國立交通大學

電子物理學系

碩士論文

奈米鑽石/奈米金膜之室溫高效率單光子 光源 Nanodiamond/Nano-Gold Film for Room Temperature High-Efficiency Single Photon Sources

研究生:蔡承晏

指導教授:張文豪 教授

中華民國一百零二年七月

奈米鑽石/奈米金膜之室溫高效率單光子光源

Nanodiamond/Nano-Gold Film for Room Temperature

High-Efficiency Single Photon Sources

研究生:蔡承晏

Student : Cheng-Yen Tsai

指導教授:張文豪 教授

Advisor : Prof. Wen-Hao Chang

July 2013

Hsinchu, Taiwan, Republic of China

中華民國一百零二年七月

奈米鑽石/奈米金膜之室溫高效率單光子光源

研究生:蔡承晏

指導教授:張文豪 教授

國立交通大學電子物理學系

摘要

本論文研究室溫下具有單光子發光特性的奈米鑽石,經由與奈米金膜所 產生之表面電漿耦合增快自發輻射,藉此提高單光子效率。本研究將奈米 鑽石透過一層 5 nm 介電材料與奈米金膜結合,經由螢光光譜和光子相干量 測證實,單光子源可藉由這種混和型結構提高其單光輻射效率。透過理論 模擬可證實 (N-V)⁻ 螢光與金屬表面電漿的耦合,因介電層的存再而使電漿 子的電場因被侷限而增強,進而提升 (N-V)⁻ 中心的自發輻射速率。

Nanodiamond/Nano-Gold Film for Room Temperature High-Efficiency Single Photon Sources

Student: Cheng-Yen Tsai

Advisor: Dr. Wen-Hao Cheng

Department of Electrophysics National Chiao Tung University

Abstract

The thesis is devoted to develop nanodiamonds which possess single photon emission at room temperature. In order to improve the generation rate of a single photon source, nanodiamonds placed on the gold film which is coated with a dielectric material enhanced spontaneous emission could be reached. Via fluorescence spectroscopy and second-order correlation functions measurements, the single-photon sources could obtain higher emission rate by using this hybrid-system. Theory and simulation results confirmed that plasmon polariton in dielectric layer produce high-density confinement of the electric field. Hence, (N-V)⁻ center with strong electric field can lead to a higher rate of spontaneous emission.

誌謝

兩年碩士生涯要正式落幕了,感謝所有遇見過的人,感謝所有關心我的人。 首先,我要感謝我的家人,尤其是我的父母。謝謝你們在生活和精神上給予支持, 讓我可以無後顧之憂的努力過完碩士生涯。

感謝我的指導教授 張文豪老師,謝謝您帶我一路勇往直前奮力不倦,不僅 於課業上給予指導,更教曉我看事情的角度和看待人生的態度。還記得老師在我 們碩一時常說:「能快就不要慢,不能快,快樂就好」,此話讓學生在實驗遇瓶頸 時,得以調適得當,如今輕舟已過萬重山,老師對我的照顧及付出,點滴在心, 無限感激!學生將終身記得。另外,要感謝口試委員果尚志教授、徐子民教授、 綦振瀛教授及周武清教授細心、無私地提供寶貴意見,使本論文得以更加完善。

感謝衍均學長在我實驗遇到問題時,總是無怨無悔的解救我,也謝謝你願意 在夜深人靜時陪我和彥倫一起喝"大道玫瑰紅酒",讓我們在歡笑中度過每一天。 感謝伩哲學長在研究上的幫忙,因為你的帶領讓我在畢業這一刻肚子變的和你一 樣大。感謝林萱學姐在我碩一懵懂無知時,耐心地教導帶領我一年。感謝家賢學 長會在無意間對我提出忠肯的建議。也感謝大雄學長每次安排實驗時間時都給予 我最充分的時間,讓我可以順利完成實驗。感謝建儒學長常講在德國求學時所遇 到的趣味事給我們聽。

另外非常感謝我的同儕,鑫封、冠宇和廷晏之擋子彈三人組,讓我每次在砲 火中可以安然度過。謝謝雅菱總是無怨無悔的幫助我們處理生活上的瑣碎事情以 及梓榆的寶貝光環讓我們六人可以順利的安全下莊。在這兩年中,我們六人總是 彼此互相照應,我們所擁有的歡笑和淚水,我將永遠僅記在心。最後感謝淇輔、 丞晧、彥綸、子昂和碧珊,沒有你們的存在,實驗室不會如此歡樂。

感謝所有遇見過的人,感謝所有關心我的人。

蔡承晏 於科三館

中華民國一百零二年七月

摘要i							
Abstract		ii					
誌謝		iii					
目錄		iv					
圖目錄	圖目錄vi						
表目錄		viii					
第一章 儱	育介	1					
1.1	前言	1					
1.2	研究動機	2					
第二章 實	一驗樣品與理論介紹	3					
2.1	樣品結構與製備	4					
2.2	螢光奈米鑽石材料簡介	6					
2.2.1	鑽石氮-空缺生成方法	7					
2.2.2	奈米鑽石N-V中心之能階結構及光學特性	9					
2.3	二階相干函數理論	13					
2.4	光激螢光光譜理論	16					
2.5	表面電漿特性與近場激發簡介	17					
2.6	奈米鑽石結合奈米金膜混和結構模擬設置及原理	20					
2.6.1	模擬設置及Purcell效應介紹	20					
2.6.2	奈米鑽石結合奈米金膜之混和結構模擬結果分析	25					
第三章 實	"驗儀器裝置架設	28					
3.1	光激螢光光譜架設	28					
3.2	HB-T干涉儀量測系統架設	29					
第四章 結	;果與討論	30					
4.1	奈米鑽石單光子光源	31					
	iv						

4.1.1	光激螢光光譜	31
4.1.2	光子相干量测分析	33
4.2	奈米鑽石結合奈米金膜混和結構	35
4.2.1	混和結構面積掃描螢光光譜	35
4.2.2	單顆單光子源奈米鑽石光激螢光光譜	37
4.2.3	變功率光子相干量測分析	40
4.2.4	奈米鑽石結合奈米金膜混和結構模擬分析	43
第五章 結	吉論與展望	44
參考文獻		45

圖目錄

【圖 2-1】 奈米金膜之掃描式電子顯微鏡影相。	4
【圖 2-2】 樣品剖面結構示意圖。	4
【圖 2-3】100 nm 鑽石SEM影相。	5
【圖 2-4】碳壓力相位圖	7
【圖 2-5】鑽石主要螢光缺陷	8
【圖 2-6】 奈米鑽石氮-空缺中心結構。	8
【圖 2-7】 奈米鑽石氮-空缺螢光光譜分布。	10
【圖 2-8】(N-V) ⁻ 中心三能階系統示意圖。	10
【圖 2-9】 (N-V) ⁻ 中心的Spin S = 1	11
【圖 2-10】光子集束、同調、反集束現象比較。	14
【圖 2-11】高激發和低激發功率時,電子占有率對時間的結果。	15
【圖 2-12】直接能隙光激螢光示意圖	16
【圖 2-13】 銻金屬之介電係數實部與虛部隨電磁波頻率變化結果	18
【圖 2-14】金屬表面電荷集體震盪現象的示意圖。	19
【圖 2-15】理論模擬流程圖。	20
【圖 2-16】 奈米鑽石結合奈米金膜混和結構模型。	25
【圖 2-17】 混和結構模型電場Ex方向強度分佈。	26
【圖 2-18】 混和結構模型電場Ez方向強度分佈。	26
【圖 2-19】 奈米鑽石 (N-V) 中心的電偶極矩偏振比	27
【圖 2-20】 混和結構模型總能量U強度分佈。	27
【圖 3-1】顯微光激螢光量測系統實驗裝置。	28
【圖 3-2】光子相干量測系統HB-T(Hanbury-Brown& Twiss)架設。	29
【圖 4-1】 奈米鑽石氮-空缺 (N-V) ⁻ 中心螢光空間分布圖結果	31
【圖 4-2】 奈米鑽石螢光光譜。	32
【圖 4-3】不同激發功率量測奈米鑽石 600 nm~800 nm的螢光強度。	32
【圖 4-4】不同雷射功率激發下,氦-空缺中心發光的二次相干函數值	34
【圖 4-5】 奈 米 鑽 石 HB-T power-dependent。	34
【圖 4-6】 奈米鑽石結合奈米金膜混和結構下之氮-空缺 (N-V)— 中心螢光	空間分
布圖結果及光學影相圖。	35
【圖 4-7】 奈米鑽石分別在金膜與矽基板上螢光強度分布圖。	36
【圖 4-8】 奈米鑽石在金膜下之氮-空缺(N-V) 中心螢光空間分布圖結果	37
【圖 4-9】 奈米鑽石在金膜下之氣-空缺中心發光的二次相干函數值。	37
【圖 4-10】 奈米鑽石放置在金膜上和矽基板上的螢光光譜。	
【圖 4-11】 奈米鑽石放置在金膜上和放在矽基板上時得到螢光強度比值。	39

