

國 立 交 通 大 學

電信工程研究所

博 士 論 文

基於搜尋演算法的不定長度錯誤更正前置碼之設計

Algorithmic Design of Variable-Length Error-Correcting Prefix Code

研 究 生：吳庭伊

指導教授：陳伯寧 教授

中 華 民 國 一○二 年 七 月

基於搜尋演算法的不定長度錯誤更正前置碼之設計

Algorithmic Design of Variable-Length Error-Correcting Prefix Code

 研 究 生：吳庭伊 Student：Ting-Yi Wu

指導教授：陳伯寧 Advisor：Po-Ning Chen

國 立 交 通 大 學

電信工程研究所

博 士 論 文

A Thesis

Submitted to Institute of Communications Engineering

College of Electrical and Computer Engineering

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Communications Engineering

July 2013

Hsinchu, Taiwan, Republic of China

中華民國一○二年七月

i

基於搜尋演算法的不定長度錯誤更正前置碼之設計

學生：吳庭伊 指導教授：陳伯寧

 國立交通大學電信工程研究所博士班

摘 要

在這篇論文中，我們針對離散無記憶訊號源(discrete memoryless source)設計整

合訊源-通道之不定長度錯誤更正前置碼(variable-length error correcting prefix

code or VLECPC)。我們的研究成果包含：一、在給定自由距離(free distance)最小允

許值的前提下，證明運用優先權搜尋演算法(priority first search algorithm)，於

我們所新設計的搜尋樹結構中，可保證找到最低平均碼長的不定長度錯誤更正前置碼。

二、為進一步降低解碼錯誤率，我們提出在所有可達最低平均碼長的不定長度錯誤更正

前置碼中，可以使用錯誤率聯集上界(union bound)的主要項 為依據，選取使主要

項最低的最低平均碼長之不定長度錯誤更正前置碼，獲取較佳的容錯能力。三、對於較

大的自由距離最小允許值、或是較多的離散訊號源個數，前述所提的搜尋演算法因過於

費時而不適用，因此在損失些微平均碼長的前提下，另提出簡化快速搜尋演算法。四、

在解碼端，針對接收端另知不定長度碼的傳送個數的條件，設計了低複雜度的最大事後

機率(maximum a posteriori)解碼演算法。模擬結果顯示，我們所提出的編碼演算法在

平均碼長與效能上，皆優於現有文獻的方法。另外，與傳統的分散式訊源-通道編碼相

比較，在相當的解碼複雜度下，我們所設計的整合式訊源-通道編解碼系統可達更低的

傳輸錯誤率。

ii

Algorithmic Design of Variable-Length Error-Correcting Prefix Code

Student: Ting-Yi Wu Advisor: Po-Ning Chen

Institute of Communications Engineering

National Chiao Tung University

ABSTRACT

A joint source-channel coding problem that combines the efficient compression of discrete

memoryless sources with their reliable communication over memoryless channels via binary

variable-length error-correcting prefix codes (VLECPCs) is considered. Under a fixed free

distance constraint, a priority-first search algorithm is devised for finding an optimal

VLECPC with minimal average codeword length. Two variations of the

priority-first-search-based code construction algorithm are also provided. The first one

improves the resilience of the developed codes against channel noise by additionally

considering a performance parameter without sacrificing optimality in average

codeword length. In the second variation, to accommodate a large free distance constraint as

well as a large source alphabet such as the 26-symbol English data source, the VLECPC

construction algorithm is modified with the objective of significantly reducing its search

complexity while still yielding near-optimal codes. A low-complexity sequence maximum a

posteriori (MAP) decoder for all VLECPCs (including our constructed optimal code) is then

proposed under the premise that the receiver knows the number of codewords being

transmitted. Simulations show that the realized optimal and suboptimal VLECPCs compare

favorably with existing codes in the literature in terms of coding efficiency, search complexity

and error rate performance.

Acknowledgements

First and foremost, I would like to express the deepest gratitude to my supervisor, Pro-

fessor Po-Ning Chen, who has the attitude and the substance of a genius. He has given

me invaluable comments and suggestions on my research. Without his guidance and per-

sistent help, this dissertation would not have been possible. Also, he is very kind and

friendly to me. The pleasant environments directed by him made me feel so comfortable

to be working with him.

I also would like to show my greatest appreciation to Professor Fady Alajaji and

Professor Yung-hsiang Han. Discussions with them have been illuminating. Professor

Alajaji is a great person and a scholar, not to mention his kind support and hospitality

when we visited Queen’s University. His precise comments and insights has always been

a great help in my research. And Professor Han literally introduced me to this topic as

well for the support on the way. His keen and brilliant sense of research always help my

research to be taken into next level.

My sincere thanks also goes to my thesis committees for their encouragement, in-

sightful comments, and hard questions. In addition, I would like to give a special thanks

to one of committees, Professor Stefan M. Moser, for his detailed comments and useful

suggestions on LATEX.

My sincere gratitude is extended to my labmates in NTL Lab, especially Dr. Shih-Wei

Wang and Mr. Chin-Fu Liu, for the stimulating discussions and for all the fun we have

had in the last four years. Dr. Wang has been always thoughtful and caring to everyone

in NTL Lab. Living with him in Kingston is one of my happiest time of my life. And

Mr. Liu is such a wonderful human being. He is always willing to share his knowledge

iii

with others. I truly have learned a lot from him, and it’s really an honor for me to sit

next to him.

I am indebted to my mother and both of my bothers for everything they have done

for me. Last but not least, I would like to express my deepest gratitude to my beloved

girlfriend, Miss Pi-Ching Lin, for her unconditional support and love for more than a

decade.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 4

2 Problem Formulation and Preliminaries 5

2.1 Sequence MAP Decoding Criterion . 6

2.2 VLECPC Trellis Diagrams . 7

2.3 Free Distance . 7

3 Optimal VLECPC Construction 10

4 Modified VLECPC Constructions 14

4.1 Finding an optimal VLECPC with the smallest Bdfree 14

4.2 Suboptimal code construction with parameters

(∆,Γ,D, I) . 16

5 Two-Phase Sequence MAP (TP-SMAP) Decoding 21

6 Simulation Results 24

v

7 Conclusion 43

A Optimality of Constuction Algorithm in Chapter 3 44

B Optimality of TP-SMAP Decoder in Chapter 5 46

Bibliography 48

vi

List of Figures

2.1 Trellis representations of a VLECPC. The red-color (solid), blue-color (dash-

dot) and green-color (dotted) arrows correspond respectively to the tran-

sition of transmitting codewords c1, c2 and c3. 8

3.1 Relation between a parent node and its children in a search tree. 11

6.1 Error performances of using different decoders to decode the same VLECPC,

which is encoded by the optimal VLECPC listed in Table 6.2. The number

of 3-bit source symbols per transmission block is 10, which is equivalent to

30 source information bits. 26

6.2 Average numbers of decoder branch metric computations of using different

decoders to decode the same VLECPC for different L at SNRs = 3 dB.

The VLECPC is obtained from Table 6.2. 27

6.3 Error performances of optimal VLECPCs for different p0. The VLECPCs

are obtained from the optimal VLECPCs with d∗free = 7 in Table 6.1. The

number of 3-bit source symbols per transmission block is 10, which is equiv-

alent to 30 source information bits. 28

6.4 Error performances of the optimal VLECPC for different L. The optimal

VLECPC is obtained from Table 6.2. 29

6.5 Error performances of different (3rd order) VLECPCs for a binary non-

uniform source with p0 = 0.8. The number of 3-bit source symbols per

transmission block is 10, which is equivalent to 30 source information bits.

The free distance dfree for all VLECPCs is dfree = 7. 30

vii

6.6 Error performances of the VLECPCs of Table 6.7 with dfree = 11 for the

26-symbol English alphabet (with Distribution 1). The number of source

symbols per transmission block is L = 10. 39

6.7 Error performances of the SSCC (specifically, first order Huffman + TBCC)

and the VLECPC of Table 6.7 with dfree = 10 for the 26-symbol English

alphabet (with Distribution 1). The number of source symbols per trans-

mission block is L = 10. 41

viii

List of Tables

6.1 Average codeword length per grouped symbol of a 8-ary alphabet generated

from binary non-uniform memoryless sources with different p0. 25

6.2 The optimal VLECPC with d∗free = 7 and p0 = 0.8 (the one with an average

codeword length of 7.240) of Table 6.1. 26

6.3 Average (AVG) and maximum (MAX) numbers of decoder branch metric

computations for the codes of Figure 6.1. 27

6.4 Average (AVG) and maximum (MAX) numbers of decoder branch metric

computations for the codes of Figure 6.5. 29

6.5 The VLECPCs for the English alphabet with Distribution 1 obtained by the

suboptimal code construction algorithm for different values of free distance. 33

6.6 The VLECPCs for the English alphabet with Distribution 2 obtained by the

suboptimal code construction algorithm for different values of free distance. 34

6.7 List of the VLECPCs obtained by three existing code construction schemes

and the VLECPCs obtained by our suboptimal code construction algorithm

for the 26-symbol English alphabet with Distribution 1 given in Table 6.5:

(a) Average codeword lengths (ALs) of the found codes and execution time

for each code construction algorithm; (b) Parameters used in each algo-

rithm. The suboptimal algorithm is initialized with Ub set to equal the

smallest of the average codeword lengths of the VLECPCs by Buttigieg,

Lamy and Wang. 35

ix

6.8 List of the VLECPCs obtained by three existing code construction schemes

and the VLECPCs obtained by our suboptimal code construction algorithm

for the 26-symbol English alphabet with Distribution 2 given in Table 6.6:

(a) Average codeword lengths (ALs) of the found codes and execution time

for each code construction algorithm; (b) Parameters used in each algo-

rithm. The suboptimal algorithm is initialized with Ub set to equal the

smallest of the average codeword lengths of the VLECPCs by Buttigieg,

Lamy and Wang. 36

6.9 The complexities and performances of some different suboptimal code con-

struction for dfree = 4 for the 26-symbol English alphabet (Distribution 2

given in Table 6.6). 37

6.10 The complexities and performances of some other suboptimal code con-

struction for dfree = 7 for the 26-symbol English alphabet (Distribution 2

given in Table 6.6). 38

6.11 Average (AVG) and maximum (MAX) numbers of decoder branch metric

computations for the codes of Figure 6.6. 39

6.12 Average (AVG) and maximum (MAX) numbers of decoder branch metric

computations for the codes of Figure 6.7. The parameter λ used in PFSA

is indicated inside the parentheses. 40

x

Chapter 1

Introduction

1.1 Overview

One of Shannon’s key contributions in information theory is the separation principle for

source-channel coding [27], which states that the source and channel coding operations

can be separately designed and performed in tandem without affecting the system’s opti-

mality for reliably transmitting a data source over a noisy channel. However, this result

hinges on the assumption that unlimited complexity and coding delay can be afforded by

the system, which is unrealistic in today’s resource constrained communication systems.

It is indeed well-known via both analytical and empirical studies (e.g., see [1, 2, 14, 33] and

the references therein) that joint source-channel coding (JSCC) can significantly outper-

form separate source-channel coding (SSCC), particularly when the system has stringent

delay and complexity restrictions. JSCC, which may use codes of fixed or variable length,

is typically realized in two ways: by coordinating the source and channel coding functions

in tandem or by combining them within a single step (examples of various JSCC schemes

can be found in [33]). In this dissertation, we focus on variable-length single-step JSCC

with the objective of designing optimal or close-to-optimal variable-length error-correcting

prefix codes (VLECPC) with low complexity for the efficient compression and commu-

nication of data sources in the presence of channel noise. Here optimality is interpreted

as achieving minimal average codeword length among all VLECPC designs subject to a

fixed free-distance constraint. The successful development of such VLECPCs, which play

the dual role of good data compression and error-correcting codes, provides an interesting

1

alternative to the classical SSCC scheme, particularly when the system’s complexity can

be significantly reduced without degrading its error performance.

