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ABSTRACT 

A vision-based autonomous vehicle system equipped with KINECT devices for 

security patrolling on sidewalks in outdoor environments is proposed. A small-size 

vehicle with three onboard KINECT devices is designed to build the system. At first, 

a learning procedure is proposed for a trainer to guide the vehicle to extract specific 

features, including navigation path, color/depth information, pre-selected landmark 

objects, and vehicle location with respect to the landmark. Next, a strategy of vehicle 

navigation with a line-following capability is proposed, by which the vehicle may be 

guided to navigate according to the node data of the learned path, detect along-path 

landmarks using SURFs, and match the features with the learned data based on the 

measures of contrast difference and Euclidean distance. In addition, a vehicle location 

estimation technique for path correction utilizing the landmark matching result is 

proposed, which is based on the use of an ICP algorithm with the depth information as 

input according to the criterion of minimum MSE. Furthermore, techniques of ramp 

and curb-line detection have also been proposed, both for use to guide the vehicle 

safely on the path as well as to provide environment features and adjust the vehicle 
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orientation. Good experimental results show the flexibility and feasibility of the 

proposed methods for the application of security patrolling in outdoor environments. 
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利用多台 KINECT 裝置及自動車作園區安全巡邏之研

究 

 

研究生：何冠霖  指導教授：蔡文祥 博士 

國立交通大學多媒體工程研究所 

 

摘要 

本研究提出了一個有電腦視覺之自動車系統，可應用於園區安全巡邏。該系

統使用多台 KINECT 攝影機裝置做實驗平台。首先，使用者可利用一環境學習

介面來控制自動車擷取環境中的特徵資訊，其中包括了航行地圖、特定路標的彩

色及深度資訊，以及車輛與路標的相對距離。接著，提出了一個自動車航行的策

略，讓車輛使用線段跟隨的技巧並根據學習的路徑節點依序航行，並且使用加速

穩健特徵(speeded up robust feature, SURF)演算法，擷取沿路偵測到的物體之特徵

點，再與學習的特徵資訊比較，計算其對比差異與歐氏距離，進行影像匹配。 

此外，本研究也提出了一個自動車定位的技巧，可利用車輛與路標相對位置

匹配的結果估計出車輛的位置，並且修正自動車航行的路線。此技巧是基於遞迴

最近點(iterative closest point, ICP)演算法的概念，計算出深度影像之間的最小平

方差做定位匹配之用。接著，還提出了坡道偵測與線段抽取的技術，這些技術可

以使自動車安全地航行於所學習的路徑上，並且計算車輛航行中所遭遇環境的特

徵與方向。 

最後，依上述方法所做實驗的結果良好，顯示該等方法對室外安全巡邏的作

用完整可行。 
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Chapter 1  

Introduction 

1.1 Motivation 

Today, video surveillance systems are used widely in our life. Two examples are 

event data recorders installed on cars and public-space monitoring systems deployed 

almost everywhere in cities. But these systems usually are fixed at certain places or 

affixed to certain structures (walls, poles, etc.). This characteristic makes common 

video surveillance systems weak in their mobility for some application locations 

where no surveillance cameras are available. Consequently, in this study we try to 

design an autonomous vehicle system for monitoring interested areas in outdoor 

environments. The system may be regarded as a “mobile camera” movable to 

everywhere in the application environment. 

In order to monitor environments with wider ranges, the autonomous vehicle 

must be designed to be equipped with video cameras or similar devices for image 

acquisition, as well as to include a built-in navigation system for controlling the 

vehicle. A common approach to autonomous vehicle navigation includes “training” 

the vehicle by use of environment features, followed by navigating the vehicle on a 

pre-planned path. In this study, we follow this concept to design the proposed 

autonomous vehicle system for video surveillance. 

A major issue in designing such a system is how to navigate successfully in the 

environment. In this study, we concentrate on dealing with navigation on sidewalks in 

park areas for the purpose of security patrolling. Normally, an autonomous vehicle is 
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equipped with an odometer, which provides readings of the vehicle position and 

direction in every navigation cycle. Therefore, we can adjust the vehicle to correct its 

position according to such information. However, the vehicle position parameter 

which the odometer provides is often not sufficiently precise because the autonomous 

vehicle usually suffers from incremental mechanic errors in its navigation process due 

to manufacturing imprecision in its structure. One good solution to this problem is to 

continually estimate the vehicle position by use of pre-learned objects, called 

landmarks, in the surroundings along the navigation path, which is a sidewalk in this 

study as mentioned. 

In recent years, using the Microsoft KINECT device for research is becoming 

popular. A reason is its convenience for acquiring 3D data of the real-world space. 

Some interesting applications have been proposed. The 3D data acquired by a 

KINECT device, often called RGB-D data, includes a depth image and a color image. 

The inherent 3D nature existing in the depth and color images makes it easier for 

people to conduct works of object detection and localization, although it has some 

restrictions on their uses for certain applications. We will describe the structure of the 

KINECT device in the following chapter. In this study, we try to design a vision-based 

autonomous vehicle equipped with more than one KINECT device which can 

navigate on sidewalks in park areas for security patrolling. 

In summary, the goal of this study is to develop an outdoor navigation system 

with the following capabilities: 

1. learning paths composed of nodes on sidewalks semi-automatically; 

2. learning landmarks along sidewalks; 

3. navigating automatically along sidewalks using learned landmarks for 

vehicle localization; 

4. navigating to goals successfully on learned paths; 
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1.2 Survey of Related Works 

In this section, we give a survey of previous works about outdoor navigation 

techniques, related applications using KINECT devices, landmark detection 

techniques, and landmark localization techniques in indoor or outdoor environments, . 

In recent years, more and more research results of navigation systems using the 

KINECT device [1] have been reported. The emergence of the KINECT device 

facilitates captures of 3D image data and calculation of 3D space coordinates. But a 

problem arises when it is used for image acquisition during the day time, i.e., the 

infrared ray sensor equipped on the KINECT device is interfered by the infrared ray 

existing in the sunshine so that no depth data are provided by the KINECT device. 

Therefore, most KINECT devices are used in indoor environments. Correa and Sales 

et al. [2, 3] proposed an indoor-environment navigation system for video surveillance 

using the Kinect sensor. The system is based on a reactive navigation scheme, a 

finite-state machine, and an artificial neural network (ANN). Cunha et al. [4] 

proposed a robotic platform based on the use of a cooperative autonomous mobile 

robot with an advanced distributed architecture (CAMBADA) to navigate in indoor 

environments. Biswas and Veloso [5] proposed a fast sampling plane filtering (FSPF) 

algorithm to reduce the computation time required for indoor mobile robot 

localization and navigation. 

In addition, some application systems using KINECT devices in outdoor 

environments have been proposed. Robledo, Cossell and Guivant [6] proposed the use 

of a KINECT device to plan a safe path to be followed by a bicycle rider. And 

Rasmussen [7] proposed a navigation system for tracking trails in outdoor 

environments with low or no sunlight. 

When using any of the above-mentioned Kinect-based systems for navigation, it 
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is necessary to conduct the work of vehicle localization. This shows that vehicle 

localization is a core technique for use in implementing a navigation system. A variety 

of localization techniques are reviewed below. Willis and Helal [8] provided a 

navigation system which uses the radio frequency identification (RFID) technique to 

identify locations in buildings and rooms. Lisa et al. [9] utilized a DGPS (differential 

GPS) device to conduct localization in indoor and outdoor environments. Chen and 

Tsai [10] proposed an autonomous vehicle for indoor navigation using ultrasonic 

sensors. In [11], the GPS was used as a tool for vehicle localization as well. 

In addition, vision-based devices are used widely for vehicle localization and 

navigation. Chen and Tsai [12] proposed a vehicle localization technique using 

perspective cameras, which adjusts the position of a vehicle by keeping watch over 

learned objects based on image matching using SIFT features. Another technique of 

vehicle localization in indoor environments by watching house corners was proposed 

by Chiang and Tsai [13]. Atiya and Hager [14] designed a vision-based system which 

computes the vehicle location in real-time. Moreover, in some other applications, 

cameras and other devices were combined together for use as an environment sensing 

device. Lopez et al. [15] combined a laser and a robot’s camera together to compute 

the robot location. Tsai and Tsai [16] used a PTZ camera and an ultrasonic sensor to 

direct vehicle patrolling and people following. Agrawal and Konolige [17] proposed a 

system which uses stereo cameras and a low-cost GPS sensor. 

1.3 Overview of Proposed System 

The goal of this study is to design a vision-based autonomous vehicle system to 

navigate in outdoor environments. For this purpose, we use multiple Microsoft 

KINECT devices and an autonomous vehicle to build the system. An illustration of 
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the proposed system is shown in Fig. 1. We then propose some techniques for use on 

the system to navigate the vehicle on pre-learned paths. The major process of this 

system may be divided into two stages: the learning stage and the navigation stage. 

 

 

Figure 1.1 Image of proposed autonomous vehicle system with three KINECT 

devices. 

 

In the learning stage, we “learn” some image features provided by the KINECT 

devices, and some environment parameters along pre-selected paths on sidewalks 

before vehicle navigation. Then, in the navigation stage, we conduct vehicle 

navigation along the pre-learned path using the learned features and the images taken 

of the currently-visited landmarks. The details of the two stages are illustrated in Figs. 
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1.2 and 1.3, respectively, and discussed in the following. 

A. The learning stage 

At first, a prior work conducted before learning is to train the KINECT device 

system equipped on the vehicle. In this study, we deploy three KINECT devices on 

the vehicle, facing to the left, the front, and the right. Each KINECT device may be 

used to acquire a color image and a depth image simultaneously. To combine the two 

images into a 3D image, a problem of “shifting” between them due to the structural 

design of the KINECT device should be solved. Specifically, the two images not only 

should be “calibrated” into an identical image coordinate system, but also the relation 

between the identical image coordinate system and the 3D space coordinate system 

for the real world should be found out. For this purpose, we “calibrate” the depth and 

color image data using the KINECT SDK for Windows developed by Microsoft [18], 

and “calibrate” the coordinate systems according to the principle of the pinhole 

camera model. The details of these calibration techniques are described in subsequent 

chapters. 

After the above image calibration work is done, the next work is to guide the 

autonomous vehicle to learn path information, including a sequence of landmarks, the 

vehicle poses in the path, the involved KINECT-device numbers, and some other 

environment information. After brining the vehicle to an area of interest, a path 

learning work is started. For this, we propose the use of two navigation modes: one 

being “navigation by following the curb line on the sidewalk”; the other being 

“manual control by the trainer”. After being assigned the first mode, the vehicle starts 

to navigate toward a pre-selected goal. If a landmark has been selected in the path, the 

trainer may as well guide manually the vehicle using the second mode to an 

appropriate position to record the image features and the local position of the 

landmark. Furthermore, some information about the camera and the outdoor 
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environment are also recorded during the path learning process. Finally, when the 

learning process is over, all of the learned data are integrated into a set of path 

information and kept in a database. 

 

Start learning

Navigation by 

sidewalk curb lines 

following 

Manual navigation 

by user

Environment 

and camera 

information

Created 

Detection 

Node 

Navigation 

path 

information 
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Figure 1.2 Flowchart of proposed learning stage. 

 

B. The navigation stage 

In the navigation stage, the path information which has been collected in the 

learning stage is utilized. The major tasks of this stage include landmark detection, 

vehicle location modification, and vehicle navigation. In principle, the autonomous 

vehicle moves constantly forward toward the goal according to the “node-based” 
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learned database on the learned path, where each node represents a spot on the path 

where a learning task as described previously is performed. When the autonomous 

vehicle navigates from a node to the next in the learned path, it can choose one of two 

pre-defined navigation modes. The first mode is “navigation by following the curb 

line on the sidewalk,” and the other is “navigation by the odometer reading” provided 

by the vehicle system. The second mode will also be called the blind navigation mode. 

