

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

考量最低能源消耗之雲端資料中心

動態資源分配演算法

A Dynamic Resource Allocation Algorithm with Minimum

Energy Consumption for Cloud Data Centers

研 究 生：連懷恩

指導教授：王國禎 教授

中 華 民 國 １０2 年 7 月

考量最低能源消耗之雲端資料中心動態資源分配演算法

A Dynamic Resource Allocation Algorithm with Minimum Energy

Consumption for Cloud Data Centers

研 究 生：連懷恩 Student：Huai-En Lien

指導教授：王國禎 Advisor：KuoChen Wang

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2013

Hsinchu, Taiwan, Republic of China

中華民國 102年 7月

i

考量最低能源消耗之雲端資料中心

動態資源分配演算法

學生：連懷恩 指導教授：王國禎 博士

國立交通大學網路工程研究所

摘 要

隨著越來越多的公司將資訊服務轉移到公有雲資料中心，如何在

滿足各個應用程式不斷變動的資源需求下，在雲端資料中心達成省電

節能的資源分配，已經成為一個相當吸引人的問題。許多動態資源分

配法被提出來解決這些問題，但他們大部分都缺少像同時調整 VM 及

server 分配量、橫跨時間軸上的最佳化、及最佳解演算法這些嚴重

影響能源效率的因素。在這篇論文中，我們提出了一個新的應用程式

層級的動態資源分配演算法稱作 Time-Directed Dijkstra (TD-D)，

它可以在現有的負載預測機制幫助下，藉由達成運轉耗電(operating

cost)及開關耗電(switching cost)間的平衡來達成最低的能源消耗。

我們主要的貢獻如下：(1)我們分類並整理了影響資源分配演算法能

ii

源效率的主要因素。(2)我們提出了一個最低能源消耗的資源分配演

算法，它可以使用市面上常見的機器，在合理的時間內算出最佳解。

(3)我們也驗證了這個新演算法即使在負載預測發生錯誤時，依然可

以保持可靠(低資源分配不足率，low resource under-allocation

rate)和有效(好的能源效率)。我們的模擬結果顯示，這個新的最佳

解演算法可以比其他現有的代表性近似解演算法(local search)耗

用更少的運算時間並省下平均 9.5%的能源消耗。除此之外，我們的

演算法在使用有預測錯誤的負載預測資料的情況下(7 個單位時間後

產生 25%錯誤率)，仍然可以比現有的近似解演算法省下平均 7.1%的

能源消耗，並保持很低的資源分配不足(under-allocation)率(在 1

個單位時間內，每個應用程式平均 0.03台 VM)。

關鍵詞：應用程式層級、雲端資料中心、動態資源分配、能源消耗。

iii

A Dynamic Resource Allocation

Algorithm with Minimum Energy

Consumption for Cloud Data Centers

Student: Huai-En Lien Advisor: Dr. Kuochen Wang

Institute of Network Engineering

National Chiao Tung University

Abstract

As more and more companies outsource their information services to public

cloud data centers, how to perform dynamic resource allocation efficiently to reduce

energy consumption while fulfilling each application’s fluctuating resource demands

has become a very challenging task. Many dynamic resource allocation approaches

were proposed to tackle this task, but most of them lack for some influencing factors

that may impact the energy efficiency, such as resizing at both VM and server levels,

optimization over time horizon, and the optimality of the algorithm. With the help of

existing load prediction techniques, in this paper, we design an application-level

dynamic resource allocation algorithm, called Time-Directed Dijkstra (TD-D), which

can achieve minimum energy consumption, by seeking the best trade-off between

operating cost and switching cost due to switching on/off resources. The main

contributions of this paper are as follows. (1) We analyze and categorize the most

influencing factors that should be addressed in order to build an application-level

iv

energy efficient resource allocation algorithm. (2) We develop a minimum energy

consumption algorithm that can produce an optimal solution within reasonable

computing time using commodity machines. (3) We demonstrate the proposed TD-D

algorithm is fairly robust in terms of low resource under-allocation rate and

energy-efficient to prediction errors. Simulation results show that, our optimal TD-D

algorithm can save 9.5% of energy consumption in average using error-free workload

data compared with a representative best-effort algorithm (local search), and consume

much less computing time compared with the representative algorithm. In addition,

using workload data with 25% prediction error after a prediction window of 7 time

slots, our TD-D algorithm can save 7.1% of energy consumption than the

representative algorithm and keep a very low resource under-allocation rate (0.03 VM

/ (time slot × application)).

Keywords: application-level; cloud data center; dynamic resource allocation; energy

consumption

v

Acknowledgements

Many people have helped me with this thesis. I deeply appreciate my thesis

advisor, Dr. Kuochen Wang, for his intensive advice and guidance. I would like to

thank all the members of the Mobile Computing and Broadband Networking

Laboratory (MBL) for their invaluable assistance and suggestions. The support by the

National Science Council under Grant NSC101-2219-E-009-001,

NSC99-2221-E-009-081-MY3, and by the Inventec under Contract 100C202 is

grateful acknowledged. Finally, I thank my family for their endless love and support.

