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The mathematical model describing the aquifer response to a constant-head test performed at a fully
penetrating well can be easily solved by the conventional integral transform technique. In addition,
the Dirichlet-type condition should be chosen as the boundary condition along the rim of wellbore for
such a test well. However, the boundary condition for a test well with partial penetration must be con-
sidered as a mixed-type condition. Generally, the Dirichlet condition is prescribed along the well screen
and the Neumann type no-flow condition is specified over the unscreened part of the test well. The model
for such a mixed boundary problem in a confined aquifer system of infinite radial extent and finite ver-
tical extent is solved by the dual series equations and perturbation method. This approach provides ana-
lytical results for the drawdown in the partially penetrating well and the well discharge along the screen.
The semi-analytical solutions are particularly useful for the practical applications from the computational
point of view.

� 2009 Elsevier B.V. All rights reserved.
Introduction

The constant-head test is generally performed in a confined
aquifer to yield field scale characteristic parameters including
hydraulic conductivity, the specific storativity and possibly the
leakage factor. These parameters can be used to quantify ground-
water water resources (Cassiani and Kabala, 1998). The analysis
of data obtained from the test is used to determine the aquifer
hydrogeological parameters. The test well may be fully or partially
penetrated and the wellbore may have well skin. The fully pene-
trating well can be considered as a Dirichlet (also called first type)
boundary condition in the constant-head test, and the resulting
model can be solved by the conventional integral transform tech-
niques (Hantush, 1964). If the effect of well skin is negligible, the
Dirichlet boundary condition is suitable to describe the drawdown
(or well water level) along the well screen and the Neuman (also
called second type) boundary condition of zero flux is specified
along the casing for a partially penetrating well. Thus, the bound-
ary condition specified for the partially penetrating well is a
mixed-type condition. The term ‘‘mixed-type” boundary is used
to distinguish this boundary condition from the ‘‘uniform” condi-
tions of Dirichlet and Neuman or a combination of Dirichlet and
ll rights reserved.

).
Neuman boundaries (Robin boundary). The well skin is usually of
a finite thickness and thus should be considered as a different for-
mation zone (see, e.g., Yang and Yeh, 2002; Yeh et al., 2003; Yeh
and Yang, 2006a) instead of neglecting its thickness and using a
factor to represent its effect.

Many physical problems can be described by partial differential
equations with various types of initial and boundary conditions. At
present time, the analytical solutions to the mixed-type boundary
value problems in well hydraulics are very limited. The techniques
used to solve the mixed-type boundary value problems analytically
include the dual integral/series equation (Sneddon, 1966), Weiner-
Hopf technique (Noble, 1958), and Green’s function (Hung and
Chang, 1984). However, most of solutions to the mixed-type
boundary value problems are obtained numerically (Yedder and
Bilgen, 1994) or by approximate methods such as asymptotic anal-
ysis (Bassani et al., 1987) or perturbation techniques (Wilkinson
and Hammond, 1990).

For the mathematical model subject to the mixed-type bound-
ary condition in a confined aquifer of semi-infinite thickness, Wil-
kinson and Hammond (1990) used the perturbation method to give
an approximate solution for drawdown changes at the well. Cassi-
ani and Kabala (1998) used the dual integral equation method to
derive the Laplace-domain solutions for the constant rate pumping
test and slug test performed at partially penetrating wells that ac-
count not only for wellbore storage, infinitesimal skin, and aquifer
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anisotropy, but also for the mixed-type boundary condition. Cassi-
ani et al. (1999) further used the same mathematical method to de-
rive the Laplace-domain solutions for constant-head pumping test
and double packer test that treated as the mixed-type boundary
value problems. Slim and Kirkham (1974) used the Gram–Schmidt
orthonormalization method to find a steady state drawdown solu-
tion in a confined aquifer of finite horizontal extent. Furthermore,
similar mixed-type value problems also arise in the field of heat
conduction. Among others, Hung (1985) used the Weiner-Hopf
technique to find the solution in a semi-infinite slab and Hung
and Chang (1984) combined the Green’s function with conformal
mapping to develop the solution in an elliptic disk.

