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應用廣義加權平均集成運算於影像壞點偵測 

 

學生: 陳冠霖            指導教授: 張志永博士 

 

國立交通大學電控工程研究所 

 

摘要 

 

 

本論文應用廣義加權平均建立的區間值模糊關係進行灰階影像壞點偵測。首

先，我們使用兩個加權參數，對整張影像以3 3 視窗內中心像素和其八鄰域像素

進行加權平均集成運算。接著，為了避免單一組大的差值掩蓋其它組差值呈現，

我們應用飽和門檻值轉換函數(Saturation threshold transfer function)在像素差值

上。最後，經由門檻值(Threshold)作用後，可獲得影像壞點較合理的估測。 

為了降低壞點誤判的個數，我們藉著離散型梯度演算法的概念進行加權平均

參數的學習。另外，為了修正影像更高的訊雜比，相對於好點誤判，我們加重壞

點誤判的權重約 20-100 倍。除此之外，我們更提出兩個不同的訓練階段，以維

持影像的銳利度。從四張添加脈衝雜訊的灰階合成影像訓練結果顯示，整合區間

值模糊關係與加權平均差值集成演算法，能產生更為強健的壞點偵測。 

. 
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Applying Weighted Generalized Mean Aggregation to 

Noise Detection of Images 

 

STUDENT: Kuan-Lin Chen       ADVISOR: Dr. Jyh-Yeong Chang 
 

Institute of Electrical Control Engineering 
National Chiao-Tung University 

 
 

ABSTRACT 
 
 

In this thesis, we apply weighted generalized mean to construct interval-valued 

fuzzy relations for grayscale image noise detection. First, we employ two weighting 

parameters and perform the weighted mean aggregation for the central pixel and its 

eight neighbor pixels in a 3 3  sliding window across the image. Then, in order to 

counter the over-weighting of a big difference term, we apply a saturation threshold 

transfer function to pixel difference values. Finally, the image noise map is obtained 

through a threshold operation.  

In order to decrease the noise detection error, weighting parameters of the mean 

can be learned by the gradient method caste in discrete formulation. Moreover, to get 

higher PSNR in the corrected image, we have, in the training, put multiple weight 

ranging from 20 to 100, on erroneous noisy than that on the erroneous non-noise pixel. 

Besides, we also propose two training stages for the purpose of maintaining image 

sharpness and correction. By the training results of four grayscale natural images with 

adding impulse noises, we have shown that the integration of interval-valued fuzzy 

relations with the weighted mean aggregation algorithm can effectively detect the 

image noise and do the correction hereafter.  
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Chapter 1  Introduction 
 

1.1 Motivation 

 

Noise detection plays an important role in image processing and computer vision. 

During the image acquisition and transmission process, the quality of digital images 

may affected by impulse noise, such as malfunctioning pixels in camera sensors, 

transmission in a noisy channel or faulty memory locations in hardware. Two 

common types of impulse noise are the salt-and-pepper noise and random-valued 

impulse noise. For images corrupted by salt-and-pepper noise, the noisy pixels can 

take only the maximum or minimum values, if the images corrupted by 

random-valued impulse noise, the noisy pixels can take any random value. 

Efficient detection of noise from image data is of key importance in most image 

processing applications, because the performances of subsequent image processing 

tasks are dependent on the success of the noise detection theory. There are many 

works on the restoration of images corrupted by impulse noise, the standard median 

filter was the most popular nonlinear filter because of its good denoising power and 

computational efficiency. However, when the noise level is high in an image, their 

main drawback is that the noisy pixels replaced by median value without considering 

local features such as the presence of edges, some details and edges of the original 

image are smeared by the filter. 

Different remedies of the median filter have been proposed, e.g., the Adaptive 

Median Filter [1], Weighted Median Filter [2] and the Center Weighted Median Filter 

[3] , these so-called“decision-based”or“switching”filters first detect possible 

noisy pixels and then replace them by using median filter. 

    In this thesis, a new impulse noise detector is proposed. We apply weighted mean 
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to construct interval-valued fuzzy relations for grayscale image noise detection. More 

precisely, we first employ two weighting parameters, and perform the weighted mean 

aggregation for the central pixel and its eight neighbor pixels in a 3 3  sliding 

window across the image. Then, in order to counter the over-weighting of a big 

difference term, we apply a saturation threshold transfer function to confine pixel 

difference values. Finally, the image noise map is obtained through a threshold 

operation. Moreover, we have derived the training formula of these two weighting 

parameters and threshold of the mean aggregation, which can be learned iteratively. 

Results indicate that the integration of interval-valued fuzzy relations with the 

weighted mean aggregation algorithm will produce a more robust response in 

detecting the image noise. 

 

1.2  Noisy Pixel Detection and Correction 

 

1.2.1  Noise Model 

 

In this thesis, we use two common types of impulse noise are the salt-and-pepper 

noise and the random-valued impulse noise. In the first case, the noisy pixels can take 

only the maximum and the minimum values. Let ijX  be the grayscale of the noisy 

image X  at pixel  ,i j , ijY  be the grayscale of a true image Y  at pixel  ,i j  

and  min max,  n n  be the dynamic range of Y , the first noise model is given as Eq. 

(1.1) 
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  ;       with probability        
   ;       with probability  1  

ij
ij

ij

R p
X

Y p


  
              (1.1) 

where  min max ;  nijR n  and p is the noise ratio. In the second case, we set up five 

categories of impulse noisy pixel, pixels are randomly corrupted from any one of 

these categories, the second noise model is given as Eq.(1.2).     
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

bability 1 p




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






              (1.2) 

 

where p denotes the degree of random-valued impulse noise distortion,

1,     1, ,5.i
i

p i    ijX  be the grayscale of the noisy image X  at pixel  ,i j

and ijY  be the grayscale of a true image Y  at pixel  , .i j  

 

 

1.2.2  Noisy Pixel Correction 

 

In many practical situations, during image formation, storage, acquisition and 

transmission, many types of distortions degrade the quality of the digital images, 

images are corrupted by the impulsive noise of short duration and high energy, and 

common sources of impulsive noise include industrial machines, lightening, car 

starters, faulty or dusty insulation of high-voltage power lines and various unprotected 

electric switches [4-6]. 
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Detection and correction of impulse noise from digital images have been of high 

research interest in the last years because the presence of noise in an image may be a 

drawback in any subsequent image processing tasks, such as pattern recognition, 

image segmentation or edge detection. Filtering the image to reduce the noise without 

degrading its quality, preserving edges, corners and other details is a major step in 

imaging systems such as image content retrieval, medical image processing, industrial 

visual inspection [7]. 

In order to recover the original pixel values, there are many works on the 

restoration of images corrupted by impulse noise. Among them, the most well-known 

to remove impulse noise is standard median filter. Median filter method sorts pixels in 

the working window, then picks the median value as the recovery pixel. It is the most 

popular nonlinear filter because of its high computational speed and good detection 

power. Over the last two decades, there is a significant improvement in the 

development of median filters. Weighted Median Filter (WMF) [2], Recursive 

Weighted Median Filter (RWMF) [8] are examples. The above methods are too much 

smoothing, which some edges and details of the original image are smeared by the 

filter. This undesired property is caused by unnecessary filtering of the noise-free 

pixel since the pixel that classifying as noise-free pixel should be left unchanged. To 

overcome this drawback, a switching mechanism has been introduced into the 

structure of the robust smoothing filters, [9, 10]. Such a switching filter first detects 

the pixel under consideration is affected by the noise process or not. If it is found to 

be contaminated, the noisy pixel will be replaced by the output of some robust filter. 