If the user chooses to use the first mode, the curb line on the sidewalk is detected 

continuously and the technique of line following is adopted to adjust the orientation of 

the vehicle, when necessary, during the navigation process. When the autonomous 

vehicle navigates to a non-curb position, the system will get into the second mode and 

move forward “blindly” according to the odometer readings as will be described in 

the subsequent chapters. 

In addition, we use fixed along-path objects such as light poles, hydrants, and 

trees as landmarks for vehicle localization in this study. Specifically, we modify the 

vehicle position with respect to each detected landmark to eliminate accumulated 

mechanical or vision-processing errors during the navigation process. Finally, we 

propose an algorithm to combine SURFs and an iteration scheme to conduct vehicle 

localization in outdoor environments. And a technique of line following using the 

depth image only is proposed as well to guide the vehicle to navigate along the 

red-colored curb of the sidewalk. With the above-mentioned techniques, the 

autonomous vehicle can navigate safely to the end of the navigation stage. 

1.4 Contribution of This Study 

Some contributions of this study are described as follows. 

1. A semi-automatic method for training an autonomous vehicle for outdoor 
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navigation using commonly-seen objects on sidewalks is proposed. 
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Figure 1.3 Flowchart of proposed navigation stage. 

 

2. A vision-based method for estimating the vehicle location to reduce mechanical 

errors for vehicle navigation is proposed. 

3. A vision-based method for vehicle navigation by following the curb line on the 

sidewalk is proposed. 

4. Techniques for detecting landmarks of ramps and tree trunks are proposed. 

5. A method for landmark detection and vehicle localization using depth data only is 

proposed. 
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1.5 Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, we describe 

the configuration and the operation processes of the proposed system. In Chapter 3, 

the proposed learning technique for use in outdoor environments is described. In 

Chapter 4, the proposed navigation strategy for use in outdoor environments, which 

includes the ideas, localization techniques, and detailed navigation algorithms, is 

described. In Chapter 5, the proposed methods for landmark detection and localization 

using 3D image data are described. In Chapter 6, the proposed techniques for 

following the curb line, landmark detection, and vehicle localization using depth data 

only are described. Some experimental results are shown in Chapter 7. Finally, 

Conclusions and suggestions for future works are given in Chapter 8. 
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Chapter 2  

System Configuration and Processes 

2.1 Introduction 

For video surveillance, we designed a vision-based autonomous vehicle system 

and trained it to monitor an area of interest in a park area. In this study, we choose a 

path on a sidewalk in National Chiao Tung University for the training. In order to 

conduct security patrolling along the path on the sidewalk quickly and stably, we 

installed three KINECT devices on an autonomous vehicle to construct a mobile 

security-monitoring system for use as experimental platform in this study. Acquisition 

of 3D data is made easier by the use of the KINECT devices, and the use of a small 

and flexible vehicle is a good choice, as done in this study. Also, we need to design 

processes to control the systems of the KINECT devices, the vehicle, and a 

communication mechanism for connecting the former two systems to analyze their 

data. The entire system configuration, including hardware and software, is introduced 

in Section 2.2, and the structure of the used KINECT devices is described in Section 

2.3. 

Furthermore, to navigate in an unknown environment, a learning strategy is 

needed to “teach” the vehicle where to navigate, what to monitor, and how to adjust 

its locations in each navigation session. Finally, a good navigation strategy which can 

lead the autonomous vehicles to the goal safely also need be designed. We will 

describe the learning and navigation processes for the adopted vehicle and the 

associated principles in Section 2.4. 
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2.2 System Configuration 

In this study, we use the Pioneer 3-DX vehicle made by MobileRobots, Inc. as a 

platform for our experiments. The vehicle is equipped with three KINECT devices, 

facing to difference directions (facing the front, left-forward, and right-forward), as 

shown in Fig. 2.1. The KINECT devices are new and specially designed by Mirosoft 

in recent years, so we would like to describe it in detail in Section 2.3, which includes 

the structure of the sensor and the coordinate calibration process. The hardware 

architecture, and the software including the application programming interfaces and 

development tools we use, will be described in Sections 2.2.1 and 2.2.2, respectively. 

2.2.1 Hardware Configuration 

The hardware architecture of the proposed autonomous vehicle system is shown 

in Fig. 1.1. It can be divided into three major components: the vehicle system, the 

KINECT-device system, and the control system. We will describe these systems, 

respectively, in the following. 

The vehicle has an aluminum body of the size of 44cm×38cm×22cm with two 

19cm-sized wheels and a caster. The vehicle can climb a 25% grade and sills of 2.5cm. 

On flat floors, the vehicle can reach a forward speed of 160cm per second and a 

rotation speed of 300 degrees per second. Moreover, the vehicle has 16 ultrasonic 

sensors and three 12V rechargeable lead-acid batteries which supply the power for 

18-24 hours if fully charged. The system can return its status parameters in each 

navigation cycle, which includes the position and orientation of the vehicle with 

respect to its initial pose. The system is shown in Fig. 2.1. 

The second major component is the KINECT-device system which includes three 

KINECT devices, facing to three directions as mentioned previously, as shown in Fig. 
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2.2. In this study, we try to navigate the vehicle in outdoor environments quickly and 

stably. Therefore, we use multiple KINECT devices to reduce 3D data computation 

time and the hardware operation time. The structure of the KINECT-device system 

will be described in more detail in the next section. 

 

 

Figure 2.1 The vehicle Pioneer3-DX used in this study. (a) A front view. (b) A back view. 

 

 

Figure 2.2 Three different directions of the hardware configuration, which includes a vehicle and three 

KINECT devices. (a) The right side. (b) The front side. (c) The left side. 

 

Finally, in the third major component  the control system, we use a laptop 

computer as the control unit. It is of model R840 produced by TOSHIBA Computer, 

Inc. We use an RS-232 interface to connect the laptop computer to the autonomous 

(a) (b) (c) 

(a) (b) 
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vehicle, and use USB’s to connect the laptop computer to the KINECT devices. 

2.2.2 Software Configuration 

The MobileRobots Inc. provides an application process, called Advanced 

Robotics Interface for Applications (ARIA), which is an object-oriented programming 

interface written in the C
++

 language and may be used to control the vehicle. The 

lowest-level data and information of the vehicle are also retrieved easily by means of 

the ARIA. Therefore, we can use the ARIA as an interface to communicate with the 

embedded system of the vehicle. Besides, in this study we use the Borland C++ 

builder 6.0 as the development tool to control the vehicle. 

For the KINECT devices to function under the Windows system, the Microsoft 

Inc. provides a development tool called Kinect for Windows Software Developer Kit 

(SDK). We use this SDK to capture 3D images and calibrate the KINECT devices. But 

this SDK not only needs the operation system Windows 7, but also the two 

development tools of .NET Framework 4.0 and Microsoft Visual Studio 2010. 

Therefore, to develop the KINECT-device system, we use the language of Microsoft 

Visual C++ 2010 with .NET Framework 4.0 under the Windows 7 operating system. 

2.3 Structure of Microsoft KINECT 

Device 

At first, we introduce the hardware architecture of the KINECT device. The 

KINECT device includes a color VGA video camera, a depth sensor, a multi-array 

microphone, and a tilt motor for sensor operations and adjustments. The horizontal 

field of view of the KINECT device is 57 degrees, the vertical field of view is 43 

degrees, and the physical tilt range is ± 27 degrees. The major difference between 
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common cameras and the KINECT device is that the KINECT device has a depth 

detection sensor. The depth detection sensor is composed of an infrared projector and 

a monochrome Complementary Metal-Oxide Semiconductor (CMOS) sensor, which 

work together to obtain the distance information between the depth sensor and the 

objects in front of the Kinect device. The resolution of the image acquired with this 

color VGA video camera is 1280×960, and the resolution of the image acquired with 

the depth sensor is 640×480. The depth range provided by the KINECT sensor using 

the Kinect for Windows SDK is from 800mm to 4000mm. But the effective range of 

distances between the KINECT device and the user is from 1200mm to 3600mm, 

which is advised by the KINECT development official website. And other 

specifications of the hardware are not described in detail here due to the page limit. 

An illustration of the KINECT device is shown in Fig.2.3. 

 

 

Figure 2.3 Hardware of the KINECT device. (a) Structure of external. (b) Structure of internal. 

 

Furthermore, calibration of the camera parameters before vehicle navigation is 

necessary. In this process, and a rotation problem and a shifting one will arise in the 

3D space coordinates. A solution to the rotation problem is to calibrate the related 

parameters before vehicle navigation for each navigation session. The KINECT 

device can be calibrated with some calibration functions and parameters provided in 

Microphone array 

IR 

Projector 
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the Kinect-for-Windows SDK. In this study, we tilt the field of view of each KINECT 

device to the zero-angle position using the tilt motor in the sensor before vehicle 

navigation. And to solve the shifting problem between the color image and the depth 

image, we use certain functions provided by the Kinect-for-Windows SDK [19].  

After the above two problems are solved, we can obtain a 3D image in which the 

original color and depth images are in the same image coordinate system. But these 

3D image data are just the 3D depth coordinates combined with the 2D image 

coordinates, so they must be transformed into the 3D space coordinate system 

integrally. For this purpose, we apply the principle of the pinhole camera model to 

conduct the conversion of the 3D image coordinates into the 3D space coordinates. 

As shown in Figure 2.4, a space point G at coordinates (X, Y, Z) in the 3D space 

is projected through the lens center of the camera onto the image plane, where the 

image plane may be the depth image or the color image. The depth value d is 

provided by the KINECT device, but we do not have its correct coordinates in the 3D 

space. Therefore, we compute the direction vector of the image plane to the lens 

center by using the focal length f of the depth image provided by the 

KINECT-for-Windows SDK [19] and image coordinates (u, v). Then, we can calculate 

the correct 3D space coordinates (X, Y, Z) of point according to the similar-triangle 

principle using the depth value D. Specifically, by the principle and following the 

direction vector starting from the image plane, going through the lens center of the 

camera, and projects finally onto the 3D space point G, we can compute the 3D space 

coordinates (X, Y, Z) as follows. 

At first, apparently as can seen from Fig. 2.4, we can calculate the distance d 

between the image plane and the lens center by the following equation: 

 
2 2 2d u v f   , (2.1) 
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then, according to the similar-triangle principle, since the two triangles OCI and 

GG'O are similar, we can know the following equalities: 

 
X Y Z D

u v f d
   , (2.2) 

from which we can derive the following equations to describe the relation between the 

image coordinates (u, v) and the corresponding space coordinates (X, Y, Z): 

 
2 2 2 2 2 2 2 2 2

;  ;  .
D u D v D f

X Y Z
u v f u v f u v f

  
  

     
 (2.3) 
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Figure 2.4 A pinhole camera model. 
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2.4 System Processes 

2.4.1 Learning Process 

To conduct security patrolling in an outdoor environment, a learning process is 

necessary. We describe the information which the vehicle should record in this 

process in detail now. At first, we bring the vehicle to a selected path in an outdoor 

environment, which is a part of the National Chiao Tung University campus. Because 

the goal is security patrolling, we use the vehicle to patrol along a path on a sidewalk 

in that part of the campus. Furthermore, we propose a “curb line following” technique 

in the proposed system for vehicle guidance. Finally, the environment information and 

camera parameters are recorded at difference positions on the path. The entire 

learning process is shown in Fig. 2.3. 

In order to help users to guide the vehicle, a user interface has been designed for 

controlling the vehicle and selecting landmarks to be learned. Specifically, via the 

interface, the user controls the vehicle to navigate on the sidewalk, and move to an 

appropriate position with respect to each pre-selected landmark. Then, the features of 

the landmark are extracted from the 3D images acquired by one of the three KINECT 

devices using an SURF extraction algorithm. And the relative position between the 

vehicle and the landmark is computed by use of the depth image. Also, relevant 

information, including the camera number, the distance to the curb, the region of the 

detection window, and the vehicle parameters (the odometer readings), is recorded in 

the meantime. 

