o T R AR R e R

53 R g e d 2 48 6 dlgT g

Application.of Variable Structure Schemes to the Control of
Anti-Tactical'Ballistic Missile Having I.ateral Thrust and

Aerodynamic Forces

(SRR S =

B Eae g1



R F

-

b bl £ B & 9
L5 Rled B 247 S g
Application of Variable Structure Schemes to the Control of
Anti-Tactical Ballistic Missile Having Lateral Thrust and

Aerodynamic Forces

Foro4 D BRE Student :  Yung-Chun Kang
R Ry #L Advisor “. Df: Yew-Wen Liang

A Thesis
Submitted to Institute of Electrical Control Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of Master
in
Electrical and Control Engineering
July 2013
Hsinchu, Taiwan, Republic of China



%*ﬂ%%#&ﬂﬁﬁ%ﬁ%ﬁﬁi$ﬁ
£ 7 RIw A BF B 2 SR HRLE Y

R Y g B gL

LU A F R AT

<k

|4

/2 &

T R P RAF S G 8 el chF RN B2 A7 £ )
o d AR E 7 B B 0 PR R ST RA S L0 AR RAEFTR
ERERARBHHED RGBS T 4 AL W Ra 4 > BB
WA F 4 B e APPSR B S T B D)

#E
B3 3) AF A AR R MRl 4

MEFRRERE ) Bed AL aREREY
REET IR AR N AR e ARy FAZE A &N ihE R
S opd REFHD o TRART = AV RS AE ) B SE
(conventional sliding mode control)$£f# ~ 2) % =48 4 #-33 +#| (terminal sliding mode

control)$£ T 3) 254 R % =59 #7374 (nonsingular terminal sliding mode control)

Pt 54 2 R 4mwrfﬂiﬁﬁw@o@ﬁﬁ%%%ﬁ’%%ﬁﬂié
SRR PRl Benlh i 20 > 4 B A S N BE X BB R T B

g r F B4 R R R R P T A A R BEA KB o



Application of Variable Structure Schemes to the Control
of Anti-Tactical Ballistic Missile Having Lateral Thrust

and Aerodynamic Forces

Student: Yung-Chun Kang Advisor: Dr. Yew-Wen Liang

Institute of Electrical Control'Engineering

National Chiao Tung University

ABSTRACT

This thesis studies the control of anti-tactical ballistic missiles (ATBM) having
lateral thrust and aerodynamic: forces, called blended control. With increasing
technological sophistication, the maneuverability of tactical ballistic missiles is
improving. Compared with tail control, the blended control possesses the following
three features: 1) timing response is faster; 2) lateral thrust is independent of altitude;
and 3) tracking performance is promoted. In this thesis, we first build the mathematical
model of ATBM and then import the following three variable structure schemes (VSS):
1) conventional sliding mode, 2) terminal sliding mode and 3) nonsingular terminal
sliding mode to the blended control design task. Simulation results clearly demonstrate
the performances of the presented three SMC schemes and confirm that the performance

by blended control is superior to that by the tail control only.
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NOMENCLATURE

0] @, :Body-axis roll rate, yaw rate, and pitch rate relative to the inertial frame,

xb >

@,

respectively;

I, , I, :Thecomponents of the centroidal mass moment of inertia corresponding to

1

the body axes;
m : Missile mass;
V' : Missile velocity;

S : Reference wing area;

g : Acceleration due to gravity;

d : Reference Diameter;

£ : Atmospheric density;

g : Dynamic pressure;

/., :Radians to degrees;

x, y, z :theposition vector of center.of mass of the missile transformed corresponding to

the inertial frame, respectively;

F,,. :Propulsion of the missile corresponding to the body axes;
F,., Fy,. :Lateral thrustin the direction of pitch and azimuth corresponding to the body

axes, respectively;

X, Y, Z :Drag(axial) force, lift (normal) force, and side force corresponding to the wind

axes, respectively;

y, &, w :Body-axis bank angle, pitch angle, and yaw angle relative to the inertial frame,

respectively;



a, [ :Angle of attack and sideslip angle relative to the wind axes, respectively;

7, : Velocity bank angle relative to the ballistic axes.

0, v, :Fight path angle and ground tracking angle relative to the inertial frame,
respectively;
o,, 0,, 0. :Aileron deflection angle, rudder deflection angle, and elevator deflection
angle, respectively;

¢, : Total drag coefficient evaluated at a=0;

¢! : Total drag coefficient variation'with i=a, S, @f. and J_;

cfy, ¢ : Total drag coefficient variation with Oy and 05

cy cf , cfz : Total lift.coefficient variation with '«, fyand 0 ;
c®, cfy : Total side force coefficient variation with o, f,and J_;

m? : Rolling moment coefficient variation with « , S, J.;

S, . . .. .
m), m/ :Yawing moment coefficient variation with S @, ;

a
z 9

m mf: : Pitching moment coefficient variation with «, o.;

X1



CHAPTER ONE
INTRODUCTION

1.1 Motivation

In the 1990s, the science and technology of tactical ballistic missile (TBM) developed
rapidly. The features of the TBM included: I). The maximum range is more than 1000
(km). IT) The maximum speed is 2 to-3 (kmy/s) in theattack region of the air defense
missile (or anti-tactical ballistic missile; ATBM). I1I) The maximum overloading is ap-
proximate 10 (g). IV):The hitting precision is. high. And, VI):The destructive power is
strong. Consequently; progressing the ATBM to-defend has become a primary mission
[1]. Moreover, in the'First Gulf War (2 August 1990 - 28 February 1991), the U.S. Patriot
missile was used in combat for the first time. The U.S. military claimed a high effective-
ness against Iraq’s Scuds at the time, but later the-Patriot Program Office reported to
high-ranking Administration officials and Members of Congress that a total of 158 Pa-
triot missiles were fired during the war, while only 86 Patriots had intercepted at Scud
targets (89 percent of the Iraqi Scuds launched against Saudi Arabia and 44 percent of
the Scud warheads directed against Israel). In other words, almost half were fired at false
targets and debris (15 percent at false targets, 30 percent at Scud debris) [2]. This result
shows that the magnitude of miss distance (MD) is a factor to judge whether the missile
intercepts the target successfully. The magnitude of MD is related to the missile’s over-
loading and the time response of the attitude stability system. In short, developing the
hit-to-kill (HTK) technique is necessary in no time. The U.S.A. had made a rocket sled
test which proved that the HTK technique can provide enough energy and penetrating
force to destroy the target carrying mass destruction warhead successfully [3]. In view

of the change of TBM’s characteristics and attacking ways and the great progress of the



relevant scientific and technological field, the flight control system of the ATBM has a

fundamental revolution in the following aspects [1]:

D)

1))

I11)

%

Reducing warhead’s weight greatly. ATBM is equipped with modern high-accuracy
microelectronic devices extensively such that its size and weight lessens extremely.
In theory, the overload can reach above 40 (g). This guarantees the ATBM’s re-

quirement for high maneuverability.

Equipped with active radar homing in the warhead and a inertial navigation sys-
tem. The ground guidance radar just informs ATBM of the present position of a
target and the predictive impact point, while the other guidance information is from
ATBM itself. As a result of a computer embedded in a ATBM, the operation of
control problem can directly ealculate in a ATBM instead of ground guidance radar
indirectly. This can not only improve the guidance precision but also reduce the
time response of the guidanceloop. Themethod s helpful to increase the capability

of HTK.

Adopting the blended control with acrodynamic force and reaction-jet control system
(RCS) [4]-[9] in .the terminal phase of interception, the:RCS can make ATBM’s
maneuverability promote strongly. Compared to traditional aerodynamic control, it
can decrease about 1/10 (see) of.the time response and improve agility about 10 to

20 times in the high altitude. Thus, this equipment has capability to achieve HTK.

Benefiting from the advanced computer technology, new control theory and control
system design method applied to the blended control system, it has succeeded in
solving the contradiction between operational requirements and control system under
the traditional aerodynamic control (conventional control or tail control). Besides,
this result increases controlling precision and robustness of the ATBM. Generally
speaking, the developing trends of the air defense missile control will be faster time

response, higher control precision, and more powerful maneuvering performance.

Tails or air rudders are the control mechanisms for the traditional aerodynamic control.

According to the command from guidance and control regulation, turning the control



surface yields moment to change the missile’s attitude and then produces the lateral
overloading. It may be inferred that the relation between the performance of the attitude
stability system and intercepting precision in terminal phase is closely related. Taking the
traditional aerodynamic control into account, it can be guaranteed to predict successfully
near the impact point in the midcourse phase. On the contrary, in order to realize HTK
in the terminal phase, just using tails is not enough because the aerodynamic force has

two defects as follows [1], [10], [11]:

I) The overload is insufficient in the high altitude. It assures that maneuverability of
the ATBM must be at least three times larger than one of the TBM. The efficiency
of aerodynamic force decreases at above 10 (km) altitude during the terminal phase
since aerodynamic force.is directly proportional fo air density and missile velocity.

Hence, the low air density at high altitude cause insufficient overloads.

IT) The time response of the attitude stability systen is long. Time is short in the ter-
minal phase. Depending on manufacturing technique of aerodynamic mechanisms,
the time delay of these mechanismsis around 0.1 to 0.5 (see), whereas the standard

for the air defense missile(is around 0.1 (sec).

In consideration of physical constraints of purely aerodynamic control, the concept of
the blended control with aerodynamic force and RES for the air defense missile came
up. There are three types of the RCS'according to their positions [12]: 1) attitude type,
which means the location of the RCS is between center of gravity and the missile’s top and
produces moment to change the missile’s attitude, e.g. PAC-3 shown in Fig. 1.1; 2) orbit
type, which means the location of the RCS is around center of gravity and makes missile
produce linear motion, e.g. S-400, Aster-15, and Aster-30; 3) attitude-orbit type, which
means it combines above two types, e.g. TLVS (Taktisches Luft Verteidigungs Systems).
The features of RCS are listed roughly below [1], [5], [8], [13], [14]:

I) Advantages

i) The time response of the attitude stability system is short. The time response

the RCS is about 5 (msec) to 10 (msec) which is much faster than the one of



purely aerodynamic control.

ii) The maneuverability of the RCS is regardless of the altitude. This characteristic
is suitable in the terminal phase as it can warrant that the ATBM has enough

agility during the guidance process.

IT) Disadvantages

i) There is a limitation of the fuel consumption. After exhausting the foil, the

thruster cannot use continuously.
ii) The fuel consumption can make the missile’s center of gravity drift.

iii) The jet interaction effect is complicated such that the actual thrust does not

meet the theoretical one.

Tails

Fig. 1.1. The locations of the tails and-the RCS of the PAC-3

Thus, using blended control can diminish the energy consumption compared with only
using RCS and compensate the uncertainties of RCS. In short, the goal of using blended
control is to reduce the MD and to achieve HTK.

In existing results, some papers have dealt with the control design of missile with RCS.
Chadwick [7] proposed the blended control to improve the guidance performance of mis-
siles against weaving targets in high altitude and analyzed the influence of the location
of RCS. Wise [15] proposed the autopilot for aero-fin controlled missile with the RCS
using linear quadratic regulator technique. Menon [16], Schroeder [17] and [18] proposed
adaptive techniques for multiple actuator blending using fuzzy control. Yin [13] pro-

posed blended control via inverse dynamics technique and used extended states observer



to improve the estimation precision of system states. Bi [19] proposed blended control
via model predictive technique and used active disturbance rejection control to resist the
model uncertainties and external disturbances. In addition, Weil [5] and Innocenti [§]
proposed the blended missile autopilot formulating via the variable structure schemes
(VSS) or sliding mode control (SMC) techniques.

In the recent years, the research of SMC of nonlinear systems have attracted much at-
tention. It is known that SMC have the advantages of fast response and small sensitivity
to system uncertainties and disturbances [20], [21]. Hence, the SMC approach has been
widely applied to a variety of control problems [20], [22], [23], especially in spacecraft
attitude control [24]-[27] and robotic control [28]-[32].

Although those two papers [5] and [8] had used SMC techniques to synthesize the con-
trol laws, the former one [5]imposes an assumption that the RCS is continuous and both
papers only consider a linear model.-On the other hand, in thisthesis, we consider a more
practical nonlinear model ' with the pulse-like (or constant duringa short time period once
the RCS was triggered) RCS. Moreover, we will organize blended ¢ontrol laws via the fol-
lowing three SMC téchniques: 1) convenfional sliding mode control (CSMC) scheme, 2)
terminal sliding modé control (TSMC) scheme and 3)nonsingular terminal sliding mode

control (NTSMC) scheme for the control of missile, and compare the performances under

the three SMC schemes.

1.2 Outline

The organization of the work is as follows. Chapter 1 includes the motivation and
objective of this thesis, as well as the survey of relative works. Chapter 2 reviews the
basic concept of SMC theories. The mathematical model of the PAC-3 missile is given
in Chapter 3. The problem formulation and controller design via the CSMC, TSMC and
NTSMC schemes are illustrated in Chapter 4. Then, in Chapter 5, the analytic results are
applied to a simplified model to demonstrate the performances of the three SMC schemes.

