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Applying Weighted Generalized Mean Aggregation to

Noise Detection of Images

STUDENT: Kuan-Lin Chen ADVISOR: Dr. Jyh-Yeong Chang

Institute of Electrical Control Engineering

National Chiao-Tung University

ABSTRACT

In this thesis, we apply weighted generalized mean to construct interval-valued
fuzzy relations for grayscale image noise detection. First, we employ two weighting
parameters and perform the weighted mean aggregation for the central pixel and its
eight neighbor pixels in a 3x3 sliding window across the image. Then, in order to
counter the over-weighting of a big-difference term, we apply a saturation threshold
transfer function to pixel difference values. Finally, the image noise map is obtained
through a threshold operation.

In order to decrease the noise detection error, weighting parameters of the mean
can be learned by the gradient method caste in discrete formulation. Moreover, to get
higher PSNR in the corrected image, we have, in the training, put multiple weight
ranging from 20 to 100, on erroneous noisy than that on the erroneous non-noise pixel.
Besides, we also propose two training stages for the purpose of maintaining image
sharpness and correction. By the training results of four grayscale natural images with
adding impulse noises, we have shown that the integration of interval-valued fuzzy
relations with the weighted mean aggregation algorithm can effectively detect the

image noise and do the correction hereafter.
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Chapter 1 Introduction

1.1 Motivation

Noise detection plays an important role in image processing and computer vision.
During the image acquisition and transmission process, the quality of digital images
may affected by impulse noise, such as malfunctioning pixels in camera sensors,
transmission in a noisy channel or faulty memory locations in hardware. Two
common types of impulse noise are the salt-and-pepper noise and random-valued
impulse noise. For images corrupted by salt-and-pepper noise, the noisy pixels can
take only the maximum or minimum values, if the images corrupted by
random-valued impulse noise, the noisy pixels.can take any random value.

Efficient detection of noise from image data is of key importance in most image
processing applications, because the performances of subsequent image processing
tasks are dependent on the success of the noise detection theory. There are many
works on the restoration of images corrupted by impulse noise, the standard median
filter was the most popular nonlinear filter because of its good denoising power and
computational efficiency. However, when the noise level is high in an image, their
main drawback is that the noisy pixels replaced by median value without considering
local features such as the presence of edges, some details and edges of the original
image are smeared by the filter.

Different remedies of the median filter have been proposed, e.g., the Adaptive
Median Filter [1], Weighted Median Filter [2] and the Center Weighted Median Filter
[3] , these so-called “decision-based” or “switching” filters first detect possible
noisy pixels and then replace them by using median filter.

In this thesis, a new impulse noise detector is proposed. We apply weighted mean
1



to construct interval-valued fuzzy relations for grayscale image noise detection. More
precisely, we first employ two weighting parameters, and perform the weighted mean
aggregation for the central pixel and its eight neighbor pixels in a 3x3 sliding
window across the image. Then, in order to counter the over-weighting of a big
difference term, we apply a saturation threshold transfer function to confine pixel
difference values. Finally, the image noise map is obtained through a threshold
operation. Moreover, we have derived the training formula of these two weighting
parameters and threshold of the mean aggregation, which can be learned iteratively.
Results indicate that the integration of interval-valued fuzzy relations with the
weighted mean aggregation algorithm will produce a more robust response in

detecting the image noise.

1.2 Noisy Pixel Detection and Correction

1.2.1 Noise Model

In this thesis, we use two common types of impulse noise are the salt-and-pepper

noise and the random-valued impulse noise. In the first case, the noisy pixels can take

only the maximum and the minimum values. Let X be the grayscale of the noisy

image X at pixel (i,j), Y, be the grayscale of a true image Y at pixel (i,/)

and [n,., n. ] be the dynamic range of Y, the first noise model is given as Eq.

(1.1)



(1.1)

i

R, ;  with probability p
Y, 5 with probability 1-p

where R, € [nmin; nmax] and p 1s the noise ratio. In the second case, we set up five

categories of impulse noisy pixel, pixels are randomly corrupted from any one of

these categories, the second noise model is given as Eq.(1.2).

[0;50] with probability p, p
[0;100]  with probability p,p
0;150 ith probabilit
x, | [03158]  withpobabity a2
/ [0;200]  with probability p, p
[0;255]  with probability p; p

Y, with probability 1 - p

where p denotes the degree: of random-valued impulse noise distortion,

Zpi =1, i =1,...,5. X, be the grayscale of the noisy image X at pixel (i,j)

and Y, be the grayscale of a true image Y at pixel (i, /).

1.2.2 Noisy Pixel Correction

In many practical situations, during image formation, storage, acquisition and
transmission, many types of distortions degrade the quality of the digital images,
images are corrupted by the impulsive noise of short duration and high energy, and
common sources of impulsive noise include industrial machines, lightening, car
starters, faulty or dusty insulation of high-voltage power lines and various unprotected

electric switches [4-6].



Detection and correction of impulse noise from digital images have been of high
research interest in the last years because the presence of noise in an image may be a
drawback in any subsequent image processing tasks, such as pattern recognition,
image segmentation or edge detection. Filtering the image to reduce the noise without
degrading its quality, preserving edges, corners and other details is a major step in
imaging systems such as image content retrieval, medical image processing, industrial
visual inspection [7].