First introduced in [17, 5, 6], VLECPCs were thoroughly investigated by Buttigieg

in [7, 9] and were shown to exhibit properties akin to those of convolutional codes: they

have a memory structure, which can naturally be represented via a trellis, and they are

best suited for being decoded via a sequence maximum-likelihood (ML) or maximum a

posteriori (MAP) Viterbi-like decoder (as opposed to decoding their codewords instan-

taneously). Furthermore, Buttigieg showed how the VLECPCs’ distance spectrum and

the union bound can be used to predict their error performance under hard-decision ML

decoding for the binary symmetric channel (BSC) and identified the codes’ free distance

dfree as a key parameter which, when maximized, can improve the codes’ performance.

In related works, the error exponent of VLECPCs is analyzed [3] and conditions for the

existence of VLECPCs are studied [31, 24].

In [7], Buttigieg originally proposed two techniques to construct VLECPCs with a

given dfree value. They are respectively based on a greedy algorithm (GA) and a majority

vote algorithm (MVA). Specifically, he employs either the GA or MVA procedure to select

as many codewords as possible of the same length, where the selected codewords must

satisfy certain minimum distance conditions in order to reach the required dfree. Later,

Lamy and Paccaut [23] replaced Buttigieg’s GA and MVA schemes with new algorithm

designed to obtain a good trade-off between system complexity and coding efficiency.

In [30], Wang et al. improved the coding efficiency of VLECPCs by iteratively replacing

longer codewords with shorter ones. In [26], Savari and Kliewer focused on minimizing

the average codeword length of VLECPCs. In their design, each codeword is required

to have Hamming weight w, where w is a multiple of an integer greater or equal to 2,

resulting in a class of VLECPCs with dfree ≥ 2. In [11, 13, 18], Diallo et al. proposed

several algorithms for obtaining VLECPCs with maximal dfree under the premise that

all codeword lengths are known in advance. A similar approach was used in [12] for

developing good error-correcting arithmetic codes.

With respect to VLECPC decoding, Buttigieg [7] used a trellis representation of

2

VLECPCs and modified the Viterbi algorithm (VA) to realize a sequence MAP decoder,

which is optimal in terms of minimizing the VLECPCs’ sequence error probability. Later

in 2008, Huang et al. [19] proposed a trellis-based MAP priority-first search decoding

algorithm for VLECPCs based on a suitable soft-decision MAP decoding criterion and

empirically showed a significant complexity improvement over Buttigieg’s MAP decoder.

MAP decoding techniques using an extended trellis under the assumption that the receiver

knows both the number of transmitted bits and the number of transmitted codewords were

developed in [4, 21]. Other decoding methods for variable-length codes (VLC) that use

other trellis VLC representations include the sequence MAP decoder of [3] and iterative

(Turbo-like) decoders of [4, 22].

In this dissertation, we present a novel priority-first search algorithm that can con-

struct VLECPCs with minimal average codeword length and free distance no less than a

pre-given d∗free. We next investigate how to select, among all obtained optimal1 VLECPCs,

the one with the best error correction capability. We observe that the codes’ Levenshtein

coefficient Bdfree plays an important role in their error performance: choosing the optimal

code with the smallest Bdfree yields the best system error rate. Furthermore, we modify

our construction algorithm to reduce its search complexity in order to accommodate large

values of dfree and large source alphabets such as the 26-symbol English data source. We

also propose a low-complexity two-phase sequence MAP decoder that can be applied to

all VLECPCs (including our constructed optimal and suboptimal codes) under the as-

sumption that the receiver knows both the number of transmitted bits and the number of

transmitted codewords. We show by simulations that the resulting suboptimal VLECPCs

outperform most existing VLECPCs in the literature in terms of compression efficiency,

search complexity and error rate. We also compare our JSCC codes with traditional

SSCCs.

The rest of this dissertation is organized as follows. In Chapter 2, we formulate our

problem and present some background material about VLECPCs. In Chapter 3, we de-

1We emphasize that, throughout the dissertation, an “optimal VLECPC” is defined as a VLECPC
with minimal average codeword length. In other words, an optimal VLECPC does not guarantee to yield
the best error rate performance.

3

scribe our code construction which guarantees the development of optimal VLECPCs

with a given free distance constraint. In Chapter 4, two VLECPC construction modi-

fications are proposed respectively for the design of optimal codes with enhanced error

correction capability and for the design of suboptimal VLECPCs for large dfree and large

source alphabet sizes. In Chapter 5, a low-complexity two-phase sequence MAP decoder

is introduced. Simulation results illustrating the performance of the constructed optimal

and suboptimal VLECPCs are given in Chapter 6. Finally, conclusions are stated in

Chapter 7.

1.2 Contributions

The main contributions of this thesis are briefed as follows.

• The first algorithm that guarantees the construction of an optimal VLECPC (in

the sense of minimizing the average codeword length) subject to a free distance

constraint is proposed.

• The error correction capability of the constructed optimal VLECPC is enhanced by

choosing the optimal VLECPC with minimum Bdfree .

• Simplified suboptimal construction algorithm has a search complexity superior to

the state-of-the-art code construction algorithms in the literature and can accom-

modate large source alphabets such as the 26-symbol English text source.

• An efficient low-complexity sequence MAP decoder for a receiver knowing the num-

ber of transmitted codewords is also proposed.

4

Chapter 2

Problem Formulation and
Preliminaries

We consider the JSCC problem of efficient compression of a discrete memoryless (inde-

pendent and identically distributed) source and its reliable communication over a noisy

channel via a single binary VLECPC. We assume a binary phase-shift keying (BPSK)

modulated additive white Gaussian noise (AWGN) channel (although other channel mod-

els can also be considered) and employ optimal sequence MAP decoding in the sense of

minimizing the code’s sequence error1 probability. The VLECPC’s free distance dfree has

already been identified as a key error performance parameter, playing a similar role as for

convolutional codes: the larger dfree is, the better is the code’s error resilience particularly

at high signal-to-noise ratios (SNRs) [7, 9]. Our objectives are four-fold:

• Designing an algorithm that guarantees the construction of an optimal (i.e., with

minimal average codeword length) binary VLECPC for a given free distance bound

d∗free.

• Enhancing the error correction capability of the constructed optimal VLECPCs by

optimizing an important performance parameter Bdfree .

• Ensuring that the construction algorithms have a search complexity superior to

the state-of-the-art code construction algorithms in the literature so that they can

accommodate large source alphabets such as the 26-symbol English data source.

• Designing an efficient low-complexity sequence MAP decoder under the premise

1A sequence error occurs when a decoded sequence of VLECPCs is not exactly the same as the
transmitted one.

5

that the receiver knows the total number of transmitted VLECPC codewords (in

addition to the total number of transmitted code bits).

The successful achievement of these objectives has interesting applications for the ef-

fective compression and error-resilient transmission of text documents over noisy channels.

In what follows, we present some preliminary background about VLECPCs. Consider

a K-ary discrete memoryless source with alphabet S , {α1, α2, . . . , αK} and respective

symbol probabilities p1, p2, . . . , pK (such that
∑K

i=1 pi = 1). A (first-order) VLECPC

encoder maps each symbol αi ∈ S to a binary variable-length codeword ci, where i =

1, 2, . . . , K. The set of codewords is denoted by C = {c1, c2, . . . , cK} and the average

codeword length for code C is given by

C ,

K
∑

i=1

pi|ci|, (2.1)

where |ci| is the length of codeword ci.

2.1 Sequence MAP Decoding Criterion

Let

XL,N , {x1x2x3 · · ·xL : ∀xi ∈ C and
L
∑

i=1

|xi| = N} (2.2)

be a set of bitstreams consisting of L (concatenated) codewords with overall length N .

Define

XN ,
⋃

i≥1

Xi,N (2.3)

as a set of bitstreams consisting of some (concatenated) codewords with overall length N .

Assume that a sequence of VLECPC codewords of overall length N is transmitted over

the binary-input AWGN channel and that r , (r1, r2, . . . , rN) is received at the channel

output. The sequence MAP (soft-decision) decoder then outputs v̂ , (v̂1, v̂2, . . . , v̂N) if v̂

satisfies [19]

N
∑

i=1

(yi ⊕ v̂i)‖φi‖1 − ln Pr(v̂) ≤
N
∑

i=1

(yi ⊕ vi)‖φi‖1 − ln Pr(v) (2.4)

6

for all

v ∈

{

XN if the receiver only knows N,

XL,N if the receiver knows both L and N,

where ⊕ is modulo-2 addition, Pr(·) denotes probability, ‖ · ‖1 denotes absolute value, φi

is a log-likelihood ratio given by

φi , ln

[

Pr(ri|0)

Pr(ri|1)

]

(2.5)

and yi is the hard decision of ri given by

yi ,

{

1 if φi < 0,

0 otherwise.
(2.6)

2.2 VLECPC Trellis Diagrams

In [7, 9], Buttigieg employed a VLECPC decoding trellis TN as exemplified in Figure 2.1(a)

for C = {00, 010, 0110}, in which state Sj denotes that the number of bits decoded thus

far is j.

We can construct an extended trellis TL,N as defined in [4, 21] under the assumption

that the receiver knows both L and N . An example of such extended trellis for C =

{00, 010, 0110} is shown in Figure 2.1(b), where Si,j denotes that the number of decoded

symbols and the number of decoded bits thus far are i and j, respectively.

2.3 Free Distance

In [7], in order to analyze the error performance of a trellis-based VLECPC decoder,

Buttigieg defined the free distance as the minimal Hamming distance between any two

distinct paths converge at the same node in the trellis. Thus, the free distance dfree of

C as defined in [7] depends on the structure of its decoding trellis diagram. For the

computation of dfree, we will assume throughout the dissertation that the receiver knows

both L and N . Therefore, dfree is defined based on XL,N and is given by

dfree(C) , min{d(a, b) : a, b ∈ XL,N for some L,N and a 6= b}, (2.7)

7

(a) Trellis TN

(b) Trellis TL,N

Figure 2.1: Trellis representations of a VLECPC. The red-color (solid), blue-color (dash-
dot) and green-color (dotted) arrows correspond respectively to the transition of trans-
mitting codewords c1, c2 and c3.

8

where d(a, b) denotes the Hamming distance between bitstreams a and b. The following

lower bound on dfree(C) has been shown in [7, 9]

dfree(C) ≥ min{db(C), dc(C) + dd(C)}, (2.8)

where db(C) is the “overall minimum block distance” defined as

db(C) , min{d(ci, cj) : ci, cj ∈ C, ci 6= cj and |ci| = |cj |}, (2.9)

dc(C) is the “minimum converge distance” given by

dc(C) , min{d(ci, c
′
j) : ci, cj ∈ C, |ci| < |cj|, c′j is the suffix of cj and |c′j | = |ci|},

(2.10)

and dd(C) is the “minimum diverge distance” defined as

dd(C) , min{d(ci, c
′
j) : ci, cj ∈ C, |ci| < |cj |, c′j is the prefix of cj and |c′j | = |ci|}.

