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摘   要 

 
 

本論文的主要目的在探討具有氣動力和側向力的反戰術彈道飛彈之複合控制

技術。由於科技的不斷發展，目標飛彈的機動性不斷提升，為了在攔截末段實現

直接碰撞高機動性目標飛彈的攔截任務，複合式控制的概念油然而生，取代傳統

僅依賴氣動力控制的飛彈。相對於純尾翼控制，複合控制具有如下之特點：1) 系

統時間響應速度快；2) 側向力不受海拔高度影響；3) 複合控制能降低側向力的

能量消耗並且提升系統的追蹤性能表現。本論文首先建立複合式的反戰術彈道飛

彈六自由度數學模型，並探討應用三種可變結構控制技術：1) 傳統順滑模控制

(conventional sliding mode control)技術、2) 終端順滑模控制(terminal sliding mode 

control)技術與3) 非奇異終端順滑模控制(nonsingular terminal sliding mode control)

技術在氣動力與側向力的複合控制之性能比較。由模擬結果顯示，除驗證了本文

所設計之控制器的性能表現外，也展示了複合式飛彈的系統響應速度的確比傳統

只使用氣動力的飛彈快，這些模擬具體地說明了複合式飛彈未來發展的潛力。 
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ABSTRACT 

 

This thesis studies the control of anti-tactical ballistic missiles (ATBM) having 

lateral thrust and aerodynamic forces, called blended control. With increasing 

technological sophistication, the maneuverability of tactical ballistic missiles is 

improving. Compared with tail control, the blended control possesses the following 

three features: 1) timing response is faster; 2) lateral thrust is independent of altitude; 

and 3) tracking performance is promoted. In this thesis, we first build the mathematical 

model of ATBM and then import the following three variable structure schemes (VSS): 

1) conventional sliding mode, 2) terminal sliding mode and 3) nonsingular terminal 

sliding mode to the blended control design task. Simulation results clearly demonstrate 

the performances of the presented three SMC schemes and confirm that the performance 

by blended control is superior to that by the tail control only. 
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CHAPTER ONE

INTRODUCTION

1.1 Motivation

In the 1990s, the science and technology of tactical ballistic missile (TBM) developed

rapidly. The features of the TBM included: I) The maximum range is more than 1000

(km). II) The maximum speed is 2 to 3 (km/s) in the attack region of the air defense

missile (or anti-tactical ballistic missile, ATBM). III) The maximum overloading is ap-

proximate 10 (g). IV) The hitting precision is high. And, VI) The destructive power is

strong. Consequently, progressing the ATBM to defend has become a primary mission

[1]. Moreover, in the First Gulf War (2 August 1990 - 28 February 1991), the U.S. Patriot

missile was used in combat for the first time. The U.S. military claimed a high effective-

ness against Iraq’s Scuds at the time, but later the Patriot Program Office reported to

high-ranking Administration officials and Members of Congress that a total of 158 Pa-

triot missiles were fired during the war, while only 86 Patriots had intercepted at Scud

targets (89 percent of the Iraqi Scuds launched against Saudi Arabia and 44 percent of

the Scud warheads directed against Israel). In other words, almost half were fired at false

targets and debris (15 percent at false targets, 30 percent at Scud debris) [2]. This result

shows that the magnitude of miss distance (MD) is a factor to judge whether the missile

intercepts the target successfully. The magnitude of MD is related to the missile’s over-

loading and the time response of the attitude stability system. In short, developing the

hit-to-kill (HTK) technique is necessary in no time. The U.S.A. had made a rocket sled

test which proved that the HTK technique can provide enough energy and penetrating

force to destroy the target carrying mass destruction warhead successfully [3]. In view

of the change of TBM’s characteristics and attacking ways and the great progress of the
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relevant scientific and technological field, the flight control system of the ATBM has a

fundamental revolution in the following aspects [1]:

I) Reducing warhead’s weight greatly. ATBM is equipped with modern high-accuracy

microelectronic devices extensively such that its size and weight lessens extremely.

In theory, the overload can reach above 40 (g). This guarantees the ATBM’s re-

quirement for high maneuverability.

II) Equipped with active radar homing in the warhead and a inertial navigation sys-

tem. The ground guidance radar just informs ATBM of the present position of a

target and the predictive impact point, while the other guidance information is from

ATBM itself. As a result of a computer embedded in a ATBM, the operation of

control problem can directly calculate in a ATBM instead of ground guidance radar

indirectly. This can not only improve the guidance precision but also reduce the

time response of the guidance loop. The method is helpful to increase the capability

of HTK.

III) Adopting the blended control with aerodynamic force and reaction-jet control system

(RCS) [4]-[9] in the terminal phase of interception, the RCS can make ATBM’s

maneuverability promote strongly. Compared to traditional aerodynamic control, it

can decrease about 1/10 (sec) of the time response and improve agility about 10 to

20 times in the high altitude. Thus, this equipment has capability to achieve HTK.

IV) Benefiting from the advanced computer technology, new control theory and control

system design method applied to the blended control system, it has succeeded in

solving the contradiction between operational requirements and control system under

the traditional aerodynamic control (conventional control or tail control). Besides,

this result increases controlling precision and robustness of the ATBM. Generally

speaking, the developing trends of the air defense missile control will be faster time

response, higher control precision, and more powerful maneuvering performance.

Tails or air rudders are the control mechanisms for the traditional aerodynamic control.

According to the command from guidance and control regulation, turning the control
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surface yields moment to change the missile’s attitude and then produces the lateral

overloading. It may be inferred that the relation between the performance of the attitude

stability system and intercepting precision in terminal phase is closely related. Taking the

traditional aerodynamic control into account, it can be guaranteed to predict successfully

near the impact point in the midcourse phase. On the contrary, in order to realize HTK

in the terminal phase, just using tails is not enough because the aerodynamic force has

two defects as follows [1], [10], [11]:

I) The overload is insufficient in the high altitude. It assures that maneuverability of

the ATBM must be at least three times larger than one of the TBM. The efficiency

of aerodynamic force decreases at above 10 (km) altitude during the terminal phase

since aerodynamic force is directly proportional to air density and missile velocity.

Hence, the low air density at high altitude cause insufficient overloads.

II) The time response of the attitude stability system is long. Time is short in the ter-

minal phase. Depending on manufacturing technique of aerodynamic mechanisms,

the time delay of these mechanisms is around 0.1 to 0.5 (sec), whereas the standard

for the air defense missile is around 0.1 (sec).

In consideration of physical constraints of purely aerodynamic control, the concept of

the blended control with aerodynamic force and RCS for the air defense missile came

up. There are three types of the RCS according to their positions [12]: 1) attitude type,

which means the location of the RCS is between center of gravity and the missile’s top and

produces moment to change the missile’s attitude, e.g. PAC-3 shown in Fig. 1.1; 2) orbit

type, which means the location of the RCS is around center of gravity and makes missile

produce linear motion, e.g. S-400, Aster-15, and Aster-30; 3) attitude-orbit type, which

means it combines above two types, e.g. TLVS (Taktisches Luft Verteidigungs Systems).

The features of RCS are listed roughly below [1], [5], [8], [13], [14]:

I) Advantages

i) The time response of the attitude stability system is short. The time response

the RCS is about 5 (msec) to 10 (msec) which is much faster than the one of
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purely aerodynamic control.

ii) The maneuverability of the RCS is regardless of the altitude. This characteristic

is suitable in the terminal phase as it can warrant that the ATBM has enough

agility during the guidance process.

II) Disadvantages

i) There is a limitation of the fuel consumption. After exhausting the foil, the

thruster cannot use continuously.

ii) The fuel consumption can make the missile’s center of gravity drift.

iii) The jet interaction effect is complicated such that the actual thrust does not

meet the theoretical one.

Fig. 1.1. The locations of the tails and the RCS of the PAC-3

Thus, using blended control can diminish the energy consumption compared with only

using RCS and compensate the uncertainties of RCS. In short, the goal of using blended

control is to reduce the MD and to achieve HTK.

In existing results, some papers have dealt with the control design of missile with RCS.

Chadwick [7] proposed the blended control to improve the guidance performance of mis-

siles against weaving targets in high altitude and analyzed the influence of the location

of RCS. Wise [15] proposed the autopilot for aero-fin controlled missile with the RCS

using linear quadratic regulator technique. Menon [16], Schroeder [17] and [18] proposed

adaptive techniques for multiple actuator blending using fuzzy control. Yin [13] pro-

posed blended control via inverse dynamics technique and used extended states observer
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to improve the estimation precision of system states. Bi [19] proposed blended control

via model predictive technique and used active disturbance rejection control to resist the

model uncertainties and external disturbances. In addition, Weil [5] and Innocenti [8]

proposed the blended missile autopilot formulating via the variable structure schemes

(VSS) or sliding mode control (SMC) techniques.

In the recent years, the research of SMC of nonlinear systems have attracted much at-

tention. It is known that SMC have the advantages of fast response and small sensitivity

to system uncertainties and disturbances [20], [21]. Hence, the SMC approach has been

widely applied to a variety of control problems [20], [22], [23], especially in spacecraft

attitude control [24]-[27] and robotic control [28]-[32].

Although those two papers [5] and [8] had used SMC techniques to synthesize the con-

trol laws, the former one [5] imposes an assumption that the RCS is continuous and both

papers only consider a linear model. On the other hand, in this thesis, we consider a more

practical nonlinear model with the pulse-like (or constant during a short time period once

the RCS was triggered) RCS. Moreover, we will organize blended control laws via the fol-

lowing three SMC techniques: 1) conventional sliding mode control (CSMC) scheme, 2)

terminal sliding mode control (TSMC) scheme and 3) nonsingular terminal sliding mode

control (NTSMC) scheme for the control of missile, and compare the performances under

the three SMC schemes.

1.2 Outline

The organization of the work is as follows. Chapter 1 includes the motivation and

objective of this thesis, as well as the survey of relative works. Chapter 2 reviews the

basic concept of SMC theories. The mathematical model of the PAC-3 missile is given

in Chapter 3. The problem formulation and controller design via the CSMC, TSMC and

NTSMC schemes are illustrated in Chapter 4. Then, in Chapter 5, the analytic results are

applied to a simplified model to demonstrate the performances of the three SMC schemes.

Finally, the conclusions and suggestions for further research are made in Chapter 6.

        5



CHAPTER TWO

PRELIMINARIES

2.1 Conventional Sliding Mode Control (CSMC)

The history of CSMC up until the early 70’s has been described in [33]. By 1980, the

main part of CSMC theory had been finished [34] and later reported by Russian Prof.

Utkin’s monograph in 1981 [35]. The main advantages of CSMC were the following [36]:

1) exact compensation (insensitivity) with respect to bounded matched uncertainties; 2)

reduced order of sliding equations; 3) finite-time convergence to the sliding surface.

Consider a nth-order single-input system

x(n) = f(x) + g(x)u+ d(x) (2.1)

where x = [x ẋ · · · x(n−1)]T denotes the state vector and u is control input. In system

(2.1), the functions f(x) and g(x) (in general, nonlinear) are not exactly known, but the

extent of the imprecision on f(x) is upper bounded by a known continuous function of

x, and control gain g(x) is of known sign and bounded by a known continuous function

of x, respectively. And d(x) is set to combine the model uncertainties of f(x) and g(x)

and external disturbances. The control problem is to get the state x to track a specific

time-varying state xd = [xd ẋd · · · xd(n−1)]T in the presence of d(x). In order to achieve

the tracking task by using a finite control u, the initial desired state xd(0) must be such

that:

xd(0) = x(0). (2.2)

Then, defining the tracking error

e = x− xd (2.3)
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where the error vector composed of derivatives of error between output and desired output

is denoted by

e = [e ė · · · e(r−1)]T (2.4)

In a second-order system, for example, position or velocity can not “jump”, so that any

desire trajectory feasible from t=0 necessarily starts with the same position and velocity

as those of the plant. Otherwise, tracking can only be achieved after a transient.

According to [37], the two-step procedure for sliding mode control design was clearly

stated: 1) Sliding surface design. When the trajectory of closed-loop system is fixed in

the sliding surface, it will be asymptotically stable. And, 2) Discontinuous controllers

ensuring the sliding modes. The control law can let the trajectory of the closed-loop

system reach the desired sliding surface in a finite time and stick on the the desired

sliding surface. A typical phase portrait is illustrated in Fig. 2.1.

In first step, defining s(x) is a smooth scalar constraint function: IRn → IR, we select

Fig. 2.1. A typical phase portrait under sliding mode control

time-varying sliding surface to be s = 0 with

s = aTe (2.5)

        7



where the constant coefficient vector aT = [a1 · · · ar]. Here, ai for i=1,· · · , r − 1 are

selected constants and ar = 1 is chosen such that

λr−1 + ar−1λ
r−2 + · · ·+ a2λ+ a1 (2.6)

are Hurwitz polynomials. As the states trajectory remain on the sliding surface, i.e., s = 0,

we can know Eq. (2.5) will be asymptotically stable, which means the error approaches

zero as the time approaches infinity.

Second, designing the control law u, consisting of two parts

u = ueq + ure (2.7)

where ueq is continuous called a feedback control law and ure is discontinuous or switched.

As designing the ueq, there exists a condition which it must let the sliding surface s = 0 be

invariant set relatively to the closed-loop system for unpresence of uncertainties or external

disturbances of the matched type system [37]. That is s(x(t0)) = 0 and s(x(t)) = 0,

∀ t ≥ t0. Moreover, the time derivative of s is given by

ṡ = aT ė (2.8)

where

ė = [ė · · · e(r)]T (2.9)

Expanding Eq. (2.8), the sliding variable dynamics as follows

ṡ = f(x) + g(x)u+ d(x)− x
(r)
d

+ar−1e
(r−1) + · · ·+ a2ë+ a1ė (2.10)

Herein, it is regardless of d and ure such that u = ueq can verify sliding condition. The

equilibrium point of Eq. (2.10) will be s = 0. ueq is designed as

ueq = − 1

g(x)

[
f(x)− x

(r)
d + ar−1e

(r−1) + · · ·+ a2ë+ a1ė
]

(2.11)

The effect of ueq is to eliminate the known form of Eq. (2.10). Substituting designed ueq

into Eq. (2.10), we get

ṡ = g(x)ure + d(x) (2.12)
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Obviously, if we do not consider the disturbance term d and just use the feedback controller

u = ueq, Eq. (2.12) exists a equilibrium point at s = 0. Next, we consider Eq. (2.12) and

assume s(e(t0)) ̸= 0 to design ure. The action of ure is to make sliding variable s be zero

in a finite time. That is the trajectory of the closed-loop system will achieve the sliding

surface in limited time. To guarantee the reaching condition, we impose a assumption:

Assumption 2.1 There exists a nonnegative number ρ(x) such that

|d(x)| ≤ ρ(x) (2.13)

From Eq. (2.12), we obtain the other controller ure designed as

ure = − 1

g(x)
[ρ+ η] sgn(s) (2.14)

where

sgn(s) :=


1 if s > 0
0 if s = 0
−1 if s < 0

is the sign function (2.15)

and η > 0 is selected positive constant. Then, we substitute Eq. (2.14) into Eq. (2.12),

the sliding variable dynamics becomes

ṡ = − [ρ+ η] sgn(s) + d(x) (2.16)

In order to prove the feasibility of Eq. (2.14), with V = 1/2s2 as a Lyapunov function

candidate for Eq. (2.16), we have

V̇ = sṡ = − [ρ+ η] s · sgn(s) + s · d(x) (2.17)

Using the relation of s · sgn(s) = |s| and Cauchy-Schwarz inequality to get s · d(x) ≤

|d(x)||s| and Assumption 2.1, the time derivative of Lyapunov function candidate becomes

V̇ = − [ρ+ η] s · sgn(s) + s · d(x)

≤ − [ρ+ η] |s|+ |d(x)||s|

≤ − [ρ+ η] |s|+ ρ|s|

≤ −η|s| (2.18)

        9



According to (2.18), we have known that the Lyapunov function converges. The result

explains that the Eq. (2.16) is asymptotically stable, i.e., s → 0 as t → ∞. In other

words, focusing on Eq. (2.12), ure will make s approach the sliding surface in limited time

when the sliding variable is not zero. Now, we discuss when the sliding variable reach

the sliding surface. Actually, there is another form of the time derivative of Lyapunov

function presented as

V̇ =
d

dt
V =

1

2

d

dt
|s|2 = |s| d

dt
|s| (2.19)

As a result of Ieq. (2.18) and Eq. (2.19), we obtain

|s| d
dt
|s| ≤ −η|s| (2.20)

That is

d

dt
|s| ≤ −η (2.21)

It implies that |s| converges along with its slope less than or equal to −η. Integrating Ieq.

