent difference between 1QS and ESD as
shown as the orange curve with circular patterns in Figure 35, and 1QS is slightly more
important than ESD. And generally a = 0.5 leads to the higher performance for our database.
Figure 36 shows that, for all possible values of the pooling proportion p, 1QS provides a higher

PLCC. In the later experiment, we use « = 1 to test Gaussian_Noise.
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Figure 36. IQS dominates the performance in Gaussian_Noise case. (N = 25, PK*"* = 70)

5.3.3. Modified Hausdorff Distance (PK‘")

Value of PK®™™ decides the number of ranked points that are used to compute ESD of each

block. K™ =100 means that all points are in used, and the result is the conventional

Hausdorff Distance.
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From the Figure 36, ESD has little influence on the final performance for the
Gaussian_Noise distortion type. Hence, in the case of Gaussian_Noise, we neglect the
comparison of PK'" in performance evaluation. For Offset and Quantization, Figure 37 and
Figure 38 indicate that PK"=70 has nearly the best result in these two cases for a =

0.5anda = 0.3.
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Figure 37. The effect of PK™ when a = 0.7. (window: = 25, pooling p = 5%)
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Figure 38. The effect of PK*™® when a = 0.3. (window = 25, pooling p = 5%)
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One may notice that there is a peak near PK*" = 35. We discuss these two cases, PK" =
35 and PK'" = 70, against the value of a as shown in Figure 39. Their performance is close
between o = 0.1 and o = 1. Figure 40 gives a good account of this phenomenon. Figure 40(a)
Is a virtual view image with ghost artifacts synthesized by a distorted depth map with Offset
distortion (offset_value=60). When PK'"* = 70, the structural artifacts such as object edge
distortion can be detected by our model as shown in Figure 40(b), but some non-structural
distortion areas with rendering error are also observed. That is because PK* = 70 is a strict
threshold condition. When PK® = 35, as shown in Figure 40(c), structural distortions areas
are not identified well as PK®® = 70, .but it has a better performance for non-structural

distortion areas.
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Figure 39. PK" =35 and PK'™ = 70 have close performance when the value of o is

between 0.2 to 1. (window = 25, pooling p = 5%)

37



20 ] 1 2l

251 [} g 251 ]

30¢ L L L ! L L k| 0

(b) (©)
Figure 40. (a) Synthesized image of kendo with Offset distortion (offset_value=60).
(b) and (c).are ESD maps where darker blocks indicate lower ESD index.
(b) PK™ = 70 (c)-PKk™ = 35.

5.3.4. Gaussian filter (o¢44ssian)

The main purpose of Gaussian filter in the proposed model is to reduce incorrect judgment due
to the image rendering process for view synthesis. The value of o6;4,sian  CONtrols the blurring
level. The ogqussian Value should be large enough to eliminate rendering error, but the details
would be lost if it is too large. Figure 41 and Figure 42 show the different o;,,55ian Values

and its corresponding 1QS map.
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Figure 41. Left column shows the Quantization distorted image of sequence Poznan_Street
with Gaussian filter using different o;4.s5ian  Values. Right column is the corresponding 1QS

maps. (a) No Gaussian filter, (b) o¢qussian = 1, (€) Ogaussian = 2, and (d) Ggqussian = 3-
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()

Figure 42. Left column shows the Offset distorted image of sequence Balloons with Gaussian
filter using different o;4y55ian Values. Right column is the corresponding 1QS maps.

() Without Gaussian filter, (b) ogaussian = 1, (€) Ocaussian = 2, and (d) G¢aussian = 3-
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For the Offset and the Quantization distortion types, ogqussian = 2 has the best
performance when a = 0.3 as shown in Figure 43. And Figure 44 shows a result that when we
select a smaller a value, that is, weight 1QS index less, the influence of o4yssian 1S getting
smaller too, and the most appropriate o;4ussian Value is that also smaller.