Finally, we classify the recorded data into two categories, path-dependent data 

and landmark-dependent data. As soon as the learning process ends, the learned 

information is organized into a navigation path which is composed of several path 
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nodes with guidance parameters. All of the data are stored in the storages of the 

computer so that it can be modified and used repeatedly. 

2.4.2 Navigation Process 

Before the vehicle starts to navigate, the system reads the path and environment 

information created in the learning process as mentioned previously. In order to guide 

the vehicle to navigate along the learned path, the vehicle is instructed to move from a 

node to the next sequentially according to the learned path. A flowchart of the 

proposed vehicle navigation process is shown in Fig. 2.4. 

In more detail, when the vehicle is navigating to the next node, it checks the 

navigation mode at first to ensure whether it has to detect the curb line and followed it. 

If the curb-line detection-and-following process fails, the system will enter the blind 

navigation mode and reconfirm the navigation mode in the next loop. Also, the 

navigation process detects the target landmark continually until the correct landmark 

appears in the omni-image. When the vehicle navigates to the desired node 

successfully, it can obtain the navigation information of the next node from the 

learned path kept in the system. 

In addition, when the navigation process finds the target landmark successfully, 

the vehicle will adjust its position and load the relevant parameters for navigation to 

the next node. However, some nodes provide the navigation information only, which 

we call “tuning nodes.” This kind of node can help the vehicle to navigate to the 

terminal node successfully. 
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Figure 2.5 Flowchart of proposed learning process. 
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Figure 2.6 Flowchart of proposed navigation process. 
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Chapter 3  

Learning of Outdoor Environment 

Features 

3.1 Introduction 

In order to use an autonomous vehicle to navigate in an outdoor environment, 

building complete path information to guide the vehicle is necessary. Therefore, 

creating a path map and selecting appropriate landmarks is a primary work for 

successful security patrolling by vehicle navigation. In this chapter, we will introduce 

our ideas of selection of landmarks and learning of guidance parameters in outdoor 

environments. Some coordinate systems, including the image coordinate system, the 

camera coordinate system, the vehicle coordinate system, and the global coordinate 

system, will be defined in Section 3.2. In addition, the learning techniques and 

strategies will be described in Section 3.3. At last, a detailed algorithm describing the 

learning process will be described in Section 3.4. 

3.1.1 Selection of Sequential Landmarks for Learning 

When we conduct the vehicle navigation process, mechanic errors will 

accumulate to affect to the readings of the odometer about the vehicle location and 

orientation. To solve such problems, we adopt an approach of “vehicle localization 

using landmarks.” For this purpose, some objects should be selected as landmarks at 

first to conduct the vehicle localization task. In this study, we select some objects 

sequentially along the pre-selected path as landmarks. Because of this characteristic of 
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sequential selection, we can estimate the position of the vehicle on the sidewalk 

approximately without having to depend on using the odometer readings excessively. 

The main types of selected landmarks for localization in this study include light pole, 

hydrant, and tree trunk. Two other types of landmarks, namely, ramp and curb, which 

provide environment parameters for vehicle guidance are also selected. 

With more and more categories of landmarks selected, we can utilize more 

information along the path for vehicle localization to reduce the chance of getting 

astray or falling out off the sidewalk, and guide the autonomous vehicle to the 

terminal point more reliably as well. The proposed methods of vehicle localization 

using landmarks will be described in detail later in Chapters 5 and 6. 

3.1.2 Idea of Learning Guidance Parameters and 

Landmark Features in Outdoor Environments 

To navigate in an unknown outdoor environment, some kinds of environment 

parameters or features should be learned for use in the navigation stage. The first 

feature learned in the proposed system is navigation path data. We can obtain the 

position of the vehicle by the odometer reading, but the mechanic errors usually cause 

imprecise readings of the vehicle location. Therefore, it becomes an important task to 

correct the position of the vehicle and the odometer reading. In Section 3.3.2, we will 

describe how to collect path data for vehicle localization by controlling the vehicle to 

navigate along a pre-selected path in an outdoor environment.  

The features to be learned next are some camera and vehicle guidance 

parameters. Part of the parameters need manual measurements and are taken as inputs 

to the process of learning other features, and we refer to such types of feature data as 

“prior knowledge.” More details of such parameters for learning will be introduced in 
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Sections 3.3.2 and 3.3.3. 

The last feature to be learned is landmark. In order to use the landmarks to 

conduct vehicle localization, “training” the vehicle to “know” what to detect and how 

to recognize landmarks are necessary. That is, the vehicle must learn what features 

about each selected landmark should be detected, and then, it should be able to 

recognize each landmark by matching its features against those computed in the 

navigation phase. For this purpose, we adopt in this study a powerful approach  

using the SURF [20]  to extract such features from selected-landmark images. In 

the mean time, we also record the vehicle location with respect to each selected 

landmark in terms of depth data. The detailed learning process is described in Section 

3.3.4.  

3.2 Coordinate Systems 

In this section, we will introduce the coordinate systems used in this study, 

which describe the relations between the used devices and the selected landmarks in 

the navigation environment. The coordinate systems are illustrated in Figure 3.4 and 

defined in the following. 

1. Image coordinate system (ICS): denoted as (u, v). the u-v plane coincides with the 

image plane and the origin OI of the ICS is located at the center of the image 

plane. 

2. Vehicle coordinate system (VCS) denoted as (VX, VY): the origin OV of the vehicle 

coordinate system is located at the center of the vehicle, and the VX-VY plane 

coincides with the image plane. 

3. Camera coordinate system (CCS), denoted as (X, Y, Z): the origin OC of the CCS 

is located at the lens center of the KINECT device, the X-Z plane is parallel to the 
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ground, and the Y-axis is perpendicular to the ground. 

4. Global coordinate system (GCS) denoted as (GX, GY): the origin OG of this 

system is always placed at the start position of the vehicle in the navigation path, 

and the GX-GY plane coincides with the ground. 

When we conduct the vehicle in the navigation phase, we have to know the 

relationships among the coordinate systems. At the beginning of each navigation 

process, the VCS and CCS follow the vehicle and the VCS coincides with the GCS. 

The coordinate systems are illustrated in Fig. 3.1. 
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Figure 3.1 Four coordinate systems used in this study. (a) The ICS. (b) The GCS. (c) The VCS. (d) The 

CCS. 

 

In this study, we use three KINECT devices equipped on the vehicle to sense the 

environment. When we bring the vehicle to a certain place where is a path node, the 

proposed system records the position data in the 3D space of the vehicle with respect 

to the selected landmarks. Then, when the vehicle moves on the path in the navigation 
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session, we can adjust the vehicle location according to the learned position at the 

currently-visited path node. 

3.3 Learning of Outdoor Guidance 

Parameters and Landmark 

Features 

3.3.1 Learning of Outdoor Guidance Parameters 

For the vehicle to navigate in an outdoor environment, a trainer of the proposed 

vehicle system should guide the system to learn and record parameters or features of 

the environment. The parameters to be learned in this study include depth data, 

landmark feature, detection window, KINECT device number, and some other 

ground-truth parameters. The proposed techniques for learning these environment 

parameters are described in the following. 

3.3.2 Learning of Navigation Paths Composed of 

Nodes 

In general, the vehicle navigates in an outdoor environment under the control of 

a user. And at each visited path node, normally the proposed system will take the 

odometer reading as the position data of the vehicle. The position data consist of the 

vehicle coordinates (VX, VY) and vehicle orientation  in the VCS. We use these data 

to assist the vehicle system to conduct localization. Using the just-mentioned position 

data and the concept of sequential-node visiting to conduct vehicle localization is the 

main principle of vehicle guidance adopted in this study. 

Specifically, we save the position data provided by the KINECT device, the 
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vehicle-turning parameters, and the vehicle coordinates (VX, VY) as the data of a node 

Ni while the vehicle is in one of the following two situations:  

1. the user controls the vehicle to learn a landmark object; 

2. the user controls the vehicle to turn and record the turning parameters. 

 

In addition to containing data items mentioned above, each node is labeled with 

a serial number. Such nodes then form a graph of the learned path. When the user 

controls the vehicle to move to a desired position, he/she will instruct the vehicle 

system to collect the node data semi-automatically. When the learning stage is 

finished, the system will have a set of nodes, denoted as Npath. The process of 

recording the path data is described as an algorithm in the following. 

Algorithm 3.1 . Path node recording. 

Input: The 3D data provided by the KINECT device and the coordinates provided by 

the odometer. 

Output: A set of path nodes Npath ={N0, N1, N2, …, Nt}. 

Steps: 

Step 1. Record the initial position of the vehicle (x0, y0) = (0, 0) into the first node 

N0 of the set Npath and mark the node as N0. 

Step 2. Create node Ni into the set Npath, record the reading values of the odometer, 

(xi, yi), into Ni when the vehicle is in either of the following situations: 

Step 2.1. the user controls the vehicle to learn an object of landmarks; 

Step 2.2. the user controls the vehicle to turn and input the turning parameters. 

Step 3. Repeat Step 2 until the learning process is finished. 

Step 4. Create the terminal node Nt into the set Npath. 

Step 5. Save all the nodes of the set Npath into the computer and create a path map. 
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We show an illustration of the path in our experimental environment for this 

study in Fig. 3.2, which is part of the sidewalk of National Chiao Tung University. All 

of the nodes shown are recorded by the user. Each node is labeled with an index 

number according to the order of learning. The index numbers are useful for path map 

creation and landmark detection. 
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Figure 3.2 An illustration of the learned path nodes in the experimental environment for this 

study (part of the sidewalk in National Chiao Tung University). 
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3.3.3 Learning of Landmark Detection and 

Ground-truth Parameters 

In this study, we use a technique of line following to navigate the vehicle along a 

path on the sidewalk which has a curb line along the path. Therefore, we can find that 

a line-segment landmark is usually projected in a fixed region in the image. For this 

characteristic, we only need to detect a part of the region in the image to reduce the 

computation time. Accordingly, we can define a region of interest (ROI) in the image 

as shown in Fig. 3.3, which is also called a detection window.  

By this property, we also record which KINECT device is used to detect a certain 

landmark along the path. The KINECT devices are labeled with a serial number as 

shown in Fig. 3.4. When the vehicle moves on in the navigation stage, the recorded 

serial number in a path node can be retrieved to decide which KINECT device should 

be used to detect the target landmark continuously until the target landmark is 

detected. This means that the computation load in the navigation process is 

considerable. But after relevant parameters are learned, we can handle less data 

acquired by the specified KINECT device, and so do not have to use more than one 

KINECT device to detect the landmark at the same time unless we want. In this way, 

we can speed up the computation and so increase the navigation speed. 

In addition, some ground-truth data are measured in the learning process, such as 

the angle of any ramp and the distance of the vehicle to the curb along the sidewalk. 

We will describe in Chapter 6 how these parameters are used in this study. 

3.3.4 Learning of Landmark Features in Color and 

Depth Images 

In order to learn selected landmarks, we design a user interface to help users to 
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specify the landmark which they want to use. While a user controls the vehicle to a 

position beside a landmark to be learned, he/she can select one of the KINECT 

devices to acquire the color and depth images, and then drag manually a rectangle as 

an ROI to segment out the landmark which appears in the color image. Next, a SURF 

extraction algorithm [20], which is described in Chapter 5 in detail, is applied to 

obtain the feature set of the ROI. Then, the depth data provided by the KINECT 

device, the feature set of the landmark, the KINECT device number, and the ROI are 

saved into the learned data set. A flowchart is illustrated in Fig. 3.5, and the details of 

the process are described in the following as an algorithm. 