In order to recover the original pixel values, there are many works on the
restoration of images corrupted by impulse noise. Among them, the most well-known
to remove impulse noise is standard median filter. Median filter method sorts pixels in
the working window, then picks the median value as the recovery pixel. It is the most
popular nonlinear filter because of its. high ‘computational speed and good detection
power. Over the last two decades, there is a  significant improvement in the
development of median filters. Weighted Median Filter (WMF) [2], Recursive
Weighted Median Filter (RWMF) [8] are examples. The above methods are too much
smoothing, which some edges and details of the original image are smeared by the
filter. This undesired property is caused by unnecessary filtering of the noise-free
pixel since the pixel that classifying as noise-free pixel should be left unchanged. To
overcome this drawback, a switching mechanism has been introduced into the
structure of the robust smoothing filters, [9, 10]. Such a switching filter first detects
the pixel under consideration is affected by the noise process or not. If it is found to
be contaminated, the noisy pixel will be replaced by the output of some robust filter.
Otherwise, it remains unchanged. For example, Center Weighted Median Filter
(CWMF) [3], Adaptive Median Filter (AMF) [1], and Switching Median Filter (SMF)
[11] are popular switching filters in recent years. Results indicate that the switch-type

methods have usually achieved good performance when the noise ratio is low.
4



1.3 Research Method

In this thesis, adopting the method proposed by Barrenechea et al. [12], the new
noise detection method we proposed utilize generalized weighted mean aggregation
algorithm to construct Interval-Valued Fuzzy Relations (IVFR). We can obtain two
fuzzy relations by calculating the weighted mean difference of the central pixel and its
8-neighborhood pixels in a 3x3 sliding window across the image. To counter the
over-weighting of a big difference term, we introduce a saturation threshold transfer
function to limit the pixel difference values. If the intensity difference is smaller than
the saturation threshold, its output value will be identical to the input. On the other
hand, if the intensity difference is larger than the saturation threshold, then its output
value will become gradually saturated. Finally; the image noise map is obtained
through a thresholding operation.

Moreover, we have derived ‘the iterative learning mechanism of these two
weighting parameters of the mean aggregation and the threshold as well. In the
parameters learning phase, we first use four typical natural 128x128 gray images
with the same percentage of impulse noise rate by the computer program as the
training images for the parametric learning. Then, we update the weighting parameters
to decrease total error number of wrongly classified noise pixels and wrongly noise
free pixels according to the four noisy training images by the steepest decent method
[13, 14] casted in discrete formulation, namely in a spirit similar to perceptron
learning. However, there could be no solution for perfect noise map. Therefore, we
will exploit the pocket algorithm to our learning algorithm. First, we will record the
parameter set in the pocket during the course of learning, and then pop out the best

parameter set in our pocket as our best weighting parameters when we finished this



long enough learning epochs.

1.4 Thesis Outline

The thesis is organized as follows. The motivation of this study and the basic
concept of image noise are introduced in Chapter 1. We introduce the noise detection
method for grayscale images by applying the concept of interval-valued fuzzy relation
proposed by Barrenechea et al [12] in Chapter 2. The basic concepts and technique
concerning the noisy pixel detection and correction methods are described in Chapter
3. Then the parameter learning of weighted mean based noise detection are described
in Chapter 4. Finally, we summarize all experimental results in Chapter 5, and

conclude this thesis with a discussion in Chapter 6.



Chapter 2 Apply Interval-Valued Fuzzy Relation to

Image Noise Detection

Noise detection from image data is of key importance in most image processing
applications. In this chapter, we will introduce to construct interval-valued Fuzzy
Relation (IVFR) [12] of an image by applying #-norm and #-conorm (also called
s-norm) in the fuzzy theory for noisy pixel detection. For each 3x3 sliding window,
we will first calculate the intensity differences between the central pixel and its eight
neighbor pixels. To counter the over-weighting of a big difference term, we introduce
a saturation threshold transfer function for pixel difference values. If the intensity
difference is smaller than the saturation threshold, its output value will be identical to
the input. On the other hand, if the intensity difference is larger than the saturation
threshold, then its output value will become /gradually saturated. By the above
procedures, we can compute the upper and lower bound differences corresponding to
each pixel of the image, which lead to interval-valued fuzzy relation of the image.

We refer to a method proposed by Barrenechea et al [12] of an image by applying
t-norm and s-norm in the fuzzy theory to the central pixel and its eight neighbor pixels
in a sliding window across the image. It can indicate that the noisy pixel should make
it clear that the adjacent pixels having a big enough variation to this central pixel
intensity. To measure this variation between the intensity of a pixel and the intensities
of the neighboring pixels, we construct, by means of lower and upper constructors, the
interval-valued fuzzy relation and its associated W-fuzzy relation. Fig. 2.1
demonstrates the steps of the application of interval-valued fuzzy relations in noise

detection of images.



Normalize the grayscale image to
be suitable for constructing a fuzzy

relation

A 4

Construct the Interval-Valued Fuzzy
Relation (IVFR) with upper and

lower constructor

A 4

Apply the saturation threshold
transfer function to avoid the
over-weighting of each upper and

lower term

) 4

Construct the W-fuzzy relation by
calculating the intensity variation
between upper and lower

constructor

Generate the noise map through
thresholding

Fig. 2.1. The flowchart to obtain noise map by using interval-valued fuzzy relation.



2.1 Fuzzy Relation

Based on the fuzzy relation, we can define two fuzzy relations of an image, one is
“upper” and the other is “lower” constructor to constitute the interval-valued fuzzy
relation with the same dimensions of the images [12]. We must consider carefully that
the gray-scale intensity of each pixel and its neighbor pixels contained in a fixed
range of the testing image in the procedure. First, we focused on a grayscale image
with size of M x N, execute the normalization step as follows. We divide the
grayscale maximal intensity “255,” so that the grayscale value of each pixel will be

between interval of [0, 1].
Next, we consider two finite universes X Z{O, L...M —1} and
Y:{O,l,...,N—l} . Then, R = {((x, )y R(x,2)) | (x,y) € X xY} is called a

fuzzy relation from X to Y. Fuzzy relations are defined as an M X N matrices in

the following expression (2.1) :

RO0,0) -  R(O,N-1)
_ R(l:,O) R(L]:V—l) @1
R(M ~1,0) - R(M—1,N-1)

In addition, F(X xY) represents the set of all fuzzy relations from X to Y

[15], [16].



2.2 Lower and Upper Constructor

In this section, we define the expressions of the lower and upper bound

respectively for a k-tuple pair (X, X,,...,X, ), where X,X,,....X, € [0, 1]

k k
zxi=T(£xi,xk)=T(x1,x2,...,xk) (2.2)
k k
§1xi =S(§lxi,xk)=S(xl,x2,...,xk) (2.3)

The above equations “7 ” and “S  stand for one kind of #-norm and s-norm
operators introduced in fuzzy theory; we know that -norm and s-norm are both an
associative, commutative, increasing function- and they have four basic types
respectively. Here, we take the common “min” and “max” operators for examples.