For the Gaussian_Noise distortion, unlike the Offset and the Quantization types, a larger
Ocaussian Value shows better performance than the smaller ones as shown in Figure 46. The
PLCC is increase With o;4ussian COMes larger. Because Gaussian_Noise introduces blur like
artifact that we mention before. And from the subjective test, we discover that human have high
acceptability to this artifact, but SSIM penalize it. So Gaussian filter blurs this artifact, and

makes these regions more similar to blurring effect.
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Figure 43. PLCC has maximum value when o;4ussian = 2 for the Offset and the

Quantization. («¢ = 0.3, window = 25, pooling p = 5%, Pgth = 70
g

41



09
0.89
088 -
087
086

(8]

G oss

z ‘
084
083
082
081

08

0.00 0.50 2.50 3.00

Figure 44,

a7

0.65

0.6 -

1)
G 055
"%

0.5

0.45 -

04 T T T T |
0.00 0.50 1.00 150 2.00 2.50 3.00 3.50

Figure 45. Large ogqussian 1S better for Gaussian_Noise distortion.

(window = 25, pooling p = 100%)

42

“4-a=0.5
®-a=04
~+-a=0.3
#-a=0.2

——q=1



Figure 46. Left column shows the Gaussian_Noise distorted image of sequence Balloons with
Gaussian filter using different variance parameters. Right column is the corresponding 1QS

maps. () No Gaussian filter, (0) o¢qussian = 1, (€) Ggaussian = 2, and (d) Ogaussian = 3-
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5.3.5. Window size (N)

Figure 47 shows that there is no special rule to decide the window size. When N=25, the
performance is relatively higher than the other window sizes for the Offset and the Quantization
types as the orange curve with triangular patterns in Figure 47. That is why we pick N=25 in
the previous experiment. And from Figure 48, we can find out that the average execution time
per image of N=25 is decreased by about 2 times than that of N=15. So N=25 not only has

relative high performance but it also runs faster.
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Figure 47. Window size does not affect the performance much.
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Figure 48. Execution time per image decreases when the window size becomes larger.

5.4. Experimental Result-and Analysis

Based on the collected data in section 5.3, the parameters were used to test our database are
shown in Table 4. We compare the proposed model with the commonly used 2D quality
assessment metrics such'as PSNR, SSIM [8], MSSIM [9], UQI [10], VIF [11], and VSNR [12].

They are implemented by the MeTriX MuX Visual Quality Assessment Package [30].

Table 4. Parameters set to evaluate the database.

Offset and Quantize Gaussian_Noise

Window Size (N) 25 25
OGaussian 2 3
PRth 70 -
o 0.3 1

Pooling proportion (p)

5% 100%
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Table 5 and Table 6 show the performance comparison in terms of Pearson Linear
Correlation Coefficient (PLCC), Spearman’s Rank Order Correlation Coefficient (SROCC),
Root Mean Square Error (RMSE), and Outlier Ratio (RO). The Tables show that our model
increases about 30%-55% in PLCC and 30%-60% in SROCC, decreases about 0.3-0.4 in RMSE,
and less outlier points for the Offset and Quantization types. For the Gaussian_Noise distortion,
the enhancement is not obvious as the Offset and the Quantization types, our model increases
about 5%-35% in PLCC and 35%-0% in SROCC, decreases about 0.01-0.2 in RMSE, and less
outlier points. Especially compare with VIF metric, the performances are almost the same.
That’s because the artifacts of Gaussian. Noise.is similar to blur which is a kind of conventional
2D distortion. Thus it doesn’t have clear advantage. Figure 49 and Figure 50 show the scatter
plots which the horizontal axes are indexes of the objective quality assessment metrics and the

vertical axes are the DMQOS of our-collected data. The regression formula of Figure 49(f) is

N 2.528
1 + exp(50.5829(x — 0.894))’

y

and that of Figure 50(f) is
B 25609
1+ exp(173.0846(x — 0.9919))°

%

There is a defect for our model, from Figure 49(f)and Figure 50(f), we can see the ranges

of final scores computed by proposed model are narrow. The scores is between 0.76 to 0.96 for
the Offset and Quantization and 0.92 to 1 for the Gaussian_Noise. That is, the scores of the best

quality and the worst images have no significant difference.
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Table 5. Performance comparison of Offset and Quantization.

(The red and bold numbers are comparisons between each 2D models and proposed model.)