vi

Contents
Abstract (in Chinese)…………………………………………….…………………...i

Abstract ... iii

Contents ... vi

List of Figures ... viii

List of Tables .. ix

Chapter 1 Introduction .. 1

Chapter 2 Background and Related Work .. 4

2.1 Application-level Resource Allocation ... 4

2.2 Resizing at both VM and Server Levels .. 5

2.3 Switching Cost .. 5

2.4 Optimization over Time Horizon .. 6

2.5 Optimality of the Algorithm ... 6

2.6 Other Factors and Comparison Table ... 7

Chapter 3 Problem Formulation .. 8

3.1 Energy Consumption Model and Cost Function .. 8

3.2 Difficulties of Resizing at Both VM and Server Levels 11

Chapter 4 Proposed Time-Directed Dijkstra Algorithm .. 13

4.1 Preliminaries of the Algorithm ... 13

4.2 Time-Directed Dijkstra Algorithm .. 17

4.3 Correctness and Complexity Issues.. 17

4.4 System Architecture ... 19

Chapter 5 Evaluation ... 21

5.1 Experiment Settings ... 21

5.2 Experiment Results and Discussion ... 24

vii

Chapter 6 Conclusion .. 29

6.1 Concluding Remarks ... 29

6.2 Future Work ... 29

References ... 30

viii

List of Figures
Figure 1. Illustration of the time-directed Dijkstra algorithm...................................... 15

Figure 2. An example of deriving a minimum cost path.. 16

Figure 3. Resource management system architecture and its workflow. 20

Figure 4. Energy consumption comparison of the proposed TD-D with approaches

that resize both VMs and servers... 25

Figure 5. Comparison of energy consumption under different severity of prediction

error ... 27

ix

List of Tables
Table 1. Comparison of different resource allocation algorithms for cloud data centers

.. 7

Table 2. Symbols used in the cost function .. 10

Table 3. Parameter settings used in the evaluation .. 22

Table 4. Energy consumption comparison of the proposed TD-D with approaches only

resizing VMs .. 25

Table 5. Comparison of average computing time and percentage of times an algorithm

completed within 3 minutes ... 26

Table 6. VM under-allocation under different AWGN variances over 7 time slots 28

file:///C:/Users/dep/Documents/研究所/thesis/thesis%2007.26.docx%23_Toc362570461
file:///C:/Users/dep/Documents/研究所/thesis/thesis%2007.26.docx%23_Toc362570461

1

Chapter 1

Introduction

 Energy cost takes a significant fraction of budget in public cloud data centers and

this cost is expected to grow as the scale of cloud data centers and the price of energy

are increasing in coming years. If a data center can adjust its resource provisioning in a

more precise way, it can not only reduce unnecessary energy consumption, but also

accommodate more applications and more profit can be made. Hence, there is a

growing demand to improve the energy efficiency of cloud data centers. Many studies

of auto-scaling and resource resizing for data centers have been published to respond

to such a challenge. By the help of existing load prediction techniques [1, 2, 3, 4], such

precise auto-scaling is possible.

However, even adopt the same state-of-the-art load prediction technique, different

resource allocation approaches may have different ways to use these predicted

workload data and concern different factors, thus having diverse scenarios and

influencing results of energy saving. For example, M. Lin et al. [5] used a load

prediction technique to predict the future workload of the whole data center, and

resizes the number of active servers accordingly. Such a scenario is suitable for a

private data center, but is not suitable for a public cloud data center since no

application-level workload prediction and no virtualized resources allocation were

concerned. In contrast, C. Tang et al. [6] allocates virtualized resources to each

application, but it does not perform well in energy saving due to the lack of server

level resizing. D. Ardagna et al. [9] and V. Petrucci et al. [10] concerned the switching

cost due to switching on/off resources to further improve energy efficiency. However,

2

many of these approaches only concern the resource allocation for the next time slot,

not the optimization over time horizon. A switched off resource may need to be

switched on again quickly, and therefore not much operating cost is saved. Finally,

since the complexities of such data center optimization problems are usually very high,

most of the existing approaches [6, 7, 8, 9] only provide best-effort algorithms, which

usually cannot promise the quality of the solutions and their performance are highly

correlated to the implementations. To cope with these problems, in this paper, we

propose a minimum energy consumption resource allocation algorithm called

Time-Directed Dijkstra (TD-D). In this algorithm, we use predicted application-level

workload data from a load prediction module to construct the solution space

throughout a prediction window of several time slots. Then we apply a level-by-level,

time-directed minimum cost path search, which is actually a Dijkstra shortest path

search on a time-directed graph, to find the optimal solution. The optimal solution

itself involves a best trade-off between operating cost and switching cost due to

switching on/off servers and VMs so that it is the resource allocation with minimum

energy consumption. Simulation results show that our algorithm can save 9.5% of

energy consumption in average using error-free workload data compared with a

representative best-effort dynamic resource allocation algorithm, and consume much

less computing time compared with the representative approach. We also evaluate

scenarios with prediction error, and the results showed that our algorithm is fairly

robust in terms of low resource under-allocation rate and energy-efficient to prediction

error. Last but not least, while achieving the minimum energy consumption, our

algorithm can keep the resource under–allocation rate in a very low level, which is

usually the weakness of many existing energy efficient approaches since energy

efficiency and resource under-allocation rate are two trade-off parameters.

3

The rest of the paper is organized as follows. In Chapter 2, we discuss the

background and categorize related work on dynamic resource allocation for cloud

data centers. In Chapter 3, we give our problem formulation and discuss the

difficulties of resizing VMs and servers at the same time. In Chapter 4, we describe

our Time-Directed Dijkstra algorithm and system architecture. In Chapter 5, we list

experiment settings and evaluate experiment results. Finally, in Chapter 6, we

conclude this paper and outline future work.

4

Chapter 2

Background and Related Work

To design an energy efficient resource allocation algorithm for cloud data centers,

one should consider the following factors: application-level resource allocation,

resizing at both VM and server levels, switching cost, optimization over time horizon,

and optimality of the algorithm.