Finally, the conclusions and suggestions for further research are made in Chapter 6.



CHAPTER TWO
PRELIMINARIES

2.1 Conventional Sliding Mode Control (CSMCQC)

The history of CSMC up until the early 70’s has been described in [33]. By 1980, the
main part of CSMC theory had been _finished [34] and later reported by Russian Prof.
Utkin’s monograph in 1981 [35]. The main-advantages of CSMC were the following [36]:
1) exact compensation (insensitivity) with respectto bounded matched uncertainties; 2)
reduced order of sliding equations;3) finite-time convergence to'the sliding surface.

Consider a nth-order single-input system
2™ F=" (&) A g(x)u + d(x) (2.1)

where x = [z @ --- 2™ Y| denotes the state vector and 4/is control input. In system
(2.1), the functions f(x) and g(x) (in general, nonlinear)are not exactly known, but the
extent of the imprecision on f(x) is-uppéer bounded by a known continuous function of
x, and control gain g(x) is of known sign and bounded by a known continuous function
of x, respectively. And d(x) is set to combine the model uncertainties of f(x) and g(x)
and external disturbances. The control problem is to get the state x to track a specific
time-varying state x4 = [v4 @4 - 24" V]7 in the presence of d(x). In order to achieve
the tracking task by using a finite control u, the initial desired state x4(0) must be such

that:

Then, defining the tracking error



where the error vector composed of derivatives of error between output and desired output

is denoted by
e=eé - e YT (2.4)

In a second-order system, for example, position or velocity can not “jump”, so that any
desire trajectory feasible from t=0 necessarily starts with the same position and velocity
as those of the plant. Otherwise, tracking can only be achieved after a transient.

According to [37], the two-step procedure for sliding mode control design was clearly
stated: 1) Sliding surface design. When the trajectory of closed-loop system is fixed in
the sliding surface, it will be asymptotically stable. And, 2) Discontinuous controllers
ensuring the sliding modes. The control law can let the trajectory of the closed-loop
system reach the desired sliding surface in a finite:timé and stick on the the desired
sliding surface. A typical phase portrait is illustrated in Fig. 2.1.

In first step, defining §(x) is a smooth"scalar constraint funetion: R" — IR, we select

finite time

reaching phase s
shding mode

exponential convergence

§=0

Fig. 2.1. A typical phase portrait under sliding mode control

time-varying sliding surface to be s = 0 with



where the constant coefficient vector a = [a; --- a,|. Here, a; for i=1,---, r — 1 are

selected constants and a, = 1 is chosen such that
)\r—l + (Ir_l)\r_z + -4 (12)\ “+ a (26)

are Hurwitz polynomials. As the states trajectory remain on the sliding surface, i.e., s = 0,
we can know Eq. (2.5) will be asymptotically stable, which means the error approaches
zero as the time approaches infinity.

Second, designing the control law u, consisting of two parts
u=ul4u"* (2.7)

where u®? is continuous called a feedback control law and u"¢ is discontinuous or switched.
As designing the u®, there exists a condition which it must let the sliding surface s = 0 be
invariant set relatively to.the closed-loop system foraunpresence of uncertainties or external
disturbances of the matched type-system«[37}.. That is s(x(tg)) = 0 and s(x(t)) = 0,

V t > ty. Moreover, the time derivative of s is given by
§=a'¢ (2.8)

where

Expanding Eq. (2.8), the sliding variable dynamics as follows

§ = f(x)+g(x)u+dx) -z

+a,_1€TTY b apE 4 apé (2.10)

Herein, it is regardless of d and u" such that uv = u® can verify sliding condition. The
equilibrium point of Eq. (2.10) will be s = 0. u®? is designed as

1 . L
wi= s [f(x) — 2 e b 4 agé + al@] (2.11)

The effect of u® is to eliminate the known form of Eq. (2.10). Substituting designed u®?

into Eq. (2.10), we get

§ = g(x)u" +d(x) (2.12)



Obviously, if we do not consider the disturbance term d and just use the feedback controller
u=u, Eq. (2.12) exists a equilibrium point at s = 0. Next, we consider Eq. (2.12) and
assume s(e(tp)) # 0 to design u™. The action of u" is to make sliding variable s be zero
in a finite time. That is the trajectory of the closed-loop system will achieve the sliding

surface in limited time. To guarantee the reaching condition, we impose a assumption:

Assumption 2.1 There exists a nonnegative number p(x) such that

|[d(x)] < p(x) (2.13)

From Eq. (2.12), we obtain the other controller ™ designed as

1
u® =+=——=|p+ n|sgn(s 2.14
2504 ) (2.14)
where
1-"if s >0
sgi(s) = ¢ 0if s =0 ‘is the sign function (2.15)
-1 ifs<0

and n > 0 is selected positive constant. Then; we substitute Eq. (2.14) into Eq. (2.12),

the sliding variable dynamics bécomes
s = —[p+n]sgu(s)+ d(x) (2.16)

In order to prove the feasibility of Eq.(2.14),with V"= 1/2s* as a Lyapunov function

candidate for Eq. (2.16), we have
V==s5=—[p+mn]s-sgn(s) +s-dx) (2.17)

Using the relation of s - sgn(s) = |s| and Cauchy-Schwarz inequality to get s - d(x) <

|d(x)||s| and Assumption 2.1, the time derivative of Lyapunov function candidate becomes

Vo= —lp+nls-sgn(s) +s-dx)
< —p+nlls|+ dx)]s|
< —lp+nllsl+pls|
< sl (2.18)



According to (2.18), we have known that the Lyapunov function converges. The result
explains that the Eq. (2.16) is asymptotically stable, i.e., s — 0 as t — oo. In other
words, focusing on Eq. (2.12), u" will make s approach the sliding surface in limited time
when the sliding variable is not zero. Now, we discuss when the sliding variable reach
the sliding surface. Actually, there is another form of the time derivative of Lyapunov

function presented as

L d. 1d
V=_"V=

d
Z 26l = | ol — 2.1
dt 2dt|s| |S|dt|8| (2.19)

As a result of Ieq. (2.18) and Eq. (2.19), we obtain
S50 € =l (2.20
s|l—|s| £ =nls .
ALLIL
That is
d
— |5/ — 2.21
L1 (2:21)

It implies that |s| converges along with its slopeless than or equal'to —7. Integrating leq.

(2.21) with t on [0, &}, we get

AT%%?lﬁg—Aﬂm (2.22)

According to the second fundamental theorem of calculus [38], Eq. (2.22) equals
|s(x())] = [sx(0)] < —nt (2.23)
or

0 < [s(x(t)] < [s(x(0))] = nt (2.24)

The above inequality shows that |s(x(t))| must converge before t = |s(x(0))|/n, which is
illustrated in Fig. 2.2.

However, in order to account for the presence of modelling uncertainties and distur-
bances, the control law has to be discontinuous across s(t). Since the implementation of
the associate control switchings is necessarily imperfect (for example, in practice switching

is not instantaneous, and the value s is not known with infinite precision), this leads to
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| s(x(2)) ]
A

| 5(x(0))|

saon] !
n

Fig. 2.2. Sliding condition

chattering which is shown as Fig. 2.3.-Now, chattering is undesirable in practice, since it
involves high control activity and further-may excite high-frequency dynamics neglected
in the course of modelling such as unmodeled structure modes, neglected time-delays,
and so on. Thus, in a'second part, the discontinuous control law «™ is suitably smoothed
to achieve an optimal trade-off between control bandwidth and tracking precision: while
the first part accounts for parametrie¢ uncertainty, the second part achieves robustness to

high-frequency unmodeled dynamies [20].

chattering

x,(t)

Ny

§=0

Fig. 2.3. Chattering as result of imperfect control switchings
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2.2 Terminal Sliding Mode Control (TSMCQC)

Although the CSMC has received much attention as an efficient control technique for
handling systems with large uncertainties, nonlinearities, and bounded external distur-
bances and can guarantee finite-time convergence to the sliding surface, the closed-loop
system states may only be guaranteed within infinite time. Thus, the terminal sliding
mode control (TSMC) was evolved by Zak in the Jet Propulsion Laboratory (JPL) in
1988 [39]. The main idea of TSMC is the concept of terminal attractors which guarantee
finite time convergence of the states. The TSMC was first introduced to the control of the
dynamic systems based on second-order differential equations. After that, Yu and Man
[40], [41] extended it to high-order system (2.1). The problem formulation is the same
as Section 2.1. Defining s(x); for i=1,-- -, — 1'is a/Smooth scalar constraint function:

R" — IR, the hierarchical‘terminal sliding mode structureis

S1—= $o F bps™/"" (2.25)
So = &1 + bys®/” (2.26)
Sp=1 \ T 3r-2+br—1821_21/p“1 (227)

where sg = e, b; > 0, p; > ¢; and.p;, q; are positive odd-integers This assumption allows
us to achieve high-order continuous differentiation. For instance, the geometry plot for

third-order system is shown in Fig. 2.4.

Fig. 2.4. The sliding mode of the third-order system

12



The control is divided into

u = ueq _"_ ure

(2.28)

where u? is the equivalent control for system (2.1) without model uncertainties and

external disturbances, such that s,_; = 0 and $ = 0 and u"™® is to compensate the internal

parameter variations and turbulence. Furthermore, the time derivative of s,_; is given by

d d? d
_ _ — b . qr— l/pr
dtsr 1 dt2 Sp— 2+ r— ldts

Besides, it can be easily calculated that

d’ &’ d s /Pr—
B @t
d’ d' &’ gir—3/Pr—
BT gat TR gEse T
d(r—2) d(r—l) d(r—2)
D gD g
dr="b 4™ dr=1 a1
TR TR A R
Substituting Eqs. (2.52)-(2.34)/inte Eq. (2.29), we obtain
g q
d r—2 d(r 1-k) q Ip
. k+1 k+1
%Sr—l N 80+Z W) WS

Importing Eq. (3.4), the time derivative of s,_; will be

S$pm1 = f(x)+g9(x)u+d(x) —z}

+ - b d(r_l_k) Qh+1/P+1
Z L i r—1—k) Ok
k=0
Thus, the controller u is designed as follows:
e 1 dr =" Qk+1/pk+1
Uq:‘m $d+zbk+1dtr1k) k
and
= o+ ] sen(s)
u®=———|[p+n]sgn(s
9(x)

13

(2.29)

(2.30)

(2.31)
(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)



Since |d| < p, s-sgn(s) = |s|, Cauchy-Schwarz inequality s - d(x) < |d(x)||s|, and selected
positive constant n which have been accounted for in Section 2.1., the resulting expression

is substituted into Eq. (2.37) and Eq. (2.38) and multiplied by s,_; as

Se1dr1 = —[p+n]s-sgn(s) + - d(x)

IN

— o+ nlls| + [s]ld(x)]

< —Ilp+nlls|+pls|

IN

—nls| (2.39)

which means that the sliding mode s,_; = 0 will be reached in finite time along with
its slope less than or equal to —n proved in Section 2.1. The finite time is directly
proportional to the initial norm.of s,_; and the selected positive constant 7 expressing as
t, < |s(x(0))/n|. Howevery the magnitude of the designed controller will become infinity
if s; = 0 when s; # 0. That is, it-is-the singularity problem. For example, the controller

of second-order system is described

‘e g(x) [f(x) — 25+ by (g1 /p1) el 9/PD~ e +(p + mYsgn(s)] (2.40)

The term by (g1 /p1) e'@/PV=1¢ will occur singularity phenomenon since e(@/P)~1 = 1 /e((P1=a)/p
where (q1/p1) — 1 = (qi'— p1),/pr is hegative constant causes 1/eP1~1)/P1 — o0 as e — 0.
In this situation, if é = 0, the designed controller diverges. The problem is unexpected
and will be solved in later Section.

Next, we will discuss whether or not the closed-loop system states can converge within
finite time when sliding condition is exactly verified. First, importing the second-order

differential equations [42], basically a nonlinear switch line,
s=¢ + be‘J/p (241)

where e = © — x4, b > 0, p, q are positive odd integers and p > ¢. Similar to the
conventional sliding mode control technique, if the controller is designed such that s
converges to zero, then we say that the switching variable s reaches the terminal sliding

mode

é+ et/ =0 (2.42)

14



It has been shown in Zak [39] that e = 0 is the terminal attractor of dynamics (2.42). For
a error e(t,) at t = t, when s = 0, then we integrate the time derivative of é = —be?/P to

predict the convergence time ¢ at the sliding regime. That is

ts+ir 1 ts+ir
/ ——e YPde = / dt (2.43)
tr b tr

Then, we have

q q
Pttty PP ) P o= ¢ (2.44)
€ T S T/ N T - S .
b(p —q) b(p — q)

According to the conditions: 1) p, ¢ are positive odd integers; and 2) p > ¢, we multiply

—b(p — q)/p into Eq. (2.44) and move the second term of left to the right

q q
— mr 1-—
0<le(t, +to)| P= —Mts + le(t.)] P (2.45)
Obviously, as
q
LUEDTT (2.46)
to= o e(t, .
btp —q)
we can verify
-
0 <le(t,+ts)] P <0 (2.47)

The expression (2.46) means that in terminal sliding mode (2.42) the state error e con-
verges to zero in finite time, the same.for é¢. The-total time reaching e =0 is t = ¢, + t,.
Then, expanding to high-order continuous differentiation. With the structure (2.26)-
(2.27), if 5,1 = 0 is reached, the stability and finite-time reachability of system equilib-
rium will be guaranteed because it is a concatenation of r dynamics of Eq. (2.41) type.