 

 

Figure 3.3 Curb line in the detection window. (a) Color image. (b) Depth image. 
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Figure 3.4 An illustration of KINECT device numbers. 
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Figure 3.5 A flowchart of the landmark learning process. 

Algorithm 3.2 . Learning of a selected landmark. 

Input: the position P of a selected landmark M. 

Output: information data of landmark M. 

Steps. 

Step 1. Control the vehicle to position P beside the landmark M. 
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Step 2. Select one of the KINECT device as specified in the path to acquire a color 

image I and a depth image D. 

Step 3. Drag a rectangle on image I as an ROI R. 

Step 4. Apply the SURF extraction algorithm on the ROI to extract a feature set S. 

Step 5. Save the depth image D, the KINECT device number, the feature set S, and 

the ROI R manually in the record of the current path node corresponding to 

landmark M. 

 

In this study, gray-level depth images composed of depth data provided by the 

KINECT device are used as inputs to the SURF extraction algorithm. An example of 

such depth images is shown in Fig. 3.6. Actually, the above algorithm of learning of a 

landmark is not suitable for such a type of depth image because the feature points in a 

gray-level image are much less than those in a color image. However, our 

experimental experience of using the depth image to extract SURF’s for landmark 

localization shows that the effect of using the depth image alone is acceptable. More 

detailed experimental results and vehicle navigation schemes will be described in 

Chapter 6.  

 

 

Figure 3.6 A hydrant landmark in a depth image.  
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Chapter 4  

Navigation in Outdoor Environments 

4.1 Introduction 

When the learning process is finished, we can obtain the learned environment 

information, including a set of landmark features, ground-truth data, images of ROI, 

and a navigation path. In this chapter, we introduce our idea for vehicle navigation by 

this information in outdoor environments, and describe how we implement them. 

Some strategies for conducting the navigation work will be described in Section 4.2.1. 

In Section 4.3, the detailed algorithm for the proposed navigation process will be 

introduced after two main ideas to guide the vehicle to navigate on the learned path 

are described. 

4.1.1 Strategy of Vehicle Guidance on Learned Paths 

In the task of vehicle navigation, a navigation path like that shown Fig. 3.2 is 

established in advance. There are a starting point and an end one in the path, and also 

some spots of interest to us that the vehicle will go through between the starting point 

and the end one. In this study, we have chosen a starting point and an end one on an 

interesting path in a part of the sidewalk in National Chiao Tung University as our 

experimental environment, and record the features and positions of some pre-selected 

landmarks along the path. We have also “learned” some environment parameters, like 

the speed of the vehicle, the angle of each path turning, and the ground-truth data of a 

ramp and a curb segment, to assist the vehicle to navigate along the path successfully, 

as shown in Fig. 4.1. When the above-mentioned tasks are finished, the vehicle will 
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be said to be able to navigate along the learned path. 

However, besides guiding the vehicle to learn the above-mentioned parameters, 

a vehicle navigation strategy is also important in this study. The strategy proposed in 

this study to conduct the navigation work is introduced in Section 4.2. The detailed 

algorithm for the proposed navigation process is introduced in Section 4.3. 

 

 

(a) 

 

(b) 

Figure 4.1 Two types of landmarks selected for use in this study. (a) Curb line. (b) Ramp. 

4.1.2 Localization by Sequential Landmarks 

As mentioned previously, the vehicle navigation process usually generates 

mechanic errors, resulting in imprecise computations of vehicle positions. To solve 

the problem, a strategy adopted in this study is to guide the vehicle to constantly 

localize its position based on the sequentially learned landmarks. Specifically after 

detecting and localizing a landmark in the acquired KINECT images by the use of the 

proposed methods (introduced later in Chapter 5) and obtaining the relative vehicle 

position with respect to the landmark, we can adjust the vehicle’ position and 

orientation to the status as that learned in the learning phase at the current spot. 

In addition, because the learned path is along a sidewalk and we use the concept 

of sequential-node visiting to conduct vehicle localization, the use of a curb line 
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feature on the sidewalk is practical in this study. We use the learned curb-line 

parameter to achieve line following to correct the vehicle’s orientation for navigation 

along the learned path on the sidewalk. 

4.2 Proposed Navigation Process 

4.2.1 Strategies for Proposed Navigation Process 

In this section, we introduce the strategies proposed in this study for vehicle 

navigation on the learned path. At first, the navigation process reads a learned 

navigation path and related guidance parameters which were recorded in the storage 

of the laptop computer. The navigation path consists of several nodes which were 

labeled in a sequential order in the learning process. The vehicle is guided according 

to the concept of sequential-node visiting to visit each node sequentially to conduct 

vehicle localization. Some strategies are proposed for use to guide the vehicle to 

navigate to the pre-selected destination successfully. They are described as follows. 

1. The vehicle always follows the curb line on the sidewalk if possible. After 

detecting the curb line, the vehicle modifies its orientation to keep a safe distance 

with respect to the curb line on the sidewalk. 

2. The vehicle localizes its position according to the learned sequential landmarks 

along the path. We adjust the vehicle’s position in the GCS according to the 

learned landmark position and the current landmark position which are computed 

using the acquired images at the vehicle’s current location. 

3. An object detection process is conducted continuously to detect objects around. 

When an object of suspicion appears in the detection window, the vehicle will 

stop going forward, and match it against the recorded landmark.  
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By the above strategies, the vehicle can be expected to navigate to the desired 

destination successfully. A flowchart in accordance with the above three strategies is 

shown in Fig. 4.2. 

4.2.2 Idea of Vehicle Localization by Learned 

Sequential Landmarks 

Although the odometer readings provide the vehicle’s position and direction for 

vehicle navigation in the navigation phase, they are usually imprecise to guide the 

vehicle to the next position correctly. Therefore, using the learned landmarks, which 

include light poles, hydrants, sidewalk curb lines, and tree trunks in this study, to 

localize the vehicle’ position and orientation becomes the main task, as shown in Fig. 

4.3. The sequential landmarks and the characteristic of the curb along a path on a 

sidewalk can be used to obtain the vehicle position on the path, and the learned 

odometer readings can assist judging whether the vehicle has arrived at a correct 

position or not to detect the landmark. The process of vehicle localization is illustrated 

in Fig. 4.4. Two different positions of the vehicle at a node in the navigation path and 

the relation between the vehicle, the curb, and the light pole are illustrated in Fig. 4.5.  

The proposed vehicle localization technique consists of two major steps. Firstly, 

an object detection process detects the existence of the next-to-visit landmark 

continuously after the start of the navigation process. When the detection process 

detects a landmark at a correct node, we can acquire the landmark’s depth data by the 

KINECT device with respect to the vehicle. Second, from the learned environment 

parameters, we can obtain the recorded depth data, and then we match, using the ICP 

algorithm, the two different sets of depth data to estimate the correct position and 

orientation of the vehicle according to the MSE criterion as illustrated in Fig. 4.6, 
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resulting in a set of 3D space parameters, including a pair of translation parameters 

(Xmse, Zmse) and a rotation angle mse in the CCS. The adopted technique to adjust the 

vehicle to a correct position is described in the following algorithm. 
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environment 
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Blind navigation 
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process

Yes

 

Figure 4.2 Flowchart of navigation process. 

 

Algorithm 4.1 Vehicle localization and position adjustment by learned landmarks. 

Input: a color/depth image and a recoded landmark depth data D. 

Output: None. 

Step. 

Step 1. Use the SURF extraction algorithm (described in Chapter 5) to recognize a 

learned landmark from the input color/depth image; and if an object of the 

learned landmark recognized successfully by system, take out the 
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corresponding node data from the learned path information; else, go to Step 

1. 

Step 2. Obtain at the vehicle’s current position new depth data D' of the landmark 

by one of the three KINECT devices as specified in the learned path 

information. 

Step 3. Convert the obtained depth data D' into 3D space coordinates (X, Y, Z) in 

the CCS using Equation (2.3). 

Step 4. Compute the above-mentioned MSE estimation of the rotation angle mse 

and the translation parameters (Xmse, Zmse) between the converted 

coordinates and the recorded one in the path data in the CCS using the ICP 

technique (the detailed method will be described in Chapter 5). 

Step 5. Convert the coordinates (X, Y, Z) in the CCS into the coordinates (VX, VY) in 

the VCS by the following way: 

 XV X ;  YV Z . (4.1) 

Step 6. Use the estimated rotation angle mse and the translation parameters (Xmse, 

Zmse) to adjust the current vehicle position (VX, VY) to the correct position 

(Xadj, Yadj) in the GCS by the following equations. 

 
cos sin

sin cos

adj mse mse mse X

adj mse mse mse Y

X X V

Y Z V

 

 

       
        

      
. (4.2) 

At first, we define a region as the detection window and a threshold value thr for 

detecting landmark objects in the depth image, which are selected in the learning 

stage. Then, after the navigation process is started, the detection process will detect a 

region of detection window in the acquired depth image and decide whether there 

exists any object of concern. The criterion for this decision is to check if the distance 

between the detected object with respect to the vehicle is smaller than a pre-selected 

threshold thr. If this condition is satisfied, the SURF extraction algorithm is then 
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applied to extract the object’s feature points in the color image, which then are 

matched with the learned feature set to recognize the learned landmark. The detection 

process is illustrated in Fig. 4.7. 

 

 

   

(a) (b) (c) 

Figure 4.3 Three types of landmarks selected for vehicle localization in this study. (a) Light pole. (b) 

Hydrant. (c) Curb line.  

 

Landmark 

detection Process

Detected to a 

landmark

YesNo

Obtain the 

landmark

 depth data 

Compute the 

landmark position 

in CCS

Match the depth 

data

Compute the 

landmark position 

in VCS

Learned 

landmark 

position in CCS

Adjust the vehicle 

position in GCS

Learned 

landmark 

position in CCS

 

Figure 4.4 The vehicle localization process. 
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Figure 4.5 Illustration of learned position of the vehicle and current position of the vehicle in the GCS. 
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(a) (b) 

Figure 4.6 The depth data of light pole recorded at position L are matched with newly-acquired depth 

data in navigation process at position L¢(a) A recorded feature position with respect to the vehicle. (b) 

A current feature position with respect to the vehicle. 

 

4.3 Algorithm of Navigation in 

Outdoor Environments 

In this section, we describe the detailed process for vehicle navigation in the 
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outdoor environment. With the learned information, the vehicle navigates along the 

learned path by the concept of sequential-node visiting to visit each recorded node 

consecutively and conducts specified works at the learned positions until reaching the 

end point of the learned path. The entire navigation process is described in the 

following algorithm, and a flowchart of the complete navigation process is shown in 

Fig. 4.8. 
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Figure 4.7 Flowchart of proposed detection process. 

 

Algorithm 4.2  Navigation Process. 

Input: a learned navigation path Npath with relevant guidance parameters, and learned 

data of environment parameters. 

Output: none. 

Step. 

Step 1. Choose a start node Nstart and an end node Nend from the learned navigation 
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path Npath, and initialize vehicle navigation from Nstart. 

Step 2. Read from Npath a navigation node Nnext and related guidance parameters. 

Step 3. Move the vehicle forward to node Nnext and detect the learned landmark. 

Step 4. If a sidewalk following mode is adopted, detect the curb line by the curb 

line detection process (the detailed method will be described in Chapter 6). 

If successful, modify the vehicle direction accordingly; otherwise, conduct 

the vehicle in the blind navigation mode. 

Step 5. If the detection process detects an object of concern in the detection 

window and its distance with respect to the vehicle is smaller than a 

threshold thr, then stop the vehicle and go to the next step; else, go to Step 

7.  

Step 6. If there exist a light pole or hydrant landmark in the current node Nnext, 

capture a color/depth image by KINECT device, use the color/depth image 

and the learned landmark depth data D as inputs, perform the algorithm 4.1 

to do vehicle localization, and then go to Step 2. 