2.1 Application-level Resource Allocation

Many researches on the resource resizing problem in data centers have an

assumption that there is a load prediction module we can exploit. A recently published

approach [5] uses predicted total workload of the whole data center as an input and

then derives the number of active servers accordingly. This is fine for a private data

center, but is not suitable for a data center which intends to provide public cloud

services. It assumes that the workload from different applications can be aggregated

to one machine under one OS. This could lead to the following three consequences.

First, it may be less accurate in predicting the total workload for the entire data center,

since the total workload comprises the workload from different types of applications.

It is conceivable that different types of applications may have very different workload

patterns. Therefore considering the total workload of the entire data center is not a

good idea. Second, for a cloud data center, different applications may come from

different subscribers or tenants, and from subscribers’ point of view, it is unacceptable

that one subscriber/tenant has to share the same VM with another subscriber/tenant

5

due to security concern and accounting. It is better to allocate dedicated VMs to each

subscriber/tenant. Third, it is desirable to provide customized or graded accounting

for different QoS levels and prices based on each subscriber/tenant’s needs and budget.

To do so, we need to distinguish the workload from different applications and then

allocate dedicated VMs accordingly.

2.2 Resizing at both VM and Server Levels

Some of the existing researches like [5], [6] only consider the resizing problem

either at server level or at VM level. However, to reach the minimum energy

consumption, resizing at both levels are necessary. It is easy to understand that if we

only resize one kind of resource, the other one may incur unnecessary energy

consumption. Since the number of active servers is closely related to the number of

running VMs, we have to resize at both levels at the same time. In the next chapter we

will discuss their relationship and show the difficulties if we want to resize at both

levels at the same time to attain minimum energy consumption.

2.3 Switching Cost

 Any manipulation of adding/removing VMs and switching on/off servers will

incur switching cost. The switching cost mainly refers to the power consumed due to

switching, but it can also include wear-and-tear overhead and performance delay due

to switching. A good resource allocation algorithm should consider the trade-off

between operating cost (the energy cost to keep resources operating) and switching

cost.

6

2.4 Optimization over Time Horizon

Many approaches like [6, 8, 9, 10] use a load prediction module to predict

workload in the next time slot and allocate resources accordingly. Some of them like

[9], [10] even consider switching cost to further improve energy efficiency. Although

these approaches are effective in their own scenarios, when we look for a resource

allocation with minimum energy consumption that crosses several time slots like [5]

and [7], these approaches may not provide a good solution. They did not utilize

predicted workload that are across several time slots later, which many existing load

prediction techniques like [1], [2] can offer. Besides, if we only conduct resource

allocation in the next time slot, some resources being switched off may need to be

switched on again due to fluctuating resource demand, thus causing a lot of

unnecessary switching cost. As a result, a resource allocation approach that provides

optimization over time horizon will usually outperform the one that only deals with

resource allocation for the next time slot.

2.5 Optimality of the Algorithm

 Most of the optimization problems in cloud data centers are formulated as integer

programming or mixed integer programming problems, which are mostly NP-hard

problems. The complexity may be even higher if we want to include all

above-mentioned factors. As a result, many approaches use approximation algorithms

like neural network [7] or local search [7], [9] to obtain best-effort solutions. In

addition to the worse energy saving in these best-effort solutions, the major problem is

that we usually cannot guarantee the quality of these solutions, or so-called

approximation ratio. Another problem of these approximation algorithms is that their

performance is usually highly correlated to the implementation, like the hidden layer

7

used in a neural network or the initial value of a local search. All of these make these

approximation algorithms unstable.

2.6 Other Factors and Comparison Table

Some paper may concern other factors such as dynamic voltage frequency scaling

(DVFS). However, some papers like [7] have pointed out that such technique has little

effect on energy saving compared with resizing the number of active servers. Another

reason that we do not use such a technique is that as number of cores increases within a

CPU, such a scaling may incur more VM migrations due to consolidating VMs that are

working in the same frequency to the same destination machine. A qualitative

comparison between the above-mentioned related work including the proposed TD-D

is shown in Table 1.

Table 1. Comparison of different resource allocation algorithms for cloud data centers

Approach
Resizing

VMs

Resizing

servers

Application-level

resource

allocation

Switching

cost

Optimization

over time

horizon

Optimality

Minghong Lin et al. [5] No Yes No Yes Yes Optimal

Chunqiang Tang et al. [6] Yes No Yes No No Best-effort

Dara Kusic et al. [7] Yes Yes Yes Yes Yes Best-effort

Anton Beloglazov et al. [8] Yes Yes Yes No No Best-effort

Danilo Ardagna et al. [9] Yes Yes Yes Yes No Best-effort

Norman Bobroff et al. [10] Yes Yes Yes No Yes Best-effort

Vinicius Petrucci et al. [11] Yes Yes Yes Yes No Optimal

Time-Directed Dijkstra

(TD-D, proposed)
Yes Yes Yes Yes Yes Optimal

8

Chapter 3

Problem Formulation

 In this chapter we describe the energy consumption model, the cost function and

the problem formulation of our minimum energy consumption resource allocation

algorithm.