(2.21) with t on [0, tr], we get∫ tr

0

d|s(x(t))|
dt

dt ≤ −
∫ tr

0

ηdt (2.22)

According to the second fundamental theorem of calculus [38], Eq. (2.22) equals

|s(x(t))| − |s(x(0))| ≤ −ηt (2.23)

or

0 ≤ |s(x(t))| ≤ |s(x(0))| − ηt (2.24)

The above inequality shows that |s(x(t))| must converge before t = |s(x(0))|/η, which is

illustrated in Fig. 2.2.

However, in order to account for the presence of modelling uncertainties and distur-

bances, the control law has to be discontinuous across s(t). Since the implementation of

the associate control switchings is necessarily imperfect (for example, in practice switching

is not instantaneous, and the value s is not known with infinite precision), this leads to
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Fig. 2.2. Sliding condition

chattering which is shown as Fig. 2.3. Now, chattering is undesirable in practice, since it

involves high control activity and further may excite high-frequency dynamics neglected

in the course of modelling such as unmodeled structure modes, neglected time-delays,

and so on. Thus, in a second part, the discontinuous control law ure is suitably smoothed

to achieve an optimal trade-off between control bandwidth and tracking precision: while

the first part accounts for parametric uncertainty, the second part achieves robustness to

high-frequency unmodeled dynamics [20].

Fig. 2.3. Chattering as result of imperfect control switchings
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2.2 Terminal Sliding Mode Control (TSMC)

Although the CSMC has received much attention as an efficient control technique for

handling systems with large uncertainties, nonlinearities, and bounded external distur-

bances and can guarantee finite-time convergence to the sliding surface, the closed-loop

system states may only be guaranteed within infinite time. Thus, the terminal sliding

mode control (TSMC) was evolved by Zak in the Jet Propulsion Laboratory (JPL) in

1988 [39]. The main idea of TSMC is the concept of terminal attractors which guarantee

finite time convergence of the states. The TSMC was first introduced to the control of the

dynamic systems based on second-order differential equations. After that, Yu and Man

[40], [41] extended it to high-order system (2.1). The problem formulation is the same

as Section 2.1. Defining s(x)i for i=1,· · · , r − 1 is a smooth scalar constraint function:

IRn → IR, the hierarchical terminal sliding mode structure is

s1 = ṡ0 + b1s
q1/p1
0 (2.25)

s2 = ṡ1 + b2s
q2/p2
1 (2.26)

...

sr−1 = ṡr−2 + br−1s
qr−1/pr−1

r−2 (2.27)

where s0 = e, bi > 0, pi > qi and pi, qi are positive odd integers This assumption allows

us to achieve high-order continuous differentiation. For instance, the geometry plot for

third-order system is shown in Fig. 2.4.

Fig. 2.4. The sliding mode of the third-order system
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The control is divided into

u = ueq + ure (2.28)

where ueq is the equivalent control for system (2.1) without model uncertainties and

external disturbances, such that sr−1 = 0 and ṡ = 0 and ure is to compensate the internal

parameter variations and turbulence. Furthermore, the time derivative of sr−1 is given by

d

dt
sr−1 =

d2

dt2
sr−2 + br−1

d

dt
s
qr−1/pr−1

r−2 (2.29)

Besides, it can be easily calculated that

d2

dt2
sr−2 =

d3

dt3
sr−3 + br−2

d2

dt2
s
qr−2/pr−2

r−3 (2.30)

d3

dt3
sr−3 =

d4

dt4
sr−4 + br−3

d3

dt3
s
qr−3/pr−3

r−4 (2.31)

... (2.32)

d(r−2)

dt(r−2)
s2 =

d(r−1)

dt(r−1)
s1 + b2

d(r−2)

dt(r−2)
s
q2/p2
1 (2.33)

d(r−1)

dt(r−1)
s1 =

d(r)

dt(r)
s0 + b1

d(r−1)

dt(r−1)
s
q1/p1
0 (2.34)

Substituting Eqs. (2.52)-(2.34) into Eq. (2.29), we obtain

d

dt
sr−1 =

d(r)

dt(r)
s0 +

r−2∑
k=0

bk+1
d(r−1−k)

dt(r−1−k) s
qk+1/pk+1

k (2.35)

Importing Eq. (3.4), the time derivative of sr−1 will be

ṡr−1 = f(x) + g(x)u+ d(x)− xrd

+
r−2∑
k=0

bk+1
d(r−1−k)

dt(r−1−k) s
qk+1/pk+1

k (2.36)

Thus, the controller u is designed as follows:

ueq = − 1

g(x)

[
f(x)− xrd +

r−2∑
k=0

bk+1
d(r−1−k)

dt(r−1−k) s
qk+1/pk+1

k

]
(2.37)

and

ure = − 1

g(x)
[ρ+ η] sgn(s) (2.38)
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Since |d| ≤ ρ, s · sgn(s) = |s|, Cauchy-Schwarz inequality s · d(x) ≤ |d(x)||s|, and selected

positive constant η which have been accounted for in Section 2.1., the resulting expression

is substituted into Eq. (2.37) and Eq. (2.38) and multiplied by sr−1 as

sr−1ṡr−1 = − [ρ+ η] s · sgn(s) + s · d(x)

≤ − [ρ+ η] |s|+ |s||d(x)|

≤ − [ρ+ η] |s|+ ρ|s|

≤ −η|s| (2.39)

which means that the sliding mode sr−1 = 0 will be reached in finite time along with

its slope less than or equal to −η proved in Section 2.1. The finite time is directly

proportional to the initial norm of sr−1 and the selected positive constant η expressing as

tr ≤ |s(x(0))/η|. However, the magnitude of the designed controller will become infinity

if si = 0 when ṡi ̸= 0. That is, it is the singularity problem. For example, the controller

of second-order system is described

u = − 1

g(x)

[
f(x)− x2d + b1 (q1/p1) e

(q1/p1)−1ė+ (ρ+ η) sgn(s)
]

(2.40)

The term b1 (q1/p1) e
(q1/p1)−1ė will occur singularity phenomenon since e(q1/p1)−1 = 1/e((p1−q1)/p1

where (q1/p1)− 1 = (q1 − p1)/p1 is negative constant causes 1/e(p1−q1)/p1 → ∞ as e→ 0.

In this situation, if ė = 0, the designed controller diverges. The problem is unexpected

and will be solved in later Section.

Next, we will discuss whether or not the closed-loop system states can converge within

finite time when sliding condition is exactly verified. First, importing the second-order

differential equations [42], basically a nonlinear switch line,

s = ė+ beq/p (2.41)

where e = x − xd, b > 0, p, q are positive odd integers and p > q. Similar to the

conventional sliding mode control technique, if the controller is designed such that s

converges to zero, then we say that the switching variable s reaches the terminal sliding

mode

ė+ beq/p = 0 (2.42)
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It has been shown in Zak [39] that e = 0 is the terminal attractor of dynamics (2.42). For

a error e(tr) at t = tr when s = 0, then we integrate the time derivative of ė = −beq/p to

predict the convergence time ts at the sliding regime. That is∫ ts+tr

tr

−1

b
e−q/pde =

∫ ts+tr

tr

dt (2.43)

Then, we have

−p
b(p− q)

e(tr + ts)
1−
q

p +
p

b(p− q)
e(tr)

1−
q

p = ts (2.44)

According to the conditions: 1) p, q are positive odd integers; and 2) p > q, we multiply

−b(p− q)/p into Eq. (2.44) and move the second term of left to the right

0 ≤ |e(tr + ts)|
1−
q

p = −b(p− q)

p
ts + |e(tr)|

1−
q

p (2.45)

Obviously, as

ts =
p

b(p− q)
|e(tr)|

1−
q

p (2.46)

we can verify

0 ≤ |e(tr + ts)|
1−
q

p ≤ 0 (2.47)

The expression (2.46) means that in terminal sliding mode (2.42) the state error e con-

verges to zero in finite time, the same for ė. The total time reaching e = 0 is t = tr + ts.

Then, expanding to high-order continuous differentiation. With the structure (2.26)-

(2.27), if sr−1 = 0 is reached, the stability and finite-time reachability of system equilib-

rium will be guaranteed because it is a concatenation of r dynamics of Eq. (2.41) type.

If sr−1 = 0 is reached at t = tr = ts0, then sr−2 will reach sr−2 = 0 at

ts1 = tr +
pr−1

br−1(pr−1 − qr−1)
|sr−2(tr)|

1−
qr−1

pr−1 (2.48)

The general form of the convergent time tsi for sr−1−i will reach sr−1−i = 0 for i=1,· · · ,

(r − 1) is described by

ts0 = tr (2.49)

and tsi = ts(i−1) +
pr−i

br−i(pr−i − qr−i)

∣∣sr−1−i(ts(i−1))
∣∣1−qr−1

pr−1 (2.50)
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The total time reaching e = 0 is

t = ts0 +
r−1∑
i=1

pr−i
br−i(pr−i − qr−i)

∣∣sr−1−i(ts(i−1))
∣∣1−qr−1

pr−1 (2.51)

TSMC adds nonlinear functions into the design of the sliding upper plane. A ter-

minal sliding surface is constructed and the tracking errors on the sliding surface converge

to zero in a finite time. Thus, the TSMC can guarantee that the system will achieve the

desired output in finite time if the controller is designed by Eqs. (2.37) and (2.38).

2.3 Nonsingular Terminal Sliding Mode Control (NTSMC)

The TSMC is characterized, like the CSMC, by strong robustness to uncertainties

and disturbances and guaranteed to achieve the desired state in finite time, yet it exists

a singular problem for control law, for instance in second-order system, if ė ̸= 0 when

e = 0; that is, u → ±∞ if ė ̸= 0 as e = 0. In order to overcome the singularity

problem in the conventional TSMC systems, several methods have been proposed. For

instance, one approach is to switch the sliding mode between terminal sliding mode and

linear hyperplane based sliding mode [43]. Another approach is to transfer the trajectory

to a pre-specified open region where TSMC is not singular [41]. These methods are

adopting indirect approaches to avoid the singularity. Thus, in 2001, Feng [44] proposed

a novel TSMC for second-order system, called nonsingular terminal sliding mode control

(NTSMC) to overcome the singularity problem. The time taken to reach the manifold

from any initial state and the time taken to reach the equilibrium point in the sliding

mode can be guaranteed to be finite time. However, the NTSMC is just adapted to the

second-order system. In other words, selecting n = 2 for system (2.1). Choosing the

sliding surface of the second-order NTSMC:

s = e+
1

c
ėp1/q1 (2.52)

where c = b
p1/q1
1 , and p1, q1 are positive odd integers under the constraint 1 < (p1/q1) < 2.

One can easily see that when s = 0, Eq. (2.52) is equivalent to Eq. (2.26) for n = 2 so

that the time of convergence is the same as TSMC for n = 2 when s = 0. For convenience,

we simplify p1, q1 as p, q, respectively. The finite time is taken to to travel from e(tr) ̸= 0
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at t = tr to e(tr + ts) is given by

ts =
p

b(p− q)
|e(tr)|

1−
q

p (2.53)

Note that in using Eq. (2.52) the derivative of s along the system dynamics does not result

in terms with negative powers, but the parameters p and q must satisfy the constraint

1 < p/q < 2 in addition. Next, we will account for the derivation process of the NTSMC

controller. The controller is chosen

u = ueq + ure (2.54)

where ueq is the feedback control for system (2.1) for n = 2 without model uncertainties

and external disturbances, such that s = 0 and ṡ = 0 and ure is to compensate the internal

parameter variations and turbulence. Furthermore, the time derivative of s is given by

ṡ = ė+
1

c

(
p

q

)
ė

p

q
−1

ë (2.55)

Hence, the controller u can be designed as follows:

ueq = − 1

g(x)

f(x)− x2d + c

(
q

p

)
ė
2−
p

q

 (2.56)

and

ure = − 1

g(x)
[ρ+ η] sgn(s) (2.57)

Since |d(x)| ≤ ρ, s · sgn(s) = |s|, Cauchy-Schwarz inequality s · d(x) ≤ |d(x)||s|, and

selected positive constant η which have been accounted for in Section 2.1, the resulting

expression of Eq. (2.55) is substituted into Eq. (2.56) and Eq. (2.57) and multiplied by

s as

sṡ = s ·
{
1

c

(
p

q

)
ė(p/q)−1 [(ρ+ η) sgn(s) + d(x)]

}
·

≤ 1

c

(
p

q

)
ė(p/q)−1 [− (ρ+ η) |s|+ |d(x)||s|]

≤ 1

c

(
p

q

)
ė(p/q)−1 [− (ρ+ η) |s|+ ρ|s|]

≤ −1

c

(
p

q

)
ė(p/q)−1η|s| (2.58)
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Because p and q are positive odd integers and 1 < p/q < 2, there is ė(p/q)−1 > 0 for ė ̸= 0.

Let R(ė) =
1

c

(
p

q

)
ė(p/q)−1η. As a result, we know R(ė) > 0 for ė ̸= 0. Eq. (2.58) can be

modified as

sṡ ≤ −R(ė)|s| for ė ̸= 0 (2.59)

will the NTSMC s = 0 be reached within finite time? The answer is yes [45]. The

condition for Lyapunov stability is satisfied for the case ė ̸= 0. According to Eq. (2.59), it

implies that the slope of sliding variable is always negative expect for ė = 0. In addition,

for the case ė = 0, substituting the control (2.56) and (2.57) into the second equation of

(2.1) yields

ë = −cq
p
ė
2−
p

q + d(x)− (ρ+ η) sgn(s) (2.60)

It can be easily seen that if ė = 0, then Eq. (2.60) becomes

ë = d(x)− (ρ+ η) sgn(s) (2.61)

which suggests that ė = 0 while e ̸= 0 is not an attractor. For the cases of s > 0 and

s < 0, we can obtain ë ≤ −η and ë ≥ η, respectively. In detail, there exists a vicinity

|ė| ≤ δė for a small

δė =

(
η

2

p

cq

) q

2q − p (2.62)

For s > 0 and ė > 0, when ė(t) reaches δė from an initial state error rate ė(0), we can

obtain

ë = −cq
p
ė
2−
p

q + d(x)− (ρ+ η) ≤ −cq
p
ė
2−
p

q − η ≤ −η
2

(2.63)

It means ė(t) is monotonous decreasing and at least at the speed of
η

2
cross the vicinity

δė within the finite time

tδė ≤ 2 (ė(0)− ė(tδė))

η
=

4δė
η

(2.64)

In the same manner, for s < 0 and ė < 0, when ė(t) reaches δė from an initial state error

rate ė(0), we can obtain

ë = −cq
p
ė
2−
p

q + d(x) + (ρ+ η) ≥ −cq
p
ė
2−
p

q + η ≥ η

2
(2.65)
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It means ė(t) is monotonous increasing and at least at the speed of
η

2
cross the vicinity

δė within the finite time

tδė ≤ 2 (ė(tδė)− ė(0))

η
=

4δė
η

(2.66)

Therefore the crossing of trajectory from one boundary of the vicinity ė = δė to the other

boundary ė = −δė for s > 0 and from ė = −δė to ė = δė for s < 0 is finite time. For

the region outside the |ė| < δė, the time to reach the boundaries of the vicinity is finite.