	昌	4-12	奈	米鑽	石放	在金膀	和矽	'基板	上隨著	蒈不同]激發	登功率	《量浿	」奈米	<鑽石	600 n	m
		~	~ 80	00 nm	的費	螢光強度	を。									3	9
ľ	圖	4-13	】奈	ミ 米鑽	石	(N-V)	中心	3在金	膜上的	的HB	-T pc	ower-	deper	ndent	°	4	1
ľ	啚	4-14	】	ミ 米鑽	石	(N-V)	中心	3在金	·膜上	和在可	汐基材	反上自	勺激豸	登態 至	刘基总	之生命	命
			週	期。.												4	2
ľ	圖	4-15) (1	N-V)	中	心距離	金膜	銀膜	的各種	重高度	き, 業	1應的	Purc	ell因	子。	4	3

表目錄

第一章 簡介

1.1 前言

近二十年來,科技快速的進步,各種電子產品漸漸地在我們的生活中扮 演不可或缺的角色,為了提供更便利的攜帶性與功能性,許多元件已逐漸 地微型化,直至奈米尺度。此時,很多物理行為已不再完全遵循古典物理 法則,而是由量子物理來主導,也就是奈米科技。奈米科技發展至今,已 在許多傳統元件有所應用,例如發光二極體 [1][2]、雷射 [3]-[5]、光 偵測器 [6][7]以及電晶體 [8]。接下來,發展操控單原子、單電子以及 單光子的量子科技,將成為量子科技中人們熱烈研究討論的熱門議題。

量子科技應用當中,最令人矚目的即量子信息的應用,當中包含量子通 1896 訊和量子計算方面等 [9]。在量子計算方面,傳統數位化資訊處理是以二 進位的方式呈現,故二進位中的0和1為資訊處理的最小單位。在量子資 訊中,最小處理單位稱之量子位元(Quantum bit, Qubit),以量子態 |0>和 |1> 來呈現。量子態具疊加性(Superposition)和糾纏態(Entanglement)等 特性,故提升了運算速度及資訊存儲空間 [10]。 1.2 研究動機

在量子傳輸方面裡包含了一項重要技術,那就是量子密碼術,量子密碼 術是最近幾十年發展起來的一種新型通訊技術,它利用量子特性來實現或增 強通訊的安全性。

由於量子計算和量子密碼通信系統是基於光量子訊號的傳輸特性,因此 如何獲得穩定可靠的量子光源傳遞資訊,就成為實現量子科技應用主要的 課題。目前量子光源主要有三種:單光子(Single photon source)光源、連 續變數(Continue variable)光源和糾纏態(Entangled state)光源。

單光子作為一種基本粒子, 光子具有不可分離性, 所以任何攻擊者都不 能從光子所傳遞的量子訊號中分離出其他子系統, 可見單光子是一種理想 的量子訊號載體。然而, 由於缺乏理想的單光子源, 所以目前可以產生既 穩定、高效率又可靠的量子光源是非常重要的議題。本研究試圖利用奈米 鑽石 (Nanodiamond, ND)發展室溫操作之單光子光源, 經由與奈米金膜所 產生之表面電漿耦合, 形成電漿子共振腔 (Plasmonic cavity), 使電場被侷 限於介電層中, 達到增快自發輻射的效果並提高發光效率 [11]-[13]。

第二章 實驗樣品與理論介紹

本研究以顯微光激螢光(Micro-Photoluminescence,μ-PL)光譜量測單 一顆奈米鑽石螢光,並利用 HB-T 干涉儀量測二階相干函數(Second order correlation functions),藉此檢測單顆奈米鑽石是否僅含單一 N-V 中心。因 此本章將先簡介樣品結構,再介紹二階相干函數及顯微光激螢光光譜原理, 以及奈米鑽石的材料特性。最後將探討表面電漿、Purcell 效應以及理論模 擬計算的結果。

2.1 樣品結構與製備

本研究使用的單晶奈米金膜樣品為清華大學果尚志教授團隊所提供。樣 品製備方法是先將化學合成的單晶奈米金膜混合在去離子水裡,再將溶液 滴置在矽基板上,接著以原子沉積法(Atomic layer deposition, ALD) 鍍上 一層厚度約為 5 nm 的氧化鋁(Al₂O₃)介電層,最後將混合在去離子水裡 的 100 nm 鑽石溶液滴置在奈米金膜上。【圖 2-1】為奈米金膜之掃描式電 子顯微鏡(SEM)影相,而【圖 2-2】則為結構示意圖。

【圖 2-1】 奈米金膜之掃描式電子顯微鏡影相。

【圖 2-2】樣品剖面結構示意圖。

我們所使用的奈米鑽石為人工合成 type-Ib 的鑽石,該類鑽石是含有較 多氮雜質,【圖 2-3】為 100 nm 奈米鑽石掃描式電子顯微鏡影相。

2.2 螢光奈米鑽石材料簡介

人工鑽石在1955年被美國奇異公司Bundy等人成功的以高溫高壓 (High temperature high pressure) 法成功製造出來 [14], 同時在當時的蘇聯也利 用類似的技術合成人工鑽石,即所謂的蘇聯鑽。這代表當時的世界強權已 經開始瞭解鑽石於產業、科技上的應用價值。隨著科技的進步,美國科學 家開始以氣相低壓沉積法將甲烷、氫氣混合成長出人工鑽石。奈米鑽石的 應用價值也不僅限於尺寸與維度,二維的鑽石薄膜能提高機械的抗壓強度 與熱導性質,而小尺度的鑽石更能成為極佳的研磨材料。另一製造人工鑽 石的方法則是利用爆炸法 (Detonation method), 此方法是將石墨等含碳材 料包在炸藥外並放入高壓腔體中,藉由爆炸時的衝擊波在高溫高壓的瞬間 將鬆散的碳原子SP²結構壓縮成更堅硬的奈米鑽石SP³結構。【圖 2-4】即為 石墨碳壓力相位圖,由此相位圖我們可以知道石墨碳轉變成鑽石結構時所 需要的溫度與壓力,最後再經由挑選清洗的過程將沒能成為鑽石的石墨、 非晶相碳清除,就成為我們目前所應用的奈米鑽石。