Otherwise, it remains  unchanged. For example, Center Weighted Median Filter 

(CWMF) [3], Adaptive Median Filter (AMF) [1], and Switching Median Filter (SMF) 

[11] are popular switching filters in recent years. Results indicate that the switch-type 

methods have usually achieved good performance when the noise ratio is low. 
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1.3 Research Method 

 
In this thesis, adopting the method proposed by Barrenechea et al. [12], the new   

noise detection method we proposed utilize generalized weighted mean aggregation 

algorithm to construct Interval-Valued Fuzzy Relations (IVFR). We can obtain two 

fuzzy relations by calculating the weighted mean difference of the central pixel and its 

8-neighborhood pixels in a  3 3  sliding window across the image. To counter the 

over-weighting of a big difference term, we introduce a saturation threshold transfer 

function to limit the pixel difference values. If the intensity difference is smaller than 

the saturation threshold, its output value will be identical to the input. On the other 

hand, if the intensity difference is larger than the saturation threshold, then its output 

value will become gradually saturated. Finally, the image noise map is obtained 

through a thresholding operation. 

 Moreover, we have derived the iterative learning mechanism of these two 

weighting parameters of the mean aggregation and the threshold as well. In the 

parameters learning phase, we first use four typical natural 128 128  gray images 

with the same percentage of impulse noise rate by the computer program as the 

training images for the parametric learning. Then, we update the weighting parameters 

to decrease total error number of wrongly classified noise pixels and wrongly noise 

free pixels according to the four noisy training images by the steepest decent method 

[13, 14] casted in discrete formulation, namely in a spirit similar to perceptron 

learning. However, there could be no solution for perfect noise map. Therefore, we 

will exploit the pocket algorithm to our learning algorithm. First, we will record the 

parameter set in the pocket during the course of learning, and then pop out the best 

parameter set in our pocket as our best weighting parameters when we finished this 
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long enough learning epochs. 

  

 

 

1.4 Thesis Outline 

 

The thesis is organized as follows. The motivation of this study and the basic 

concept of image noise are introduced in Chapter 1. We introduce the noise detection 

method for grayscale images by applying the concept of interval-valued fuzzy relation 

proposed by Barrenechea et al [12] in Chapter 2. The basic concepts and technique 

concerning the noisy pixel detection and correction methods are described in Chapter 

3. Then the parameter learning of weighted mean based noise detection are described 

in Chapter 4. Finally, we summarize all experimental results in Chapter 5, and 

conclude this thesis with a discussion in Chapter 6. 
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Chapter 2 Apply Interval-Valued Fuzzy Relation to 

Image Noise Detection 

 
Noise detection from image data is of key importance in most image processing 

applications. In this chapter, we will introduce to construct interval-valued Fuzzy 

Relation (IVFR) [12] of an image by applying t-norm and t-conorm (also called 

s-norm) in the fuzzy theory for noisy pixel detection. For each 3 3  sliding window, 

we will first calculate the intensity differences between the central pixel and its eight 

neighbor pixels. To counter the over-weighting of a big difference term, we introduce 

a saturation threshold transfer function for pixel difference values. If the intensity 

difference is smaller than the saturation threshold, its output value will be identical to 

the input. On the other hand, if the intensity difference is larger than the saturation 

threshold, then its output value will become gradually saturated. By the above 

procedures, we can compute the upper and lower bound differences corresponding to 

each pixel of the image, which lead to interval-valued fuzzy relation of the image. 

We refer to a method proposed by Barrenechea et al [12] of an image by applying 

t-norm and s-norm in the fuzzy theory to the central pixel and its eight neighbor pixels 

in a sliding window across the image. It can indicate that the noisy pixel should make 

it clear that the adjacent pixels having a big enough variation to this central pixel 

intensity. To measure this variation between the intensity of a pixel and the intensities 

of the neighboring pixels, we construct, by means of lower and upper constructors, the 

interval-valued fuzzy relation and its associated W-fuzzy relation. Fig. 2.1 

demonstrates the steps of the application of interval-valued fuzzy relations in noise 

detection of images. 
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Fig. 2.1.  The flowchart to obtain noise map by using interval-valued fuzzy relation.  

Construct the Interval-Valued Fuzzy 
Relation (IVFR) with upper and 

lower constructor 

Apply the saturation threshold 
transfer function to avoid the 

over-weighting of each upper and 
lower term 

Construct the W-fuzzy relation by 
calculating the intensity variation 

between upper and lower 
constructor  

Generate the noise map through 
thresholding 

Normalize the grayscale image to 
be suitable for constructing a fuzzy 

relation 
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2.1 Fuzzy Relation 

 

Based on the fuzzy relation, we can define two fuzzy relations of an image, one is 

“upper” and the other is “lower” constructor to constitute the interval-valued fuzzy 

relation with the same dimensions of the images [12]. We must consider carefully that 

the gray-scale intensity of each pixel and its neighbor pixels contained in a fixed 

range of the testing image in the procedure. First, we focused on a grayscale image 

with size of ,M N  execute the normalization step as follows. We divide the 

grayscale maximal intensity “255,” so that the grayscale value of each pixel will be 

between interval of [0, 1]. 

Next, we consider two finite universes  0,1,..., 1X M   and 

 0,1,..., 1Y N  . Then, {(( , ), ( , )) | ( , ) }  R x y R x y x y X Y  is called a 

fuzzy relation from X  to Y . Fuzzy relations are defined as an M N  matrices in 

the following expression (2.1) : 

 

 

(0,0) (0, 1)
(1,0) (1, 1)

 .

( 1,0) ( 1, 1)

R R N
R R N

R

R M R M N

 
  
 
 

   




  


             (2.1) 

 

In addition, ( )F X Y  represents the set of all fuzzy relations from X  to Y  

[15], [16]. 

 

 

 



 

10 
 

2.2 Lower and Upper Constructor 

 

In this section, we define the expressions of the lower and upper bound 

respectively for a k-tuple pair 21( , ,..., )kx x x , where 21, ,...,  [0, 1]kx x x   

 

1 1 21
( , ) ( , ,..., )

k k

i i k ki i
T x T T x x x xT x
 

                  (2.2) 

 

 
1 1 21

( , ) ( , ,..., )
k k

i i k ki i
S x S S x x x xS x
 

                  (2.3) 

 

The above equations “T ” and “ S ” stand for one kind of t-norm and s-norm 

operators introduced in fuzzy theory; we know that t-norm and s-norm are both an 

associative, commutative, increasing function and they have four basic types 

respectively. Here, we take the common “min” and “max” operators for examples. 

The operations of them are expressed as the following Eq. (2.4) and Eq. (2.5):  

 

( , ) min( , )          , [0,1]MT x y x y x y                   (2.4) 

( , ) max( , )        , [0,1]MS x y x y x y                   (2.5) 

 

Let ( )R F X Y   be a Fuzzy Relation (FR) from X  to Y . Consider two 

t-norms 1T  and 2T , and two values ,m n    so that 1

2

M
m


  , and 1

2

N
n


 . The 

lower constructor associated with 1T , 2T , m , and n  is defined in the following 

way: 

       

 
1 2

,
,   : ( ) ( )  m n

T TL R F X Y F X Y  

                    

(2.6)   
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 
1 2

,
, 1 2

-
-

   ( , )   ( ( ( - , - ),  ( , )))   

n
m

m n
T T

i m
j n

L R x y T T R x i y j R x y




           (2.7) 

 

In Eq. (2.7), all of ( , )x y X Y  , and the indices ,i j  take values such that 

0 1x i M     and 0 1y j N    . The values of m  and n  represent that 

the sliding window is a matrix of (2 1) (2 1)m n    dimension, which is centered at

( , )x y . Similarly, we can define the upper bound of an interval by considering two 

s-norms 1S  and 2S . Eq. (2.8) and Eq. (2.9) are the expression of upper constructor. 

