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應用廣義加權平均集成運算與學習法則於影

像邊緣偵測 

 

學生:沈煜倫            指導教授: 張志永博士 

 

國立交通大學電控工程研究所 

 

摘要 

 

在這篇論文中，我們運用廣義加權平均建立區間值模糊關係，進行灰階影像

邊緣偵測，並推導參數的學習法則以達成影像邊緣偵測。 

我們的邊緣偵測方法包含三個部分。第一部分，在3 3 滑動視窗中，我們利

用上限與下限建構子計算中心像素和其八鄰域像素的加權平均集成運算，建立區

間值模糊關係，及可指出相對應像素強度值變化程度的 W 模糊關係。第二部分，

我們藉著離散型梯度演算法的概念進行加權平均參數的學習與更新，並引入口袋

演算法(pocket algorithm)獲得最佳的參數集合。最後，我們運用後處理技術，包

括增強邊緣的連接性並移除孤立的像素，以獲得較好的邊緣影像。從六張添加隨

機雜訊的灰階合成影像訓練結果顯示，我們的方法產生較穩定且強健的邊緣偵測;

並且我們的方法對自然影像的邊緣偵測，比著名的 Canny 邊緣偵測器顯示出更

清楚的細節。 
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 Applying Weighted Generalized Mean Aggregation and 

Learning Rule to Edge Detection of Images 
 

STUDENT: Yu-Lun Shen       ADVISOR: Dr. Jyh-Yeong Chang 

 

Institute of Electrical Control Engineering 

National Chiao-Tung University 

 

ABSTRACT 
 

In this paper, we apply generalized weighted mean to construct interval-valued 

fuzzy relations for grayscale image edge detection and derive the learning formulas 

for parameters in order to decrease the edge detection error. 

The proposed detector consists of three stages. In the first stage, we use the 

upper and lower constructors to calculate the weighted mean aggregations of the 

central pixel and its eight neighbor pixels in each 3 3  sliding window. Then we 

construct the interval-valued fuzzy relation and its associated W-fuzzy relation 

indicating the degree of intensity variation between the center pixel and its 

neighborhood. In the second stage, we update the weighting parameters of the mean 

which can be learned by the gradient method casted in discrete formulation and utilize 

pocket algorithm to obtain the optimal parameter set for all training images. Finally, 

we use post-processing techniques to strengthen the connectivity of edges and remove 

isolated pixels for obtaining better edge images. Our method produces a more stable 

and robust edge images on synthetic images and nature images as well, in comparison 

with the well-known Canny edge detector. 
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Chapter 1 Introduction 

1.1  Motivation 

Digital images are valuable sources of information in many research and 

application areas including biology, material science, tracing, etc. Edge detection is a 

topic of continuing interest because it is a key issue in pattern recognition, image 

processing and computer vision. The edge detection process contributes to preserve 

useful structural information about object boundaries and, at the same time, simplify 

the analysis of images by reducing the amount of data extremely. 

A great number of edge detectors lean their strategy on: 1) calculating a chara- 

cteristic image (the characteristic image often means gradient image in many cases), 

and 2) thresholding the characteristic image to get the edge map [1], [3]. In grayscale 

edge detection, the Canny edge detector [1] which uses a multi-stage algorithm to 

detect a wide range of edges is famous for its high sensitivity and reliability. 

The three performance criteria he proposed for optimal edge detector are as follows: 

(1) Good detection, (2) Good localization, and (3) Only one response to a single edge. 

To satisfy these requirements, Canny have used several techniques such as 

Gaussian filter, non-maximum suppression and hysteresis thresholding to let the 

output edge map more accurate and well-connected.  

In this thesis, an improvement of weighted generalized aggregation algorithm is 

presented. The original weighted generalized aggregation algorithm only updates two 

designing parameters ( T,  S  ). Furthermore, it does not have any measure for 

continuity and threshold selecting. Our proposed method will overcome the 

drawbacks and obtain the best operating parameter set for edge detection in a limited 

number of iterative learning. 
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1.2  Fuzzy Set 

1.2.1  Type 1 Fuzzy Set 

Fuzzy logic theory has been successfully applied to many areas, such as image 

enhancement, classification and thresholding value selection [4]. The concept of fuzzy 

sets was first presented by Zadeh in 1965 [5], and was suitable for eliminating the 

grayness ambiguities/vagueness. In fuzzy set theory, a degree of membership in the 

interval [0, 1] is assigned to each element of the set. A flat membership function 

indicates the high image data vagueness, and hence a difficult thresholding. 

For an M N  image subset A X  with membership function  ( )X g , the 

most common measure of fuzziness is the linear index of fuzziness [7, 8], for the 

spatial case, which can be defined as follows: 

     
1 1

1 1

2
min[ ( ),  1 ( )]

M N

l A ij A ij
i j

g g
MN

  
 

 

                     (1.1) 

Many suitable membership functions ( )A g  have been defined, such as standard 

S-function [8], the Huang and Wang function [9] and threshold as a fuzzy number 

used by Tizhoosh [10], to measure the global or local image fuzziness. 

 

 

 

Fig. 1.1  Different membership functions. From left to right: S-function used by Pal 

and Rosenfeld [11], function used by Huang and Wang [9], and threshold as a fuzzy 

number used by Tizhoosh [10]. 
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1.2.2  Type 2 Fuzzy Set 

The problems with fuzzy sets type 1 are that it is not possible to say which 

membership function is the best one, and the assignment of a membership degree to a 

pixel is not certain. Because the experts define membership functions based on their 

knowledge due to the dilemma they met. 

Therefore, Zedah presented the concept of type 2 fuzzy sets in 1975 [6] to find a 

more robust solution. In these sets, the membership function is itself represented by a 

fuzzy set on the interval [0, 1] and is able to model such uncertainties. Mendel and 

John [12] proved that one particular case of a type 2 fuzzy set is an interval type 2 set, 

which is equivalent to an interval-valued fuzzy set. The reason why we choose to 

work with interval-valued fuzzy set is that edge detection techniques attempt to find 

the pixel whose gray level intensity is very dissimilar to its neighbors. That means 

interval-valued fuzzy set is associated with not just a membership degree but also the 

length of its membership interval which can be used to indicate the difference of 

intensities related to a pixel and its neighbors. 

 

 

Fig. 1.2  A possible way to construct type 2 fuzzy set. The interval between lower 

and upper membership values (shaded region) should capture the vagueness. 
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1.3  Image Edge Detection 

1.3.1  Image Edge 

In view of imaging science, edge pixel represent a significant variation compared 

with neighbors in gray level (or intensity level of color). Edges are one of the most 

important visual clues because they can recognize obvious distinction between each 

geometric object and often used in subsequent image analysis operations for feature 

detection and object recognition. 

 

 

1.3.2  Binary Edge Map 

Generally, the simplest way to convert an image to a black-and-white image 

(binary image) is setting an appropriate threshold so that people can easily identify the 

boundary between object and background. But it is impossible to mark all edge points 

in a natural image which has complicated and blurred details corrupted by noise due 

to a number of imperfections in the imaging process. Only the edge point of synthetic 

image can be indicated exactly because of definitive variation of intensities. We can 

utilize basic operation like Sobel operator [2] to obtain the binary edge map of 

synthetic gray level image. Fig. 1.3(a) shows a synthetic image without noise with 

size  128 128 . Fig. 1.3(b) indicates the binary edge map of synthetic image. 

Obviously, the binary edge map is pure, clean and easy to calculate the correct 

rate. Therefore, we will do the test experiment with several synthetic images and 

compare the accuracy of our method with the accuracy obtained by benchmark Canny 

edge detector, to confirm whether our method is better than others.  
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(a)                              (b) 

Fig. 1.3  The result of gray level edge detection. (a) The synthetic gray level 

image without noise; (b) The binary edge map obtained by Sobel operator [2] 

setting the threshold value T = 0.1. 