For the real world problem, the thickness of aquifer is generally
finite. As mentioned above, Cassiani andKabala (1998) and Cassiani
et al. (1999) developed the solutions to the mixed boundary prob-
lem by assuming infinite aquifer thickness. These solutions are
appropriate for the case where the pressure change caused by
the pumping test has not reached the bottom of the aquifer or
the screen length is significantly smaller than the aquifer thick-
ness. Chang and Chen (2002) considered an aquifer with a finite
thickness and a skin factor accounting for the well skin effect. They
treated the boundary along the well screen as a Cauchy (third type)
boundary condition and handled the wellbore flux entering
through the well screen as unknown. In addition, they changed
the mixed boundary into homogeneous Neumann boundary and
then discretized the screen length into M segments. Thus, their
solution may be inaccurate for the case where the size of segments
is coarse.

The purpose of this study is to develop a new solution to the
constant-head test performed at a partially penetrating well in
an aquifer with a finite thickness. The mathematical model with
the mixed boundary condition at the well is directly solved via
the methods of dual series equations and perturbation method.
This solution contains single and double infinite series involving
the summations of multiplication of integrals, trigonometric func-
Fig. 1. The cross-section configuration of the aquifer sys
tions, and the modified Bessel functions of second kind, where the
integrals are in terms of trigonometric functions multiplying the
associated Legendre functions. The series in the solution developed
in Laplace domain are difficult to accurately evaluate due to the
oscillatory nature and slow convergence of the multiplied func-
tions. Therefore, Shanks’ transform method (Shanks, 1955) is used
to accelerate the evaluation of the Laplace-domain solution and the
numerical inversion scheme, Stehfest algorithm (Stehfest, 1970), is
used to obtain the time domain solution.
Mathematical model

Fig. 1 shows a partially penetrating well in a confined aquifer of
finite extent with a thickness of b. The drawdown at the distance r
from the well and the distance z from the bottom of the aquifer at
time t is denoted as sðr; z; tÞ. The well screen extends from the top
of the aquifer ðz ¼ bÞ to z ¼ d with a length of l. The hydraulic
parameters of the aquifer are horizontal hydraulic conductivity
Kr , vertical hydraulic conductivity Kz, and specific storage Ss. The
governing equation for the drawdown can be written as (Yang
et al., 2006)

Kr
@2s
@r2 þ

1
r
@s
@r

 !
þ Kz

@2s
@z2 ¼ Ss

@s
@t

ð1Þ

A Dirichlet boundary condition for a fixed drawdown specified
along the well screen is:

sðrw; z; tÞ ¼ sw d 6 z 6 b ð2aÞ

A Neumann boundary condition of zero flux is specified as:

@s
@r

����
r¼rw

¼ 0 0 6 z 6 d ð2bÞ

Moreover, the initial condition and other boundary conditions are:
tem involving the mixed boundary value problem.
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sðr; z;0Þ ¼ 0 ð3Þ
sð1; z; tÞ ¼ 0 ð4Þ

and

@s
@z
¼ 0; z ¼ 0; z ¼ b ð5Þ

Eq. (1) may be expressed in dimensionless terms as:

@2s�

@q2 þ
1
q
@s�

@q
þ a2 @

2s�

@n2 ¼
@s�

@s
ð6Þ

subject to the boundary and initial conditions written in dimension-
less terms as

s�ðq; n; s ¼ 0Þ ¼ 0 ð7Þ
s�ðq ¼ 1; n; sÞ ¼ 0 ð8Þ

s�ðq ¼ 1; n; sÞ ¼ 1; nd 6 n 6 b ð9aÞ
@s�

@q

����
q¼1
¼ 0; 0 6 n 6 nd ð9bÞ

@s�

@n
¼ 0; n ¼ 0; n ¼ b ð10Þ

where s� ¼ s=sw is the dimensionless drawdown, s ¼ tKr=ðSsr2
wÞ is

the dimensionless time, a2 ¼ Kz=Kr is the anisotropy ratio of the
aquifer, b ¼ b=rw is the dimensionless aquifer thickness, q ¼ r=rw

and n ¼ z=rw are dimensionless spatial coordinates, nd ¼ d=rw is
the dimensionless depth at the bottom of the well screen. Note that
Eqs. (6)–(10), construct a mixed-type boundary value problem.