3.1 Energy Consumption Model and Cost Function

To solve the minimum energy consumption problem, we transform it into an

optimization problem and build a cost function to minimize the cost of cloud data

centers. To simplify our work when doing the auto-scaling on both server and VM

level, we use a homogeneous model that all servers and VMs are of same capacities

and energy consumption. This assumption makes our work as a simple discrete

packing problem that all servers have equal number of slots to host VMs and each VM

has equal capacity to handle requests. Now, we need an energy consumption model for

a running server. We refer to the energy consumption model introduced in [11], which

is

 (1)

Here, the energy consumption of a running server is shown as a linear equation, where

Pidle is the basic energy consumption when the server is idle, Pbusy is the augmented

energy consumption when the server is at 100% utilization, and u is the CPU

utilization which falls into the interval of [0, 1]. We modify the linear model of (1) and

give a discrete step function version:

 (2)

uPPPuP idlebusyidle)()(

nPPnP VMserver)(

9

where n is the number of VMs that currently run on that server, Pserver is the basic

energy consumption of an idle server like Pidle, and PVM is the augmented energy

consumption for each VM. The transformation from (1) to (2) implies every VM is

fully loaded and such an implication is feasible since an auto-scaling algorithm always

resize its resource provisioning closely to its actual demand.

 Now we can build up our cost function. Table 2 lists the symbols used in our cost

function. There are two kinds of cost, the operating cost and the switching cost.

Operating cost is the energy consumption of running servers and VMs, while

switching cost includes the cost to switch on/off servers and startup/shutdown VMs.

For simplicity, we let the switching cost of switching on and switching off a particular

resource be the same value. We can put operating cost and switching cost together in

one cost function by introducing the break-even time parameter. The break-even time

is the time period that the operating cost of a particular resource equals to the

switching cost of that resource multiplied by two. For example, for a server, it will be

 (3)

where ∆server is the break-even time of a server and δserver is the switching cost of a

server. For a VM, we can also use the same idea of break-even time and have a similar

relation:

 (4)

Assume that there are N apps, and the prediction window size is W time slots, then we

can build our cost function as follows:

Minimize

(5)

2 serverserverserverP

2 VMVMVMP

1

0 1

,1,

0 01

,

W

t

N

i

titiVM

W

t

W

t

tserver

N

i

tiVM xxsPvP

1

0

1

W

t

ttserver ss

10

Subject to

(6)

(7)

The cost function (5) is simply the summation of all operating cost and switching cost

over W+1 time slots. Restrictions (6) and (7) restrict that the allocated VMs must be

sufficient for minimum resource demand of each application and the number of active

servers must be able to host all VMs at any moment. We require that a time slot in our

system must be long enough to perform any desired resource rearrangement

manipulations (server switch on/off, VM startup/shutdown). We also assume we have

a workload predictor deployed in our system so that we can get the predicted

workload of each application up to several time slots later.

Table 2. Symbols used in the cost function

Variable Definition

The number of VMs allocated to the ith app in time

slot t

 The number of active servers in time slot t

The predicted resource demand (in terms of number of

required VMs) of ith app in time slot t

Constant Definition

 Operating cost of a single idle server in one time slot

 Operating cost of a single VM in one time slot

 Switching cost to switch on/off a single server

 Switching cost to switch on/off a single VM

C Each server can host at most C VMs

 WtNidv titi ...,2,1,0,,...,2,1,,,

 Wtscapacityv t

N

i

ti ,...,2,1,0,
1

,

11

3.2 Difficulties of Resizing at Both VM and Server

Levels

 In most cases, such a discrete resizing problem is relatively easy if we have

predicted workload data. Intuitively, to achieve the minimum energy consumption

between operating cost and switching cost, we can allocate resources to exactly match

the predicted resource demand if the demand is rising or no change, compared with the

demand in the previous time slot. If the demand is falling, we check if the demand will

return to the previous level within a break-even time or not to decide to keep or switch

off the resource. But the problem becomes complicated if we want to resize at both

VM and server levels. The problem is that the amount of allocated VMs will affect the

amount of servers that need to be allocated. Keeping an unnecessary VM who will be

needed within a break-even time will not always bring the minimum energy

consumption. We give two examples here. In the first example, in most cases, when

there is a VM break-even time event, or we say the demand of that VM goes down

then back within a break-even time, we keep that VM. However, if closing that VM

may help to switch off the host server, and if the total resource demand of the data

center goes down in the time slot that the VM is again to be needed, closing that VM

may be a better choice since we can start that VM in other server and thus saving the

operating cost of the original host server. We can use (8) to express such relation:

(8)

In (8), the left-hand side is the cost to release a VM, and the right-hand side is the cost

to keep that VM. Note that in the right-hand side, we don’t have the switching cost of

the host server since no matter we decide to keep that VM or not, the host server is

doomed to be shut down in both sides. In the second example, when we keep a

VMserverVMVM PP)(2

12

temporarily unnecessary VM and meanwhile, some new VMs from other applications

are about to be activated, we may need to switch on a new server to support the

increasing capacity demand. In fact, things are usually more complicated than the

above examples, if the break-even time period is long, and several overlapped but not

simultaneous VM break-even time events occur. In this case, it forms a chain of

break-event time events among several applications, and these events may affect one

another. In such cases, there is no simple rule to decide the optimal amount of

allocated resources.

13

Chapter 4

Proposed Time-Directed Dijkstra

Algorithm

In this chapter, we introduce the proposed resizing algorithm called

Time-Directed Dijkstra (TD-D), which can help us reach the minimum energy

consumption by considering both operating cost and switching cost. That is, find a

minimum cost solution of equation (5) in Chapter 3.

4.1 Preliminaries of the Algorithm

Since in a resizing problem we don’t consider the placement of resource, we

simplify (5) to (N+1) kinds of resources in all W time slots. The (N+1) kinds of

resources include the number of allocated VMs for N apps, plus the number of active

servers.