 

 
1 2

,
,   : ( ) ( )  m n

S SU R F X Y F X Y  

                 

(2.8)   

 

 
1 2

,
, 1 2

-

-

( , )  ( (  ( , ),  ( , )))    

n

m
m n
S S

i m

j n

U R x y S S R x i y j R x y




           (2.9) 

 
 

In Fig. 2.2, we illustrate how the upper constructor operation works with 

= =1m n , and 1 2 MS S S  . For the element (0,0) and 1 1( , ) x y X Y  in the fuzzy 

relation, we have:  
 

 1
, (0,0) max(max(0.74,0.71),max(0.69,0.71),max(0.72,0.71),

M MS SU R   

max(0.71,  0.71, ) ) 0.74  
 

 1
, 1 1( , ) max(max(0.56,0.49),max(0.56,0.49),max(0.53,0.49),

M MS SU R x y   

                    max(0.49,0.49), max(0.49,0.49), max(0.58,0.49),  

                   max(0.59, 0.49), max(0.77, 0.49), max(0.78, 0.49)) = 0.78  
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Fig. 2.2.  Example of upper constructor. 
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( 1x - 1, 1y -1) 

0.78 
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0.77 

( 1x - 1, 1y +1) 

0.59 

  
( 1x , 1y -1) 

0.58 

( 1x , 1y ) 

0.49 

( 1x , 1y +1) 

0.49 

  
( 1x +1, 1y -1) 

0.53 

( 1x + 1, 1y ) 

0.56 

( 1x +1, 1y +1) 

0.56 

(0,0) 
0.74 

    

     

     

   
( 1x , 1y ) 
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2.3   Construction of Interval-Valued Fuzzy Relation 

 

Suppose ( )R F X Y  , consider a lower constructor 
1 2

,
,

m n
T TL  and a upper 

constructor 
1 2

,
,

m n
S SU . Then the interval-valued fuzzy relation can be denoted by  

 

        
1 2 1 2

, , ,
, ,( , ) ( 0( ,, ), ( 1 ),, )m n m n m n

T T S SL R x y U yx y LxR R                 (2.10) 

 

where ( , )x y X Y  , and ([0,1])L  represents the set of all closed subintervals of 

[0,1] . For simplicity, we denote ,m nR  as mR  if  = m n . 

 

 

2.4   W-Fuzzy Relations 

 

After building interval-valued fuzzy relation from FR, we construct a new fuzzy 

relation ,m nW R    , which is defined as follows: 

 

   
1 2 1 2

, , , , ,
, ,( , ) ( , ) ( , ) ( , ) ( , )m n m n m n m n m n

S S T TW R x y R x y R x y U R x y L R x y               (2.11) 

  0,1,..., 1 ,x X M    0,1,..., 1y Y N    

 

When using upper and lower constructors, the length of the interval associated with a 

position indicates the intensity variation in its neighborhood. Then, in the construction 

of W-fuzzy relations, the length of an interval represents the membership degree of 

each element to the new FR [12]. 
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Chapter 3  Some Noisy Pixel Detection and 

Correction Methods 
 

     During Image formation, storage or transmission, many types of distortions 

degrade the quality of digital images. In many practical situations, most of images are 

corrupted by the impulsive noise. Therefore, there are many noisy pixel detection and 

correction methods have been proposed, such as center weighted median filters 

(CWMF) [3], peer group filter (PGF) [17] or switching median filter (SMF) [11]. 

These efficient noise detector methods will be described in the following. 

 

 
3.1  Peer Group Filter 

 

The main target of the noise reduction algorithms of an image is to suppress noise 

while preserving image features like edges or texture. Vector Median Filter (VMF) is 

a popular filter but the main drawback is it fails to distinguish between the original 

uncorrupted pixels and pixels affected by the noise process. In order to alleviate the 

problems, the VMF-based filter such as peer group filter (PGF) [17] has been widely 

used. Essentially, the peer group of pixels in a given window represents the set of 

neighbor pixels that are similar enough to each pixel according to a particular 

measurement. In peer group filter (PGF) [17], the pixels are sorted in ascending order 

according to their distances to the central pixel. Then, the peer group center pixel (1)x  

is determined as the filtering window pixels that rank the lowest in the sorted 

sequence. If the distance between (1)x  and the central pixel ( )cx  is exceeding 
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threshold d, then we will identify the central pixel as a noise candidate and replaced 

with the VMF output (1)x . Otherwise, the central pixel is free of noise and remains 

unchanged. The range of threshold d is set to [40, 60]. Eq. (3.1) is the expression of 

PGF output. 

 

 

   

     

(1) 1 2
out

1 2

,        if 
PGF

if,        

c

cc

x x x d

x x x d

   
 

              (3.1) 

 

 

The following method is the improvement of PGF; it is a fast modification of the 

PGF where the central pixel is considered to be noise-free as soon as at last m pixels 

in the sliding window are decided to be similar enough, known as fast peer group 

filter (FPGF) [18]. In other words, if the central pixel ( )cx  has m neighbors, and the 

distance between ( )cx  and neighbors is not exceeding threshold d, then the central 

pixel ( )cx  is belong to the peer group  ( , , )cP x m d . Equation is expressed as 

follows: 

  

 

      
out

(1)

,     if  , ,
FPGF

otherwise           ,  

c c c
x x P x m d
x

  


               (3.2) 
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For the understanding of the algorithm mentioned above, a 3 3  windowed with the 

central pixel “0” is used as an example for illustrating FPGF process. Assume d = 60 

and m = 4, as shown in Fig.3.1. 

 

 

100 150 120 

100 0 50 

150 100 0 

 

Fig. 3.1.  Example for illustrating FPGF process. 

 
 

Step1) Calculate the difference between the central pixel and adjacent eight 

neighboring pixels; i.e., V= [100, 150, 120, 100, 50, 150, 100, 0]. 

 

Step2)  Calculate the number of neighbors of central pixel, in this example, m = 2.  

 

Step3)  The number of neighbors of central pixel is smaller than the default value  

m = 4. Therefore, we regarded the central pixel as a noisy pixel. 

         

3.2  Adaptive Peer Group Filter 

 

When the concentration of the impulse noise is not high in an image, peer group 

filter with 3 3  window is good enough to detect the noise pixel. However, when the 

noise intensity is in high level or the noisy pixels are blobs, we may need to use 
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another mechanism to detect the noise because the number of noisy pixels in working 

window is too many, they may be misjudged as free of noise. Instead, we may use a 

larger size sliding window in order to detect noisy pixels in blobs or in high intensity 

of noise. There is a main drawback of using larger size of the sliding window to detect 

noisy pixel. However, the large size of working window can detect a group of noisy 

pixels well, but the boundary in the image is usually become blurred. On the contrary, 

small size of the sliding window cannot detect a group of noisy pixels, but the details 

can be preserved well. Fortunately, Adaptive Peer Group Filter [19] can prevent this 

drawback. First, we use PGF with 5 5  sliding window because 3 3  cannot detect 

noisy pixels in blobs well, when the center pixel is detected as a noisy pixel (see Fig. 

3.2, Fig. 3.3), we will use the median of 3 3  sliding window to correct, this step can 

reduce image blurring. After correction, we will use 5 5  working window to detect 

the center pixel again, if it is still noisy pixel, we increase the size of the working 

window. Repeat the above steps until the central pixel is corrected. 

 

 

 
 

 

Fig. 3.2.  The working window size of n × n, (n=3, 5, 7,…). 

5×5 working window 

3×3 working window 
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Fig. 3.3.  Block diagram of the Adaptive Peer Group Filter. 

 
 

Yes 

No 

Yes 

No 

Increase the window 
size 

( 1) ( ) 2w n w n    

Initialize window size 
3 3w w    

Is the pixel 
detected as noise 
by 5 5  PGF? 