The detailed development for the solution of Eq. (6) with Eqs.
(7)–(10) using dual series equation and perturbation method is gi-
ven in Appendix. The solution for the drawdown in Laplace domain
can be written as:

�s�ðq; n;pÞ ¼ 1
2

Bð0; pÞ
K0

ffiffiffi
p
p

q
� �

K0
ffiffiffi
p
p� � þX1

n¼1

Bðn;pÞK0ðknqÞ
K0ðknÞ

� cos n
n
b
p

� �
ð11Þ

with

Bð0;pÞ ¼ ð0ÞBð0; pÞ þ
X1
k¼1

Iðk; pÞBðk;pÞCð0; k;pÞ ð12Þ

Bðn;pÞ ¼ ð0ÞBðn; pÞ þ
X1
k¼1

Iðk; pÞBðk;pÞCðn; k;pÞ ð13Þ

ð0ÞBð0;pÞ ¼
1
p

ffiffi
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R nd
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0 f1ðuÞf5ðuÞduþ 2 1� nd
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ffiffiffi
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f1ðaÞ ¼
sinða=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosðaÞ � cosðpnd=bÞ
p ð18Þ

f2ðaÞ ¼ af1ðaÞ ð19Þ
f3ða; bÞ ¼ sinðabÞf1ðaÞ ð20Þ
f4ðaÞ ¼ ½Pnðcos aÞ þ Pn�1ðcos aÞ� ð21Þ

f5ðaÞ ¼ ln 1� cos
nd

b
þ a

� �� �
� ln 1� cos

nd

b
� a

� �� �
ð22Þ

Hðn;pÞ ¼ K1ðknÞ=K0ðknÞ ð23Þ
Iðn;pÞ ¼ n� knHðn; pÞ ð24Þ

kn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npa
b

� �2

þ p

s
ð25Þ

where K0 and K1 are the modified Bessel functions of the second
kind with order zero and one, respectively, and the Pnðcos aÞ is the
associated Legendre function (Abramowitz and Stegun, 1970, p.
335).

The flux entering the well screen and the total well discharge
obtained using Eq. (11) are, respectively, given as:

�q�ð1; n;pÞ ¼ �@
�s�ðq; n;pÞ
@q

����
¼ 1q¼1

2
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and
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where k ¼ l=rw is the dimensionless length of screen.

Numerical evaluations

Eq. (11) contains single and double infinite series which consist
of the summations of multiplication of integrals, trigonometric
functions, and the modified Bessel functions of second kind. The
integrals are in terms of trigonometric functions multiplying
associated Legendre functions. This solution involves numerous
complicated mathematical functions. Therefore, numerical ap-
proaches including the Gaussian quadrature (Gerald and Wheatley,
1989), Shanks’ transform and Stehfest method are proposed to
evaluate the solution. The Gaussian quadrature with six terms
(Yang and Yeh, 2007) is first utilized to evaluate the integrals in
Eq. (11). Since the oscillation and slow convergence of the multipli-
cation terms, the summations are difficult to evaluate accurately
and efficiently. Therefore, the Shanks’ transform method (Shanks,
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1955), a non-linear iterative algorithm based on the sequence of
partial sums, is used to compute the summations in Eq. (11). This
method has been successfully devoted to efficiently computing the
solutions arisen in the groundwater area (see, e.g., Peng et al.,
2002; Yeh and Yang, 2006b). In addition, the Stehfest algorithm
(Stehfest, 1970) is further employed to inverse the Laplace-domain
solution into time domain solution. The proposed numerical ap-
proaches can accurately evaluate the drawdown solution to the
mixed-type boundary value problem for a flowing partially pene-
trating well and the results are demonstrated in the following
section.
Results and discussion

When the well fully penetrates the entire thickness of the for-
mation, i.e., nd is zero, the drawdown and the well discharge can
be obtained using Eqs. (11) and (17), respectively, as