 

1.4  Research Method 

In this thesis, adopting the method proposed by Barrenechea et al. [13], our new 

edge detection method utilize generalized weighted mean aggregation algorithm to 

construct interval-valued fuzzy relation. We can obtain two new fuzzy relations to 

construct the interval-valued fuzzy relation by calculating the weighted mean 

difference of the central pixel and its 8-neighborhood pixels in a  3 3  sliding window 

across the image. To avoid the manual parameter selection as Canny edge detector 

does, we have derived the iterative learning mechanism for the two weighting 

parameters of the mean aggregation and the threshold T as well. 

We make use of six grayscale synthetic images with adding different types and 

rates of random noises as the input images of the iterative learning mechanism. 

Besides, we also use pocket algorithm and several accuracy calculation metrics to 

obtain better accuracy so that we can extract the image edge map more precisely and 

reliably. We also have some unique post-processing techniques which can strengthen 

the continuity of the edge map as Canny edge detector does and obtain the best 

parameter set for the edge detection of all input images. Finally, we compare our edge 
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with Canny edge detector and discuss its merits and drawbacks. 

 

1.5  Thesis Outline 

This paper is organized as follows. Chapter 2 introduces the edge detection 

method for grayscale images adopting the concept of interval-valued fuzzy relation 

proposed by Barrenechea et al [13]. In chapter 3, we describe the concept of the 

perceptron learning algorithm and iterative learning mechanism on the best parameter 

selection. In chapter 4, some post-processing techniques enabling higher accuracy and 

continuity will be introduced. In chapter 5, we summarize all experiment results and 

compare them with those obtained by Canny [1]. At last, we conclude and suggest 

directions for future research in Chapter 6. 
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Chapter 2  Construction of Interval-Valued Fuzzy 

Relation From A Fuzzy Relation 

 

In this chapter, we will introduce how to construct the interval-valued fuzzy 

relation image, abbreviated as IVFR, by applying the concepts of triangular norm ( t

-norm) and triangular conorm ( t -conorm or s-norm). In each sliding window, we use 

the upper and lower constructors to calculate the intensity differences between the 

central pixel and its eight neighbor pixels so that we can construct the interval-valued 

fuzzy relation and its associated W-fuzzy relation. 

 Fig. 2.1 demonstrates the concepts and steps of the application of interval-valued 

fuzzy relations in edge detection of images. We apply the lower and upper constructor 

to obtain a darker image and brighter image from a grayscale image, respectively. 

Then, we can construct an IVFR such that the length of each interval represents the 

fuzzy edges, i.e., W-fuzzy edges. An appropriate threshold is selected to obtain crisp 

edges from the fuzzy edges. 

 

2.1  Fuzzy Relation 

For an image with dimensions of M N and 256 gray levels, we have to execute 

the normalization step as follows. We divide the grayscale value of each pixel in the 

image by the gray-scale maximal intensity “255,” so that the grayscale value of each 

pixel will be between interval of [0,1]. Next, we consider two finite universes 

{0,  1,...,  1}X M  and {0,  1,...,  1}. Y N  Then, {(( , ), ( , )) | ( , )R x y R x y x y 
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}X Y  is called a FR from X to Y. FRs are described by matrices as follows: 

(0,0) (0, 1)

(1,0) (1, 1)
.

( 1,0) ( 1, 1)

R R N

R R N
R

R M R M N

 
  
 
 

   




  


                 (2.1) 

Moreover, ( ) F X Y represents the set of all fuzzy relations from  to  X Y [14], [15]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2.1  The flow chart to obtain edges by using interval-valued fuzzy relation. 

Upper constructor   Lower constructor   

Construct  the  interval‐valued 

fuzzy relation ሺIVFRሻ with the 

lower and upper constructor     

Construct the W‐fuzzy         

edge image by calculating the 

intensity  variation  between 

upper and low constructor       

Normalize the grayscale image 

to construct a fuzzy relation    

Apply the upper constructor 

to obtain the brighter image   

Apply the lower constructor 

to obtain the darker image     

Set a suitable threshold to 

generate the binary edge map   
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2.2  Interval-Valued Fuzzy Relation 

Let us express by  ([0,1]) L the set of all closed subintervals of [0, 1], i.e., 

  2([0,1]) {[ , ] | ( , ) [0,1]  and }L x x x x x x                     (2.2) 

Then,  ([0,1]) L is a partially ordered set with regard to the relation   L that is 

defined in the following way. Given [ , ],[ , ] ([0,1]),x x y y L  

[ , ] [ , ] if and only if ,  and .Lx x y y x y x y                   (2.3) 

 

 

2.2.1  Lower Constructor 

A t -norm 2:[0,1]   [0,1] T  is an associative, commutative function which 

allows the extension of t -norm T to a k -ary operation by induction, defining for 

each k -tuple 1 2 ( , ,..., ) [0,1]  k
kx x x  [16]. 

1

1 21 1
(  , ) ( , ,..., ).

k k

i i n ki i
T x T T x x T x x x



 
                         (2.4) 

The four basic t -norms are as follows: 

(1) The minimum  ( , ) min( , ).MT x y x y  

(2) The product  ( , ) .PT x y x y   

(3) The Lukasiewicz t -norm ( , ) max( 1,0).LT x y x y    

(4) The nilpotent minimum t -norm 
min( , ),    if 1

( , )
0,                 otherwise.nM

x y x y
T x y

 
 


 

 

 Let  ( ) R F X Y  be an FR. Consider two t -norms 1  T and 2  T and two values 

 ,  m n so that
1

 
2

M
m


 , and

1
 

2

N
n


 . We define the lower constructor 

associated with 1 ,T 2 ,T  m , and  n  in the following way:  
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1 2

,
, 1 2[ ]( , ) ( ( ( , ),  ( , )))

n

j n

m
m n
T T

i m

L R x y T T R x i y j R x y



                  (2.5) 

For all  ( , ) ,x y X Y  and where the indices ,  i j take values such that

0 1 x i M    and  0 1.y j N     The values of  m and  n indicate that the 

considered window centered at  ( , ) x y is a matrix of dimension (2 1) (2 1).m n    We 

express
1 2

,
,  m n

T TL as
1 2, n

T TL , for simplicity, if .n m  

 In Fig. 2.2, we graphically illustrate how the lower constructor operation works 

with  1,  n m  and 1 2 .MT T T   For 1 1( , ) ,  x y X Y  we have: 

1
, 1 1[ ]( , ) = min(min(0.23,0.44), min(0.42,0.44), min(0.49,0.44),

                                     min(0.44,0.44), min(0.58,0.44), min(0.59,0.44), 

                                     min(0.5

M MT TL R x y

6,0.44), min(0.77,0.44), min(0.56,0.44))

                                     = 0.23

 

 

 

 

 Fig. 2.2  Example of lower constructor operation. 

 

 

2.2.2  Upper Constructor 

 Because the characteristics of t -conorms are similar to those of t -norms, we 

can, analogously, define another operator based upon t -conorms to construct the 
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upper bound of the intervals as the lower constructor does. 

The four basic  t -conorms are as follows: 

(1) The maximum  S ( , ) max( , ).M x y x y  

(2) The probabilistic sum  S ( , ) .P x y x y x y     

(3) The Lukasiewicz t -conorm S ( , ) min( ,1).L x y x y   

(4)
max( , ),    if 1

 ( , )
0,                 otherwise.nM

x y x y
S x y

 
 


 

 

 Let  ( ) R F X Y  be an FR. Consider two t -conorms 1S  and 2 S  and two 

values  ,  m n so that
1

 
2

M
m


 , and

1
 

2

N
n


 . We define the upper constructor 

associated with 1 S , 2 S ,  m , and n  in the following way: 

1 2

,
, 1 2[ ]( , ) ( ( ( , ),  ( , )))

n

j n

m
m n
S S

i m

U R x y S S R x i y j R x y



                  (2.6) 

For simplicity, we can also express
1 2

,
,U  m n

S S as
1 2, Un

S S , if .n m  

 

 

2.2.3  Construction of Interval-Value Fuzzy Relation 

 Let  ( ) R F X Y  and consider a lower constructor
1 2

,
,  m n

T TL and an upper 

constructor
1 2

,
, Um n

S S . Then, the interval-value fuzzy relation ,  m nR can be denoted by 

1 2 1 2

, , ,
, ,( , ) [ [ ]( , ), U [ ]( , )] ([0,1])m n m n m n

T T S SR x y L R x y R x y L               (2.7) 

for all  ( , )  x y X Y  is an IVFR from  X to .Y   

If  n m , then we can denote ,  m nR as .nR  
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2.2.4  W-Fuzzy Relations and W-Fuzzy Edges 

 In this section, we construct another FR, i.e., ,[ ] ( ),m nW R F X Y   so that 

, , , , ,
1, 2 1, 2[ ] ( , ) ( , ) [ ]( , ) [ ]( , ) m n m n m n m n m n

S S T TW R R x y R x y U R x y L R x y                (2.8) 

for all  ( , )x y  X Y , where   X and   Y are two sets  {0,1,...,M-1} and  {0,1,...,N-1}. 

