

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

基於熱點預知之雲端大型多人線上遊戲

之動態資源配置

Dynamic Resource Provisioning with Hotspot Anticipation

for MMOG Clouds

研 究 生：張晏誌

指導教授：王國禎 教授

中 華 民 國 １０2 年 7 月

基於熱點預知之雲端大型多人線上遊戲之動態資源配置

Dynamic Resource Provisioning with Hotspot Anticipation

for MMOG Clouds

研 究 生：張晏誌 Student：Yen-Chih Chang

指導教授：王國禎 Advisor：KuoChen Wang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2013

Hsinchu, Taiwan, Republic of China

中華民國 102 年 7 月

i

基於熱點預知之雲端大型多人線上遊戲

之動態資源配置

學生：張晏誌 指導教授：王國禎 博士

國立交通大學資訊科學與工程研究所

摘 要

近年來，有許多類型的遊戲改為網路服務的經營模式。大型多人

線上遊戲(MMOG)成為世界上最受歡迎的遊戲服務類型。為了節省

營運成本及簡化遊戲伺服器的管理，有許多遊戲服務供應商將他們的

服務與雲端計算科技結合。在大型多人線上遊戲的虛擬世界中，玩家

經常藉由成群結隊的行動，來達成某些遊戲任務或擊敗遊戲中的魔王。

這樣的行為模式可能造成虛擬世界中的＂熱點＂。在熱點中的玩家，

常需頻繁地互動，產生大量的負載，以至於造成服務品質的下降。若

有太多的熱點同時存在同一台伺服器中，遊戲的流暢度將會受到影響。

為了解決這個問題，傳統的方式會藉由高估單一遊戲地圖的負載量，

ii

分配遠超過需求的資源來維持遊戲品質，但此會造成遊戲資源上的浪

費。在本論文中，我們提出一個基於熱點預知的動態資源配置方案

(NN-Player+DRP-HA)，並且使用一個有限狀態機來表示玩家狀態及

其可能的狀態轉換。我們結合玩家的狀態和類神經網路(neural

network)對下一個時間點玩家數量進行預測，我們可以計算出地圖上

熱點造成的潛在負載，並且分配適當的計算資源來消化這些負載。實

驗結果顯示，我們提出的方法可以在不造成嚴重的資源過度配置的情

況下，降低資源配置不足的機率。與現存的另一代表性之動態資源配

置方法(NN-Player+DRP)比較，我們提出的方法可以以控制 CPU 過

度分配的比率不超過一台虛擬機器容量的前提下，將 CPU 資源分配

不足的次數從 2.16% 降低至 0.42% (改進了 80%)。

關鍵詞：雲端計算、動態資源配置、熱點預知、大型多人線上遊戲、

資源配置不足。

iii

Dynamic Resource Provisioning

with Hotspot Anticipation for MMOG Clouds

Student: Yen-Chih Chang Advisor: Dr. Kuochen Wang

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Recently, there are various kinds of games that have been served via the internet.

An example of such games is MMOG (Massively Multiplayer Online Game) that has

become the most popular game service in the world. For saving operating cost and

simplifying management of servers, gaming service providers are combining their

online services with cloud computing technology. In MMOG virtual environments,

avatars are often acting as a group to help one another to achieve certain goals or

defeat bosses, which may become a hotspot in a virtual world. Frequent interactions

between avatars in hotspots may generate lots of workload and may cause decrease of

quality of service (QoS). The latency of gaming service will increase when there are

too many hotspots in a single server, which may harm the quality of experience (QoE)

enormously. To address this problem, in general, games operators over-allocate

resources to game zones, which may cause the waste of gaming resources. In this

paper, we propose a dynamic resource provisioning with hotspot anticipation scheme,

called NN-Player+DRP-HA that employs a vector based model to monitor the

movement of avatars in a virtual world. Furthermore, we use a finite state machine to

iv

represent possible avatar states and state transitions. By combining the state of each

avatar in a game zone with a neural network (NN) predictor, we may figure out

potential workload produced by hotspots, and then allocate appropriate computing

resources to support the game zone. Experimental results support that the proposed

NN-Player+DRP-HA scheme can avoid most of under-allocation events with an

acceptable over-allocation rate. Compared with a representative dynamic resource

provisioning method, called NN-Player+DRP, the proposed NN-Player+DRP-HA

reduces the probability of under-allocation events from 2.16% to 0.42% (80%

improvement) in terms of CPU capacity of a VM, under the premise of controlling the

CPU over-allocation rate within the CPU capacity of one VM.