6

【圖 2-4 】碳壓力相位圖 [25]。

2.2.1 鑽石氮-空缺生成方法

奈米鑽石因為含有雜質和缺陷(Defect)而有螢光特性。目前被科學家 發現鑽石裡的雜質和缺陷有多達五百多種 [15],但目前被證實為明亮且穩 定的螢光缺陷卻不到十種,如【圖 2-5】所示。近十年來,這些螢光缺陷中 最常被拿來應用的是氣-空缺中心(Nitrogen-vacancy center, N-V Center)[16] -[18],如【圖 2-6】,尤其是帶負電荷狀態的(N-V)⁻。鑽石中N-V中心在 量子科學應用最大的優勢在於其室溫下具有良好的光學穩定性 [19],且易 與其他技術結合,故具有高度發展競爭力 [20]-[24]。目前在鑽石產生N-V 中心方法有許多種;其中常用的方法是使用高能量的電子、質子、中子、 離子或伽瑪粒子束轟擊奈米鑽石,將鑽石的 SP³結構打掉變成空缺;接著 再置於真空環境下以約 800 ℃ 的條件退火兩小時,讓鑽石內的氮原子與空 缺結合形成N-V中心。另一種常用的方法則是利用氮元素離子佈植產生N-V 中心 [26]。

【圖 2-6】 奈米鑽石 氮-空缺中心結構。

2.2.2 奈米鑽石 N-V 中心之能階結構及光學特性

奈米鑽石中N-V中心存在著兩種型態,一為電中性的 (N-V)⁰,另一為 帶負電荷的 (N-V)⁻。這兩種缺陷皆具有螢光特性,如【圖 2-7】所示,其 波長分布範圍介於 576 nm 到800 nm。

(N-V)⁰結構共有五個電子 [28],相鄰碳鍵各提供了一個電子給氣-空 缺中心,而還有兩個電子為氮原子內部提供,最後形成帶有五個電子的 (N-V)⁰,(N-V)⁰的PL譜線包含一零聲子線(Zero phonon line, ZPL)位於 576 nm,以及介於580 nm 到 650 nm 之間的聲子旁帶訊號 (Broad phonon sideband)。藉此我們將可以從螢光譜線判別奈米鑽石裡是否包含 (N-V)⁰ 缺 陷。

(N-V)⁻結構共有六個電子,與(N-V)⁹相似,但最後一個電子則由環 境所提供。(N-V)⁻的零聲子線位在 638 nm,聲子旁帶訊號則介於 650 nm-800 nm 之間。(N-V)⁻中心的能階可以用三能階模型描述,包含基態,激 發態以及一與激發態耦合的亞穩態(Metastable state)[29]-[31],如【圖 2-8】 所示。且由電子自旋共振(Electron paramagnetic resonance, EPR)實驗證實 了基態與激發態為自旋三重態形式存在[32]-[34],這也說明(N-V)⁻是由 六個電子所組成的空缺中心,如【圖 2-9】所示。

【圖 2-8】(N-V)⁻中心三能階系統示意圖。

【圖 2-9】 $(N-V)^-$ 中心的 Spin S = 1 (spin triplet with two unpaired

其中 *p_i*表示各能態的占有率, k_{ij}表示各能態之間的輻射率。此能階矩陣可 求出 *p*₂(τ)項:

$$p_{2}(\tau) = \frac{\kappa_{12}\kappa_{32}}{B} + C_{2}e^{-\frac{\tau}{\tau_{2}}} + C_{3}e^{-\frac{\tau}{\tau_{3}}}, \qquad (2-2)$$

其中 7_{2,3} 分別代表:激發態到基態、激發態到亞穩態的生命週期。C₂ 和 C₃ 表示為常數項。

$$\tau_{2,3} = 2 / A \pm \sqrt{A^2 - 4B} , \qquad (2-3)$$

其中

$$A = \kappa_{12} + \kappa_{21} + \kappa_{23} + \kappa_{32},$$

$$B = \kappa_{12}\kappa_{23} + \kappa_{12}\kappa_{32} + \kappa_{21}\kappa_{32},$$

$$1 - \tau \kappa$$

$$C_2 = \frac{1 - \tau_2 \kappa_{32}}{\kappa_{32} (\tau_2 - \tau_3)}, \qquad (2-4)$$

且 C3=-1-C2。

當激發功率極低, 雷射激發基態電子率趨近於零 $(\kappa_{12} \rightarrow 0)$, 故激發態能階 輻射率可簡化為:

$$\kappa_{21} = \frac{1}{\tau_2^{(0)}} \frac{\kappa_{23}}{1 - \tau_2^{(0)} \kappa_{32}},$$
(2-5)

當激發功率極高,亞穩態能階輻射率可簡化為

$$\kappa_{32} = 1/(1 + C_3^{\infty} \tau_3^{\infty}), \qquad (2-6)$$

$$\kappa_{23} = C_3^{(\infty)} \kappa_{32}, \qquad (2-7)$$

在激發功率趨近於零時,因與亞穩態耦合率降低,可將三能階形式縮減為 二能階形式,故激發態到基態自發輻射率的倒數,近似於激發態到基態的 生命週期。

$$\frac{1}{\kappa_{21}} \approx \tau_2, \tag{2-8}$$

2.3 二階相干函數理論

二階相干函數(Second order correlation functions)結合 HB-T 光子相干 技術可用於檢測發光源是否為單光子光源。其架構由 Hanbury-Brown 和 Twisse 提出,將於第三章中作介紹。

光子相干通常被用來量測發光體的數目。以二能階系統為例,二階相干 函數表示法為 [36][37]:

$$g^{(2)}(\tau) = \frac{\left\langle I(t)I(\tau+t)\right\rangle}{\left\langle I(t)\right\rangle^2},\tag{2-9}$$

把兩偵測器量到的光子數由下列函數表示

$$g^{(2)}(\tau) = \frac{\langle n_1(t)n_2(t+\tau)\rangle}{\langle n_1(t)\rangle\langle n_2(t+\tau)\rangle},$$
(2-10)

其中 n_i(t)表示偵測之光子數,將 n_i(t)以階梯算符 â (Ladder operator)、厄米 特共軛â⁺ (Hermitian conjugate) 代替:

$$g^{(2)}(\tau) = \frac{\langle \hat{a}_{1}^{+}(t) \hat{a}_{2}^{+}(t+\tau) \hat{a}_{2}(t+\tau) \hat{a}_{1}(t) \rangle}{\langle \hat{a}_{1}^{+}(t) \hat{a}_{1}(t) \rangle \langle \hat{a}_{2}^{+}(t+\tau) \hat{a}_{2}(t+\tau) \rangle},$$
(2-11)

$$= \underbrace{\frac{(N^2 - N)}{N^2}}_{\tau=0} + \underbrace{\frac{1}{N} \frac{P_e(\tau)}{r_{\neq 0}}}_{\tau\neq 0} , \ \hat{n} = \hat{a}^+ \hat{a}, \qquad (2-12)$$

其中Pe(t)表示時間T激發態的佔有率。

(2-12)式為
$$\tau = 0$$
 時, $g^{(2)}(0) = \frac{(N^2 - N)}{N^2}$; $\tau \neq 0$ 時, $g^{(2)}(\tau) = \frac{1}{N} \frac{P_e(\tau)}{P_e(\infty)}$ 。
而當 $\tau=0$, (2-11)可簡化為:

$$g^{(2)}(0) = \frac{\langle \hat{a}_{1}^{+} \hat{a}_{2}^{+} \hat{a}_{2} \hat{a}_{1} \rangle}{\langle \hat{a}_{1}^{+} \hat{a}_{1} \rangle \langle \hat{a}_{2}^{+} \hat{a}_{2} \rangle}, \qquad (2-13)$$

利用階梯算符可以表示成

$$g^{(2)}(0) = \frac{n(n-1)}{n \cdot n} = 1 - \frac{1}{N}.$$
 (2-14)