(2.11)

9

Chapter 3

Optimal VLECPC Construction

We herein present a new search algorithm for constructing an optimal VLECPC with a

given free-distance bound d∗free. The search algorithm always outputs an optimal VLECPC

with its dfree ≥ d∗free. This algorithm, which is a modification and extension of the algo-

rithm introduced in [20] for finding optimal lossless data compression codes with reversible

VLC structure, uses a new search tree and a priority-first search method.

To construct an optimal VLECPC with K codewords and dfree ≥ d∗free, we use a search

tree in which each node X contains three components given by the triplet {CX,AX, f(X)}.

Here, CX = {cX1, c
X
2, . . . , c

X
t} denotes the set of t codewords that have been selected for the

desired VLECPC, and AX = {aX
1,a

X
2, . . .} is the set of all bitstreams, which can be future

candidate codewords and hence do not contain any bitstreams for which the codewords

currently in CX are their prefixes. These bitstreams are listed in order of nondecreasing

lengths: |aX
1| ≤ |aX

2| ≤ · · · .1 Finally, f(X) denotes the metric employed for finding an

optimal VLECPC and is given by

f(X) ,
t

∑

i=1

pi · |c
X
i |+

K
∑

i=t+1

pi · |a
X
i−t|. (3.1)

The search tree is binary (i.e., each of its nodes except a leaf or terminal node has two
children); the relation between a parent node and its children is illustrated in Figure 3.1.
Specifically, for a parent node P, its left child L is obtained by adding the next candidate
codeword aP

1 into CL. Since aP
1 is now a codeword in CL, the set AL needs to be updated

by removing all bitstreams in AP whose prefix is aP
1. Hence, the triplet of the left child L

1Recall that candidate codewords of equal length can be listed in any order without affecting the
optimality of the output VLECPC of our construction algorithm. For programing convenience, we simply
list candidate codewords of equal length alphabetically in AX, e.g., see Aroot in (3.9).

10

Figure 3.1: Relation between a parent node and its children in a search tree.

becomes

CL = CP ∪ {aP
1} (3.2)

AL = {aL
1,a

L
2, . . .}

= {a : a ∈ AP and aP
1 is not a prefix of a} (3.3)

f(L) =
t

∑

i=1

pi · |c
P
i |+ pt+1 · |a

P
1|+

K
∑

i=t+2

pi · |a
L
i−t−1|. (3.4)

On the other hand, the right child R is obtained by rejecting the next candidate codeword
aP
1 from its parent node. So, the triplet of the right child R becomes

CR = CP (3.5)

AR = {aP
2,a

P
3, . . .} = AP \ {a

P
1} (3.6)

f(R) =
t

∑

i=1

pi · |c
P
i |+

K
∑

i=t+1

pi · |a
P
i−t+1|. (3.7)

Finally, since the root node has not yet selected any codeword, all bitstreams are its
candidates; thus its components are given by

Croot = ∅ (3.8)

Aroot = {aroot
1 ,aroot

2 , . . .}

= {0, 1, 00, 01, 10, 11, 000, 001, . . .} (3.9)

f(root) =
K
∑

i=1

pi · |a
root
i |. (3.10)

Since every possible VLECPC can be obtained by traversing the search tree from the

root node to its corresponding leaf nodes, a priority-first search algorithm can be applied

on the tree to find a VLECPC whose average codeword length is smallest among all

VLECPCs with free distances no less than d∗free. To reduce the search space, the average

codeword length of any known VLECPC with free distance no less than d∗free is denoted

by Ub and used as an upper bound for the average codeword length to exclude obviously

11

uncompetitive nodes during the search process. The search algorithm for finding an

optimal VLECPC is described as follows.

Step 1: Push the root node into the Encoding Stack.2 Set upper bound Ub as the average

codeword length of an existing VLECPC with free distance no less than d∗free.

Step 2: If the top node of the Encoding Stack has selected K codewords (i.e., |Ctop| = K)

and dfree(Ctop) ≥ d∗free, then output Ctop as the optimal VLECPC and stop the

algorithm.

Step 3: Generate the two children of the top node as in Figure 3.1 and then delete the

top node from the Encoding Stack. If the left child has selected K codewords

with its free distance ≥ d∗free and its associated metric f is smaller than Ub, then

update Ub = f .

Step 4: Discard a child node which satisfies any of the following conditions:

1. It has selected more than K codewords for its Cchild;

2. There is no more candidate in Achild and the size of Cchild is less than K

(i.e., Achild = ∅ and |Cchild| < K);

3. The metric f(child) is larger than Ub;

4. Its associated free distance dfree(Cchild) is less than d∗free.
3

Step 5: Insert the remaining children (those children which are not discarded in Step 4)

into the Encoding Stack, and reorder the Encoding Stack in order of ascending

metrics. Go to Step 2.

2The Encoding Stack can be implemented via the data structure named HEAP [10]. One important
property of the HEAP structure is that it can access the node with the minimal metric (i.e., the top
node in the Encoding Stack) within O(log(n)) complexity, where n denotes the number of nodes in the
HEAP.

3In order to check this condition efficiently, the lower bound on the free distance given in (2.8) is
first computed; if it is less than d∗

free
, then Dijkstra’s algorithm [12] is adopted to determine the exact

free distance. This is realized by transforming the finite-state VLECPC encoder into a pairwise distance
graph and applying Dijkstra’s algorithm to find the graph’s shortest path, where the resulting shortest
path yields the VLECPC’s free distance. To our knowledge, Dijkstra’s algorithm is the most efficient
method to evaluate dfree.

12

It should be emphasized that the above construction algorithm focuses only on prefix-

free VLECPCs as most previous works did [7, 9, 11, 12, 23, 26, 30]. Although non-

prefix-free but uniquely decodable VLECPCs can also be constructed, they are not herein

considered due to the added complexity in testing their unique decodability. The proof

of the optimality of the above algorithm is provided in Appendix A.

13

Chapter 4

Modified VLECPC Constructions

In this chapter, two modifications on the optimal VLECPC construction algorithm in-

troduced in Chapter 3 are proposed. The first modification further enhances the error-

correcting capability of the found optimal VLECPC by examining the union bound coeffi-

cient Bdfree of all equivalent
1 optimal VLECPCs satisfying the free distance constraint and

then outputting the one with the smallest Bdfree , where Bdfree is a Levenshtein parameter

defined in Section 4.1 below. By targeting a suboptimal VLECPC instead of an optimal

one, the second modification reduces considerably the search complexity of the optimal

construction algorithm in order to make feasible the construction of VLECPCs for larger

alphabet sizes (such as the 26-symbol English data source) along with a large d∗free (such

as d∗free = 10).

4.1 Finding an optimal VLECPC with the smallest

Bdfree

In [7, 9], Buttigieg found that under hard-decision ML decoding, the symbol error prob-

ability Pe(C) of a VLECPC C transmitted over the BSC with crossover probability ǫ can

be upper-bounded by

Pe(C) ≤
∞
∑

h=dfree(C)

B̃hPh, (4.1)

1Two VLECPCs are said to be equivalent if they have identical average codeword length.

14

where

B̃h ,

∞
∑

N=1

∑

a∈XN

Pr(a) ·





∑

b : b∈XN and d(a,b)=h

L(a, b)



 (4.2)

and

Ph ,







∑h
e=(h+1)/2

(

h
e

)

ǫe(1− ǫ)h−e if h is odd,

1
2

(

h
h/2

)

ǫh/2(1− ǫ)h/2 +
∑h

e=h
2
+1

(

h
e

)

ǫe(1− ǫ)h−e if h is even.
(4.3)

Note that in Buttigieg’s derivation, the symbol errors are counted using the Levenshtein

distance2 L(·, ·) between transmitted sequence and decoded sequence, and the receiver

decodes based on trellis TN with N extending to infinity.

With a slight modification, a similar bound can be derived under the additional as-

sumption that the receiver also knows the number of transmitted codewords L. In par-

ticular, (4.1) remains of the same form with B̃h replaced with Bh, where

Bh ,

∞
∑

L=1

∞
∑

N=1

∑

a∈XL,N

Pr(a) ·





∑

b : b∈XL,N and d(a,b)=h

L(a, b)



 . (4.4)

The coefficient Bh, as expressed in (4.4), can be regarded as the average Levenshtein

distance between all converging path pairs that are at a Hamming distance h from each

other in the extended trellis TL,N . Thus, it is evident that Bh plays a key role in the

union bound (4.1), particularly the first term Bdfree , Bhmin
, where hmin is the smallest

integer h no less than dfree(C) such that Bh is positive. Accordingly, given a set of optimal

VLECPCs, the one with the smallest Bdfree is expected to have a better error performance.

It should be mentioned that in this dissertation we use a soft-decision MAP decoder with

respect to the AWGN channel. The simplified union bound for the BSC (not we used

at (4.2)–(4.4)); however, can provide a much simplified view on the system performance

and hence the parameters dfree(C) and Bdfree obtained from (4.1) are adopted in our code

design.3

We now modify the algorithm in Chapter 3 to find the optimal VLECPC with the

smallest Bdfree among all optimal VLECPCs that has the minimum average codeword

2The Levenshtein distance, also called edit distance, between two sequences is the minimum number
of character edits (including insertion, deletion and substitution) required to change one sequence into
the other.

3We determine Bdfree
using the method proposed in [7, Section 3.5.1.1].

15

length. This can be achieved by continuing the algorithm, even if the top node of the

Encoding Stack reaches the leaf node in Figure 3.1 (see Step 2 in Chapter 3), until the

average codeword length of the new top node is greater than that of the optimal VLECPC.

This continuation then guarantees that all optimal VLECPCs (of equal average codeword

length) are examined and the one with the smallest Bdfree can be selected. As a result,

only the first two steps need to be modified:

Step 1′: Push the root node into the Encoding Stack. Set upper bound Ub as the average

codeword length of an existing VLECPC with free distance no less than d∗free,

and initialize B∗
dfree

= ∞.

Step 2′: If the metric f (namely, the average codeword length) of the top node is

strictly greater than Ub, then output C∗ and stop the algorithm; else if the

top node of the Encoding Stack has selected K codewords (i.e., |Ctop| = K),

and dfree(Ctop) ≥ d∗free, and Bdfree(Ctop) < B∗
dfree

, then retain C∗ = Ctop and

B∗
dfree

= Bdfree(Ctop). Delete the top node and reorder the Encoding Stack in

order of ascending metrics.

4.2 Suboptimal code construction with parameters

(∆,Γ,D, I)

The complexity and memory demand of the optimal code construction algorithm in Chap-

ter 3 grows significantly when searching for VLECPCs corresponding to a large source

alphabet size K and a large free distance requirement d∗free. We herein alleviate the algo-

rithm’s complexity and memory demand by constructing a suboptimal VLECPC, which

can accommodate higher free distance targets and larger source alphabet sizes. This is

done based on four complexity reduction procedures.

First, we reduce the computational complexity incurred in examining the exact free

distance of the top node by using its lower bound in (2.8) instead. Furthermore, Buttigieg

recently observed [8] that good codes usually have converging and diverging distances

(given in (2.10) and (2.11), respectively) that are equal (for even values of dfree) or differing

16

by one (for odd values of dfree). Thus, we only focus on VLECPCs with the above property.

In other words, the new suboptimal code construction only searches for the VLECPC C

that satisfies the following conditions:
{

min{db(C), dc(C) + dd(C)} ≥ d∗free, and

|dc(C)− dd(C)| ≤ 1.
(4.5)

With this modification, the actual free distance of the output VLECPC may be strictly

larger than the required d∗free; yet, this saves considerable computational effort in calcu-

lating the exact free distance for each node visited during the code search process.