The operations of them are expressed as the following Eq. (2.4) and Eq. (2.5):

TM(x,y):min(x,y) X,yE[O,l] (24)

Sy(x,y)=max(x,y)  x,y€[0,1] (2.5)

Let Re F(XxY) be a Fuzzy Relation (FR) from X to Y . Consider two

M —1 N —1
,and <
2 2

t-norms T, and T, and two values m,n € N so that , < . The

lower constructor associated with 7., T,, m, and n is defined in the following
way:

Ly [R]: F(X xY)— F(X xY) (2.6)

10



n

L [Rly)= T (G RGx-iry-j), R(x, ) @.7)

0.1,
i=-m

j=-n

In Eq. (2.7), all of (x,y)€ X xY, and the indices i, j take values such that
0<x—i<M-1and 0<y— < N-—1. The values of m and »n represent that
the sliding window is a matrix of (2m+1)x(2n+1) dimension, which is centered at

(x,y). Similarly, we can define the upper bound of an interval by considering two

s-norms S, and S,. Eq. (2.8) and Eq. (2.9) are the expression of upper constructor.

Ugs [R]: F(X XY)— F(XXY) (2.8)

n

L CSL(R(x iy = /). R(x.)) (2.9)

I tn s

U;; [R](xa y) =

i

j=-n

In Fig. 2.2, we illustrate how the upper constructor operation works with
m=n=1, and § =S,=S,,. For the element (0,0) and (x,,»,) €EX XY in the fuzzy

relation, we have:

UL, . [R](0,0)=max(max(0.74,0.71), max(0.69,0.71), max(0.72,0.71),

max(0.71, 0.71,) )=0.74

UL s [R](x,),) = max(max(0.56,0.49), max(0.56,0.49), max(0.53,0.49),

NYEY:
max(0.49,0.49), max(0.49, 0.49), max(0.58, 0.49),

max(0.59,0.49), max(0.77,0.49), max(0.78,0.49)) = 0.78

11



(0,0) (0,1)
0.71 0.72
(1,0) (L,1)
0.69 0.74
(x-Ly-1) (x-Ly) | (x-Ly+l)
0.78 0.77 0.59
(xl’yl_l) (xlayl) (xl’yl+1)
0.58 0.49 0.49
(x+1,y-1) (x+Ly) | (xq+Ly+l)
0.53 0.5% 0.56
(0,0)
0.74
v
(X,01)
0.78

Fig. 2.2.  Example of upper constructor.
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2.3 Construction of Interval-Valued Fuzzy Relation

Suppose Re F(XxY), consider a lower constructor L'}:’}z and a upper

constructor Ug"s . Then the interval-valued fuzzy relation can be denoted by

R™ (x,y)=|Ly [R](x,).Us%, [R](x, )| € L(0.1), (2.10)

where (x,y)e XxY, and L([0,1]) represents the set of all closed subintervals of

[0,1]. For simplicity, we denote R™" as R" if m=n.

2.4  W-Fuzzy Relations

After building interval-valued fuzzy relation from FR, we construct a new fuzzy

relation W[R’"’”], which is defined as follows:

WR™ |(x,y) = R™ (6, 7) = R (x, ) = U35, [R](x, ) = L35 [R]Cx, ) @1D)

xe X ={0,1,...M -1}, yeY ={0,1,..,.N—1}

When using upper and lower constructors, the length of the interval associated with a
position indicates the intensity variation in its neighborhood. Then, in the construction
of W-fuzzy relations, the length of an interval represents the membership degree of

each element to the new FR [12].

13



Chapter 3 Some Noisy Pixel Detection and

Correction Methods

During Image formation, storage or transmission, many types of distortions
degrade the quality of digital images. In many practical situations, most of images are
corrupted by the impulsive noise. Therefore, there are many noisy pixel detection and
correction methods have been proposed, such as center weighted median filters
(CWMF) [3], peer group filter (PGF) [17] or switching median filter (SMF) [11].

These efficient noise detector methods will be described in the following.

3.1  Peer Group Filter

The main target of the noise reduction algorithms of an image is to suppress noise
while preserving image features like edges or texture. Vector Median Filter (VMF) is
a popular filter but the main drawback is it fails to distinguish between the original
uncorrupted pixels and pixels affected by the noise process. In order to alleviate the
problems, the VMF-based filter such as peer group filter (PGF) [17] has been widely
used. Essentially, the peer group of pixels in a given window represents the set of
neighbor pixels that are similar enough to each pixel according to a particular

measurement. In peer group filter (PGF) [17], the pixels are sorted in ascending order
according to their distances to the central pixel. Then, the peer group center pixel X,
is determined as the filtering window pixels that rank the lowest in the sorted

sequence. If the distance between X, and the central pixel X, is exceeding

14



threshold d, then we will identify the central pixel as a noise candidate and replaced

with the VMF output X;,. Otherwise, the central pixel is free of noise and remains

unchanged. The range of threshold d is set to [40, 60]. Eq. (3.1) is the expression of

PGF output.

X1y if |x, —x | >d
PGF,, = H el (3.1)
X if Hx(]) — X, <d

c)? 5

The following method is the improvement.of PGF; it is a fast modification of the
PGF where the central pixel is considered to be noise-free as soon as at last m pixels

in the sliding window are decided to be similar enough, known as fast peer group

Jfilter (FPGF) [18]. In other words, if the central pixel X, has m neighbors, and the
distance between X, and neighbors is not exceeding threshold d, then the central
pixel X, is belong to the peer group P(x(c),m,d) . Equation is expressed as

follows:

Xy i
FPGF.. { () if X € P(x(c),m,d) (32)

X1y>  otherwise
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For the understanding of the algorithm mentioned above, a 3x3 windowed with the

central pixel “0” is used as an example for illustrating FPGF process. Assume d = 60

and m = 4, as shown in Fig.3.1.

100 150 120

100 0 50

150 100 0

Fig. 3.1. Example for illustrating FPGF process.

Stepl) Calculate the difference- between the central pixel and adjacent eight

neighboring pixels; i.e., V=100, 150,.120, 100, 50, 150, 100, 0].

Step2) Calculate the number of neighbors of central pixel, in this example, m = 2.