If s,_1 = 01is reached at t = t, = ty, then s,_o will reach s,_5 =0 at
qr—1
1—
|sp—a(t)|  Prt (2.48)

Pr—1
br—l (pr—l - QT’—l)

ls1 =t +

The general form of the convergent time t,; for s,_;_; will reach s,_1_; = 0 for i=1,-- -,

(r — 1) is described by

to = tr (2.49)
1 qr—1

‘Sr—l—i(ts(i—l)” _p"*l (2.50)

Dr—i
br—i (pr—i - QT—Z')

and lsi = ts(i—l) +

15



The total time reaching e = 0 is

qr—1
1

r—1

DPr—i B

t = tsO + Z ‘Sr_l_i(tg(i_l)” Pr—1 (251)
i=1 br—i(pr—i - qT—i)

TSMC adds nonlinear functions into the design of the sliding upper plane. A ter-
minal sliding surface is constructed and the tracking errors on the sliding surface converge
to zero in a finite time. Thus, the TSMC can guarantee that the system will achieve the

desired output in finite time if the controller is designed by Egs. (2.37) and (2.38).

2.3 Nonsingular Terminal Sliding Mode Control (NTSMCQ)

The TSMC is characterized, like the CSMC, by strong robustness to uncertainties
and disturbances and guaranteed to achieve the desired state in finite time, yet it exists
a singular problem for contrel law, for instance in second-order system, if ¢ # 0 when
e = 0; that is, u — £ if ¢-#£-0.as e = 0. In order to.overcome the singularity
problem in the conventional TSMC: systems, several methods have been proposed. For
instance, one approach is to switch the sliding mode between terminal sliding mode and
linear hyperplane based sliding mode [43]. Another approach is to'transfer the trajectory
to a pre-specified open region' where-TSMC is mot-singular’ [41]. These methods are
adopting indirect approaches to avoid the singularity. Thus, in 2001, Feng [44] proposed
a novel TSMC for second-ordersystem, called nonsingular terminal sliding mode control
(NTSMC) to overcome the singularity problem. The time taken to reach the manifold
from any initial state and the time taken to reach the equilibrium point in the sliding
mode can be guaranteed to be finite time. However, the NTSMC is just adapted to the
second-order system. In other words, selecting n = 2 for system (2.1). Choosing the

sliding surface of the second-order NTSMC:

1
s = et —en/n (2.52)
C

c= b’fl/ql, and py, q; are positive odd integers under the constraint 1 < (p1/q1) < 2.

where
One can easily see that when s = 0, Eq. (2.52) is equivalent to Eq. (2.26) for n = 2 so
that the time of convergence is the same as TSMC for n = 2 when s = 0. For convenience,

we simplify pq, ¢1 as p, g, respectively. The finite time is taken to to travel from e(¢,) # 0

16



at t =t, to e(t, + ts) is given by

(2.53)

Note that in using Eq. (2.52) the derivative of s along the system dynamics does not result
in terms with negative powers, but the parameters p and ¢ must satisfy the constraint
1 < p/q <2 in addition. Next, we will account for the derivation process of the NTSMC

controller. The controller is chosen
u=u"+u" (2.54)

where u°? is the feedback control for system (2.1) for n = 2 without model uncertainties
and external disturbances, such that's = 0 and § = )rand u" is to compensate the internal
parameter variations and turbulence. Furthermore, the time derivative of s is given by
1 L
5= é+—(£) N (2.55)
€ \q

Hence, the controller u can be designed as follows:

b
eq——i X)— 12+ ¢ W ég__
e (p) y (2:56)

and

7€

vt Sl (2.57)

Since |d(x)| < p, s-sgn(s) = |s|, Cauchy-Schwarz inequality s - d(x) < |d(x)]||s|, and
selected positive constant n which have been accounted for in Section 2.1, the resulting

expression of Eq. (2.55) is substituted into Eq. (2.56) and Eq. (2.57) and multiplied by

s = s L2 (B) ot o msents) + a0}
< (E) et ot sl + GOl
< (B) et 1ol + ol
< _% (g) L1 ] (2.58)
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Because p and ¢ are positive odd integers and 1 < p/q < 2, there is e®/D=1 > 0 for ¢ # 0.
1

Let R(é) = — <1—?) ¢®/D=1y  As a result, we know R(¢é) > 0 for é # 0. Eq. (2.58) can be
c \4q

modified as

s$ < —R(é)|s| for é #0 (2.59)

will the NTSMC s = 0 be reached within finite time? The answer is yes [45]. The
condition for Lyapunov stability is satisfied for the case é # 0. According to Eq. (2.59), it
implies that the slope of sliding variable is always negative expect for é = 0. In addition,
for the case é = 0, substituting the control (2.56) and (2.57) into the second equation of
(2.1) yields

p
2

e = —c%é T4 +d(x) = (p+n)sgn(s) (2.60)

It can be easily seen that if é = 0, then Eq. (2.60) becomes

d—=—d(x)= (3% n)ssls) (2.61)

which suggests thaté'= 0 while e # 0 is not-an attractor. For the cases of s > 0 and
s < 0, we can obtain € < —n and € >, réspectively. In detail, there exists a vicinity

lé] < d; for a small

d
npP\2q—0p
5, = (2L 2.62
(2 CQ) (262
For s > 0 and é > 0, when é(¢) reaches 0, from an initial state error rate é(0), we can
obtain
. —

. q.F q.% U

€ = —c=¢é 94+dx)—(p+n) <—c=¢ 1-—n< 3 (2.63)
p p

It means é(t) is monotonous decreasing and at least at the speed of g cross the vicinity
0 within the finite time
2(6(0) —é(ts,)) 4o

ts, < ; == (2.64)

In the same manner, for s < 0 and é < 0, when é(t) reaches ¢, from an initial state error

rate é(0), we can obtain

¢ = —cle dram +(prnz—cle T4nz] (2.65)
p
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It means é(¢) is monotonous increasing and at least at the speed of g cross the vicinity

0s within the finite time

ts.

[

< ' - (2.66)

Therefore the crossing of trajectory from one boundary of the vicinity é = d; to the other
boundary é = —d, for s > 0 and from é = —Jj; to é = J; for s < 0 is finite time. For
the region outside the |é] < d;, the time to reach the boundaries of the vicinity is finite.

Indeed, we can easily show that
s§ < —0R(é)l|s]| (2.67)

meaning the finite time reachability of the boundaries: The phase plane plot of the second-

order system is presented in Fig. 2.5 as below:

Ac

A A A S5 il =1
N YyYVYY

& 4

s=0

Fig. 2.5. The phase plot of the second-order system

Therefore we can conclude that the switching line can be reached within finite time.
Furthermore, the designed controller does not contain the singularity term to occur singu-
larity phenomenon compared with TSMC because the term ¢ (q/p) ¢2~#/9 of Eq. (2.56)
does not yield singularity under the constraint 1 < (p/q) < 2. Thus, a NTSMC use
the other nonlinear functions into the design of the sliding upper plane to not only over-
come the singularity problem of TSMC but also verify the convergence of tracking desired

output in finite time.
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2.4 Mathematical Models of the Missile

2.4.1 Coordinate Systems

I) Definitions of Coordinate Frames

Before proceeding with the derivation, it is necessary to assume that the earth

is an inertial reference, and unless otherwise stated the atmosphere is fixed with

respect to the earth [46]. In addition, the coordinate systems adopted in the present

discussion are right-handed axis systems.

i)

i)

iii)

iv)

Earth (Inertial) coordinate frame (Ox,y,2,)

The origin O, is at the ground tracker. Ouzg-axis is taken as north. The
positive Oy,-axis points upward jinsthe vertical plane including Oxg-axis. The
positive Oz4-axis is the right"direction or completes the right-handed coordinate

system.

Body coordinate frame (Ozpy,2y)

The origin O, is at the center of gravity of the missile. The positive Oxy-axis
coincides with the center line (or longitudinal axis) of the missile or forward
direction. The positive Qy,-axis points upward in/the vertical plane including

Ouxp-axis. The Ozp-axis completes the right=handed coordinate system.

Ballistic coordinage frame (Ox,y,2;)

The origin O, is at the center of gravity of the missile. The positive Ox;-axis
coincides with the velocity of the missile. The positive Oy;-axis points upward in
the vertical plane including Ox-axis and perpendicular to the horizontal plane

of the earth. The Oz;-axis completes the right-handed coordinate system.

Wind coordinate frame (Ox,y,z2,)

The origin O, is at the center of gravity of the missile. The positive Ox,-
axis coincides with the velocity of the missile. The positive Oy,-axis points
upward in the vertical plane including Ox,-axis. The Oz,-axis completes the
right-handed coordinate system. Note that if the wind coordinate frame is
nonrotating with respect to Ox,-axis and the initial definition of the Oy,-axis

is including the vertical plane of the inertial coordinate frame (or the direction
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of Oy,-axis is always the same as Oy;-axis), it is equal to ballistic coordinate

frame.

IT) Definitions of Angles
Herein, in order to clearly understand the definitions of the angles, the plus or
minus sign of each angle is according to a rule which the rotation axis directs to the

reader.

i) Angles between wind frame and body frame

a: It is between O, -axis and the plane composed of O,,-axis and O,,-axis
and defined the sign is positive when O, -axis is under that plane.
B: It is between O, -axis and the plane composed of O,,-axis and O,,-axis

and defined the sign is positive when O, =axis is-on the right of that plane.

AO
yb A OZb
Oz, 5 oy, ‘
-\&AOX » \&‘OJ‘.&
Ox, Ox,

Fig. 2.6. Definitions of a and

ii) Angles between ballistic frame and wind frame

Yo: It is between O, -axis and the plane composed of O,,-axis and O,,-axis

and defined the sign is positive when O, -axis is on the left of that plane.

iii) Angles between inertial frame and ballistic frame

0: It is between O,,-axis and the plane composed of O, -axis and O, -axis
and defined the sign is positive when O,,-axis is on the above of that plane.

¥y: It is between O,,-axis and the plane composed of O, -axis and O, -axis
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A
Oy Oy,

Ox

Fig. 2.7. Definition of ~,

and defined the sign is positive when O,,-axis is on the left of that plane.

AOyg
Ox, Ox,
OZg 'A | Oyg /ﬁ >
Oxg Oxg
v OZg

Fig. 2.8, Definitions of ¢-and 4/,

iv) Angles between inertial frame and body frame

v: It is between O,,-axis and the plane composed of O, -axis and O, -axis
and defined the sign is positive when O,,-axis is on the above of that plane.

Y: It is between O,,-axis and the plane composed of O, -axis and O, -axis
and defined the sign is positive when O,,-axis is on the left of that plane.

7: It is between O,,-axis and the plane composed of O, -axis and Oy -axis

and defined the sign is positive when O,,-axis is on the left of that plane.

IIT) Coordinate Transformation
Define My (¢) to be the rotation by k axis with angle ¢ which any one frame is

rotated counterclockwise away from other one with. and it is called direct cosine
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A Oy,
Ox,

Oz, ‘S 9 -
Ox

Oy, %

8 >

v

A ny

Oxg,

Fig. 2.9. Definitions of ¥, ¢, and ~

matrix (DCM). So far as the surface-to-air missile is concerned, each one coordinate

follows three rotated steps to other one: 1) yaw, 2) pitch, and 3) roll, and the

derivation of the transformation only is established in the direction presented in

Fig. 2.10. The DCM rotated. by the axes y, 2z, and = will be:

where ¢, and s, denote cos ¢ and sin ¢, respectively.

C¢ 0 _S¢ i
=1 0 10

L 8¢ 0 C¢

i C¢ S¢ 0 ]
= B

0 0 1

0 _8¢ C¢,

I,0.v,)

N/

Ox,y,z,

b
L Sw.y)

I (7,)

Ox 7

AN

I} (e, )

)

OX\’ y v ZV

Fig. 2.10. The relationships among coordinates

And the each coordinate transformation is described separately as follows:
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i) Wind frame transforms to body frame

Co So O cg 0O
Tj(a, pg) = —Sq Co O 0 1
|0 0 1 sg 0
i CaCp Sa —CaSp
= —54C3 Ca  SaSB
| 85 0 C[j
ii) Ballistic frame transforms to wind frame
1 0 0
7—;;) (,Y'U) = 0 C'Yv 8’71}
O _S'Yv C’YU
iii) Inertial frame transforms to ballistic frame
[ ¢y sy O Cy, 0
T;(@, ¢v) = —Sg Cy 0 0 1
L 0 0 1 51/% 0
[ Cgcd,v S —CgSwv
= —SQC¢U Co SgSwv
L Swv 0 C'I,Z)v
iv) Inertial frame transforms to body frame
1 0 0 Cy Sy 0
Tgb(q/7 ) =10 ¢ 55 —Sy ay/ 0
| 0 0 1
CyCy Sy —CySy
= | —S9CyCy o SpSap. CoCy™ _S9SyCy + CySy
SYCySy H SpCy  TCYSy | TSeSySy - CyCy |

2.4.2 Rigid-Body Equations of Motion

0
Cs
(2.69)
(2.70)
Sy,
0
Capyy
(2.71)
_Cw 0 —S¢
0 1 0
_Sw 0 Cw
(2.72)

In this section we will consider a typical missile and derive the equations of motion

according to Newton’s laws. In deriving the rigid-body equations of motion, the following

assumptions will be made [46], [47], [48]:

I) The missile is a rigid body, that is, the missile does not undergo any change in size

and shape.