Correct noisy pixel by  
w w  PGF 

Detect bad pixel by 
5 5  PGF again 

Complete this pixel 
correction 
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3.3  Fast Similarity-Based Impulsive Noise Removal Vector Filter 

 
In this section, we introduce a new filter that the computational complexity is 

lower than the vector median filter (VMF) and the simulation results indicate that the 

new filter outperforms the VMF. According to the filter introduced by Smolka et al. in 

[2023], the fast similarity-based impulsive noise removal vector filter (FSVF) is 

described below. 

We assume that ܹ is a window of finite size 1n  (filter length), and the noisy 

pixels inside the window ܹ will be denoted as jF , j = 0, 1,…, n, where n  is the 

number of neighbors of the center pixel 0F . The distance between two pixels iF , jF  

is denoted as ( ,  F )i jF . Let us define a similarity function :[0 ; ) R    which is 

non-ascending and convex in [0; )  and satisfies  0 1  , and  lim 0x x   . 

The similarity between two pixels of the same gray level should be 1, and the 

similarity between pixels with maximal gray level “255” and minimal gray level “0” 

should be very close to 0. Here, we use the similarity function defined by the 

following equation  

 

 { ,  F }i j i jF F F                        (3.3) 

 

where   denotes the specific vector norm (typically the 1L  or 2L  vector norms 

can easily satisfy the required conditions). We additionally define the cumulated sum 

 of similarities between a given pixel and the adjacent pixels belonging to window ܯ

ܹ, where equation is expressed as follows: 
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(a) 

 

   0 0
11

 , ,     ,
n n

j k k j
jj
j k

M F F M F F



                   (3.4) 

 

We introduce 0M  for the central pixel and kM  for the neighbors of 0F  (see Fig. 

3.4). From the above equation, we found that the similarity between kF  and 0F  are 

not take into account, which privileges the central pixel. Hence, when it is really noisy, 

the reference pixel 0F  is replaced by one of its neighbors if 0 ,    1, ,kM M k n   , 

preserving the details of original image. If this is the case then, 0F  is replaced by 

that *k
F  for which * arg max kk M , 1,..., .k n  The central pixel output is 

expressed as follows: 

 

* 0

0 0

,  
,

kk

k

F M M
output

F M M


  
                     (3.5) 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

1F  2F  3F  

8F  0F  4F  

7F  6F  5F  

1F  2F  3F  

8F   4F  

7F  6F  5F  

(b) 
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Fig. 3.4.  (a) First the cumulative similarity value 0M  between the central pixel ܨ଴ 

and its neighbors is calculated. (b) Then pixel 0F  is rejected from the filter window 

and the cumulative similarity values ,  1, , ,kM k n  of the pixels 1, , nF F  are 

determined [21]. 

 

There are several convex functions fulfilling the above conditions, but the best 

results were achieved for the simplest similarity function  7 x . Applying the linear 

similarity function 7  we obtain 

 

 
   

7

,           for ,  1 ,,
otherwise 0,                

i j
ji

i j

F F F F h
F F h

      



            (3.6) 

 

where (0, )h  , the parameter h  influences the intensity of the filtration process. 

( ,  F )i jF  represents the distance between two pixels iF , jF . This function allows 

constructing a fast noise reduction algorithm. 

 

 

3.4  Center Weighted Median Filter 

 

The median-based noise detection strategies work well for fixed-valued impulse 

noise; they have been recognized as a useful image enhancement technique. However,  

it requires some caution because median filtering tends to blur image details such as 

corners and lines while reducing noise. In response to these difficulties, several 
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variations of median filters have been introduced. Here, we focus on an extension of 

weighted median filters called center weighted median filter (CWMF) [3], this filter 

gives more weight to the central pixel. 

First, we defined a filtering window W  surrounding the current or original pixel

  ,  t | ,  W s h s h h t h       . The output of CWM filters is expressed as 

follows [3]: 

 

                     median( )w w
ij ijY X                        (3.7) 

 

where 

 

               , ,    |  ,  ,  ,  0,  0w
ij i s j t ijX X w X s t W s t              (3.8) 

 

In the above equation, w  denotes the center weight and the operator   represents 

the repetition operation. For the current pixel ijX , we first define differences 

 

                  2 1w k
k ij ij ij ijd Y X Y X                        (3.9) 

  

 

where 0,  1, , 1.k L  These differences provide the information about the 

likelihood of corruption for the central pixel, the decision making mechanism is 

achieved by using a set of thresholds   0,  1, , 1kT k L  , where 1  k kT T   for 

0,  1, , 1k L  , which is shown as follows: 
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k kT s MAD                          (3.10) 

  

where the median of the absolute deviations from the median is defined as 
 
 

                 1
,median | ,  ti s j t ijMAD X Y s W              (3.11) 

  

from the simulations conducted on a broad variety of images, the selection satisfying 

   0 1 2 3,  ,  ,  40,  25, 10, 5     yields good results in filtering random-valued 

impulse noise, the setting of    0 1 2 3,  ,  ,  55,  40, 25, 15      performs well in 

removing fixed-valued impulse noise, it is also observed that good result could be 

obtained by using 0 0.6s   in both types of impulse noise. Specifically, if any of 

the inequalities  k kd T  are true, then the central pixel ijX  is regarded as an 

impulse noise. Otherwise, it assumes the current pixel as noise-free; the proposed 

filter can be defined as follows: 

 

 

                 
1  ,    if  ,  
,    otherwise      

ij k k
ij

ij

Y k d T
X

X
   



                    (3.12) 

 

 

where ijX


 represents the final estimate of current pixel ijX . Fig. 3.5 shows the 

block diagram of center weighted median filter. 
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Fig. 3.5.  Block diagram of the Center Weighted Median Filter. 

 

 

3.5  Switching Median Filter 

 

In this section, we introduce a new impulse noise detector based on boundary 

discriminative noise detection (BDND) algorithm [11]. Like BDND, it also consists 

two iterations and all pixels in the image are examined. In the first stage, we use the 

local histogram to determine the decision boundaries, the central pixel is examined 

from its 21 21  neighborhood, only when a pixel is judged as noise candidate, it will 

be piped into the second validation stage. If both stages are classified into “Noise” 

class, it will be considered to be a “true” impulse noise. The criterion can be 

summarized as follows: 

Output 
Input 

CWM1 

Impulse 
Detector 

CWM3 

CWM5 

CWM7 
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, 1

,

, 2

Pepper Noise,        min( , )                            
( )   Uncorrupted,         otherwise                                       

 Salt Noise,             max( , 255 )             

i j

i j

i j

x b m
class x

x b m




       







    (3.13) 

 

where 1 2,  b b  are the two decision boundaries and ,i jx  is the intensity of the current 

pixel, parameter m represents the interval which lie in the two ends of the intensity 

range. The following steps show how to obtain the decision boundaries by using the 

BDND algorithm. 

 

Step1)  Impose a 21 21  window centers on ,i jx  

Step2)  Sort the pixels lie in the window region according to the ascending order 0v  

and find the median med. 

Step3)  Compute the intensity difference of 0v  and obtain the difference vector Dv . 

Step4)  Find the maximum intensity difference in the intervals  0,  med and 

 ,  255med , set these two pixels’ intensities as the decision boundaries 1b  

and 2b  respectively. 

 

After obtaining two decision boundaries, the second validation stage of BDND 

reduces the window’s dimension to 3 3 , it is obviously that the order of magnitude 

lacks statistical significance seriously. In order to make the decisions in both stages 

more robust and reliable, we modified the second stage, the basic philosophy is to find 

a way to accurately quantify the intensity differences between the central pixel and its 

neighbors in four directions (see Fig. 3.6).  
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Fig. 3.6.  Four directional convolutionary kernels. 