In image processing field, we call the fuzzy relation , [ ] m nW R a W-fuzzy edge image 

although the relation , [ ] m nW R does not show an edge image in the sense of Canny [1] 

due to the fact that , [ ] m nW R is a fuzzy one, not a sharp one.  

 The length of the interval indicates the intensity variation and represents the 

membership degree of each element to the new FR. Because the W-fuzzy edge image 

visually captures the intensity changes, we can view this image as an edge image 

which represents edge in a fuzzy way. 

In Fig. 2.3, we show grayscale natural image and the images obtained by 

applying different lower and upper constructors to the original image and the W-fuzzy 

edge image which utilizes the constructors 1
, U  

M MS S and 1
, 

M MT TL . 

 

 

 

   
                 (a)                                 (b) 
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                 (c)                                 (d) 

 

     
                  (e)                                (f) 

Fig. 2.3  (a) The “House” image. (b)  (c) Apply lower constructor 1
, 

M MT TL , 

1
,P PT TL to “House” image, respectively. (d)(e) Apply upper constructor 1

, U
M MS S ,

1
, U

P PS S to “House” image, respectively.. (f) The W-fuzzy edge image obtained by 

using 1
, U

M MS S , 1
, 

M MT TL . 
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Chapter 3  Parameter Learning of Weighted Mean 

Based Edge Detection 

 

 In this chapter, we extend the concept of the W-fuzzy relation and propose the 

edge detection method through executing the weighted-mean aggregation to compute 

the difference between a central pixel and its 8-neighborhood pixels in a  3 3  sliding 

window across the image. In order to increase the edge detection accuracy, we have 

derived the parameter training formula which can be learned iteratively and the 

post-processing techniques, including non-maximum suppression and continuity 

reinforcement, introduced in the next chapter, to achieve better edge map. 

 In the parameter learning phase, we use six synthetic  128 128  grayscale images, 

as shown in Fig. 3.1, as training input images for the parametric learning. Then, we 

update these three parameters to increase the edge accuracy of six images by the 

steepest decent method [17, 18] cast in discrete formulation, namely in a spirit similar 

to perceptron learning. 

 

 

         
           (a)                  (b)                  (c) 
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           (d)                  (e)                  (f) 

    Fig. 3.1  Six gray-scale synthetic images with size of  128 128,   for training. 

 

 

    

           (a)                  (b)                  (c) 

 

   

           (d)                  (e)                   (f) 

 Fig. 3.2  Edge ground truths of six gray-scale synthetic images. 

 

 

3.1  Weighted Mean Based Interval-Valued Fuzzy Relation 

 For the method proposed by Barrenechea et al. [13, 14], there are totally sixteen 

combinations of choices to construct the interval-valued fuzzy relations due to four 

selections for the t-norm and s-norm operators, respectively. It is difficult to decide 
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which combination is the most suitable combination to fit the image edge extraction. 

Besides, the t-norm and s-norm operators are nonlinear functions and not easy to 

derive learning formula involving the “max” and “min” logical operators. To 

overcome these disadvantages, we will introduce the weighted-mean aggregation to 

generalize the t-norm and s-norm formulation in a continuous setting. To this end, two 

parameters in the weighted-mean aggregation, the t-type  t and s-type  ,s  are 

proposed to replace the t-norm and s-norm operators in constructing the 

interval-valued fuzzy relations for edge detection. 

 

 

 

3.2  The Weighted Mean to Calculate the Difference of 

Neighbor Pixels of Images 

In this section, we utilize the weight parameters  t and  s to determine the 

intensity of t-type and s-type operations and calculate the weighted mean difference 

for the pixel values of an image. Furthermore, we derive the iterative learning formula 

for weight parameters so that we can obtain the best parameter set with optimal 

capability in edge detection. The “linear” and “quadratic” types weighted mean 

difference calculation of each pixel in the image is introduced below. 

 

 

3.2.1  The Linear Weighted Mean Edge Detection 

 For an   M N image  ,I  by applying the generalized weighted mean operands 

 t and  ,s  as shown in Fig. 3.3, we calculate the linear weighted mean of the 
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grayscale intensity between pixel ( , ) I m n and its 8-neighbor pixels in a  3 3  window 

centered at pixel  ( , ).I m n  

 

 

 

Fig. 3.3  The diagram of a 3 3  window centered at pixel  ( , ) I m n and its 

8-neighborhood pixels 

( ( , )) ( ( , )) (1 ) ( ( , ))
                                               (3.1)

( ( , )) ( ( , )) (1 ) ( ( , ))
ti t i t i

si s i s i

y I m n a I m n b I m n

y I m n a I m n b I m n

 
 

  
   

              

[0,0.5];  [0.5,1];  1, 2,...,8;  1, 2,..., ;  1, 2,..., .t s i m M n N       

Where   i indicates the index of the eight neighbor pixels and the mean weighting 

parameters,   t and  ,s  satisfying < ;t s   Comparing the center pixel  ( , ) I m n with 

its   th i neighbor pixels,  ( ( , )) and ( ( , )) i ia I m n b I m n represent the larger and the 

smaller gray value, respectively. Moreover, we compute the average value of eight

  tiy and  siy  as follows: 

8 8

1 1

( ( , )) ( ( , ))
    ( , ) ,        ( , ) .                                 (3.2)

8 8

ti si
i i

t s

y I m n y I m n
y m n y m n  

 

 Finally, for each image pixel, we can obtain an output value  Wy which is similar 

to the meaning of W-fuzzy relation as follows: 
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8

1

( , ) ( , ) ( , )

( ) ( ( ( , )) ( ( , )))
              .                                                 (3.3)

8

W s t

s t i i
i

y m n y m n y m n

a I m n b I m n 


 

 



              

 

 Pixel  ( , ) I m n will be deemed as an edge pixel if ( , ) Wy m n is larger than 

threshold  ,T  otherwise, it is a non-edge pixel. 

1 (edge),             if  ( , ) 0
( , )                                                    (3.4)

0 (non-edge),     otherwise              
Wy m n T

y m n
 

 


 

 

 

 

3.2.2  The Quadratic Weighted Mean Edge Detection 

 To strengthen the effect of the weighted mean difference between the center pixel

 ( , ) I m n and its neighbors, we replace ( ( , )) ia I m n and ( ( , )) ib I m n by 2 ( ( , )) ia I m n

and 2 ( ( , )),ib I m n  respectively, and rewrite Equations (3.1)  (3.4) so that the 

difference range of the weighted-mean aggregation can be broaden. 

The quadratic weighted mean of the grayscale intensity between pixel  ( , ) I m n

and its 8-neighbor pixels can be indicated as follows: 

2 2

2 2

( ( , )) ( ( , )) (1 ) ( ( , ))
                                            (3.5)

( ( , )) ( ( , )) (1 ) ( ( , ))
ti t i t i

si s i s i

y I m n a I m n b I m n

y I m n a I m n b I m n

 
 

   


  
 

where  [0, 0.5]t  ;  [0.5,1]s  ; 1, 2,...,8i  ; 1, 2,...,m M ; 1, 2,..., .n N  

Analogously, we calculate the average of the eight  tiy and  siy and define the 

output value   Wy for each pixel  ( , ) I m n as follows: 
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8

1

( ( , ))
( , ) ,

8

ti
i

t

y I m n
y m n 


    

8

1

( ( , ))
( , ) .