Indeed, we can easily show that

sṡ ≤ −δR(ė)|s| (2.67)

meaning the finite time reachability of the boundaries. The phase plane plot of the second-

order system is presented in Fig. 2.5 as below:

Fig. 2.5. The phase plot of the second-order system

Therefore we can conclude that the switching line can be reached within finite time.

Furthermore, the designed controller does not contain the singularity term to occur singu-

larity phenomenon compared with TSMC because the term c (q/p) ė2−(p/q) of Eq. (2.56)

does not yield singularity under the constraint 1 < (p/q) < 2. Thus, a NTSMC use

the other nonlinear functions into the design of the sliding upper plane to not only over-

come the singularity problem of TSMC but also verify the convergence of tracking desired

output in finite time.
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2.4 Mathematical Models of the Missile

2.4.1 Coordinate Systems

I) Definitions of Coordinate Frames

Before proceeding with the derivation, it is necessary to assume that the earth

is an inertial reference, and unless otherwise stated the atmosphere is fixed with

respect to the earth [46]. In addition, the coordinate systems adopted in the present

discussion are right-handed axis systems.

i) Earth (Inertial) coordinate frame (Oxgygzg)

The origin Og is at the ground tracker. Oxg-axis is taken as north. The

positive Oyg-axis points upward in the vertical plane including Oxg-axis. The

positive Ozg-axis is the right direction or completes the right-handed coordinate

system.

ii) Body coordinate frame (Oxbybzb)

The origin Ob is at the center of gravity of the missile. The positive Oxb-axis

coincides with the center line (or longitudinal axis) of the missile or forward

direction. The positive Oyb-axis points upward in the vertical plane including

Oxb-axis. The Ozb-axis completes the right-handed coordinate system.

iii) Ballistic coordinate frame (Oxtytzt)

The origin Ot is at the center of gravity of the missile. The positive Oxt-axis

coincides with the velocity of the missile. The positive Oyt-axis points upward in

the vertical plane including Oxt-axis and perpendicular to the horizontal plane

of the earth. The Ozt-axis completes the right-handed coordinate system.

iv) Wind coordinate frame (Oxvyvzv)

The origin Ov is at the center of gravity of the missile. The positive Oxv-

axis coincides with the velocity of the missile. The positive Oyv-axis points

upward in the vertical plane including Oxv-axis. The Ozv-axis completes the

right-handed coordinate system. Note that if the wind coordinate frame is

nonrotating with respect to Oxv-axis and the initial definition of the Oyv-axis

is including the vertical plane of the inertial coordinate frame (or the direction
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of Oyv-axis is always the same as Oyt-axis), it is equal to ballistic coordinate

frame.

II) Definitions of Angles

Herein, in order to clearly understand the definitions of the angles, the plus or

minus sign of each angle is according to a rule which the rotation axis directs to the

reader.

i) Angles between wind frame and body frame

α: It is between Oxv -axis and the plane composed of Oxb-axis and Ozb-axis

and defined the sign is positive when Oxv -axis is under that plane.

β: It is between Oxv -axis and the plane composed of Oxb-axis and Oyb-axis

and defined the sign is positive when Oxv -axis is on the right of that plane.

Fig. 2.6. Definitions of α and β

ii) Angles between ballistic frame and wind frame

γv: It is between Ozv -axis and the plane composed of Oxt-axis and Oyt-axis

and defined the sign is positive when Ozv -axis is on the left of that plane.

iii) Angles between inertial frame and ballistic frame

θ: It is between Oxt-axis and the plane composed of Oxg -axis and Ozg -axis

and defined the sign is positive when Oxt-axis is on the above of that plane.

ψv: It is between Oxt-axis and the plane composed of Oxg -axis and Oyg -axis
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Fig. 2.7. Definition of γv

and defined the sign is positive when Oxt-axis is on the left of that plane.

Fig. 2.8. Definitions of θ and ψv

iv) Angles between inertial frame and body frame

ϑ: It is between Oxb-axis and the plane composed of Oxg -axis and Oyg -axis

and defined the sign is positive when Oxb-axis is on the above of that plane.

ψ: It is between Oxb-axis and the plane composed of Oxg -axis and Ozg -axis

and defined the sign is positive when Oxb-axis is on the left of that plane.

γ: It is between Oyb-axis and the plane composed of Ox′g -axis and Oyg -axis

and defined the sign is positive when Oyb-axis is on the left of that plane.

III) Coordinate Transformation

Define Mk(ϕ) to be the rotation by k axis with angle ϕ which any one frame is

rotated counterclockwise away from other one with. and it is called direct cosine
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Fig. 2.9. Definitions of ϑ, ψ, and γ

matrix (DCM). So far as the surface-to-air missile is concerned, each one coordinate

follows three rotated steps to other one: 1) yaw, 2) pitch, and 3) roll, and the

derivation of the transformation only is established in the direction presented in

Fig. 2.10. The DCM rotated by the axes y, z, and x will be:

My(ϕ) =

 cϕ 0 −sϕ
0 1 0
sϕ 0 cϕ


Mz(ϕ) =

 cϕ sϕ 0
−sϕ cϕ 0
0 0 1

 (2.68)

Mx(ϕ) =

 1 0 0
0 cϕ sϕ
0 −sϕ cϕ


where cϕ and sϕ denote cosϕ and sinϕ, respectively.

Fig. 2.10. The relationships among coordinates

And the each coordinate transformation is described separately as follows:
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i) Wind frame transforms to body frame

T bv (α, β) =

 cα sα 0
−sα cα 0
0 0 1

 cβ 0 −sβ
0 1 0
sβ 0 cβ


=

 cαcβ sα −cαsβ
−sαcβ cα sαsβ
sβ 0 cβ

 (2.69)

ii) Ballistic frame transforms to wind frame

T vt (γv) =

 1 0 0
0 cγv sγv
0 −sγv cγv

 (2.70)

iii) Inertial frame transforms to ballistic frame

T tg(θ, ψv) =

 cθ sθ 0
−sθ cθ 0
0 0 1

 cψv 0 −sψv

0 1 0
sψv 0 cψv


=

 cθcψv sθ −cθsψv

−sθcψv cθ sθsψv

sψv 0 cψv

 (2.71)

iv) Inertial frame transforms to body frame

T bg (γ, ϑ, ψ) =

 1 0 0
0 cγ sγ
0 −sγ cγ

 cϑ sϑ 0
−sϑ cϑ 0
0 0 1

 cψ 0 −sψ
0 1 0
sψ 0 cψ


=

 cϑcψ sϑ −cϑsψ
−sϑcψcγ + sψsγ cϑcγ sϑsψcγ + cψsγ
sϑcψsγ + sψcγ −cϑsγ −sϑsψsγ + cψcγ


(2.72)

2.4.2 Rigid-Body Equations of Motion

In this section we will consider a typical missile and derive the equations of motion

according to Newton’s laws. In deriving the rigid-body equations of motion, the following

assumptions will be made [46], [47], [48]:

I) The missile is a rigid body, that is, the missile does not undergo any change in size

and shape.

II) The missile is approximate a cylinder, that is, it is an axisymmetric or rotational

symmetry missile.
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III) The mass of the missile remains constant during any particular dynamic analysis.

IV) The aerodynamic forces and moments acting on the missile are invariant with the

roll position of the missile relative to the free-stream velocity vector.

In addition, we note that in general, a vector Q can be transformed from a fixed frame

OXY Z to a rotating coordinate system oxyz by the relation [49]

Q̇OXY Z = Q̇Oxyz + ωQ ×Q (2.73)

where ωQ is the angular velocity of a rotating frame relatively to a fixed frame. Further-

more, if the rotating frame stops rotating, the two frames will has the same time rate of

the change of state variables. Herein, the equations of motion are derived by the kine-

matics and dynamics. They will be presented in four formats: I) kinematics equations

of translation about mass center, II) kinematics equations of rotation about mass center,

III) dynamics equations of translation about mass center, and IV) dynamics equations of

rotation about mass center, respectively [46], [47], [48].

I) Kinematics of Translation about Mass Center

In engineering practice, it is the simplest criterion for describing the missile trans-

lation in the ballistic frame. Denoting the angular velocity of ballistic frame rela-

tively to inertial frame byΩ and the missile velocityV, the missile velocity expressed

in the ballistic frame can be written in the form

m
dV

dt
= m

(
δV

δt
+Ω×V

)
(2.74)

Let us first resolve the vector Ω and V into components Ωtx, Ωty, Ωtz and Vtx, Vty,

Vtz, respectively, along the axes of the ballistic frame. Denoting by itx、jty、ktz

the corresponding to unit vectors of the ballistic frame (Oxtytzt), we write

Ω = Ωtxitx + Ωtyjty + Ωtzktz (2.75)

V = Vtxitx + Vtyjty + Vtzktz (2.76)

δV

δt
=
dVtx
dt

itx +
dVty
dt

jty +
dVtz
dt

ktz (2.77)
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where VtxVty
Vtz

 =

V0
0

 (2.78)

Substituting from Eq. (2.78)into Eq. (2.76)，

δV

δt
=
dV

dt
itx (2.79)

The Eq. (2.74) will be

Ω×V =

∣∣∣∣∣∣
ixt jzt kzt

Ωxt Ωyt Ωzt

V 0 0

∣∣∣∣∣∣ = V Ωztjty − V Ωytktz (2.80)

And, we have known that

Ω = ψ̇v + θ̇ (2.81)

where ψ̇v and θ̇ are on the Ozg-axis and Oyt-axis, respectively. Eq. (2.81) can be

modified as  Ωxt

Ωyt

Ωzt

 =

 cθ sθ 0
−sθ cθ 0
0 0 1

 0

ψ̇v
0

+

 0
0

θ̇


=

 ψ̇vsθ
ψ̇vcθ
θ̇

 (2.82)

Replacing Eq. (2.80) with Eq. (2.82), we have

Ω×V =

 0

V θ̇

−V ψ̇v cos θ

 (2.83)

Hence, substituting from Eqs. (2.77) and (2.79) into Eq. (2.74), we obtain
Ftx = mV̇

Fty = mV θ̇

Ftz = −mV ψ̇vcθ
(2.84)

where Ftx, Fty, Ftz are the components of net external force, which is formed by

thrust, aerodynamic force, gravity, and lateral force, etc., with respect to the ballistic

frame. Herein, we only analyze the first four sources of external force and the others

are regarded as disturbances.
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i) Thrust vector control (TVC)

The positive force of TVC Fpb is fixed in the direction of Oxb-axis; that is,

Fpb =

 Fp
0
0

 (2.85)

Using Eqs. (2.69) and (2.70), the force can be projected onto the ballistic frame

and denoted as Fpt.

Fpt = (T vt )
T (T bv)T Fpb

=

 Fpcαcβ
Fp (sαcγv + cαsβsγv)
Fp (sαsγv − cαsβcγv)

 (2.86)

ii) Aerodynamic force

The components of the force are defined as the positive drag force X along

negative Oxv-axis, the lift force Y positive to the Oyb-axis, and the side force

positive to the Ozb-axis in the wind frame. Using Eq. (2.70), we can project it

onto the ballistic frame. Fatx
Faty
Fatz

 = [T vt ]
T

 −X
Y
Z


=

 −X
Y cγv − Zsγv
Y sγv + Zcγv

 (2.87)

iii) Lateral thrust force

The components of the force are in the directions of Oyb-axis and Ozb-axis

in the body frame, respectively. In the same manner as thrust vector force, we

have [
Ftty
Fttz

]
=

[
Ftby (cαcγv − sαsβsγv)− Ftbz (cβsγv)
Ftby (cαsγv + sαsβcγv) + Ftbz (cβcγv)

]
(2.88)

iv) Gravity force

The negative force is in the direction of Oyg-axis. Using Eq. (2.71), the force

can be projected onto the ballistic frame. mgtx
mgty
mgtz

 =
(
T tg
) 0

−mg
0


=

 −mgsθ
−mgcθ

0

 (2.89)
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Substituting Eqs. (2.86)-(2.89) into Eq. (2.84), the kinematics equations of trans-

lation about mass center are

V̇ =
1

m
(Fptx + Fatx +mgtx)

θ̇ =
1

mV
(Fpty + Faty + Fltty +mgty)

ψ̇v =
−1

mV cθ
(Fptz + Fatz + Flttz +mgtz)

(2.90)

II) Kinematics of Rotation about Mass Center

In engineering practice, it is the simplest criterion for describing the missile ro-

tation in body frame. Denoting the angular velocity of body frame corresponding

to inertial frame by ω and the angular momentum H, the kinematics equations of

rotation about mass center has the form [49]

dH

dt
=
δH

δt
+ ω ×H (2.91)

The vectors ω and H are divided into components ωbx, ωby, ωbz and Hbx, Hby,

Hbz,respectively, along the axes of the body frame. Denoting by ibx, jby, kbz the

corresponding to unit vectors of the body frame, we write

ω = ωbxibx + ωbyjby + ωbzkbz (2.92)

H = Hbxibx +Hbyjby +Hbzkbz (2.93)

The first term of the right side in Eq. (2.91) will be

δH

δt
=
dHbx

dt
ibx +

dHby

dt
jby +

dHbz

dt
kbz (2.94)

Besides, we have known that

H = I · ω (2.95)

where I is inertia tensor, including moments and products of inertia. According to

the assumption 2, the products of inertia are zero in the body frame and Eq. (2.95)

can be simplified as follows Hbx

Hby

Hbz

 =

IxxωbxIyyωby
Izzωbz

 (2.96)
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Replacing the second term of the right side in Eq. (2.91) with Eq. (2.92) and Eq.

(2.96), we can obtain

ω ×H =

∣∣∣∣∣∣
ibx jby kbz

ωbx ωby ωbz
Ixxωbx Iyyωby Izzωbz

∣∣∣∣∣∣ =
 (Izz − Iyy)ωbyωbz

(Ixx − Izz)ωbxωbz
(Iyy − Ixx)ωbxωby

 (2.97)

Substituting Eqs. (2.94) and (2.97) into Eq. (2.91), we write

Mbx = Ixx
ωbx
dt

+ (Izz − Iyy)ωbyωbz

Mby = Iyy
ωby
dt

+ (Ixx − Izz)ωbxωbz

Mbz = Izz
ωbz
dt

+ (Iyy − Ixx)ωbxωby

(2.98)

where Mbx, Mby, Mbz, which are the rolling, yawing, and pitching moments, respec-

tively, are the components of net external moment produced mainly by aerodynamic

and lateral moments with respect to the body frame. Finally, we adjust Eq. (2.98),

the kinematics equations of rotation about mass center are

ω̇bx =
1

Ixx
[Mbx + (Iyy − Izz)ωbyωbz]

ω̇by =
1

Iyy
[Mby + (Izz − Ixx)ωbxωbz]

ω̇bz =
1

Izz
[Mbz + (Ixx − Iyy)ωbxωby]

(2.99)

III) Dynamics of Translation about Mass Center

These equations are defined in the inertial frame such that we will understand

the trajectory of the missile clearly. Furthermore, we must consider the altitude of

the missile when calculating air density, dynamic pressure, and aerodynamic force.

Hence, it is necessary to build these equations. In order to get these vectors, we

must use Eqs. (2.69) and (2.72) to let Eq. (2.78) project into the inertial frame.