First we define a new term called number-of-combinations. It gives a best known

tight upper-bound of the optimal resource provision, which means the optimal number

of allocated VMs for a particular application, or the optimal number of active servers,

in a particular time slot. It can be defined as follows:

minimum resource demand ≤

optimal resource provision ≤

minimum resource demand + number-of-combinations - 1 (9)

14

That is, assuming the minimum resource demand of a particular resource in a

particular time slot is m, then the optimal resource provision must be an element of a

resource sequence {m, m + 1, m + 2, … , m + number-of-combinations - 1}. From the

description in Chapter 3, we know the number-of-combinations will not be 1 only

when there is a break-even time event of that kind of resource. To find the

number-of-combinations for each kind of resource in each time slot, we examine if it

happens a break-even time event. If it does, then we check every descending count of

predicted resource demand to see if that resource demand will climb back to the

previous level within the following break-even time. For example, we assume the

resource demand for a particular application in a consecutive four time slots are 3, 1, 2,

3, and assuming is 1. From our definition, we can find the

number-of-combinations of these consecutive four time slots are 1, 2, 1, 1. Note that

the number-of-combinations in the second time slot is not 3 because the resource

demand climbs back to 3 after the break-even time period. Since the resource demand

of servers is affected by the number of allocated VMs, we need a two-pass scan to

determine the number-of-combinations of each kind of resource. In the first pass, we

determine the number-of-combinations of N apps in all W time slots. Since the

maximum number of active servers must be enough to accommodate the maximum

number of allocated VMs, in the second pass, we determine the

number-of-combinations of server in all W time slots by the information of maximum

possible VMs from the first pass. Once we complete the two-pass scan, we have (N+1)

number-of-combinations in each time slot, and we can find the resource combination

set in all W time slots. In each time slot, the resource combination set is a (N+1)-ary

Cartesian product over (N+1) resource sequences in that time slot.

VM

15

Figure 1. Illustration of the Time-Directed Dijkstra algorithm

 Here we introduce the terminologies used in our TD-D Algorithm. As illustrated in

Fig. 1, it can be understood as finding the minimum cost path, or the shortest path from

the source node (the root node in the figure) to the destination node (the leaf node in

the figure). The graph is composed of W+1 levels and there are edges connecting any

two adjacent levels. The term “level” can be considered as “a group of nodes that

resides at same time slot”. Here each node stands for a resource allocation state in that

time slot; that is, an element of a resource combination set in that time slot. An edge

represents a switching process from one resource allocation state to another. Since a

path can travel from any node in the upper level to any node in the lower level, any

two adjacent levels form a complete bipartite graph. Clearly, the number of nodes in a

particular level equals the cardinality of the resource combination set of that level. We

16

call it “Time-Directed Dijkstra” since it uses the same idea of Dijkstra’s algorithm to

find the minimum cost path (shortest path), however, with a few differences. First, it is

a directed graph and each path can only be traversed along the time-axis. Second,

unlike conventional weighted graphs, there are three types of weights (costs) used in

this algorithm, and both nodes and edges are weighted. It is illustrated in Fig. 2. Operx

is the operating cost of a node x; Switchxy is the switching cost from node x to node y;

and Lowx is the lower bound cost (operating cost plus switching cost) from node x to

the leaf node. The operating cost of each node and the switching cost of each edge

remain unchanged, while the lower bound cost will be updated throughout the

algorithm.

Figure 2. An example of deriving a minimum cost path

17

4.2 Time-Directed Dijkstra Algorithm

Now we introduce the whole process of our Time-Directed Dijkstra Algorithm

(TD-D). First, we use the two-pass scan to obtain all number-of-combinations and the

resource combination set in every time slot, thus producing all nodes in every level.

Then we use a reverse update manner, that is, from the leaf level to the root level, we

update the lower bound cost of every node. Again we use Fig. 2 for example, Lowa

will be the min(Lowb + Switchab , Lowc + Switchac), plus Opera. In this way, nodea

iteratively check all nodes in the next level, update the lower bound cost, and finally

Lowa becomes the minimum cost from nodea to the leaf node. The whole process is

shown in Algorithm 1.

Algorithm 1 Time-Directed Dijkstra

1: Two-pass scan to generate all nodes in each level

2: Set Lowleaf = Operleaf and Low = ∞ for other nodes

3: for t = W - 1 to 0 do

4: for i = 1 to cardinality of resource combination set at level = t do

5: for j = 1 to cardinality of resource combination set at level = t + 1 do

6: Lowi = min(Operi + Lowj + Switchij , Lowi)

7: Output Low of root node and the corresponding minimum cost path

4.3 Correctness and Complexity Issues

For the correctness of the algorithm, we use Fig. 2 again as an example. In Fig. 2,

it is easy to see that, if nodea chooses nodeb as its best descendent toward the leaf

node, then for one of the nodea’s ancestor node, named noded, its best path through

nodea must be d-a-b, not d-a-c. The suggested best path obtained from the lower level

18

still works when we move on to the upper level. That is to say, when we iteratively

update the lower bound cost of all nodes level by level, in a reverse manner, we

always produce the minimum cost path to the leaf node. In fact, we can actually run

this algorithm in the opposite direction, that is, update from the root node to the leaf

node, and it will output the same result. The structure shown in Fig. 2 is a reversible

structure.

The other thing is the complexity of this algorithm. We analyze it from two parts.