其中N表示發出之光子態數量。

由式子可知,N=1 即所謂的單光子光源,此時的 $g^{(2)}(0)=0$ 。

簡而言之,當 g⁽²⁾(0) > 1 時,集束 (Bunching) 現象代表光子具有高度的相干性;當 g⁽²⁾(0) = 1 時,同調現象代表光子不具任何相干性,光源 強度不因時間改變;當 g⁽²⁾(0) < 1 時,代表光子光源被兩偵測器同時量到 的機率極低,因此,反集束(Anti-bunching)現象可以辨識單光子源,如【圖 2-10】所示。</p>

Single photon source: antibunching

$$g^{(2)}(0) < 1$$

【圖 2-10】光子集束、同調、反集束現象比較。

將二階相干函數(2-12)式與 2.2.2 小節中,三能階系統動力學方程式 (2-2)式結合:

$$g^{(2)}(\tau) = \frac{p_2(\tau)}{p_2(\infty)} = 1 + C_2 e^{-\frac{\tau}{\tau_2}} + C_3 e^{-\frac{\tau}{\tau_3}}.$$
 (2-15)

在三能階系統下,電子由激發態掉到基態的速率,基本上大於由激發態 掉至亞穩態。換句話說,當以低激發功率激發電子使其躍遷至激發態時, 電子較易直接復合回基態,因此亞穩態對系統所造成的影響甚小;當提高 激發功率時,激發態的電子數數目眾多,使其無法及時復合回基態,故電 子有機會跑至亞穩態,造成集束現象。【圖 2-11】為 p₂(t) 在高激發和低激 發功率時,電子占有率對時間的結果。由圖可知,在高功率激發態占有率 $\frac{p_2(\tau)}{p_2(\infty)}$ 大於 1,為集 尚未達到穩態時間時,會有電荷累積的現象,因此, 束現象;低激發功率時 為反集束現象。 小於 ∞) 0.3 **High Power** 896 0.2 $P_2(\tau)$ Low Power 0.1

【圖 2-11】高激發和低激發功率時,電子占有率對時間的結果。

2.4 光激螢光光譜理論

光激螢光光譜可快速可靠得到材料能階結構、載子躍遷行為。半導體吸 收能量大於能隙(Bandgap)的光子後,電子在價帶產生電洞,並躍遷至導 帶,形成電子電洞對(Electron-hole pairs)。高能量的電子電洞經由晶格碰 撞釋出能量,分別掉至導帶底部及價帶頂部,導致電子電洞復合產生螢光 (Fluorescence),如【圖 2-12】。

【圖 2-12】直接能隙光激螢光示意圖,1為電子從價帶躍遷至導帶,2為電 子電洞經由晶格碰撞釋出能量,3為電子電洞進行復合產生螢光。

2.5 表面電漿特性與近場激發簡介

自科學家發現電磁波照在刻有光柵的金屬表面上,會產生異常反射光 譜後,介電物質與金屬介面電磁波交互作用的特性,便是一個重要的研究 議題。而後,此特性被證實和沿金屬表面傳播的電場共振有密切關係-表面 電漿共振 (Surface plasma, SP)。金屬內部自由的介電係數可由 Drude 模 型推導出來 [38]:

$$\varepsilon(\omega) = 1 + \frac{i\sigma(\omega)}{\varepsilon_0 \omega} = 1 - \frac{Ne^2}{m\varepsilon_0} \frac{1}{\omega^2 + i\omega\gamma_D},$$
(2.16)

故,金屬之電漿共振頻率 (Plasma frequency)為:

$$\omega_p = \frac{Ne^2}{m\varepsilon_0}, \qquad (2.17)$$

若將(2.16)分成實部和虛部項

$$\operatorname{Re}[\varepsilon] \equiv \varepsilon_{R} = 1 - \omega_{P}^{2} / (\omega^{2} + \gamma_{D}^{2}), \qquad (2.18)$$

$$\operatorname{Im}[\varepsilon] \equiv \varepsilon_{I} = \omega_{P}^{2} \gamma_{D} / \left[\omega(\omega^{2} + \gamma_{D}^{2}) \right], \qquad (2.19)$$

在電磁波頻率遠大於 $\gamma_{\rm D}$ 的條件下, (2.18)近似於:

$$\varepsilon_R = 1 - \omega_P^2 / \omega^2. \tag{2.20}$$

因金屬介電係數之 ε_R為負值,故當ω小於ωp才可使金屬產生電漿共振效果。 一般金屬(如金、銀、銅、鋁…等)ωp位於紫外光(UV)頻率範圍,且γ_D遠小 於可見光頻率,因此介電係數在可見光頻率範圍內皆符合上述條件。 此外,可將介電係數轉變為複數折射率形式: $n_c = \sqrt{\varepsilon} = n + i\kappa$ (假設 $\mu = 1$),金屬之n與 κ 表示為:

$$n = \left[\frac{1}{2}\left(\sqrt{\varepsilon_R^2 + \varepsilon_I^2} + \varepsilon_R\right)\right]^{1/2}, \qquad (2.21)$$

$$\kappa = \left[\frac{1}{2}\left(\sqrt{\varepsilon_R^2 + \varepsilon_I^2} - \varepsilon_R\right)\right]^{1/2}, \qquad (2.22)$$

由【圖 2-13】可知,當 ω 需小於 ω_p 且大於 γ_D 時, κ 值遠大於n值;電磁波 隨空間與時間之變化正比於 $e^{i(\vec{k}\cdot\vec{r}-\omega t)} = e^{-\vec{k_i}\cdot\vec{r}} \cdot e^{i(\vec{k_R}\cdot\vec{r}-\omega t)}$,其中 $\vec{k_R}$ 、 $\vec{k_i}$ 分別為波 項量的實部與虛部, $k_R = \left(\frac{\omega}{c}\right) n \cdot k_I = \left(\frac{\omega}{c}\right) \kappa$, 所以當 ω 小於 ω_P 波段時, 金 屬內部的傳播性質主要由波向量虛部主導,即電磁場振幅或能量會隨著傳 播距離呈指數衰減,表面電漿傳播形式亦如此 4.5 $\omega_p = 2.29 \text{ x } 10^{16} \text{ Hz}$ $\gamma_D = 1.82 \text{ x } 10^{15} \text{ Hz}$ 3.5 3 2.5 2 n 1.5 0.5 15 20 30 35 40 5 10 Angular frequency (x10¹⁵ Hz)

【圖 2-13】 銻金屬之介電係數實部與虛部隨電磁波頻率變化結果[38]。

金屬表面在外加電磁波後激發金屬,其表面自由電子重新分佈產生的 集體電偶極震盪現象稱表面電漿,如【圖 2-14】所示。需要有一Z方向的 電磁波分量使自由電子在垂直於金屬表面內、外電場分量不連續,使自由 電子在金屬表面累積,形成不連續之電荷密度引起表面電漿的發生。

【圖 2-14】金屬表面電荷集體震盪現象的示意圖。

表面電漿的電磁場的波向量大小可表示為: $k_{X} = \frac{\omega}{c} \left[\frac{\varepsilon_{1}(1-\omega_{p}^{2}/\omega^{2})}{(1+\varepsilon_{1})-\omega_{p}^{2}/\omega^{2}} \right]^{1/2}, \qquad (2.23)$ $k_{1Z} = \frac{\omega}{c} \left[\frac{18\varepsilon_{1}^{2}}{(1+\varepsilon_{1})-\omega_{p}^{2}/\omega^{2}} \right]^{1/2}, \qquad (2.24)$

$$k_{2Z} = \frac{\omega}{c} \left[\frac{\varepsilon_1^2}{(1+\varepsilon_1) - \omega_p^2 / \omega^2} \right] , \qquad (2.25)$$

而在 k_X 需為實數且 $\omega < \omega_p / \sqrt{1 + \varepsilon_1}$ 的前提下,得知 k_{1Z} 和 k_{2Z} 需為虛數(消散 波)。因此,在垂直介面的方向上,表面電漿振盪產生的電磁場會隨傳播 距離呈指數衰減。如此,利用表面電漿波做物理性結合時,待結合的物質 需非常靠近金屬表面,使表面電漿可與物質電場振盪耦合。 2.6 奈米鑽石結合奈米金膜混和結構模擬設置及原理