The procedure is  ẋ
ẏ
ż

 =
(
T bg
)T (

T bv
) V

0
0

 (2.100)
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Expanding the above equation, we have dynamics equations of translation about

mass center as follows:
ẋ = V [cαcβcϑcψ + sαcβ(sϑcψcγ − sψsγ) + sβsϑcψsγ + sψcγ)]

ẏ = V (cαcβsϑ − sαcβcϑcγ − sβcϑsγ)

ż = −V [cαcβcϑsψ + sαcβ(sϑsψcγ + cψsγ) + sβ(sϑsψsγ − cψcγ)]

(2.101)

IV) Dynamics of Rotation about Mass Center

For the purpose of describing the attitude of the missile in the inertial frame, it is

indispensable to construct these equations. According to the relationship between

body frame and inertial frame, we have known

ω = ψ̇ + ϑ̇+ γ̇ (2.102)

where ψ̇, ϑ̇, and γ̇ are in the direction of Oyg-axis, Oz
′
g-axis, and Oxb-axis. We

can modify Eq. (2.102)on the basis of the regulation of coordinate transformation

in this thesis.  ωbx
ωby
ωbz

 =

 1 0 0
0 cγ sγ
0 −sγ cγ

 cϑ sϑ 0
−sϑ cϑ 0
0 0 1

 0

ψ̇
0


+

 1 0 0
0 cγ sγ
0 −sγ cγ

 0
0

ϑ̇

+

 γ̇
0
0


=

 1 sϑ 0
0 cϑcγ sγ
0 −cϑsγ cγ

 γ̇

ψ̇

ϑ̇

 (2.103)

Inversing the above matrix and expanding Eq. (2.103), the dynamics equations of

rotation about mass center will be

γ̇ = ωbx −
sϑ
cϑ

(ωbycγ − ωbzsγ)

ψ̇ = ωbycγ
1

cϑ
− ωzbsγ

1

cϑ

ϑ̇ = ωbysγ + ωbzcγ

(2.104)

2.4.3 Equations of Attitude Dynamics

In guidance law design, inputs are the overloadings of the missle, while the autopilot

must provide these overloadings to guidance law to successfully hit-to-kill the target.
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Besides, the overloading is produced by angle of attack or sideslip angle. Herein, for

convenience, we will build the equations of attitude of these two angles in the wind frame.

The angular velocity in the wind frame can be separated into two parts: 1) one is yielded

by wind frame relatively to body frame; 2) the other is yielded by body frame relatively

to inertial frame and projected into the wind frame. That is,

ωv = (ωvb)v + (ωbg)v (2.105)

where

(ωbg)v =
(
T bv
)T  ωbx

ωby
ωbz


=

 ωbxcαcβ − ωbysαcβ + ωbzsβ
ωbxsα + ωbycα
−ωbxcαsβ + ωbysαsβ + ωbzcβ

 (2.106)

and

(ωvb)v =

 0

−β̇
0

+

 c−β 0 −s−β
0 1 0
s−β 0 c−β

 0
0
−α̇


=

 α̇sβ
−β̇
−α̇cβ

 (2.107)

Then, we import Eq. (2.73) to express the acceleration of wind coordinate system relative

to inertial coordinate system:

dV

dt
=

(
δV

δt
+ ωv ×V

)
(2.108)

where

δV

δt
=

 V̇
0
0

 (2.109)

and

ωv ×V = (ωbg)v ×V + (ωvb)v ×V

=

∣∣∣∣∣∣
ivx jvy kvz

ωbgvx ωbgvy ωbgvz
V 0 0

∣∣∣∣∣∣+
∣∣∣∣∣∣

ivx jvy kvz

ωvb vx ωvb vy ωvb vz
V 0 0

∣∣∣∣∣∣
=

 0
(−ωbxcαsβ + ωbysαsβ + ωbzcβ)V

−(ωbxsα + ωbycα)V

+

 0
−α̇cβV
β̇V

 (2.110)
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Substituting Eqs. (2.109) and (2.110) into Eq. (2.108) and multiplying m in each term

of Eq. (2.108), we get
Fvx = mV̇
Fvy = mV (−ωbxcαsβ + ωbysαsβ + ωbzcβ − α̇cβ)

Fvz = mV
(
ωbxsα + ωbycα + β̇

) (2.111)

where Fvx, Fvy, Fvz are the components of net external force with respect to the wind

frame, and we have presented the net external force is yielded by four parts. Now, we will

analyze there force one by one as follows:

I) TVC

Using Eq. (2.69) to project into the wind frame, we obtain Fpvx
Fpvy
Fpvz

 =
(
T bv
)T  Fp

0
0


=

 Fpcαcβ
Fpsα

−Fpcαsβ

 (2.112)

II) Aerodynamic force

The components of the aerodynamic force are below: Favx
Favy
Favx

 =

 −X
Y
Z

 (2.113)

III) Lateral thrust force

Using Eq. (2.69) to project into wind frame, we have Ftvx
Ftvy
Ftvz

 =
(
T bv
)T  0

Ftby
Ftbz


=

 −Ftbysαcβ + Ftbzsβ
Ftbycα

Ftbycαsβ + Ftbzcβ

 (2.114)

IV) Gravity force

Using Eqs. (2.72) and (2.69), we get mgvx
mgvy
mgvz

 =
(
T bv
)T (

T bg
) 0

−mg
0


=

 mgbxcαcβ −mgbysαcβ +mgbzsβ
mgbxsα +mgbycα

−mgbxcαsβ +mgbysαcβ +mgbzcβ

 (2.115)
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where  mgbx
mgby
mgbz

 =

 −mgsϑ
−mgcϑcγ
mgcϑsγ

 (2.116)

Substituting Eqs. (2.112)-(2.115) into Eq. (2.111), the first equation V̇ is the same as

Eq. (2.90). Thus, the attitude equations are
α̇ = ωbz −

sβ
cβ

(ωbxcα − ωbysα)−
1

mV cβ
(Fpvy + Favy + Ftvy +mgvy)

β̇ = ωbxsα + ωbycα +
1

mV
(Fpvz + Favz + Ftvz +mgvz)

(2.117)

2.4.4 Model of Tail Fins

The X-tail is located in the bottom of the missile, which is based on the Patriot

Advanced Capability-3 (PAC-3) or MIM-104F missile [13]. From the end to the head of

the missile, the signs of the first fin deflection δ1 is on the top-left corner, and the others

abide by the direction of clockwise are δ2, δ3, δ4, respectively. Besides, the relationship

between fin deflections and total equivalent fin deflections of aileron deflection angle,

rudder deflection angle, and elevator deflection angle is analyzed below, and Fig. 2.11

shows the X-tail physical characteristics [50].

Fig. 2.11. Force analysis of X-tail
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δx = δ1 + δ2 + δ3 + δ4 (2.118)

δy =

√
2

2
(δ1 + δ2 − δ3 − δ4) (2.119)

δz =

√
2

2
(−δ1 + δ2 + δ3 − δ4) (2.120)

The matrix form is δx
δy
δz

 =
1

2

 2 2 2 2√
2

√
2 −

√
2 −

√
2

−
√
2

√
2

√
2 −

√
2



δ1
δ2
δ3
δ4



= T (δ)


δ1
δ2
δ3
δ4

 (2.121)

2.4.5 Reaction-Jet Control System (RCS)

This technology has been successfully implemented in PAC-3 since the Iraq War in

2003. This system, installed in front of the center of gravity of the missile or between the

center of gravity and the top of the missile, yields lateral thrust changing the missile’s

attitude immediately for additional auxiliary thrust mounted [51]. It is contented 180

impulse attitude control motors (IACMs), arraying in 10 circles (each one composed of

18 IACMs), staggered distributing along the Oxb-axis equably. Note that the IACM is

disposable. Define ith circle (i = 1, 2, · · · , 10) for each circle from top to the center of

gravity and jth IACM (j = 1, 2, · · · , 18) for the number in each circle, the odd and even

number circles are shown in Fig. 2.12.

In Fig. 2.12, the layout of the odd number circles presents that the first IACM is

opposite direction to the Oyb-axis, and the number of the others follows the direction

of counterclockwise, respectively. In the similar manner, the layout of the even number

circles presents that the first IACM is on the left 20 degrees of the opposite direction to

the Oyb-axis. The angle of each IACM is described below:

Φij =

{
(j − 1)× 2π/18 for i is odd
(j − 1)× 2π/18 + 2π/36 for i is even

(2.122)

or

Φij =
2j − i∗

18
π (2.123)
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Fig. 2.12. The layout scheme of IACMs, left side for odd number and right side for even
number

where i∗ = 2 when i is odd, and i∗ = 1 when i is even. The force and moment of each

(i, j) IACM is presented as 
F ij
tby = KcΦij

sij

F ij
tbz = −KsΦij

sij

(2.124)

and 
M ij

tby = −liF ij
tbz

M ij
tbz = liF

ij
tby

(2.125)

where K is the force of each IACM; li is the moment arm of ith circle from the center

of gravity of the missile to the location of the ith circle; and sij is defined as if (i, j)

IAMC is untapped or used once, sij = 0 and if (i, j) IAMC is opened, sij = 1. The total

components of the lateral force and moment are
Ftby =

∑10
i=1

∑18
j=1 F

ij
tby

Ftbz =
∑10

i=1

∑18
j=1 F

ij
tbz

(2.126)

and 
Mtby =

∑10
i=1−li

∑18
j=1 F

ij
tbz

Mtbz =
∑10

i=1 li
∑18

j=1 F
ij
tby

(2.127)
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CHAPTER THREE

OUTPUT TRACKING CONTROL FOR A NONLIN-

EAR SYSTEM

Similar to system stabilizability analysis and synthesis, the task of output tracking

has received considerable attention in both theoretical and practical industry applications

[52]-[54]. The objective of output tracking control is to design a feedback law such that

the output of a controlled plant can track a desired reference signal. To solve the tracking-

control problem effectively, many methods and techniques have been presented. Those

include regulator-based approach [55], inversion-based approach [56]-[58], Lyapunov-based

approach [59], Takagi-Sugeno (T-S) fuzzy model-based approach [60] and sliding mode

control-based (SMC) approach [61]-[63]. In this thesis, we will study the output tracking

problem from a blended control viewpoint via the following three techniques: CSMC,

TSMC and NTSMC schemes.

3.1 Problem Formulation

Consider a nonlinear control system as described by [62]

ẋ = fo(x) +Go(x)u (3.1)

and y = h(x) (3.2)

where x = [x1, · · · , xn]T ∈ IRn , u = [u1, · · · , um]T ∈ IRm , and y = [y1, · · · , yv]T ∈ IRv

denote the state variables, control inputs, and system outputs, respectively. The functions

fo(x) ∈ IRn , Go(x) = [go1(x), · · · ,gom(x)] ∈ IRn×m and h(x) = [h1(x), · · · , hv(x)]T ∈ IRv

are smooth functions. Our interest is to construct a control input so that the output
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approaches the sliding surface and achieves the desired value. For the decoupled input-

output system, the new output form is obtained from differentiating several times until

it is related to the input. That is, differentiating the output yj with respect to time, we

obtain

ẏj = ▽hj · ẋ = ▽hj · (fo +Gou) = Lfohj(x) +
m∑
i=1

Lgoi
hj(x)ui (3.3)

where Lfohj(x) and Lgoi
hj(x) are the Lie derivatives of hj with respect to fo and goi (for

definition, please see e.g., [64]). If Lgi
hj(x) is equal to zero for i=1,· · · , m, then we have to

differentiate the outputs yj repeatedly until input appears. Assume that kj is the smallest

integer such that at least one of the inputs appears in y
(kj)
j , then

y
(kj)
j = L

kj
fo
hj(x) +

m∑
i=1

Lgoi
L
kj−1
fo

hj(x)ui (3.4)

with Lgoi
L
kj−1
fo

hj(x) ̸= 0 for at least one i in a neighborhood of the point x0. kj is exactly

the number of times one has to differentiate yj in order to have the control u explicitly

appearing, in which {k1, · · · , kv} is called the relative degree [64] of the system. We

impose the following assumption:

Assumption 3.1 The System (3.1)-(3.2) has the following three properties:

I) The distribution △ := span {go1(x), · · · ,gom(x)} is involutive.

II) It has relative degree {k1, · · · , kv}, that is, for all x ∈ IRn , Lgoi
Lkfohj(x) = 0 for

1 ≤ i ≤ m, 1 ≤ j ≤ v and 0 ≤ k < kj − 1, while Lgoi
Lkfohj(x) ̸= 0 for 1 ≤ i ≤ m,

1 ≤ j ≤ v and k = kj − 1.

III) The control inputs u are divided into two parts u1 ∈ IRm1 and u2 ∈ IRm2 where

m1 ≥ v and m2 ≥ v.

Performing the above procedure for each output yj yields y
(k1)
1
...

y
(kv)
v

 = f(x) +G(x)u (3.5)
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where

f(x) =

 Lk1fo h1(x)
...

Lkvfo hv(x)

 , (3.6)

G(x) =
[
G1(x) G2(x)

]
, (3.7)

G1(x) =

 Lgo1L
k1−1
fo

h1(x) · · · Lgom1
Lk1−1

fo
h1(x)

...
. . .

...

Lgo1L
kv−1
fo

hv(x) · · · Lgom1
Lkv−1

fo
hv(x)

 ∈ IRv×m1 , (3.8)

and G2(x) =

 Lgo(m1+1)
Lk1−1
fo

h1(x) · · · LgomL
k1−1
fo

h1(x)
...

. . .
...

Lgo(m1+1)
Lkv−1

fo
hv(x) · · · LgomL

kv−1
fo

hv(x)

 ∈ IRv×m2 . (3.9)

Assumption 3.2 rank (G1(x)) = rank (G2(x)) = v

Equation (3.5) can also be rewritten as y
(k1)
1
...

y
(kv)
v

 = f(x) +G1(x)u1 +G2(x)u2 + d. (3.10)

Note that, we have introduced d in Eq. (3.10) to represent possible model uncertainties,

measurement noise and external disturbances. In this study, we call u1 the main inputs

which are continuous and u2 (with components u2j for 1 ≤ j ≤ m2) the auxiliary inputs

which are constant during a short time period once it was triggered with the following

form:

u2j :=

{
NjK if t ∈ [toj, toj +△tp]
0 elsewhere

(3.11)

where K denotes the minimum level of auxiliary control force; |Nj| is an integer which

represents the number of actuators in u2j being activated; toj is the time instant that

the actuator u2j is triggered; and △tp denotes the time duration of the constant force.

Note that u1 suffer from the output magnitude constraints, while u2 only provide discrete

values and the integer Nj, given by Eq. (3.11), satisfies |Nj| ≤ Nu, where Nu is a positive

integer, i.e., Nj ∈ {0,±1,±2, · · · ,±Nu}. Besides, we assume that the output magnitude

of the auxiliary inputs are much larger than those of the main inputs.

Before designing the control law, we have to check if the nonlinear system is minimum

phase. The scalar kr = k1 + · · · + kv is called the total relative degree of the nonlinear
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system [20]. The necessary and sufficient condition for the existence of a coordinate trans-

formation and a feedback that can linearize the system completely from the Input/Output

(I/O) point of view is the total relative degree kr being the same as the order of the sys-

tem, i.e., kr = n. If kr < n, then, the nonlinear system can only be partially linearized.

In this case, the stability of the nonlinear system given by Eqs. (3.1) and (3.2) depends

not only on the I/O linearized system, but also on the stability of the internal dynamics

(or zero dynamics).