 

 

The dimension of the neighborhood of each pixel is 7 7  and the directions we 

care about are 0,  / 4,  / 2,  3 / 4.    Then by convolving the group of kernels with 

the noise image, each pixel has four convolutionary results. The computation strategy 

can be formulated as follows: 

 

 

                  I  Ker  ,       1, , 4V k k
ij ij

k                   (3.14) 

 

(a) (b) 

(c) (d) 
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where I  is the noisy image,   denotes the convolution operator,  Ker k is the thk  

kernel we designed and  V k
ij  is the thk  absolute convolutionary value for pixel Iij . 

In [24], only the minimum of the four descriptors is used, the main disadvantage of 

this strategy is only comparing the minimum with a given threshold to decide whether 

the current pixel is corrupted. If the noise density is high, this rule will completely fail. 

Therefore, we utilize both the minimum and maximum of aforementioned four 

descriptors simultaneously. These two values can be obtained according to Eq.(3.15). 

 

 

 
        
        

1 2 3 4min

1 2 3 4max

min V , V , V ,V

max V , V , V , V

ij ij ij ij ij

ij ij ij ij ij

R

R

 




                 (3.15) 

 

 

The classification rule is defined as follows: if min max min
1 2  or  ij ij ijR T R R T   , then 

pixel Iij  is regarded as noisy pixel. Otherwise Iij  is not corrupted. In this criterion, 

the two thresholds 1T  and 2T  are respectively set to 5  and 1. 
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Chapter 4  Parameter Learning of Weighted Mean 

Based Noise Pixel Detection 
 

 

In this chapter, we will propose a new impulse noise detection method through 

executing the weighted-mean aggregation to calculate the intensity difference between 

a central pixel and its eight neighborhood pixels in a 3 3  window across the image. 

Furthermore, to counter the over-weighting of a big difference term, we apply a 

saturation threshold transfer function to pixel difference values. Then, we obtain the 

noise map through a threshold operation . 

Moreover, we have derived the training formula of these weighting parameters of 

the mean aggregation, which can be learned iteratively. In the parameters learning 

procedure, we use four natural 128 128  gray images adding the same percentage of 

impulse noise rate as shown in Fig. 4.1 by the computer program as training input 

images for the parametric learning. Fig. 4.2 shows the noise ground truths of four 

10% impulse noise corrupted gray-scale natural images. Then, by the steepest decent 

method [13, 14] caste in discrete formulation, we update the weighting parameters to 

decrease total error number of wrongly classified noise and noise free pixels 

according to the four noisy training images. Namely this learning formula is 

aggregation weights in a spirit similar to perceptron learning. 

 

 

 

 

 



 

29 
 

 

    

 

Fig. 4.1.  Four 10% impulse noise corrupted gray-scale natural images of size  

128 128.  

 

 

    

 

Fig. 4.2.  Noise ground truths of four 10% impulse noise corrupted gray-scale natural 

images. 

  

 

 

4.1  Weighted Mean Based Interval-Valued Fuzzy Relation 

 

For the method proposed by Barrenechea et al [12], there are four selections for 

the s-norm and t-norm operators respectively to construct the interval-valued fuzzy 

relations. It is difficult to decide which combination is the most suitable to fit the 

image noise detection. Besides, they are nonlinear functions and hard to derive a 
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formula involving the “max” and “min” logical operators. In order to avoid these 

disadvantages, we will introduce the weighted-mean aggregation to generalize the 

s-norm and t-norm formula in a continuous setting. To this end, the s-type s  and 

t-type t  with   0.5,  1s   and   0,  0.5t  , parameters in the weighted-mean 

aggregation are introduce to replace the s-norm and t-norm operators in constructing 

interval-valued fuzzy relations for noise detection. 

. 

 

 

 

4.2  The Weighted Mean to Calculate the Difference of Neighbor 

Pixels of Images  

 

In this section, we first utilize the two operating parameters “ S
” and “ T

” to 

determine the intensity of s-type and t-type weighting aggregations and calculate the 

weighted  difference for the pixel values of an image. Then, we apply a saturation 

threshold transfer function to pixel difference values in order to avoid the 

over-weighting of a big difference term. Finally, we can obtain the noise pixel map 

through a suitable threshold. 

For an M N  image I, we first compute the s-type and t-type weighted 

difference value of the grayscale intensity between the central pixel ( ,  )I m n  and its 

eight neighbor pixels in a 3 3  window as shown in Fig. 4.3. 
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1 2 3 

8 ( ,  )I m n  4 

7 6 5 

 

 

Fig. 4.3.  The diagram of a 3 3 window centered at pixel ( ,  )I m n  and its eight 

neighborhood pixels. 
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( ( , )) ( ( , )) (1 ) ( ( , ))
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y I m n a I m n b I m n

 
 

  
   

              (4.1) 

      

where    0.5,  1 ;  0,  0.5 ;  1,  2,...,8;  1,  2,..., ;  1,  2,..., .s t i m M n N      The 

subscript i represents the index of the eight neighbor pixels, ( ( , ))ia I m n  and 

( ( , ))ib I m n  represent the larger and smaller grayscale value respectively between the 

central pixel ( , )I m n  and one of its eight neighbor pixels. In order to counter the 

over-weighting of a big difference term, we apply a saturation threshold transfer 

function to pixel difference values. If the intensity difference is smaller than the 

saturation threshold ( sT ), its output value will kept identical to the input as far as 

possible. On the other hand, if the intensity difference is larger than the saturation 

threshold, then its output value will become gradually saturated. To this end, the 
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saturation threshold transfer function could be defined as Sigmoid function as shown 

in Fig. 4.4. 

 

 

  

 

 

 

 

  

  

         

 

 

Fig. 4.4.  Sigmoid function for saturation thresholding. 

 

where  sT   represents the output value which pass through the saturation threshold 

(see Eq. (4.7)). Then, we compute the average of these output value as follows:  

 

 

           
 

8

1

( ( , )) ( ( , ))
,

8

s si t i
i

w

T y I m n y I m n
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            (4.2) 

 

 

Finally, we determine whether the central pixel ( , )I m n  belongs to noisy pixel or 

not according to the comparison of the  ,w m ny  and the threshold T  as given by 

the Eq. (4.3). 

 

 

 ( ( , )) ( ( , ))s si t iT y I m n y I m n  

sT  

0 ( ( , )) ( ( , ))si t iy I m n y I m n  
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   noise,          if  ,        

,
 noise free,   otherwise                 

w m n T
I m n

y 
 


            (4.3) 

 

 

4.3  Operating Parameter Learning Mechanism 

 

 

Before processing the parameter learning mechanism, we have to give a set of 

four initial operating parameters ( ,  ,   and s t sT T  ) which can be learned iteratively. 

One of the advantages of our learning mechanism is that these parameters are learned 

automatically that lead to beat noise and noise free pixel detection accuracy. The 

restrictions in setting initial parameters of our scheme are given by 

 

 

 (1) s t   

 (2) [0.5,  1];   [0,  0.5]s t    

 (3) sT   

 (4) T   
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sT  

T  
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1 

 ,ay m n  

4.3.1   Learning Rule of Mean Weighting Parameters 
 

 
  

 

  
 
 
 
 
 
 
  
 
 
 
 

 

Fig. 4.5.  Block diagram of applying W-fuzzy relations to noise pixel detection. 

 

 

Assume ( ) ( )a i b i , perform the weighted mean aggregation calculation between 

a 3 3 window central pixel and its eight neighbor pixels, we have 

  

        , .s s s sy i b i a i      1      0.5 1           (4.4) 

1 2 3 

4 5(m,n) 6 

7 8 9 
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             , . .t t t ty i b i a i      1       0 0 5          (4.5) 

 

             , , , .s t s ty i y i y i b i a i i       1    1  2 8      (4.6) 

 

The central pixel must have a big enough variation in intensity near its neighbor if it is 

a noisy pixel. In order to counter the over-weighting of a big difference term, we 

construct the sigmoid activation function for the purpose of saturation thresholding. 
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        (4.7) 

  

 

where 0   in Eq. (4.7) determines the steepness of the continuous function 

 ( )a y1 i  near  y 1 i 0 . Finally, we compute the average value of eight ( )ay i  

which is the mean difference of eight neighboring pixel with respect to the central 

pixel. If this value exceeds the predefined threshold, we will regard the current pixel 

as a noise pixel. Otherwise, the central pixel is free of noise, as given by 
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With the above formulation in mind, we are now ready to derive the training formula 

for the parameter set s 、t 、 sT  and T . For a given  M N image, we first 

compute the total error  ,E m n  in order to obtain the smallest number of wrongly 

classified noise and noise-free pixels as follows. 