Step 7. If there exists a ramp landmark in the current node Nnext, adopt the blind 

navigation mode, adjust the vehicle direction, and then go to Step 2. 

Step 8. If there exists a tree trunk landmark in the current node Nnext, compute the 

position of the landmark center in the image in terms of 3D space 

coordinates, use the coordinates to localize the vehicle, and then go to Step 

2. 

Step 9. If there exists a landmark which is pre-selected as the terminal node Nend 

(recognized to be so by its landmark type and its number), stop the vehicle, 

and finish the navigation. 

Step 10. Repeat Steps 3 through 9. 
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Figure 4.8 Flowchart of detailed proposed navigation process. 
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Chapter 5  

Landmark Detection and 

Localization Using Depth and Color 

Images 

5.1 Introduction 

Vehicle localization is an important task for building the autonomous vehicle 

navigation system in this study. It can guide the vehicle move to a pre-selected 

destination successfully. For this purpose, we use pre-selected landmarks to provide 

the current vehicle position in the learned map when navigating. However, to decide 

which landmarks should be used is also an issue. Utilizing the characteristics of the 

KINECT device which can provide 3D space by depth images, we select objects 

which have prominent 3D shape information as landmarks for localization, as 

illustrated in Fig. 5.1. We choose rectangular-like objects as landmarks as Fig. 5.1(a), 

because it can provide translation and rotation information simultaneously. A method 

for feature extraction and matching for recognizing the landmark is described in 

Section 5.2. Unfortunately, not all of the landmarks on the learned path can provide 

3D information. Therefore, some other techniques of object detection and localization 

will be introduced in Chapter 6. In addition, how we convert depth images of 

landmarks into 3D space coordinates to localize the vehicle will be described in 

Section 5.3. And a series of algorithms for landmark detection and localization will be 

described in details in Section 5.4. 
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Figure 5.1 The top views of three difference types of objects in the depth image which is captured from 

the front of the KINECT device. (a) A rectangle. (b) A plane. (c) A cylinder. 

5.2 Review of Method of Matching by 

Speeded Up Robust Features 

(SURFs) 

The SURF extraction method proposed by Herbert Bay et al. [20] in 2006 

includes four major stages of computation to generate a set of features, and part of the 

idea is based on the similar concept of the SIFT [21]. In this section, we will give a 

brief review of the SURF, which is divided into two parts as follows: detection of 

feature points of interest and description and matching of such points. 

5.2.1 Detection of Feature Points of Interest 

A main difference between the SURF and the SIFT is that the SURF is based on 

the use of Hessian matrix approximation and integral images, which reduce the 

computation time drastically because the integral image allows fast computation of 

box-type convolution filters and the Hessian matrix has a good performance in 

accuracy.  

In more detail, the theory of the SURF one pixel in an image Ix, y) can be 

 

(a) (b) (c) 
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represented by a Hessian matrix as follows: 

 

22

2

2 2

2

( ( , ))

II

x yx
H I x y

I I

x y y

 
 

  
  
 
   

, (5.1) 

and using the convolutions of the Gaussian second-order derivatives, the Hessian 

matrix H(x, ) at x at scale  is defined as follows: 

 
( , ) ( , )

( , )
( , ) ( , )

Lxx x Lxy x
H x

Lxy x Lyy x

 


 

 
  
 

, (5.2) 

where Lxx(x, ) is the convolution of the Gaussian second-order derivative 22 / x  

with of the image I at point x, and Lxy(x, ) and Lyy(x, ) are interpreted similarly. 

In the choice of the filter, the author thinks that the filters are non-ideal in any 

case, so he chose to approximate the Hessian matrix with box filters. The 9×9 box 

filters in Fig. 5.2 for computing the blob response maps are denoted by Dxx, Dyy, and 

Dxy. Therefore, the determinant of the Hessian matrix can be written as:  

 2( ) (0.9 )approx xx yy xyDet H D D D  . (5.3) 

 

 

Figure 5.2 Left to right: The SURF used the approximation of the second-order Gaussian partial 

derivative in the y-direction (Dyy) and the xy-direction (Dxy). The grey regions are equal to zero. 

The scale spaces are usually implemented as an image pyramid. The images are 

repeatedly smoothed with a Gaussian filter, and then sub-sampling in order to achieve 
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a high level of the pyramid. In the SIFT, the author subtracts these pyramid layers in 

order to get the DoG (Difference of Gaussians) images. In the SURF, the scale space s 

is analyzed by up-scaling the filter size rather than iteratively reducing the image size 

as shown in Fig. 5.3. Therefore, the SURF can reduce the sampling time to speed up 

the overall computation time. 

 

       (a) (b) 

Figure 5.3 Illustration of SIFT and SURF. (a) Iteratively reducing the image size. (b) According to the 

scale space s to up-scaling the filter size. 

 

A similar technique of the SIFT to localize the points of interest in the image is 

also used in the SURF extraction algorithm. Each point in the images is compared 

with its 8 neighbors in the same scale image, and the 9 corresponding neighbors in 

neighboring scale images, as shown in Fig. 5.4. If the point is a local maximum, it is 

selected as a candidate feature point. And the found candidate points of the 

determinant of the Hessian matrix are computed by 3D linear interpolation in the 

scale and image space.  

 

Figure 5.4 Maxima values are detected by comparing a pixel, as marked with X, with its 26 neighbors, 

as marked with the green circles, in 3×3 regions of the current and adjacent scales. 
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5.2.2 Description and Matching of Feature Points of 

Interest 

In this section, we will introduce how the SURF feature extractor generates the 

feature descriptor and matches these features. The descriptor describes the distribution 

of the intensity content within the neighborhood of the point of interest, and is similar 

to the SIFT. The author builds the distribution of the first-order Haar wavelet 

responses in the x and y directions, rather than the gradient; exploits the integral 

image for speeding up; and uses only 64D. This reduces the time for feature 

computation and matching, and has proven to simultaneously increase the robustness. 

Furthermore, the author presents a new indexing step based on the sign of the 

Laplacian. 

The first step consists of fixing a reproducible orientation based on information 

from a circular region around the feature point of interest. Then, a square region 

aligned to the selected orientation is constructed and the SURF descriptor is extracted 

from it. Finally, features are matched between two images. And the three steps are 

described in more detail in the following. 

1. Orientation assignment 

In order to be invariant to image rotation, the Gaussian weighted Haar wavelet 

responses in the x and y directions within a circular neighborhood of radius 6s around 

the interest point, with s the scale at which the interest point was detected. The 

responses are represented as points in a space with the horizontal response strength 

along the abscissa and the vertical response strength along the ordinate, and the 

dominant orientation is estimated by calculating the sum of the horizontal and vertical 

responses within a sliding orientation window of size /3 as shown in Fig. 5.5. The 
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two summed responses then yield a local orientation vector. 

 

 

Figure 5.5 The dominant orientation of the Gaussian weighted Haar wavelet responses detected by the 

sliding orientation window.  

 

2. Descriptor based on the sum of Haar wavelet responses 

For the extraction of the descriptor, the first step consists of constructing a 

square-region centered around the points of interest and oriented along the orientation 

selected in the above-mentioned scheme. The region is split up regularly into smaller 

4×4 square sub-regions. For each sub-region, we compute Haar wavelet responses at 

5×5 spaced sample points. And the derivatives dx and dy are defined as Haar wavelet 

responses in the horizontal and vertical directions, respectively. Then, the wavelet 

responses dx and dy are summed up over each sub-region to form a first set of entries 

in the feature vector. In order to express the polarity of the intensity changes, it also 

extracts the sum of the absolute values of the responses |dx|and |dy|. Hence, each 

sub-region has a 4D descriptor vector ( , , , )x y x yv d d d d     as illustrated in 

Fig. 5.6. Concatenating all of the 4×4 square sub-regions results in a descriptor vector 

of length 64. 
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Figure 5.6 To build the descriptor, an oriented quadratic grid with 4×4 square sub-regions is laid over 

the point of interest. For each square, the wavelet responses are computed from 5×5 samples. For each 

field, the sums dx, |dx|, dy and |dy|, computed relatively to the orientation of the grid, are collected. 

 

3. Fast indexing for matching 

The matching technique in the SURF is only to compare features to see if they 

have the same type of contrast. Because the sign of the Laplacian distinguishes bright 

blobs on dark backgrounds from the reverse situation, as illustrated in Fig. 5.7, this 

feature is available at no extra computational cost as it was already computed during 

the detection phase. 

 

 

Figure 5.7 If the two types of contrasts between the two points of interest are different, it means that the 

candidate points do not match each other. 

5.3 Vehicle Localization Using an 

Iterative Method 

5.3.1 Conversion of Depth Information into 3D Space 

Coordinates 
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The depth data dv provided by the infrared ray sensor equipped on the KINECT 

device are usually displayed as a depth image D on the monitor. The original depth 

data obtained by using the Kinect-for-Windows SDK are distance values and the 

range of them is from 800 to 4000 in the unit of millimeter. In order to display these 

values on a monitor, it is usually converted into a gray-level image using the 

following equation: 

 
( , )

( , )
16

vd x y
D x y  , (5.4) 

where dv(x, y) is the distance value of a pixel at coordinates (x, y) and D(x, y) is the 

computed result for dv. 

By Equation (5.4), the distance range will become 50 through 250. This shows 

that the depth values in the depth image have been compressed. Although the 

influence of this resolution reduction on the calculation result is not so much, yet we 

use the original depth data in this study and save them into a 2D array. A depth image 

obtained from converting the depth data is shown in Fig. 5.8 

 

 

Figure 5.8 A landmark of tree appearing in a depth image. 

 

In order to adjust the vehicle to the its correct position by the estimated rotation 



 

52 

 

and translation parameters in the GCS, we have to convert the depth data dv into 3D 

coordinates (X, Y, Z) in the CCS, and then convert the coordinates (X, Y, Z) in the 

CCS into the VCS. For this, based on Equation (2.3), we convert all the depth data dv 

by the following equations: 

 

2 2 2

2 2 2

2 2 2

( , ) ( / 2)
( , ) ;
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   




   

 (5.5) 

where the values width and height specify the 2D array size; and the units of u and v 

are both pixel and those of X(u, v), Y(u, v), and Z(u, v) are all millimeter. By 

Equations (5.5) above, we can obtain the 3D space coordinates in the CCS with 

respect to the center of the 2D array.  

5.3.2 Localization by an Iterative Algorithm Using 3D 

Space Coordinates 

According to the above discussions, we can obtain the 3D space coordinates of 

the landmark in the CCS. In order to localize the vehicle’s position on the path, at the 

vehicle’s current position, we capture new depth data dv' of the landmark and match 

them against the learned data dv to compute the MSE estimation of the vehicle 

location, including the rotation angle mse and the translation parameters (Xmse, Zmse), 

as described in Section 4.2.2 using the concept of ICP [23] technique. 