8

si
i

s

y I m n
y m n 


                 (3.6) 

8
2 2

1

( ) ( ( ( , )) ( ( , )))
( , ) ( , ) ( , ) .

8

s t i i
i

W s t

a I m n b I m n
y m n y m n y m n

 


 
  


    (3.7) 

1 (edge),             if  ( , ) 0
   ( , )                                                      (3.8)

0 (non-edge),     otherwise.              
Wy m n T

y m n
 

 


 

 

 

 

3.3  Operating Parameter Learning Mechanism 

 Before processing the parameter learning mechanism, we have to give a set of 

three initial operating parameters ( ,  and s t T  ) which can be learned iteratively. One 

of the merits of our learning mechanism is that we formulate the problem as the 

parameter training procedure leading to better edge map accuracy. The restrictions we 

must abide by in setting initial parameters are as follows: 

 (1) [0.5,1];   [0,0.5]s t    

 (2) T   

 

In addition, we utilize the concept of perceptron learning procedure to update 

parameters and implement the pocket algorithm to ensure that we can obtain the best 

parameter set during the course of training. 
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3.3.1  Perceptron Learning Algorithm 

The perceptron learning is an algorithm which can iteratively learn the weight of 

a linear prediction function of the feature vector to best dichotomize a two-class 

problem. It is a type of linear classifier for supervised classification of an input into 

one of two classes, and can be easily extended to multiple class classification. The 

learning algorithm for perceptrons was developed in 1957 at the Cornell Aeronautical 

Laboratory by Frank Rosenblatt [19] and it processes elements in the training set one 

at a time. The perceptron is a binary classifier which maps its input   x (a real-valued 

vector) to an output value   ( ) f x (a signum function): 

1 ,    if   0
( )

0 ,    otherwise        

w x b
f x

  
 


                                     (3.9) 

where   w is a vector of real-valued weights,  w x is the dot product (which computes 

a weighted sum), and   b is the “bias”, a constant term which is independent of any 

input value. 

The perceptron algorithm is also termed the single-layer perceptron that is the 

simplest feedforward neural network and the learning step can not stop if the learning 

set is not linearly separable. The most famous example with linearly non-separable 

vectors is the Boolean exclusive-or problem [20]. 

 

 

 

 Fig. 3.4  The example of a learning algorithm for a single-layer perceptron. 



21 
 

 For a single-layer perceptron with n-dimensional inputs, ( ) f  is the activation 

function and the output can be defined as follows: 

1 1 2 2
1

[ ] ( )

 (w x).   

n

n n i i
i

T

t f w x w x w x b f w x b

f



       



                     (3.10) 

1 2 1 2

1,   if 0      
where w [   ...  ] ;   x=[   ...  1] ;    ( )

1,   otherwise. 
T T

n n

n
w w w b x x x f n

 
  

 

The error function  e is defined by    

1

1
( ) ,

n
p

i i
i

e d t
p 

                                             (3.11) 

1where 1 for  norm and  is the desired output value of the  th input i ip L d i x  

 

Then, we update the weights by: 

_ _ ( ) ,    1,..., .i new i old i i iw w d t x i n                              (3.12) 

The algorithm updates the weights immediately after Eqs. (3.10) and (3.12) are 

applied to a parameter set in the training set. 

 

 

3.3.2  Learning Rule of Linear Mean Weighting Parameters 

For a given   M N image, in order to obtain the smallest number of wrongly 

classified edge and non-edge pixels, we calculate the total error ( , ) e m n of incorrect 

edge and non-edge pixels at  ( , ) m n as follows. 

2

1 1

1
( , ) ( ( , ) ( , ))

2

M N

p q

e m n d p q y p q
 

                               (3.13) 

where  ( , ) d p q indicates the ground truth edge map at ( , ) p q of the input image, and 

( , ) y p q denotes the output edge map at ( , ) m n of the input image. 
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To begin with, the derivative of   e with regard to  s is given by 

8

2 1

1 1

8

1

( , )( , ) ( , ) ( , )

( , ) ( , )

( ) ( ( ( , )) ( ( , )))1
 ( ( ( , ) ( , )) ) ( )

2 8         
( , )

( ( ( , )) ( ( , )))
        ( ( , ) ( , )) .

8

W

s W s

M N s t i i
i

m n

s

i i
i

y m ne m n e m n y m n

y m n y m n

a I m n b I m n
d m n y m n T

y m n

a I m n b I m n
d m n y m n

 

 





 



  


   

 
   


 


  





                                    (3.14)

Therefore, the weighting parameter  s can be learned iteratively by equation (3.12). 

_ _

8

1
_

( , )

( ( ( , )) ( ( , )))
         ( ( , ) ( , )) ,                       (3.15)

8

s new s old s
s

i i
i

s old s

e m n

a I m n b I m n
d m n y m n

  


  


 




  



where   s is the learning constant of .s  Similarly, a perceptron learning of the other 

two parameters,   s and  ,T  iteratively, can also be given by 

 

8

1

( , )( , ) ( , ) ( , )

( , ) ( , )

( ( ( , )) ( ( , )))
             ( ( , ) ( , )) ,                                   (3.16)

8

W

t W t

i i
i

y m ne m n e m n y m n

y m n y m n

a I m n b I m n
d m n y m n

 



  


   


 



_ _

8

1
_

( , )

( ( ( , )) ( ( , )))
         ( ( , ) ( , )) ,                       (3.17)

8

t new t old t
t

i i
i

t old t

e m n

a I m n b I m n
d m n y m n

  


  


 




  


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( , ) ( , ) ( , )

( , )

             ( ( , ) ( , ))( 1) ( , ) ( , ),                                       (3.18)

e m n e m n y m n

T y m n T

d m n y m n d m n y m n

  


  

     

( , )
( ( , ) ( , )).                                          (3.19)new old T old T

e m n
T T T d m n y m n

T
 

    
  

where   and  t T  represent the learning constant of  and ,t T  respectively. 

 

 

3.3.3  Learning Rule of Quadratic Mean Weighting Parameters 

Analogously, from Eq. (3.8) and Eq. (3.13), we can derive the learning formulas for 

quadratic mean weighting form as follows: 

8
2 2

2 1

1 1

( , )( , ) ( , ) ( , )

( , ) ( , )

( ) ( ( ( , )) ( ( , )))
1

 ( ( ( , ) ( , )) ) ( )
2 8         

( , )

W

s W s

M N s t i i
i

m n

s

y m ne m n e m n y m n

y m n y m n

a I m n b I m n
d m n y m n T

y m n

 

 





 

  


   

 
   


 




8
2 2

1

8
2 2

1

( ( ( , )) ( ( , )))
( ( , ) ( , ))

8
( ) ( ( ( , )) ( ( , )))

2
8

i i
i

s t i i
i

a I m n b I m n
d m n y m n

a I m n b I m n 






 



 





8
2 2

1

( ( ( , )) ( ( , )))
1

       ( ( , ) ( , )) ,                            (3.20)
4 2( )

i i
i

s t

a I m n b I m n
d m n y m n

 



  




 



24 
 

8
2 2

1

( , )( , ) ( , ) ( , )

( , ) ( , )

( ( ( , )) ( ( , )))
1

             ( ( , ) ( , )) ,                        (3.21)
4 2( )

W

t W t

i i
i

s t

y m ne m n e m n y m n

y m n y m n

a I m n b I m n
d m n y m n

 

 


  


   


 




 

( , ) ( , ) ( , )
( , ) ( , ).                                                  (3.22)

( , )

e m n e m n y m n
d m n y m n

T y m n T

  
  

  
 

 

A perceptron learning of the three parameters can be given by 
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3.3.4  Pocket Algorithm 

 It is understandable that the learned edge map will be different from the ground 

truth edge map of synthetic images, i.e., different edge/non-edge pixel classification 

for whole training synthetic images. With this concept in mind, the error  ( , ) e m n

defined in Eq. (3.13) can not be zero, and hence the perceptron learning can not stop 

by itself. Instead, we utilize the pocket algorithm in the course of edge map training 

with the best solution set of   and  t s  being confined in the interval [0, 1] for 

synthetic training images. For each training image, we train each pixel in a raster-scan 
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fashion, and then test the parameter set in the end of row. If the current trained 

parameters  ,  and  t s T  can result in higher edge average accuracy than the best 

average accuracy of the parameter set stored in the pocket, then the current parameter 

set will be stored in the pocket to replace the worse old ones. The current parameters 

are the initial parameters for the beginning pixel of the next row. On the other hand, 

the current parameter set does not produce a better accuracy of edge maps of all 

training images, then the best parameter set saved in the pocket need not change, and 

this pocket parameter set is used for the initial value of the first pixel of the next row.      