Metrics PLCC SROCC RMSE OR
0.5835 0.5400 0.6997 0.0417
PSNR
+0.3131 +0.3617 -0.4202 -0.0417
0.3736 0.3930 0.7992 0.0833
SSIM
+0.5248 +0,5087 -0.4202 -0.0833
0.5120 0.5104 0.7400 0.0833
MSSIM
+0.2864 +0,3913 10,361 -0.0833
0.3955 0.2617 0.7925 0.1667
uQl
40.5029 +0.6400 -0/4135 -0.1667
0.5291 0.4409 0.7314 0.0833
VIF
+0.3693 $0.4608 -0.3524 -0.0833
0.3462 0.3478 0.8083 0.1667
VSNR
+0.5522 +0.5539 -0.4293 -0.1667
Proposed 0.8984 0.9017 0.3790 0.
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Table 6. Performance comparison of Gaussian_Noise.

(The red and bold numbers are comparisons between each 2D models and proposed model.)

Metrics PLCC SROCC RMSE OR
0.7247 0.7455 0.5207 0
PSNR
+0.0548 0 -0.0478 0
0.5655 0.5182 0.6224 0.0909
SSIM
+0.214 +0,2273 -0.1495 -0.0909
0.6798 0.5455 0.5535 0
MSSIM
+040997 +0.2000 00806 0
0.4631 0.5000 0.6688 0
uQl
+0.3164 +0.2455 -0/1959 0
0.7691 0.7273 0.4831 0
VIF
+0.0104 $0.0182 -0.0102 0
0.4314 0.3909 0.6809 0.0909
VSNR
+0.3481 +0.3546 -0.208 -0.0909
Proposed 0.7795 0.7455 0.4729 0
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Figure 49. Scatter plot of the objective quality scores against the DMOS. (a) PSNR (b) SSIM
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For overall database, the parameters were used to test are shown in Table 7. It is similar to
the parameter values of test Offset and Quantization. The only difference is the parameter a.
From Figure 35, the best performance is near o =0.5. Table 8 shows the performance
comparison, and it shows that our model increases about 21%-52% in PLCC and 25%-50% in
SROCC, decreases about 0.16-0.27 in RMSE, and less or equal to other 2D metrics in OR.
Figure 51 shows the scatter plots which the blue circular points are Offset and Quantization
distortions and the green star marks are Gaussian_Noise data. The regression formula of Figure

51(f) is

B 2.5849
1+ exp(24.7015(x'—.0.8948))

y

Table 7. Parameters set to evaluate the overall database.

Overall
Window Size (N) 25
OGdussian 2
pKth 70
a 0.5
Pooling proportion (p) 5%
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Table 8. Performance comparison of overall database.

(The red and bold numbers are comparisons between each 2D models and proposed model.)

Metrics PLCC SROCC RMSE OR
0.5233 0.5114 0.7084 0.0857
PSNR
+0.2509 +0.2597 -0.1819 -0.0571
0.4235 0.4091 0.7531 0.0571
SSIM
+0.3507 +0,3620 -0.2266 -0.0285
0.4213 0.4090 0.7539 0.0571
MSSIM
+0/3529 +0.3621 0:2274 -0.0285
0.3648 0.3088 0.7744 0.1143
uQl
+0.4094 +0.4623 -0,2479 -0.0857
0.5575 0.5173 0.6903 0.0286
VIF
+0.2167 $0:2538 -0.1638 0
0.2535 0.2625 0.8042 0.2000
VSNR
+0.5207 +0.5086 -0.2777 -0.1714
Proposed 0.7742 0.7711 0.5265 0.0286
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Figure 51. Scatter plot of the objective quality scores against the DMOS. (a) PSNR (b) SSIM
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We also note that adding a Gaussian filter before calculating SSIM, as shown as Figure 52,
has no apparent benefit in evaluating the 2D image quality, but it improves in our 3D image
testing. We applied the model shown in Figure 52 with a zero mean and ogqyussian = 2
Gaussian filter to LIVE Image Quality Assessment Database available from the Laboratory for
Image & Video Engineering (LIVE) from the University of Texas at Austin [32]-[34]. The
results in Table 9 show that PLCC index and RMSE decrease about 0.5% and 0.2 respectively
though the model in Figure 52. But it increases about 2.8% in SROCC. And the scatter plots
are shown in Figure 53. The figure shows that the model in Figure 52 lets the objective scores
converge on the high-rank region because high frequency distortion such as block effect and

noise would be filtered by the Gaussian filter.