Step3) The number of neighbors of central pixel is smaller than the default value

m = 4. Therefore, we regarded the central pixel as a noisy pixel.

3.2  Adaptive Peer Group Filter

When the concentration of the impulse noise is not high in an image, peer group
filter with 3x3 window is good enough to detect the noise pixel. However, when the

noise intensity is in high level or the noisy pixels are blobs, we may need to use
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another mechanism to detect the noise because the number of noisy pixels in working
window is too many, they may be misjudged as free of noise. Instead, we may use a
larger size sliding window in order to detect noisy pixels in blobs or in high intensity
of noise. There is a main drawback of using larger size of the sliding window to detect
noisy pixel. However, the large size of working window can detect a group of noisy
pixels well, but the boundary in the image is usually become blurred. On the contrary,
small size of the sliding window cannot detect a group of noisy pixels, but the details
can be preserved well. Fortunately, Adaptive Peer Group Filter [19] can prevent this
drawback. First, we use PGF with 9% sliding window because 3x3 cannot detect
noisy pixels in blobs well, when the center pixel is detected as a noisy pixel (see Fig.
3.2, Fig. 3.3), we will use the median of 3x3 sliding window to correct, this step can
reduce image blurring. After correction, we will use SX3 working window to detect
the center pixel again, if it is still noisy pixel, we increase the size of the working

window. Repeat the above steps until the central pixel is corrected.

\ 4

m—— | —

* 3x3 working window
X [
| [ 5%5 working window

Fig. 3.2. The working window size of n x n, (n=3, 5, 7,...).
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Initialize window size

wxw=3x3

Is the pixel
detected as noise
bv 9%5 PGF?

Correct noisy pixel by
wxw PGF

\ 4

Increase the window .
Detect bad pixel by

size
SX35 PGF again

wn+1)=wn)+2

Complete this pixel

correction

Fig. 3.3. Block diagram of the Adaptive Peer Group Filter.
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3.3 Fast Similarity-Based Impulsive Noise Removal Vector Filter

In this section, we introduce a new filter that the computational complexity is
lower than the vector median filter (VMF) and the simulation results indicate that the
new filter outperforms the VMF. According to the filter introduced by Smolka et al. in
[20—23], the fast similarity-based impulsive noise removal vector filter (FSVF) is
described below.

We assume that W is a window of finite size n+1 (filter length), and the noisy

pixels inside the window W will be denoted as F »1=0,1,...,n, where n is the

number of neighbors of the center pixel F;. The distance between two pixels F, F|

is denoted as p(F;, F;). Let us defing a similarity function p:[0;0)—R which is

non-ascending and convex in [0;e0) and satisfies p(0)=1, and lim_, p(x)=0.

The similarity between two pixels of the same gray level should be 1, and the
similarity between pixels with maximal gray level “255” and minimal gray level “0”
should be very close to 0. Here, we use the similarity function defined by the

following equation

wiF By =n(|F - F) (3.3)

where |||| denotes the specific vector norm (typically the L, or L, vector norms

can easily satisty the required conditions). We additionally define the cumulated sum
M of similarities between a given pixel and the adjacent pixels belonging to window

W, where equation is expressed as follows:
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n

My= u(Fe). M, = u(FLF) (3.4)
Jj=1 Jj=
J#k

We introduce M, for the central pixel and M, for the neighbors of £, (see Fig.

3.4). From the above equation, we found that the similarity between F, and F| are

not take into account, which privileges the central pixel. Hence, when it is really noisy,

the reference pixel F| is replaced by one of its neighbors if M, <M,, k=1,...,n,
preserving the details of original image. If this is the case then, £ is replaced by

that £. for which k*zargrnaka, k=1,..,n. The central pixel output is

expressed as follows:

£., Mg<M,
output =X (3.5)
Fy M2 M,
(a) (b)
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Fig. 3.4. (a) First the cumulative similarity value M, between the central pixel F,
and its neighbors is calculated. (b) Then pixel F is rejected from the filter window

and the cumulative similarity values M,, k=1,...,n, of the pixels F,...,F, are

determined [21].

There are several convex functions fulfilling the above conditions, but the best

results were achieved for the simplest similarity function p,(x). Applying the linear

similarity function p, we obtain

W E)
wo(FE) =1 T g forp(}?’F")d (3.6)
otherwise

where /€ (0,0), the parameter /4 influences the intensity of the filtration process.

p(F,, F,) represents the distance between two pixels F,F;. This function allows

1

constructing a fast noise reduction algorithm.

3.4  Center Weighted Median Filter

The median-based noise detection strategies work well for fixed-valued impulse
noise; they have been recognized as a useful image enhancement technique. However,
it requires some caution because median filtering tends to blur image details such as

corners and lines while reducing noise. In response to these difficulties, several
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variations of median filters have been introduced. Here, we focus on an extension of
weighted median filters called center weighted median filter (CWMF) [3], this filter
gives more weight to the central pixel.

First, we defined a filtering window W surrounding the current or original pixel

W:{(s, t)|-h<s<h, —hStSh}. The output of CWM filters is expressed as

follows [3]:

Y,;" = median(X}) (3.7

g

where

X :{X

i—s,j—1°

wOX, | (sst)el, (s, t)=(0, 0)} (3.8)

In the above equation, w denotes the center weight and the operator ¢ represents

the repetition operation. For the current pixel X, we first define differences

ij

d, =

w
i

- X,|= ‘y;k“ - X, (3.9)

where k=0, 1,---,L—1. These differences provide the information about the

likelithood of corruption for the central pixel, the decision making mechanism is
achieved by using a set of thresholds 7, (k=0, 1,---,L—1), where T, , > T, for

k=0, 1,---,L—1, which is shown as follows:
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T, =sxMAD+3, (3.10)

where the median of the absolute deviations from the median is defined as

MAD = median {‘X

i—s,j—t

=%)|I(s, t)ew} (3.11)

from the simulations conducted on a broad variety of images, the selection satisfying

[8,, 6, 6,, 8,]=[40, 25, 10, 5] yields good results in filtering random-valued

impulse noise, the setting of [&,, &, &,, &,]=[55, 40,25, 15] performs well in

removing fixed-valued impulse noise, it is also observed that good result could be

obtained by using 0<s5<0.6 in both types of impulse noise. Specifically, if any of

the inequalities d, >T, are true, then the central pixel X is regarded as an

)

impulse noise. Otherwise, it assumes the current pixel as noise-free; the proposed

filter can be defined as follows:

v (3.12)

X, otherwise

- Y), ifdk, d, >T,
X, =

where X

; represents the final estimate of current pixel X . Fig. 3.5 shows the

block diagram of center weighted median filter.
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Impulse Output
Detector >

A 4

A

Fig. 3.5. Block diagram of the Center Weighted Median Filter.