Accordingly, we want to rotate and translate the depth data dv' of the landmark 

continuously by the concept of the ICP technique to find the correct vehicle location. 
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For this, we derive some formulas for use in the process. At first, assume that we have 

calibrated the tilt angle of the used KINECT device by the Kinect-for-Windows SDK 

before the navigation starts. Then, we want to rotate the depth data dv' of the 

landmark through the pan angle  by a rotation matrix described as follows: 

cos 0 sin 0

0 1 0 0
( )

sin 0 cos 0

0 0 0 1

yR

 


 

 
 
 
 
 
 

, (5.6) 

also, we want to translate the depth data dv' of the landmark through a vector [vx, vy, 

vz]
T
 by a translation matrix as follows after representing the 3D space coordinates in 

the CCS by homogeneous coordinates (with an extra item of 1 in the fourth 

dimension): 

1 0 0

0 1 0

0 0 1

0 0 0 1

x

y

v

z

v

v
T

v

 
 
 
 
 
 

, (5.7) 

specifically, for a pixel p with 3D coordinates (px, py, pz), the above translation results 

in: 
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0 1 0

0 0 1

0 0 0 1 1 1

x x x x

y y y y

v

z z z z

v p p v

v p p v
T p

v p p v
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     
     
     

, (5.8) 

therefore, the translation result is p + v if we represent [vx, vy, vz]
T
 by v and [px, py, pz]

T
 

by p. Moreover, if we concatenate the rotation and the translation together, then if P is 

any point in the 3D space (say, on a landmark) with learned coordinates (X, Y, Z) and 

its current coordinates obtained from the KINECT images are (X', Y', Z'), then the 
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latter may be transformed into the former (i.e., from the current version to the learned 

one) by the following equation: 

( ,  ,  ,  1 ) ( ,  ,  ,  1) ( )y vP X Y Z P X Y Z R T p¢ ¢ ¢   , (5.9) 

or equivalently, by the following equation: 
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 
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with 
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 (5.10) 

With the above derived formulas, we now can use the concept of the ICP 

technique to obtain an angle mse and a translation vector (Xmse, Zmse) which minimize 

the mean square error (MSE), where the MSE value is computed by the following 

equation: 

2

0

1
( )

N

i y i v i

i

MSE m R P T p
N 

   , (5.11) 

where Pi (i = 0, 1, …, N) is a point of the depth data dv', and mi is a point in the 

learned data dv corresponding to Pi which is computed in the sense of minimum 

Euclidean distance. Finally, a detailed description of the minimum MSE estimation 

using the ICP technique is as follows.  
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Algorithm 5.1: Minimum MSE estimation of the parameters for vehicle 

localization using the ICP technique. 

Input: the depth data dv' of a landmark and the corresponding learned depth data dv; a 

range for rotations between thl to thr, and a 2D range for translations between 

(Xthl, Zthl) to (Xthr, Zthr), all retrieved from the database. 

Output: minimum MSE estimations of the rotation angle mse and the translation 

vector (Xmse, Zmse) of the vehicle in the CCS with respect to the landmark. 

Steps: 

Step 1. Convert the depth data dv and dv' respectively into the learned position 

coordinates (X, Y, Z) and the current position coordinates (X', Y', Z') in the 

CCS by Equation (5.5). 

Step 2. For each point Pi with coordinate (X, Y, Z) in a 3D region A with from thl 

to thr, X from Xthl to Xthr and Z from Zthl to Zthr, do the following steps. 

Step 2.1 Compute the Euclidean distances from Pi of dv' to every point Pj of 

dv, and put them into a set M 

Step 2.2 Find out a point Pji
 with the minimum Euclidean distance in M, take 

it as the one corresponding to Pi, and record the current data (ji
, Xji

, 

Zji
). 

Step 2.3 Repeat Steps 2.1 and 2.2 until all points Pi in A are processed. 

Step 3. Substitute all points Pi in A and their corresponding points Pji
 together with 

the recorded data (ji
, Xji

, Zji
) into Equation (5.11) to compute the MSE 

values and record them into a set K. 

Step 4. Repeat Steps 2 and 3 until the end of the region A. 

Step 5. Find the minimum of the MSE values, ki  K, and take out the 

corresponding values of  X, and Z in region A as the desired rotation angle 

mse and translation vector (Xmse, Zmse). 
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Step 6. Take mse and (Xmse, Zmse) as output. 

5.4 Proposed Method for Light Pole 

Detection and Localization 

5.4.1 Light Pole Detection Using SURFs 

The use of a light pole as a landmark is a good choice for vehicle navigation 

because it is a commonly-seen object along the sidewalk. In addition, the light pole 

base is a solid rectangular-shaped object which is appropriate for object matching 

using the SURF extraction and matching algorithm.  

To use the light pole as a landmark for vehicle localization, during the learning 

phase, we record a part in the color image as an ROI, and the feature set of the 

landmark as the learned data for matching. And in the navigation phase, at first, we 

apply the landmark detection process superimpose a region as a detection window on 

the acquired depth image and decide whether there exists any object of concern. If so 

and the distance with respect to the vehicle is smaller than a threshold thr, then we use 

the SURF extraction algorithm to extract the feature point of the object and match 

them with the recorded feature set. A detailed description of the landmark detection 

process is as follows. 

Algorithm 5.2 landmark detection process. 

Input: a color image I, and a learned feature set read from database. 

Output: a set of coordinates of feature points, I(x, y). 

Steps: 

Step 1. Conduct the landmark detection process. 

Step 2. If an object appears in the detection window and the distance with respect to 
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the vehicle is smaller than a threshold thr, go to Step 3; else, go to Step 1. 

Step 3. Use the SURF extraction algorithm to extract the feature points of the object 

in the color image I. 

Step 4. Match the extracted feature points with the recorded ones using the 

computed contrast differences as described in Section 5.2.2. 

Step 5. If the number of correct matching points is larger than a pre-selected 

threshold thr2, go to Step 6; else, go to Step 1. 

Step 6. Take the coordinates of the matching feature points I(x, y) as output. 

 

The above algorithm is a general one, and can be applied to detect and match 

light pole images. An example of feature extraction from landmarks is shown in Fig. 

5.9(a), where the landmark is a light pole. We drag manually a rectangle as an ROI to 

segment out the landmark which appears in the color image as shown in Fig. 5.9(b). 

Next, we extracted feature points from the ROI image using the SURF extraction 

algorithm and recorded the descriptor of the feature points. The feature points in the 

ROI image shown in Fig. 5.9(b) are shown in Fig. 5.9(c), where the size of the circle 

specifies the degree of scaling and the line in the circle indicates the orientation of the 

feature point. 

5.4.2 Light Pole Localization Using 3D Space 

Coordinates 

In this section, we will introduce the proposed method to localize the vehicle 

using the landmark of light pole. In order to show the advantage of the KINECT 

device, a series of schemes to combine color and depth images to achieve landmark 

detection and vehicle localization will be described. 

The method of vehicle localization using the light pole landmark is similar to the 
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one described in Section 5.3.2, but the more detailed description about how to 

combine the coordinates of feature points in the ICS with the depth data to decide a 

range of threshold values for speeding up the computation of the ICP algorithm will 

described here. In the vehicle localization process, the ICP algorithm has a problem 

about the computation time. A large number of depth data used as input to the 

iteration algorithm will spend a considerable amount of computation time. Therefore, 

we use a range of threshold values and image sampling to reduce the number of 

calculated points for enhancing the computing speed. The detailed of deciding the 

threshold range is described as an algorithm as follows. An image resulting from 

using the range of threshold values to reduce the number of points in the depth image 

is shown in Fig. 5.10.  

 

 

(a) 

  

(b) (c) 

Figure 5.9 Feature extraction of a landmark of light pole image. (a) A used landmark in color image. (b) 

A ROI image of light pole base. (c) Feature points of ROI images. 

 

Algorithm 5.3 decision of threshold range for reduction of image data. 
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Input: the depth data dv' and the coordinates of a set of feature points, I(x, y), in the 

color image computed by SURF algorithm. 

Output: a range of threshold values from thrh to thrl 

Steps: 

Step 1. Take out all the coordinates of feature points I(x, y). 

Step 2. Use the technique provided by the SDK [19] to solve the shifting problem 

as shown in Fig. 5.11 by mapping the coordinates of the feature points I(x, y) 

in the color image into the coordinates dv'(x, y) in the depth data dv', and 

record the results. 

Step 3. Compute the average value Vavg of the recorded depth data dv'. 

Step 4. Assign Vavg + 100 to thrh and Vavg  100 to thrl and take the range from thrl 

to thrr as output. 

 

(a) 

 

(b) 

Figure 5.10 A landmark of light pole. (a) The landmark in the depth image. (b) Result of using a range 

of threshold values to reduce the number of data in the image. 

 

Color image

Depth image

 

Figure 5.11 An illustration of the shifting problem of KINECT device (described in Chapter 2). 
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Then, we combine above-mentioned algorithm and the previously-described 

algorithm to form a complete algorithm for vehicle localization by the landmark of 

light pole. 

Algorithm 5.4 vehicle localization by the detected landmark of light pole. 

Input: a captured color image I. 

Output: none 

Step 1. Using the color image I as input, perform Algorithm 5.2 to detect any object 

of concern in I with the output of a set of coordinates of feature points I(x, 

y). 

Step 2. Capture depth data dv' using the KINECT device and use them together with 

I(x, y) as inputs, perform Algorithm 5.3 to find a range Rthr of threshold 

values from thrh to thrl. 

Step 3. Use Rthr to reduce the number of calculated points in depth data dv', and 

denote the result as dv''. 

Step 4. Use dv'' as input, perform Algorithm 5.1 to compute the minimum MSE 

estimation of the rotation angle mse and the translation vector (Xmse, Zmse) of 

the landmark with respect to the learned data of the landmark. 

Step 5. Convert the depth data dv into 3D space coordinates (X, Y, Z) in the CCS as 

done in Step 4 of Algorithm 5.1 according to Equation (5.5), and convert the 

resulting 3D space coordinates (X, Y, Z) in the CCS into the coordinates (VX, 

VY) in the VCS according to Equation (4.1).  

Step 6. Use the minimum MSE estimation mse and (Xmse, Zmse) to adjust the vehicle 

to the correct position by Equation (4.2). 
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5.4.3 Experimental Results for Light Pole Detection 

and Localization 

Some experimental results for light pole detection are shown in this section. In 

one of our experiments, an object appears in the detection window in the depth data, 

as shown in Fig. 5.12. The color image corresponding to the depth data is shown in 

Fig. 5.13. And the extracted feature points of the captured color image are shown in 

Fig. 5.14. Finally, the matching result is shown in Fig. 5.15. 

 

 

Figure 5.12 A landmark of light pole exists in detection window 

 
Figure 5.13 A color image corresponding to the depth data. 

 
Figure 5.14 The extracted feature points in the captured color image. 
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Figure 5.15 The matching result with the ROI image using the learned feature set. 
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Chapter 6  

Landmark Detection Using Depth 

Information Only 

6.1 Introduction 

The KINECT device provides several different types of data, and what we use in 

this study are the color image and depth data. Somehow different from distances 

measured by other instruments, the depth data not only provides the distance value of 

the object in front of the KINECT device and within a range, but also form a depth 

image corresponding to the color image. The depth image can display the shape of the 

object and the entire background environment. This means that compared to the 

complexity of the color image, certain features of the object, like the shape, contour 

and position, can be obtained from the depth image more easily. Therefore, some 

specific objects of pre-selected landmarks were selected in this study for detection 

using the depth information (containing the depth image and other data) only.  

By the use of the depth information, many types of landmarks can be detected 

and utilized for vehicle navigation. A technique of line following using the depth 

image proposed in this study is described first in Section 6.2, and the proposed 

method of using the SURF extraction algorithm and the depth image to detection 

objects of landmarks is described in Section 6.3. Then, a ramp detection technique is 

described in Section 6.4. Finally, we introduce the proposed tree trunk detection and 

localization technique in Section 6.5. 
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6.2 Proposed Technique for Curb Line 

Following 

To conduct vehicle navigations on sidewalks, we propose a technique to detect 

curb lines and compute their distance with respect to the vehicle using the depth 

information. A technique of curb line detection is described in Section 6.2.1 and the 

entire algorithm is described in Section 6.2.2. At last, some experimental results for 

curb detection are shown in Section 6.2.3. 

6.2.1 Extraction of Curb Boundaries in Depth Images  

As described in Section 6.1, some types of landmark features in the depth 

information are more easily to obtain and calculate, and the boundary of the curb is 

one of them. The curb on the sidewalk usually has a height difference from the road, 

and so this feature in the depth image is obvious as can be seen in Fig 6.1. We use this 

characteristic to make it easier for us to extract the boundary of the curb. 