�s�ðq; n;pÞ ¼ 1
p

K0
ffiffiffi
p
p

q
� �

K0
ffiffiffi
p
p� � ð28Þ

and

QðpÞ ¼
K1

ffiffiffi
p
p� �

ffiffiffi
p
p

K0
ffiffiffi
p
p� � ð29Þ
Fig. 2. The drawdown distribution at dimensionless
Eqs. (28) and (29) are identical to the solutions of drawdown
and flow rate in Laplace domain given in Chen and Stone (1993);
Yang and Yeh (2005). The solutions of the aquifer drawdown and
well flux can be determined by inverting Eqs. (11) and (26) by
the Stehfest (1970) method with eight weighting factors.

The validity of the proposed solutions can be assessed by exam-
ining the sensitivity of the boundary conditions in (9) in the calcu-
lation. Fig. 2 shows the drawdown for b ¼ 100 and nd ¼ 50 with
different q values at s ¼ 1; 100; 104 and 106. As indicated in the
figure, the drawdown is constant along the well screen and de-
creases with increasing radial distance at s ¼ 1. In addition, the
drawdown increases with dimensionless time along the
unscreened part of the well. Fig. 3 shows the plots of the flux along
the well screen for b ¼ 100 and nd ¼ 50 at s ¼ 1; 100; 104 and 106.
The flux is non-uniformly distributed and larger at the screen edge,
due to the vertical flow induced by the presence of well partial
penetration.

In order to explore the effect of partial penetration on the well
discharge, Fig. 4 illustrates four different penetration ratios
x ¼ k=b with k ¼ 50. The well discharges for those four cases are
the same at the small time; however, it decreases with increasing
penetration ratio at large time. If the penetration ratio is smaller
than 0.01, the well discharge of this study agrees with that of con-
stant-head pumping test in Cassiani et al. (1999) in an aquifer of
semi-infinite thickness. In other words, if the aquifer thickness is
time s ¼ 1;100;104 and s ¼ 106 for different q.



Fig. 3. The distribution of flux along the well screen at different dimensionless
time.

Fig. 4. The influence of the penetration ratio on the flux.
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greater than 100 times of the screen length, the aquifer can be con-
sidered as semi-infinite. As the penetration ratio equals unity, the
well discharge of this study is identical to that of Chen and Stone
(1993) for a fully penetrating well. In addition, well discharges of
this study agree with those of Chang and Chen (2003) for
x ¼ 0:01 and x ¼ 0:001 when k ¼ 50. As indicated in Fig. 4, there
are no obvious differences between the well discharges for different
penetration ratios until s ¼ 104. For the cases of x ¼ 0:1 and
x ¼ 0:01, the flow caused by the partial penetrating well has not
reached the bottom of the aquifer before s ¼ 104. The aquifer thick-
ness has an influence on groundwater flow after s is greater than
104. The well discharge for x ¼ 0:01 becomes steady as s increases
to 106 and the well discharge for x ¼ 0:5 continues to decrease.

Conclusions

This paper developed a new semi-analytical solution for the
aquifer system in response to the constant-head test at a partially
penetrating well in a confined aquifer of infinite radial extent and
finite vertical extent. The Laplace and finite cosine Fourier trans-
forms is first used to reduce the original partial differential equa-
tion with mixed-type boundary and initial conditions for a
partially penetrating well in an aquifer of finite thickness to the
dual series equations. The dual series equations are then solved
via the perturbation method.

The present solutions for a fully penetrating well in an aquifer
of finite thickness are identical to the solutions of the drawdown
and well discharge given in Chen and Stone (1993). It is found that
the solution of Cassiani et al. (1999) for well response to a con-
stant-head pumping test in a semi-infinite aquifer approximates
the solution for the case where the aquifer thickness of a finite
aquifer is 100 times greater than the length of well screen. In addi-
tion, the flux is non-uniformly distributed along the screen and
with a local peak at the edge, due to the vertical flow induced by
well partial penetration.