In this way, we can find the final optimal parameter set after a long enough learning 

epochs. 
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Fig. 3.5  The flow chart of parameter learning algorithm. 

Set three initial parameters and select linear or 

quadratic weighted mean aggregation to generate the 

binary edge maps    

Use learning algorithm to update the parameters 

Implement post-processing techniques for edge maps   

No  

Yes  

Yes  

Examine whether the      

learning epoch reaches the 

maximal value 

Check whether this row is the 

last row of the last training 

image 

In the end of each row of a training image, compute 

the edge average accuracy and compare it with the 

edge average accuracy in the pocket 

No  
                     

                     

Replace the parameter set in the pocket 

and use new parameter set as initial 

values for the training of first pixel of 

next row 

No  
                     If present accuracy is higher than 

the accuracy in the pocket 

Yes   

Use the parameter set saved in the 

pocket as initial values for the training 

of first pixel of row 
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Chapter 4  Post-Processing Techniques 

 

 After obtaining the best parameter set which generates the edge map, we apply 

three special methods, including new directional non-maximum suppression, 

continuity reinforcement and isolated pixel removal, to enhance the accuracy and 

continuity of our weighted mean aggregation in edge detection. 

 

4.1  Directional Non-Maximum Suppression 

 Non-maximum suppression is a process which makes all pixels, whose gray level 

intensity is not maximal, as zero within neighbors in a certain direction. Fig. 4.1 

shows four directional arrays of linear windows at angles 0 , 45 ,90  and 135 .      

 

 

 

 

 

 

      (a)                (b)             (c)            (d) 

Fig. 4.1  Illustration of several linear windows at different directions. “x” 

indicates the center pixel of the linear window. 

 

4.1.1  Direction of Image Edge 

 In order to decide the direction that the edge pixels belong to, we apply Sobel 

operator [2], shown in Fig. 4.2, to the fuzzy image  Wy which is obtained by Eqs. (3.3) 
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and (3.7). For each pixel, we can obtain two vector components and compute the 

corresponding normal angle so that we determine the direction of pixel that is 

perpendicular to its normal vector. 

 

 

   
         (a)                      (b)                      (c) 

Fig. 4.2  (a) The corresponding coordinate of matrix ( 5z is the working pixel), 

(b) The Sobel operator for horizontal edge, (c) The Sobel operator for vertical 

edge 

 

 

By using Sobel operator, we can obtain two vector components,  and ,x yg g  of each 

pixel as follows: 

3 6 9 1 4 7

7 8 9 1 2 3

( 2 ) ( 2 )                                                                (4.1)

( 2 ) ( 2 )                                                                (4.2)

x

y

g z z z z z z

g z z z z z z

     

     
 

For a   M N image, we calculate the normal angle of edge pixels by 

1( , ) tan [ ]     (unit: radian)y

x

g
m n

g
                                 (4.3) 

 

Then, we convert radian to degree by 

1180
( , ) tan [ ]     (unit: degree)y

x

g
m n

g





                            (4.4) 
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 Fig. 4.3  The edge and its gradient vector. 

 

 

 

 Fig. 4.4  The corresponding group for the angle   of gradient vector. 

 

From Fig. 4.4 [2], we divide the directions of edge pixels into four groups as follows: 

(1) The pixel belongs to horizontal edge when its normal angle is in the interval

[ 67.5 , 112.5 ]    or  [ 67.5 , 112.5 ].     

(2) The pixel belongs to vertical edge when its normal angle is in the interval

[0 , 22.5 ]   or [ 22.5 ,0 ]   or [ 157.5 , 180 ]    or [ 157.5 , 180 ].    

(3) The pixel belongs to +45  edge when its normal angle is in the interval

[ 22.5 , 67.5 ]    or  [ 112.5 , 157.5 ].    

(4) The pixel belongs to -45  edge when its normal angle is in the interval

[ 112.5 , 157.5 ]    or  [ 22.5 , 67.5 ].    

Edge normal             

ሺgradient vectorሻ     y      

Edge   
    

x  
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4.1.2  Additional Parameter for Directional Non-Maximum 

Suppression 

 Directional Non-maximum suppression, abbreviated as DNMS, maintains the

  of Wy the pixel which assumes a local maximum in the gradient direction, i.e., if the 

central pixel has the largest   value Wy in the corresponding gradient direction of linear 

window, we keep its   value.Wy  Otherwise, we set its value to zero. The effect of 

non-maximum suppression is stronger if the size of linear window array is larger. 

 Although the non-maximum suppression can thin the edges, it destroys the line 

connectivity of image containing complicated and concentrated edges. This 

phenomenon becomes more severe if the size of the linear window array is large. So 

we set up an additional parameter, ,NMSR  and define the formula as follows: 

( , ),   if  ( , )   and  ( , ) ( ( , ))
( , )     (4.5)

0,               otherwise.                                                                 
W W W NMS W

strong

y m n y m n T y m n R M y m n
y m n

  
 
  

where  ( ( , )) WM y m n indicates the maximal  Wy in the corresponding gradient 

direction of linear window centered at ( , ).Wy m n  

 

Fig. 4.5(b) shows that the edge map obtained by  Wy is too sensitive to distinguish the 

thick edge map. Fig. 4.5(c)(f) shows the difference between the original and new 

non-maximum suppression with different linear window. In Fig. 4.5(c) and (e), 

although the original DNMS can thin the edges into one pixel width, it destroys edge 

connectivity seriously. But the edge connectivity in Fig. 4.5(d) and (f) performs better 

due to the additional parameter  . NMSR In contrast, the width of edge is much thicker 

in Fig. 4.5(d) and (f), so we have to use thinning algorithm after the continuity 

reinforcement to get a proper image with thinner edge. 
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             (a)                                       (b) 

  

                (c)                                   (d) 

  

                (e)                                   (f) 
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Fig. 4.5  (a) The “House” image. (b) Binary edge map obtained by thresholding 

the fuzzy image   Wy with T=0.662, (c) Edge map obtained by original DNMS 

with  1, NMSR  window size=3, (d) Edge map obtained by new DNMS with

0.8, NMSR  window size=3, (e) Edge map obtained by original DNMS with

1, NMSR  window size=5, (f) Edge map obtained by original DNMS with

0.8, NMSR  window size=5. 

 

 

 

4.2  Continuity Reinforcement 

 After executing the new DNMS, we use another technique to enhance the 

continuity due to the disconnecting edges, especially in edge intersections. The 

concept of this algorithm is that, for those pixels eliminated owing to non-maximum 

suppression, the probability to convert them to edges has a great relationship to their 

neighborhood. For the pixel removed by DNMS, if the number of surrounded edge 

pixels is larger, the limit to change it into edge point is lower. The following 

procedure will invoke some non-maximal suppressed pixels back to its original

( , ) Wy m n value. Since a higher number in the surrounding edge pixel will have a good 

chance to invoke the pixel  ( , ) Wy m n value back, and it can run the procedure for 

whole image maxNum times. 
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Here are the steps of our continuity reinforcement algorithm. 