According to linear algebra theory, G1(x) can be expressed as G1(x) = G1v1(x)G1u1(x)

where a diagonal matrix G1v1(x) ∈ IRv×v and G1u1(x) ∈ IRv×m1 satisfy rank (G1v1(x)) =

rank (G1u1(x)) = v. Given a desired v, the minimum norm solution of u1 that satisfies

v1 = G1u1(x)u1 is u1 = GT
1u1

(x)
(
G1u1(x)G

T
1u1

(x)
)−1

v1, that is, u1 is easily constructed if

v1 has been designed. Note that, G1(x)u1 = G1v1v1. Therefore, we may assume without

lose any generality that G1(x) is a diagonal matrix and G1(x) = diag[g11(x), · · · , g1v(x)].

In the same manner, we also may assume that G2(x) is a diagonal matrix and G2(x) =

diag[g21(x), · · · , g2v(x)]. Under the setting, System (3.5) can be rewritten in more simpler

form as follows:

y
(kj)
j = fj(x) + g1j(x)u1j + g2j(x)u2j + dj (3.12)

where fj, g1j, g2j : IRn → IR, and u1j and u2j are the jth component of u1 and u2,

respectively, for j = 1, · · · , v. In addition, we define the output errors to be

ej(t) = yj(t)− yjd(t), j = 1, · · · , v (3.13)

where yjd(t) is the desired output trajectory.

The main goal of this thesis is then to design suitable control laws which integrate the

main inputs u1j and auxiliary inputs u2j such that the output tracking performance can

be achieved, i.e., ej(t) → 0 as quickly as possible.

3.2 Design of Blended Controller

In this section, we will incorporate the main inputs (i.e., tail controllers) with auxiliary

inputs (i.e., lateral thrusters), called blended control, through the CSMC, TSMC and
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NTSMC schemes. The idea behind the design is as follows. First, a boundary layer (BL)

of the sliding surface is determined from the region where the system states will be forced

out or on this BL using the minimum level of auxiliary control inputs in one time duration

or period. Inside or on the BL, only the main inputs are used to keep the system states

close to the sliding surface as better as possible. When the system states are outside the

BL, both main and auxiliary inputs will be activated for better convergence rate of system

states to the sliding surface, compared with only considering the main inputs. The level

of the auxiliary inputs will be determined from the distance between the system states

and the sliding surface. Moreover, because the magnitude of the auxiliary inputs are

much larger than those of the main inputs, the main inputs are used to compensate for

only the deterministic dynamics, while the auxiliary inputs are responsible for disturbance

rejection and reaching the sliding surface. For better understanding of the design, a block

diagram for the blended control is shown in Fig. 3.1.

Under the CSMC, TSMC and NTSMC schemes, the presented blended control design

Fig. 3.1. Block diagram of blended control

include the following two features:

I) Outside the BL, the auxiliary inputs are used to account for the convergence speed

of the system states to the sliding surface because they only provide constant control

force, which is much larger than the main inputs, while the main inputs are employed
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to compensate for deterministic dynamics and the drastic change of states produced

by the activation of the auxiliary inputs for maintaining the rate of sliding variable

being zero.

II) Inside or on the BL, because the auxiliary inputs are not activated so that the

states variations are smooth. Therefore, only the main inputs are used for output

the tracking purpose.

3.2.1 Control Design via CSMC scheme

The CSMC design consists of the following two steps: I) choose an appropriate sliding

surface in terms of error states and II) construct a control law in form of

u = ure + ueq (3.14)

to realize the tracking performance, where ure plays the role of making the error states

reach the sliding surface in finite time, while ueq keeps the sliding surface an invariant

set and directs the output tracking errors to the origin. For the first step, we choose the

sliding surface to be sj(t) = 0 with

sj = e
(kj−1)
j (t) + aj(kj−1)e

(kj−2)
j (t) + · · ·+ aj2ėj(t) + aj1ej(t) (3.15)

for j = 1, · · · , v. Here, ajk for k = 1, · · · , (kj−1) are selected constants and the polynomial

λ
kj−1
j + aj(kj−1)λ

kj−2
j + · · ·+ aj2λj + aj1 (3.16)

for j = 1, · · · , v are Hurwitz. Obviously, the output tracking performance can be achieved

if the system states keep lying on the sliding surface, that is, ej → 0 as t→ ∞. Further-

more,

ṡj = fj(x) + g1j(x)u1j + g2j(x)u2j + dj − y
(kj)
jd

+aj(kj−1)e
(kj−1)
j (t) + · · ·+ aj2ëj(t) + aj1ėj(t) (3.17)

For second step, the controller design is divided into two parts: I) main inputs and II)

auxiliary inputs, as described below:
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I) Design of Main Inputs

The control law of each main input is designed to be the form of

ueq1j = − 1

g1j(x)
·
[
fj(x)− y

(kj)
jd (t) + aj(kj−1)e

(kj−1)
j (t) + · · ·+ aj2ëj(t) + aj1ėj(t)

]
(3.18)

to accomplish the demand of making the sliding surface an invariant set. To guar-

antee the reaching condition, we assume that dj is bounded as follows

Assumption 3.3 There exists nonnegative functions ρj(x, t), j = 1, · · · , v, such that

|dj| ≤ ρj(x, t) (3.19)

Let ϵj be the BL width associated with sj. Choose

ure1j =


− 1

g1j(x)
· (ρj + ηmj) · sgn(sj) if |sj| ≤ ϵj and u2j = 0

0 otherwise

(3.20)

where ηmj for j = 1, · · · , v are selected positive constants.

II) Design of Auxiliary Inputs

Because the auxiliary inputs involve the following two characteristics: I) being

zero or nonzero constant during a time duration depending on whether or not they

are triggered; II) with output magnitudes being much larger than the main inputs if

they are triggered. Consequently, the control law of each auxiliary input is designed

to be

ueq2j = 0 (3.21)

and ure2j = NjK. (3.22)

Now, we will discuss how Nj is selected. The method is based on the sliding condition

d

dt
|sj| ≤ −η′

rj (3.23)

where η
′
rj is a fictitious positive constant. The geometry of Condition (3.23) is shown in

Fig. 3.2 below:

According to Ineq. (3.23), the system state will reach sj(x) = 0 within the time of
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Fig. 3.2. The time response of |sj(x(t))|

|sj(x(0))| /η
′
rj. When △tp is given, the minimum η

′
rj that makes the system state reaching

the manifold sj(x) = 0 within △tp is

η
′

rj =
|0− sj(x(t))|

△tp
. (3.24)

We choose

ure
′

2j = − 1

g2j
·
(
ρju + η

′

rj

)
· sgn(sj) (3.25)

where ure
′

2j is the fictitious control input of ure2j and ρju is the upper bound of ρj. Then,

sj(t)ṡj(t) = −sj(t)
(
ρju + η

′

rj

)
· sgn(sj) + sj(t) · dj

≤ −
(
ρju + η

′

rj

)
|sj|+ ρju|sj|

≤ −η′

rj|sj| (3.26)

Inequality (3.26) accounts for the sliding variable sj will converge in finite time. However,

in fact, ure
′

2j must accord with the form of NjK. One method to determine Nj is such that

the value NjK as close ure
′

2j as possible, that is, we round off
(
ure

′

2j /K
)
to determine the
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constant integer Nj. In more detail, Eq. (3.25) is replaced by Eq. (3.22) described below

ure2j = round
(
ure

′

2j /K
)
K

= round

(
−
(
ρju + η

′
rj

)
/g2j

K
· sgn(sj)

)
K

= −round

((
ρju + η

′
rj

)
/g2j

K

)
sgn(sj) ·K

= −N ′

j · sgn(sj) ·K

= NjK (3.27)

where

N
′

j =



round

((
ρju + η

′
rj

)
/g2j

K

)

if

∣∣∣∣∣round
((

ρju + η
′
rj

)
/g2j

K

)∣∣∣∣∣ < Nu

Nusgn(N
′
j)

otherwise

(3.28)

and Nj = −N ′

j · sgn(sj). (3.29)

Note that the function round(·) is defined to round off a scalar. Then, the virtual con-

vergence speed is approximate to be:

ηrj = N
′

jKg2j − ρju. (3.30)

Although the actual reaching time |sj(x(0))| /ηrj can not exactly coincide with the ex-

pected reaching time |sj(x(0))| /η
′
rj, that is, this will cause inaccuracy of the reaching

time which is at most in △tp, sj can still converge according to the next paragraph.

Herein, we verify whether the sliding variable will converge. When sj is outside the

BL, from (3.17), we have

sj(t)ṡj(t) = sj(t)NKg2j + sj(t) · dj

≤ −N ′

jKg2j|sj|+ ρju|sj|

≤ −(ρju + ηrj)|sj|+ ρju|sj|

≤ −ηrj|sj| (3.31)
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Clearly, the system states will approach the sliding surface with a convergence speed at

least ηrj for j=1, · · · , v in a finite time [20] whenever the system states are outside the

BL. In contrast, when sj is inside or on the BL, from (3.17), we get

sj(t)ṡj(t) = −(ρj + ηmj)sj(t)sgn(sj) + sj(t) · dj

≤ −(ρj + ηmj)|sj|+ ρj|sj|

≤ −ηmj|sj| (3.32)

Similarly, the system states will reach the sliding surface in a finite time trj = |sj(x(taj))|/ηmj

for j=1, · · · , v [20] where taj is the time when any auxiliary input is not activated. Ac-

cording to above analysis, it implies that we can select bigger ηrj advisably outside the

BL to make sj approach sj = 0 faster and it still satisfies the sliding condition after sj is

inside the BL.

In addition, according to Eq. (3.28), the minimum nonzero integer of
∣∣N ′

j

∣∣ is 1, that

is, it implies that ∣∣∣∣∣
(
ρju + η

′
rj

)
g2j

∣∣∣∣∣ =
K

2
. (3.33)

From Eqs. (3.24) and (3.33), the BL can be derived as follows∣∣∣∣∣
(
ρju + η

′
rj

)
g2j

∣∣∣∣∣ = K

2

⇒
(
ρju + η

′
rj

)
|g2j|

=
K

2

⇒ (ρju + ϵj/△tp)
|g2j|

=
K

2

⇒ ϵj = △tp
(
K |g2j|

2
− ρju

)
. (3.34)

Hence, we have the next result:

Theorem 3.1 Suppose that System (3.1)-(3.2) is minimum phase and satisfies Assump-

tion 3.1 and 3.2 having input-output relation (3.12) with relative degree (k1, · · · , kv) and
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kj ≥ 1. Then, the output tracking performance yj → yjd for j=1,· · · , v can be accom-

plished by the CSMC blended controller (3.18), (3.20)-(3.22), and (3.29) if the designed

forces fulfill the physical constraints for each control channel and ρj(x, t) satisfies As-

sumption 3.3.

In this design idea, the features of the blended controller include:

I) Outside the BL, in order to achieve the output tracking performance as soon as

possible, the auxiliary inputs provide large constant force to let the sliding variable

approach the sliding surface as quickly as possible, while the main inputs compen-

sate the deterministic dynamics and drastic change of states produced by auxiliary

inputs.

II) Inside or on the BL, since the auxiliary inputs are not activated and the states

variation will be smaller than those outside the BL, u1j has more chance to avoid

saturation. Thus, we only use u1j to keep the system states close the sliding surface

as better as possible.

3.2.2 Control Design via TSMC scheme

This scheme can deal with that each output of System (3.1)-(3.2) has relative degree

more or equal to 2. The TSMC design consists of the following two steps: I) choosing an

appropriate sliding surface in terms of error states and II) constructing a control law in

form of Eq. (3.14). First, we choose sliding surface presented as

sj1 = ṡj0 + bj1s
qj1/pj1
j0 (3.35)

sj2 = ṡj1 + bj2s
qj2/pj2
j1 (3.36)

...

sjk = ṡj(k−1) + bjks
qjk/pjk
j(k−1) (3.37)
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for j=1,· · · , v and k=1,· · · , (kj − 1), where sj0 = ej, sjk = sj, bjk > 0, pjk > qjk and pjk,

qjk are positive odd integers. Taking time derivative on sjk, we have

ṡj(kj−1) =
d(kj)

dt(kj)
sj0 +

kj−2∑
k=0

bj(k+1)
d(kj−1−k)

dt(kj−1−k) s
qi(k+1)/pi(k+1)

jk

= fj(x) + g1j(x)u1j + g2j(x)u2j + dj − y
kj
jd

+

kj−2∑
k=0

bj(k+1)
d(kj−1−k)

dt(kj−1−k) s
qj(k+1)/pi(k+1)

jk (3.38)

For second step, the controller design is divided into two parts: I) main inputs and II)

auxiliary inputs.

I) Design of Main Inputs

We design

ueq1j = − 1

g1j(x)
·

fj(x)− y
kj
jd + dj +

kj−2∑
k=0

bj(k+1)
d(kj−1−k)

dt(kj−1−k) s
qj(k+1)/pi(k+1)

jk

(3.39)
and

ure1j =


− 1

g1j(x)
· (ρj + ηmj) · sgn(sj) if |sj| ≤ ϵj and u2j = 0

0 otherwise

(3.40)

where ηmj is selected positive constants.

II) Design of Auxiliary Inputs

Because the auxiliary inputs involve the following two characteristics: I) being

zero or nonzero constant during a time duration depending on whether or not they

are triggered; II) with output magnitudes being much larger than the main inputs if

they are triggered. Consequently, the control law of each auxiliary input is designed

to be

ueq2j = 0 (3.41)

and ure2j = NjK. (3.42)

Now, we will discuss how Nj is selected. The method is based on the sliding condition

d

dt
|sj| ≤ −η′

rj (3.43)
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where η
′
rj is a fictitious positive constant. According to Condition (3.43), the system state

will reach sj(x) = 0 within the time of |sj(x(0))| /η
′
rj. When △tp is given, the minimum

η
′
rj that makes the system state reaching the manifold sj(x) = 0 within △tp is

η
′

rj =
|0− sj(x(t))|

△tp
. (3.44)

We choose

ure
′

2j = − 1

g2j
·
(
ρju + η

′

rj

)
· sgn(sj) (3.45)

where ure
′

2j is the fictitious control input of ure2j and ρju is the upper bound of ρj. Then,

sj(t)ṡj(t) = −sj(t)
(
ρju + η

′

rj

)
· sgn(sj) + sj(t) · dj

≤ −
(
ρju + η

′

rj

)
|sj|+ ρju|sj|

≤ −η′

rj|sj| (3.46)

Inequality (3.46) accounts for the sliding variable sj will converge in finite time. However,

in fact, ure
′

2j must accord with the form of NjK. One method to determine Nj is such that

the value NjK as close ure
′

2j as possible, that is, we round off
(
ure

′

2j /K
)
to determine the

constant integer Nj. In more detail, Eq. (3.45) is replaced by Eq. (3.42) described below

ure2j = round
(
ure

′

2j /K
)
K

= round

(
−
(
ρju + η

′
rj

)
/g2j

K
· sgn(sj)

)
K

= −round

((
ρju + η

′
rj

)
/g2j

K

)
sgn(sj) ·K

= −N ′

j · sgn(sj) ·K

= NjK (3.47)

where

N
′

j =



round

((
ρju + η

′
rj

)
/g2j

K

)

if

∣∣∣∣∣round
((

ρju + η
′
rj

)
/g2j

K

)∣∣∣∣∣ < Nu

Nusgn(N
′
j)

otherwise

(3.48)

and Nj = −N ′

j · sgn(sj). (3.49)
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Then, the virtual convergence speed is approximate to be:

ηrj = N
′

jKg2j − ρju. (3.50)

Although the actual reaching time |sj(x(0))| /ηrj can not exactly coincide with the ex-

pected reaching time |sj(x(0))| /η
′
rj, that is, this will cause inaccuracy of the reaching

time which is at most in △tp, sj can still converge according to the next paragraph.