Original
image

Gaussian

Filter > Image Quality Index

Distorted
image

Figure 52. Structure of computing 2D quality index in our model.

Table 9. Performance comparison.

PLCC (%) SROCC (%) RMSE
SSIM 91.71 92.50 9.2845
Gaussian filter + SSIM 91.25 95.37 9.5033
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Chapter 6 3D Quality Assessment for
Color Distortion

In section 3.3, some stereoscopic color distortion databases were introduced. The databases
[16]-[18] include the popular types of color distortion, such as Gaussian blur, JPEG coding,
JPEG2000 coding, Gaussian noise etc., symmetrically on the stereo-pair images. Differ to these
databases, we produce a database containing color distortion for view synthesis system. We
consider Gaussian blur, JPEG coding, and Gaussian noise, in the 3DVC system based on

multiple-view plus depth (MVD) format.

6.1. Synthesized View Database with Color Distortion

There are two sets of view-synthesized images with color distortion in our database, Distortion-
Synthesis (D-S) images and  Synthesis-Distortion (S-D) .images. Their most significant
difference is how the distorted color image is used to produce the synthesized images. We

describe these two image synthesis processes below.

(1) Distortion-Synthesis (D-S) images

Figure 54 shows the structure of D-S synthesis process. Both the left and right color images
are distorted by the color distortion process first. The color distortion process distorts both
images by the same type of distortion and parameter independently. Then, the distorted virtual
view image is synthesized based on the distorted color images and corresponding non-distorted

depth maps using the 1D-fast-VSRS in reference software HTM version 3.1 [29].
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Figure 54. The D-S image producing process and its quality evaluation.

(2) Synthesis-Distortion (S-D) images

The D-S image synthesis procedure issshown in Figure 55. The original left and right color

images and depth maps are used to produce the virtual view image via the 1D-fast-VSRS. Then,

the color distortion.process distorts the synthesized virtual view.images. The S-D image

generation is very similar to that of the conventional 2D image quality assessment set-up. Both

systems evaluate the image quality index by an original image and its distorted image. The only

difference is the original images in the.S-D images-are the synthesized virtual view images not

the original images.
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——— 1Dfast VSRS’
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—

original colory H

l

i
IQA model quality
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Figure 55. The S-D image producing process and its quality evaluation.
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Three commonly used types of distortion we use in the color distortion system are
Gaussian blur, JPEG compression coding, and Gaussian noise. Table 10 shows the parameters
of these distortions in our database. Two parameter values are selected for Gaussian blur and
JPEG coding distortion respectively; and three selected parameter values for Gaussian noise
distortion. The difference on the numbers of selected parameter is based on the subjective
experience. The Gaussian noise produces more apparent difference between the D-S images
and the S-D images. Thus, there are in total 7 distorted images for each test sequence. Note that
the Gaussian noise distortions for left and right views in the D-S images of our database are not

identical, but with the equal variance.

Table 10. Parameters used in our database.

Type of distortion Parameter
Gaussian blur Zeromean and o = 2 and 4
JPEG Quality = 15 and 20
Gaussian noise Zero mean and o= 0.005,0.01 and 0.05

6.2. Subjective Test

We are interested in the difference between 3D stereoscopic viewing and 2D viewing with color
distortion. Thus, there are two test scenarios in our subjective experiment, 2D scenario and 3D
scenario. As illustrated in Figure 56, for D-S images, the 3D scenario shows the left input
original view with distortion to the left eye and the synthesized virtual view synthesized by
distorted left and right views to the right eye; and the 2D scenario shows the synthesized virtual
view to both eyes. For S-D images, the 3D scenario shows the left input original view with

distortion to the left eye and the synthesized virtual view which synthesized by the original left
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and right views with distortion to the right eye; and the 2D scenario shows the distorted

synthesized virtual view to both eyes.