2.6.1 模擬設置及 Purcell 效應介紹

除實驗外,本研究亦由理論模擬,觀察 (N-V)⁻中心所發出的螢光是否 能激發金屬產生表面電漿,並將表面電漿的電場模態有效侷限於介電層中, 達到共振腔增快自發輻射的效果。在此使用 COMSOL 來做為計算平台,並 利用 Purcell 效應模型算出 N-V 中心在距離金屬表面不同高度時得到的 Purcell 因子 (F_P)。完整的理論模擬流程示意圖如【圖 2-15】。

[【]圖 2-15】理論模擬流程圖。

依【圖 2-15】所示,在 COMSOL 程式中建構幾何模型及輸入材料參數後,利用 Purcell 效應模型求出 (N-V)⁻中心在鍍有介電層奈米金膜時之 Purcell 因子。而後將推導 Purcell 因子,並說明哪些因素是造成 Purcell 因子 改變的主要原因。

Purcell 因子 (Purcell factor, F_P)

早在 1946 年, Purcell 即預測: 若原子被置放於與其波長大小相當的共 振腔內,其輻射速率會比在真空中的輻射速率快[40],光學共振腔侷限光 子的優劣能力以品質因子(Quality factor, Q)量化說明,其中,品質因子定 義為: 在單一週期內,光學共振腔儲存的能量與漏失能量之比值。簡而言 之,光子在增益材料中的機率,會因高品質因子的光學共振腔大大提升, 1896 此外,產生自發輻射(Spontaneous emission)的機率也會隨之提高。Purcell 因子可由 Fermi's golden rule (W)來表示自發性輻射增益的程度:

$$F_P = \frac{W^{cav}}{W^{free}} \equiv \frac{\tau_R^{free}}{\tau_R^{cav}}, \qquad (2-26)$$

而 Purcell 因子一般表示成:

$$F_P = \frac{3Q}{4\pi^2 V_{\text{mod}e}} \left(\frac{\lambda}{n}\right)^3,\tag{2-27}$$

其中λ表示發光波長、n表示材料折射率、 Q表示品質因子、V_{mode}表示為模態體積。

下面將說明影響自發輻射大小的因素-電偶極矩與電場方向。用於計算 波函數由一本徵態轉換到另一本徵態的速率為 Fermi's golden rule:

$$W_{i \to f} = W_{1 \to 2} = \frac{2\pi}{\hbar} |M_{12}|^2 g(\omega),$$
 (2-28)

其中M₁₂為矩陣元素,g(ω)表示能態密度。以波函數形式將(2-28)式表示為:

$$W_{1\to 2} = \left\langle 2 \left| H' \right| 1 \right\rangle = \int \psi_2^*(r) H'(r) \psi_1(r) d^3 r , \qquad (2-29)$$

其中H'表示光擾動項,Γ為電子之位置向量,ψ₁(r),ψ₂(r)表示 i 和 f 狀態的波函數。光擾動項表示為:

$$H' = -\vec{p} \cdot \vec{\varepsilon_0} = e^{i x \varepsilon_x} + e^{i y \varepsilon_y} + e^{i z \varepsilon_z}, \qquad (2-30)$$

其中P表示電偶極子, $p = -e \cdot r$; ε_0 表示為電場振幅 從 Fermi's golden rule可知,電偶極矩與電場方向為影響自發輻射機率的因素。

而躍遷速率(Transition rate)在自由空間和共振腔中的表現方式分別為: 自由空間下之自發輻射率(W^{free}):

$$W^{free} = \frac{2\pi}{\hbar^2} |M_{12}|^2 g(\omega), \qquad (2-31)$$

$$g_{free}(\omega) = \frac{\omega^2 V_{mode}}{\pi^2 c^3}$$
,自由空間之能態密度 (2-32)

$$M_{12}^{2} = \frac{\mu_{12}^{2} \hbar \omega}{6\varepsilon_{0} V_{\text{mod}e}},$$
 (2-33)

將 (2-32)、(2-33) 代入 (2-31) 式得:

$$W^{free} \equiv \frac{1}{\tau_R^{free}} = \frac{\mu_{12}^2 \omega^3}{3\pi\varepsilon_0 \hbar c^3}, \qquad (2-34)$$

共振腔體中之自發輻射率 (W^{cav}):

$$W^{cav} = \frac{2\pi}{\hbar^2} |M_{12}|^2 g(\omega), \qquad (2-35)$$

在共振腔中的能態密度可表示為 [37]:

$$g_{cav}(\omega) = \frac{2}{\pi \Delta \omega_c} \cdot \frac{\Delta \omega_c^2}{4(\omega_0 - \omega_c)^2 + \Delta \omega_c^2}, \qquad (2-36)$$

當與共振腔共振時,可將(2-36)化減成:

$$g_{cav}(\omega) = \frac{2}{\pi \Delta \omega_c} = \frac{2Q}{\pi \omega_0}, \quad Q = \frac{\omega_c}{\Delta \omega_c}, \quad \omega_0 = \omega_c, \quad (2-37)$$

$$M_{12}^{2} = \xi^{2} \mu_{12}^{2} \varepsilon_{cav}^{2} = \xi^{2} \frac{\mu_{12} h \omega}{2\varepsilon_{0} V_{0}}, \qquad (2-38)$$

其中
$$\varepsilon_{cav} = \sqrt{\frac{\hbar\omega}{2\varepsilon_0 V_{mode}}}$$
表示真空下之電場, $\xi = \frac{|p \cdot \varepsilon|}{|p||\varepsilon|}$ 為電偶極方向因子。

將 (2-36) (2-38) 代入 (2-35) 得

$$W^{cav} = \frac{2Q\mu_{12}^2}{\hbar\varepsilon_0 V_0} \xi^2 \frac{\Delta\omega_c^2}{4(\omega_0 - \omega_c)^2 + \Delta\omega_c^2}, \qquad (2-39)$$

由共振腔得到的自發輻射率(2-39)與自由空間下得到的自發輻射率(2-34) 相除,可得Purcell 因子:

$$F_{P} = \frac{\tau_{R}^{free}}{\tau_{R}^{cav}} = \frac{W^{cav}}{W^{free}} = \frac{3Q}{4V_{0}\pi^{2}} (\frac{\lambda}{n})^{3} \xi^{2} \frac{\Delta \omega_{c}^{3}}{4(\omega_{0} - \omega_{c})^{2} + \Delta \omega_{c}^{3}}, \qquad (2-40)$$

假設偶極矩和共振腔電場方向一致,與共振腔共振時,可將(2-40)化減成:

$$F_P = \frac{3Q}{4V_0 \pi^2} (\frac{\lambda}{n})^3, \text{ when } \omega_0 = \omega_c, \qquad (2-41)$$

因此,電偶極矩須有和電場方向一致分量時,Purcell 效應才會成立。也就 是說,在共振腔內,電偶極矩和電場方向需一致才能增益自發輻射機率。

然而,模擬計算的模型是以二維的模型計算,因此,我們把三維的Purcell因子化為二維形式:

$$F_{P} = \frac{3}{4\pi} \frac{c}{v_{g}} \frac{\lambda^{2}}{n^{3} A_{\text{mod}e}},$$
(2-42)

式中 v_g 為模態的群速度、n為折射係數、 A_{mode} 的有效模型表示為:

態的電場和磁場, E和 µ 為每個點位子的介電常數和磁導係數。

2.6.2 奈米鑽石結合奈米金膜之混和結構模擬結果分析

模擬建立的模型為:在矽基板(n:3.805+0.013*i*)上放一層厚 60 nm 的 金膜(n:0.161+3.64*i*),接著在金膜上加一層厚度為 5 nm 的氧化鋁(n:1.76) 介電層,最後,在介電層上方放一邊長為 50 nm 的正六邊形奈米鑽石 (n:2.41),此結構即為本研究所使用之混和結構(Hybrid Structure),如【圖 2-16】所示。

【圖 2-16】 奈米鑽石結合奈米金膜混和結構模型。

計算 Purcell 因子前,由式 (2-38)得知,若要使輻射發射率改變的其 一原因為:電偶極矩的方向, $\xi = \frac{|p \cdot \varepsilon|}{|p||\varepsilon|}$ 。 (N-V)⁻ 電偶極矩和電場方向須有 一致的分量才能增快自發輻射機率,因此,需先行確認混和結構樣品其電 場侷限方向是否與奈米鑽石 (N-V)⁻ 電偶極方向一致。首先,利用模擬確認 該混和結構模型電場的方向和強度分佈,結果如【圖 2-17】、【圖 2-18】所 示。【圖 2-17】為電場 E_x 方向強度;【圖 2-18】為電場 E_z 方向強度,比 較後可發現模型電場分佈主在 Ez 的方向,即垂直於金膜平面的方向。

【圖 2-19】為奈米鑽石 (N-V)⁻ 中心電偶極方向結果。由此可知奈米鑽石 (N-V)⁻ 中心電偶極矩的偏振比 (Polarization ratio) 為 0.57, 若換算成角度 約與 X-Y 平面成 56° 夾角。故奈米鑽石(N-V)⁻ 中心的電偶極方向包含垂直 金膜方向的分量,得證後我們可進一步討論改變 (N-V)⁻ 中心對金屬薄膜 的距離時, Purcell 因子如何表現。

【圖 2-17】 混和結構模型電場 Ex 方向強度分佈。

【圖 2-18】混和結構模型電場 Ez方向強度分佈。

【圖 2-19】 奈米鑽石 (N-V) 中心的電偶極矩偏振比, X-Y 平面為平行金 膜平面方向, Z 軸為垂直金膜平面方向。

【圖 2-20】為混和結構模型總能量U的強度分佈結果,由此可知絕大部分的能量都分佈在介電層中,說明混和結構的電場會被侷限在介電層中。

【圖 2-20】混和結構模型總能量 U 強度分佈。

第三章實驗儀器裝置架設

3.1 光激螢光光譜架設

本研究探討之奈米鑽石 (N-V)⁻ 中心能隙約為 1.94 eV (638 nm),故 採波長為 532 nm 的連續波 Nd:YAG 雷射作為激發光源。藉由反射鏡及顯 微物鏡 (100X/0.9 NA, Olympus) 把雷射聚焦於特定奈米鑽石。被激發的螢 光將使用光譜儀進行分光,並靠電荷耦合元件(Charge-Coupled Device, CCD) 偵測不同波段的螢光強度,最後將訊號傳送到電腦。即可繪出光激螢光光 譜,如【圖 3-1】所示。

實驗中,為分析 N-V 中心的電偶極方向,在光譜儀前架設一組半波片 (Half-waveplat)、偏振晶體(Polarizer),藉旋轉半波片光軸與偏振晶體的 1896 夾角,便可由螢光強度反推電偶極在樣品表面投影的方向。

【圖 3-1】顯微光激螢光量測系統實驗裝置。

3.2 HB-T干涉儀量測系統架設

HB-T 干涉儀架設與光激螢光光譜架設類似,如【圖 3-2】所示。不同之 處在於:HB-T 干涉儀需具有時間解析能力,在此使用兩個雪崩式光電二極 體(Avalanche photodiode, APD)作為光偵測器。因實驗只收集奈米鑽石(N-V) 一 中心所產生的螢光,為了降低背景雜訊,需在訊號光路中放一 600 nm 的 長通濾光片(Longpass filter)與一 800 nm 的短通濾光片(Shortpass filter)。 收集到的螢光訊號經透鏡聚焦後,再經一 50:50 的分光鏡 (Beam-splitter) 分光,接著利用光纖導入偵測器,以降低偵測器再輻射的交錯訊號 (Cross talk)。最後,再把兩個訊號送入時間單光子計數系統(Time-correlated single photon counting modules, TCSPC) 進行分析。

【圖 3-2】光子相干量測系統 HB-T (Hanbury-Brown& Twiss) 架設。

第四章結果與討論

本章將分成兩部分討論。第一部分為我們在 100 nm 大尺寸的奈米鑽石 中,找到單顆且具單光子源特性的奈米鑽石,而可以在光學影像中觀察是 其最大的優勢。因此可以定位操控奈米鑽石,以利進行更深入的特性探討。 第二部分為奈米鑽石透過一層 5 nm 介電材料與奈米金膜結合,我們想藉混 和型結構讓金屬表面電漿與奈米鑽石(N-V)⁻ 中心耦合後,形成電漿子共振 腔[11],以達到共振腔增快自發輻射的效果,使 N-V 中心的單光子光源 發光效率更高。最後,利用模擬計算混和結構的能量侷限分佈,得出(N-V)⁻ 中心在距離金屬表面不同高時,Purcell 因子的值。

4.1 奈米鑽石單光子光源

4.1.1光激螢光光譜

為了得出單顆奈米鑽石具有單光子光源的特性, 需經由一系列分析尋找 檢測奈米鑽石。首先, 在樣品表面做螢光面積掃描 (PL mapping)後, 於偵 測器前放置兩個濾波片 (600 nm~800 nm filter), 使收集到的螢光訊號主要 來自奈米鑽石 (N-V)⁻中心。【圖 4-1】為對奈米鑽石做 PL mapping 後的結 果, 右圖為在光學顯微鏡 (OM)下的影相。

【圖 4-1】 奈米鑽石氮-空缺 (N-V)⁻ 中心螢光空間分布圖結果及光學影相。

利用 PL mapping 找到單顆含有 (N-V)⁻中心的螢光後進行 PL 量測, 如【圖 4-2】所示,此奈米鑽石螢光光譜裡確實含有 (N-V)⁰、(N-V)⁻中 心,以及 SP³鑽石結構的拉曼振動訊號 (Raman scattering)。故從螢光光譜 中可確認 PL mapping 得到的螢光訊號是(N-V)⁻中心的螢光訊號。而由【圖 4-3】變激發功率量測該奈米鑽石 600 nm ~ 800 nm 的螢光強度來看,可以 發現奈米鑽石 (N-V)⁻ 的螢光訊號會隨激發功率的增加趨於飽和。

【圖 4-3】不同激發功率量測奈米鑽石 600 nm~800 nm 的螢光強度。

4.1.2 光子相干量测分析

HB-T 所量測出的二次相干函數:g⁽²⁾(0)=1-(1/N) 可判斷奈米鑽石具有 多少光子源。【圖 4-4】為一顆奈米鑽石中具有單一 (N-V)⁻ 中心的結果, 黑色譜線的g⁽²⁾(0) = 0.2, N=1,代表該奈米鑽石只含一個 (N-V)⁻ 中心, 由此得知已可以在 100 nm 大尺寸單顆奈米鑽石中找到具有 (N-V)⁻ 的單光 子光源。

增加激發雷射功率為最直接提高單光子源發光效率的方法。對該顆奈米 鑽石做變功率的 HB-T 量測可得知隨雷射激發功率的增強, (N-V)⁻ 的發光 強度會達飽和。從 2.2.2 節中可知(N-V)⁻中心是伴隨一亞穩態的三能階系統, 當激發態占有率達到飽和,多餘的電子會跑至亞穩態,使量測結果伴隨集 束現象。如【圖 4-5】所示,當雷射激發功率越強時,HB-T 所量測出的 g⁽²⁾ 以及集束現象會漸趨明。而三能階伴隨產生的光子將會破壞 (N-V)⁻ 中心單 光子源的量子特性,因此藉金屬表面電漿與 (N-V)⁻ 中心的耦合,與表面電 漿具有的電場侷限效應,使單光子光源的 (N-V)⁻ 中心在不伴隨集束現象的 情況下,尚可提升發光效率[11]。