II) The missile is approximate a cylinder, that is, it is an axisymmetric or rotational

symmetry missile.
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IIT) The mass of the missile remains constant during any particular dynamic analysis.

IV) The aerodynamic forces and moments acting on the missile are invariant with the

roll position of the missile relative to the free-stream velocity vector.

In addition, we note that in general, a vector Q can be transformed from a fixed frame

OXY Z to a rotating coordinate system ozxyz by the relation [49]

QOXYZ = QO:ryz + wqQ X Q (273)

where wg is the angular velocity of a rotating frame relatively to a fixed frame. Further-
more, if the rotating frame stops rotating, the two frames will has the same time rate of
the change of state variables. Herein, therequations of motion are derived by the kine-
matics and dynamics. They will be presented in four formats: I) kinematics equations
of translation about mass center, II) kinematies equations of rotation about mass center,
I1T) dynamics equations:of translation about mass center, and IV) dynamics equations of

rotation about mass ‘éenter; respectively [46]; [47];[48].

I) Kinematics of Translation about Mass Center
In engineering practice, it-is the simplest-eriterion for deseribing the missile trans-
lation in the ballistic frame. Denoting the angular velocity of ballistic frame rela-
tively to inertial frameby €2 and the missile velocity V. the missile velocity expressed

in the ballistic frame can be written in the form

mﬂ =m (%—\; +Q x V) (2.74)

Let us first resolve the vector €2 and V into components €, Qyy, . and Vi, Vi,
Vi., respectively, along the axes of the ballistic frame. Denoting by igx ~ joy ~ K¢z

the corresponding to unit vectors of the ballistic frame (Oz,y,2;), we write

Q= thitx + Qtyjty + Qtzktz (275)

V= ‘/t:citx + V;fyjty + ‘/tzktz (276)

VAV, AV dV

oV _ . ke, 2.77
5t gt T g T g (2.77)
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where

Vie Vv
Viy| = |0 (2.78)
Vi 0

Substituting from Eq. (2.78)into Eq. (2.76) »

% av,
W = Eltx (279)
The Eq. (2.74) will be
ixt jzt kzt
Q X V == th Qyt ta - Vtajty - VQytktz (280)
vV 0 0
And, we have known that
Q=1,+6 (2.81)

where 'LL,, and 0‘are on the Ozg-axis and-Oy-axis, respectively. Eq. (2.81) can be

modified as
Qe [ ¢ s 0 0 0
Qe — —sp ¢g 0 Yy |l 0
ta L 0 0 1 0 6
[ 1@1} So
= | Yulo (2.82)
|0

Replacing Eq. (2.80) with Eq.(2.82), we have

0
QxV= Ve (2.83)
-V, cos 6

Hence, substituting from Egs. (2.77) and (2.79) into Eq. (2.74), we obtain

th = mV )
th = _mvvaH

where F,, Iy, Fi, are the components of net external force, which is formed by
thrust, aerodynamic force, gravity, and lateral force, etc., with respect to the ballistic
frame. Herein, we only analyze the first four sources of external force and the others

are regarded as disturbances.
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i)

ii)

iii)

iv)

Thrust vector control (TVC)

The positive force of TVC Fy, is fixed in the direction of Ox;-axis; that is,
Fp=10 (2.85)

Using Egs. (2.69) and (2.70), the force can be projected onto the ballistic frame
and denoted as F;.
o\T o\ T
Fp = (1Y) (Tv> Fpp
Fyeacp

= F, (8aCy, + €aSpS-,) (2.86)
F, (SaSy, — CaS8Cy,)

Aerodynamic force

The components of the force are defined as the positive drag force X along
negative Ox,-axis; the lift force Y positive to the Oy,-axis, and the side force
positive to the Ozyaxis in the wind frame. Using Eq. (2.70), we can project it

onto the ballistic frame:

Fatx -X
Flaty = [Ttv]T ¥
Fatz Z
-X
= | Ye, — Zs, (2.87)
Yosy, +42¢,,

Lateral thrust force
The components of the force are-in‘the directions of Oy,-axis and Ozy-axis
in the body frame, respectively. In the same manner as thrust vector force, we
have
Bty _ Eby (CQC'YU - SQSIBS'}’U) - Ftbz (CES'W/)
= (2.88)
Fipy (CaSy, + 8a85Cy,) + Fue (cacy,)
Gravity force

The negative force is in the direction of Oy -axis. Using Eq. (2.71), the force

can be projected onto the ballistic frame.

MGtz 0
MGy = (Tgt ) —mg
mgt. 0
—mgsg
= —mgcy (2.89)
0
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Substituting Eqs. (2.86)-(2.89) into Eq. (2.84), the kinematics equations of trans-

lation about mass center are

( . 1
V= E (Fptm + Fatz + mgta:)
L1
0 — m_V (Fpty + Faty + Etty + mgty> (290)
.1
\ % - m (Fptz + Fatz + Ettz + mgtz)

IT) Kinematics of Rotation about Mass Center
In engineering practice, it is the simplest criterion for describing the missile ro-
tation in body frame. Denoting the angular velocity of body frame corresponding
to inertial frame by w and the angular mementum H, the kinematics equations of

rotation about mass center has-the form [49)

dH oH
E —E‘FMXH (2.91)

The vectors w and H are-divided into-components wyy, wpy, wp, and Hy,, Hy,,
Hy, respectively, along the axes of the body frame. Denoting by ipx, jby, Kbz the

corresponding to-unit vectors of the body frame, we write

W = Whelbx + Wiydby + Wh- Ky (2.92)

H= beibx its Hbyjby + Hbzkbz (293)

The first term of the right side in Eq. (2.91) will be

0H dHy, . dHy, . dH,,
= s Kk, 2.94
5t ar T T g (2.94)
Besides, we have known that
H=1 w (2.95)

where I is inertia tensor, including moments and products of inertia. According to
the assumption 2, the products of inertia are zero in the body frame and Eq. (2.95)

can be simplified as follows

Hbac szwbaz
Hy | = | Lyywy (2.96)
Hbz [zzwbz
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111)

Replacing the second term of the right side in Eq. (2.91) with Eq. (2.92) and Eq.

(2.96), we can obtain

ibx Jby Kps (L. — Iyy)wbywbz
wxH=| wy Why Wor | = | (Lpe — L) Whass (2.97)
]xa:wb$ Iyywby Izzwbz (Iyy - ]a:a:)wbway

Substituting Eqgs. (2.94) and (2.97) into Eq. (2.91), we write

¢ Wi
Mba: = ]xxd_l; + (Izz - ]yy)wbywbz
W
Mby = Iyyﬁ + (wa - Izz)wbzwbz (298)
Whz
\ sz = Izzd_bt + (Iyy - [x:c)wbzwby

where My, My, M., which_are the rolling, yawing, and pitching moments, respec-
tively, are the components-of net external moment produced mainly by aerodynamic
and lateral moments with respect to the body frame. Finally, we adjust Eq. (2.98),

the kinematics equations of rotation.about mass center are

(

. 1
W = I_ [be + (Iyy - Izz)wbywbz]

. 1
wby o~ ]— [Mby + (Izz = ]a;x)be(A}bz] (299)

vy

: 1
Wyz = I_ [sz + (IIZ‘ - Iyy)wbzwby]
\ 22z

Dynamics of Translation about Mass Center

These equations are defined in the inertial frame such that we will understand
the trajectory of the missile clearly. Furthermore, we must consider the altitude of
the missile when calculating air density, dynamic pressure, and aerodynamic force.
Hence, it is necessary to build these equations. In order to get these vectors, we
must use Egs. (2.69) and (2.72) to let Eq. (2.78) project into the inertial frame.

The procedure is

T %
gl o= (@) o (2.100)
2z 0
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IV)

Expanding the above equation, we have dynamics equations of translation about
mass center as follows:
T =V [caCscoCy + SaCa(S9CyCy — SpSy) + S5S9CySy + SyCy)]
U=V (CaCpSy — SaCCICY — SCYS~) (2.101)
Z ==V [cacscoSy + SaCs(S9SypCy + Cypsy) + 55(S95ypSy — Cpcy)]
Dynamics of Rotation about Mass Center
For the purpose of describing the attitude of the missile in the inertial frame, it is

indispensable to construct these equations. According to the relationship between

body frame and inertial frame, we have known
GEPED 4 (2.102)

where ’l,b, 19, and 4 are in"the direction of Oy,-axis, Oz/g—axis, and Oxp-axis. We
can modify Eq. (2:102)on the basis of the regulation of coordinate transformation

in this thesis.

Wha 1 0 0 Cy Sy 0 O
Wy = Ly —Sy ey 0 P
Wpz 0= ¢ | I O 01 0
(1 0 0770 o
+ 0 ¢, s, 0 + 10
| 0 =5, ¢, | |0 0
i 1 Sy 0 ] ’}’
= |0 ‘escy 8y (e (2.103)
| 0 —cysy ¢y | 9

Inversing the above matrix and expanding Eq. (2.103), the dynamics equations of

rotation about mass center will be

( . 819
Y = Wy — C_(wbyc'y - wbzsw)
)

~ 1 1
W = WyyCy— — way Sy — (2.104)
Cy Cy

L Y= Why Sy + WpzCy

2.4.3 Equations of Attitude Dynamics

In guidance law design, inputs are the overloadings of the missle, while the autopilot

must provide these overloadings to guidance law to successfully hit-to-kill the target.
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Besides, the overloading is produced by angle of attack or sideslip angle. Herein, for
convenience, we will build the equations of attitude of these two angles in the wind frame.
The angular velocity in the wind frame can be separated into two parts: 1) one is yielded
by wind frame relatively to body frame; 2) the other is yielded by body frame relatively

to inertial frame and projected into the wind frame. That is,

wy = (wW)y + (W), (2.105)
where
T Wha
(wz)v (Tf) Why
Wz
WhaCHCB|T1Why SaCg + Wh2Sg
= WhaSa + WhyCa (2.106)
—WpzCaSp T WhySaSE T Wh-Cp
and
I 0‘ C,/g 0 —S,fg 0
(Wilo/ = [ =6 +4 04100 0
| 0 S_g 0 0_5 —
dS@
_ -8 (2.107)
L =acs

Then, we import Eq. (2:73) to express the acceleration of wind coordinate system relative

to inertial coordinate system:

dV oV
% = (E + Wy X V) (2.108)
where
1%
6—V = 0 (2.109)
ot
0
and

wy XV = (W), x V4 (wp)y x V

iy  Jvy Kz iy Jvy  Kvz
= Yo oo, Yo | T | Wi Why @
Vv 0 0 \% 0 0
0 0
= (—whzCaSs + WhySass + wpcs)V | + | —acgV (2.110)
—(WheSa + WyCa)V BV
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Substituting Egs. (2.109) and (2.110) into Eq. (2.108) and multiplying m in each term
of Eq. (2.108), we get

F,, = mV
Foy = mV (—wpzCaSp + WhySaSp + Wh.Cg — cg) (2.111)
sz =mV (szsoz + Wy Co + 6)

where F,., F,,, F,. are the components of net external force with respect to the wind
frame, and we have presented the net external force is yielded by four parts. Now, we will

analyze there force one by one as follows:

I) TVC
Using Eq. (2.69) to project into the wind frame, we obtain

Fhoz T Fy |

oy |- =(T0) | ©

Fy 0
£5coep !