Keywords: Cloud computing; dynamic resource provisioning; hotspot anticipation;

MMOG; under-allocation

v

Acknowledgements

Many people have helped me with this thesis. I deeply appreciate my thesis

advisor, Dr. Kuochen Wang, for his intensive advice and guidance. I would like to

thank all the members of the Mobile Computing and Broadband Networking

Laboratory (MBL) for their invaluable assistance and suggestions. The support by the

National Science Council under Grants NSC99-2221-E-009-081-MY3 and

NSC101-2219-E-009-001 is gratefully acknowledged. Finally, I thank my family for

their endless love and support.

vi

Contents
Abstract (in Chinese)…………………………………………….…………………...i

Abstract ... iii

Contents ... vi

List of Figures ... viii

List of Tables .. ix

Chapter 1 Introduction .. 1

Chapter 2 Background and Related Work .. 3

2.1 Background .. 3

2.1.1 Zones and Replications .. 3

2.1.2 Load Management .. 4

2.2 Related Work .. 5

2.2.1 Avatar Mobility .. 6

2.2.2 Resource Provisioning .. 7

2.2.3 AoI Management .. 7

2.3 Summary .. 7

Chapter 3 Proposed Dynamic Resource Provisioning with Hotspot Anticipation . 9

3.1 System Overview ... 9

3.2 Avatar Mobility .. 10

3.3 Finite State Machine Model ... 12

3.4 Load Model .. 17

Chapter 4 Evaluation Results ... 19

4.1 Experimental Setup .. 19

4.2 Definition of Allocation Status .. 21

4.3 Simulation Results ... 21

vii

Chapter 5 Conclusion .. 25

5.1 Concluding Remarks .. 25

5.2 Future Work ... 25

References ... 27

viii

List of Figures
Figure 1: An example of zones and replications. ... 4

Figure 2: Relation between workload and response time. 5

Figure 3: Classification of related work... 6

Figure 4: The system architecture of DRP-HA. ... 10

Figure 5: An illustration of the movement of avatar a in a time slot. 11

Figure 6: Definition of a hotspot. ... 12

Figure 7: The state transition of avatars in DRP-HA. 13

Figure 8: The situation of state (II). ... 13

Figure 9: The flowchart of the proposed DRP-HA scheme. 15

Figure 10: Experimental environment.. ... 19

Figure 11: Maximum number of allocated VMs comparison in all time slots

for three different approaches. ... 22

Figure 12: Over-allocation rate comparison for three different approaches.

.. 22

Figure 13: Probability of under-allocation for each experiment. 23

Figure 14: Average rate of under/over allocation. 23

ix

List of Tables
Table 1: Comparison of related work on dynamic resource provisioning. 8

Table 2: Simulation parameters. .. 20

1

Chapter 1

Introduction

The Massively Multiplayer Online Game (MMOG) has played an important role

in this generation of the internet. According to existing research [1], over half of the

internet users are MMOG players, which attract a lot of companies to join the MMOG

market. To support a large scale of players, game operators have invested a lot of

money to operate and manage gaming servers.

Nowadays, more and more gaming service providers are combining their online

services with cloud computing technology. It reduces the initial construction cost of

MMOG servers and consolidates computing resources to simplify the server

management. Furthermore, cloud computing technology offloads the graphics

computation to the server side, which means gaming clients could be low-end devices,

so called thin-clients. That is, players may use their hand-held devices to access

gaming services via the internet as long as the devices are able to display streaming

video data. The user experience using thin-clients will be identical to that using

computers or game consoles. The most important thing is cloud computing

technology enables gaming service providers to provide resources dynamically, and it

creates an opportunity to save more operating cost of gaming servers.

Although cloud computing technology is beneficial to game applications, here

comes one problem. Online games are delay-sensitive applications. For those requests

from the client side, servers have to respond them in a short while; otherwise, the

response time may be unacceptable to players. Note that response time is the most

affecting factor to gaming experience of players [2]. In other words, the occurrence of

2

game delay impacts on the player loyalty directly, which may cause the losing of

subscribers. For this reason, if gaming service providers want to leverage the dynamic

resource provisioning model for saving operating cost, they must monitor the resource

allocating status in real-time and predict the resource requirement in the near future.

Therefore, gaming service providers can allocate enough computing resources to

every zone to avoid the delay caused by under-allocation, and make sure that response

time of the whole system is acceptable.

In MMOGs, for arousing interest and increasing interaction opportunities

between players, operators may create some stochastic events, such as a wild boss [3]

appearing suddenly. These events will attract many players to come, and further form

groups. In such a situation, avatars in the same group are in one another AoI (Area of

Interest), indicating that one’s action will affect other avatars. Thus, updating status of

avatars may frequently happen in this area, which becomes a “hotspot” in the virtual

world. If there are hotspots existing in a zone, numerous status update tasks may

produce in a single server, which may reduce QoS tremendously. In general, game

operators manage resources in the way of over-estimating resource requirements of

players to maintain their good gaming experience, which cause the waste of server

resources.