3D scenario 2D scenario

Synthesized Right
original viev. Virtual view < original view

(D
distort

IIIIIII>

Left Synthesized
original view Virtual view Real view

Figure 57. 3D scenario and 2D scenario of the S-D images.
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The test sequences used in our database are Poznan_CarPark, Poznan_ Halll,
Poznan_Hall2 and Poznan_Street provided by Poznan University [25], Kendo and Balloons
provided by Nagoya University [26], Lovebirdl provided by ETRI [27], and Newspaper by
GIST [28]. Poznan_CarPark, Poznan_Halll, Poznan_Hall2 and Poznan_Street are used in 2D
test scenario due to their equivalent resolution (1920x1088), and Kendo, Balloons, Lovebirdl,
and Newspaper are used in 3D test scenario with resolution 1024x768.

There are 7 distorted images for a sequence with three types of color distortion and 28
(7*4) distorted images for each test scenario for either D-S or S-D images. Thus, there are 56
(28*2) distorted images for each test scenario. Totally, 60 (56 distorted images + 4 reference
images) pictures in either 3D 0r 2D test scenarios:

For the subjective test, 20 observers (16 males and 4 females) participated in the
experiment. The display we used-1s-23” LG D237IPS 3D display..And Single Stimulus (SS)
method with five discrete scores was used according to the document ITU-R BT.500 [6].

In the 3D subjective test, the “main eye” of observers was record. Because all the stereo
images in the database have the synthesized virtual view images for right eye and left original
view images for left image, different main eye may lead to different quality perception. For
example, the subjective quality perception of an observer, whose main eye is right eye will be
dominated by quality of the synthesized virtual images. In our subjective test, there are 10

observers with the right main eye, and 10 with the left.

6.3. Experimental Results and Analysis

According to the types of distorted images and viewing scenarios, our database can be divided
into 4 classes as the blue blocks in Figure 58. There are two aspects can be discussed: (1) the

difference between the D-S and the S-D distorted images (orange rectangle in Figure 58) and
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(2) the difference between 3D and 2D viewing scenarios (green rectangle in Figure 58).

2D scenario 2D with S-D Images
3D scenario 3D with D-S Images 3D with S-D Images

performance variation due to 3D/2D

Figure 58. A summary of the database.

It is an interesting issue to see the difference in applying the distortion to images before
rendering process or after it. Before doing subjective test, we wonder the effects of SSIM
indexes on different types of color-distortion, the D-S and S-D images may produce different
result on SSIM. Figure 59 shows the SSIM score variation between the D-S and S-D images in
the 2D viewing scenario. Each blue point indicates a type of distortion (Gaussian blur/JPEG
coding/Gaussian noise) with a selected parameter value. The horizontal axis is the SSIM index
applied to the D-S images; and.the vertical axis is the SSIM index applied to the S-D images.
Every samples locate on the red lines have the same SSIM indexes from the D-S and S-D images,
and we called the red line equalization line.

In Figure 59(a), we find out that blurring color images before the synthesis step or after it
does not have obvious difference using SSIM. But for the Gaussian noise and JPEG coding,
Figure 59(b) and Figure 59(c), the D-S images lead to higher SSIM index than the S-D images.
After all, SSIM is a 2D QA model, it may not be able to predict the subjective quality of our
3D color distortion database.

As mentioned before, the Gaussian noise distortions for left and right views in the D-S
images of our database are not identical, but with the equal variance, called asymmetric

Gaussian Noise (AGN). Then, what would happen for the symmetric Gaussian Noise (SGN),
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which adds the same Gaussian noise pattern to the both views? Figure 60 shows the points of
AGN and SGN both locate on the lower right side of chart. This means that SSIM indexes of
the D-S images are higher than those of the S-D’s. In addition, SGN produces better quality of

the D-S images in SSIM than ASN.

085 0s 095 1 a9 o2 094 096 08 1 o 01 02 03 04
D-S D-S D-S

(a) (b) (c)
Figure 59. SSIM comparison between D-S and S-D images. (2D scenario)

(a) Gaussian blur (b) JPEG coding (c) Gaussian noise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
D-S

Figure 60. The comparison of AGN and SGN.