! Bys. (2.112)

~fpcass |

IT) Aerodynamic force

The components of the aerodynamic force are below:

Favx _X
A (2.113)
Favz Z

III) Lateral thrust force

Using Eq. (2.69) to project /into wind frame, we have

F;tvx T 0
Ftvy - (Tf) Ftby
Evz Ebz
_FtbySaCB + FthSB
— FipyCa (2.114)

Faycaspg + Fu.ca
IV) Gravity force

Using Egs. (2.72) and (2.69), we get

MGy . 0
mgo, | = ()" (17) | ~mg
Mgy 0

MGpzCaCp — MGty SaCp + mgpSp
= MGbrSa + MYbyCa (2.115)
—MGpeCaSs T MYbySals + MGy Ca
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where

MGe —mgsy
Mgy | = | —mgcycy (2.116)
mMGbz mgcySy

Substituting Eqs. (2.112)-(2.115) into Eq. (2.111), the first equation V' is the same as
Eq. (2.90). Thus, the attitude equations are

. S
& = Wy — 2 (WpaCa — WhySa) —

1
CIB m (vay + Favy + Ftvy + mgvy)

(2.117)

. 1
5 = WhzSa + wbycoz + W (vaz + Favz + Ftvz + mgvz)

2.4.4 Model of Tail Fins

The X-tail is located in thé bottom of the missile, which is based on the Patriot
Advanced Capability-3 (PAC-3) or MIM-104F missile [13]¢ From the end to the head of
the missile, the signs of the first fin-deflection d; is on the top-left corner, and the others
abide by the direction. of clockwise are 05, 03, 04, réespectively. Besides, the relationship
between fin deflections and total equivalent fin deflections of aileron deflection angle,
rudder deflection angle, and elevator deflection angle is analyzed below, and Fig. 2.11

shows the X-tail physical characteristics [50].

llOyb
F

0,>0 0,>0
M. <0 M, <0
M, <0 M, <0
M. >0 M_<0

Ox, 0z,
0,>0 _0,>0
M. <0 FMX<O
M, >0 M,>0
M,.>0 M_<0

F

Fig. 2.11. Force analysis of X-tail
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2
(61 + 0y — 85 — 64) (2.119)

(=8, + 6y + 05 — 04) (2.120)

ol

The matrix form is

|

2 2 2 2
VI V2 VI 2 ||
V2 VI 2

= T(5) (2.121)

2.4.5 Reaction-Jet Control System (RCS)

This technology has been successfully implemented in PAC-3 since the Iraq War in
2003. This system, ingstalled in front-of the center of gravity of the missile or between the
center of gravity and the top of the missile, yields lateral thrust changing the missile’s
attitude immediately for additional auxiliary thrust mounted [51]. It is contented 180
impulse attitude contrel motors (IACMs), arraying in 10 circles. (each one composed of
18 TACMs), staggered distributing along the O -axis equably. Note that the IACM is
disposable. Define ith ciréle (=1, 2,---, 10) for each circle from top to the center of
gravity and jth IACM (j = 1, 2,.+-, 18) for the number in each circle, the odd and even
number circles are shown in Fig. 2.12.

In Fig. 2.12, the layout of the odd number circles presents that the first TACM is
opposite direction to the Oy -axis, and the number of the others follows the direction
of counterclockwise, respectively. In the similar manner, the layout of the even number
circles presents that the first JACM is on the left 20 degrees of the opposite direction to
the Oy-axis. The angle of each IACM is described below:

_ G- x2m/18 for 4 is 0dd
T { (j —1) x 2w /18 + 27w /36 for i is even (2.122)
or
2j — i*
iy = 2.12
AT (2.123)



Fig. 2.12. The layout scheme of ITACMs, left side for odd number and right side for even

number

where i* = 2 when ¢ is odd, and ¢"'= 1 when i is even. The force and moment of each

(7,7) IACM is presented as

Fi

thy = 18 Cay; i

forci 6 —Ké‘q)ijsij

e
and
Mtby - _ZZF;sz
(/R B )
Mtbz - llFtby

(2.124)

(2.125)

where K is the force of each TACM; [; is the moment arm of ith circle from the center

of gravity of the missile to the location of the :th circle; and s;; is defined as if (4, j)

IAMC is untapped or used once, s;; = 0 and if (¢, 7) IAMC is opened, s;; = 1. The total

components of the lateral force and moment are

1o 18 ij
Ftby - Zi:l Zj:l Ftby

10 18 1ij

and

10 18
Mtby = Zi:l —l; Zj:l

My, =321 1 Z;il Fy
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CHAPTER THREE
OUTPUT TRACKING CONTROL FOR A NONLIN-
EAR SYSTEM

Similar to system stabilizability analysis and synthesis, the task of output tracking
has received considerable attention in both theoretical and practical industry applications
[52]-[54]. The objective of output tracking controlis te design a feedback law such that
the output of a controlled plant can track a desired reference signal. To solve the tracking-
control problem effectively, many methods and techniques have been presented. Those
include regulator-based approach [55], inversion-based approach [56]-[58], Lyapunov-based
approach [59], Takagi-Sugeno (T-S) fuzzy medel-based approach.[60] and sliding mode
control-based (SMC) approach [61]<[63]." In this thesis, we will study the output tracking
problem from a blended control viewpoint via' the following three techniques: CSMC,

TSMC and NTSMC schemes.

3.1 Problem Formulation

Consider a nonlinear control system as described by [62]

x = f,(x)+ G,(x)u (3.1)

andy = h(x) (3.2)

T n T m T v
where x = [z, , z,]" € R", u=uy, -+, u,]" € R™ ,;andy =[y1,---, v,] € R

denote the state variables, control inputs, and system outputs, respectively. The functions
£,(x) € R™, Go(X) = [8o1(X), -+, 8om(X)] € R™™ and h(x) = [hy(x),-- -, hy(x)]" € R

are smooth functions. Our interest is to construct a control input so that the output
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approaches the sliding surface and achieves the desired value. For the decoupled input-
output system, the new output form is obtained from differentiating several times until
it is related to the input. That is, differentiating the output y; with respect to time, we

obtain

m

g = Vhj X =Vhy- (£, 4+ Gou) = Le,hj(x) + Y Lg, hi(X)u; (3.3)

i=1
where Lg hj(x) and Lg, h;(x) are the Lie derivatives of h; with respect to f, and g,; (for
definition, please see e.g., [64]). If Lg, h;(x) is equal to zero for i=1,- - -, m, then we have to
differentiate the outputs y, repeatedly until input appears. Assume that k; is the smallest

integer such that at least one of the inputs appears in y§kj ), then
y ) =L Y Ll L b (x)u; (3.4)
i=1

with Lgoiij 71h]~ (x) #.0 for at least one ¢ in a neighborhood of the point xg. k; is exactly
the number of times one has to differentiate y; in_ order to have the control u explicitly
appearing, in which {ki, - k,} is called the relative degree [64] of the system. We

impose the following.assumption:
Assumption 3.1 The System (3.1)-(3.2) has the following three properties:
I) The distribution A :='span{ge(x), - - - , 8om(X)} 1s involutive.

IT) It has relative degree {ki,--- Kk}, that is, for all x € R", Ly ,Lf hj(x) = 0 for
1 <i<m, 1§j§vand0§k<l€j—1,WhileLgoiL’tfohj(x)%Oforlgigm,

I1<j<wvand k=Fk; —1.

IIT) The control inputs u are divided into two parts u; € R™ and uy € R™ where

my > v and my > 0.

Performing the above procedure for each output y; yields
y"
: = f(x) + G(x)u (3.5)

ko
yihe)
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where

[ Lt (x)
f(x) = : , (3.6)
L Llf?hv<x>
Gx) = [Gix) Ga(x) ], (3.7)
[ Lgol L?j_lh]‘(x) e Lg()‘!ﬂl Lfk‘:ol_lhl (X)
Gi(x) = : : € RV*™, (3.8)
| Lo Ly "ho(X) 0 L, L™ h(x)
[ Lgo<m1+1)LIf?3_1h1(X> T Lgong_lhl<X)
and Ga(x) = 5 : € R™™.  (3.9)
L Lg0<m1+1) L];:_lhv <X) e LgomL]f?:_lh’U (X>

Assumption 3.2 rank (G1(x)) = rank (Ga(x)) = v

Equation (3.5) can also be rewritten as
k
Yy
= f(X) 5 G1 (x)u1 + GQ(X)UQ —+ d (310)
(ko)
Yo
Note that, we have introduced d in Eq. (3.10) to répresent, possible model uncertainties,
measurement noise and external disturbances. In this study, we call u; the main inputs
which are continuous‘and u, (with components wus; for 1 < j < my) the auxiliary inputs

which are constant during a short time period once it was triggered with the following

form:

. NGKE it ety to; + Aty
25 =3 9 elsewhere

(3.11)

where K denotes the minimum level of auxiliary control force; |N;| is an integer which
represents the number of actuators in ug; being activated; t,; is the time instant that
the actuator wuy; is triggered; and At, denotes the time duration of the constant force.
Note that u; suffer from the output magnitude constraints, while uy only provide discrete
values and the integer NV;, given by Eq. (3.11), satisfies |N;| < N,,, where N, is a positive
integer, i.e., N; € {0,%£1,42,--- ,£N,}. Besides, we assume that the output magnitude
of the auxiliary inputs are much larger than those of the main inputs.

Before designing the control law, we have to check if the nonlinear system is minimum

phase. The scalar k., = ky + --- + k, is called the total relative degree of the nonlinear
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system [20]. The necessary and sufficient condition for the existence of a coordinate trans-
formation and a feedback that can linearize the system completely from the Input/Output
(I/O) point of view is the total relative degree k, being the same as the order of the sys-
tem, i.e., k., = n. If k. < n, then, the nonlinear system can only be partially linearized.
In this case, the stability of the nonlinear system given by Eqs. (3.1) and (3.2) depends
not only on the I/O linearized system, but also on the stability of the internal dynamics
(or zero dynamics).

According to linear algebra theory, G (x) can be expressed as G1(x) = G1y, (X) Gy, (X)
where a diagonal matrix Giy, (x) € R and Gy, (x) € R"*™ satisfy rank (Giy, (X)) =

rank (G1y, (x)) = v. Given a desired v, the minimum norm solution of u; that satisfies

T
lu;

vi = G, (xX)uy is wy = G, (x) (Gray (%) G, (x))_1 vy, that is, u; is easily constructed if
vy has been designed. Notethat, G (x)u; = Gy, viTherefore, we may assume without
lose any generality that:G}(x) is-a-diagonal matrix and G(x) = diag[gi1(x),- - , g1,(X)].
In the same manner, we also may assume that GG2(x) is a diagonal matrix and Gy(x) =

diag[go1(x), - - , g2, (%)]. Under the setting, System(3.5) can be rewritten in more simpler

form as follows:
Tt FHO)H g1 (0~ oy (K)o 4 4 (3.12)

where £}, g1;,92; : R" — IR, and.uy; and uy; are the jth component of u; and uy,

respectively, for 7 = 1,---, v. In"addition, we define the output errors to be

ej(t) = y;(t) —yjalt), j=1,- v (3.13)

where y;4(¢) is the desired output trajectory.
The main goal of this thesis is then to design suitable control laws which integrate the
main inputs u;; and auxiliary inputs uy; such that the output tracking performance can

be achieved, i.e., e;(t) — 0 as quickly as possible.
3.2 Design of Blended Controller

In this section, we will incorporate the main inputs (i.e., tail controllers) with auxiliary

inputs (i.e., lateral thrusters), called blended control, through the CSMC, TSMC and
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NTSMC schemes. The idea behind the design is as follows. First, a boundary layer (BL)
of the sliding surface is determined from the region where the system states will be forced
out or on this BL using the minimum level of auxiliary control inputs in one time duration
or period. Inside or on the BL, only the main inputs are used to keep the system states
close to the sliding surface as better as possible. When the system states are outside the
BL, both main and auxiliary inputs will be activated for better convergence rate of system
states to the sliding surface, compared with only considering the main inputs. The level
of the auxiliary inputs will be determined from the distance between the system states
and the sliding surface. Moreover, because the magnitude of the auxiliary inputs are
much larger than those of the main inputs, the main inputs are used to compensate for
only the deterministic dynamics, while the auxiliary inputs are responsible for disturbance
rejection and reaching the sliding surface. For betterunderstanding of the design, a block
diagram for the blended control is-shewn in Fig. 3.1.

Under the CSMCyESMC and NTSMC schemes, the presented blended control design

Blended Controller
I - U ~ v U |-
|
|
|
» Main | ¥; |
> inputs : v,

: 3 Plant —>
Yes S| -Auxiliary | % ||
inputs :
|
|
|
|
|

Fig. 3.1. Block diagram of blended control

include the following two features:

I) Outside the BL, the auxiliary inputs are used to account for the convergence speed
of the system states to the sliding surface because they only provide constant control

force, which is much larger than the main inputs, while the main inputs are employed
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to compensate for deterministic dynamics and the drastic change of states produced
by the activation of the auxiliary inputs for maintaining the rate of sliding variable

being zero.