In this paper, we discuss the impacts of interactions between avatars on the

workload of cloud servers. We then propose a dynamic resource provisioning with

hotspot anticipation to avoid the delay caused by resource under-allocation, and

reduce the resource over-allocation as well. The remainder of this paper is organized

as follows. We introduce the background and review of related work in Chapter 2.

Chapter 3 presents the proposed dynamic resource provisioning with hotspot

anticipation for MMOG clouds. Chapter 4 evaluates the experiment results of the

proposed design. Finally, concluding remarks and future work are given in Chapter 5.

3

Chapter 2

Background and Related Work

2.1 Background

2.1.1 Zones and Replications

In a zone-based game world, a complete virtual world is composed by several

zones. Each zone is served by an individual server which can be a physical one or a

virtual one. The size and shape of a zone are decided according to the zone

management policy. In a zone-based game world, it is easy to determine the serving

host of each avatar. However, the zone-based approach suffers from several defects.

First of all, there exist problems in inter-zone communications when two avatars,

belonging to different zones, need to communicate. In this situation, a huge amount of

network traffic and computation tasks could decline the quality of service. Secondly,

it limits the computation resources allocated to a zone. In general, game operators use

a fix-sized machine to supply resources for a zone. From the point of view for

management, it is easy to maintain. However, if there are numerous requests coming

suddenly, this model is unable to guarantee QoS. Moreover, because of the lack of

flexibility, the resource allocation of MMOG is usually in over-allocation state due to

the lack of flexibility; and that may leads to low resource utilization, further results in

much unnecessary costs to service operators.

4

Figure 1: An example of zones and replications.

To avoid the above problems, in most cases, cloud gaming systems adopt the

replication scheme. As we shown in Figure 1, in this scheme, each machine serves a

different set of avatars in the same virtual world. Between servers, they perform

synchronization periodically and maintain “shadow entities” for those avatars served

by other servers. Thus each avatar still can communicate with ones who are served by

other servers.

2.1.2 Load Management

Rapid elasticity and on-demand self-service are characteristics of cloud

computing, which enables the provision of cloud resources on demand whenever they

are required. Tenants are charged accord to their usages. Therefore, reducing the

resource usages is as important as reducing the response time for gaming service

providers.

In cloud computing environments, in general, service providers monitor their

QoS to decide whether resizing is necessary. For example, when QoS is descended to

a certain threshold or there is too much computing resource in idle mode, resizing can

balance the cost and quality of service. A resizing procedure includes powering on/off

5

VMs, synchronization of VMs and redirection of player connections. All of these

actions will consume computing resources. Therefore, threshold settings must take

these effects into consideration.

Figure 2: Relation between workload and response time.

According to existing research [4], relation between workload and response time

demonstrates non-linear growth. Figure 2 is an example of this relation using a

2.2GHz processor. It shows that with heavier workload, response time grows faster.

2.2 Related Work

In this section, we will review related work. The related work can be classified

into three categories: avatar mobility, dynamic resource provision and AoI

management. The classification tree of related work is shown in Figure 3.

6

MMOG

Avatar Mobility

Liang et al. [9]

Miller et al. [6]

Legtchenko et al. [5]

AoI Management

Ahmed et al. [8]

Dynamic Resource
Provisioning

NN-Player + DRP
(Nae et al.) [7]

NN-Player+
DRP-HA

(proposed)

Figure 3: Classification of related work.

2.2.1 Avatar Mobility

In MMOGs, or NVEs (Network Virtual Environments), movement of avatars is a

kind of factors that contributes to server load, which produces message exchanging

events, status updating events and so on. Therefore, many researches are trying to

predict or model the movement of avatars. Legtchenko et al. proposed a mechanism to

predict and model avatar movement, which called “Blue Banana” [5]. This approach

improves latency of message transfering in a peer-to-peer overlay by foreseeing

movement of avatars in the near future. They introduced three modes of avatar

mobility: travelling, exploring and in hotspot. In travelling mode, avatars move fast

and straight. In exploring mode, avatars move slowly and trajectories are winding.

Avatars in hotspot are acting like in exploring mode but the difference is that they

have other avatars in their AoI [5].

Miller et al. proposed another research about avatar movement [6]. They

measured avatar movement in World of Warcraft battlegrounds, and modeled their

observation. They found that hotspot a model is more likely to represent the avatar

movement in WoW.