Second, we adopt the early-elimination concept from [28], in which an efficient near-

optimal sequential decoding algorithm for convolutional codes was proposed. In short,

the authors in [28] propose to directly remove those nodes that are far behind the farthest

node having been explored during the search process. Since the metric used in our code

construction algorithm is also nondecreasing along every path in the trellis as in [28], these

“far-behind” nodes are highly unlikely to result in a K-codeword offspring node whose

average codeword length is small, and hence can be early-eliminated.

The third modification, also borrowed from [28], is to set a proper Encoding Stack

size limitation in order to fix the memory demand and indirectly to reduce the search

complexity.

In the last modification, we attempt to compensate for potential losses in coding

efficiency (average codeword length) caused by the previous three modifications. Recall

that the average codeword length of any existing VLECPC can be used as the upper bound

Ub in our search algorithm. Hence, when our suboptimal approach results in a VLECPC

whose average codeword length is smaller than the given Ub, we can update the value

of Ub with this average codeword length and launch a new execution of our algorithm.

This step can then be repeated in a number of iterations until no improvements in coding

efficiency are realized or a prescribed maximal number of iterations is reached.

Four parameters (∆,Γ,D, I) are accordingly added corresponding to the last three

modifications.

1: Early elimination window ∆: Ignore the top node in the Encoding Stack, whose

17

number of codewords |Ctop| is less than lmax −∆, where lmax is the largest |C| among

all expanded nodes.

2: Encoding Stack size Γ: When the number of nodes in the Encoding Stack is larger

than Γ, nodes are recursively deleted from the Encoding Stack according to one of

the two criteria described below.

1. Deletion criterion D = Dl: Delete the node with the smallest code size |C|.

2. Deletion criterion D = Dm: Delete the node with the largest metric f .

3: The maximal number of iterations I.

The suboptimal algorithm, characterized by four parameters (∆,Γ,D, I), can thus be

obtained by modifying the optimal algorithm in Chapter 3 and adding a new Step 6 as

follows:

Step 1′′: Push the root node into the Encoding Stack. Set upper bound Ub as the average

codeword length of an existing VLECPC with free distance no less than d∗free.

Alternatively for the followup iteration, set upper bound Ub as the average

codeword length of the output VLECPC obtained from the previous iteration.

Initialize the target VLECPC C∗ as the empty set and lmax = 0.

Step 2′′: If the Encoding Stack is empty and C∗ 6= ∅, then output C∗ as the optimal

VLECPC and stop the algorithm; else if both the Encoding Stack and C∗ are

empty, then report a code search failure and stop the algorithm.4

If |Ctop| < lmax −∆, then directly delete the top node from the Encoding Stack

and redo Step 2′′; else if lmax < |Ctop|, update lmax = |Ctop|.

If the top node of the Encoding Stack has selectedK codewords (i.e., |Ctop| = K)

4Even if Ub is the average codeword length of an existing VLECPC, the search space could be forced
to become empty due to extra node exclusions of the first three complexity reduction modifications, i.e.,
requiring the free distance lower bound to be no less than d∗

free
, early eliminations, and node deletions for

a fully filled Encoding Stack. Note that when a node is excluded, all of its offspring nodes can no longer
be visited; hence, it is possible that all the valid nodes (i.e., all the valid VLECPCs) are removed after
several recursions of Steps 2′′–5′′.
Since, in the two earlier optimal code construction algorithms, the nodes corresponding to optimal

VLECPCs will never be excluded, the Encoding Stack can never be empty prior to finding the optimal
VLECPC. Accordingly, it is not necessary to conduct an empty Encoding Stack check in these algorithms.

18

and Ctop satisfies condition (4.5), then output Ctop as the optimal VLECPC and

stop the algorithm.

Step 3′′: Generate the two children of the top node as in Figure 3.1 and then delete the

top node from the Encoding Stack. Then update Ub as the metric f of left child

and put left child as C∗ if left child satisfies all of the following conditions:

1. The left child has selected K codewords in his Cleft;

2. Cleft satisfies condition (4.5);

3. Its associated metric f is smaller than Ub.

Step 4′′: Discard the child node which satisfies any of the following conditions:

1. It has selected more than K codewords for its Cchild;

2. There is no more candidate in Achild and the size of Cchild is less than K

(i.e., Achild = ∅ and |Cchild| < K);

3. The metric f(child) is larger than Ub;

4. It disobeys condition (4.5).

Step 5′′: After inserting the remaining children into the Encoding Stack, recursively

delete nodes from the Encoding Stack based on the chosen deletion criterion D

until the Encoding Stack size is no greater than Γ. Reorder the Encoding Stack

in order of ascending metrics. Go to Step 2′′.

Step 6 : Repeat Steps 1′′–5′′ until either the maximum number of iterations I is reached

or the upper bound Ub remains the same as the previous iteration.

We end this chapter with a remark about the free distances of the VLECPCs found

by the three code construction algorithms introduced in this dissertation.

Recall that the two optimal code construction algorithms, respectively introduced in

Chapter 3 and Section 4.1, guarantee to output the VLECPC whose average codeword

length is smallest among all VLECPCs with free distance never smaller than the target

free distance. In all cases we have examined, however, the free distance of the resulting

19

optimal VLECPCs is always equal to the target free distance; although we conjecture the

validity of this observation, we could not confirm it with a formal proof.

As expected, the suboptimal code construction algorithm may produce a (suboptimal)

VLECPC with free distance strictly larger than d∗free. However, in the particular case

of the 26-symbol English alphabet (as will be presented in Chapter 6), the suboptimal

code construction algorithm also consistently deliver a (suboptimal) VLECPC with free

distance equal to d∗free, which indicates that the free distance lower bound in (2.8) is indeed

tight for the found suboptimal VLECPC. It should be mentioned that the tightness of

(2.8) depends on the distribution of the source. In [13] and [18], it is shown that the

tightness of (2.8) may be weak when the source distribution is highly unbalanced. Details

will be given in Chapter 6.

20

Chapter 5

Two-Phase Sequence MAP
(TP-SMAP) Decoding

In [19], an efficient sequence MAP decoder with the assumption that the receiver knows

only the number of transmitted bits N was proposed. This decoder therefore can only

operate on the traditional trellis TN shown in Figure 2.1(a). With the additional infor-

mation about the number of transmitted symbols L, we herein propose a new two-phase

sequence MAP (TP-SMAP) decoder, which can now operate on the extended trellis TL,N

(cf. Figure 2.1(b)), and whose average decoding complexity is only slightly greater than

that for running the Viterbi algorithm (VA) on TN (even if TL,N has significantly more

nodes and more transitions than TN). We next describe the TP-SMAP decoding scheme.

In trellis TL,N , as defined in Section 2.2 and illustrated in Figure 2.1(b), a path travers-

ing from S0,0 to Si,j can be labeled as x
(i,j)
(0,0) , x1x2 · · ·xi ∈ Xi,j, where each xi ∈ C. Then,

by following the MAP decoding criterion described in Section 2.1, the path metric of x
(i,j)
(0,0)

is defined as

g
(

x
(i,j)
(0,0)

)

=

j
∑

ℓ=1

(yℓ ⊕ bℓ)‖φℓ‖1 − ln Pr
(

x
(i,j)
(0,0)

)

, (5.1)

where b1b2 · · · bj denotes the binary representation of path x
(i,j)
(0,0). Based on this new

notation, the objective of the MAP decoder that knows both L and N is to find a path

whose metric is the smallest among all valid paths x
(L,N)
(0,0) from S0,0 to SL,N .

In short, the TP-SMAP scheme first performs backward VA on TN , whose size is

significantly smaller than that of TL,N , and preserves the metric of each backward survivor

path as h(Sj). The first phase of the TP-SMAP is described as follows.

21

Step 1: Associate a zero path metric to node SN in TN , i.e., h(SN) = 0.

Step 2: Apply the backward VA with path metric given by (5.1) starting from SN in

TN , and record the metric and survivor path for each state as h(Si) and p(Si),

respectively.

Step 3: If the number of codewords correspond to survivor path p(S0) is equal to L,

then output path p(S0) as the MAP decision and stop the algorithm; otherwise,

go to phase 2.

In the second phase, the TP-SMAP applies a priority-first search algorithm [15] on

TL,N with the decoding metric of path x
(i,j)
(0,0) being re-defined as

m
(

x
(i,j)
(0,0)

)

= g
(

x
(i,j)
(0,0)

)

+ h (Sj) . (5.2)

The second phase of the decoder is next described.

Step 1: Initialize the path metric of x
(0,0)
(0,0) as m(x

(0,0)
(0,0)) = h(S0), and load it into the

Decoding Stack.1

Step 2: If the top node of the Decoding Stack reaches the final state SL,N in TL,N , then

output its associated path as the MAP decision and stop the algorithm.

Step 3: Mark the state of the top node as visited. Then extend the top node to all its

successors and compute their metrics according to (5.2). Delete the top node

from the Decoding Stack.

Step 4: Discard the successors if they had been marked as visited. Also, discard the

successors for which the number of decoded symbols exceeds L or the number

of decoded bits exceeds N .

Step 5: Insert the remaining successors (those successors which are not discarded in Step 4)

into the Decoding Stack and reorder the Decoding Stack in order of ascending

m-metrics defined in (5.2). Go to Step 2.

1The role of the Decoding Stack is similar to that of the Encoding Stack, except that the Decoding

Stack stores the nodes of TL,N as its elements. It is also implemented via the data structure named
HEAP [10] and accesses the node with minimal metric (i.e., its top node) within O(log(n)) complexity,
where n denotes its total number of nodes.

22

It can be noted that the second phase of the decoder follows similar procedures as

the code construction algorithm introduced in Chapter 3, except that the priority-first

algorithm is now applied on the trellis TL,N instead of applying it on a search tree for

code construction. Since some paths of the trellis TL,N run across the same node, the

priority-first algorithm must avoid expanding the same node on the trellis TL,N more than

once. We therefore need to mark the expanded node (top node) as visited in Step 3, and

discard the successors which have already been marked as visited in Step 4. The proof of

optimality for the above decoding algorithm is provided in Appendix B.

23

Chapter 6

Simulation Results

In this chapter, we assess via simulations the error performances of the found VLECPCs

in terms of reconstructed source symbol error rate (SER).1 In all simulations, the source

is assumed memoryless and the channel is the BPSK-modulated AWGN channel. The

decoding complexity of the proposed two-phase sequence MAP (TP-SMAP) decoder is

also examined. Furthermore, comparisons with other systems in literature, including three

known VLECPC schemes and a traditional SSCC system, are provided. For measuring the

time to search for the optimal and suboptimal VLECPCs, the experiments were carried

using the C programing language under a 64-bit operation system Linux (Ubuntu 10.04

LTS) executed on a desktop computer with a Intel-Core2 Duo E6600 2.4GHz CPU and

4GB memory. It should noted that the decoders of VLECPCs in the following simulations

are assumed to be TP-SMAP, if they are not be specified.

As usual, the system signal-to-noise ratio (SNR) is given by SNR , E/N0, where E

is the signal energy per channel use and N0/2 is the variance of the zero-mean additive

channel noise sample. To account for the coding redundancy of systems with different

code rates, SNR per source symbol is used in presenting the simulation results, which is

given by

SNRs =
Es

N0
=

E

N0
·
1

R
, (6.1)

where Es is the energy per source symbol, and R is the overall (average) system rate

defined as the number of transmitted source symbols per channel use. For an SSCC

1As a convention, the SER here is the Levenshtein distance between the transmitted sequence and the
decoded sequence divided by the number of transmitted source symbols (i.e., L).