The new semi-analytical solutions provide accurate description
of the response of the aquifer system to a constant-head pumping
test performed at a partially penetrating well in a confined aquifer
of infinite radial extent and finite vertical extent. In addition, those
solutions are particularly attractive for practical applications since
they can be used to evaluate the sensitivities of the input parame-
ters in a mathematical model, to identify the hydraulic parameters
if coupling with an optimization approach in the analysis of aquifer
data, and to validate a numerical solution.
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Appendix

The Laplace and finite cosine Fourier transforms are first used to
solve the mixed-type boundary value problem. The definition of
Laplace transform is (Sneddon, 1972):

�s�ðq; n;pÞ ¼ Lp½s�ðq; n; sÞ; s! p� ¼
Z 1

0
s�ðq; n; sÞe�psds ðA1Þ

where �s�ðq; n; pÞ is the dimensionless drawdown in Laplace domain.
Taking the Laplace transform of Eqs. (6) and (8)–(10) and using the
initial condition in Eq. (7), the problem reads:

@2�s�

@q2 þ
1
q
@�s�

@q
þ a2 @

2�s�

@n2 � p�s� ¼ 0 ðA2Þ

�s�ðq ¼ 1; n;pÞ ¼ 0 ðA3Þ

�s�ðq ¼ 1; n; pÞ ¼ 1
p
; nd 6 n 6 b ðA4aÞ

@�s�

@q

����
q¼1
¼ 0; 0 6 n 6 nd ðA4bÞ

@�s�

@n
¼ 0; n ¼ 0; n ¼ b ðA5Þ

In order to eliminate the n coordinate, the finite cosine Fourier
transform is used as follows (Sneddon, 1972):

�̂s�ðq;n; pÞ ¼ Fc½�s�ðq; n;pÞ; n! n� ¼
Z b

0
�s�ðq; n; pÞ cos

npn
b

� �
dn

ðA6Þ
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where �̂s�ðq;n;pÞis the dimensionless drawdown after finite cosine
Fourier transform. Substituting Eq. (A6) into Eqs. (A2), (A3) and
(A5) results in the Bessel differential equation as

@2�̂s�

@q2 þ
1
q
@�̂s�

@q
� k2

n
�̂s� ¼ 0 ðA7Þ

with the boundary condition

�̂s�ðq ¼ 1; n;pÞ ¼ 0 ðA8Þ

where kn is defined in Eq. (25).
The general solution of Eq. (A7) with the boundary condition Eq.

(A8) is (Carslaw and Jaeger, 1959, p. 193)

�̂s�ðq; n;pÞ ¼ Aðn;pÞK0ðknqÞ ðA9Þ

where Aðn;pÞ can be found from using the mixed-type boundary
condition Eq. (A4). The inverse of the finite cosine Fourier transform
is (Sneddon, 1972, p. 425)

�s�ðq; n;pÞ ¼ 1
b

�̂s�ðq;0; pÞ þ 2
b

X1
n¼1

�̂s�ðq;n; pÞ cos
npn
b

� �
ðA10Þ

Thus, the solution in n domain obtained by inserting Eq. (A9) into
Eq. (A10) is

�s�ðq; n;pÞ ¼ 1
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Að0; pÞK0
ffiffiffi
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qð Þ þ 2
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n¼1
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� cos
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ðA11Þ

with its derivative with respect to q given by
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Substituting Eq. (A11) into Eq. (A4a) and Eq. (A12) into Eq. (A4b) re-
sults in a system of the dual series equations (DSE)
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We define that

Bðn;pÞ ¼ 2Aðn;pÞK0ðknÞ=b ðA14Þ

The DSE of (A13) can be arranged as (Sneddon, 1966, p. 161):

1
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Bð0; pÞ þ
X1
n¼1

Bðn;pÞ cosðnxÞ ¼ 1
p
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Iðk;pÞBðk; pÞ cosðkxÞ; 0 6 x 6
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b
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Our goal is to determine the coefficients Bð0;pÞ and Bðn, pÞ appear-
ing in Eq. (A15). The pair of DSE (A15) when Iðk;pÞ ¼ 0 can be ex-
pressed as