IT) Inside or on the BL, because the auxiliary inputs are not activated so that the
states variations are smooth. Therefore, only the main inputs are used for output

the tracking purpose.
3.2.1 Control Design via CSMC scheme

The CSMC design consists of the following two steps: 1) choose an appropriate sliding

surface in terms of error states and II) construct a control law in form of
u="1u"+u“ (3.14)

to realize the tracking performance;-where u"® plays the role of making the error states
reach the sliding surface in finite time, while u? keeps the sliding surface an invariant
set and directs the output tracking errors to the origin. For the first step, we choose the

sliding surface to be's;(¢) = 0 with

_
Sj = ¢€;

forj =1,---,v. Here, ajj, for k =1y - , (k;—1) areselected constants and the polynomial
kj—1 Jej—2

AT G- T T apdy tan (3.16)

for j =1,--- ,v are Hurwitz. Obviously, the output tracking performance can be achieved

if the system states keep lying on the sliding surface, that is, e; — 0 as ¢ — oo. Further-

more,

. k
;0= (%) + g (X)uny + gy (X)ug; + d; — yy)
+6Lj(kj_1)6‘§~kj_1)(t) + -+ (ljgéj(t) + ajléj(t) (317)

For second step, the controller design is divided into two parts: I) main inputs and II)

auxiliary inputs, as described below:
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I) Design of Main Inputs

The control law of each main input is designed to be the form of

. 1 ‘ - .. .
ul= g [1500) = 9 (1) + g, el (0) + - gy (1) + ajné; (6){3.18)
J

to accomplish the demand of making the sliding surface an invariant set. To guar-

antee the reaching condition, we assume that d; is bounded as follows
Assumption 3.3 There exists nonnegative functions p;(x,t), j =1,--- ,v, such that
451 < pi(x, ) (3.19)

Let €; be the BL width associated withs;.. Choose

1
~ a2 (95 + 1imj) - sgn(s; ) ifsjl < €; and up; = 0
wg =4 29 (3.20)
0 otherwise
where 7,,; for ji='1, ..., v are selected positive constants:

IT) Design of Auxiliary Inputs
Because the auxiliary inputs-involve the following two characteristics: 1) being
zero or nonzero constant during a time duration depending on whether or not they
are triggered; II) with output.magnitudes beingmuch larger than the main inputs if
they are triggered. Consequently, the control law of each auxiliary input is designed

to be

uyl = 0 (3.21)

and up; = N;K. (3.22)

Now, we will discuss how [V; is selected. The method is based on the sliding condition

/

d
sl = =y (3.23)

where 77;]- is a fictitious positive constant. The geometry of Condition (3.23) is shown in
Fig. 3.2 below:

According to Ineq. (3.23), the system state will reach s;(x) = 0 within the time of
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s, (x(2)]
A

|5, (x(0)) |

s@onl
,

Fig. 3.2. The time responseof |s;(x(t))]

|s;(x(0))] / n;j. When At, is given;-the minimum n;j that makes the system state reaching

the manifold s;(x) =0wwithin At,is

/ |0 — s;(x(2))]
Ny = ————"—. (3.24)
J Aty
We choose
re/ il !
e — - (oot ;) - sglsy) (3.25)
92

where ugjl is the fictitious control iput of uy§ and pj, is the upper bound of p;. Then,

55 03() = —s;(0) (pyutniy) -snlsy) +s5(0) -
< - (pju + U;j) 851 + pjulsj|
< —ihygls| (3.26)

Inequality (3.26) accounts for the sliding variable s; will converge in finite time. However,

in fact, ugil must accord with the form of N; K. One method to determine N; is such that

the value NV;K as close uy; as possible, that is, we round off (ugj /K ) to determine the
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constant integer N;.

where

/

and Nj

\

In more detail, Eq. (3.25) is replaced by Eq. (3.22) described below

up; = round (ugjl /K > K
1) o
= round (— (iu+ 1) /92 -sgn(sj)> K
K
1) o
= —round <(pj 7 j) /92j> sgn(s;) - K
K
= —Nj/- -sgn(s;) - K
- NK (3.27)
(pju + 77;3‘) /G2;
d
roun ( >
) Jgo;
if [round ((,0] 7 j) /92]> ‘ < N, (3.28)
K
Nusgn(NJ/.)
otherwise
—NJ/- “sgn(s;). (3.29)

Note that the functien round(-) is defined to round off a scalar:. Then, the virtual con-

vergence speed is approximate to be:

Mg, = N;ngj - (3.30)

Although the actual reaching time [s;(x(0))|/7,; can not exactly coincide with the ex-

pected reaching time |s;(x(0))| /n,;, that is, this will cause inaccuracy of the reaching

time which is at most in At,, s; can still converge according to the next paragraph.

Herein, we verify whether the sliding variable will converge. When s; is outside the

BL, from (3.17), we have

sj(t)3;(1) i ()N K gaj + s5(1) - d;

< _N;Kg2j|5j| + pjulsjl
< —(pju+15)I85] + pjuls;]
< —nrlsgl (3.31)
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Clearly, the system states will approach the sliding surface with a convergence speed at
least n,; for j=1, ---, v in a finite time [20] whenever the system states are outside the

BL. In contrast, when s; is inside or on the BL, from (3.17), we get

si(t)$;(t) = —(pj + 1my)s;(t)sgn(s;) + s;(t) - d;
< —(pj + Mmg)lsil + pils;l

< —Nmg s (3.32)

Similarly, the system states will reach the sliding surface in a finite time ¢,; = |s;(x(ta;j))|/7m;
for j=1, ---, v [20] where t,; is the time when any auxiliary input is not activated. Ac-
cording to above analysis, it implies that we can select bigger 7,; advisably outside the
BL to make s; approach s; = Ofaster-and it still satisfies the sliding condition after s; is
inside the BL.

In addition, according to Eq.—(3:28), the minimum nonzero integer of |le| is 1, that

is, it implies that

(i ¥l LK (3.33)
925 2
From Eqgs. (3.24) and«(3.33), the BIi can be derived as follows
(ojut1my)| K
92; 2
(pjut1y) K
1921 2
(pjut€/At) K
|92 2
K |go
= ¢ =At, (% - pju> . (3.34)

Hence, we have the next result:

Theorem 3.1 Suppose that System (3.1)-(3.2) is minimum phase and satisfies Assump-

tion 3.1 and 3.2 having input-output relation (3.12) with relative degree (ki,--- , k,) and
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k; > 1. Then, the output tracking performance y; — y;q for j=1,---, v can be accom-
plished by the CSMC blended controller (3.18), (3.20)-(3.22), and (3.29) if the designed
forces fulfill the physical constraints for each control channel and p;(x,t) satisfies As-

sumption 3.3.
In this design idea, the features of the blended controller include:

I) Outside the BL, in order to achieve the output tracking performance as soon as
possible, the auxiliary inputs provide large constant force to let the sliding variable
approach the sliding surface as quickly as possible, while the main inputs compen-
sate the deterministic dynamics and drastic change of states produced by auxiliary

inputs.

IT) Inside or on the Bl sinee the auxiliary inputstaremnot activated and the states
variation will be smaller than-those outside the BL, uq; has more chance to avoid
saturation. Thus, we only use u,; to keep-the system states close the sliding surface

as better as possible.
3.2.2 Control Design via TSMC scheme

This scheme can deal with thateach output of System (3.1)-(3.2) has relative degree
more or equal to 2. The TSMC design consists of the following two steps: 1) choosing an
appropriate sliding surface in terms of error states and II) constructing a control law in

form of Eq. (3.14). First, we choose sliding surface presented as

i = o+ bush/P (3.35)
Sj2 = .éjl—}—bjzs‘?]f/pﬂ (336)
Sik = Sieo) + bjus T (3.37)
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for j=1,---, v and k=1,---, (k; — 1), where sjo = e;, sjx = sj, bjr > 0, pjr > ¢;x and pjy,

;1 are positive odd integers. Taking time derivative on s;;, we have

k:—2
d(ki) 4 dki=1=k) @ /pi
0 st 3 e g
k.
= fj(X) + glj(X)Ulj + g25(X)uz; + dj — y;5

d(k —1-h 95 (k+1)/Pi(k+1)
+ Z bit+1) 20T Sk (3.38)

8 (k;—1)

For second step, the controller design is divided into two parts: I) main inputs and IT)

auxiliary inputs.

I) Design of Main Inputs

We design
ki—2
¢ —1 k; \ dki=1=k) 95 (k1) /Pi(h+1)
and
1 .
_g _(x) “(pj + Mmy) -sen(s;) if]s;[ < e and uy; =0
= K (3.40)
0 otherwise

where 7,,; is selected positive constants.

IT) Design of Auxiliary Inputs
Because the auxiliary inputs involve the following two characteristics: 1) being
zero or nonzero constant during a time duration depending on whether or not they
are triggered; II) with output magnitudes being much larger than the main inputs if
they are triggered. Consequently, the control law of each auxiliary input is designed

to be

qu =0 (341)

J

and uy; = N;K. (3.42)

Now, we will discuss how [V; is selected. The method is based on the sliding condition

/

I (3.43)
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where 77;]- is a fictitious positive constant. According to Condition (3.43), the system state
will reach s;(x) = 0 within the time of |s;(x(0))| /n;j. When At, is given, the minimum

n;j that makes the system state reaching the manifold s;(x) = 0 within At, is

C 0= sx()]
Ny = ——. (3.44)
J At
We choose
re 1 /
ug === (pu+ ;) - sgnlsy) (3.45)
g2;

where ugjl is the fictitious control input of uy; and pj, is the upper bound of p;. Then,

si(05() = =35(t) (prutny;) - sen(s;) + 5(0) - d;
< o ABlE el 055
< S5 (3.46)

Inequality (3.46) accounts for thesliding variable s; will converge in finite time. However,
in fact, ugjl must accord with the form of N;/. One method.to determine N; is such that
the value N;K as close uy; as possible, that is; we round off (ugj /K ) to determine the

constant integer N;. In more detail, Eq.<(3.45) is replaced by Eq. (3.42) described below
Uy = round (ugjl /K ) K

)
= tound (— (i + 1) i ‘sgn(sj)> K

K
) g0
= —round ((p] ) /923> sgn(s;) - K
K
= —N; -sgn(s;) - K
= N;K (3.47)
where
( (/)ju + 77;3') /92,
d
roun ( e
N; = o if |round ((p] ;7(3) /gz;) ‘ <N, (348
Nusgn(N;)
\ otherwise
and N; = — JI -sgn(s;). (3.49)
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Then, the virtual convergence speed is approximate to be:
Mrj = Nnggj — Pju- (35())

Although the actual reaching time |s;(x(0))| /n,; can not exactly coincide with the ex-

pected reaching time |s;(x(0))] /n;j, that is, this will cause inaccuracy of the reaching

time which is at most in At,, s; can still converge according to the next paragraph.
Herein, we verify whether the sliding variable will converge. When s; is outside the

BL, from (3.38), we have

sj(t)s;(t) = s;(t)NKga; + s4(t) - d;

< _N;Kg2j‘3j‘ + pjulsj
< —(pju + MNSHE Puls)|
<y 541 (3.51)

Clearly, the system states will approach the sliding surface with-a convergence speed at
least 7,; for j=1, --=pv in a finite time [20} whenever the system states are outside the

BL. In contrast, when's; is inside or on the BL, from (3.17), weget

sj(B)55(h, = (py +nmy)s;()sgnls; )+ s;(t) - d;
<=0 + Mg |85 A P4l54]

< Limglss | (3.52)

Similarly, the system states will reach the sliding surface in a finite time ¢,; = [s;(x(ta;))|/7m;
for j=1, ---, v [20] where t,; is the time when any auxiliary input is not activated. Ac-
cording to above analysis, it implies that we can select bigger 7,; advisably outside the
selected boundary to make s; approach s; = 0 faster and it still satisfies the sliding con-
dition after s; is inside or on the BL.

Moreover, according to Eq. (3.48), the minimum nonzero integer of |N j'| is 1, that is,
it implies that

(pju+ 1)
g2;

- = (3.53)
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From Egs. (3.44) and (3.53), the BL can be derived as follows

(pju+ ;)
g2;

K
2

(ojut1y) K
|92 2

N (Pjut€/At) K
|92j| 2

K .
= ¢ =At, (% - pju> . (3.54)

Thus, we have the next result:

Theorem 3.2 Suppose that System (3.1)-(3.2) isminimum phase and satisfies Assump-
tion 3.1 and 3.2 having input-output relation (3.12) with relative degree (ky,-- -, k,) with
k; > 2. Then, the output tracking performance y; — y;q for j=1,---, v can be accom-
plished by the TSMC blended controller (3.39); (3:40)-(3:42), and (3.49) if the control
forces fulfill the physical constraints for each control channel and p;(x,t) satisfies As-

sumption 3.3.
In this design idea, the features of the blended controller include:

I) Outside the BL, in order to achieve.the-output tracking performance as soon as
possible, the auxiliary inputs provide'large constant force to let the sliding variable
approach the sliding surface as quickly as possible, while the main inputs compen-
sate the deterministic dynamics and drastic change of states produced by auxiliary

inputs.

IT) Inside or on the BL, since the auxiliary inputs are not activated and the states
variation will be smaller than those outside the BL, u;; has more chance to avoid
saturation. Thus, we only use u;; to keep the system states close the sliding surface

as better as possible.