24

system, the overall rate R satisfies R = Rc/Rs, where Rs is the source coding rate (in

coded bits/source symbol) and Rc is the channel coding rate (in coded bits/channel use).

Hence, for an SSCC system employing a kth-order Huffman VLC2 followed by a tail-biting

convolutional code, Rs is the average codeword length of the Huffman code divided by

k, and Rc is the rate of the tail-biting convolutional code. Note that a VLECPC (or a

single-step JSCC) can be regarded as having Rc = 1 with Rs being its averaged source

coding rate, since no explicit channel coding is performed.

Table 6.1: Average codeword length per grouped symbol of a 8-ary alphabet generated
from binary non-uniform memoryless sources with different p0.

Buttigieg’s Lamy’s Wang’s Opt. VLECPC
p0 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8

d∗free = 3 4.500 4.000 4.500 4.000 4.500 4.000 4.473 3.992
d∗free = 5 6.443 5.912 6.443 5.912 6.443 5.912 6.340 5.592
d∗free = 7 8.326 7.864 8.473 7.936 8.326 7.864 8.016 7.240

In Table 6.1, we compare the VLECPCs found by the proposed method in Chapter 3

with Buttigieg’s codes [7], Lamy’s codes [23] and the codes by Wang et al. [30]. Here,

we group three information bits, generated from a binary non-uniform memoryless source

with bit probability p0 , Pr(0) ∈ {0.7, 0.8}, as one source symbol; hence, the VLECPCs

are 3rd order VLCs (i.e., k = 3), and the size of the source alphabet is K = 23 = 8. Since

our proposed algorithm guarantees to find VLECPCs with minimal average codeword

length under a fixed d∗free, the resulting VLECPCs have a shorter average codeword length

than any other code with identical free distance.

We then investigate the improvement in both error performance and decoding com-

plexity of the proposed TP-SMAP decoder. In Figure 6.1, 30 information bits (i.e., 10

grouped symbols) are encoded by the optimal VLECPC with d∗free = 7 and p0 = 0.8 of

Table 6.1, which is listed in Table 6.2. The dotted lines show the performance of the MAP

decoder under the assumption that the receiver only knows the number of transmitted

bits, N . The solid line portrays the MAP decoder’s performance under the assumption

that receiver knows both number of symbols, L, and transmitted bits, N . As shown in

2Recall that a kth order VLC maps a block of k source symbols onto a variable-length codeword. So
its average source coding rate is given by the average codeword length divided by k.

25

Table 6.2: The optimal VLECPC with d∗free = 7 and p0 = 0.8 (the one with an average
codeword length of 7.240) of Table 6.1.

Grouped Symbol Probability Optimal VLECPC
with dfree = 7 and p0 = 0.8

000 0.512 00100
001 0.128 01011010
010 0.128 100111001
100 0.128 1111111111
011 0.032 11010110011
101 0.032 000110010011
110 0.032 110011101011
111 0.008 1111110001011

1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

SNRs (dB)

S
y
m
b
o
l
E
rr
o
r
R
a
te

MAP on TN
MAP on TL,N

Figure 6.1: Error performances of using different decoders to decode the same VLECPC,
which is encoded by the optimal VLECPC listed in Table 6.2. The number of 3-bit source
symbols per transmission block is 10, which is equivalent to 30 source information bits.

26

Table 6.3: Average (AVG) and maximum (MAX) numbers of decoder branch metric
computations for the codes of Figure 6.1.

Eb/N0 1 dB 2 dB 3 dB 4 dB

decoder AVG MAX AVG MAX AVG MAX AVG MAX

Viterbi on TN 459 768 459 768 459 768 459 768

Viterbi on TL,N 1651 2600 1651 2600 1651 2600 1651 2600
TP-SMAP TL,N 461 2970 460 1619 459 863 459 768

Figure 6.1, about 0.3 dB in coding gain is realized by knowing L (in addition to N).

Table 6.3 summarizes the decoding complexities of different decoders in terms of the

branch metric computations. From the table, we remark that the TP-SMAP decoder has

a similar decoding complexity as the Viterbi algorithm on TN while achieving about 0.3

dB coding gain in error performance. For identical error performance, the TP-SMAP

decoding algorithm spends almost 4 times less in branch computations than the Viterbi

algorithm on TL,N .

10 20 30 40 50
0

1

2

3

4

5

6
x 10

4

L

A
ve

ra
ge

 n
um

be
r

of
 b

ra
nc

h
m

et
ric

 c
om

pu
ta

tio
n

Viterbi Algorithm on TN
Viterbi Algorithm on TL,N

TP-SMAP on TL,N

Figure 6.2: Average numbers of decoder branch metric computations of using different
decoders to decode the same VLECPC for different L at SNRs = 3 dB. The VLECPC is
obtained from Table 6.2.

27

We further test the decoding complexities of different decoders for different L. In

Figure 6.2, the optimal VLECPC of Table 6.2 is transmitted at SNRs = 3.0 dB. This figure

indicates that the decoding complexities of TP-SMAP are similar to those of the Viterbi

algorithm on TN . The result also shows that the decoding complexities of TP-SMAP

decoder are proportional to the size of transmission block L. It should be emphasized

that the decoding complexities of TP-SMAP are one order less than those of the Viterbi

algorithm on TL,N , in which both have the same error performances.

1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

SNRs

S
y
m
b
o
l
E
rr
o
r
R
a
te

Optimal VLECPC with p0 = 0.7
Optimal VLECPC with p0 = 0.8

Figure 6.3: Error performances of optimal VLECPCs for different p0. The VLECPCs are
obtained from the optimal VLECPCs with d∗free = 7 in Table 6.1. The number of 3-bit
source symbols per transmission block is 10, which is equivalent to 30 source information
bits.

We next investigate the error performances of optimal VLECPCs for different values

of p0 and L. Figure 6.3 shows that the optimal VLECPC for p0 = 0.8 performs about 0.8

dB better than the optimal VLECPC for p0 = 0.7 at SER of 10−3. Figure 6.4 shows that

the optimal VLECPC performs better when size of transmission block L is smaller. These

two figures indicate that the optimal VLECPCs are better when the source distribution

is more biased and the block length is shorter.

28

1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

SNRs (dB)

S
y
m
b
o
l
E
rr
o
r
R
a
te

L = 50
L = 40
L = 30
L = 20
L = 10

Figure 6.4: Error performances of the optimal VLECPC for different L. The optimal
VLECPC is obtained from Table 6.2.

Table 6.4: Average (AVG) and maximum (MAX) numbers of decoder branch metric
computations for the codes of Figure 6.5.

SNRs 1 dB 2 dB 3 dB 4 dB

AVG MAX AVG MAX AVG MAX AVG MAX

Lamy’s VLECPC 511 3631 510 1858 510 970 510 731
Buttigieg’s and Wang’s VLECPCs 500 3439 499 1303 499 720 499 670

Optimal VLECPC 461 2970 460 1119 459 719 459 668
Optimal VLECPC with smallest Bdfree

462 3040 460 1144 459 712 459 668

29

1 1.5 2 2.5 3 3.5 4
10

−5

10
−4

10
−3

10
−2

10
−1

SNRs (dB)

S
y
m
b
o
l
E
rr
o
r
R
a
te

Lamy’s VLECPC, R = Rc/Rs = 1/2.645 = 0.378
Buttigieg’s and Wang’s VLECPCs, R = 1/2.621 = 0.381
Optimal VLECPC with Bdfree = 1.8268, R = 1/2.413 = 0.414
Optimal VLECPC with smallest Bdfree = 0.0164, R = 1/2.413 = 0.414

Figure 6.5: Error performances of different (3rd order) VLECPCs for a binary non-uniform
source with p0 = 0.8. The number of 3-bit source symbols per transmission block is 10,
which is equivalent to 30 source information bits. The free distance dfree for all VLECPCs
is dfree = 7.

30

We next examine in Figure 6.5 the improvement in error performance between the

optimal code construction in Chapter 3 and the modified optimal one (that guarantees

to output the optimal VLECPC with the smallest Bdfree) in Section 4.1. Here, we group

three information bits, generated from a binary non-uniform memoryless source with

bit probability p0 , Pr(0) = 0.8, as one source symbol; hence, the VLECPCs are 3rd

order VLCs (i.e., k = 3), and the size of the source alphabet is K = 23 = 8. Also

shown in the same figure are the error performances of three VLECPCs respectively

obtained by Buttigieg’s [7], Lamy’s [23] and Wang’s [30] code construction algorithms,

which have the same free distance dfree = 7 as the optimal VLECPCs we constructed,

where Buttigieg’s and Lamy’s algorithms coincidentally yield an identical code in this

case. In each simulation, 10 source symbols (equivalently, 30 source information bits) are

encoded and transmitted as a block. All codes are decoded using the TP-SMAP decoder

of Chapter 5. Figure 6.5 shows that our optimal VLECPC constructed by the algorithm

proposed in Chapter 3 has around 0.8 dB coding gain over the three existing VLECPCs;

it also indicates that minimizing Bdfree can further pick up another 0.1 dB in performance

gain.

Table 6.4 summarizes the decoding complexity of the TP-SMAP for the VLECPCs

of Figure 6.5. We notice that a VLECPC with higher average codeword length requires

a higher decoding complexity. This is somehow anticipated since the decoding trellis is

larger for a VLECPC with higher average codeword length. Along this observation, the

optimal VLECPC and the optimal VLECPC with the smallest Bdfree have expectedly

similar decoding complexity because they have identical average codeword length. In

addition, with a smaller (actually, the minimum) average codeword length, our optimal

VLECPC decodes faster via the TP-SMAP than the other three VLECPCs.

We next test the performance of the suboptimal code construction algorithm of Sec-

tion 4.2 for the 26-symbol English data source. Since there are two different distribu-

tions for the English alphabet that are generally used in the literature for constructing

VLECPCs (e.g., compare [25, 30, 20, 26] with [7, 9, 13, 18]), we provide simulation results

for both distributions; we will refer to them as Distributions 1 and 2, respectively. The

31

VLECPCs we obtain via our suboptimal code construction algorithm are presented in

Tables 6.5 and 6.6 for Distributions 1 and 2, respectively.

In Table 6.7(a), we list, for different values of dfree, the average codeword lengths

(ALs) of the resulting VLECPCs under Distribution 1 as well as the execution time

needed for their construction via our suboptimal algorithm and the three algorithms

referred above. For the sake of completeness, the parameters used in each algorithm

are reported in Table 6.7(b).3 These parameters are chosen through a number of trials

in targeting a VLECPC with smaller average codeword length. The results indicate

that by manipulating the parameters, the VLECPCs obtained by our suboptimal code

construction algorithm can outperform all other three VLECPCs in average codeword

length. Table 6.7(a) also shows that our suboptimal code construction algorithm is worse

than Lamy’s or Wang’s algorithms in terms of execution time for dfree ≤ 9; however, we

can prevent the construction complexity of our algorithm from growing too quickly for

dfree ≥ 10 by properly adjusting its parameters under the premise that our algorithm

can still yield a better code than the other three algorithms. Similar conclusions can be

drawn about the performance of the above algorithms under Distribution 2; the results

are presented in Table 6.8.