7

2.2.2 Resource Provisioning

In general, game operators use a simple policy to manage their computing

resources. In the beta phase of MMOGs, they estimate the basic resource requirement

of their service, and build servers according to this estimation. In the running phase of

MMOG services, they observe the utilization of those servers; if overloading occurs

in some servers, operators will buy new machines to maintain QoS in an acceptable

level. However, to achieve better resource utilization, operators may port their gaming

services into cloud platforms; therefore, monitoring or even predicting workload of

game servers become necessary.

Nae et al. [7] proposed a serial of research for dynamic resource provisioning in

MMOGs. They derived several load models for MMOGs to describe the workload of

CPU, memory and network bandwidth in different situations.

2.2.3 AoI Management

In virtual world environments, AoI (area of interest) defines a visual range of a

player. When there’s an event taking place in this range, the effect of this event must

show on the player’s screen. In virtual worlds, each avatar is able to observe changes

in its AoI. To save computing resources, servers only update the events which take

place within one’s AoI. Ahmed et al. [8] proposed a dynamic AoI management

approach which didn’t partition the world map into zones. They partition the world

map according to the distribution of AoI. Hence, it’s not necessary to deal with

inter-zone communications.

2.3 Summary

Table 1 is a comparison table which shows the differences between related work

and the proposed DRP-HA. Our objective is proposing a dynamic resource allocation

mechanism with hotspot anticipation for MMOG environments. In addition, we also

8

consider interactions between avatars.

Table 1: Comparison of related work on dynamic resource provisioning.

Approach Description Architecture
Load

prediction

Resource

Provisioning

Nae [7]

Resource

provisioning for

MMOGs

Multi-servers
Neural

netowrk

Based on number of

players

DRP-HA

(Proposed)

Resource

provisioning for

MMOG clouds

Gaming cloud
Neural

network

Based on number of

players and hotspot

detection

9

Chapter 3

Proposed Dynamic Resource

Provisioning with Hotspot

Anticipation

3.1 System Overview

As we described in previous chapters, our objective is to propose a dynamic

resource allocation approach to avoid under-allocation of cloud computing resources,

which considers the overhead of extra load that are produced by frequent interactions

between avatars in a hotspot. According to the research proposed by H. Liang et al.,

avatars move slowly and chaotically within the hotspots, fast and straight between

hotspots [9]. In our approach, we leverage this property to determine if avatars are

moving toward hotspots.

Figure 4 is the system architecture of our proposed scheme (DRP-HA). Zone

servers allocate VMs in a cloud datacenter which simulates a virtual world. History

Storage stores and provides history data of number of avatars to NN Predictor. NN

Predictor is a neural network (NN) based predictor that predicts the number of avatars

in the next time slot by history data. The DRP-HA module is used to decide to power

on/off VMs according to the current number of VMs, current positions and moving

speeds of avatars and the prediction results of NN Predictor.

10

Load Monitor

Zone Servers (VMs)

NN Predictor

Current number
of avatars

Current number
of VMs

DRP-HA

Power on/off
VMs

Number of avatars
in next time slot

Current positions
and moving speeds

of avatars

History
Storage

History data for
number of avatars

Figure 4: The system architecture of DRP-HA.

3.2 Avatar Mobility

We define a scheme to monitor the movement of avatars. As shown in Figure 5,

the circle presents the AoI of avatar a. And we use a vector Va to represent the moving

direction and speed of a. Da is the distance that a can moves within a time slot. As we

mentioned in Chapter 2, the VM scaling procedure takes a few minutes to finish.

Therefore, the length of a time slot must longer than the length of the VM scaling

procedure; otherwise, the gaming system may result in under-allocation.

11

Figure 5: An illustration of the movement of avatar a in a time slot.

Our main objective of dynamic resource provisioning is to avoid

under-allocation. If avatars move into a hotspot, it results in extra loading, which is

the main concern of our design. As we mentioned, avatars are move more quickly and

straightly between hotspots, this property enables us to predict whether avatars will

move into a hotspot in the next time slot.

Therefore, we first define a hotspot h, as shown in Figure 6. A hotspot is a set of

AoIs such that at least two avatars must be in each other’s AoI. We use following two

statements to define a hotspot. In following description, ha denotes the hotspot of

avatar a.

{𝐴𝑜𝐼𝑎 ∈ ℎ𝑎| ∃ 𝑎𝑣𝑎𝑡𝑎𝑟 𝑏 ≠ 𝑎𝑣𝑎𝑡𝑎𝑟 𝑎, 𝑏 𝑖𝑠 𝑖𝑛 𝐴𝑜𝐼𝑎}

if ℎ𝑎 = ℎ𝑏 , ℎ𝑏 = ℎ𝑐 , 𝑡ℎ𝑒𝑛 ℎ𝑎 = ℎ𝑐

12

Figure 6: Definition of a hotspot.