Step 1: Set initial values: num =1, contact = 8, 0.8conR  . 

Step 2: For each pixel which  ( , ) 0strongy m n  , if the number of nonzero   strongy value 

in its 8-neighbors is equal to contact, we calculate the average   strongy value of 

those nonzero pixels and define the average value as mean . 

Step 3: If  ( , )  W cony m n R mean  , we mark this pixel.  

Step 4: Do Step 2 and Step 3 until all pixels in the image are executed, then 

      contact = contact – 1,  = 0.02.con conR R   

Step 5: If contact > 0, go to Step 2.  

Else, ( , ) ( , ),strong Wy m n y m n  for all marked pixels. 

Step 6: If num < maxNum, num = num + 1, contact = 8, 0.8,conR   and go to Step 2. 

Step 7: Convert the pixels whose  strongy is not zero to 1 (edge), others to 0 

(non-edge). 

where maxNum indicates the total executive times of this algorithm on the target 

image. Because of the different types of input images, we can freely regulate the two 

parameters, maxNum and  conR , to obtain the best result. 

Fig. 4.6 (c) shows that the continuity reinforcement which strengthens the edge is 

effective especially in edge intersections. 
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           (a)                  (b)                    (c) 

Fig. 4.6  (a) Image obtained only by new DNMS ( 0.8NMSR  ), (b) Image 

obtained by new DNMS and continuity reinforcement ( 0.8,  NMSR  maxNum=5). 

(c) Image obtained by subtracting (a) from (b). 

 

 

4.3  Isolated Pixel Removal 

 In order to eliminate the isolated pixels, we first mark the edge pixels surrounded 

by non-edge pixels in a  3 3  sliding window, as shown in Fig. 4.7(a), and then label 

the edge pixels having only one edge pixels in its neighborhood in a  5 5  sliding 

window, as shown in Fig. 4.7(b). Finally, we convert all marked pixels to non-edge 

point after scanning the whole binary image obtained by continuity reinforcement.  

In summary, we use thinning algorithm [21] so as to obtain the simplified edge 

image as canny edge detector does. Fig. 4.8 shows the flow chart of all the steps to 

obtain binary edge images by using the parameter learning of weighting mean and the 

post-processing techniques. 

 

 

 

 

 

 

          (a)                          (b) 

Fig. 4.7  Examples of central isolated edge pixels which must be eliminated.  

(a) Isolated pixel in  3 3  window. (b) Isolated pixels in 5 5  window. 
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Fig. 4.8  The flow chart of all the steps to obtain binary edge images. 

 

 

 

 

 

 

Normalize the grayscale image and set 

three initial parameters         

Apply weighted mean aggregation to 

generate the binary edge maps and use the 

learning mechanism, including pocket 

algorithm, to update parameters and then 

obtain the optimal parameter set on the 

interval [0, 1]             

Use post-processing techniques to 

enhance the accuracy and continuity    

Apply thinning algorithm to obtain the   

simplified binary images         
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Chapter 5  Experimental Results 

 
 In our experiment, in order to imitate the natural images, we add different types 

and proportions of random noises, as shown in Fig. 5.1 with noisy corrupted strength 

shown in caption figure, to six grayscale synthetic images of Fig. 3.1, respectively. 

Before proceeding to the edge detection, we first executing the preprocessing 

procedures including a  3 3  median filter and than a Gaussian filter of  1.2   to 

remove the noise pixels. We apply our parameter learning of weighted mean 

introduced in chapter 3 to the six filtered synthetic noisy images, as shown in Fig. 5.2. 

 

   
           (a)                  (b)                  (c) 

 

   
           (d)                   (e)                  (f) 

Fig. 5.1  Six grayscale synthetic images mixed with different types and 

proportions of random noise, (a) 10% impulse noise and Gaussian noise 

( 0,  4),    (b) Gaussian noise  ( 0,  5),    (c) 10% impulse noise and 

Gaussian noise  ( 0,  3),    (d) 10% impulse noise, (e) 10% impulse noise 
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and Gaussian noise  ( 0,  2),    (f) Gaussian noise  ( 0,  4).    

   
           (a)                  (b)                  (c) 

 

    
          (d)                   (e)                  (f) 

Fig. 5.2  The results of six noisy synthetic images through a  3 3  median filter 

and than a Gaussian filter of  1.2.   

 

 

 

 

5.1  Accuracy Calculation 

 Because we can accurately define the ground truth images of synthetic images, 

as shown in Fig. 3.2, we calculate the edge average accuracy of result images 

obtained by our parameter learning of s-type and t-type weighted mean algorithm. Fig. 

5.3 shows the edge classification of each pixel in the image, which may be 

differentiated into four groups concerning accuracy. 
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 Edge      Non-edge     

Edge   True Positive   

(TP)       

False Positive   

(FP)       

Non-edge False Negative  

(FN)       

True Negative   

(TN)       

Fig. 5.3  The edge classification result of each pixel in the image. 

 

From Fig. 5.3, we can obtain the average accuracy ( )r

cca of the synthetic images by 

( ) (Edge accuracy) (Non-edge accuracy)
Average Accuracy   100%         (5.1)

1
r

cc
r

a
r


 


 

the number of  pixels
Edge accuracy  

the number of  pixels the number of  pixels

TP

TP FN


 , 

the number of  pixels
Non-edge accuracy  

the number of  pixels the number of  pixels

TN

TN FP



 

where   r indicates the weighting number for non-edge accuracy. 

 

The average ratio of non-edge points to edge points in the ground truth images, 

as shown in Fig. 3.2, is 7.34 to 1, i.e., the importance of one edge pixel is 7.34 times 

important than the non-edge pixel if we consider the average accuracy with  1.r  To 

counter-balance the difference in the numbers of edge and non-edge pixels, we 

compute the average accuracy with different  r to increase the weighting of edge 

pixels for all training images and use the pocket algorithm to select the best parameter 

set in the parameter learning algorithm. Moreover, we assume the width of edges in 

ground truth images to be two pixels wide in this study. Thus, we compute the 

accuracy with the standard of two-pixel width in the learning process; but thinning to 

Edge 

Outcome 

Ground Truth 
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one-pixel width in the final step of thinning algorithm.  

When we calculate the accuracy of one-pixel width in the final step, we only 

consider one side of the edge which is two-pixel width in the ground truth image. For 

the image map Fig. 5.4(b) obtained from ground truth image Fig. 5.4(a), the average 

accuracy 1
  

r

cca
 can be computed by 

 

TP = 4;  FP = 2;  TN = 18;  FN = 1; 

 
4 18

Edge accuracy 0.8,    Non-edge accuracy 0.9,
4+1 18+2

     

 
1 0.8+1 0.9

Average Accuracy 100% 85%
1+1

r

cca
 
  

 

 

 

 

 

 

               

               (a)                            (b)     

Fig. 5.4  (a) The ground truth image, (b) The edge map obtained. 

 

 

5.2  The Result of Parameter Learning Algorithm 

 To verify the effectiveness of our proposed weighted mean based interval-valued 

fuzzy relations for edge detection, we define three sets of different initial parameters 

to demonstrate the stability and correctness of our method. By computing the average 

accuracy with different strength of counter-balance parameter ,r  we can control the 

sensitivity of parameter set to edge map images obtained from the parameter learning 
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process. 