【圖 4-4】不同雷射功率激發下,氮-空缺中心發光的二次相干函數值。黑線為雷射功率 1.7 µW 激發結果,紅線為雷射功率 2 µW 激發。

【圖 4-5】 奈米鑽石 HB-T power-dependent。

4.2 奈米鑽石結合奈米金膜混和結構

4.2.1 混和結構面積掃描螢光光譜

當 100 nm 奈米鑽石放在鍍有氧化鋁 (Al₂O₃)的奈米金膜上之後,將此 混和結構做大面積螢光掃描,並統計奈米鑽石在矽基板上與金膜的螢光強 度分佈,如【圖 4-6】。其結果如【圖 4-7】所示,金膜上奈米鑽石螢光強 度大於矽基板的結果,且多為兩倍以上。這說明奈米鑽石放在金膜上螢光 的增強不僅因金屬反射所造成。故接下來將討論單一顆具單光子源的奈米 鑽石置於金膜上所量測到的現象。

【圖 4-6】 奈米鑽石結合奈米金膜混和結構下之氣-空缺 (N-V)— 中心螢 光空間分布圖結果及光學影相圖。

【圖 4-7】 奈米鑽石分別在金膜與矽基板上螢光強度分布圖。

Р

E		8 E
Counts per 1s	on Si	on Au
0-2000	10	0
2000-4000	15	6
4000-6000	5	15
6000-8000	1	9
8000-10000	0	4
10000-12000	0	2
12000-14000	0	5
14000-16000	0	1
16000-18000	1	3
18000-20000	0	0
20000-22000	0	3
22000-24000	0	2
24000-26000	0	2
26000-28000	0	1
28000-30000	0	1

【表 4-1】 奈米鑽石分別在金膜與矽基板上螢光強度分布。

4.2.2 單顆單光子源奈米鑽石光激螢光光譜

以下將從微觀角度對單顆單光子源的奈米鑽石做討論與分析。以 4.1.1 節的相同方法找出在金膜上具有單光子特性的奈米鑽石後,如【圖 4-8】; 由【圖 4-9】可得知 g⁽²⁾(0) = 0.25,即該顆奈米鑽石只具有一個 (N-V)⁻ 中心。

【圖 4-8】 奈米鑽石在金膜下之氣-空缺(N-V)⁻中心螢光空間分布圖結果及 1896 光學影相圖。

【圖 4-9】 奈米鑽石在金膜下之氣-空缺中心發光的二次相干函數值。

接著量測螢光光譜,如【圖 4-10】。從結果中可知單一(N-V)⁻中心放在 金膜後的螢光強度上升多達6倍,尤其是 550 nm 到 650 nm 的鑽石螢光更 增加了6倍以上,此結果與利用奈米金球和奈米鑽石耦合後的螢光光譜結 果相似[11]。【圖 4-11】為將單一(N-V)⁻中心放在金膜上的螢光強度除 以放在矽基板的結果。由於奈米金膜的共振波段介於530 nm ~ 560 nm 之間, 因此隨著波長越短,奈米鑽石螢光被增強的效果越大。而由【圖 4-12】以 變激發功率量測奈米鑽石 600 nm ~ 800 nm 螢光強度結果得知,奈米鑽石 (N-V)⁻的螢光訊號會隨激發功率的增加達飽和。奈米鑽石 (N-V)⁻ 放在金膜 上和矽基板上的飽和功率分別為 600 μW 和 500 μW。由以上結果可以初步 推測奈米鑽石的(N-V)⁻中心放在金膜上後,因(N-V)⁻ 的自發輻射率增快 而減少亞穩態的占有率,下小節將從 HB-T 量測的二次相干函數值結果進一 步說明。

【圖 4-10】 奈米鑽石放置在金膜上和矽基板上的螢光光譜。

【圖 4-11】奈米鑽石放置在金膜上和放在矽基板上時得到螢光強度比值。

【圖 4-12】 奈米鑽石放在金膜和矽基板上隨著不同激發功率量測奈米鑽石 600 nm~800 nm 的螢光強度。

4.2.3變功率光子相干量測分析

由【圖 4-9】中的二次相干函數 g⁽²⁾, 確認篩選的奈米鑽石為具有單一個 (N-V)⁻的奈米鑽石後,對該顆奈米鑽石進行改變激發功率的 HB-T 量測, 其結果為如【圖 4-13】。為了比較奈米鑽石在金膜與在矽基板上量測 HB-T 結果的差異,利用(2-15)式把實驗結果進行擬合,得到(N-V)⁻三能階系統 的 To和 To。而後,比較奈米鑽石在金模和矽基板上 To的結果,如【圖 4-14】 所示。並進一步回推求出三能階系統裡各別輻射率的數值,其中奈米鑽石 $(N-V)^{-}$ 在金膜上擬合出來的結果為: $1/\kappa_{21} = 22$ (ns), $1/\kappa_{23} = 65$ (ns), 1/κ₃₂=210 (ns); 奈米鑽石 (N-V)⁻ 在矽基板上擬合出來的結果為: $1/\kappa_{21} = 30$ (ns), $1/\kappa_{23} = 65$ (ns), $1/\kappa_{32} = 210$ (ns)。由擬合結果我們可知, $(N-V)^{-}$ 中心於奈米金膜的自發性輻射率 K_{21} 比矽基板大,此結果解釋了上節 中奈米鑽石在奈米金膜上的螢光比在矽基板上增強很多的原因:(N-V) 發 出的螢光波長達到奈米金膜表面電漿共振條件時,會有金屬電漿共振效應, 在自由電子有序運動下,使電場建設性的疊加,此外,因有電場侷限,造 成(N-V)⁻ 中心螢光增強現象。在混和結構增加一層 5 nm 的介電層,由 2.6.2 小節模擬結果可知電漿子的電場在介電層會產生高密度侷限效應,使電漿 子的電場密度增強,進而得到更高的自發輻射率。

驗證混和結構有無自發性輻射增強結果可由 Purcell 因子來檢視。2.6.1 小節中 Purcell 效應可由自發性輻射或其能階生命週期表示:

$$\begin{split} F_{P} &= \frac{\kappa_{21}^{cav}}{\kappa_{21}^{free}} \equiv \frac{\tau_{2}^{pree}}{\tau_{2}^{cav}} , \\ \# \begin{bmatrix} B & 4-14 \end{bmatrix} \\ # 到 \\ b &\pm 0 \\ \pm 0 \\ \# \\ \pi_{21} = \frac{1}{\tau_{2}} - \frac{\kappa_{23}}{1 - \tau_{2} \kappa_{32}} , \\ &\pm 1 \\ \pm 1 \\ \# \\ \pi_{21} = \frac{1}{\tau_{2}} - \frac{\kappa_{23}}{1 - \tau_{2} \kappa_{32}} , \\ &\pm 1 \\ \pm 1 \\ \# \\ \pi_{21} = \frac{1}{\tau_{2}} - \frac{\kappa_{23}}{1 - \tau_{2} \kappa_{32}} , \\ &\pm 1 \\ \pm 1 \\ \# \\ \pi_{21} = \frac{1}{\tau_{2}} - \frac{\kappa_{23}}{1 - \tau_{2} \kappa_{32}} , \\ &\pm 1 \\ \pm 1 \\ \# \\ \pi_{21} = \frac{1}{\tau_{2}} - \frac{\kappa_{23}}{1 - \tau_{2} \kappa_{32}} , \\ &\pm 1 \\ \pm 1 \\ \pm$$