3.3 Finite State Machine Model

Next, we use a finite state machine (FSM) to represent the state transition of an

avatar, as we shown in Figure 7. There are three states of players. If the original state

of an avatar a is State (I), which indicates that there was no any avatar in a’s AoI. In

such situation, two possible events may occur. Event (a) means avatar a is moving

toward a hotspot h and a’s speed is fast enough to reach hotspot h within a time slot.

In other words, Da is close to |Va | * t, where t is the period of a time slot. Event (a)

transfers a’s state from State (I) into State(II). Otherwise, if this avatar forms a hotspot

while traveling (Event (f)), a’s state will be transferred to State (III).

If the original state of an avatar a is State (II), it indicates that avatar a may enter

a hotspot h within a time slot (Event (c)) and its state will be transferred to State (III),

as shown in Figure 8. Load Monitor, as shown in Figure 4, calculates resource

requirements based on the assumption that avatar a is in hotspot h. If Event (b) occurs,

which means avatar a changes its direction, avatar a will no longer reach any hotspot

in the next time slot, a’s state will be transferred to State (I).

13

In a hotspot
(III)

Traveling
(I)

(b)

(a)
Approaching

a hotspot
(II)

(c)

(d)

(e)

(f)

Otherwise
Otherwise

Otherwise

Figure 7: The state transition of avatars in DRP-HA.

Figure 8: The situation of state (II).

If the original state of avatar a is State (III), it indicates that avatar a is in a

hotspot h, and a can observe the actions produced by other avatars in h. If event (d)

occurs, which means avatar a leaves the original hotspot h, but it still may reach a

hotspot within a time slot, then a’s state will be transferred to State (II). On the other

14

hand, if it will not reach any hotspot (Event (e)), a’s state will be transferred to State

(I).

We adopt these three states to determine the growth of members in hotspots. In

the beginning of every time slot, we use the information we mentioned above to

perform a state update procedure to decide whether the resizing VM scaling of this

zone is necessary. The flowchart of the proposed DRP-HA scheme is shown in Figure

9, and we briefly describe the algorithm of updating avatar states, as shown in

algorithm 1. According to the result of the above algorithm, we can know that if there

is a new AoI joins a hotspot, if there are members leaving a hotspot, or if a hotspot

will continue to exist in the next time slot.

The flowchart of NN-Player+DRP-HA is shown in Figure 9. In Step 1, neural

network predictor outputs the number of avatars in the next time slot. In Step 2, Load

Monitor detects the moving speed of each avatar, and updates their states by

algorithm 1, which can anticipate the status of each hotspot in a game zone. For

example, we detect the joining/leaving of avatars for each hotspot. Therefore, we can

anticipate the percentages of interactions involving avatars and NPCs, which denotes

as pci and pei, and the number of avatars and NPCs involving interactions, which

denotes as ICh and BEh for each hotspot h. In Step 3, we use a Load Model to

calculate a predicted load in the next timeslot by pci, pei, ICh and BEh, which we will

describe in detail in next section. Finally we determine if the current number of

allocated VMs is appropriate, in other words, if the allocated VMs meets the demand

of current workload of the gaming cloud, and the over-allocation rate is less than 100.

The formula we used for evaluating over-allocation rate will introduce in Chapter 4.

15

Start

Step 1: NN Predictor predicts the

number of players in next time slot

Step 2: Load Monitor uses the

positions and moving speeds of

avatars to update the state of each

avatar (by Algorithm 1)

Step 3: Load Monitor uses updated

avatar states to calculate the server

load via load model

If current number of VMs is

appropriate?

Need more VMs or allocated too many VMs

Step 4: Load monitor triggers Zone

Servers to power on/off VMs

Sleep a time slot

Current number
of VMs is

appropriate

Figure 9: The flowchart of the proposed DRP-HA scheme.

16

Algorithm 1: Update the states of avatars

pa’ = (x’, y’). The position of avatara in previous time slot

pa = (x, y). The current position of avatara

𝑉𝑎⃑⃑ ⃑ = α𝑖 + β𝑗 is the moving vector of avatara

statea = the current state of avatara

hotspota = the hotspot that avatara is belonged to

for a = 1 to number of players do

 if statea is “traveling” then

 if |pa - pa’ |= |𝑉𝑎⃑⃑ ⃑ * t|*(1-ε) then //whereεis a small number

 if in_hotspot(x+α, y+β) then

 statea = “approaching a hotspot”

 if there is any other avatars avatarb in AOI(avatara) then

 statea = “in a hotspot”, hotspota = new hotspot ID

 stateb = “in a hotspot”, hotspotb = new hotspot ID

 else if statea is “approaching a hotspot” then

 if in_hotspot(x, y) then

 statea = “in a hotspot”, hotspota = ID of the hotspot covers (x, y)