1
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n¼1

ð0ÞBðn;pÞ cosðnxÞ ¼ 1
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6
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The coefficients of ð0ÞBð0; pÞ and ð0ÞBðn; pÞ can be determined by
following the process given in Sneddon (1966). Assume that when
0 6 x 6 ndp=b

1
2
ð0ÞBð0;pÞ þ

X1
n¼1

ð0ÞBðn;pÞ cosðnxÞ

¼ cos
x
2

� 	Z nd
b p

x

h1ðyÞdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos x� cos y
p ðA17Þ

The coefficient ð0ÞBð0;pÞ and ð0ÞBðn;pÞ in Eq. (A17) are, respectively,
given by the equations (Sneddon, 1966, p. 161, Eqs. (5.4.56) and
(5.4.57))

ð0ÞBð0;pÞ ¼ 2
p

pffiffiffi
2
p

Z nd
b p

0
h1ðyÞdyþ

Z p

nd
b p

1
p

dy

" #
ðA18Þ

ð0ÞBðn;pÞ ¼ 2
p

p
2
ffiffiffi
2
p

Z nd
b p

0
h1ðyÞ½Pnðcos yÞ

(

þPn�1ðcos yÞ�dyþ
Z p

nd
b p

1
p

cosðnyÞdy

)
ðA19Þ

where Pnðcos uÞ is the associated Legendre function.
Substituting Eq. (A19) for the coefficients in the integrated

equivalent of Eq. (A16b) obtains

1
2
ð0ÞBð0;pÞ

ffiffiffi
p
p

Hð0;pÞxþ
X1
n¼1

ð0ÞBðn; pÞ sinðnxÞ ¼ 0 ðA20Þ

We can find that h1ðyÞ satisfies the following equation: (Sneddon,
1966, p. 161, Eq. (5.4.58))

Z nd
b p

0
h1ðyÞ

1ffiffiffi
2
p

X1
n¼1

½Pnðcos yÞ þ Pn�1ðcos yÞ� sin nxdy

¼ �1
2

ffiffiffi
p
p

Hð0;pÞBð0;pÞx� 2
p
X1
n¼1

Z p

nd
b p

1
p

cosðnyÞdy sin nx ðA21Þ

The summation term on the left-hand side of Eq. (A21) can be ex-
pressed as (Sneddon, 1966, p. 59, Eq. (2.6.31))

1ffiffiffi
2
p

X1
n¼1

½Pnðcos yÞ þ Pn�1ðcos yÞ� sin nx ¼
cos x

2

� �
Hðx� yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos y� cos x
p ðA22Þ

where HðXÞ is the Heaviside unit step function which has different
value for different range of X as

HðXÞ ¼
0 X < 0
1=2 X ¼ 0
1 X > 0

8><
>: ðA23Þ

Substituting Eq. (A22) into Eq. (A21) one getsZ nd
b p

0

h1ðyÞHðx� yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� cos x
p dy

¼ sec
x
2
�1

2
ffiffiffi
p
p

Hð0; pÞð0ÞBð0;pÞx
�

� 2
p
X1
n¼1

Z p

ndp=b

1
p

cosðnyÞdy sin nx

)
ðA24Þ

Using the property of Heaviside unit step function in Eq. (A23) an
equivalent integral equation of Eq. (A24) can be obtained
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Z x

0

h1ðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos y� cos x
p dy

¼ sec
x
2
�1

2
ffiffiffi
p
p

Hð0;pÞð0ÞBð0;pÞx
�

� 2
p
X1
n¼1

Z p

ndp=b

1
p

cosðnyÞdy sin nx

)
0 6 x <

nd

b
p ðA25Þ

Then, the function h1ðyÞ can be obtained based on Sneddon (1966,
p. 41, Eq. (2.3.5)) as

h1ðyÞ ¼ �
1
p

ffiffiffi
p
p

Hð0;pÞð0ÞBð0;pÞ d
dy

Z y

0

x sinðx=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos x� cos y
p dx

þ 4
p2

X1
n¼1

1
pn

sin n
ndp
b

� �
d

dy

Z y

0

sinðx=2Þ sinðnxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos x� cos y
p dx ðA26Þ

By integrating Eq. (A26) and substituting it into Eqs. (A18) and
(A19), the coefficients Bð0;pÞ and Bðn;pÞ can be expressed as Eqs.
(14) and (15), respectively.