要使 (N-V)⁻ 中心產生近場增益現象需要 (N-V)⁻ 中心非常靠近金膜表面,然而,從實驗中無法確切得知單光子源 (N-V)⁻ 中心於奈米鑽石的位置,因此最後小節將利用理論模擬,並配合我們量測到的實驗結果,估算 (N-V)⁻ 偶極矩距離奈米金膜的位置。

【圖 4-13】 奈米鑽石 (N-V)⁻ 中心在金膜上的 HB-T power-dependent。

【圖 4-14】奈米鑽石 (N-V)⁻ 中心在金膜上和在矽基板上的激發態到基態 之生命週期。

4.2.4 奈米鑽石結合奈米金膜混和結構模擬分析

2.6.2 小節模擬中計算出混和結構模型總能量 U 的強度分佈後,接著計 算 (N-V)⁻ 距金膜的 Purcell 因子對應值,其中取正六邊形垂直正中心上 1 nm × 1 nm 的為 A_g,接著,對垂直正中心的線移動 A_g的位置,以改變 (N-V)⁻ 距金膜的高度,並算出其所對應的 Purcell 因子。【圖 4-15】為 (N-V)⁻ 中心在距金膜各種高度下對應的 Purcell 因子。從混和結構模型模擬的結果 來看,秦米鑽石放在金膜上時,Purcell 因子最大可達 2.2。故秦米鑽石放置 在鍍有介電層的秦米金屬膜上, (N-V)⁻ 的發光效率確實可被增強,與所得 的實驗結果相應。最後,由模擬結果可以知影響 (N-V)⁻ 中心發光效率的因 素有兩個-使用的金屬、 (N-V)⁻ 中心與金屬薄膜的距離。

【圖 4-15】(N-V)⁻ 中心距離金膜/銀膜的各種高度,對應的 Purcell 因子。

第五章 結論與展望

本論文之第一部分為我們在 100 nm 大尺寸的奈米鑽石中,找到單顆且 具單光子源特性的奈米鑽石,其大尺寸可以在光學影像中觀察是其最大的 優勢。故可以定位操單光子光源。第二部分為把鍍有介電材料的奈米金膜 與奈米鑽石結合後,利用螢光光譜和 HB-T 實驗發現,單光子源藉由混和 結構可使其發光效率更高,且可知產生原因為 (N-V) 螢光與金屬表面電漿 耦合。因有電場的侷限效應發生,造成螢光增強現象。其中,介電層因電 漿子電場產生高密度侷限效應,使電漿子的電場增強,形成電漿子共振腔 使得 (N-V) 螢光發光效率得以變得更強。在未來的實驗中,混合結構之金 膜換成銀膜,可進一步改善 (N-V) 中心的發光效率[22][41], 從本實驗 模擬結果得知:(N-V)⁻中心置放在銀膜上可因銀的能量損失較金小而使 Purcell 因子最大可達 3.9。或者選用尺寸更小的奈米鑽石讓 (N-V) 中心發 光效率更甚 [10],最終使 (N-V) 中心在量子資訊中扮演更重要的載子角 色。

參考文獻

- [1]S. Coe, W. K. Woo, M. Bawendi, V. Bulovi, Nature 420, 800-803, 2002
- [2]N. M. Park, T. S. Kim, S. J. Park, Appl. Phys. Lett. 78, 2575, 2001
- [3]J. C. Kim, H. Rho, L. M. Smith, Howard E. Jackson, S. Lee, M. Dobrowolska, J. L. Merz, J. K. Furdyna, Appl. Phys. Lett. 73, 3399, 1998
- [4]L. Landin, M. S. Miller, M.-E. Pistol, C. E. Pryor, L. Samuelson, Science 280, 262, 1998
- [5]M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, Nature 405, 923, 2000
- [6]R. B. Bylsma, W. M. Becker, J. Kossut, U. Debska, Phys. Rev. B 33, 8207, 1986
- [7] J. K. Furdyna, J. Appl. Phys. 64, R29, 1988
- [8]M. A. Kastner, Rev. Mod. Phys. 64, 849, 1992
- [9]W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, T. M. Hsu, Phys. Rev. Lett. 96,117401, 2006
- [10]A. N. Michael, Quantum Computation and Quantum Information, Cambridge, 2000
- [11]Stefan Schietinger, Michael Barth , Thomas Aichele and Oliver Benson, Nano Lett. 9, 1694, 2009
- [12]Y. J. Lu, J. Kim, H. Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, Shangjr Gwo, Science 337, 6093, 450-453, 2012
- [13] M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, Y. Fainman, Nature Photonics, 4, 395, 2010
- [14] F. P. Bundy, H. T. Hall, H. M. Strong, R. H. Wentorf Jun.,, Nature 176, 51, 1955
- [15]Zaitsev, Optical properties of diamond: a data handbook, Berlin, 2000
- [16]G. Davies, M. F. Hamer, R. Soc. Lond. A 348, 285–98
- [17]X. F. He, N. B. Manson, Peter T. H. Fisk, Phys. Rev. B 47, 8809–8815
- [18] X. F. He, N. B. Manson, Peter T. H. Fisk, Phys. Rev. B 47, 8816–22
- [19]C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Phys. Rev. Lett. 85, 290, 2000
- [20]M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, M. D. Lukin, Science 316, 1312, 2007
- [21] E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, M. D. Lukin, Nature 466, 730, 2010
- [22] R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. L. A. Nicolet, P.

R. Hemmer, F. Jelezko, J. Wrachtrup, Nature Phys. 8, 283, 2009

- [23]S. C. Benjamin, B. W. Lovett, and J. M. Smith, Laser Photonics Rev. 3, 556, 2009
- [24]T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O'Brien, Nature 464, 45, 2010
- [25]K M Etmimi, J P Goss, P R Briddon and A M Gsiea, J. Phys. Condens. Matter 21, 364211, 2009
- [26]J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, J. Wrachtrup, Appl. Phys. Lett. 87, 261909, 2005
- [27] S. J. Yu, M. W. Kang, H. C. Chang, K. M. Chen, Y. C. Yu., J Am Chem Soc, 127, 17604-17605, 2005
- [28]F. M. Hossain, M. W. Doherty, H. F. Wilson, L. C. L. Hollenberg, Phys. Rev. Lett. 101, 226403, 2008
- [29] C. Wang, C. Kurtsiefer, H. Weinfurter, B. Burchard, J. Phys. B: At. Mol. Opt. Phys. 39, 37–41, 2006
- [30]T Gaebel, I Popa, A Gruber, M Domhan, F Jelezko, J Wrachtrup, New J. Phys. 6, 98–104, 2004
- [31] A. Beveratos, S. Kühn, R. Brouri, T. Gacoin, J.-P. Poizat, P. Grangier, Eur. Phys. J. D 18 191–6, 2002
- [32]F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 93, 7, 2004
- [33]F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 92, 7, 2004
- [34]F. Jelezko, T. Gaebel, I. Popa, M. Domhan, A. Gruber, J. Wrachtrup, J. Phys. Condens. Matter 16, 104, 2004
- [35]C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Phys. Rev. Lett. 85, 290, 2000
- [36]S. C. Kitson, P. Jonsson, J. G. Rarity, P. R. Tapster, Phys. Rev. A. 58, 620, 1998
- [37]M. Fox, Quantum Optics An Introduction, Oxford, 2006
- [38]邱國斌, 蔡定平, 金屬表面電漿簡介, 物理雙月刊, 廿八卷二期, 2006
- [39]W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 6950, 824-830, 2003
- [40]E. M. Purcell, Phys. Rev. 69, 681, 1946
- [41]S. Kumar, A. Huck, U. L. Andersen, Nano Lett., 13 (3), 1221–1225, 2013