Herein, we verify whether the sliding variable will converge. When sj is outside the

BL, from (3.38), we have

sj(t)ṡj(t) = sj(t)NKg2j + sj(t) · dj

≤ −N ′

jKg2j|sj|+ ρju|sj|

≤ −(ρju + ηrj)|sj|+ ρju|sj|

≤ −ηrj|sj| (3.51)

Clearly, the system states will approach the sliding surface with a convergence speed at

least ηrj for j=1, · · · , v in a finite time [20] whenever the system states are outside the

BL. In contrast, when sj is inside or on the BL, from (3.17), we get

sj(t)ṡj(t) = −(ρj + ηmj)sj(t)sgn(sj) + sj(t) · dj

≤ −(ρj + ηmj)|sj|+ ρj|sj|

≤ −ηmj|sj| (3.52)

Similarly, the system states will reach the sliding surface in a finite time trj = |sj(x(taj))|/ηmj

for j=1, · · · , v [20] where taj is the time when any auxiliary input is not activated. Ac-

cording to above analysis, it implies that we can select bigger ηrj advisably outside the

selected boundary to make sj approach sj = 0 faster and it still satisfies the sliding con-

dition after sj is inside or on the BL.

Moreover, according to Eq. (3.48), the minimum nonzero integer of
∣∣N ′

j

∣∣ is 1, that is,
it implies that ∣∣∣∣∣

(
ρju + η

′
rj

)
g2j

∣∣∣∣∣ =
K

2
. (3.53)
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From Eqs. (3.44) and (3.53), the BL can be derived as follows∣∣∣∣∣
(
ρju + η

′
rj

)
g2j

∣∣∣∣∣ = K

2

⇒
(
ρju + η

′
rj

)
|g2j|

=
K

2

⇒ (ρju + ϵj/△tp)
|g2j|

=
K

2

⇒ ϵj = △tp
(
K |g2j|

2
− ρju

)
. (3.54)

Thus, we have the next result:

Theorem 3.2 Suppose that System (3.1)-(3.2) is minimum phase and satisfies Assump-

tion 3.1 and 3.2 having input-output relation (3.12) with relative degree (k1, · · · , kv) with

kj ≥ 2. Then, the output tracking performance yj → yjd for j=1,· · · , v can be accom-

plished by the TSMC blended controller (3.39), (3.40)-(3.42), and (3.49) if the control

forces fulfill the physical constraints for each control channel and ρj(x, t) satisfies As-

sumption 3.3.

In this design idea, the features of the blended controller include:

I) Outside the BL, in order to achieve the output tracking performance as soon as

possible, the auxiliary inputs provide large constant force to let the sliding variable

approach the sliding surface as quickly as possible, while the main inputs compen-

sate the deterministic dynamics and drastic change of states produced by auxiliary

inputs.

II) Inside or on the BL, since the auxiliary inputs are not activated and the states

variation will be smaller than those outside the BL, u1j has more chance to avoid

saturation. Thus, we only use u1j to keep the system states close the sliding surface

as better as possible.

Nevertheless, this method of TSMC scheme confronts the singularity problem for the

controller. In other words, this problem occurs in Eq. (3.39) when ṡjk ̸= 0 but sjk = 0.
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3.2.3 Control Design via NTSMC scheme

Finally, we introduce another controller design via NTSMC scheme to avoid the sin-

gularity phenomenon yielding from TSMC scheme. However, this scheme only can deal

with that each output of System (3.1)-(3.2) has relative degree 2. Choose sliding surface

presented as

sj1 =
1

cj1
ṡ
pj1/qj1

j0 + sj0 (3.55)

where sj0 = ej, sj1 = sj, cj1 = b
−qj1/pj1
j1 , and pj1, qj1 are positive odd integers under the

constraint 1 < (pj1/qj1) < 2 . Taking time derivative on sj1, we have

ṡj1 = ṡj0 +
1

cj1

(
pj1
qj1

)
ṡ

pj1
qj1

−1

j0 s̈j0 (3.56)

The controller design is divided into two parts: I) main inputs and II) auxiliary inputs.

I) Design of Main Inputs

We choose

ueq1j = − 1

g1j(x)
·

fj(x)− y2jd + dj + cj1
qj1
pj1

ṡ

2−
pj1
qj1

j0

 (3.57)

and

ure1j =


− 1

g1j(x)
· (ρj + ηmj) · sgn(sj) if |sj| ≤ ϵj and u2j = 0

0 otherwise

(3.58)

where ηmj is selected positive constants.

II) Design of Auxiliary Inputs

Because the auxiliary inputs involve the following two characteristics: I) being

zero or nonzero constant during a time duration depending on whether or not they

are triggered; II) with output magnitudes being much larger than the main inputs if

they are triggered. Consequently, the control law of each auxiliary input is designed

to be

ueq2j = 0 (3.59)

and ure2j = NjK. (3.60)
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Now, we will discuss how Nj is selected. The method is based on the sliding condition

d

dt
|sj| ≤ − 1

cj1

pj1
qj1

ṡ

pj1
qj1

−1

j0 η
′

rj (3.61)

where η
′
rj is a fictitious positive constant. Making sj(x(t)) achieve the sliding surface at

least within △tp and ṡj0 is constant in this time duration as the time duration is in a

short time, then we obtain

η
′

rj = cj1

(
qj1
pj1

)
1

ṡ
(pj1−qj1)/qj1
j0 (toj)

|0− sj1(x(t))|
△tp

(3.62)

where toj is the time instant when we decide to activate the jth auxiliary input. Although

Eq. (3.62) is undefined as ṡj0 = 0, in this case we will adopt allowable maximum value

of u2j under such situation. In addition, at ṡj0 = 0 there is an advantage for choosing

maximum u2j since s̈j0 ≤ −ηrj and s̈j0 ≥ ηrj for both sj1 > 0 and sj1 < 0, respectively

(discussed in Eq. (2.61) of Section 2.3). That is to say that if ṡj0 = 0, choosing maximum

η
′
rj can make ṡj0 leave ṡj0 = 0 fastest. Then, we choose

ure
′

2j = − 1

g2j
·
(
ρju + η

′

rj

)
· sgn(sj) (3.63)

where ure
′

2j is the fictitious control input of ure2j and ρju is the upper bound of ρj. Then,

sj(t)ṡj(t) =
1

cj1

(
pj1
qj1

)
ṡ

pj1
qj1

−1

j0

[
−(ρju + η

′

rj)sj1sgn(sj1) + sj1 · dj
]

≤ − 1

cj1

(
pj1
qj1

)
ṡ

pj1
qj1

−1

j0

[(
ρju + η

′

rj

)
|sj|+ ρju|sj|

]

≤ − 1

cj1

(
pj1
qj1

)
ṡ

pj1
qj1

−1

j0 η
′

rj|sj| (3.64)

Inequality (3.64) accounts for the sliding variable sj will converge in finite time. However,

in fact, ure
′

2j must accord with the form of NjK. One method to determine Nj is such that

the value NjK as close ure
′

2j as possible, that is, we round off
(
ure

′

2j /K
)
to determine the
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constant integer Nj. In more detail, Eq. (3.63) is replaced by Eq. (3.60) described below

ure2j = round
(
ure

′

2j /K
)
K

= round

(
−
(
ρju + η

′
rj

)
/g2j

K
· sgn(sj)

)
K

= −round

((
ρju + η

′
rj

)
/g2j

K

)
sgn(sj) ·K

= −N ′

j · sgn(sj) ·K

= NjK (3.65)

where

N
′

j =



round

((
ρju + η

′
rj

)
/g2j

K

)

if

∣∣∣∣∣round
((

ρju + η
′
rj

)
/g2j

K

)∣∣∣∣∣ < Nu

Nusgn(N
′
j)

otherwise

(3.66)

and Nj = −N ′

j · sgn(sj). (3.67)

Then, the virtual convergence speed is approximate to be:

ηrj = N
′

jKg2j − ρju. (3.68)

Although the actual reaching time can not exactly coincide with the expected reaching

time, that is, this will cause inaccuracy of the reaching time which is at most in △tp, sj

can still converge according to the next paragraph.

Herein, we verify whether the sliding variable will converge. When sj is outside the

BL, from (3.38), we have

sj1ṡj1 =
1

cj1

(
pj1
qj1

)
ṡ

pj1
qj1

−1

j0 [−(ρju + ηrj)sj1sgn(sj1) + sj1 · dj]

≤ 1

cj1

(
pj1
qj1

)
ṡ

pj1
qj1

−1

j0 [−(ρju + ηrj)|sj1|+ ρju|sj1|]

≤ − 1

cj1

(
pj1
qj1

)
ṡ

pj1
qj1

−1

j0 ηrj|sj1| (3.69)
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It was shown by [45] that the system states will approach the BL in finite time. In

contrast, when sj is inside or on the BL, from (3.17), we get

sj1ṡj1 =
1

cj1

(
pj1
qj1

)
ṡ

pj1
qj1

−1

j0 [−(ρj + ηmj)sj1sgn(sj1) + sj1 · dj]

≤ 1

cj1

(
pj1
qj1

)
ṡ

pj1
qj1

−1

j0 [−(ρj + ηmj)|sj1|+ ρj|sj1|]

≤ − 1

cj1

(
pj1
qj1

)
ṡ

pj1
qj1

−1

j0 ηmj|sj1| (3.70)

Similarly, it was shown by [45] that the system states will reach the sliding surface in

finite time.

Besides, according to Eq. (3.66), the minimum nonzero integer of
∣∣N ′

j

∣∣ is 1, that is, it
implies that ∣∣∣∣∣

(
ρju + η

′
rj

)
g2j

∣∣∣∣∣ =
K

2
. (3.71)

From Eqs. (3.62) and (3.71), the BL can be derived as follows∣∣∣∣∣
(
ρju + η

′
rj

)
g2j

∣∣∣∣∣ = K

2

⇒
(
ρju + η

′
rj

)
|g2j|

=
K

2

⇒

[
ρju + (cj1qj1ϵj)/

(
pj1 △ tpṡ

(pj1−qj1)/qj1
j0 (toj)

)]
|g2j|

=
K

2

⇒ ϵj =
pj1ṡ

(pj1−qj1)/qj1
j0 (toj)△ tp

cj1qj1

(
K |g2j|

2
− ρju

)
. (3.72)

Therefore, we have the next result:

Theorem 3.3 Suppose that System (3.1)-(3.2) is minimum phase and satisfies Assump-

tion 3.1 and 3.2 having input-output relation (3.12) with relative degree (k1, · · · , kv) and

kj = 2. Then, the output tracking performance yj → yjd for j=1,· · · , v can be accom-

plished by the NTSMC blended controller (3.57), (3.58)-(3.60), and (3.67) if the control

forces fulfill the physical constraints for each control channel and ρj(x, t) satisfies As-

sumption 3.3.
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In this design idea, the features of the blended controller include:

I) Outside the BL, in order to achieve the output tracking performance as soon as

possible, the auxiliary inputs provide large constant force to let the sliding variable

approach the sliding surface as quickly as possible, while the main inputs compen-

sate the deterministic dynamics and drastic change of states produced by auxiliary

inputs.

II) Inside or on the BL, since the auxiliary inputs are not activated and the states

variation will be smaller than those outside the BL, u1j has more chance to avoid

saturation. Thus, we only use u1j to keep the system states close the sliding surface

as better as possible.
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CHAPTER FOUR

APPLICATION TO MISSILE SYSTEM

In this chapter we will employ the controllers presented in Chapter 3 to control of

ATBM. For simplicity, we only consider the control of dynamics in longitudinal (pitch)

plane. This model may provide a common basis for developing and understanding new

approaches to the missile controller problem.

4.1 Model Description

In this section, the model considered consists of the longitudinal (pitch plane) force and

moment equations representative of a generic missile travelling at Mach 3 at an altitude

of 20, 000 (ft) and with aerodynamic coefficients represented as third order polynomials

in angle of attack. The nonlinear nominal dynamic equations of the missile airframe are

given in [65], [66] as follows:

α̇ =

(
frdgqS

mV

)
cos (α/frd) [ϕz(α) + bzδz] + ωbz +

cos(α/frd)

mV
Ftbyc (4.1)

ω̇bz =

(
frdqSd

Izz

)
[ϕm(α) + bmδz]−

l

Izz
Ftbyc (4.2)

where the notations given in Eq. (4.1)-(4.2) can be found in nomenclature. The tail control

of aerodynamic force parts are continuous, while lateral thrust control is constant during

a short time period once it was triggered. The aerodynamic coefficients are approximated

by [65]:

ϕz(α) = 0.000103α3 − 0.00945α|α| − 0.170α (4.3)

bz = −0.034 (4.4)

ϕm(α) = 0.000215α3 − 0.0195α|α| − 0.051α (4.5)

bm = −0.206 (4.6)
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These approximations are valid for α in the range of ±20 degrees. Besides, we adopt the

following assumptions from [67] I) Ignore the total number of available IACM, but Nu = 5

in one time duration; II) the moment arm of the IACM is fixed ahead of the missile center

of gravity; and III) an IACM can provide K = 2500 (lbf) sustaining △tp = 0.02 (sec).

The output of tail actuator has time delay, which is modeled by a linear first-order system

with time constant τt for the elevator given by

δ̇z = − 1

τt
δz +

1

τt
δzc (4.7)

The deflection limit of the tail fin is assumed to be ±50 (deg) and the time constant

τt = 0.005 (sec). As the missile speed is large, the last term in the right-hand-side of

Eq. (4.1) is omitted [19], that is, the maximum magnitude of |Ftbyc| = 12500 (lbf) for

Nu = 5 accounts for (cos(α/frd)Ftbyc)/(mV ) → 0 for m = 450 (lbs) and V = 3109.3

(ft/sec). Actually, the moment of lateral thrust force is the main to influence the attitude

of the missile. Equations (4.1), (4.2) and (4.7) can be rewritten as the following standard

state-space form by defining x = [α, ωzb , δz]
T , u11 = δzc, and u21 = Ftbyc:

ẋ = f0(x) +G0

[
u11
u21

]
(4.8)

where

f0(x) =



(
frdgqS

mV

)
cos (x1/frd) [ϕz(x1) + bzx3] + x2

(
frdqSd

Izz

)
[ϕm(x1) + bmx3]

− 1

τt
δz


(4.9)

and

G0 =


0 0

0 − l

Izz
1

τt
0

 (4.10)

Define

y = h(x) = x1 (4.11)
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The main goal is to track desired angle of attack x1d, i.e., x1 → x1d. According to Eq.