3.5  Switching Median Filter

In this section, we introduce a new impulse noise detector based on boundary
discriminative noise detection (BDND) algorithm [11]. Like BDND, it also consists
two iterations and all pixels in the image are examined. In the first stage, we use the
local histogram to determine the decision boundaries, the central pixel is examined
fromits 21x21 neighborhood, only when a pixel is judged as noise candidate, it will
be piped into the second validation stage. If both stages are classified into “Noise”
class, it will be considered to be a “true” impulse noise. The criterion can be

summarized as follows:
24



Pepper Noise, x; ; Smin(b,, m)
class(x, ;) = 4 Uncorrupted, otherwise (3.13)
Salt Noise, X, > max(b,,255—m)

where b, b, are the two decision boundaries and x, ; is the intensity of the current

pixel, parameter m represents the interval which lie in the two ends of the intensity
range. The following steps show how to obtain the decision boundaries by using the

BDND algorithm.

Stepl) Imposea 21x21 window centers on X, ;

Step2) Sort the pixels lie in the window region according to the ascending order v,
and find the median med.

Step3) Compute the intensity difference of -1, and obtain the difference vector v,.
Step4) Find the maximum intensity difference in the intervals [0, med] and
(mea’ , 255], set these two pixels’ intensities as the decision boundaries b,

and b, respectively.

After obtaining two decision boundaries, the second validation stage of BDND
reduces the window’s dimension to 3x3, it is obviously that the order of magnitude
lacks statistical significance seriously. In order to make the decisions in both stages
more robust and reliable, we modified the second stage, the basic philosophy is to find
a way to accurately quantify the intensity differences between the central pixel and its

neighbors in four directions (see Fig. 3.6).
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0 00 0 -1 0 0 0
0 00 0 -1 0 0 0
0 00 0 -1 0 0 0
d -1 -1 6 -1 -l -l 00 0 6 0 0 0
00 000 0 0 00 0 -1 0 0 0
00 000 0 0 00 0 -1 0 0 0
00 000 0 0] 0 0 0 -1 0 0 0
(a) (b)
00 00 0 0 -] 1.0 0 0 0 0 0]
00 000 -1 0 0 -1 000 0 0
00 00 -1 0 0 00 -1 00 0 0
00 0600 0 00 0600 0
00 -1 00 0 0 00 00 -1 0 0
0 -1 000 0 0 00 000 -1 0
<10 00 0 0 0] 00 00 0 0 -]
(©) (d

Fig. 3.6. Four directional convolutionary kernels.

The dimension of the neighborhood of each pixel is 7x7 and the directions we

care about are 0, 7/4, n/2, 37 /4. Then by convolving the group of kernels with

the noise image, each pixel has four convolutionary results. The computation strategy

can be formulated as follows:

Vl.g.k) =‘ I ® Ker¥

, k=1---,4 (3.14)

g

26



where 1 is the noisy image, ® denotes the convolution operator, Ker')is the k"
kernel we designed and V;H is the k” absolute convolutionary value for pixel L.

In [24], only the minimum of the four descriptors is used, the main disadvantage of
this strategy is only comparing the minimum with a given threshold to decide whether
the current pixel is corrupted. If the noise density is high, this rule will completely fail.
Therefore, we utilize both the minimum and maximum of aforementioned four

descriptors simultaneously. These two values can be obtained according to Eq.(3.15).

min _ 1) v y06) (4
Ry _mm{Vl.j Vi s ViV }

(3.15)
Rl;nax :max{v(‘) V(z) V(3) V(4)}

i Vi o Vi o Yy

The classification rule is defined as follows: if ‘R >T, or RI™ —R™ >T,, then
pixel I, is regarded as noisy pixel. Otherwise I, is not corrupted. In this criterion,

the two thresholds 7] and 7, are respectively setto 5 and 1.
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Chapter 4 Parameter Learning of Weighted Mean

Based Noise Pixel Detection

In this chapter, we will propose a new impulse noise detection method through
executing the weighted-mean aggregation to calculate the intensity difference between
a central pixel and its eight neighborhood pixels ina 3x3 window across the image.
Furthermore, to counter the over-weighting of a big difference term, we apply a
saturation threshold transfer function to pixel difference values. Then, we obtain the
noise map through a threshold operation .

Moreover, we have derived the training formula of these weighting parameters of
the mean aggregation, which can .be learned iteratively. In the parameters learning
procedure, we use four natural 128x128 “gray images adding the same percentage of
impulse noise rate as shown in Fig. 4.1 by the computer program as training input
images for the parametric learning. Fig. 4.2 shows the noise ground truths of four
10% impulse noise corrupted gray-scale natural images. Then, by the steepest decent
method [13, 14] caste in discrete formulation, we update the weighting parameters to
decrease total error number of wrongly classified noise and noise free pixels
according to the four noisy training images. Namely this learning formula is

aggregation weights in a spirit similar to perceptron learning.
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Fig. 4.1. Four 10% impulse noise corrupted gray-scale natural images of size

128x128.

Fig. 4.2. Noise ground truths of four 10% impulse noise corrupted gray-scale natural

images.

4.1 Weighted Mean Based Interval-Valued Fuzzy Relation

For the method proposed by Barrenechea et al [12], there are four selections for
the s-norm and #-norm operators respectively to construct the interval-valued fuzzy
relations. It is difficult to decide which combination is the most suitable to fit the

image noise detection. Besides, they are nonlinear functions and hard to derive a
29



formula involving the “max” and “min” logical operators. In order to avoid these

disadvantages, we will introduce the weighted-mean aggregation to generalize the

s-norm and #-norm formula in a continuous setting. To this end, the s-type o, and

ttype @, with a e [0.5, 1] and «a, e [0, 0.5], parameters in the weighted-mean

aggregation are introduce to replace the s-norm and 7-norm operators in constructing

interval-valued fuzzy relations for noise detection.