Analogously to other schemes, many combinations of parameters need to be tested in

our suboptimal algorithm to arrive at a good VLECPC construction. The main parame-

ters that control the algorithm’s complexity are the early-elimination window ∆ and the

Encoding Stack size Γ. Usually, complexity increases when either ∆ or Γ increase, albeit

with the benefit of improving the VLECPC average codeword length. In general, it is not

straightforward to decide on the right choice of values for these parameters before testing

them. Despite this inconvenience, the proposed suboptimal approach is efficient enough

to test many combinations of parameters in reasonable time. For example, to get the sub-

optimal VLECPC with dfree = 3 in Table 6.5, we simulated all combinations of the follow-

ing parameters: ∆ = {1, 3, 5, 7, 9, 11, 13}, Γ = {20, 40, 60, 80, 100, 200, 300, 400, 500, 1000}

3Buttigieg’s algorithm (specifically, MVA in [7]) and Wang’s algorithm [30] are characterized by two
parameters, L1 and Lmax. An additional parameter Ls is needed for Lamy’s algorithm (specifically,
noHole+Ls in [23]).

32

Table 6.5: The VLECPCs for the English alphabet with Distribution 1 obtained by the suboptimal code construction algorithm for
different values of free distance.

Alphabet Probability dfree = 3 dfree = 5 dfree = 7 dfree = 9 dfree = 10 dfree = 11
E 0.14878610 0111 00001 00000000 00101101 000100000 0000000000
T 0.09354149 00101 011110 11111111 111111100 0000011110 00001011111
A 0.08833733 11011 0101011 000011111 1111000111 00101100111 000111101001
O 0.07245769 000110 1010000 111100001 11001000100 11011011000 0011010101111
R 0.06872164 010011 00110100 0011010100 110001111011 010111101100 00111100111001
N 0.06498532 101111 10010011 1100110011 0101010010100 101010010011 11101011100110
H 0.05831331 111010 11101111 01011010010 1001001100011 0110111000010 010101110010101
I 0.05644515 0001011 011001011 10101010101 00010000010001 1111100111101 111011101111010
S 0.05537763 1000100 101111100 11000101001 10100010101010 10110011110101 0111110110110011
D 0.04376834 1011001 110000100 001111001100 001100101001000 11001100001011 1100011111011100
L 0.04123298 1110010 1011110111 010101100010 100000110110011 011010110110011 01101101110011010
U 0.02762209 00000011 1101000010 101010010001 0001101010110111 100111011101111 11010010111110110
P 0.02575393 00000100 11000100111 110000111100 0100011011001010 111101101010100 101001001101110100
F 0.02455297 10001111 11110101000 0101001110110 1000000001110000 0110001101111001 1101011110110111100
M 0.02361889 10010101 110001010011 0110011000011 01000010011110111 1011110110000101 1110100001100110110
C 0.02081665 10100001 110111001100 0110100111001 01011011101011001 01001001110110110 01110010111111001010
W 0.01868161 10100110 1100010101000 1001011011001 10000110110001010 10100010110010001 011110001011111010011
G 0.01521216 11000000 1101110000010 1001110000110 000101101101110010 11010101111101001 0110011110111111000011
Y 0.01521216 010000011 11011101010111 1010001101100 010000110101010101 010010011101010011 1101010001011110010110
B 0.01267680 010000100 11011101101000 00110011110010 100110111010001000 110000101110001100 10100110101111111000101
V 0.01160928 100100000 110111000010111 01011001100111 0001101011011010001 111111100111111010 11101100000001111010010
K 0.00867360 110001101 110111010111001 01100101111100 0100001011101101010 1000110101001001101 010001101100111111000011
X 0.00146784 1000001001 110111011001100 01101100001011 0100001100000010000 1100101011110000111 101110010000111111010010
J 0.00080064 1100001111 1101110001111001 10011001011001 00010110111110110001 1110010001011110110 111011000001000110110110
Q 0.00080064 1100011100 1101110101100100 10100110010101 00011010110010011110 11100010011011000111 0101010101000111111000011
Z 0.00053376 10000010100 1101110110111111 001101101111001 01000011010011001000 11100101110110101011 1010110010001001110110010

33

Table 6.6: The VLECPCs for the English alphabet with Distribution 2 obtained by the suboptimal code construction algorithm for
different values of free distance.

Alphabet Probability dfree = 3 dfree = 5 dfree = 7 dfree = 9 dfree = 10 dfree = 11
E 0.1270 0111 000000 0011111 00000101 000100000 0000000001
T 0.0906 00011 111111 01000110 001110011 0000011110 00001111101
A 0.0817 11101 0001110 000010000 0101101000 00101100111 011100011010
O 0.0751 001010 1111000 111101101 01110111001 11011011000 0111011101010
I 0.0697 010011 00101001 0001001001 001111100110 010111101100 10110110111000
N 0.0674 101111 11010110 1110111000 110010011000 101010010011 11011101000111
S 0.0633 110110 010110100 00000101100 0100111011111 0110111000010 101100101001110
H 0.0609 0010010 101100110 10001110011 01110110110110 1111100111101 111011010110000
R 0.0599 0100000 110010011 11110000001 10001011011100 10110011110101 1011100111010011
D 0.0425 1000110 111001101 010110100010 100011100011010 11001100001011 1110011000101100
L 0.0403 1011001 0100010101 100111010001 110100010101110 011010110110011 11011010110010100
C 0.0278 1101011 0101001011 101001111010 0000101011001010 100111011101111 110110100010011110
U 0.0276 10001011 1000110010 111000100101 1010111100111110 111101101010100 111011101101100010
M 0.0241 10010100 1010011001 0001001110101 1101011111010000 0110001101111001 1011101101111000000
W 0.0236 10100001 1011100101 1000011101010 01010000110010010 1011110110000101 1101101111000101111
F 0.0223 10100110 01001010101 1100100100001 10011111111001011 01001001110110110 1110010010011010010
G 0.0202 11000010 01011001011 00100010100011 11111011010111110 10100010110010001 10111011000010101110
Y 0.0197 11000101 10001100011 10110011110100 010111111101011110 11010101111101001 11101010111101110100
P 0.0193 000000100 10110100101 11001111110011 100111001010001010 010010011101010011 111001001001011110110
B 0.0149 100000001 011001000111 11011000101010 111000010011001110 011101110110101011 111010110000101101010
V 0.0098 100001111 100001010011 001001000100011 0010111010011001110 111000001010001101 111110100111111011101
K 0.0077 100100010 111010100011 011011001111100 1001000011010101010 1000110101001001101 1011101100000110000110
J 0.0015 0000001111 0011111100011 100111011100000 1110011011110010010 1011011101101111010 1110101101111111101101
X 0.0014 0000011010 00100111100011 0010001011100000 01101000011111001011 1110001001011110101 10111011011011111101100
Q 0.0010 00000111010 11000010100011 1101000011110100 10100000011010111110 11100111011011000111 11101000100101100010111
Z 0.0007 000001110010 011101111100011 1110001100100011 11011101111011001110 11111100100110111001 11111010001100010111010

34

Table 6.7: List of the VLECPCs obtained by three existing code construction schemes and
the VLECPCs obtained by our suboptimal code construction algorithm for the 26-symbol
English alphabet with Distribution 1 given in Table 6.5: (a) Average codeword lengths
(ALs) of the found codes and execution time for each code construction algorithm; (b)
Parameters used in each algorithm. The suboptimal algorithm is initialized with Ub set to
equal the smallest of the average codeword lengths of the VLECPCs by Buttigieg, Lamy
and Wang.

(a)

Algorithm Buttigieg’s Lamy’s Wang’s Suboptimal
AL Time AL Time AL Time AL Time

dfree = 3 6.272617 2m2s 6.309980 4s 6.266612 <1s 6.189350 18s
dfree = 5 8.378035 6m42s 8.400986 44s 8.378035 12s 8.333866 2m27s
dfree = 7 10.559646 4h31m 10.599945 5m43s 10.488923 27s 10.302508 8m41s
dfree = 9 12.737255 6h27m 12.806644 9m52s 12.737255 2m30s 12.532291 5m29s
dfree = 10 12.757672 11h45m 12.867893 17m54s 12.757672 47m46s 12.593140 9m35s
dfree = 11 14.876166 19h14m 15.354549 21m43s 15.024952 2h15m 14.580329 14m53s

(b)

Algorithm Buttigieg’s Lamy’s Wang’s Suboptimal
Parameters (L1, Lmax) (L1, Lmax, Ls) (L1, Lmax) (∆,Γ,D, I)

dfree = 3 (4, 13) (4, 13, 10) (4, 13) (5, 300,Dm, 2)
dfree = 5 (6, 15) (6, 15, 12) (6, 15) (3, 500,Dl, 1)
dfree = 7 (7, 16) (7, 16, 13) (7, 16) (5, 2000,Dm, 1)
dfree = 9 (9, 18) (9, 18, 15) (9, 18) (1, 60,Dm, 1)
dfree = 10 (10, 19) (10, 19, 15) (10, 19) (1, 40,Dl, 2)
dfree = 11 (12, 21) (12, 21, 17) (12, 21) (1, 4,Dl, 1)

35

Table 6.8: List of the VLECPCs obtained by three existing code construction schemes and
the VLECPCs obtained by our suboptimal code construction algorithm for the 26-symbol
English alphabet with Distribution 2 given in Table 6.6: (a) Average codeword lengths
(ALs) of the found codes and execution time for each code construction algorithm; (b)
Parameters used in each algorithm. The suboptimal algorithm is initialized with Ub set to
equal the smallest of the average codeword lengths of the VLECPCs by Buttigieg, Lamy
and Wang.

(a)

Algorithm Buttigieg’s Lamy’s Wang’s Suboptimal
AL Time AL Time AL Time AL Time

dfree = 3 6.4038 20s 6.4047 14s 6.3574 <1s 6.2560 7s
dfree = 5 8.4740 5m16s 8.5049 47s 8.4740 9s 8.3223 1m13s
dfree = 7 10.5388 1h55m 10.5110 12m01s 10.5388 47s 10.3615 12m13s
dfree = 9 12.8898 3h14m 12.9644 13m04s 12.8898 4m22s 12.6647 6m03s
dfree = 10 12.8959 9h10m 13.0095 58m29s 12.8959 19m41s 12.7507 8m49s
dfree = 11 15.0345 17h37m 15.0846 38m53s 15.0345 1h20m 14.6521 16m12s

(b)

Algorithm Buttigieg’s Lamy’s Wang’s Suboptimal
Parameters (L1, Lmax) (L1, Lmax, Ls) (L1, Lmax) (∆,Γ,D, I)

dfree = 3 (4, 13) (4, 13, 13) (4, 13) (6, 200,Dm, 1)
dfree = 5 (6, 15) (6, 15, 13) (6, 15) (2, 250,Dm, 1)
dfree = 7 (7, 18) (7, 18, 15) (7, 18) (1, 3000,Dm, 1)
dfree = 9 (9, 18) (9, 18, 16) (9, 18) (1, 20,Dl, 1)
dfree = 10 (10, 20) (10, 20, 17) (10, 20) (3, 40,Dl, 1)
dfree = 11 (11, 21) (11, 21, 18) (11, 21) (1, 12,Dl, 1)

36

and D = {Dm,Dl}. It took us only about 29 minutes to simulate all these 140 combina-

tions within a single computer experiment.

Table 6.9: The complexities and performances of some different suboptimal code construc-
tion for dfree = 4 for the 26-symbol English alphabet (Distribution 2 given in Table 6.6).