BLUE: AGN; GREEN: SGN
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In the subjective test, we find out that for the JPEG coding and Gaussian noise distortions,
as shown in Figure 61(b) and (c), the results are similar to SSIM does. The axes of Figure 61
are the mean opinion score (MOS) between 0 and 5. The D-S images have higher subjective
quality than the S-D images. This phenomenon is caused by the late step of synthesis process,
blending. Blending step mergers two rendered color images from left and right views into one
image. Thus, the distortions of the synthesized images would be “averaged.” On the other hand,
for the Gaussian blur as shown in Figure 61(a), some points marked in red locate on the left
side of the equalization line, that is, the D-S images produce lower subjective quality than the
S-D images. One of these images are shown.in.Figure 62. There exist unnatural contour around
the boundary of different depth plane in Figure 62(a), and we call this phenomenon “sticker
artifact.” The cause of sticker artifact is Iin the synthesis process. A blurred color image
synthesized with a perfect depth-map with sharp boundaries produce significant distortions

along object boundaries. Figure 63 illustrates this type of distortion due to the view synthesis

procedure.
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Figure 61. Subjective experimental results of 2D scenario.

(a) Gaussian blur (b) JPEG coding (c) Gaussian noise.

The sticker artifact can be perceived in both 2D and 3D viewing scenarios. Figure 64 and

Figure 65 show the comparison of D-S and S-D images. It is similar to Figure 59 and Figure 61
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in that most points locate on the right side of the equalization line. And some images with
sticker artifact are perceivable by observers.

Conclude the experimental results above, the SSIM scores of the D-S images with
Gaussian noise is higher than those of the S-D images, that is, the view synthesis process can
cover Gaussian noise distortion. The D-S images with Gaussian blur would produce the sticker
artifact around the different depth object boundaries. And the sticker artifact can be perceived

even if the image of the other eye do not contain this artifact in 3D viewing.

.
(@) (b)

a

Figure 62. Gaussian blur distortion. (a) D-S image. (b) S-D image.
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Figure 63. An illustration of sticker artifact.
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Figure 65. Subjective comparison between D-S and S-D images (3D scenario).
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Chapter 7 Conclusions and  Future
Works

7.1. Conclusions

Obijective quality assessment (QA) model is a desirable tool in multimedia applications. It
reduces the complexities in measuring the subjective image quality. As 3D contents and
applications are widely used, developing objective QA:madels to assess 3D image becomes an
important issue. The ISO/IEC Moving Picture Expert Group (MPEG) is specifying 3D video
coding (3DVC) based on the multiple-view plus depth (MVD) format. Each view contains a
color image and its-corresponding depth map. At the receiver, the virtual view images are
generated by a view 'synthesis algorithm.-The virtual view synthesizing process introduces new
artifacts, such as shift,-.ghost, and sticker. These artifacts are different from those of the D
distortion. Thus, the conventional.pixel-by-pixel 2D objective QA model could not predict the
quality of synthesized images precisely. In this thesis, we proposed an objective image QA
model for depth map error induced distortions. The model evaluates two scores, the image
quality score (IQS) and the edge structural distortion (ESD). IQS computes 2D color quality of
the synthesized image and considers object shift. ESD estimates the degree of structural artifact
by employing the Hausdorff distance. The final score of the proposed model is obtained by
combining 1QS and ESD together in the pooling stage. The experimental results show that
proposed model has higher PLCC and SROCC (both increase about 20%) and less RMSE and
outlier ratio than the 2D models.

For color distortion, we designed a database with two distortion systems based on the
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MVD format. They are the distortion-synthesis (D-S) and synthesis-distortion (S-D). From the
experimental results, we found out the D-S system has higher SSIM quality score than the S-D
system for the Gaussian noise distortion. They show similar subjective quality for the JPEG
coding and Gaussian blur. We also found out if we blur the left and right color images before

the rendering process, a so-called sticker artifact would appear around the object boundaries.

7.2. Future Work

This thesis proposed an objective QAlimage model to assess the synthesized virtual images with
depth map errors. Also, we did some researches on synthesized image quality evaluation due to
(texture) color distortion. Developing-a QA model to assess color distortion is the next essential
work. To generalize .the 3D image-QA model,-a model to evaluate artifacts due to depth and
color distortion has to-be constructed to replace the 2D QA model. Furthermore, the QA model
for 3D video is also an interesting topic to study. In this case, in addition to the depth

information, the temporal information needs.to be considered.
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