4.2  The Weighted Mean to Calculate the Difference of Neighbor

Pixels of Images

2

In this section, we first utilize the two-operating parameters “o,” and “o,” to
determine the intensity of s-type and #-type weighting aggregations and calculate the
weighted difference for the pixel values of an image. Then, we apply a saturation
threshold transfer function to pixel difference values in order to avoid the
over-weighting of a big difference term. Finally, we can obtain the noise pixel map
through a suitable threshold.

For an M xN 1image I, we first compute the s-type and ¢-type weighted

difference value of the grayscale intensity between the central pixel 7(m, n) and its

eight neighbor pixels ina 3x3 window as shown in Fig. 4.3.
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8 I(m, n) 4

Fig. 4.3. The diagram of a 3x3window centered at pixel I(m, n) and its eight

neighborhood pixels.

{ysi(l(m, n)) = a.a(l(m,n))+(1-o)b,(I(m,n)) @1

v,,(I(m,n)) = a,a,l(m,n))+{—-e,)b,(I(m,n))

where  « €[0.5, 1]; o, €[0, 0.5]; i=1, 2,...8; m=1, 2,...,M; n=1, 2,...,N. The
subscript i represents the index of the eight neighbor pixels, a(/(m,n)) and

b(I(m,n)) represent the larger and smaller grayscale value respectively between the

central pixel /(m,n) and one of its eight neighbor pixels. In order to counter the
over-weighting of a big difference term, we apply a saturation threshold transfer

function to pixel difference values. If the intensity difference is smaller than the

saturation threshold (7)), its output value will kept identical to the input as far as

possible. On the other hand, if the intensity difference is larger than the saturation

threshold, then its output value will become gradually saturated. To this end, the
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saturation threshold transfer function could be defined as Sigmoid function as shown

in Fig. 4.4.

Tg <ys,‘([(m’n)) - y;i([(m’ I’l)))
A

0 | y.g;([(m7n))_y/[(l(m’n))

Fig. 4.4. Sigmoid function for saturation thresholding.

where T, () represents the output value which pass through the saturation threshold

(see Eq. (4.7)). Then, we compute the average of these output value as follows:

oo

SOT (v, (I(m,n)) — y,,(I(m,n)))

yw (m’n) == 8 (42)

Finally, we determine whether the central pixel 7(m,n) belongs to noisy pixel or
not according to the comparison of the y (m,n) and the threshold T as given by

the Eq. (4.3).
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I(m,n)z

{ noise, if y, (m,n)>T 43)

noise free, otherwise

4.3  Operating Parameter Learning Mechanism

Before processing the parameter learning mechanism, we have to give a set of

four initial operating parameters (o,, ,, T and T) which can be learned iteratively.

One of the advantages of our learning mechanism is that these parameters are learned
automatically that lead to beat noise and noise. free pixel detection accuracy. The

restrictions in setting initial parameters of our scheme are given by

(1) a,>aq,
(2) a,=[05,1]; «a,=[0, 0.5]
3) T, eR’

(4) TeR'
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4.3.1 Learning Rule of Mean Weighting Parameters

M ya (m’ i’l)
A
112 3 S, T operations; T, v, (m, n)
4 | 5(mn) | 6 3 (mn) -
718 9 N
> ) (m’n)
Sigmoid for saturation
Threshold (7))
»(i)
A
> 1
ya (m’ n)
0 > ya (m’ n)

Fig. 4.5. Block diagram of applying W-fuzzy relations to noise pixel detection.

Assume a(i) < b(i), perform the weighted mean aggregation calculation between

a 3x3window central pixel and its eight neighbor pixels, we have

v, (i)=ab(i)+(1-a,)a(i), 0.5<a, <I. (4.4)

N
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v (i) =ap(i)+(1-a,)a(i), 0<a, <05, 4.5)

y()=y,(i)=y,(i)=(a,~a,)(b(i)-a(i)) i=1 2,8 (4.6)

The central pixel must have a big enough variation in intensity near its neighbor if it is
a noisy pixel. In order to counter the over-weighting of a big difference term, we

construct the sigmoid activation function for the purpose of saturation thresholding.

I
~

i=1, 2,---,8. (4.7)

O R R ) o e w—

I+e

|

NS
@ 7

3

=

|
w"\]
e—

where A >0 in Eq. (4.7) determines the steepness of the continuous function
a(yl(i)) near yl(i)zo. Finally, we compute the average value of eight y, (i)

which is the mean difference of eight neighboring pixel with respect to the central
pixel. If this value exceeds the predefined threshold, we will regard the current pixel

as a noise pixel. Otherwise, the central pixel is free of noise, as given by

8
D v.0)
1 (noise), if ile—T >0
(i) = ; (4.8)
2 2.0

0 (noise free), if Z:IT ~-T<0
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With the above formulation in mind, we are now ready to derive the training formula

for the parameter set a, ~ «, ~ T, and T For a given M xN image, we first

compute the total error £ (m,n) in order to obtain the smallest number of wrongly

classified noise and noise-free pixels as follows.

1

E(m,n)=§

Z(d(m,n)—y(m,n))z, (49)

i=1

M=

Il
—_

where d(m,n) and y(m,n) indicates the ground truth noise map of the input image

and the output noise map of the input image at (m,n),respectively. Then, the

derivative of E (m,n) respect to “a 1s given by

OE(m,n) _0E(m,n) dy(m,n) 3y, (m,n) oy, (m,n)
oa, - oy(m,n) 0y, (m,n) 6y1(m,n) oa, (4.10)
1<m<M;1<n<N.

Since,

M:_(d(m,n)—y(m)n))’ (4.11)
oy(m,n)

dy(m,n) _

—6ya (m,n) =1, (4.12)
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8
I
oy ) ZO70 (4.14)
oa 8

s

Using the above equations, then a perceptron learning of the weighting parameter

o, iteratively can be given by

M (4.15)

as_new = as_old _T]s
where 7, is the learning constant of e .~ Similarly, a perceptron learning of the

weighting parameters ¢, iteratively can be given by

GE(m,n) B 8E(m,n) oy(m,n) Oy, (m,n) oy, (m,n)
oa, - oy(m,n) 0y, (m,n) Gyl(m,n) oa, (4.16)

1<Sm<M;1<n<N.