 else if distance(pa’, all of avatars)> |𝑉𝑎⃑⃑ ⃑ * t| then

 statea = “traveling”

 else // statea is “in a hotspot”

 if there are no other avatars in AOI(avatara) then

 if in_hotspot(x+α, y+β) then

 statea = “approaching a hotspot”

 else if |pa - pa’ |= |𝑉𝑎⃑⃑ ⃑ * t| * (1-ε) then //whereεis a small number

if distance(pa’, all of avatars)> |𝑉𝑎⃑⃑ ⃑ * t| then

 statea = “traveling”

end

In algorithm 1, we demonstrate the state update procedure in detail. Note that ε is

a small number (close to zero), which means if |pa - pa’ | is very close to |𝑉𝑎⃑⃑ ⃑ * t|, the

statement |pa - pa’ |= |𝑉𝑎⃑⃑ ⃑ * t|*(1-ε) is true. The setting of ε is an implementation issue,

the system will become more sensitive when ε becomes bigger, but this may cause

overestimate of numbers of in-hotspot-avatars, results in higher over-allocation rate of

resources. The in_hotspot(x, y) function in algorithm 1 helps us to determine if the

17

given position (x, y) is in certain hotspot. In this function, we perform linear search, if

the given position is in certain avatar’s AoI and this avatar is in a hotspot,

in_hotspot(x, y) will return true, else, return false.

3.4 Load Model

To figure out the load caused by hotspots, we leverage the load model proposed

by V. Nae et al. in [7]. According to their work, interactions between players only

affect CPU utilization; memory utilization and bandwidth utilization are only related

to the number of players [7]. Therefore, in the proposed design, we focus on CPU

utilization. The load model of CPU utilization which V. Nae et al. proposed is shown

below [7]:

 𝐿𝑜𝑎𝑑𝐶𝑃𝑈 = 𝐿𝑜𝑎𝑑𝑢𝑝𝑑𝑎𝑡𝑒 + 𝐿𝑜𝑎𝑑𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

=
𝑡𝑢

𝑡𝑆𝐴𝑇

(𝑁 + 𝐵𝐸) + (
𝑡𝑖

𝑡𝑆𝐴𝑇
∙ 𝑝𝑐𝑖 ∙ 𝑓(𝐼𝐶, 𝐼𝐶) +

𝑡𝑖
𝑡𝑆𝐴𝑇

∙ 𝑝𝑒𝑖 ∙ 𝑓(𝐼𝐶, 𝐵𝐸))

Where Loadupdate is the workload for proceeding state updates from the other

machines and Loadinteraction is the workload for computing the interaction between

entities. In the above formula, N is the number of players connected to this game

session, IC is the number of avatars that involve interactions, BE is the total number

of moving bots or NPCs (Non-Player Characters), tu is the updating time for a single

entity, ti is the computing time for one interaction, tSAT is the saturation threshold to

evaluate CPU performance, and pci and pei are the percentages of interactions

involving avatars and NPCs, respectively. Note that f(x, y) is the formula to represent

message numbers of each interaction class. For O(n2) and O(n3) class interactions,

f(x,y) is 𝑥 ∙ 𝑦 and 𝑥2 ∙ 𝑦, respectively [7].

In our design, we assume that all the avatars and NPCs are involving the

interactions occurring in each hotspot. ICh is the number of in-hotspot-avatars for

18

estimating the load of an individual hotspot h. The Loadinteraction in [7] can be reduced

into following for calculating the load of hotspot h:

𝐿𝑜𝑎𝑑ℎ =
𝑡𝑖

𝑡𝑆𝐴𝑇
∙ (𝑝𝑐𝑖 ∙ 𝑓(𝐼𝐶ℎ, 𝐼𝐶ℎ) + 𝑝𝑒𝑖 ∙ 𝑓(𝐼𝐶ℎ, 𝐵𝐸ℎ))

Therefore, the total load of a zone is the sum of load produced by each hotspot

and updating operations of every VM and avatar which not involving any interactions.

The following formula is used to estimate the total load of a zone.

𝐿𝑜𝑎𝑑𝐶𝑃𝑈 = 𝐿𝑜𝑎𝑑𝑢𝑝𝑑𝑎𝑡𝑒 + 𝐿𝑜𝑎𝑑𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

=
𝑡𝑢

𝑡𝑆𝐴𝑇
∙ (𝑁 + 𝐵𝐸) + ∑ 𝐿𝑜𝑎𝑑ℎ

𝐻

ℎ=1

19

Chapter 4

Evaluation Results

4.1 Experimental Setup

Gaming trace
data parser

Zone Server
Simulator

Load Monitor

Log file

Resource requirement
and VM allocation in

each time slot

Power on/off VMs

The number of
VMs, the current

position and
moving speed of

each avatar

Gaming trace
data from

WoW

Figure 10: Experimental environment..