5.2.1  The Result of Linear Weighted Mean Edge Detection 

 Figs. 5.55.7 shows the result images with different initial parameters of linear 

weighted mean edge detection through 40 learning epoches. Table 5.1 indicates the 

exact values of accuracy and parameters. The parameters used in post-processing are

0.8,  NMSR  window size =5 and maxNum =5. The three sets of initial parameters are 

defined as follows: 

 

A.  0.25,  0.75,  0.0035,  0.05,  and 20t s t s T T           

 

    

 

    

(a) 
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(b) 

 

 

    

 

    

(c) 

 

Fig. 5.5  The result images which use different  r in the learning algorithm of 

linear weighted mean edge detection with initial values 0.25,  0.75,t s  

20.T   (a) Images obtained by computing accuracy based on  1 r  with 

learned parameters 0.2805,  0.7203,t s   T=0.662, (b) Images obtained by 

computing accuracy based on 2 r  with learned parameters 0.2813,t   

0.7244,s   T=1.2541, (c) Images obtained by computing accuracy based on

 4r   with learned parameters 0.3741,  0.6299,t s    T=2.2146. 
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B.  0.2,  0.7,  0.0035,  0.05,  and 20t s t s T T           

 

    

 

    

(a) 

 

 

    

 

    

(b) 
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(c) 

Fig. 5.6  The result images which use different  r in the learning algorithm of 

linear weighted mean edge detection with initial values 0.2,  0.7,t s  

20T  . (a) Images obtained by computing accuracy based on 1 r  with learned 

parameters 0.2392,  0.7604,t s   T=0.7203, (b) Images obtained by 

computing accuracy based on 2 r  with learned parameters 0.3855,t 

0.6166,s   T=0.6590, (c) Images obtained by computing accuracy based on

 4 r  with learned parameters 0.3641,  0.6462,t s    T=2.3773. 

 

 

C.  0.3,  0.65,  0.0035,  0.05,  and 50t s t s T T           
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(a) 

 

    

 

    

(b) 

 

    

 

   

(c) 
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Fig. 5.7  The result images which use different  r in the learning algorithm of 

linear weighted mean edge detection with initial values 0.3,t   0.65,s 

50T  . (a) Images obtained by computing accuracy based on 1 r  with learned 

parameters 0.3204,  0.6798,t s   T=0.6025, (b) Images obtained by 

computing accuracy based on 2 r  with learned parameters 0.3492,t 

0.6519,s   T=0.8369, (c) Images obtained by computing accuracy based on

 4r   with learned parameters 0.3637,  0.6346,t s   T=2.1899. 

 

TABLE   

THE BEST OPERATING PARAMETERS AND AVERAGE ACCURACY OF 

LINEAR WEIGHTED MEAN EDGE DETECTION 

Initial 

Values   

Parameter   r Used in 

the Learning Algorithm  

The Best Learned 

Parameters        

Accuracy 1r

cca
  of Edge 

map Images Obtain   

 
0.25t    

0.75s    

20T      

 

 

1r    0.2805,  0.7203,t s    

0.6620T     
90.44%  

2r    0.2813,  0.7244,t s    

1.2541T     
88.53%  

4r    0.3741,  0.6299,t s    

2.2146T     
72.39%  

 
0.2t     

0.7s     

20T      

 

1r    0.2392,  0.7604,t s    

0.7203T     
90.26%  

2r    0.3855,  0.6166,t s    

0.6590T     
87.91%  

4r    0.3641,  0.6462,t s    

2.3773T     
72.31%  

 
0.3t     

0.65s    

50T      

 

1r    0.3204,  0.6798,t s    

0.6025T     
90.12%  

2r    0.3492,  0.6519,t s    

0.8369T     
88.50%  

4r    0.3637,  0.6346,t s    

2.1899T     
73.18%  
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5.2.2  The Result of Quadratic Weighted Mean Edge Detection 

 Fig. 5.8 5.10 shows the result images with different initial parameters of 

quadratic weighted mean edge detection through 40 learning epoches. Table 5.2 

indicates the exact values of accuracy and parameters. The parameters used in 

post-processing are  0.8,  NMSR  window size=5 and maxNum=5. The three sets of 

initial parameters are defined as follows: 

 

 

A.  0.25,  0.75,  0.0035,  0.035,  and 20t s t s T T           

 

    

 

    

(a) 
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(b) 

 

 

    

 

    

(c) 

Fig. 5.8  The result images which use different  r in the learning algorithm of 

quadratic weighted mean edge detection with initial values 0.25,  0.75,t s  

20,T   (a) Images obtained by computing accuracy based on 1 r  with learned 

parameters 0.0298,  0.9691,t s    T=22.7966, (b) Images obtained by computing 

accuracy based on  2 r  with learned parameters 0.2433,  0.7541,t s  

T=26.7424, (c) Images obtained by computing accuracy based on 4r   with learned 

parameters 0.4132,  0.6014,t s    T=28.1916. 
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B.  0.2,  0.7,  0.0035,  0.035,  and 20t s t s T T           
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(b) 
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(c) 

Fig. 5.9  The result images which use different  r in the learning algorithm of 

quadratic weighted mean edge detection with initial values 0.2,  0.7,t s    

20.T   (a) Images obtained by computing accuracy based on 1 r   with learned 

parameters 0,  1,t s   T=22.6019, (b) Images obtained by computing accuracy 

based on  2 r  with learned parameters 0.2977,  0.7066,t s   T=25.6479, (c) 

Images obtained by computing accuracy based on 4r   with learned parameters

0.4260,  0.5829,t s    T=28.1265. 

 

 

C.  0.3,  0.65,  0.0035,  0.035,  and 50t s t s T T           
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Fig. 5.10  The result images which use different  r in the learning algorithm of 

quadratic weighted mean edge detection with initial values 0.3,  0.65,t s  

50.T   (a) Images obtained by computing accuracy based on 1 r  with learned 

parameters 0,  1,t s   T=22.3590, (b) Images obtained by computing accuracy 

based on  2 r  with learned parameters 0,  1,t s   T=38.2036, (c) Images 

obtained by computing accuracy based on 4r   with learned parameters 

0.3045,  0.6870,t s    T=39.2558. 

 

TABLE   

THE BEST OPERATING PARAMETERS AND AVERAGE ACCURACY OF 

QUADRATIC WEIGHTED MEAN EDGE DETECTION   

Initial 

Values   

Parameter   r Used in 

the Learning Algorithm 

The Best Learned 

Parameters       

Accuracy 1r

cca
  of Edge 

map Images Obtain   

 
0.25t    

0.75s    

20T      

 

 

1r    0.0298,  0.9691,t s    

22.7966T     
84.77%   

2r    0.2433,  0.7541,t s    

26.7424T     
76.30%   

4r    0.4132,  0.6014,t s    

28.1916T     
67.30%   

 
0.2t     

0.7s     

20T      

 

1r     0,  1,t s      

22.6019T     
85.42%   

2r    0.2977,  0.7066,t s    

25.6479T     
73.31%   

4r    0.4260,  0.5829,t s    

28.1265T     
64.80%   

 
0.3t     

0.65s    

50T      

 

1r    0,  1,t s      

22.3590T     
85.29%   

2r    0,  1,t s      

38.2036T     
75.17%   

4r    0.3045,  0.6870,t s    

39.2558T     
68.26%   
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From the experiment results, we have observed that our algorithm is stable due to 

the similarity in the average accuracies obtained with different initial parameters. 

Besides, if we choose larger  r  used in learning procedure to compute the average 

accuracy, the sensitivity of edge map images obtained will be decreased, i.e., the edge 

map sensitivity will be reduced because of larger .r  

The quadratic mean weighting form can strengthen the weighted mean difference 

between the center pixel and its neighbors, thus it is sensitive to minor difference 

between pixels. Namely, not only edge pixels but also noise pixels will be prone to be 

detected. We also test Canny method to the same filtered noisy images of Fig. 5.2, and 

the edge images obtained and their average accuracy are shown in Fig. 5.11 and Table

 ,  respectively. From Table  ,  Canny can only achieve the average accuracy of 

76.91%, which is worse than our linear and quadratic method. 