Since,

M:_(d(m, n)— y(m,n)), (4.17)
oy(m,n)

oy(m,n) _

2 () 1, (4.18)
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oy, (m,n) 1 —i[yl(m,n)—ij
=T - e (-2), (4.19)
oy, (m,n) {He_a[yl(m,n)—;]}
3 (b)) - a(i)
(b(i)—a(i
» la(Z:’") = (4.20)

t

Then a perceptron learning of the weighting parameter ¢, iteratively can be

given by

8E(m,n)

at_new = at_old -1, (421)

where 7, is the learning constant of ‘e, Follow similar line of reasoning, the

perceptron learning formula for parameters 7, and 7', can be given by

aE(m,n) B GE(m,n) oy(m,n) Oy, (m,n)

oT,  oy(m,n) oy,(m,n) 0T, (4.22)
1<m<M;1<n<N.
Since,
OFE (m,n
6(—)2—(d(m,n)—y(m,n)), (423)
y(m,n)
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oymn)

4.24
o, (m.n) (4.24)
2 i (mn)-5
@;aa(jnj,n) _ 1 - T. 1 . e i(yl( ) 2](%) (4.25)
i " e—ﬂ.(yl(m,n)_?] [1 .\ e_z(yl(m,n)—??] J .
T =T O (m,n) (4.26)

) S0l _TI = A
s_new _old T aT;
where 77, is the learning constant of T, . Similarly, a perceptron learning of the

parameter [ iteratively can be given by

OE(m,n) _ GE(m,n) dy(m,n)
or  oy(mn) oT (4.27)
1<m<M;1<n<N.

where

M =—(d(m,n)- y(m,n)), (4.28)
oy(m,n)
oy(m,n)
- 1. (4.29)
Ty =Ty, 20" (430)
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where 7, is the learning constant of 7'. For a set of natural images to train the best

weighting parameters o, ~ o, ~ T, and T, there may be no solution for perfect noise

map. Therefore, we will use the pocket algorithm to our learning phase, i.e., we will

save the best a ~a,~T and T inthe pocket during the course of learning, and pop

out the best parameters in our pockets as our best weighting parameters when we

finished a long enough learning epoch.

4.3.2 Proposed Training Method

In this section, we propose two training stages for the purpose to maintain image
sharpness. In the first stage of our training method, we will choose four typical
grayscale natural images with adding the same percentage of impulse noise rate to
each natural images as the input training images, then we raster-scanningly train every

pixel of training images. And at the end of each row, under the currently learned

parameter values of «, ~ «, ~ T, and T we test the noise and noise free pixel

detection accuracy by summing of all four input training images. To enhance the noise
detection accuracy, we weighted the noise pixel misclassification by a multiplier
constant where value is larger than 1. From our experiment of obtaining good Peak
Signal Noise Ratio (PSNR) , the multiplier constant is dependent on the impulse noise
rate of adding on the image. We have experienced for a good PSNR that multiplier
constant equal to 10 for impulse noise rate smaller than 10%, and equal to 100

otherwise. It is to be noted that our proposed learning scheme usually cannot obtain a
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perfect noise maps of training images. i.e., the number of wrongly classified noise or
noise free pixels is zero for all the training images. Therefore, we will exploit the
pocket algorithm to our learning phase. In the first epoch, we will select the best
parameters with the smallest number of wrongly classified pixels. We store this
number of smallest misclassified pixels and its associated parameter set as our best
solution in this learning epoch. Then, we use the best parameters from the first
learning epoch as the initial parameters of the second learning epoch. After a long
enough learning epochs, we use the best parameters as the initial value of our second
training stage.

Our learning algorithm will identify the central pixel of 3x3 window as a noisy
pixel if there is a big enough difference with its eight neighbor pixels. Unfortunately,
an edge point could be prone to be wrongly classified as a noise pixel for it could
produce a big difference with neighbor pixels due to edge effect. To alleviate this
shortage, we propose the second stage to retrain the images with edge pixel being
identified differently. Similarly as the first stage, we add the edge detection process to
our training method in the second stage. When we start training these four input
images in the second stage, we first use the best parameter set from the first stage to
repair the input training images. Then, we apply Canny edge detector to help us find
the edge pixels from these repaired images. Finally, when the current training pixel is
an edge pixel, we increase the threshold value by a factor of “l1.1” to reduce the
probability of edge pixel to be detected as a noisy pixel. By this way, we can achieved

good performance by combining these two training stages.
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Chapter S Experimental Results

In our experiments, we focus on two common types of impulse noise, one is
salt-and-pepper noise and the other is random-valued impulse noise. These two types
of noise model are described in Section 1.2.1. For the measurement of the restoration
quality, we employ the peak signal-to-noise ratio (PSNR) performance metric, which

is based on the root-mean squared error (RMSE). The expression of RMSE and

PSNR are defined as:
N M O
RMSE = -0'(i, )) (5.1
NxMxQ,ZZ;( )
PSNR =20xlog = (5.2)
RMSE

where M, N are the image dimensions, Q is the number of channels of the image
(O =1 for grayscale image), and 0?(7,j) and x* (z', i ) denote the ¢ -th component
of the original image vector and the filtered image, at pixel position (z', j) ,

respectively. For the evaluation of the detail preservation capabilities of the proposed

filtering design, the mean absolute error (MAE) has been used as

E= ZZlZZIZqQ:l‘xq (i’j) —0’(i, ])‘

NxMxQ

(5.3)
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In order to explicitly see the advantages and disadvantages of each method, we will
normalize the parameters which are RMSE and MAE. These parameters are

normalized between 0 and 1; the larger value for the parameters indicates better

performances. These two normalized RMSE, and MAE  is expressed as

follows:

max(RMSE)— RMSE(i)

RMSE . = _
max(RMSE) — min(RMSE)

(5.4)

MAE, - max(MAE) - MAE(i) (5.5)
max(MAE) — min(MAE)

At last, we compare our s, ¢ aggregation approach to several noise filters such as
Adaptive Peer Group (APG) [19], Center Weighted Median Filter (CWMF) [3], Peer
Group Filter (PGF) [17], Fast Similarity-based impulsive noise removal Vector Filter
(FSVF) [20-23], Switching Median Filter (SMF) [11]. Our first method applies
s-norm and z-norm operators respectively to construct the interval-valued fuzzy
relations by extensive combinatory trials, without s, ¢ learning mechanism and
saturation threshold process, we called it “ST” method. If “ST” method with
saturation threshold process, we called it “ST with saturation” method. In order to
make our experimental results more representative, we take average of 100 testing

images with the same percentage of impulse noise rate to all four training images.