(∆,Γ,D, I) Ub AL # of node computations Time

(3, 200,Dl, 1) ∞ 6.4794 2916 2s
(3, 200,Dl, 1) 7.3375 6.4794 2916 2s
(3, 200,Dl, 1) 6.4800 6.4794 3214 2s
(3, 200,Dm, 2) ∞ 6.7760 45236 10s
(3, 200,Dm, 2) 7.3375 6.7973 44516 9s

We next provide efficiency comparisons with the recent works of Diallo et al. [13] and

Hijazi et al. [18]. 4 Notably different from our work and also the main referenced works

in this dissertation (i.e., Buttigieg’s [7], Lamy’s [23] and Wang’s [30]), Diallo et al. and

Hijazi et al. do not construct codes for a given distribution but for a pre-specified set of

codeword lengths. The distributions assumed in their papers are therefore primarily for

the computation of the resulting average codeword length. To compare with the VLECPC

of [13], we simulated our suboptimal code construction for dfree = 4 under the same used

distribution for the 26-symbol English alphabet (Distribution 2 given in Table 6.6). The

VLECPC designed in [13, Table IV] has an average codeword length of 7.3375 and an

execution time of 310 hours. Our suboptimal code construction algorithm, when initialized

by an upper bound given by the average length of the code in [13] (i.e., with Ub = 7.3375)

and parameters (∆ = 3,Γ = 200,Dl, I = 1) yields an improved VLECPC with an average

codeword length of 6.4794 within only 2 seconds of execution. Furthermore, a similar

result can be obtained without making use of the Ub parameter (i.e., by setting Ub = ∞).

The (3,200,Dl,1) suboptimal algorithm still yields a VLECPC with an average codeword

length of 6.4794 within only 2 seconds of execution. This further shows that the proposed

suboptimal algorithm is highly efficient. The complexities and performances of other

found suboptimal VLECPCs are summarized in Table 6.9.

4It should be mentioned that we did not actually implement the systems of [13] and [18]; instead,
the efficiency results of these systems are directly retrieved from each paper. Due to differences in the
experimental platforms, the comparisons between our system and those of [13] and [18], especially in
terms of execution time, may not be on a fully equal footing. They are however herein provided for the
sake of reference.

37

In [18, Table 3], Hijazi et al. provide a VLECPC for dfree = 7 within an execution time

of 13 minutes and 31 seconds for a given set of codeword lengths. For Distribution 2 in

Table 6.6, the resulting average codeword length is 10.4213. In [18, Table 4], they provide

another VLECPC for dfree = 7, resulting in a better average codeword length of 10.1138

under Distribution 2, but no execution time is given.

Table 6.10: The complexities and performances of some other suboptimal code construc-
tion for dfree = 7 for the 26-symbol English alphabet (Distribution 2 given in Table 6.6).

(∆,Γ,D, I) Ub AL # of node computations Time

(1, 3000,Dm, 1) ∞ 10.3615 459403 12m37s
(1, 3000,Dm, 1) 10.5110 10.3615 452237 12m13s

In contrast, our best to-date suboptimal code construction, as shown in Table 6.8

with parameters (∆ = 1,Γ = 3000,Dm, I = 1) and Ub = 10.5110, outputs a VLECPC for

dfree = 7 with an average codeword length of 10.3615, which is in between 10.4213 [18,

Table 3] and 10.1138 [18, Table 4], under an execution time of 12 minutes and 13 seconds.

On the other hand, our current suboptimal code construction algorithm, when initial-

ized with Ub = 10.4213 (and also Ub = 10.1138), either reports a code search failure or

cannot converge to a solution in reasonable time, depending on the choice of parameters

(∆,Γ,D, I). It should be pointed out however, that unlike our suboptimal algorithm, the

scheme of [18] requires a priori knowledge of all codeword lengths before it is run. Hence

arriving at the right choice of codeword lengths for any given dfree and alphabet size re-

quires additional trials (whose execution duration are not reported in [18]). Nonetheless,

it is certainly of interest, to further improve the efficiency of our algorithm and assess

whether or not the average codeword length of 10.1138 is optimal or not for dfree = 7.

The complexities and performances of other found suboptimal VLECPCs are summarized

in Table 6.10.

Figure 6.6 illustrates the SER performances of the VLECPCs presented in Table 6.7

with dfree = 11. Again, 10 source symbols are encoded and transmitted as a block in each

simulation, and all codes are decoded using the TP-SMAP decoder in Chapter 5. We

observe from the figure that the VLECPC obtained by our suboptimal code construction

38

8 8.5 9 9.5 10 10.5 11
10

−5

10
−4

10
−3

10
−2

10
−1

SNRs (dB)

S
y
m
b
o
l
E
rr
o
r
R
a
te

Wang’s VLECPC, R = Rc/Rs = 1/15.025 = 0.067
Buttigieg’s VLECPC, R = Rc/Rs = 1/14.876 = 0.067
Lamy’s VLECPC, R = Rc/Rs = 1/15.355 = 0.065
Suboptimal VLECPC, R = Rc/Rs = 1/14.580 = 0.069

Figure 6.6: Error performances of the VLECPCs of Table 6.7 with dfree = 11 for the
26-symbol English alphabet (with Distribution 1). The number of source symbols per
transmission block is L = 10.

Table 6.11: Average (AVG) and maximum (MAX) numbers of decoder branch metric
computations for the codes of Figure 6.6.

SNRs 8 dB 9 dB 10 dB 11 dB

VLECPC system AVG MAX AVG MAX AVG MAX AVG MAX

Wang’s VLECPC 3124 11131 3123 4524 3123 4093 3123 4000
Buttigieg’s VLECPC 3112 16433 3111 5950 3111 4001 3111 4001
Lamy’s VLECPC 3211 14675 3210 5959 3209 4391 3209 4391

Suboptimal VLECPC 3108 10096 3104 4349 3104 3995 3104 3995

39

algorithm outperforms the other three VLECPCs by at least 0.15 dB. The decoding com-

plexities of these systems are summarized in Table 6.11. As anticipated, the VLECPC

obtained by our suboptimal code construction algorithm has the smallest average code-

word length and hence its decoding complexity is smaller than those of the other three

VLECPCs, particularly in the maximum number of branch metric computations.

Finally, we compare the SER performance of one suboptimal VLECPC shown in

Table 6.7 with that of a traditional SSCC system for the situation where the source is

the memoryless 26-symbol English data. The SSCC system consists of a Huffman source

coder and a tail-biting convolutional channel (TBCC) coder. We use (3, 1, 3), (3, 1, 4),

(3, 1, 5) and (3, 1, 6) TBCCs respectively with generator polynomial [54, 64, 74], [52, 66, 76],

[47, 53, 75] and [564, 624, 754] (in octal) [29] such that the resulting SSCC systems have

approximately the same code rate R ≈ 0.08 as the VLECPC to be compared with. Also,

the dfree of the chosen VLECPC is 10, while the largest minimum Hamming distances

dmin for (3, 1, 3), (3, 1, 4), (3, 1, 5) and (3, 1, 6) TBCCs are 10, 12, 13 and 15, respectively.

Both the VLECPC and the TBCCs are decoded by sequence decoders, where the one for

the VLECPC is the TP-SMAP proposed in Chapter 5, and the one for the TBCCs is

the priority-first search decoding algorithm (PFSA) introduced in [16]. The results are

illustrated in Figure 6.7.

Table 6.12: Average (AVG) and maximum (MAX) numbers of decoder branch metric
computations for the codes of Figure 6.7. The parameter λ used in PFSA is indicated
inside the parentheses.

SNRs 8 dB 9 dB 10 dB 11 dB

Scheme
AVG MAX AVG MAX AVG MAX AVG MAX

Code Decoder

(3, 1, 3) TBCC [54, 64, 74] PFSA(3) 753 2049 739 1518 731 1483 730 1253
(3, 1, 4) TBCC [52, 66, 76] PFSA(4) 1466 4192 1444 3298 1435 2916 1432 2528
(3, 1, 5) TBCC [47, 53, 75] PFSA(5) 2907 8909 2875 6437 2865 4851 2862 4661

(3, 1, 6) TBCC [564, 624, 754] PFSA(6) 5773 21062 5734 12814 5724 9063 5721 8687

Suboptimal VLECPC TP-SMAP 2698 8322 2695 7362 2694 3840 2694 3840

We remark from Figure 6.7 that for almost all simulated SNRs, the suboptimal

VLECPC outperforms the SSCC using a TBCC of memory order no larger than 5. In

comparison with the SSCC equipped with the (3, 1, 6) TBCC, the suboptimal VLECPC

still performs better when SNRs is less than 9 dB. Table 6.12 summarizes the decoding

40

8 8.5 9 9.5 10 10.5 11
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNRs (dB)

S
y
m
b
o
l
E
rr
o
r
R
a
te

(3, 1, 3) TBCC with dmin = 10 + Huffman, R = 0.333/4.156. = 0.080

(3, 1, 4) TBCC with dmin = 12 + Huffman, R = 0.333/4.156. = 0.080

(3, 1, 5) TBCC with dmin = 13 + Huffman, R = 0.333/4.156. = 0.080

(3, 1, 6) TBCC with dmin = 15 + Huffman, R = 0.333/4.156. = 0.080

Suboptimal VLECPC with dfree = 10, R = 1/12.593 = 0.079

Figure 6.7: Error performances of the SSCC (specifically, first order Huffman + TBCC)
and the VLECPC of Table 6.7 with dfree = 10 for the 26-symbol English alphabet (with
Distribution 1). The number of source symbols per transmission block is L = 10.

41

complexities of the suboptimal VLECPC and the TBCCs in terms of the branch metric

computations. It indicates that the VLECPC system is more efficient than the SSCC

system using a TBCC of memory orders 5 and 6. Note that in this table, the decoding

complexity of the Huffman coder is not even included. We can then conclude that the

VLECPC system can achieve a better performance than an SSCC system of comparable

decoding complexity. We end the discussion by pointing out again that the VLECPC

system only requires one encoder and one decoder, while the SSCC system needs sepa-

rate source coder and channel coder at both transmitter and receiver sides. This can be

considered another advantage of the VLECPC system over the SSCC system.

42

Chapter 7

Conclusion

In this dissertation, a novel search algorithm is proposed for constructing optimal prefix-

free VLECPCs for the effective joint source-channel coding of memoryless sources over

memoryless channels. The optimal construction algorithm is modified to construct op-

timal VLECPCs with improved resilience against channel noise through a critical union

bound parameter Bdfree . A suboptimal but much more efficient construction algorithm

is next presented to construct VLECPCs with large free distances and for large source

alphabets such as the 26-symbol English data source. A low-complexity two-phase se-

quence MAP (TP-SMAP) decoder for the VLECPCs is also proposed. Simulations show

that the developed optimal and suboptimal VLECPCs can have evident gains over most

existing VLECPCs of identical free distance in terms of average codeword length, error

rate performance and decoding complexity. Also shown in this dissertation is that our

VLECPC system outperforms traditional separate source/channel coding systems of sim-

ilar overall rate at low to medium SNRs with the benefit of considerably smaller decoding

complexity. Future research directions may include further improving the efficiency of

our sub-optimal algorithm, extending our design to Markov sources as well as investi-

gating powerful VLECPC iterative decoding methods (e.g., cf. [4, 22]) with manageable

complexity.

43

Appendix A

Optimality of Constuction
Algorithm in Chapter 3

To show that the proposed algorithm can always find a VLECPC with minimal average

codeword length and free distance d∗free, the following lemma is needed.