 

 

       

 

             

 

 Fig. 5.11  The results of Canny edge detector for six filtered synthetic noisy 

images of Fig. 5.2. ( 0.1,  0.12low highT T  ) 
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TABLE   

THE RESULTS OF BEST OPERATING PARAMETERS TRIALS AND 

AVERAGE ACCURACIES 

Methods           
The Best Learned 

Parameters       

Average Accuracy 

The Linear Weighted Mean Edge 

Detection learned with  1r     

0.2805,  0.7203,t s  

0.6620T     

1r

cca
 = 90.44%   

4r

cca
 = 95.89%  

The Linear Weighted Mean Edge 

Detection learned with  4r     

0.3637,  0.6346,t s  

2.19T    

1r

cca
 = 73.18%   

4r

cca
 = 89.19%  

The Quadratic Weighted Mean 

Edge Detection learned with  1r   

0,  1,t s      

22.6019T     

1r

cca
 = 85.42%   

4r

cca
 = 93.79%  

The Quadratic Weighted Mean 

Edge Detection learned with  4r 

0.3045,  0.6871,t s    

39.2358T     

1r

cca
 = 68.26%   

4r

cca
 = 87.24%  

Canny Method   
0.1,  0.12low highT T    1r

cca
 = 78.66%   

4r

cca
 = 90.31%  

 

 

5.3  Simulation Results of Natural Images 

 For natural image, it is impossible to determine a ground truth edge map, so we 

can not compute the average accuracy. Therefore, we try our best parameters shown in 

Table    to test the natural image “Lena” with 10% impulse noise and Gaussian 

noise ( 0,  4).    We obtain the edge image shown in Figs. 5.12(b)(f), while the 
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Canny method produces the edge image shown in Fig. 5.12(g). From these images, 

we found that our method show the details more clearly in the edge maps due to the 

large average ratio of non-edge points to edge points in the ground truth images. 

In Fig. 5.12(b) and (d), even though more edges can be detected, the parameter sets 

obtained by computing accuracy with  1r   seem too sensitive to obtain suitable edge 

images for the natural image “Lena.” Then, we recommend the parameter sets 

obtained by computing accuracy with  4r   to get proper edge maps for the “Lena” 

image. 

 

 

 
             (a)                                   (b) 

 

 

 
             (c)                                    (d) 
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             (e)                                    (f) 

 

Fig. 5.12  (a) The image “Lena” with 10% impulse noise and Gaussian noise

( 0,  4),    (b) Edge image obtained by linear weighted mean aggregation with 

parameter set  ( 0.2805,  0.7203,  0.6620 and 1).t s T r      (c) Edge image 

obtained by linear weighted mean aggregation with parameter set 0.3637,t 

0.6346,  2.19 and 4.s T r     (d) Edge images obtained by quadratic weighted 

mean aggregation with parameter set  0,t  1,  22.6019 and 1.s T r     (e) Edge 

images obtained by quadratic weighted mean aggregation with parameter set

 0.3045,t  0.6871,s  39.2358 and 4.T r   (f) The edge map of Canny method 

( 0.1,  0.12low highT T  ). 
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Chapter 6  Conclusion 

 In this thesis, we apply the linear/quadratic weighted mean aggregation and 

interval-valued fuzzy relations to detect edges of images. In each  3 3  sliding 

window, we use the upper and lower constructors to calculate the weighted mean 

aggregations of the central pixel and its eight neighbor pixels to construct the 

interval-valued fuzzy relation and its associated W-fuzzy relation. The W-fuzzy 

relation, constructed by computing the difference between the upper and lower 

aggregations, indicates the degree of intensity variation between the center pixel and 

its neighborhood. And thus it represents an edge if it is larger than a threshold. 

Moreover, we derive the learning formulas of the weighting parameters of the mean to 

reduce the edge detection error and utilize pocket algorithm to obtain the final optimal 

parameter set for training images. Also, the parameter  r of accuracy calculation is 

introduced to control the sensitivity of parameter set to edge image and the 

post-processing techniques is applied to enhance the continuity of edge. Finally, our 

design model is applied to edge detection of the synthetic and natural images. In 

comparison with the edge images obtained by Canny edge detector, our edge map can 

better highlights the object details and shows the contours strongly. 

 In the future, we intend to find out the best ratio of non-edge points to edge 

points, which strongly affects the selection of parameter set in the learning procedure, 

to obtain the optimal parameter set generating suitable edge map for most natural 

images. 

 

 

 

 



57 
 

Reference 

[1] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern 

Anal. Mach. Intell., vol 8, no. 6, pp679698, 1986. 

[2] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Ed., Prentice Hall, 

New Jersey, 2002.  

[3] R. Medina-Carnicer, F.J. Madrid-Cuevas, “Unimodal thresholding for edge 

detection”, Pattern Recognition, vol. 41, pp. 23372346, 2008. 

[4] H. D. Cheng, Y.H. Chen, X.H Jiang, “Thresholding using two-dimensional 

histogram and fuzzy entropy principle,” IEEE Transactions on Image Processing,  

vol. 9, no. 4, 2000, 732735. 

[5] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338353. 

[6] L. A. Zadeh, “The concept of a linguistic variable and its application to 

approximate reasoning－  ,” Inform. Sci. 8 (1975) 19949. 

[7] H. R. Tizhoosh, “Fuzzy Image Processing,” Springer, Heidelberg, Germany,1998 

[8] N. R. Pal, J.C. Bezdek, “Measures of fuzziness: a review and several new 

classes,” in R.R. Yager, L.A. Zadeh(Eds.), Fuzzy Sets, Neural Networks and Soft 

Computing, Van Nostrand Reihold, New York, 1994, pp. 194212. 

[9] L. K. Huang, M.J. Wang, “Image thresholding by minimizing the measure of 

fuzziness,” Pattern Recognition, 28 (1995), 41-51. 

[10] H. R. Tizhoosh, “On thresholding and potentials of fuzzy techniques,” R. Kruse, 

J. Dassow(Eds.), Informatik’98, Heidelberg, Springer, Berlin, 1998, pp. 9716. 

[11] S. K. Pal, A. Ghosh, “Index of area coverage of fuzzy image subsets and object 

extraction,” Pattern Recognition Lett. 7 (1988) 7786. 

[12] J. M. Mendel, R.I. John, “Type-2 fuzzy sets made simple,” IEEE Trans. Fuzzy 

Systems 10 (2002) 117127. 



58 
 

[13] E. Barrenechea, H. Bustince, and C. Lopez-Molina, “Construction of interval- 

value fuzzy relations with application to the generation of fuzzy edge images,” 

IEEE Trans. Fuzzy System., vol 19, no. 5, pp. 819830, October 2011. 

[14] H. Bustince, E. Barrenechea, M. Pagola, and J. Fernandez, “Interval-valued 

fuzzy sets constructed from matrices: Application to edge detection.” Fuzzy Sets 

Syst., vol. 160, pp. 18191840, 2009. 

[15] J. Barzilai and J.M. Borwein, “Two point step size gradient methods,” IMA J. 

Numer. Anal., vol. 8, pp. 141148, 1988. 

[16] E. P. Klement, R. Mesiar, and E. Pap, “Triangular Norms. Dordrecht,” The 

Netherlands: Kluwer, 2000. 

[17] J. H. Hong, S. Campbell, and P. Yeh, “Optical pattern classifier with Perceptron 

learning,” Applied Optics, vol. 29, no. 20, pp. 30193025, 1990. 

[18] M. E. Yuksel and E. Besdok, “A simple neuro-fuzzy impulse detector for 

efficient blur reduction of impulse noise removal operators for digital images,” 

IEEE Trans. Fuzzy Syst., vol.12, no. 6, pp. 854865, Dec. 2004. 

[19] Rosenblatt, Frank (1957), “The Perceptron--a perceiving and recognizing 

automaton.” Report 85-460-1, Cornell Aeronautical Laboratory. 

[20] Liou, D.-R.; Liou, J.-W.; Liou, C.-Y. (2013). “Learning Behaviors of Perceptron”. 

ISBN 978-1-477554-73-9. iConcept Press. 

[22] Lei Huang, Genxun Wan, Changping Liu, “An Improved Parallel Thinning 

Algorithm,” IEEE, Document Analysis and Recognition, pp. 780783, 2003. 

 

 


	第一頁
	1