Based on the perturbation method (Boridy, 1990), one needs to
find the coefficients of the following DSE when Iðk; pÞ–0

1
2

B0ð0; pÞ þ
X1
n¼1

B0ðn;pÞ cosðnxÞ ¼ 0;
nd

b
p < x 6 p ðA27aÞ

1
2

B0ð0; pÞ
ffiffiffi
p
p

Hð0;pÞ þ
X1
n¼1

nB0ðn; pÞ cosðnxÞ

¼
X1
k¼1

Iðk; pÞBðk;pÞ cosðkxÞ; 0 6 x 6
nd

b
p ðA27bÞ

The DSE above can be further separated into infinite pairs of DSE as
(Boridy, 1990, Eqs. (11) and (12))

1
2 B0ð0;pÞ þ

P1
n¼1

B0ðn;pÞ cosðnxÞ ¼ 0 nd
b p < x 6 p

1
2 B0ð0;pÞ ffiffiffipp Hð0; pÞ þ

P1
n¼1

nB0ðn;pÞ cosðnxÞ ¼ Ið1; pÞBð1; pÞ cosðxÞ

0 6 x 6 nd
b p

8>>>>><
>>>>>:

1
2 B0ð0;pÞ þ

P1
n¼1

B0ðn;pÞ cosðnxÞ ¼ 0 nd
b p < x 6 p

1
2 B0ð0;pÞ ffiffiffipp Hð0; pÞ þ

P1
n¼1

nB0ðn;pÞ cosðnxÞ ¼ Ið2; pÞBð2; pÞ cosð2xÞ

0 6 x 6 nd
b p

8>>>>><
>>>>>:
..
.

1
2 B0ð0;pÞ þ

P1
n¼1

B0ðn;pÞ cosðnxÞ ¼ 0 nd
b p < x 6 p

1
2 B0ð0;pÞ ffiffiffipp Hð0; pÞ þ

P1
n¼1

nB0ðn;pÞ cosðnxÞ ¼ Iðk; pÞBðk;pÞ cosðkxÞ

0 6 x 6 nd
b p

8>>>>><
>>>>>:

ðA28Þ
Rearranging Eq. (A28) obtains

1
2

B0 ð0;pÞ
Ið1;pÞBð1;pÞþ

P1
n¼1

B0 ðn;pÞ
Ið1;pÞBð1;pÞ cosðnxÞ¼0 nd

b p< x6p

1
2

B0 ð0;pÞ
Ið1;pÞBð1;pÞ

ffiffiffi
p
p

Hð0;pÞþ
P1
n¼1

n B0ðn;pÞ
Ið1;pÞBð1;pÞ cosðnxÞ¼ cosðxÞ 06 x6 nd

b p

8>><
>>:

1
2

B0 ð0;pÞ
Ið2;pÞBð2;pÞþ

P1
n¼1

B0 ðn;pÞ
Ið2;pÞBð2;pÞ cosðnxÞ¼0 nd

b p< x6p

1
2

B0 ð0;pÞ
Ið2;pÞBð2;pÞ

ffiffiffi
p
p

Hð0;pÞþ
P1
n¼1

n B0ðn;pÞ
Ið2;pÞBð2;pÞ cosðnxÞ¼ cosð2xÞ 06 x6 nd

b p

8>><
>>:
..
.