First part is the size of the outer layer for loop, which is proportional to the prediction

window size W. We can consider this part as a polynomial time complexity part. The

other part is the two inner layer for loop. These two for loop should have the same

complexity order, since they represent the average cardinality of resource

combination set of all levels. The average cardinality of resource combination set is

strongly dominated by the severity of workload fluctuation, the trend of workload,

and the number of applications in data center. If many applications have smooth

workload, or monotonic increasing or monotonic decreasing workload, the cardinality

of resource combination set will be small since there are not too much break-even

time events we should concern. But in the worst case, though it is almost impossible

in the real world, that all applications experience break-even time events

simultaneously and severely, then the resource combination set will be a very large set.

The order of the average cardinality of resource combination set is O((average

number-of-combination in a break-even time event) ^ (average number of break-even

time events in a level)). It is exponential time complexity, but in our algorithm, we

only consider those promising resource combinations, like break-even time events,

making it still a practical approach. In our simulation, in almost all cases, we can

finish our Time-Directed Dijkstra Algorithm in three minutes, under the common

scenario used in public cloud data centers.

19

4.4 System Architecture

The proposed TD-D algorithm is not a standalone component. It needs to work

with other components to perform its function. Fig. 3 illustrates the system

architecture for our TD-D algorithm and its workflow when time slot = t. First, as

illustrated in (a), the workload monitor will monitor and record the workload from

each application that running on computing cloud in real-time. Since the real-time

monitored data is numerous and jumbled, the workload monitor will process them

into ordered and usable statistics data, usually the peak workload values for each

application in that time slot, and then sends the data to reactive controller and

workload predictor, as illustrated in (b). In (c), once the reactive controller receives

the monitored workload data from workload monitor, it will perform its only but

essential function, that is, dynamically switched on VMs/servers if any resource

under-allocation is detected. This is a critical function that a proactive, long-term

controller like our TD-D algorithm will need, since there are always prediction error

and resource under-allocation is inevitable. We put this reactive, or short-term

controller into our system architecture as the auxiliary of our long-term, proactive

controller, and the countermeasure to prediction error. Another component that uses

the workload statistics data is the workload predictor. As mentioned in the previous

chapter, we make use of existing workload prediction technique to deploy a workload

predictor in our system, to provide workload prediction for the following W time slots

for each application. Finally, as illustrated in (d), the proactive controller receives the

updated prediction data from workload predictor, performs our TD-D algorithm, and

then sends control messages to computing cloud to perform any desired resource

reallocation, as illustrated in (e).

20

Figure 3. Resource management system architecture and its workflow, assuming time slot = t. (a)

Real-time workload data gathered from the Computing Cloud. (b) Real-time workload statistics,

usually using the peak workload within a time slot. (c) Dynamically switch on new VMs/servers if

under-allocation is detected. (d) Provide updated workload prediction from t + 1 to t + W. (e) Perform

dynamic resource allocation at the beginning of each time slot, according to the direction of the

proposed Time-Directed Dijkstra algorithm.

21

Chapter 5

Evaluation

 In this chapter, we introduce our experiment settings, the comparison approaches

we used, the experimental results and discussion.

5.1 Experiment Settings

We build up a simulation environment to do our evaluation. First, we defined the

parameters used in our evaluation, which are listed in Table 3. Note that the energy

consumption unit we use here is a relative unit so there is no energy unit like joule or

KW/hr. That is, we set or = 1, then we get and from

the value of and , by applying (3) and (4). The values of break-even

time and can be determined by measuring the energy consumption on

real servers and VMs or determined by operator policy. We also use the energy

consumption measurement data from [12] as our operating cost parameter. The peak

energy consumption for a 2x Intel Xeon X5550 Quad core server is 248W, and the

energy consumption is 149W in its idle state, by this we determine the ratio of

dfg and . Another thing we should notice is that although (3) and (4) are in

equation form, when in a practical use, we should add an extra tiny cost to both

1 and so that we will always try to keep the resource when the left-hand

side are very close to the right-hand side in (3) and (4). The parameters used in the

evaluation are listed in Table 3.

Then we implement a synthetic workload generator, which can provide the

predicted workload of every app for the following W time slots. By intuition we may

serverP
VMP server

VM

server VM

server VM

serverP VMP

server VM

22

Table 3. Parameter settings used in the evaluation

Parameter Definition Value

N The number of applications 30

MAX_VM_APP

The maximum number of VMs

which can be allocated to each

application

10

NUM_SERVER
The number of available servers in

the data center

ceiling(NUM_APP

×MAX_VM_APP / C)

W Prediction window size 7 time slots

 Same as defined in Table 2 9

 Same as defined in Table 2 1

 Same as defined in (3) 3

 Same as defined in (4) 2

C Same as defined in Table 2 6

think a workload generator that generates workload that follow a Gaussian distribution.

But such workload generator mostly generates workload that vibrate along the mean

value, but rarely the increasing or decreasing workload, which do happen in the real

world data center at the transition time between rush-hour and off-hour. Here we

implement a synthetic workload generator that using the discrete version of Gaussian

Random Walk model. For each app, we see the predicted resource demand as a series

of W non-negative integer random variables like , and these random

variables form a time-homogeneous Markov chain. The term “Gaussian Random

Walk” means for every step from to , 0 ≤ t < W , , where

111 is an integer random variable that follow the same Gaussian

distribution . Note that since the number of VMs that allocated to an app

should be ranged from 0 to MAX_VM_APP, we force any negative d to be 0 and any

),0(2

 Wddd ,...,, 21

diffdd tt 1td 1td

diff

23

d that lager than MAX_VM_APP to be MAX_VM_APP, making the state space of the

Markov chain a closed communicating class. Besides, there are always prediction error

in real world, so we implement Additive White Gaussian Noise (AWGN) to add

prediction error into our predicted workload. The AWGN works similarly as Gaussian

Random Walk, that they all apply a Gaussian distribution of the form , so

we can adjust the degree of workload fluctuation and the severity of prediction error by

applying different variance values.