Nevertheless, this method of TSMC scheme confronts the singularity problem for the

controller. In other words, this problem occurs in Eq. (3.39) when $;; # 0 but s;;, = 0.
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3.2.3 Control Design via NTSMC scheme

Finally, we introduce another controller design via NTSMC scheme to avoid the sin-
gularity phenomenon yielding from TSMC scheme. However, this scheme only can deal
with that each output of System (3.1)-(3.2) has relative degree 2. Choose sliding surface

presented as

1 .pji/q
.Pj1/4951
Sj1 = 78j0 + 550 (355)
71
_ _ _ 1—%1/pi L .
where sj0 = €, s;1 = 85, ¢j1 = by , and pj;1, g1 are positive odd integers under the

constraint 1 < (p;1/¢;1) < 2 . Taking time derivative on s;;, we have
Pj1 .

: : 1 le) YT
$i1 = Sigk— | = s S; 3.56
J1 50 ¢in (C]jl jO jO ( )

The controller design is divided into two parts: 1) main inputs and II) auxiliary inputs.

I) Design of Main Inputs

We choose
1 -
e di1 . 41
uil = — () = Yoy + dy e s, 3.57
15 glj(x) fJ( ) yjd J lejl 70 ( )
and
1 .
Y o\ (pj + 1my) - sen(s;) ifsj| <€ and ug; =0
we=q v (3.58)
0 otherwise

where 7,,; is selected positive constants.

IT) Design of Auxiliary Inputs
Because the auxiliary inputs involve the following two characteristics: 1) being
zero or nonzero constant during a time duration depending on whether or not they
are triggered; II) with output magnitudes being much larger than the main inputs if
they are triggered. Consequently, the control law of each auxiliary input is designed

to be

ul = 0 (3.59)

and up; = N;K. (3.60)
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Now, we will discuss how [V; is selected. The method is based on the sliding condition

d 1 pj1.q; /
sl < —=BRal (3.61)

where 77;3' is a fictitious positive constant. Making s;(x(¢)) achieve the sliding surface at
least within At, and 5j, is constant in this time duration as the time duration is in a
short time, then we obtain

o = e () i St 562

i1 S%jl—q]i)/% (L) At,,

where t,; is the time instant when we decide to activate the jth auxiliary input. Although
Eq. (3.62) is undefined as $;o = 0, in this case we will adopt allowable maximum value
of ug; under such situation. In addition;atsjo. = 0 there is an advantage for choosing
maximum ug; since §j0 < =15 and 550 >.1,; for both's;37> 0 and s;; < 0, respectively
(discussed in Eq. (2.61) of Section2.3). That is to say that if 5= 0, choosing maximum

’ . .
n,.; can make $;o leave.$;o =0 fastest. Then, we choose

’ ]_ ,
Ui = T (501, ) - sen(sy) (3.63)

2]

where u§§/ is the fictitious control input of usi-and pj, is the upper bound of p;. Then,

P
. " (pjn ey, /
03,0 = T s (on) + s o
J J
1 ol
BY g (et ]
S — | — ) S; u+ rq S| + jul|Sj
i (le 30 Pj My 55| + pjuls;]
Pj1
L (pj Zil /
< —— ()85 mals 3.64
< ()t sl (3.64)

Inequality (3.64) accounts for the sliding variable s; will converge in finite time. However,
in fact, ugjl must accord with the form of N;K. One method to determine N; is such that

the value V;K as close ugj' as possible, that is, we round off (ugjl /K ) to determine the
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constant integer N;.

In more detail, Eq. (3.63) is replaced by Eq. (3.60) described below

up; = round (ugjl /K > K
A1) [0
= round (— (iu+ 1) /92 -sgn(sj)> K
K
) [0
= —round <(pj 7 j) /92j> sgn(s;) - K
K
= —N;-sgn(s;) - K
= N;K (3.65)
where
( (Pju + i)/ 924
d
roun ( 7
N; = if |round <(pj Z,j) /92]> <N, (3.60)
Nusgn(NJ/.)
L otherwise
and N; = —NJ/- “sgn(s;). (3.67)
Then, the virtual convergence speed is approximate to be:
s = NK gj = pju- (3.68)

Although the actual reaching time can-not. exactly ¢oincide with the expected reaching

time, that is, this will cause inaccuracy of the reaching time which is at most in At s;

can still converge according to the next paragraph.

Herein, we verify whether the sliding variable will converge. When s; is outside the

BL, from (3.38), we

Sﬂsﬂ

have
Pj1
L (pp E_l
= — <L> $j0°  [=(pju+1mrj)sj580(s1) + sj1 - dj
Ci1 \ 41
Pj1
1 (pp E_l
< = (L> S5 [=(pju+me)lsinl + piulsil]
le QJI
1 .
Pi1\ .gqj1
< —— | == 5. il S 3.69
(B8 3.69)
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It was shown by [45] that the system states will approach the BL in finite time. In

contrast, when s; is inside or on the BL, from (3.17), we get

Pjr |
, L (pi) .q
Sj18j1 = ;(i) Sjojl [=(pj + nmj)sjrsgn(siy) + sj1 - dj]
] J
Pj1
1 (pj Zil
s (L) S50 [=(pj & mmj)lsin| + pilsill
Cj1 \ 451
P
1 p‘l).Q'l
o (e, 3.70
< - (qﬂ T il (3.70)

Similarly, it was shown by [45] that the system states will reach the sliding surface in
finite time.
Besides, according to Eq. (3.66), the minimwm nonzero integer of |N ;! is 1, that is, it

implies that

(Pt J e O (3.71)
925 2
From Egs. (3.62) and (3.71), the-BL-can be derived as follows
(e +g) | _ K
925 2
(oiu st 72y) _ K
|92 2
[Pju n (Cj1q]'1€j)/<pj1 A tps;gjl_‘h'l)/%l (toj)ﬂ K
= =5
|92 2
plé(’pg‘ﬁqﬂ)/qﬂ(t WY K |go]
= € = Al =z L ( 40— pju) . (372)
Cj1451 2

Therefore, we have the next result:

Theorem 3.3 Suppose that System (3.1)-(3.2) is minimum phase and satisfies Assump-
tion 3.1 and 3.2 having input-output relation (3.12) with relative degree (ky,--- , k,) and
k; = 2. Then, the output tracking performance y; — y;q for j=1,---, v can be accom-
plished by the NTSMC blended controller (3.57), (3.58)-(3.60), and (3.67) if the control
forces fulfill the physical constraints for each control channel and p;(x,t) satisfies As-

sumption 3.3.
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In this design idea, the features of the blended controller include:

D)

1)

Outside the BL, in order to achieve the output tracking performance as soon as
possible, the auxiliary inputs provide large constant force to let the sliding variable
approach the sliding surface as quickly as possible, while the main inputs compen-
sate the deterministic dynamics and drastic change of states produced by auxiliary

inputs.

Inside or on the BL, since the auxiliary inputs are not activated and the states
variation will be smaller than those outside the BL, u;; has more chance to avoid
saturation. Thus, we only use u;; to keep the system states close the sliding surface

as better as possible.
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CHAPTER FOUR
APPLICATION TO MISSILE SYSTEM

In this chapter we will employ the controllers presented in Chapter 3 to control of
ATBM. For simplicity, we only consider the control of dynamics in longitudinal (pitch)
plane. This model may provide a common basis for developing and understanding new

approaches to the missile controller problem.

4.1 Model Description

In this section, the model considered consists.of the longitudinal (pitch plane) force and
moment equations representative of a generic missile travelling at Mach 3 at an altitude
of 20,000 (ft) and with aerodynamic coefficients represented as third order polynomials
in angle of attack. The nonlinear nominal dynamic equations of the missile airframe are

given in [65], [66] as follows:

a = (%) cos () frqa) [0.(a) +bs0 ) wp. + %Fwyc (4.1)
Wyy = (f ”}fd> [P (@) + D0 = éFtbyc (4.2)

where the notations given in Eq. (4.1)-(4.2) can be found in nomenclature. The tail control
of aerodynamic force parts are continuous, while lateral thrust control is constant during

a short time period once it was triggered. The aerodynamic coefficients are approximated

by [65]:
6.(a) = 0.000103a® — 0.00945ala| — 0.170a (4.3)
b, = —0.034 (4.4)
dm(a) = 0.0002150° — 0.0195alal — 0.051a (4.5)
b = —0.206 (4.6)
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These approximations are valid for « in the range of £20 degrees. Besides, we adopt the
following assumptions from [67] I) Ignore the total number of available IACM, but N, =5
in one time duration; IT) the moment arm of the IACM is fixed ahead of the missile center
of gravity; and III) an IACM can provide K = 2500 (lbf) sustaining At, = 0.02 (sec).
The output of tail actuator has time delay, which is modeled by a linear first-order system

with time constant 7; for the elevator given by

@:—l@+l% (4.7)
Tt

T
The deflection limit of the tail fin is assumed to be +50 (deg) and the time constant
7, = 0.005 (sec). As the missile speed is large, the last term in the right-hand-side of
Eq. (4.1) is omitted [19], that isy the maximum magnitude of |Fy,.| = 12500 (Ibf) for
N, = 5 accounts for (cos(@/fra)Fiyc)/(mV) — 0for m = 450 (lbs) and V = 3109.3
(ft/sec). Actually, the moment of lateral thrust force is the main to influence the attitude
of the missile. Equations (4.1), (4.2)-and (4.7) can be rewritten-as the following standard

state-space form by defining x = [o, w,, . 5Z]T, U1 = 0z¢, and ugy = Fipy.:

3 < 450 4Gy [ un } .
U1
where
_ (%) COS (xl/de) [¢z(x1) + bz.fﬁg] . -
fo(x) = (fn;QSd) (1) b "
1,
- Tt |
and
0 0
[
“= O _E (4.10)
1
7
Define
oo (4.11)
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The main goal is to track desired angle of attack x4, i.e., x1 — x14. According to Eq.

(3.12), we have

= fi(x) + gu(x)un + gar(x)ug1 +ds (4.12)
where d; = 0 and the parameters fi(x), g11(x) and g2;(x) are given as below:

1945
o= (%) (;f;) (0.0001032% — 0.009452% — 0.170z; — 0.034a3)

.{0_000103 {— sin( L) TL 4 3o s 2}

frd frd
2
—0.00945 {— mn(Zd)E + QCOS(de) }
—0.170 [— sm(de)E + 2COS(frd)}

1\ 23

—0.034 [— sm(frd)frd}}
fragqS T3
~\Tmy COS(frd)Tt

g Sd
+ (M) (0:00021527 = 0.019527 +0:0512; — 0.2063) , (4.13)
+d9qS
gu(x) = —0034 (J;j‘g/it cos (z1/ frd)> , (4.14)
!
and go1(x) = 7T (4.15)

Clearly, ¢g11(x) and g91(x) are nonzero. Besides, because System (4.8)-(4.11) has relative
degree 2, we have to check the stability of the zero-dynamics. Herein, assuming only the
tail works in the steady state, i.e. us; = 0. In order to determine the stability of the
internal, we have to choose a coordinate transformation to transform the system dynamics

into the so-called normal form. To this end, we choose

1 = Y =1 (416)

and ps = 1 = (f;ig‘gs) cos (x1/ fra) [p-(x1) + bx3] + 9. (4.17)

We have to determine a third function ) (x) such that z = [u; ps ¥]* qualifies a coordinate

transformation and satisfies

1

3x3 T

Lay, Y = (4.18)
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where Gy, is 1st column of Gy given by Eq. (4.10). A trivial candidate of ¢ (x) is selected

below

because the Jacobian matrix of z is
1 0 0
Opia fra9qS
0 Z2 _
@_Z ~ | 72 1 —0.034 ( eyl (x1/ fra) (4.20)
X
a_w 1 0
all'l

which is nonsingular for any constrained x. This means the state transformation is a local

diffeomorphism. Thus, the internal dynamics is represented by the equation

. +dqSdby, 1
Y= (fd—> (2 — ) — ¢-() (4.21)
Izzbz frdqu cos (,U /f )
i S 1/ Jrd
The associated zero-dynamics is-obtained by letting 1y =0 and us = 0 as
/ frqudbmfrdqu
= — 4.22
v I,,bomV ¥ (422)

which is clearly exponentially stable. Thus, System (4.8)-(4.11)is minimum phase.
After that, the control objective is to design the proper controller to achieving the
output tracking performance: Define error.ey= xy — x1; where x4 is desired angle of

attack. We now recall the overall controllers from Chapter 4 as follows:

A) Blended controller via CSMC scheme

Sliding surface:

$1 = €1+ ape; (4.23)
Tail:
(1 ) .
—— [f1(x) — Ga + a1n1é4]
g11 ’ _ . 40
if|s and u
=4 sl s e and (4.24)
_g_ [f1(x) — &g+ a11é1 + (p1 + M1 ) - sgn(sy)]
11
L otherwise
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where €, = (|ga1| K At,) /2.