To evaluate our proposed approach, we collect avatar information from World of

Warcraft (WoW), which is the most popular MMOG these years. Figure 10 is our

experimental environment. A gaming trace data parser is used to analyze the records

we collected from WoW. These records include the move-in/move-out of avatars in

this zone and the playing characters of avatars. These data will be sent to the zone

20

server simulator, which can simulate the movement of avatars, then we use the load

model we mentioned in previous chapter to calculate the resource requirements of

every time slot for the zone servers. It also can simulate the power on/off of VMs. The

adjustment the number of VMs is controlled by load monitor, which receives the

resource requirements and number of current supporting VMs from zone server

simulator; determine an appropriate number VMs to support the zone, and generate

log files eventually.

Table 2: Simulation parameters.

AoI Range 50 yards

Avatar speed 10 yards/min.

VM capacity 31 Avatars [10]

VM startup time 100 sec. [11]

Time slot 5 min.

Interaction class O(n2)

VM capacity 31 avatars

Game data From World of Warcraft (v5.2.0)

Evaluation period 2013/4/22 15:43 to 2013/5/7 15:36

Evaluation map Valley of the four winds

Table 2 shows the parameters used for simulation. The range of AoI is 50 yards

and avatar speed is 10 yards per minute. These are approximate values in WoW. For

servers, we assume the capacity of a VM is 31 avatars [11], and VM startup time is

100 seconds, which is the startup time of a linux server in Amazon EC2 cloud [12].

The evaluation period is from 2013/4/22 15:43 to 2013/5/7 15:36. We use /combatlog

command, which is a built-in command in WoW, to get the interaction information of

avatars in a virtual world. Among all maps in WoW, we choose the Vlley of the Four

Winds to collect data, since player interactions within the map occur frequently.

21

4.2 Definition of Allocation Status

To evaluate the performance of our proposed scheme, we define a formula 𝛼 to

determine the over/under allocation rate.

𝛼 = 𝑛𝑣𝑚
(𝑎𝑙𝑙𝑜)

× 100% − 𝜆𝑢𝑠𝑎𝑔𝑒 , {
𝑖𝑓 𝛼 ≥ 0, 𝑜𝑣𝑒𝑟-𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
𝑖𝑓 𝛼 < 0, 𝑢𝑛𝑑𝑒𝑟-𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

where 𝑛𝑣𝑚
(𝑎𝑙𝑙𝑜)

 is the number of allocated VMs.

 𝜆𝑢𝑠𝑎𝑔𝑒 is the actual usages of computing resources.

According to this formula, the allocation status is either over-allocation or

under-allocation. We assume that the scale of a zone is adjusted according to

supporting number of VMs in an MMOG cloud. Therefore, 𝛼 will between 0 and

100 if current allocated computing capability is sufficient to support this game zone,

and the wasted computing resource is minimized. It is impossible to decrease the

over-allocation rate by shutting down supporting VMs in this situation.

4.3 Simulation Results

Figure 11, Figure 12, Figure 13 and Figure 14 are the simulation results of our

experiments. The results of NN-Load are derived by using a neural network tool

provided by MATLAB 7.11.0 (R2010b) to predict server load. The type of the neural

network we chose is dynamic time series, which takes d past values and d past

prediction results as input and predicts the next value. In the NN-Load experiment,

since the length of a time slot is 5 minutes, we set d = 24, which means the inputs are

the CPU usages and the prediction result of past two hours and output is the

prediction value of next 5 minutes. The NN-Player+DRP experiment uses the same

setting of neural network; the difference between NN-Load experiment is that the

inputs are 24 past values and 24 past prediction value of player numbers in the next

time slot. The predicted number of players is a parameter for load model to compute

an estimated load.

22

Figure 11: Maximum number of allocated VMs comparison in all time slots for three

different approaches.

Figure 12: Over-allocation rate comparison for three different approaches.

Figure 11 illustrates the number of allocated VMs of three experiments, the

points in this figure we plot is the maximum value of each two hours. It can be

observed that our approach allocates the same number of VMs as DRP approach at

most of time. Figure 12 is the over-allocation rate comparison for three different

approaches. This figure shows that NN-Load approach is more resource efficient, but

23

the following two figures will show the defects of NN-Load approach.

Figure 13: Probability of under-allocation for each experiment.

Figure 14: Average rate of under/over allocation.