 We categorize the approaches used in the evaluation into five classes, listed as

follows:

(1) Resizing VM only, without break-even time: This class of approaches only do

the VM resizing and not concern the break-even time, or we can say the

switching cost. [6] can be categorized into this class.

(2) Resizing VM only, with break-even time: This class of approaches only do

the VM resizing and using the rule of break-even time to balance the operating

cost and switching cost.

(3) Resizing VM and server, without break-even time (on demand): This class of

approaches do both the VM and server resizing, but not concern the break-even

time, or we can say the switching cost. [8] and [13] can be categorized into this

class.

(4) Resizing VM and server, with break-even time: This class of approaches do

both the VM and server resizing, and using the rule of break-even time to

balance the operating cost and switching cost. [7], [9], [10] can be categorized

),0(2

24

into this class.

(5) The proposed Time-Directed Dijkstra algorithm.

Note that since every approach has their own scenario, here we assume that all

approaches can do the time horizon optimization over W time slots, thus relax and

improve some approaches. Another thing is that since the performance of

approximation algorithm is highly correlated to the implementation, our simulation

results may not reveal the true performance of those approaches that using the

approximation algorithm. An approximation algorithm with good implementation can

often get the solution very close to the optimal.

Finally, to do an objective and credible measurement on the computing time, in

our evaluation, we implement our algorithm to a single-thread, single-process

program, running on a Intel Core i5-2500 3.3GHz machine with 8GB RAM.

5.2 Experiment Results and Discussion

 First we evaluate the performance of energy saving using error-free workload

information. In Table 4, we compare our algorithm with other two approaches that

only resizing VM. It can be easily understood that the first two approaches consume

much more energy since they don’t provide the server level resizing, and the basic

energy consumption takes a significant fraction of the overall energy

consumption on a working server [7]. Next we compare our algorithm with other two

that resizing at both VM and server levels. The result is illustrated in Fig. 4. We can

easily observe that, as the degree of workload fluctuation increases, the energy

consumption also increases due to more and more switching cost. We notice that the

serverP

25

Table 4. Energy consumption comparison of the proposed TD-D with approaches only resizing VMs

Variance of workload

fluctuation

Resizing VMs only,

without break-even

time [6]

Resizing VMs only,

with break-even time
TD-D (proposed)

2 2253 2234 248

2.38 2314 2288 292

2.72 2328 2297 311

3 2328 2292 350

Figure 4. Energy consumption comparison of the proposed TD-D with approaches that resize both

VMs and servers

approach concerning break-even time consume more energy than the one that uses

on-demand resizing. This phenomenon can be understood as we described in Chapter 3,

that when applying a simple break-even time rule, we may need to allocate more

servers to accommodate the VMs that we kept in VM break-even time events. As the

workload fluctuation become severe, more VM break-even time events happen and

26

Table 5. Comparison of average computing time and percentage of times an algorithm completed within

3 minutes

more wasted servers are allocated. This is a good example why we need an optimal

algorithm rather than a best-effort algorithm that using simple rules or heuristics.

 In the second part, we measure the computing time of our algorithm. Since the

complexity of our algorithm is mainly dominated by the level of workload fluctuation,

we record the computing time under different workload fluctuation level. We also

show the computing time of local search approach for comparison, which is the one

that closest to TD-D in energy saving. The results are shown in Table 5. As we can see,

the average computing time is acceptable for a long term resource allocation

algorithm, and there is a high percentage of times that the algorithm can be completed

within a time slot (3 minutes) and give us the optimal solution. In contrast, the local

search approach never completes its search within three minutes due to its unbounded

search space and the lack of stopping criterion. Since we use the relative energy unit,

that is, we set the = 1 and the proposed TD-D can be completed within one time

slot, we can conclude that the energy consumption of performing our algorithm is no

more than 1. Compare the energy our algorithm can save with the energy and time our

algorithm costs, we show the effectiveness and efficiency of our algorithm in energy

saving.

Finally, we evaluate the reliability and effectiveness of our algorithm to

Algorithm
Variance used in workload generator

2 2.38 2.72 3

TD-D (proposed)
1.1 sec

(100%)

8.05 sec

(100%)

9.1 sec

(98%)

34.78 sec

(95%)

Local search [7]
180 sec

(0%)

180 sec

(0%)

180 sec

(0%)

180 sec

(0%)

VMP

27

Figure 5. Comparison of energy consumption under different severity of prediction error

prediction error. Besides the reactive controller showed in Chapter 4, we re-perform

our TD-D algorithm every 2 time slots, instead of W, to resist prediction error. When a

resource over-allocation occurs, it brings extra energy consumption of operating cost.

When a resource under-allocation occurs, it brings extra energy consumption of

switching cost since the reactive controller has to switch on new VM/server to fulfill

the demand. Again we use local search approach for comparison. The reactive

controller and algorithm re-performing are also implemented in the local search

approach. We set the variance used in workload generator = 2.38 and the results are

shown in Fig. 5. As we can see, as the prediction error become severer, the energy

consumption also become larger, due to the extra operating cost caused by

over-allocation and the extra switching cost caused by under-allocation. We find our

algorithm can still save more energy than the comparative approach under prediction

error. Another way to evaluate the reliability to prediction error is under-allocation

ratio. This is an important evaluation since some energy efficient algorithm may take

28

the risk of under-allocation to achieve less energy consumption. The results are shown

in Table 6. The difference between the second and third column of Table 6 is, the

second column show the average VM under-allocation counts of the whole data center,

while the third column show the average VM under-allocation counts of each

application, which is the actual influencing factor for user experience. We can find

that our algorithm can keep in very low resource under-allocation ratio even under

severe prediction error. The reason of how our algorithm can achieve low energy

consumption while keeping in low resource-allocation ratio is the good side-effect of

concerning break-even time. In a break-even time event, we may choose to keep that

temporarily unnecessary resource, thus avoiding some resource under-allocation if a

prediction error occurs and the resource demand does not really go down.