 

  

(a) (b) 

Figure 6.1 Two different perspective views of the curb on the sidewalk in the depth image acquired by 

a KINECT device. (a) A top-to-bottom view. (b) A farther view. 

At first, we use the Canny edge detector to obtain the boundary of the curb in the 
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depth image. In the resulting edge-point image, the Hough transform was adopted to 

detect the straight line. After the curb line is found out, we retrieve a part of the line 

segment in the detection window to compute the distance of the curb line with respect 

to the vehicle. Then, the distance is utilized to adjust the direction of the vehicle to 

follow the curb line on the sidewalk. The proposed algorithm for curb line following 

is described in detail in the following section. 

6.2.2 Algorithm of Curb Line Following 

In order to guide the autonomous vehicle to navigate along a path on the 

sidewalk in the environment with a limited number of landmarks, we use the feature 

of curb line to conduct line-following navigation. An advantage of using the feature of 

curb line is that it always exists on the sidewalk along the learned path and provides 

the direction information. In addition, the vehicle is placed in parallel with the curb 

line before navigation. Therefore, if we can adjust the direction of the vehicle to be 

parallel with the curb line constantly when the vehicle moves forward in the 

navigation, it means that the vehicle will follow the curb line until it breaks or 

disappears. We can use the learned distance value of the curb with respect to the 

vehicle and the distance computed during navigation to “calibrate” the orientation of 

the vehicle because we assume the vehicle is always facing to the front and parallel to 

the curb. An illustration of this idea is given in Figure 6.2. And a corresponding 

algorithm is given as follows. 

Algorithm 6.1  adjusting the direction of the vehicle by curb line following. 

Input: a depth image D and learned depth data dv' of the curb feature, a detection 

window Wincb, two angle threshold values Angl and Angh, and a distance 

threshold value Disth. 
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Output: none 

Steps. 

Step 1. Apply the Canny edge detector to the captured depth image D to obtain an 

edge-point image Dedge which includes the feature points of the boundary 

lines of the curb. 

Step 2. Apply the Hough transform to image Dedge to detect sufficiently-long edge 

point sequences as a straight line which must be oriented within the angle 

range from Angl to Angh. 

Step 3. Retrieve all the edge points on the straight line detected in the detection 

window from the cells of the Hough transform and denoted them as a set Psl. 

Step 4. Extract a set Pdis of depth values from the depth data dv' by the following 

steps. 

Step 4.1 Take out a point p in the set Psl, find the corresponding point p' in the 

depth data dv' whose coordinates are the same as those of p. 

Step 4.2 Take out the depth value dp' of p' and put it into a set Pdis. 

Step 4.3 Repeat Steps 4.1 and 4.2 until all the points in Psl have been 

processed.  

Step 5. Find the minimum value Dismin in the set Pdis of distance values. 

Step 6. According to Dismin and the distance threshold Disth, adjust the direction of 

the vehicle to be parallel to the curb line according to the rules shown in 

Table 6.1, which is based on the principle of rotating the vehicle more if the 

forward-moving direction of the vehicle is more different from that of the 

curb line. 
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Vehicle
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Figure 6.2 Use of the detected distances of the edge points of the curb line to adjust the direction of the 

vehicle 

 
Table 6.1 The rules of rotation adjustment of the vehicle according to the distance difference value. 

Result of 

Dismin - Disth 
Degree of right rotation  

Result of  

Dismin - Disth 
Degree of left rotation 

<=5 0
。 

>=-5 0
。
 

>5 and <= 10 1
。
 <-5 and >=-10 1

。
 

>10 and <= 15 2
。
 <-10 and >=-15 2

。
 

>15 and <= 20 3
。
 <-15 and >=-20 3

。
 

>20 5
。
 <-20 5

。
 

 

6.2.3 Experimental Results of Curb Detection 

Some experimental results of curb detection using the proposed curb line 

following process are given in this section. An input depth image with a curb line is 

shown in Fig. 6.3. The extracted curb boundary points from Fig. 6.3 are shown in Fig. 

6.4. The result of detecting the curb line using the Hough transform is shown in 

Figure 6.5. 
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Figure 6.3 A curb line segment in a depth image. 

 

 

Figure 6.4 The curb boundary extracted by Canny detector 

 

 

Figure 6.5 A curb line detection result by Hough transform 
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6.3 Proposed Method for Hydrant 

Detection and Localization 

6.3.1 Hydrant Detection and Localization Using 

Depth Images 

The hydrant is also a commonly-seen object on the sidewalk, and it has obvious 

color and shape so that we can easily recognize it. Therefore, in the task of 

autonomous vehicle navigation, we utilize the hydrant as a landmark and detect it to 

localize the vehicle position. The method for hydrant detection is the same as that for 

light pole detection, but a difference is that we use the depth image to conduct the 

SURF extraction and matching algorithm. An example of the SURF’s extracted from 

the depth image of a hydrant landmark is shown in Fig. 6.6. We can see from the 

figure that the feature points are extracted mostly from the edges of the landmark 

shape, because the depth image does not have enough texture and differences of 

contrast other than the edges of the object. 

 

     
 

(a)                (b) 

Figure 6.6 A landmark of hydrant. (a) The landmark in the depth image. (b) Extracted feature points by 

the SURF extraction algorithm. 
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In this case, in the object matching phase, the result of matching is susceptible 

due to possible interference from the background or ground because the captured 

depth image of the hydrant landmark includes the dilapidated ground information. 

This broken ground looks just like noise and creates impacts on the result of matching. 

Therefore, we slightly changed the technique of matching in this case. We use the 

learned environment parameters of the ground height to remove the ground 

information in the depth image before matching, and then use the pre-process 

technique of region growing to find the region of the object. In addition, in the 

matching technique we also compute the Euclidean distances of the matched points 

with those of the recorded of the object in the ROI image to confirm that the detected 

object is close enough. Some experimental results are shown in Section 6.4.2. The 

detailed algorithm of hydrant detection is described as follows. 

Algorithm 6.3 detection of the hydrant landmark in the depth image using the 

SURF extraction algorithm. 

Input: a captured depth image dv'; a learned feature set F of the hydrant landmark, a 

ROI image droi, a distance threshold value thd, and the environment parameters 

of the ground height, all retrieved from the database. 

Output: a set dv' (x, y) of feature points in the depth image. 

Steps. 

Step 1. Remove the ground information in the depth image dv' and obtain a new 

depth image dv''. 

Step 2. Use the technique of region growing to find the object of the hydrant and 

record the coordinates of the hydrant in the depth image dv''. 

Step 3. Use the SURF extraction algorithm to extract the feature points of the object 
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in the depth image dv''. 

Step 4. Match the set F' of the extracted feature points with the recorded feature set 

F using the computed contrast differences as described in Section 5.2.2. 

Step 5. For each matched point fi'(x, y) in the depth image dv'', do the following 

steps. 

Step 5.1 Compute the Euclidean distance to each point fi(x, y) in the ROI image 

droi. 

Step 5.2 If the computed Euclidean distance is smaller than a defined threshold 

thd, then increment by 1 the value of a counter and record the matched 

point fi'(x, y) into a set K. 

Step 6. If the counter is larger than a pre-selected threshold, then go to Step 7; else, 

quit. 

Step 7. Take this set K of feature points together with their coordinates in the depth 

image as output. 

 

After the hydrant landmark is detected, we conduct next vehicle localization 

using the landmark. But the technique of vehicle localization we use is the same as the 

light-pole landmark; therefore, we adapt the algorithm presented in Section 5.4 to be 

the following algorithm. 

Algorithm 6.4 vehicle localization by the detected hydrant landmark. 

Input: none. 

Output: none. 

Step 1. If there exist a hydrant landmark in the current position according to the 

path information in the database, capture a depth image dv' as input, and 

perform Algorithm 6.3 to yield a set feature points dv'(x, y) in the depth 
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image. 

Step 2. Use the captured depth image dv' and the set dv'(x, y) of feature points as 

input, perform Algorithm 5.3 to find a range Rthr of threshold values from 

thrh to thrl. 

Step 3. Use Rthr to reduce the number of calculated points in the depth data dv', and 

denote the result as dv''. 

Step 4. Use dv'' as input, perform Algorithm 5.1 to compute the minimum MSE 

estimation of the rotation angle mse and the translation vector (Xmse, Zmse) of 

the landmark with respect to the learned data of the landmark. 

Step 5. Convert the depth data dv into 3D space coordinates (X, Y, Z) in the CCS as 

done in Step 5 of Algorithm 5.1 according to Equation (5.5), and convert 

the resulting 3D space coordinates (X, Y, Z) in the CCS into the coordinates 

(VX, VY) in the VCS according to Equation (4.1). 

Step 6. Use the minimum MSE estimation mse and (Xmse, Zmse) to adjust the vehicle 

to a correct position according to Equation (4.2). 

6.3.2 Experimental Results for Hydrant Detection 

Some experimental results of detecting a hydrant landmark using the SURF 

extraction method are given in this section. A depth image of the landmark with 

dilapidated ground is shown in Fig. 6.7. After we removed the ground information, 

the depth image becomes that shown in Fig. 6.8. The result of matching the detected 

hydrant against the learned data is shown in Fig. 6.9. 
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Figure 6.7 A depth image of a hydrant landmark with the ground information. 

 

 
Figure 6.8 The ground information has been removed in the depth image of Figure 6.7. 

 

 
Figure 6.9 The matching result with the ROI image using the learned feature set. 
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6.4 Proposed Technique for Detection 

of Ramps in Depth Image 

6.4.1 Review of Ramp Detection 

In this section, we will introduce the technique of ramp detection proposed by 

Huang [24] using a KINECT device equipped on a car. The author detects the slope of 

the downhill ramp for driving safety. If the driver can know the slope of the ramp 

before driving downhill, then they are able to slow down earlier on the steep slope to 

reduce danger and improve driving safety. The author uses trigonometric functions 

and mathematical geometry to measure the slope of the ramp. An illustration of using 

the KINECT device to detect a ramp is shown as Fig. 6.10, where θ3 represents the 

slope of the ramp. It can be easily figured out from trigonometry that 

where θ1 is 30
o
 in the study of [24] and 0

o
 in ours (discussed later). According to 

trigonometry again, the author gets the following equation: 

where ΔX and ΔZ can be computed by points P(X1, Z1) and Q(X2, Z2) which are 

selected from the centerline of the KINECT device on the ramp. In this way, the slope 

of the ramp is computed. 

6.4.2 Algorithm of Ramp Detection 

The proposed technique of ramp detection is based on Huang [24] to judge 

whether a vehicle navigates through a downhill/uphill ramp. In this study, the vehicle 

θ3 = θ1 – θ2, (6.1) 

)(tan 1

2
Z

X




  , (6.2) 
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occasionally will navigate through downhill ramps to touch the road (i.e., not on the 

sidewalk all the time). Therefore, we use this feature of ramp as a node to provide the 

information of the next node.  

 

 
Figure 6.10 An illustration of geometry of slope computation [24]. 

 

The proposed ramp detection technique used in this study is illustrated in Fig. 

6.11, where the KINECT device facing to the front is equipped on the vehicle and it is 

assumed that the Z-axes (Z1) of the KINECT device is parallel to the ground G. 

Therefore, the angle θ1 in the figure is 0 degree in this study. The downhill ramp in the 

depth image is as shown in Fig. 6.12. When the vehicle navigates on the sidewalk, we 

use Equation (6.2) to detect the slope continuously. The slope of the sidewalk should 

be computed to be 0 degree but we allow it to be ±1 degree to endure noise or other 

error sources. Then, when the vehicle detects a downhill ramp on the sidewalk, the 

computed slope will increase to a certain value. And when the vehicle navigates onto 
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the ramp, the computed slope will be become negative relative to the peak and 

increase linearly until the vehicle leave the ramp as shown in Fig. 6.13. We can use 

these two characteristics of slope changes to know where the vehicle is and whether it 

is navigating through a ramp. Finally, the above discussion about downhill ramp 

detection is described as an algorithm in the following. 