(3.12), we have

y
(2)
1 = f1(x) + g11(x)u11 + g21(x)u21 + d1 (4.12)

where d1 = 0 and the parameters f1(x), g11(x) and g21(x) are given as below:

f1 =

(
frdgqS

mV

)2

cos

(
x1
frd

)(
0.000103x31 − 0.00945x21 − 0.170x1 − 0.034x3

)
·
{
0.000103

[
− sin(

x1
frd

)
x31
frd

+ 3 cos(
x1
frd

)x21

]
−0.00945

[
− sin(

x1
frd

)
x21
frd

+ 2 cos(
x1
frd

)x1

]
−0.170

[
− sin(

x1
frd

)
x1
frd

+ 2 cos(
x1
frd

)

]
−0.034

[
− sin(

x1
frd

)
x3
frd

]}
−
(
frdgqS

mV

)
cos(

x1
frd

)
x3
τt

+

(
frdqSd

Izz

)(
0.000215x31 − 0.0195x21 + 0.051x1 − 0.206x3

)
, (4.13)

g11(x) = −0.034

(
frdgqS

mV τt
cos (x1/frd)

)
, (4.14)

and g21(x) = − l

Izz
(4.15)

Clearly, g11(x) and g21(x) are nonzero. Besides, because System (4.8)-(4.11) has relative

degree 2, we have to check the stability of the zero-dynamics. Herein, assuming only the

tail works in the steady state, i.e. u21 = 0. In order to determine the stability of the

internal, we have to choose a coordinate transformation to transform the system dynamics

into the so-called normal form. To this end, we choose

µ1 = y1 = x1 (4.16)

and µ2 = ẏ1 =

(
frdgqS

mV

)
cos (x1/frd) [ϕz(x1) + bzx3] + x2. (4.17)

We have to determine a third function ψ(x) such that z = [µ1 µ2 ψ]
T qualifies a coordinate

transformation and satisfies

LG01ψ =
∂ψ

∂x3

1

τt
= 0 (4.18)
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where G01 is 1st column of G0 given by Eq. (4.10). A trivial candidate of ψ(x) is selected

below

ψ = x2 (4.19)

because the Jacobian matrix of z is

∂z

∂x
=


1 0 0
∂µ2

∂x1
1 −0.034

(
frdgqS

mV

)
cos (x1/frd)

∂ψ

∂x1
1 0

 (4.20)

which is nonsingular for any constrained x. This means the state transformation is a local

diffeomorphism. Thus, the internal dynamics is represented by the equation

ψ̇ =

(
frdqSdbm
Izzbz

)(µ2 − ψ)
1(

frdgqS

mV

)
cos (µ1/frd)

− ϕz(µ1)

 (4.21)

The associated zero-dynamics is obtained by letting µ1 = 0 and µ2 = 0 as

ψ̇ = −frdqSdbmfrdgqS
IzzbzmV

ψ (4.22)

which is clearly exponentially stable. Thus, System (4.8)-(4.11) is minimum phase.

After that, the control objective is to design the proper controller to achieving the

output tracking performance. Define error e1 = x1 − x1d where x1d is desired angle of

attack. We now recall the overall controllers from Chapter 4 as follows:

A) Blended controller via CSMC scheme

Sliding surface:

s1 = ė1 + a11e1 (4.23)

Tail:

u11 =


− 1

g11
[f1(x)− α̈d + a11ė1]

if |s1| ≤ ϵ1 and u21 ̸= 0

− 1

g11
[f1(x)− α̈d + a11ė1 + (ρ1 + ηm1) · sgn(s1)]

otherwise

(4.24)
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where ϵ1 = (|g21|K △ tp) /2.

Lateral Thrust:

u21 = N1K (4.25)

where

N1 = −N ′
1sgn(s1)

N
′
1 =



round

((
ρ1u + η

′
r1

)
/g21

K

)

if

∣∣∣∣∣round
((

ρ1u + η
′
r1

)
/g21

K

)∣∣∣∣∣ < Nu

Nusgn(N
′
1)

otherwise

η
′
r1 =

|s1(x(t))|
△tp

(4.26)

B) Blended controller via TSMC scheme

Sliding surface:

s1 = ė1 + b11e
q11/p11
1 (4.27)

Tail:

u11 =



− 1

g11

[
f1(x)− α̈d + b11

(
q11
p11

)
e
(q11−p11)/p11
1 ė1

]
if |s1| ≤ ϵ1 and u21 ̸= 0

− 1

g11

[
f1(x)− α̈d + b11

(
q11
p11

)
e
(q11−p11)/p11
1 ė1 + (ρ1 + ηm1) · sgn(s1)

]
otherwise

(4.28)

where ϵ1 = (|g21|K △ tp) /2.

Lateral Thrust:

u21 = N1K (4.29)
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where

N1 = −N ′
1sgn(s1)

N
′
1 =



round

((
ρ1u + η

′
r1

)
/g21

K

)

if

∣∣∣∣∣round
((

ρ1u + η
′
r1

)
/g21

K

)∣∣∣∣∣ < Nu

Nusgn(N
′
1)

otherwise

η
′
r1 =

|s1(x(t))|
△tp

(4.30)

C) Blended controller via NTSMC scheme

Sliding surface:

s1 = e1 +
1

c11
ė
p11/q11
1 (4.31)

Tail:

u11 =



− 1

g11

f(x)− α̈d + c11

(
q11
p11

)
ė
2−
p11
q11


if |s1| ≤ ϵ1 and u21 ̸= 0

− 1

g11

f(x)− α̈d + c11

(
q11
p11

)
ė
2−
p11
q11 + (ρ1 + ηm1) sgn(s1)


otherwise

(4.32)

where ϵ1 =
(
p11ė

(p11−q11)/q11
1 (to1)△ tp

)
/ (2c11q11).

Lateral Thrust:

u21 = N1K (4.33)

        61



where

N1 = −N ′
1sgn(s1)

N
′
1 =



round

((
ρ1u + η

′
r1

)
/g21

K

)

if

∣∣∣∣∣round
((

ρ1u + η
′
r1

)
/g21

K

)∣∣∣∣∣ < Nu

Nusgn(N
′
1)

otherwise

η
′
r1 = c11

(
q11
p11

)
1

ṡ
(p11−q11)/q11
10 (to1)

|s1(x(t))|
△tp

(4.34)

4.2 Simulation Results

In this section, we will verify whether or not the RCS is helpful for the angle-of-attack

control of the missile system from simulation viewpoint. In simulations, the physical

and geometric parameters are given by [65], [66] Iz = 182.5 (slug · ft2), m = 450 (lbs),

V = 3109.3 (ft/sec), S = 0.44 (ft2), d = 0.75 (ft), q = 6132.8 (lbs/ft2), and l = 2 (ft).

The parameters of the controllers are given as a11 = 20, b11 = 20, q11 = 5, p11 = 7,

and c11 = b
p11/q11
11 . The initial states are set to be zeros and the desired angle of attack

is selected as αd = 20 (degree). Moreover, to alleviate the phenomenon of chattering

produced by sign function, we replace sgn(s1) by saturation function defined

sat(s1, ϵ) :=


sgn(s1) if |s1| > ϵ

s1
ϵ

if |s1| ≤ ϵ
(4.35)

where ϵ is chosen to be 0.01. Besides,

ηm1 =

{
165 if |s1| ≤ ϵ
1000 if |s1| > ϵ

. (4.36)

The criterion for the tracking performance being successful is defined as the tracking error

|e1| ≤ 0.01.

Numerical results for nominal system (d1 = 0) to perform our tracking task are sum-

marized in Tables 4.1-4.2 and Figs. 4.1-4.36 in which blue lines and magenta lines denote

the responding curve for blended control and tail control, respectively. Among these, we

use the following twelve control schemes: the first six contain the blended control and
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the tail control using sign-type CSMC, TSMC and NTSMC designs labeled SICSMCB,

SICSMCT, SITSMCB, SITSMCT, SINTSMCB and SINTSMCT, respectively, while the

others are the blended control and the tail control based on saturation-type CSMC,

TSMC and NTSMC designs labeled SACSMCB, SACSMCT, SATSMCB, SATSMCT,

SANTSMCB and SANTSMCT, respectively.

The simulations in the case of using sign-type SMC designs involve in Figs. 4.1-4.15.

Among these, Figs. 4.1, 4.6 and 4.11 show the time evolution of output tracking error

α − αd. Figs. 4.2, 4.7 and 4.12 display the time evolution of the three system states.

Figs. 4.3, 4.8 and 4.13 exhibit the time evolution of the sliding variables. Figs. 4.4, 4.9

and 4.14 behave the time evolution of commanded tail inputs. Finally, Figs. 4.5, 4.10

and 4.15 account for how many IACMs the RCS provides. Table 4.1 summarizes the time

for successfully achieving output tracking performance (|e1| ≤ 0.01) using sign-type SMC

tail and blended controllers. It is observed from Table 4.1 that the blended controllers

consume less time than tail controllers for successfully achieving the desired output. In-

deed, the blended design saves approximately 0.2598 (sec), 0.0786 (sec) and 0.0951 (sec)

for CSMC, TSMC and NTSMC schemes, respectively. It is seen form Fig. 4.3 that the

responding curve of SICSMCB has a small change at t = 0.04 (sec) and a peak at t = 0.06

(sec), which are resulted from different number of IACMs being activated as can also be

seen from Fig. 4.5. After 0.06 (sec), because the system states has entered the boundary

layer ϵ1, the lateral thrust is not triggered and only the tail is used for output tracking

task. The same scenario can also be found from Figs. 4.8, 4.10 for SITSMCB and Figs.

4.13, 4.15 for SINTSMCB. According to Eq. (2.46), the convergence time is calculated to

be 0.3137 (sec) and 0.2293 (sec) for SITSMCB and SINTSMCB, after reaching the sliding

surface, predicted by TSMC and NTSMC theory, respectively. However, the convergence

time found from simulation is approximate 0.3312 (sec) and 0.2769 (sec) for SITSMCB

and SINTSMCB, respectively, which is a little bit larger than predicted value. This might

result from occurrence of chatter on sliding surface in Figs. 4.17 and 4.18 which leads to

not only the chattering inputs (shown in Figs. 4.9 and 4.14) but also the imprecision of

the output error (observed in Figs. 4.20 and 4.21). This chattering phenomenon results

from the computer simulation whose step size can not divide into infinitesimally small.
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In addition, besides TSMC and NTSMC schemes, CSMC scheme has the same chattering

phenomenon shown in Figs. 4.4, 4.16 and 4.19. In a practical realization, the fact that

the switching frequency is finite implies that the trajectories of the system generally not

lie on the switching surface. In fact, they lie within a neighboring region of the surface

and this non-ideal characteristic provokes the manifestation of a physical phenomenon

[68]. There are three disadvantages of these sign-type SMC schemes during the physical

implementation. First, it is unavoidable that the switching of the control take place at a

very high frequency but the physical system may not tolerate such behavior at the input.

Second, energy is wasted when the system is near the sliding surface. Third, it can yield

resonance, excite unmodeled dynamics or even damage to mechanisms [20].

To alleviate the chattering behavior, the saturation-type SMC designs have been in-

troduced in [69]. Numerical simulations using saturation-type SMC schemes rather than

sign-type SMC schemes are given in Figs. 4.22-4.36. Among these, Figs. 4.22, 4.27 and

4.32 show the time evolution of output tracking error α − αd. Figs. 4.23, 4.28 and 4.33

display the time evolution of the three system states. Figs. 4.24, 4.29 and 4.34 exhibit

the time evolution of the sliding variables. Figs. 4.25, 4.30 and 4.35 behave the time

evolution of commanded tail inputs. Finally, Figs. 4.26, 4.31 and 4.36 account for how

many IACMs the RCS provides. It is observed from Figs. 4.22, 4.27 and 4.32 the out-

put tracking performance are achieved by both tail controllers and blended controllers;

however, the convergence times of the output errors by blended controllers via the three

saturation-type SMC schemes are found to be faster than those by tail controllers. Table

4.2 displays the time for successfully achieving output tracking performance (|e1| ≤ 0.01)

using saturation-type SMC tail and blended controllers. Indeed, the blended design saves

approximately 0.2593 (sec), 0.0785 (sec) and 0.0951 (sec) for CSMC, TSMC and NTSMC

schemes, respectively. The remaining two states are found to reach their steady state

after the desired output is achieved. It is seen from Fig. 4.24 that the responding curve

of SACSMCB has a small change at t = 0.04 (sec) and a peak at t = 0.06 (sec), which

resulted from different number of IACMs be activated as can also be seen from Fig. 4.26.

Besides, Fig. 4.25 shows that the responding curve of SACSMCB experiences two jumps.

The 1st jump corresponding to the system states have entered the region where the RCS
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does not activate, while the 2nd jump associated with the system states have entered the

boundary layer of the saturation function where the control gain is changed by Eq. 4.36

from 1000 to 165, which can also be identified in Figs. 4.24 and 4.26. The same scenario

can also be found from Figs. 4.29, 4.30, 4.31 for SITSMCB and Figs. 4.34, 4.30, 4.36

for SINTSMCB. After the system states has entered the boundary layer of saturation

function, all the sliding variables using saturation-type SMC design remain inside the

boundary layer. These agree with the results of Chapter 4. From these simulations, it

can be concluded that the proposed blended controllers can achieve desired output faster

than the tail controllers.

Although the TSMC can theoretically improve CSMC from asymptotical convergence

to finite time convergence and NTSMC can avoid singularity problem of TSMC, they all

suffer from the chattering problem by using sign-type SMC design due to the computer

simulation. The chattering problem will make the sliding variables not lie on the sliding

manifold. This means that both TSMC and NTSMC can not achieve finite time conver-

gence and accuracy tracking performances in practical applications. On the other hand,

although replacing the sign-type SMC design by saturation-type SMC design will evoke

imprecision of output tracking task, it can avoid the chattering problem resulting in dam-

aging to mechanisms. Therefore, no matter what sign-type or saturation-type functions

are used in CSMC, TSMC and NTSMC schemes, the finite time convergence can not

achieve in practical applications.

In this example, because the distance between the selected initial states and the slid-

ing surface of TSMC and NTSMC are smaller than that of CSMC, both the blended

controllers and tail controllers via TSMC and NTSMC schemes consume less time than

CSMC for tracking performance. Besides, the number of required IACMs for blended

controllers via both TSMC and NTSMC schemes are less than that of CSMC scheme.

However, the above two results depend on the locations of the initial states, that is, if

the initial states are closer to the sliding surface the convergence time for output tracking

task via the three SMC schemes mentioned previously generally is faster and moreover,

the required number of IACMs for blended controller via the aforementioned three SMC

schemes will be fewer.
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In summary, the performance of tracking accuracy and convergence time by using

blended controllers via CSMC, TSMC and NTSMC are superior to those by using the

tail controllers only no matter what CSMC, TSMC or NTSMC are used. This accounts

for that the novel missiles prefer to adopt tails and RSC instead of tails only.
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Table 4.1. Time for successfully achieving output tracking performance (|e1| ≤ 0.01) using
sign-type SMC tail and blended controllers

Tail Controller Blended Controller
SMC Scheme 0.66650 0.40670

TSMC Scheme 0.45440 0.37580
NTSMC Scheme 0.47150 0.37640

Table 4.2. Time for successfully achieving output tracking performance (|e1| ≤ 0.01) using
saturation-type SMC tail and blended controllers

Tail Controller Blended Controller
SMC Scheme 0.66715 0.40790

TSMC Scheme 0.45470 0.37620
NTSMC Scheme 0.47160 0.37650
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Fig. 4.1. Time evolution of error e1 = α− αd by sign-type SMC scheme
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Fig. 4.2. Time evolution of (a)α (b)ωzb (c)δz by sugn-type SMC scheme
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Fig. 4.3. Time evolution of the sliding variables by sign-type SMC scheme
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Fig. 4.4. Time evolution of δzc by sign-type SMC scheme
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Fig. 4.5. Time evolution of the number of the consumed IACMs by sign-type SMC scheme
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Fig. 4.6. Time evolution of error e1 = α− αd by sign-type TSMC scheme
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Fig. 4.7. Time evolution of (a)α (b)ωzb (c)δz by sign-type TSMC scheme
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Fig. 4.8. Time evolution of the sliding variables by sign-type TSMC scheme
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Fig. 4.9. Time evolution of δzc by sign-type TSMC scheme
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Fig. 4.10. Time evolution of the number of the consumed IACMs by sign-type TSMC
scheme
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Fig. 4.11. Time evolution of error e1 = α− αd by sign-type NTSMC scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

                                                                              (a)                                                              Time (sec)

α 
(d

eg
re

e)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

                                                                              (b)                                                              Time (sec)

ω
zb

 (
de

gr
ee

/s
ec

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−30

−20

−10

0

10

                                                                              (c)                                                              Time (sec)

δ z (
de

gr
ee

)