Lemma 1. The metric f of each node is not greater than its children:

f(P) ≤ f(L) and f(P) ≤ f(R), (A.1)

where node P is the parent of L, and R as shown in Figure 3.1.

Proof. The candidate codewords of each node are listed in order of nondecreasing lengths
(i.e., A = {a1,a2,a3, . . .} with |a1| ≤ |a2| ≤ |a3| · · ·). For the left child L, AL is a subset
of AP \ {a

P
1}. Hence |aP

i+1| ≤ |aL
i | for all integers i ≥ 1. Therefore,

f(P) =
t

∑

i=1

pi · |c
P
i |+

K
∑

i=t+1

pi · |a
P
i−t| (A.2)

=
t

∑

i=1

pi · |c
P
i |+ pt+1 · |a

P
1|+

K
∑

i=t+2

pi · |a
P
i−t| (A.3)

≤
t

∑

i=1

pi · |c
P
i |+ pt+1 · |a

P
1|+

K
∑

i=t+2

pi · |a
L
i−t−1| (A.4)

= f(L). (A.5)

Since |aP
i | ≤ |aP

i+1| for i ≥ 1, for the right child R, we have

f(P) =
t

∑

i=1

pi · |c
P
i |+

K
∑

i=t+1

pi · |a
P
i−t| (A.6)

≤
t

∑

i=1

pi · |c
P
i |+

K
∑

i=t+1

pi · |a
P
i−t+1| (A.7)

= f(R). (A.8)

44

The proposed algorithm repeatedly pops out the node with smallest f from the Stack.

Suppose that the algorithm encounters the first top node which has selected K codewords

and its free distance equals d∗free; then by the above Lemma, no matter how the algorithm

continues, extending any node in the Stack will generate a node with metric f no smaller

then the top node. Hence, the algorithm yields an optimal VLECPC.

45

Appendix B

Optimality of TP-SMAP Decoder in
Chapter 5

The second phase of the TP-SMAP decoder is basically identical to the optimal code

construction algorithm, except that the sequential search algorithm is applied on the

trellis TL,N instead of the search tree. Therefore, proving optimality here is similar to

the proof provided in Appendix A, except that we need to prove that the path metric is

nondecreasing along any path on TL,N .

Lemma 2. In the second phase, the decoding metric is nondecreasing along any path on

trellis TL,N , i.e.,

m
(

x
(i,j)
(0,0)

)

≤ m
(

x
(i+1,j+l)
(0,0)

)

, (B.1)

if there exists a codeword c ∈ C and |c| = l.

Proof. Based on the backward VA of the first phase, h(Sj) is the minimal metric among

all paths from level j to the final node; i.e.,

h(Sj) = min
i:
∑L

k=i+1
|xk|=N−j with each xk∈C

g
(

x
(L,N)
(i,j)

)

. (B.2)

When there is a codeword c ∈ C and |c| = l, then

h(Sj) ≤ g
(

x
(i+1,j+l)
(i,j)

)

+ h (Sj+l) .

46

Therefore,

m
(

x
(i,j)
(0,0)

)

= g
(

x
(i,j)
(0,0)

)

+ h(Sj) (B.3)

≤ g
(

x
(i,j)
(0,0)

)

+ g
(

x
(i+1,j+l)
(i,j)

)

+ h (Sj+l) (B.4)

= g
(

x
(i+1,j+l)
(0,0)

)

+ h(Sj+l) (B.5)

= m
(

x
(i+1,j+l)
(0,0)

)

. (B.6)

The second phase of the TP-SMAP repeatedly pops out the node with smallest m(·)

from the Decoding Stack. Suppose that the algorithm encounters the first top node which

reaches the final state SL,N ; then by the above Lemma, no matter how the algorithm

continues, extending any node in the Decoding Stack will generate a node with decoding

metric m(·) no smaller then the top node. Hence, according to the MAP decision in (2.4),

the TP-SMAP certainly outputs the MAP decision.

47

Bibliography

[1] F. Alajaji, N. Phamdo and T. Fuja, “Channel codes that exploit the residual re-

dundancy in CELP-encoded speech,” IEEE Trans. Speech Audio Processing, vol. 4,

pp. 325–336, Sep. 1996.

[2] E. Ayanoglu and R. Gray, “The design of joint source and channel trellis waveform

coders,” IEEE Trans. Inform. Theory, vol. 33, no. 6, pp. 855–865, Nov. 1987.

[3] V. B. Balakirsky, “Joint source-channel coding with variable length codes,” in

Proc. IEEE Int. Symp. Inform. Theory, Ulm, Germany, June 29–July 4, 1997, p. 419.

[4] R. Bauer and J. Hagenauer, “Iterative source/channel-decoding using reversible vari-

able length codes,” in Proc. Data Compression Conf., Snowbird, Utah, USA, Mar. 28–

30, 2000, pp. 93–102.

[5] M. A. Bernard and B. D. Sharma, “Some combinatorial results on variable length

error-correcting codes,” ARS Combinatoria, vol. 25B, pp. 181–194, 1988.

[6] M. A. Bernard and B. D. Sharma, “A lower bound on average codeword length of

variable length error-correcting codes,” IEEE Trans. Inform. Theory, vol. 36, no. 6,

pp. 1474–1475, Nov. 1990.

[7] V. Buttigieg, Variable-Length Error-Correcting Codes, Ph.D. thesis, Univ. of Manch-

ester, England, 1995.

[8] V. Buttigieg, personal communication, 2012.

[9] V. Buttigieg and P. G. Farrell, “Variable-length error-correcting codes,” IEE

Proc. Commun., vol. 147, no. 4, pp. 211–215, Aug. 2000.

48

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

MIT press, Cambridge, MA, 2001.

[11] A. Diallo, C. Weidmann and M. Kieffer, “Optimizing the free distance of error-

correcting variable-length codes,” in Proc. IEEE Int. Workshop Multimedia Signal

Proc. (MMSP), St. Malo, France, Oct. 4–6, 2010, pp. 245–250.

[12] A. Diallo, C. Weidmann and M. Kieffer, “Efficient computation and optimization

of the free distance of variable-length finite-state joint source-channel codes,” IEEE

Trans. Commun., vol. 59, no. 4, pp. 1043–1052, Apr. 2011.

[13] A. Diallo, C. Weidmann and M. Kieffer, “New free distance bounds and design

techniques for joint source-channel variable-length codes,” IEEE Trans. Commun.,

vol. 60, no. 10, pp. 3080–3090, Oct. 2012.

[14] P. Duhamel and M. Kieffer, Joint Source-Channel Decoding: A Cross-Layer Per-

spective with Applications in Video Broadcasting over Mobile and Wireless Networks,

Academic Press, 2010.

[15] Y. S. Han, P.-N. Chen and H.-B. Wu, “A maximum-likelihood soft-decision sequential

decoding algorithm for binary convolutional codes,” IEEE Trans. Commun., vol. 50,

no. 2, pp. 173–178, Feb. 2002.

[16] Y. S. Han, T.-Y. Wu, H.-T. Pai, P.-N. Chen and S.-L. Shieh, “Priority-first search

decoding for convolutional tail-biting codes,” Int. Symp. Inform. Theory and its Ap-

plications (ISITA), Auckland, New Zealand, Dec. 7–10, 2008, pp. 1–6.

[17] W. E. Hartnett, Foundation of Coding Theory, D. Reidel Publishing Co., Dordrecht,

Holland, 1974.

[18] H. Hijazi, A. Diallo, M. Kieffer, L. Liberti and C. Weidmann, “A MILP approach for

designing robust variable-length codes based on exact free distance computations,” in

Proc. Data Compression Conf., Snowbird, Utah, USA, Apr. 10–12, 2012, pp. 257–266.

49

[19] Y.-M. Huang, Y. S. Han and T.-Y. Wu, “Soft-decision priority-first decoding algo-

rithms for variable-length error-correcting codes,” IEEE Commun. Letters, vol. 12,

no. 8, pp. 572–574, Aug. 2008.

[20] Y.-M. Huang, T.-Y. Wu and Y. S. Han, “An A∗-based algorithm for constructing re-

versible variable-length codes with minimum average codeword length,” IEEE Trans.

Commun., vol. 58, no. 11, pp. 3175–3185, Nov. 2010.

[21] S. Kaiser and M. Bystrom, “Soft decoding of variable-length codes,” IEEE Int. Conf.

on Commun., New Orleans, LA, USA, June 18–22, 2000, pp. 1203–1207, vol. 3.

[22] J. Kliewer and R. Thobaden, “Iterative joint source-channel decoding of variable-

length codes using residual source redundancy,” IEEE Trans. Wireless Commun.,

vol. 4, no. 3, pp. 919–929, May 2005.

[23] C. Lamy and J. Paccaut, “Optimized constructions for variable-length error correct-

ing codes,” in Proc. IEEE Inform. Theory Workshop, Paris, France, Mar. 31–Apr. 4,

2003, pp. 183–186.

[24] C. Lamy and F. X. Bergot, “Lower bounds on the existence of binary error-correcting

variable-length codes,” in Proc. IEEE Inform. Theory Workshop, Paris, France,

Mar. 31–Apr. 4, 2003, pp. 300–303.

[25] J. C. Maxted and J. P. Robinson, “Error recovery for variable length codes,” IEEE

Trans. Inform. Theory, vol. 31, no. 6, pp. 794–801, Nov. 1985.

[26] S. A. Savari and J. Kliewer, “When Huffman meets Hamming: A class of optimal

variable-length error correcting codes,” in Proc. Data Compression Conf., Snowbird,

Utah, USA, Mar. 24–26, 2010, pp. 327–336.

[27] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical

Journal, vol. 27, pt. I, pp. 379–423; pt. II, pp. 623–656, 1948.

50

[28] S.-L. Shieh, P.-N. Chen, Y. S. Han, and T.-Y. Wu, “Early-elimination modification

for priority-first search decoding,” IEEE Trans. Commun., vol. 58, no. 12, pp. 3459–

3469, Dec. 2010.

[29] P. Stahl, J. B. Anderson, and R. Johannesson, “Optimal and near-optimal encoders

for short and moderate-length tail-biting trellises,” IEEE Trans. Inform. Theory,

vol. 45, no. 7, pp. 2562–2571, Nov. 1999.

[30] J. Wang, L.-L. Yang and L. Hanzo, “Iterative construction of reversible variable-

length codes and variable-length error-correcting codes,” IEEE Commun. Letters,

vol. 8, no. 11, pp. 671–673, Nov. 2004.

[31] T. Wenisch, P. F. Swaszek and A. K. Uht, “Combined error correcting and com-

pressing codes,” in Proc. IEEE Int. Symp. Inform. Theory, Washington, DC, USA,

June 24–29, 2001, pp. 238.

[32] T.-Y. Wu, P.-N. Chen, F. Alajaji, and Y. S. Han, “On the construction and MAP

decoding of optimal variable-length error-correcting codes,” in Proc. IEEE Int. Symp.

Inform. Theory, Saint Petersburg, Russia, July 31–Aug. 5, 2011, pp. 2223–2227.

[33] Y. Zhong, F. Alajaji and L. L. Campbell, “On the joint source-channel coding error

exponent for discrete memoryless systems,” IEEE Trans. Inform. Theory, vol. 52,

no. 4, pp. 1450–1468, Apr. 2006.

51

	封面
	論文摘要
	Thesis-TingYi-final.pdf