Table 6. VM under-allocation under different AWGN variances over 7 time slots

Variance of

AWGN

Average VM under-allocation

(VM / time slot)

Average VM under-allocation per

application (VM / (time slot ×

application))

Local search TD-D Local Search TD-D

0.02 0.27 0.30 0.01 0.01

0.04 0.86 0.76 0.03 0.03

0.06 1.20 1.13 0.04 0.04

29

Chapter 6

Conclusion

6.1 Concluding Remarks

In this paper, we introduce our minimum energy consumption resource allocation

algorithm for cloud data centers called Time-Directed Dijkstra (TD-D). It can produce

optimal solution by utilizing the existing load prediction approaches. We first

characterize the difficulties of resizing at both VM and server levels, and then come

up with an optimal algorithm that can seek the best trade-off between operating cost

and switching cost to achieve minimum energy consumption. We demonstrate the

correctness of our algorithm and show that even such high complexity problem can be

completed by commodity machine in reasonable computing time. Compared with

representative best-effort dynamic resource allocation algorithm, our optimal

algorithm can save more energy under different workload fluctuation level. We also

demonstrate the robustness and energy efficiency of our algorithm to prediction error.

6.2 Future Work

The next step is to use the workload traces from real world to further evaluate our

algorithm. Another future work is the cluster version of our algorithm. Since there are

more and more large scale data center, for reliability and scalability, the cluster version

must be developed to build a decentralized resource control system.

30

References

[1] John J. Prevost, KranthiManoj Nagothu, Brian Kelley and Mo Jamshidi,

“Prediction of Cloud Data Center Networks Loads Using Stochastic and Neural

Models,” Proc. of the 6th International Conference on System of Systems

Engineering, 2011, pp. 276-281.

[2] Truong Vinh Truong Duy, Yukinori Sato, Yasushi Inoguchi, “Performance

Evaluation of a Green Scheduling Algorithm for Energy Savings in Cloud

Computing,” International Symposium on Parallel & Distributed Processing,

Workshops and Phd Forum (IPDPSW), 2010.

[3] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, Alfons Kemper, "Workload

Analysis and Demand Prediction of Enterprise Data Center Applications," IEEE

10th International Symposium on Workload Characterization, 2007.

[4] Arijit Khan, Xifeng Yan, Shu Tao, Nikos Anerousis, "Workload Characterization

and Prediction in the Cloud: A Multiple Time Series Approach," IEEE Network

Operations and Management Symposium (NOMS), 2012.

[5] Minghong Lin, Adam Wierman, Lachlan L. H. Andrew, and Eno Thereska,

“Dynamic Right-Sizing for Power-Proportional Data Centers,” IEEE INFOCOM,

2011.

[6] Chunqiang Tang, Malgorzata Steinder, Michael Spreitzer, and Giovanni Pacifici,

“A Scalable Application Placement Controller for Enterprise Data Centers,” ACM

Proceedings of the 16th international conference on World Wide Web, 2007.

[7] Dara Kusic, Jeffrey O. Kephart, James E. Hanson, Nagarajan Kandasamy, Guofei

Jiang, “Power and Performance Management of Virtualized Computing

Environments via Lookahead Control,” Cluster Computing, vol. 12, no. 1, pp.

1-15, March 2009.

31

[8] Anton Beloglazov, Jemal Abawajy, Rajkumar Buyya, “Energy-aware Resource

Allocation Heuristics for Efficient Management of Data Centers for Cloud

Computing,” Future Generation Computer Systems, vol. 28, no. 5, May 2012, pp.

755–768, 2012.

[9] Danilo Ardagna, Barbara Panicucci, Marco Trubian, and Li Zhang,

“Energy-Aware Autonomic Resource Allocation in Multitier Virtualized

Environments,” IEEE Transactions on Services Computing, vol. 5, no. 1, 2012.

[10] Vinicius Petrucci, Orlando Loques, Daniel Mossé , “A Dynamic Optimization

Model for Power and Performance Management of Virtualized Clusters,”

Proceedings of the 1st International Conference on Energy-Efficient Computing

and Networking, 2010, pp. 225-233.

[11] Anton Beloglazov, Rajkumar Buyya1, Young Choon Lee, and Albert Zomaya,

“A Taxonomy and Survey of Energy-Efficient Data Centers and Cloud Computing

Systems,” Advances in Computers, vol. 82, 2011.

[12] Andrew Krioukov, Prashanth Mohan, Sara Alspaugh, Laura Keys, David Culler,

Randy Katz, "NapSAC: Design and Implementation of a Power-Proportional Web

Cluster," ACM SIGCOMM Computer Communication Review, vol. 41, no. 1, pp.

102-108, January 2011.

[13] Norman Bobroff, Andrzej Kochut, Kirk Beaty, “Dynamic Placement of Virtual

Machines for Managing SLA Violations,” 10th IFIP/IEEE International

Symposium on Integrated Network Management, 2007.