 

 

 , ( ( , ) ( , )) ,
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i i
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where  ( , ) d m n and ( , ) y m n indicates the ground truth noise map of the input image 

and the output noise map of the input image at  , ,m n respectively. Then, the 

derivative of  ,m nE  respect to s  is given by 
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Since, 
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Using the above equations, then a perceptron learning of the weighting parameter 

s

 
iteratively can be given by  
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where s  is the learning constant of s . Similarly, a perceptron learning of the 

weighting parameters t  iteratively can be given by 
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Since, 

 

 ,
( , )

( ( , ) ( , )),
E m n
y m n

d m n y m n


 


               (4.17) 

 

 
( , ) ,

,a

y m n
y m n





1                       (4.18) 

 



 

38 
 

 
   

 
 

,

,

,
,

,

s

s

Ty m n
a

s Ty m n

y m n
T e

y m n
e






   
 

   
 


   

  
 

 
 

1

1

2

2
1

2

1
- -

1

     (4.19) 

 

  ( ( ) ( )),
.i

t

b i a iy m n







 



8

1 1

8
                (4.20) 

 

Then a perceptron learning of the weighting parameter t

 
iteratively can be 

given by  
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where t  is the learning constant of t . Follow similar line of reasoning, the 

perceptron learning formula for parameters sT  and T , can be given by 
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where 
sT  is the learning constant of sT . Similarly, a perceptron learning of the 

parameter T  iteratively can be given by 
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where 

 

 ,
( , )

( ( , ) - ( , )),
E m n
y m n

d m n y m n


 


               (4.28) 

  

( , ) .y m n
T





 -1                       (4.29) 

  

 

 

 ,
Tnew old

m nE
T T

T



 


                  (4.30) 



 

40 
 

where T  is the learning constant of T . For a set of natural images to train the best 

weighting parameters s、t、 sT  and T , there may be no solution for perfect noise 

map. Therefore, we will use the pocket algorithm to our learning phase, i.e., we will 

save the best s、t、 sT  and T  in the pocket during the course of learning, and pop 

out the best parameters in our pockets as our best weighting parameters when we 

finished a long enough learning epoch. 

  

 

 

 

4.3.2   Proposed Training Method 

 

In this section, we propose two training stages for the purpose to maintain image 

sharpness. In the first stage of our training method, we will choose four typical 

grayscale natural images with adding the same percentage of impulse noise rate to 

each natural images as the input training images, then we raster-scanningly train every 

pixel of training images. And at the end of each row, under the currently learned 

parameter values of s 、t 、 sT  and T , we test the noise and noise free pixel 

detection accuracy by summing of all four input training images. To enhance the noise 

detection accuracy, we weighted the noise pixel misclassification by a multiplier 

constant where value is larger than 1. From our experiment of obtaining good Peak 

Signal Noise Ratio (PSNR) , the multiplier constant is dependent on the impulse noise 

rate of adding on the image. We have experienced for a good PSNR that multiplier 

constant equal to 10 for impulse noise rate smaller than 10%, and equal to 100 

otherwise. It is to be noted that our proposed learning scheme usually cannot obtain a 



 

41 
 

perfect noise maps of training images. i.e., the number of wrongly classified noise or 

noise free pixels is zero for all the training images. Therefore, we will exploit the 

pocket algorithm to our learning phase. In the first epoch, we will select the best 

parameters with the smallest number of wrongly classified pixels. We store this 

number of smallest misclassified pixels and its associated parameter set as our best 

solution in this learning epoch. Then, we use the best parameters from the first 

learning epoch as the initial parameters of the second learning epoch. After a long 

enough learning epochs, we use the best parameters as the initial value of our second 

training stage.  

Our learning algorithm will identify the central pixel of 3 3  window as a noisy 

pixel if there is a big enough difference with its eight neighbor pixels. Unfortunately, 

an edge point could be prone to be wrongly classified as a noise pixel for it could 

produce a big difference with neighbor pixels due to edge effect. To alleviate this 

shortage, we propose the second stage to retrain the images with edge pixel being 

identified differently. Similarly as the first stage, we add the edge detection process to 

our training method in the second stage. When we start training these four input 

images in the second stage, we first use the best parameter set from the first stage to 

repair the input training images. Then, we apply Canny edge detector to help us find 

the edge pixels from these repaired images. Finally, when the current training pixel is 

an edge pixel, we increase the threshold value by a factor of “1.1” to reduce the 

probability of edge pixel to be detected as a noisy pixel. By this way, we can achieved 

good performance by combining these two training stages.  
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Chapter 5  Experimental Results 
 

In our experiments, we focus on two common types of impulse noise, one is 

salt-and-pepper noise and the other is random-valued impulse noise. These two types 

of noise model are described in Section 1.2.1. For the measurement of the restoration 

quality, we employ the peak signal-to-noise ratio (PSNR) performance metric, which 

is based on the root-mean squared error (RMSE). The expression of RMSE and 

PSNR are defined as: 
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where ,M N  are the image dimensions, Q  is the number of channels of the image 

( 1Q   for grayscale image), and ( , )qo i j  and  ,qx i j  denote the q -th component 

of the original image vector and the filtered image, at pixel position  ,i j , 

respectively. For the evaluation of the detail preservation capabilities of the proposed 

filtering design, the mean absolute error (MAE) has been used as 
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In order to explicitly see the advantages and disadvantages of each method, we will 

normalize the parameters which are RMSE and MAE. These parameters are 

normalized between 0 and 1; the larger value for the parameters indicates better 

performances. These two normalized norRMSE  and norMAE  is expressed as 

follows: 
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At last, we compare our s, t aggregation approach to several noise filters such as 

Adaptive Peer Group (APG) [19], Center Weighted Median Filter (CWMF) [3], Peer 

Group Filter (PGF) [17], Fast Similarity-based impulsive noise removal Vector Filter 

(FSVF) [20-23], Switching Median Filter (SMF) [11]. Our first method applies 

s-norm and t-norm operators respectively to construct the interval-valued fuzzy 

relations by extensive combinatory trials, without s, t learning mechanism and 

saturation threshold process, we called it “ST” method. If “ST” method with 

saturation threshold process, we called it “ST with saturation” method. In order to 

make our experimental results more representative, we take average of 100 testing 

images with the same percentage of impulse noise rate to all four training images.  
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5.1  Results of Salt and Pepper Noise Correction 
 
 

In this experiments, we have added the salt-and-pepper noise, as shown in Fig. 

5.1, to four gray-scale images as our training input images. Based on our proposed 

weighted mean based interval-valued fuzzy relations for noise detection of noisy 

images, we have obtained good results by setting the initial values of 

0.75,   0.25,s t   learning constants 0.0035,
ss t T T       noisy pixel 

threshold 6T   and saturation threshold 18sT   in the first training stage. After 9 

learning epochs in the first training stage, we select the best parameters as the initial 

values of our second training stage. In the second stage of our training method, we 

can obtain the best parameter set after 30 learning epochs. If the percentage of noise 

ratio is less than 20%, we will correct it by using alpha-trimmed mean filter using 

ranking central three pixels, when the pixel is regarded as a noisy pixel. Otherwise, 

we will correct it by using median filter when it is detected as a noisy pixel. 