1
2

B0 ð0;pÞ
Iðk;pÞBðk;pÞþ

P1
n¼1

B0 ðn;pÞ
Iðk;pÞBðk;pÞ cosðnxÞ¼0 nd

b p< x6p

1
2

B0 ð0;pÞ
Iðk;pÞBðk;pÞ

ffiffiffi
p
p

Hð0;pÞþ
P1
n¼1

n B0 ðn;pÞ
Iðk;pÞBðk;pÞ cosðnxÞ¼ cosðkxÞ 06 x6 nd

b p

8>><
>>:

ðA29Þ
Eq. (A29) can be expressed as a general pair of DSE by defining new
coefficients Cð0; k;pÞ and Cðn; k;pÞ as

1
2

Cð0; k; pÞ þ
X1
n¼1

Cðn; k; pÞ cosðnxÞ ¼ 0;
nd

b
p < x 6 p ðA30aÞ

1
2

Cð0; k; pÞ
ffiffiffi
p
p

Hð0;pÞ þ
X1
n¼1

nCðn; k; pÞ cosðnxÞ

¼ cosðkxÞ; 0 6 x 6
nd

b
p ðA30bÞ

where

Cð0; k;pÞ ¼ B0ð0; pÞ
Iðk;pÞBðk; pÞ ðA31Þ

and

Cðn; k;pÞ ¼ B0ðn; pÞ
Iðk;pÞBðk; pÞ ðA32Þ

Thus the coefficients Bð0; pÞ and Bðn;pÞ when In – 0 in Eq. (A15) can
be, respectively, written as (Boridy, 1990, Eq. (13))

Bð0;pÞ ¼ ð0ÞBð0;pÞ þ
X1
k¼1

Iðk;pÞBðk;pÞCð0; k; pÞ ðA33Þ

and

Bðn;pÞ ¼ ð0ÞBðn;pÞ þ
X1
k¼1

Iðk;pÞBðk;pÞCðn; k; pÞ ðA34Þ

Consequently, the coefficients of Cð0; k;pÞ and Cðn; k; pÞ are, respec-
tively, given by (Sneddon, 1966, p. 161, Eqs. (5.4.56) and (5.4.57))

Cð0; k;pÞ ¼
1
k

2
ffiffi
2
p

p

R nd
b p

0 f3ðu; kÞdu

1þ
ffiffi
2
p

p
ffiffiffi
p
p

Hð0; pÞ
R nd

b p
0 f2ðuÞdu

ðA35Þ

and

Cðn; k;pÞ ¼
ffiffiffi
2
p

p
ffiffiffi
p
p

Hð0;pÞCð0; k;pÞ
Z nd

b p

0

Z u

0
f2ðvÞdv d

du
f4ðuÞ


 �
du

( )

�
ffiffiffi
2
p

p
ffiffiffi
p
p

Hð0;pÞCð0; k;pÞ
Z nd

b p

0
f2ðuÞduf4

nd

b
p

� �( )

þ
ffiffiffi
2
p

p
1
k

Z nd
b p

0
f3ðu; kÞduf4

nd

b
p

� �( )

�
ffiffiffi
2
p

p
1
k

Z nd
b p

0

Z u

0
f3ðv ; kÞdv d

du
f4ðuÞdu

( )
ðA36Þ

where the function f3 is defined in (20).
Series in Eqs. (A33) and (A34) can be considered as a perturba-

tion series in Iðn; pÞ. In the zeroth-order approximation, the second
terms on the right-hand side of Eqs. (A33) and (A34) are ignored so
that coefficients Bð0; pÞ and Bðn; pÞ are simply given by ð0ÞBð0; pÞ and
ð0ÞBðn; pÞ. In the first-order approximation Bð0; pÞ and Bðn; pÞ of the
second member of Eqs. (A33) and (A34) are replaced by ð0ÞBð0; pÞ
and ð0ÞBðn; pÞ, respectively. Thus, in this approximation, coefficients
Bð0; pÞ and Bðn; pÞ are denoted by ð1ÞBð0; pÞ and ð1ÞBðn; pÞ, respec-
tively, as (Boridy, 1990, Eq. (16))

ð1ÞBð0;pÞ ¼ ð0ÞBð0;pÞ þ
X1
k¼1

Iðk; pÞð0ÞBðk;pÞCð0; k;pÞ ðA37Þ

and

ð1ÞBðn;pÞ ¼ ð0ÞBðn;pÞ þ
X1
k¼1

Iðk; pÞð0ÞBðk;pÞCðn; k;pÞ ðA38Þ
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Based on Eqs. (A11) and (A14), the solution for dimensionless draw-
down in Laplace domain can be written as Eq. (11).
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