Lateral Thrust:

U921 = NlK (425)
where
Ny = —Njsgn(s)
4 i
round ( (plu ‘f’;?q) /921)
N, = { . (pru+ 77;«1) /92
1 if {round % < N, (4.26)
otherwise
r1 =
B) Blended controll
Sliding surface:
(4.27)

Tail:

if |81| S €1 and U921 7é 0

U = 4 LT o (4.28)
_ fl(x) — g + by (_) 6§q11_p11)/p11é1 + (Pl + 77m1) . sgn(sl)
g11 | P11
\ otherwise
where €1 = (|ga1| K A'ty,) /2.
Lateral Thrust:
uyn = MK (4.29)
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where

Ni = —Nysgn(s1)

4 ’
round < (Pm + 77r1) /921)

K
Ni = if |round <<p1u +In(rl) /gz1> < N,
Nusgn(Ny)
\ otherwise
o [si(a(®))]
Ne1 = At
P
C) Blended controller via NTSMC scheme
Sliding surface:
Tail:
Uy = ) nd U1 7é 0
- m1) SgN(s1)

where ¢, = (pllégpll_qu)/‘hl

Lateral Thrust:

U921 = NlK
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(4.31)

(4.32)

(4.33)



where

Ny = —Nysgn(sy)

4 12
round ( (P14 711) /921>

K

N, = if

I <Ny (4.34)

round ((Plu + 77;1) /921)

N,sgn(Ny)
otherwise

\

M = en (Chl) 1 [s1(2(1))]

IZ 35%11—1111)/‘111 (tol) Atp

4.2 Simulation Results

In this section, we will verify'whether or not the RCS.is helpful for the angle-of-attack
control of the missile system from simulation viewpoint. In simulations, the physical
and geometric parameters are given by [65], [66] . = 182.5 (slug - ft*), m = 450 (Ibs),
V = 3109.3 (ft/sec),.S = 0.44 (ft2),-d = 0.75(ft); ¢ = 6132.8 (Ibs/ft?), and [ = 2 (ft).
The parameters of the controllers are given asa;; = 20, by =420, ¢11 = 5, p11 = 7,
and ¢, = b53/™. The initial states are sét to be zeros and thedesired angle of attack

is selected as ay = 20 (degree). Moreover, to alleviate the phenomenon of chattering

produced by sign function, we replace sgn(s;) by saturation function defined

sgn(sy) if |s;| > €

sat(s,€) 1= (4.35)
S1 .
— if [s1]| <€
€
where € is chosen to be 0.01. Besides,
165 if |s1] <
mt { 1000 if |5y > € (4.36)

The criterion for the tracking performance being successful is defined as the tracking error
le1] < 0.01.

Numerical results for nominal system (d; = 0) to perform our tracking task are sum-
marized in Tables 4.1-4.2 and Figs. 4.1-4.36 in which blue lines and magenta lines denote
the responding curve for blended control and tail control, respectively. Among these, we

use the following twelve control schemes: the first six contain the blended control and
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the tail control using sign-type CSMC, TSMC and NTSMC designs labeled SICSMCB,
SICSMCT, SITSMCB, SITSMCT, SINTSMCB and SINTSMCT, respectively, while the
others are the blended control and the tail control based on saturation-type CSMC,
TSMC and NTSMC designs labeled SACSMCB, SACSMCT, SATSMCB, SATSMCT,
SANTSMCB and SANTSMCT, respectively.

The simulations in the case of using sign-type SMC designs involve in Figs. 4.1-4.15.
Among these, Figs. 4.1, 4.6 and 4.11 show the time evolution of output tracking error
a — aq. Figs. 4.2, 4.7 and 4.12 display the time evolution of the three system states.
Figs. 4.3, 4.8 and 4.13 exhibit the time evolution of the sliding variables. Figs. 4.4, 4.9
and 4.14 behave the time evolution of commanded tail inputs. Finally, Figs. 4.5, 4.10
and 4.15 account for how many [ACMs the RCS provides. Table 4.1 summarizes the time
for successfully achieving output tracking performanee (|e;| < 0.01) using sign-type SMC
tail and blended controllers: It is-observed from Table 4.1 that the blended controllers
consume less time than tail controllers for suceessfully-achieving the desired output. In-
deed, the blended design saves approximately 0.2598 (sec), 0.0786' (sec) and 0.0951 (sec)
for CSMC, TSMC and NTSMC schemes, respectively. It is seen form Fig. 4.3 that the
responding curve of SICSMCB has a small change at¢= 0.04 (sec) and a peak at ¢ = 0.06
(sec), which are resulted from different number of TACMs being activated as can also be
seen from Fig. 4.5. After 0.06 (sec);. because the system states has entered the boundary
layer €1, the lateral thrust is not triggered and only the tail is used for output tracking
task. The same scenario can also be found from Figs. 4.8, 4.10 for SITSMCB and Figs.
4.13, 4.15 for SINTSMCB. According to Eq. (2.46), the convergence time is calculated to
be 0.3137 (sec) and 0.2293 (sec) for SITSMCB and SINTSMCB, after reaching the sliding
surface, predicted by TSMC and NTSMC theory, respectively. However, the convergence
time found from simulation is approximate 0.3312 (sec) and 0.2769 (sec) for SITSMCB
and SINTSMCB, respectively, which is a little bit larger than predicted value. This might
result from occurrence of chatter on sliding surface in Figs. 4.17 and 4.18 which leads to
not only the chattering inputs (shown in Figs. 4.9 and 4.14) but also the imprecision of
the output error (observed in Figs. 4.20 and 4.21). This chattering phenomenon results

from the computer simulation whose step size can not divide into infinitesimally small.
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In addition, besides TSMC and NTSMC schemes, CSMC scheme has the same chattering
phenomenon shown in Figs. 4.4, 4.16 and 4.19. In a practical realization, the fact that
the switching frequency is finite implies that the trajectories of the system generally not
lie on the switching surface. In fact, they lie within a neighboring region of the surface
and this non-ideal characteristic provokes the manifestation of a physical phenomenon
[68]. There are three disadvantages of these sign-type SMC schemes during the physical
implementation. First, it is unavoidable that the switching of the control take place at a
very high frequency but the physical system may not tolerate such behavior at the input.
Second, energy is wasted when the system is near the sliding surface. Third, it can yield
resonance, excite unmodeled dynamics or even damage to mechanisms [20].

To alleviate the chattering behavior, the saturation-type SMC designs have been in-
troduced in [69]. Numerical simulations using saturationstype SMC schemes rather than
sign-type SMC schemes are given-in-Figs. 4.22-4.36. Among these, Figs. 4.22, 4.27 and
4.32 show the time evelution of output tracking error o — ay. Figs. 4.23, 4.28 and 4.33
display the time evolution of the three system states. Figs. 4.24, 4.29 and 4.34 exhibit
the time evolution of the sliding variables.Figs. 4.25 4:30 and 4.35 behave the time
evolution of commanded tail inputs. Finally; Figs: 4:26, 4.31 and 4.36 account for how
many TACMs the RCS provides. It is observed from Figs.  4.22, 4.27 and 4.32 the out-
put tracking performance are achieved by both tail controllers and blended controllers;
however, the convergence times of the output errors by blended controllers via the three
saturation-type SMC schemes are found to be faster than those by tail controllers. Table
4.2 displays the time for successfully achieving output tracking performance (|e;| < 0.01)
using saturation-type SMC tail and blended controllers. Indeed, the blended design saves
approximately 0.2593 (sec), 0.0785 (sec) and 0.0951 (sec) for CSMC, TSMC and NTSMC
schemes, respectively. The remaining two states are found to reach their steady state
after the desired output is achieved. It is seen from Fig. 4.24 that the responding curve
of SACSMCB has a small change at ¢ = 0.04 (sec) and a peak at t = 0.06 (sec), which
resulted from different number of TACMs be activated as can also be seen from Fig. 4.26.
Besides, Fig. 4.25 shows that the responding curve of SACSMCB experiences two jumps.

The 1st jump corresponding to the system states have entered the region where the RCS
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does not activate, while the 2nd jump associated with the system states have entered the
boundary layer of the saturation function where the control gain is changed by Eq. 4.36
from 1000 to 165, which can also be identified in Figs. 4.24 and 4.26. The same scenario
can also be found from Figs. 4.29, 4.30, 4.31 for SITSMCB and Figs. 4.34, 4.30, 4.36
for SINTSMCB. After the system states has entered the boundary layer of saturation
function, all the sliding variables using saturation-type SMC design remain inside the
boundary layer. These agree with the results of Chapter 4. From these simulations, it
can be concluded that the proposed blended controllers can achieve desired output faster
than the tail controllers.

Although the TSMC can theoretically improve CSMC from asymptotical convergence
to finite time convergence and NTSMC can avoid singularity problem of TSMC, they all
suffer from the chattering preblem by using sign-type SMC. design due to the computer
simulation. The chattering problem-will make the sliding variables not lie on the sliding
manifold. This means:that both " TSMC and NTSMC can not achieve finite time conver-
gence and accuracy tracking performances in practical applications. On the other hand,
although replacing the sign-type SMC design by saturation-type SMC design will evoke
imprecision of output'tracking task, it can avoid the chattering problem resulting in dam-
aging to mechanisms. Therefore, no matter what sign-type or saturation-type functions
are used in CSMC, TSMC<and NTSMC schemes, the finite time convergence can not
achieve in practical applications.

In this example, because the distance between the selected initial states and the slid-
ing surface of TSMC and NTSMC are smaller than that of CSMC, both the blended
controllers and tail controllers via TSMC and NTSMC schemes consume less time than
CSMC for tracking performance. Besides, the number of required IACMs for blended
controllers via both TSMC and NTSMC schemes are less than that of CSMC scheme.
However, the above two results depend on the locations of the initial states, that is, if
the initial states are closer to the sliding surface the convergence time for output tracking
task via the three SMC schemes mentioned previously generally is faster and moreover,
the required number of IACMs for blended controller via the aforementioned three SMC

schemes will be fewer.
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In summary, the performance of tracking accuracy and convergence time by using
blended controllers via CSMC, TSMC and NTSMC are superior to those by using the
tail controllers only no matter what CSMC, TSMC or NTSMC are used. This accounts

for that the novel missiles prefer to adopt tails and RSC instead of tails only.
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Table 4.1. Time for successfully achieving output tracking performance (|e;| < 0.01) using
sign-type SMC tail and blended controllers

Tail Controller | Blended Controller
SMC Scheme 0.66650 0.40670
TSMC Scheme 0.45440 0.37580
NTSMC Scheme 0.47150 0.37640

Table 4.2. Time for successfully achieving output tracking performance (|e;| < 0.01) using
saturation-type SMC tail and blended controllers

Tail Controller | Blended Controller
SMC Scheme 0.66715 0.40790
TSMC Scheme 0.45470 0.37620
NTSMC Scheme 0.47160 0.37650
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CHAPTER FIVE
CONCLUSIONS AND
SUGGESTIONS FOR FURTHER RESEARCH

5.1 Conclusions

In this thesis, at first, in Chapter 3, we have introduced a six degrees of freedom
mathematical model of PAC-3 and then the model of the X-tail and the RCS were also
constructed. In Chapter.4, we have studied the missile attitude tracking problem using
blended controllers viasthree SMC-techniques: 1) CSMC, 1I) TSMC, and III) NTSMC
schemes. A characteristic of the CSMC is that the convergence of the system states to
the equilibrium points is usually asymptotical due to the asymptotical convergence of
the linear switching manifolds that are commonly chosen. Thus, the TSMC was devel-
oped. Compared with the linear hyperplane based sliding mode, TSMC offers finite time
convergence and better static tracking precision. Butithe TSMC design methods have
a singularity problem. Base on the 'TSMC; the NTSMC have been presented to avoid
the singularity for the TSMC. However, in practical realization, the three sign-type SMC
schemes, found in this thesis, suffer from the chattering problem which might result in
the following three undesired phenomena: I) high frequency switching of the control, IT)
waste of energy and III) excited unmodelled dynamics. This problem might cause that
the predicted convergence time in TSMC and NTSMC theories are no longer available
because the sliding variable can not lie on the sliding surface and then lead to the im-
precision of output tracking task. Therefore, the features of finite time convergence and
accurate convergence by TSMC and NTSMC schemes are no longer valid. In order to
eliminate the chattering problem in practice, these sign-type SMC designs are replaced by

saturation-type SMC designs. The numerical results have shown that the tracking preci-
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sion by saturation-type SMC designs still satisfies the criterion for tracking performance
being successful.

The simulation results have also demonstrated that the blended control can performs
faster for tracking task than the tail control, decrease the required number of IACMs and
furthermore, improve the tracking performance. The above results sufficiently account for
the features of the blended control and benefit the developing of the ATBM for reducing

the MD between missile and target to achieve the HTK goal.

5.2 Suggestions for Further Research

To further extend the research covered in this thesis, we note several directions:

1) study the three-dimensional missile model which may exists coupling effects resulting
from the spinning missile with-angular velocity wy, [48], [13] under the constraint of

the states and rate of the states:

2) In order to fully utilize each TACM for the $pinning missile in the three-dimensional

missile model, the ignition contrel algorithm must be considered.

3) In real life situation, the control law must considers the influences of jet interaction
effects [13],[19], [70], [71] which'is the cause of in¢ident air flowing when any TACM is
triggered. We thus may introduce these influences to let the model closer to the real

life situation.

4) Integrate the designed control law into the missile guidance law to verify whether the

ATBM will intercept the TBM.
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