Figure 13 and Figure 14 show that our proposed scheme decreases the

24

probability of under-allocation. The results of NN-Load experiment shows that the

neural network achieve good accuracy in predicting load. However, it has higher

probability to under-allocate resources than other two experimental setups. The result

of NN-Player+DRP experiment shows that probability of under-allocation will

decrease, since load model will overestimate the resource requirements. However,

neural network predictor is based on trial-and-error design strategy, so the prediction

results cannot fit the actual value perfectly. Thus, there’re still 2.16% under-allocation

event occurred. Finally, our proposed DRP-HA scheme can avoid most of

under-allocation event, which only 18 events over 4255 records. The average

over-allocation rate is 66.58%, which can be handled by single VM.

25

Chapter 5

Conclusion

5.1 Concluding Remarks

In this paper, we have presented a hotspot anticipation (HA) scheme to enhance

dynamic resource provisioning (DRP), called DRP-HA for MMOGs in cloud

computing environments. If avatars are aggregated into groups and become hotspots

in a virtual world, interactions between avatars in hotspots will cause extra load to the

zone server. Our proposed DRP-HA employs a finite state machine model to monitor

the movement of avatars in a virtual world. By combining the state of each avatar in a

game zone with a neural network (NN) predictor to forecast the number of players in

the next time slot (called NN-player+DRP-HA), we may figure out the potential

workload produced by hotspots, and then allocate appropriate computing resources to

support the game zone.

Experimental results have supported that the proposed NN-Player+DRP-HA

scheme can avoid most of under-allocation events with an acceptable over-allocation

rate. Compared with a representative dynamic resource provisioning method, called

NN-Player+DRP, the proposed NN-Player+DRP-HA reduces the probability of

under-allocation events from 2.16% to 0.42% (80% improvement) in terms of CPU

capacity, under the premise that the CPU over-allocation rate is within the capacity of

one VM.

5.2 Future Work

In this paper, we focus on reducing the under-allocation events in terms of CPU

capacity by considering the interaction of avatars. In the future, by taking different

26

behavior of avatars that result in different loads into account, we may further reduce

under/over-allocation rates of the dynamic resource provisioning for MMOGs.

27

References

[1] Y. Lee; K. Chen; Y. Cheng; C. Lei, “World of Warcraft avatar history dataset,” in

Proc. the Second Annual ACM Conference on Multimedia Systems MMSys’11,

San Jose, California, USA, Feb. 2011, pp. 123-128.

[2] S. Wang; S. Dey, “Modeling and Characterizing User Experience in a Cloud

Server Based Mobile Gaming Approach,” in Proc. IEEE Global Communications

Conference GLOBECOM’09, Hilton Hawaiian Village, Honolulu, Hawaii, USA,

Dec. 2009, pp. 1-7.

[3] “Boss (video gaming),” [Online.] Available:

http://en.wikipedia.org/wiki/Boss_(video_gaming)

[4] P. Bod´ık, C. Sutton, A. Fox, D. Patterson and M. Jordan, “Response-Time

Modeling for Resource Allocation and Energy-Informed SLAs,” in Workshop on

Statistical Learning Techniques for Solving Systems Problems (MLSys), Whistler,

Canada, 2007.

[5] S. Legtchenko, S. Monnet and G. Thomas, "Blue Banana: resilience to avatar

mobility in distributed MMOGs," in Proc. IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN), vol., no., June 28 2010-July 1 2010,

pp.171-180.

[6] J.L. Miller and J. Crowcroft, "Avatar movement in World of Warcraft

battlegrounds," in Workshop on IEEE Network and Systems Support for Games

(NetGames), vol., no., 23-24 Nov. 2009, pp.1,6.

[7] V. Nae, A. Iosup and R. Prodan, "Dynamic resource provisioning in massively

multiplayer online games," IEEE Transactions on Parallel and Distributed

Systems, pp. 380-395, Mar. 2011.

http://en.wikipedia.org/wiki/Boss_(video_gaming)

28

[8] D.T. Ahmed and S. Shirmohammadi, "A Dynamic Area of Interest Management

and Collaboration Model for P2P MMOGs," IEEE/ACM International Symposium

on Distributed Simulation and Real-Time Applications, vol., no., pp.27-34, 27-29

Oct. 2008.

[9] H. Liang, I. Tay, M. F. Neo, W. T. Ooi and M. Motani, “Avatar mobility in

networked virtual environments: Measurements, analysis, and implications.”

CoRR, abs/0807.2328,2008.

[10] M. Mao and M. Humphrey, “A Performance Study on the VM Startup Time in

 the Cloud,” in Proc. IEEE 5th International Conference on Cloud Computing,

 CLOUD’12, June 2012, pp. 423-430.

[11] Y. Lee and K. Chen, "Is server consolidation beneficial to MMORPG? a case

study of World of Warcraft," in Proc. IEEE 3rd International Conference

on Cloud Computing (CLOUD) , July 2010, pp. 435-442.