Algorithm 6.2 downhill ramp detection process. 

Input: depth data dv', and a range of slope values from θdown to θup which impose 

limits on possible slope computation results. 

Output: none. 

Steps. 

Step 1. Select the lowest pixel point P on the image boundary from the centerline of 

the depth data dv'. 

Step 2. Select the center point Q of the depth data dv'. 

Step 3. Obtain the distance values of point P(X1, Z1) and Q(X1, Z1) in the depth data 

dv'. 

Step 4. Use Equation (6.2) to compute θ2. 

Step 5. Substitute the value of θ2 and the value 1 = 0
o
 into Equation (6.1) to 

compute θ3. 

Step 6. If θ3 > θdown or θ3 < θup, then move the vehicle forward and repeat Steps 1 

through 5; else, go to Step 7. 

Step 7. Record this information of 3 and check if two values of 3 have been 

recorded: if so, go to Step 8; else, move the vehicle forward and go to Step 

1. 

Step 8. If the computed θ3 > θdown, then determine that the vehicle has navigated 

through a downhill road; else, if 3 < up, then determine that it has 
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navigated through a uphill road. 
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Figure 6.11 An illustration of geometry of slope computation by the KINECT device of face to front 

with equipped on the vehicle. 

 

 

Figure 6.12 A downhill ramp in the depth image captured by the KINECT device facing the front. 
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Figure 6.13 Illustration of computed slopes of a vehicle going through a downhill ramp. 

 

6.5 Proposed Localization technique by 

Tree Trunks 

6.5.1 Tree Trunks Detection and Localization 

In this section we introduce the proposed technique for tree trunk detection and 

localization. As shown in Fig. 6.14, a tree trunk is surrounded by a curb on a road. At 

first, we detect the object in the detection window to check if a tree appears in the 

depth image. If so, we use the learned environment parameters of ground height to 

remove the ground in the depth image. Then, we use the Canny edge detector to 

obtain the boundary of the tree. In the resulting edge-point image, we use the Hough 

transform technique to find the vertical-line boundaries of the tree trunk. If we can 

detect the vertical-line boundaries of the tree trunk successfully, then we compute the 

center of the tree trunk in terms of the 3D space coordinate O(Tx, Ty, Tz) in the depth 

image by the Equation (5.5). Finally, we compare the computed coordinates of the 

center of the tree trunk with the learned ones to adjust the vehicle to the correct 

position. Detailed descriptions of tree trunk detection and localization using the 

proposed technique are presented as an algorithm as follows. 

 

Unit: degree  
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Figure 6.14 The landmark of a tree trunk in the depth image. 

 

Algorithm 6.5: tree trunk detection and localization. 

Input: learned depth data dv' of a tree trunk, learned 3D space coordinates O'(Tx, Ty, 

Tz) of the center of the tree trunk, a detection window Wintt, a range of angle 

threshold values from Angl to Angh, and a distance threshold value Disth. 

Output: none 

Steps: 

Step 1. Detect any object in the region of the detection window. 

Step 2. If an object appears in the detection window and its distance with respect to 

the vehicle is smaller than a threshold Disth, go to Step 3; else, go to Step 1 

to continue the object detection work. 

Step 3. Remove the ground information in the depth data dv' by the learned 

environment parameters of the ground height. 

Step 4. Apply the Canny edge detector to the depth data dv' to extract the feature 

points of the boundary lines of the tree trunk, and obtain an edge-point 

image Dedge. 

Step 5. Use the Hough transform to detect the sufficiently-long straight line and 
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check if its orientation is within the range from Angl and Angh in the 

edge-point image Dedge: if so, go to Step 6; else, go to Step 1. 

Step 6. Convert the depth data dv' into the CCS with coordinates (X, Y, Z) in the 

CCS by Equation (5.5). 

Step 7. Compute the center of the tree trunk in the depth image in terms of the 3D 

space coordinates, O(Tx, Ty, Tz), by the following equation: 

where Pi (i = 0, 1, …, N) is a point of the depth data dv' in the region of the 

detection window. 

Step 8. Compute the translation parameters (Xmse, Zmse) by the following equation: 

where O'(Tx, Ty, Tz) are input data of the center of the tree trunk. 

Step 9. Convert the coordinates (X, Y, Z) of the learned depth data in the CCS into 

the coordinates (VX, VY) in the VCS by Equation (4.2). 

Step 10. Adjust the vehicle to the correct position (Xadj, Yadj) in the GCS by the 

following equations: 

 
adj mse X

adj mse Y

X X V

Y Z V

     
      

   
. (6.5) 

6.5.2 Experimental Results of Tree Trunk Detection  

Some experimental results for tree trunk detection and localization are shown in 

this section. The depth image resulting from removing the ground information and 

Canny edge detection is shown in Fig. 6.15. The result of vertical-line tree boundary 

detection using the Hough transform in the edge-point image is shown in Fig. 6.16. 

 
0

1
O , , ( , , )

N

x y z i

i

T T T P X Y Z
N 

   (6.3) 

Xmse = O(Tx)  O'(Tx), Zmse = O(Tz)  O'(Tz) (6.4) 
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The result of the computing the center of the tree trunk in the depth image is shown in 

Figure 6.17. 

 

 

Figure 6.15 The depth image resulting from removing the ground and Canny edge detection. 

 

 

Figure 6.16 The result of tree boundary detection by the Hough transform. 

 

 

Figure 6.17 The detected center of the tree trunk. 
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Chapter 7  

Experimental Results and 

Discussions 

7.1 Experimental Results 

In this section, we will show some experimental results of the proposed vehicle 

navigation system for video surveillance in the learning and navigation processes. The 

experimental environment was an outdoor sidewalk in National Chiao Tung 

University as shown in Figure 7.1.  

 

 

Figure 7.1 The experimental environment. 

 

In the learning process, a trainer guided the vehicle by the use of a learning 

interface as shown in Figure 7.2 to construct a navigation path. The trainer navigated 

the vehicle to conduct learning tasks on the vehicle system along the path. After 

arriving at appropriate locations on the sidewalk, the vehicle was commanded to learn 
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the local positions and environment parameters of specific landmarks like light pole, 

hydrant, tree trunk, …, etc. In addition, the slope of the ramp and the distance 

between the vehicle and the curb were recorded manually as the ground truth by prior 

measurement. Finally, the trainer obtained a navigation map with a navigation path 

and multiple learned nodes of landmarks as illustrated in Figure 7.3. 

 

 

(a) 

 

(b) 

Figure 7.2 The Learning interface of the proposed vehicle system. (a) Use of the Borland C++ 

Builder. (b) Use of the Visual Studio 2010. 
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In the navigation process, the vehicle started from the same position just like in 

the learning process and navigated along the recorded navigation path nodes mainly 

with the curb line following technique. Then, the vehicle detected many types of 

landmarks and localized its position at pre-selected nodes. Some results of landmark 

detection are shown in Fig. 7.4. By conducting curb detection, the vehicle kept its 

path parallel to the curb. A result of curb detection is given in Fig. 7.5. Besides, the 

system is detected to the ramp of downhill in the navigation path and goes through it 

as shown in Fig. 7.6. Finally, the vehicle reached the appointed terminal node 

successfully is shown in Fig. 7.7. 

  Lawn

              Starting and finishing point

           Landmark detection point

Light Pole

Light Pole

Light Pole

Light Pole

Light Pole

Hydrant

Tree trunk

Sidewalk

Sidewalk

Road

Road

rampramp

Curb

           Turning point

           Landmark detection and Turning point

Navigation path

 

Figure 7.3 Illustration of the learned navigation path. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 7.4 Some results of landmark detection. (a) The vehicle detects the landmark of light pole in the 

correct position. (b) The matching result of the light pole. (c) The vehicle detects the landmark of 

hydrant at the correct position. (d) The matching result of the hydrant. (e) The vehicle detects the 

landmark of tree trunk at the correct position. (f) The detection result of the tree trunk. 
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Figure 7.5 The result of curb line detection .(a) A vehicle on the sidewalk.(b) The detection result of the 

curb. 

 

  

  

  

(a) (b) 

Figure 7.6 The vehicle goes through a downhill ramp. (a) The vehicle consecutive positions on the 

ramp. (b) The computed results of the corresponding slopes of the ramp. 
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Figure 7.7 The vehicle navigates to an appointed terminal node successfully. 

 

7.2 Discussions 

By analyzing the experimental results of the vehicle navigation process, we 

found some problems. Firstly, for sidewalk curb detection, we only detect the curb in 

the campus of National Chiao Tung University within the depth image. If we can 

analyze the color image at the same time, it is believed that the proposed line 

following technique alone can be used for most environments. Next, in the landmark 

detection, the SURF extraction algorithm hopefully can be used to detect more types 

of landmarks in outdoor environments; maybe we can provide more kinds of 

landmarks for detection by the system. Furthermore, we spent much time to localize 

the vehicle position using the ICP algorithm; a solution to this issue is to build the 

data structure of KD-tree for use in the ICP algorithm to speed up the calculation. 

Finally, more experiments in different environments or continuation of our 

experimental path may also be conducted to test our system more thoroughly.  
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Chapter 8  

Conclusions and Suggestions for 

Future Works 

8.1 Conclusions 

In this study, several techniques and strategies have been proposed and 

integrated into an autonomous vehicle system for security patrolling in outdoor 

environments with capabilities of specific object detection, vehicle localization, and 

adjustment of the navigation path, using three KINECT devices affixed on the 

vehicle. 

At first, by the use of a learning interface designed in this study, a trainer can 

guide the vehicle to navigate on a sidewalk and construct a navigation path 

conveniently, including the path nodes, alone-path landmarks, and relevant guidance 

parameters. However, there are some ground-truth parameters which need prior 

manual measurements. 

Next, a strategy of vehicle navigation for security patrolling with a line 

following capability has been proposed. The vehicle navigates according to the node 

data of the path map which is created in the learning phase, and detects along-path 

landmarks by the SURF extraction algorithm and matches them with the learned data. 

The matching technique is based on the measures of contrast differences and 

Euclidean distances using the color image and/or the depth image acquired by the 

KINECT device. 

 In the use of color image, the matching technique is only to compare features to 
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see if they have the same type of contrast. And in the use of the depth image, in 

addition to the above technique, the Euclidean distance between the matched points is 

also computed. 

Finally, a vehicle location estimation technique by utilizing the depth 

information and the concept of ICP algorithm has been proposed. The newly captured 

depth data and the learned ones are used to estimate the vehicle location. The 

estimation result is obtained through continuous iterations to obtain the minimum 

MSE estimation value. Also, a ramp detection technique has been adopted and a curb 

line detection technique has been proposed, both for use to guide the vehicle on a safe 

path as well as to adjust the vehicle orientation. 

The experimental results shown in the previous chapters have revealed the 

feasibility of the proposed system. 

 

8.2 Suggestions for Future Works 

The proposed strategies and techniques, as mentioned previously, have been 

implemented on a vehicle system. Based on our experience of the experiments, 

several suggestions and related interesting issues worth further investigation in the 

future are stated as follows. 

 

(1) It is interesting to develop an adaptive method to calibrate automatically the 

three KINECT devices equipped on the vehicle. 

(2) It is worth to investigate more kinds of features for vehicle location estimation 

on the sidewalk. 

(3) It is challenging to test the proposed system in other experimental environments 
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because the infrared sensor equipped on the KINECT device will be invalidated 

by the sun effect. 

(4) It is a challenge to develop an automatic learning system to speed up the learning 

time and to ease the use of the interface. 

(5) It is an interesting to develop the capability of starting navigation from arbitrary 

start points. 

(6) It is interesting to reconfigure or add new KINECT devices to obtain the 

environment information from more different directions. 
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