 

    

 

Fig. 5.1.  Four 10% salt and pepper noise training images with size of 128 128.  
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According to TABLE Ι, although our method is not the best method, the 

performance of our method is still above average. When the concentration of the salt 

and pepper noise is increased in an image, our method is better than the other methods 

gradually. Fig. 5.2, Fig. 5.3 and Fig. 5.4 show the correction results by different filters 

of noisy Boat image, with 20%, 40% and 60% salt and pepper noise, respectively. 

 
 

           
                 (a)                                (b)  
 

           
                 (c)                                (d) 
 

           
                 (e)                                (f) 
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                 (g)                                (h) 
 

           
                 (i)                                 (j) 
 

 
(k) 

 

Fig. 5.2.  Noisy pixel correction results of Boat image filtered by different filters. (a) Original image. 

(b) Corrupted image with 20% salt and pepper noise. (c) (i) are filtering results. Image filtering 

results filtered by (c) our proposed filter with two stages. (d) our proposed filter with one stage. (e) 

Adaptive Peer Group (APG). (f) Center Weighted Median Filter (CWMF). (g) Peer Group Filter (PGF). 

(h) Fast Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median Filter 

(SMF). (j) “ST” method. (k) “ST with saturation” method. 



 

47 
 

           
                 (a)                                (b)  
 

           
                 (c)                                (d) 
 

           
                 (e)                                (f) 
 

           
                 (g)                                (h) 
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                 (i)                                (j) 
 
 

 
(k) 

  
 

Fig. 5.3.  Noisy pixel correction results of Boat image filtered by different filters. (a) 

Original image. (b) Corrupted image with 40% salt and pepper noise. (c) (i) are 

filtering results. Image filtering results filtered by (c) our proposed filter with two 

stages. (d) our proposed filter with one stage. (e) Adaptive Peer Group (APG). (f) 

Center Weighted Median Filter (CWMF). (g) Peer Group Filter (PGF). (h) Fast 

Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median 

Filter (SMF). (j) “ST” method. (k) “ST with saturation” method. 
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                (c)                                 (d) 
 

           
                (e)                                 (f) 
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                 (i)                                 (j) 
 
 

 
(k) 

  

Fig. 5.4.  Noisy pixel correction results of Boat image filtered by different filters. (a) 

Original image. (b) Corrupted image with 60% salt and pepper noise. (c) (i) are 

filtering results. Image filtering results filtered by (c) our proposed filter with two 

stages. (d) our proposed filter with one stage. (e) Adaptive Peer Group (APG). (f) 

Center Weighted Median Filter (CWMF). (g) Peer Group Filter (PGF). (h) Fast 

Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median 

Filter (SMF). (j) “ST” method. (k) “ST with saturation” method. 
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TABLE Ι 
THE NOISE REMOVAL RESULTS BY DIFFERENT FILTERS 

 
 
(a) Corrupted Boat image with 10% salt and pepper noise 
 
 
 

 
Filter 

RMSE MAE PSNR 
RMSE- 

normalized 
MAE- 

normalized 
SUM 

APG 7.746 1.729  30.3499 0.000 0.000  0.0009 

CWMF 4.995 0.825  34.1612 0.620 0.820  1.4402 

PGF 6.005 1.014  32.5615 0.393 0.649  1.0424 

FSVF 5.267 0.882  33.7003 0.559 0.768  1.3273 

SMF 3.313 0.626  37.7291 1.000 1.000  2.0001 

STTAE 6.642 1.417  31.6858 0.249 0.283  0.5328 

ST with 
saturation 

6.201 1.107  32.2827 0.349 0.564  0.9137 

Our learning 
ST method 

 (two stage) 
5.911 1.065  32.6994 0.414 0.602  1.0165 

Our learning 
ST method 

 (one stage) 
6.166 1.098  32.3326 0.357 0.572  0.9296 
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(b) Corrupted Boat image with 20% salt and pepper noise 
 
 
 

 
Filter 

RMSE MAE PSNR 
RMSE- 

normalized 
MAE- 

normalized 
SUM 

APG 10.236 3.147  27.9299 0.000 0.000  0.0009 

CWMF 8.023 1.795  30.0463 0.442 0.752  1.1943 

PGF 8.200 2.098  29.8545 0.407 0.584  0.9914 

FSVF 7.835 1.835  30.2522 0.480 0.730  1.2102 

SMF 5.230 1.349  33.7621 1.000 1.000  2.0001 

STTAE 9.059 2.820  28.9908 0.235 0.182  0.4178 

ST with 
saturation  

8.353 2.192  29.6956 0.376 0.532  0.9086 

Our learning 
ST method 
(two stage) 

8.129 2.250  29.9304 0.421 0.499  0.9205 

Our learning 
ST method 

 (one stage) 
8.399 2.223  29.6477 0.367 0.514  0.8817 
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(c) Corrupted Boat image with 40% salt and pepper noise 
 
 
 

 
Filter 

RMSE MAE PSNR 
RMSE- 

normalized 
MAE- 

normalized 
SUM 

APG 15.335 6.518  24.4187 0.546 0.151  0.6976 

CWMF 21.269 6.070  21.5779 0.000 0.272  0.2729 

PGF 13.724 4.747  25.3822 0.694 0.628  1.3222 

FSVF 18.866 5.788  22.6188 0.221 0.348  0.5697 

SMF 10.399 3.367  27.7921 1.000 1.000  2.0001 

STTAE 14.935 6.611  24.6485 0.583 0.126  0.7095 

ST with 
saturation 

14.441 5.222  24.9394 0.628 0.501  1.1293 

Our learning 
ST method 

 (two stage) 
14.347 5.277  24.9963 0.637 0.486  1.1234 

Our learning 
ST method 

 (one stage) 
15.161 7.080  24.5176 0.562 0.000  0.5628 
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(d) Corrupted Boat image with 60% salt and pepper noise 
 
 
 

 
Filter 

RMSE MAE PSNR 
RMSE- 

normalized 
MAE- 

normalized 
SUM 

APG 26.985 14.667  19.5087 0.816 0.493  1.3097 

CWMF 48.974 21.161  14.3329 0.000 0.011  0.0119 

PGF 26.259 10.449  19.7462 0.843 0.805  1.6482 

FSVF 45.988 21.310  14.8788 0.111 0.000  0.1118 

SMF 22.023 7.823  21.2741 1.000 1.000  2.0001 

STTAE 26.895 12.443  19.5386 0.819 0.657  1.4766 

ST with 
saturation 

26.865 11.292  19.5475 0.820 0.743  1.5633 

Our learning 
ST method 

 (two stage) 
26.840 12.294  19.5563 0.821 0.669  1.4904 

Our learning 
ST method 

 (one stage) 
26.843 12.309  19.5554 0.821 0.667  1.4895 
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5.2  Results of Random-Valued Impulse Noise Correction 
 
 

In this experiments, we have added the random-valued impulse noise, as shown 

in Fig. 5.3, to four gray-scale images as our training input images. Similarly, we have 

obtained the good performances by setting the initial values of 0.75,   0.25,s t  

learning constants 0.0035,
ss t T T       noisy pixel threshold 6T   and 

saturation threshold 18sT   in the first training stage. After 9 learning epochs in the 

first training stage, we select the best parameters as the initial values of our second 

training stage. In the second stage of our training method, we can obtain the best 

parameter set after 30 learning epochs. If the percentage of noise ratio is less than 

20%, we will correct it by using alpha-trimmed mean filter using ranking central three 

pixels, when the pixel is regarded as a noisy pixel. Otherwise, we will correct it by 

using median filter when it is detected as a noisy pixel. 