SINTSMCB

SINTSMCB

SINTSMCB

SINTSMCT

SINTSMCT

SINTSMCT

Fig. 4.12. Time evolution of (a)α (b)ωzb (c)δz by sign-type NTSMC scheme
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Fig. 4.13. Time evolution of the sliding variables by sign-type NTSMC scheme
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Fig. 4.14. Time evolution of δzc by sign-type NTSMC scheme
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Fig. 4.15. Time evolution of the number of the consumed IACMs by sign-type NTSMC
scheme
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Fig. 4.16. Time evolution of the sliding variables in magnified scale by sign-type SMC
scheme
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Fig. 4.17. Time evolution of the sliding variables in magnified scale by sign-type TSMC
scheme
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Fig. 4.18. Time evolution of the sliding variables in magnified scale by sign-type NTSMC
scheme

        76



0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−4

                                                                                                                                                Time (sec)

E
rr

or
(y

−
y d) 

(d
eg

re
e)

SICSMCT

SICSMCB

Fig. 4.19. Time evolution of error e1 = α−αd in magnified scale by sign-type SMC scheme
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Fig. 4.20. Time evolution of error e1 = α − αd in magnified scale by sign-type TSMC
scheme
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Fig. 4.21. Time evolution of error e1 = α − αd in magnified scale by sign-type NTSMC
scheme
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Fig. 4.22. Time evolution of error e1 = α− αd by saturation-type SMC scheme
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Fig. 4.23. Time evolution of (a)α (b)ωzb (c)δz by saturation-type SMC scheme
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Fig. 4.24. Time evolution of the sliding variables by saturation-type SMC scheme

        79



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−40

−20

0

20

40

60

80

                                                                                                                                                Time (sec)

In
pu

t (
de

gr
ee

)

SACSMCT

SACSMCB

Fig. 4.25. Time evolution of δzc by saturation-type SMC scheme
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Fig. 4.26. Time evolution of the number of the consumed IACMs by saturation-type SMC
scheme
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Fig. 4.27. Time evolution of error e1 = α− αd by saturation-type TSMC scheme
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Fig. 4.28. Time evolution of (a)α (b)ωzb (c)δz by saturation-type TSMC scheme
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Fig. 4.29. Time evolution of the sliding variables by saturation-type TSMC scheme
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Fig. 4.30. Time evolution of δzc by saturation-type TSMC scheme
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Fig. 4.31. Time evolution of the number of the consumed IACMs by saturation-type
TSMC scheme
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Fig. 4.32. Time evolution of error e1 = α− αd by saturation-type NTSMC scheme
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Fig. 4.33. Time evolution of (a)α (b)ωzb (c)δz by saturation-type NTSMC scheme
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Fig. 4.34. Time evolution of the sliding variables by saturation-type NTSMC scheme
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Fig. 4.35. Time evolution of δzc by saturation-type NTSMC scheme
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Fig. 4.36. Time evolution of the number of the consumed IACMs by saturation-type
NTSMC scheme
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CHAPTER FIVE

CONCLUSIONS AND

SUGGESTIONS FOR FURTHER RESEARCH

5.1 Conclusions

In this thesis, at first, in Chapter 3, we have introduced a six degrees of freedom

mathematical model of PAC-3 and then the model of the X-tail and the RCS were also

constructed. In Chapter 4, we have studied the missile attitude tracking problem using

blended controllers via three SMC techniques: I) CSMC, II) TSMC, and III) NTSMC

schemes. A characteristic of the CSMC is that the convergence of the system states to

the equilibrium points is usually asymptotical due to the asymptotical convergence of

the linear switching manifolds that are commonly chosen. Thus, the TSMC was devel-

oped. Compared with the linear hyperplane based sliding mode, TSMC offers finite time

convergence and better static tracking precision. But the TSMC design methods have

a singularity problem. Base on the TSMC, the NTSMC have been presented to avoid

the singularity for the TSMC. However, in practical realization, the three sign-type SMC

schemes, found in this thesis, suffer from the chattering problem which might result in

the following three undesired phenomena: I) high frequency switching of the control, II)

waste of energy and III) excited unmodelled dynamics. This problem might cause that

the predicted convergence time in TSMC and NTSMC theories are no longer available

because the sliding variable can not lie on the sliding surface and then lead to the im-

precision of output tracking task. Therefore, the features of finite time convergence and

accurate convergence by TSMC and NTSMC schemes are no longer valid. In order to

eliminate the chattering problem in practice, these sign-type SMC designs are replaced by

saturation-type SMC designs. The numerical results have shown that the tracking preci-
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sion by saturation-type SMC designs still satisfies the criterion for tracking performance

being successful.

The simulation results have also demonstrated that the blended control can performs

faster for tracking task than the tail control, decrease the required number of IACMs and

furthermore, improve the tracking performance. The above results sufficiently account for

the features of the blended control and benefit the developing of the ATBM for reducing

the MD between missile and target to achieve the HTK goal.

5.2 Suggestions for Further Research

To further extend the research covered in this thesis, we note several directions:

1) study the three-dimensional missile model which may exists coupling effects resulting

from the spinning missile with angular velocity ωxb [48], [13] under the constraint of

the states and rate of the states.

2) In order to fully utilize each IACM for the spinning missile in the three-dimensional

missile model, the ignition control algorithm must be considered.

3) In real life situation, the control law must considers the influences of jet interaction

effects [13],[19], [70], [71] which is the cause of incident air flowing when any IACM is

triggered. We thus may introduce these influences to let the model closer to the real

life situation.

4) Integrate the designed control law into the missile guidance law to verify whether the

ATBM will intercept the TBM.
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[24] J. D. Bošković, S. M. Li, and R. K. Mehra, “Robust Adaptive Variable Structure

Control of Spacecraft Under Control Input Saturation,” Journal of Guidance, Con-

trol, and Dynamics, Vol. 24, No. 1, pp. 14-22, 2001.

[25] Y.-P. Chen and S.-C. Lo, “Sliding-Mode Controller Design for Spacecraft Attitude

Tracking Maneuvers,” IEEE Transactions on Aerospace and Electric Systems, Vol.

29, No. 4, pp. 1328-1333, 1993.

[26] T. A. W. Dwyer III, “Exact Nonlinear Control of Spacecraft Slewing Maneuvers with

Internal Momentum Transfer,” Journal of Guidance, Control and Dynamics, Vol. 9,

No. 2, pp. 240-247, 1986.

[27] T. A. W. Dwyer III and H. Sira-Ramirez, “Variable-Structure Control of Spacecraft

Attitude Maneuvers,” Journal of Guidance, Control and Dynamics, Vol. 11, No. 3,

pp. 262-270, 1988.

[28] K.-M. Koo and J.-H. Kim, “Robust Control of Robot Manipulators with Parametric

Uncertainty,” IEEE Transactions on Automatic Control, Vol. 39, No. 6, pp. 1230-

1233, 1994.

        90



[29] J.-J. E. Slotine and S. S. Sastry, “Tracking Control of Non-Linear Systems Using

Sliding Surfaces, with Application to Robot Manipulators,” International Journal of

Control, Vol. 38, No. 2, pp. 465-492, 1983.

[30] J.-J. E. Slotine and W. Li, “On the Adaptive Control of Robot Manipulators,” In-

ternational Journal of Robotics Research, Vol. 6, pp. 49-57, 1987.

[31] C.-Y. Su and Y. Stepanenko, “Adaptive Sliding Mode Control of Robot Manipulators

with General Sliding Manifold,” Proceedings of the 1993 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 1255-1259, 1993.

[32] K.-S. Yeung and Y.-P. Chen, “A New Controller Design for Robot Manipulators

Using The Theory of Variable Structure Systems,” IEEE Transactions on Automatic

Control, Vol. 33, No. 2, pp. 200-206, 1988.

[33] X.-H. Yu and J.-X. Xu, Variable Structure Systems: Towards the 21st Century,

Springer-Verlag, Vol. 274, pp. 1-32, 2002.

[34] V. I. Utkin, Sliding Modes in Control Optimization, Springer-Verlag, Heidelberg,

1992.

[35] V. I. Utkin, “Block Control Principle,” Automation and Remote Control, Vol. 51,

No. 5, pp. 601-609, 1990.

[36] L. Fridman, Sliding Modes after the First Decade of the 21st Century, Springer-

Verlag, Vol. 412, pp. 3, 2012.

[37] H. K. Khalil, Nonlinear System, 2nd ed., Englewood Cliffs, NJ: Prentice-Hall, 1996.

[38] J. Stewart, Calculus Early Transcendentals International Edition Edition, 5th ed.,

Thomson Brooks/Cole, pp. 398-399,2003.

[39] M. Zak, “Terminal Attractors for Addressable Memory in Neural Network,” Physics

Letter, Vol. 33, No. 12, pp. 18-22, 1988.

[40] X.-H. Yu and Z.-H. Man, “Model Reference Adaptive Control Systems with Terminal

Sliding Modes,” International Journal of Control, Vol. 64, No. 6, pp. 1165-1176, 1996.

        91



[41] X.-H. Yu and Z.-H. Man, “Multi-input Uncertain Linear Systems with Terminal

Sliding-Mode Control,” Automatica, Vol. 34, No. 3, pp. 389-392, 1998.

[42] Z.-H. Man, A. P. Paplinski, and H.-R. Wu, “A Robust MIMO Terminal Sliding Mode

Control Scheme for Rigid Robotic Manipulators,” IEEE Transactions on Automatic

Control, Vol. 39, No. 12, pp. 2464-2469, 1994.

[43] X.-H. Yu, and Z.-H. Man, “Terminal Sliding Mode Control of MIMO Linear Sys-

tems,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Ap-

plications, Vol. 44, No. 11, pp. 1065-1070, 1997.

[44] Y. Feng, X.-H. Yu, and Z.-H. Man, “Non-Singular Terminal Sliding Mode Control

and Its Application for Robot Manipulators,” Proceedings of 2001 IEEE International

Symposium on Circuits and Systems, Vol. 3, pp. 545–548, Sydney, 2001.

[45] Y. Feng, X.-H. Yu, and Z.-H. Man, “Non-Singular Terminal Sliding Mode Control of

Rigid Manipulators,” Automatica, Vol. 38, No. 12, pp. 2159-2167, 2002.

[46] J. H. Blakelock, Automatic Control of Aircraft and Missile, 2nd ed., John Wiley and

Sons, Inc., New York, 1991.

[47] G. M. Siouris, Missile Guidance and Control Systems, 1st ed., Springer-Verlag, Inc.,

New York, 2004.

[48] 錢杏芳, 林瑞雄和趙亞男, 導彈飛行力學, 1st ed., 北京理工大學出版社, 北京, 2000.

[49] P. B. Ferdinand and J. J. Russell, Vector Mechanics for Engineers: Dynamics, 8th

ed., McGraw-Hill, New York, 2007.

[50] H.-C. Luan and J.-X. Lin, “Relationship of Maneuvering And Motion for the Sub-

marine with X-rudder,” Ship and Ocean Engineering, Vol. 36, No. 2, pp. 100-102,

2007.

[51] B. Xu, “Patriot Series Surface-to-Air Missile,” Surface-to-Air Weapon, Vol. 3, pp.

19-24, 2004.

        92



[52] Y. Karayiannidis, G. Rovithakis and Z. Doulgeri, “Force Position Tracking for a

Robotic Manipulator in Compliant Contact with a Surface Using Neuro-Adaptive

Control,” Automatica, Vol. 43, No. 1, pp. 1281-1288, 2007.

[53] H. J. Uang and B. S. Chen, “Robust Adaptive Optimal Tracking Design for Uncertain

Missile Systems: a Fuzzy Approach,” Fuzzy Sets and Systems, Vol. 126, No. 1, pp.

63-87, 2002.

[54] T. Bell, “Automatic Tractor Guidance Using Carrier-Phase Differential GPS,” Com-

puters and Electronics in Agriculture, Vol. 25, No. 1, pp. 53-66, 2000.

[55] J. Huang, Nonlinear Output Regulation: Theory and Applications, Society for Indus-

trial and Applied Mathematics, Philadelphia, 2004.

[56] S. Devasia, D. G. Chen, and B. Paden, “Nonlinear Inversion-Based Output Tracking,”

IEEE Transactions on Automatic Control, Vol. 41, No. 7, pp. 930-942, 1996.

[57] R. M. Hirschorn, “Invertibility of Nonlinear Control Systems,” SIAM Journal on

Control and Optimization, Vol. 17, No. 2, pp. 289-297, 1979.

[58] S. N. Singh, “A Modified Algorithm for Invertibility in Nonlinear Systems,” IEEE

Transactions on Automatic Control, Vol. 26, No. 2, pp. 595-598, 1981.

[59] T.-L. Liao, L.-C. Fu and C.-F. Hsu, “Output Tracking Control of Nonlinear Systems

with Mismatched Uncertainties,” Systems and Control Letters, Vol. 18, No. 1, pp.

39-47, 1992.

[60] C. Lin, W. Q.-Guo Wang, and T. H. Lee, “Hinfty Output Tracking Control for

Nonlinear Systems via T-S Fuzzy Model Approach,” IEEE Transactions on Systems,

Man, and Cybernetics, Part B, Vol. 36, No. 2, pp. 450-457, 2006.

[61] A. Adhami-Mirhosseini, M. J. Yazdanpanah, and A. Khaki-Sedigh, “Robust Tracking

of a class of Perturbed Nonlinear Systems via Multivariable Nested Sliding Mode

Control,” Journal of Dynamic Systems, Measurement, and Control ASME, Vol. 134,

No. 3, 2012.

        93



[62] Y.-W. Liang, S.-D. Xu, T.-C. Chu, and C.-C. Cheng, “Reliable Output Tracking

Control for a Class of Nonlinear Systems,” IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, Vol. E87-A, No. 9, 2004.

[63] C.-S. Chiu, “Derivative and Integral Terminal Sliding Mode Control for a Class of

MIMO Nonlinear Systems,” Automatica, Vol. 48, No. 2, pp. 316-326, 2012.

[64] A. Isidori, Nonlinear Control System, 3rd ed., Springer-Verlag, London, 1995.

[65] R. A. Hull and Z. Qu, “Dynamic Robust Recursive Control Design and Its Applica-

tion to a Nonlinear Missile Autopilot,” Proceeding of the American Control Confer-

ence, Albuquerque, New Mexico, pp. 833–837, 1997.

[66] Q.-G. Li, C.-H. Jiang, and C.-Y. Zhang, “Enhanced Back-Stepping Control for Mis-

sile Autopilot Based on Nonlinear Disturbance Observer,” Electronics Optics and

Control, Vol. 14,No. 5, 2007.

[67] J. Wang, W.-C. Chen, and X.-L. Yin, “Control Policy Design for Missile Using

Impulsive Attitude Control Motors,” Systems Engineering and Electronics, Vol. 30,

No. 9, 2008.

[68] S. D. Brierley and R. Longchamp, “Application of Sliding-Mode Control to Air-Air

Interception Problem,” IEEE Transactions on Aerospace and Electronic Systems,

Vol. 26, No. 2, pp. 306-325, 1990.

[69] M. J. Corless and G. Leitmann, “Continuous State Feedback Guaranteeing Uniform

Ultimate Boundedness for Uncertain Dynamic Systems,” IEEE Transactions on Au-

tomatic Control, Vol. 26, No. 5, pp. 1139-1144, 1981.

[70] S. F. Gimelshein, D. A. Levin, and G. F. Karabadzhak, “Modeling of Jet Interactions

in a Space Environment Using the Direct Simulation Monte Carlo Method,” AIAA

Paper 2003-1032, 41st AIAA Aerospace Sciences Meeting and Exhibit, Jan., 2003.

[71] J. Ratzlaff and P. Orkwis, “A Numerical Study of 3D Turbulent Cooling Jet Inter-

action Over a Range of Blowing Ratios,” AIAA Paper 2004-2351, 34th AIAA Fluid

Dynamics Conference and Exhibit, Jul., 2004.

        94


	1 封面
	2 書名頁
	3-9
	content