 

 

 

    

 

Fig. 5.5.  Four 10% random-valued impulse noise training images with size of

128 128.  
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According to TABLE ΙI, the performance of our proposed method is above 

average no matter what the sample corruption probability is. Fig. 5.5 and Fig. 5.6 

show the correction results by different filters of noisy Pepper image, with 20% and 

40% random-valued impulse noise, respectively. Fig. 5.7 shows the correction results 

by different filters of noisy Boat image with 60% random-valued impulse noise. 

 

           
                  (a)                                (b) 
 

           
                  (c)                                (d) 
 
 

           
                 (e)                                (f) 
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                 (g)                                (h) 
 

           
(i)                                 (j) 
 

 
                                  (k) 
 

Fig. 5.6.  Noisy pixel correction results of Pepper image filtered by different filters. (a) Original image. 

(b) Corrupted image with 20% random-valued impulse noise. (c) (i) are filtering results. Image 

filtering results filtered by (c) our proposed filter with two stages. (d) our proposed filter with one stage. 

(e) Adaptive Peer Group (APG). (f) Center Weighted Median Filter (CWMF). (g) Peer Group Filter 

(PGF). (h) Fast Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median 

Filter (SMF). (j) “ST” method. (k) “ST with saturation” method. 
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                  (a)                                (b) 
 

           
                 (c)                                (d) 
 

           
                 (e)                                (f) 
 

           
                 (g)                                (h) 
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(i)                                  (j) 

 
 

 
                                  (k) 
 
 

Fig. 5.7.  Noisy pixel correction results of Pepper image filtered by different filters. 

(a) Original image. (b) Corrupted image with 40% random-valued impulse noise. (c)

 (i) are filtering results. Image filtering results filtered by (c) our proposed filter with 

two stages. (d) our proposed filter with one stage. (e) Adaptive Peer Group (APG). (f) 

Center Weighted Median Filter (CWMF). (g) Peer Group Filter (PGF). (h) Fast 

Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median 

Filter (SMF). (j) “ST” method. (k) “ST with saturation” method. 
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                 (a)                                (b) 
 

           
                 (c)                                (d) 
 

           
                 (e)                                (f) 
 

           
                 (g)                                (h) 
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(i)                                 (j) 

 
 

 
                                  (k) 
 
 

Fig. 5.8.  Noisy pixel correction results of Boat image filtered by different filters. (a) 

Original image. (b) Corrupted image with 60% random-valued impulse noise. (c) (i) 

are filtering results. Image filtering results filtered by (c) our proposed filter with two 

stages. (d) our proposed filter with one stage. (e) Adaptive Peer Group (APG). (f) 

Center Weighted Median Filter (CWMF). (g) Peer Group Filter (PGF). (h) Fast 

Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median 

Filter (SMF). (j) “ST” method. (k) “ST with saturation” method. 
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TABLE ΙI 
THE NOISE REMOVAL RESULTS BY DIFFERENT FILTERS 

 
 

(a) Corrupted Pepper image with 10% random-valued impulse noise. 

 

 

 
Filter 

RMSE MAE PSNR 
RMSE- 

normalized 
MAE- 

normalized 
SUM 

APG 7.900 1.687  30.1798 0.714 0.627  1.3418 

CWMF 4.054 0.663  35.9761 1.000 1.000  2.0001 

PGF 4.726 0.806  34.6446 0.950 0.948  1.8986 

FSVF 4.329 0.726  35.4072 0.980 0.977  1.9572 

SMF 17.490 3.408  23.2759 0.000 0.000  0.0009 

STTAE 5.199 0.967  33.8147 0.915 0.889  1.8047 

ST with 
saturation 

4.608 0.808  34.8625 0.959 0.947  1.9065 

Our learning 
ST method 

 (two stage) 
4.422 0.792  35.2213 0.973 0.953  1.9263 

Our learning 
ST method 
(one stage) 

4.499 0.828  35.0724 0.967 0.940  1.9074 
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(b) Corrupted Pepper image with 20% random-valued impulse noise. 

 

 

 

 
Filter 

RMSE MAE PSNR 
RMSE- 

normalized 
MAE- 

normalized 
SUM 

APG 13.040 4.107  25.8268 0.637 0.517  1.1548 

CWMF 6.319 1.501  32.1191 1.000 1.000  2.0001 

PGF 7.359 1.817  30.7965 0.944 0.941  1.8855 

FSVF 6.859 1.570  31.4082 0.971 0.987  1.9582 

SMF 24.826 6.894  20.2339 0.000 0.000  0.0009 

STTAE 7.874 2.123  30.2077 0.916 0.885  1.8017 

ST with 
saturation 

7.375 1.820  30.7776 0.943 0.941  1.8846 

Our learning 
ST method 

 (two stage) 
7.056 1.729  31.1613 0.960 0.958  1.9183 

Our learning 
ST method 

 (one stage) 
7.189 1.849  30.9994 0.953 0.936  1.8894 
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(c) Corrupted Pepper image with 40% random-valued impulse noise. 

 

 

 

 
Filter 

RMSE MAE PSNR 
RMSE- 

normalized 
MAE- 

normalized 
SUM 

APG 28.480 13.748  19.0408 0.347 0.108  0.4558 

CWMF 13.614 4.578  25.4521 1.000 0.976  1.9761 

PGF 14.835 5.094  24.7076 0.946 0.927  1.8736 

FSVF 15.138 4.327  24.5323 0.933 1.000  1.9332 

SMF 36.392 14.894  16.9119 0.000 0.000  0.0009 

STTAE 15.269 5.786  24.4567 0.927 0.862  1.7897 

ST with 
saturation 

14.750 4.981  24.7564 0.950 0.938  1.8884 

Our learning 
ST method 

 (two stage) 
14.695 4.910  24.7892 0.953 0.945  1.8983 

Our learning 
ST method 

 (one stage) 
14.781 5.119  24.7385 0.949 0.925  1.8745 
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(d) Corrupted Boat image with 60% random-valued impulse noise. 

 

 

 

 
Filter 

RMSE MAE PSNR 
RMSE- 

normalized 
MAE- 

normalized 
SUM 

APG 45.189 33.151  15.0308 0.259 0.000  0.2599 

CWMF 37.469 18.380  16.6582 0.987 1.000  1.9871 

PGF 37.329 20.461  16.6901 1.000 0.859  1.8592 

FSVF 43.470 21.081  15.3167 0.397 0.817  1.2147  

SMF 47.939 26.934  14.5179 0.000 0.421  0.4218 

STTAE 38.733 23.599  16.3705 0.868 0.647  1.5155 

ST with 
saturation 

37.978 21.201  16.5404 0.939 0.809  1.7484 

Our learning 
ST method 

 (two stage) 
37.924 20.893  16.5533 0.944 0.830  1.7743 

Our learning 
ST method 

 (one stage) 
38.933 24.292  16.3256 0.849 0.600  1.4496 
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Chapter 6  Conclusions 

 
In this thesis, we integrate the weighted mean aggregation and Interval-Valued 

Fuzzy Relation (IVFR) for detecting noise of an image. For each 3 3  sliding 

window, the upper and lower weighted mean aggregations of central pixel and its 

eight neighbor pixels can be calculated, which constitute the interval-valued fuzzy 

relations. To counter the over-weighting of a big difference term, we introduce a 

saturation threshold transfer function for pixel difference values. Moreover, the 

difference between the upper and lower aggregations reflects the degree of intensity 

variation between central pixel and its eight neighbor pixels. That is, we will identify 

the central pixel as a noise candidate if it is larger than threshold. Along this line of 

reasoning, the learning formula of the weighting parameters are derived to decrease 

the noise detection error of an image. However, there could be no solution for perfect 

noise map. Therefore, we have exploited the pocket algorithm to our learning 

algorithm.  

The effectiveness of our noise detection scheme is verified by various impulse 

noise images. Finally, our designed model is applied to noise detection of natural 

image. Results indicate that the method we proposed is proven to be more superior 

than the other noise detection and correction algorithms. 
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