43



5.1  Results of Salt and Pepper Noise Correction

In this experiments, we have added the salt-and-pepper noise, as shown in Fig.
5.1, to four gray-scale images as our training input images. Based on our proposed
weighted mean based interval-valued fuzzy relations for noise detection of noisy

images, we have obtained good results by setting the initial values of

a,=0.75, a,=0.25, learning constants 7, =7, =1, =1, =0.0035, noisy pixel

threshold 7 =6 and saturation threshold 7, =18 in the first training stage. After 9

learning epochs in the first training stage, we select the best parameters as the initial
values of our second training stage. In the second stage of our training method, we
can obtain the best parameter set after. 30 learning epochs. If the percentage of noise
ratio is less than 20%, we will correct it by using alpha-trimmed mean filter using
ranking central three pixels, when the pixel is regarded as a noisy pixel. Otherwise,

we will correct it by using median filter when it is detected as a noisy pixel.

Fig. 5.1. Four 10% salt and pepper noise training images with size of 128x128.
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According to TABLE I, although our method is not the best method, the
performance of our method is still above average. When the concentration of the salt
and pepper noise is increased in an image, our method is better than the other methods
gradually. Fig. 5.2, Fig. 5.3 and Fig. 5.4 show the correction results by different filters

of noisy Boat image, with 20%, 40% and 60% salt and pepper noise, respectively.




(k)

Fig. 5.2. Noisy pixel correction results of Boat image filtered by different filters. (a) Original image.
(b) Corrupted image with 20% salt and pepper noise. (c)—(i) are filtering results. Image filtering
results filtered by (c) our proposed filter with two stages. (d) our proposed filter with one stage. (e)
Adaptive Peer Group (APG). (f) Center Weighted Median Filter (CWMF). (g) Peer Group Filter (PGF).
(h) Fast Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median Filter

(SMF). (j) “ST” method. (k) “ST with saturation” method.
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(k)

Fig. 5.3. Noisy pixel correction results of Boat image filtered by different filters. (a)
Original image. (b) Corrupted image with 40% salt and pepper noise. (c)—(i) are
filtering results. Image filtering results filtered by (c) our proposed filter with two
stages. (d) our proposed filter with one stage. (e) Adaptive Peer Group (APG). (f)
Center Weighted Median Filter (CWMF). (g) Peer Group Filter (PGF). (h) Fast
Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median

Filter (SMF). (j) “ST” method. (k) “ST with saturation” method.
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0

Fig. 5.4. Noisy pixel correction results of Boat image filtered by different filters. (a)
Original image. (b) Corrupted image with 60% salt and pepper noise. (c)—(i) are
filtering results. Image filtering results filtered by (c) our proposed filter with two
stages. (d) our proposed filter with one stage. (e) Adaptive Peer Group (APG). (f)
Center Weighted Median Filter (CWMF). (g) Peer Group Filter (PGF). (h) Fast
Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median

Filter (SMF). (j) “ST” method. (k) “ST with saturation” method.
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TABLE I
THE NOISE REMOVAL RESULTS BY DIFFERENT FILTERS

(a) Corrupted Boat image with 10% salt and pepper noise

RMSE- MAE-
RMSE | MAE | PSNR SUM
Filter normalized | normalized
APG 7.746 | 1.729 | 30.349¢ 0.000 0.000 0.0009
CWMF 4.995 | 0.825 | 34.161; 0.620 0.820 1.440,
PGF 6.005 | 1.014 | 32.561s 0.393 0.649 1.0424
FSVF 5.267 | 0.882 | 33.700; 0.559 0.768 1.327;
SMF 3.313 | 0.626 | 37.729, 1.000 1.000 2.000,
STraE 6.642 | 1.417 | 31.6853 0.249 0.283 0.5324
ST with
. 6.201 | 1.107 | 32.282; 0.349 0.564 0.913;
saturation
Our learning
ST method | 5.911 | 1.065 | 32.699, 0.414 0.602 1.0165
(two stage)
Our learning
ST method | 6.166 | 1.098 | 32.332 0.357 0.572 0.929¢
(one stage)
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(b) Corrupted Boat image with 20% salt and pepper noise

RMSE- MAE-
RMSE | MAE | PSNR SUM
Filter normalized | normalized
APG 10.236 | 3.147 | 27.929¢ 0.000 0.000 0.0009
CWMF 8.023 | 1.795 | 30.046; 0.442 0.752 1.194;
PGF 8.200 | 2.098 | 29.854; 0.407 0.584 0.9914
FSVF 7.835 | 1.835 | 30.252, 0.480 0.730 1.210,
SMF 5.230 | 1.349 | 33.762,; 1.000 1.000 2.000,
STraE 9.059 | 2.820 | 28.990g 0.235 0.182 0.417
ST with
. 8.353 | 2.192 | 29.695 0.376 0.532 0.908¢
saturation
Our learning
ST method 8.129 | 2.250 | 29.9304 0.421 0.499 0.9205
(two stage)
Our learning
ST method 8.399 | 2.223 | 29.647, 0.367 0.514 0.8815

(one stage)
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(c) Corrupted Boat image with 40% salt and pepper noise

RMSE- MAE-
RMSE | MAE | PSNR SUM
Filter normalized | normalized
APG 15.335| 6.518 | 24.418, 0.546 0.151 0.697¢
CWMF 21.269 | 6.070 | 21.577 0.000 0.272 0.272
PGF 13.724 | 4.747 | 25.382, 0.694 0.628 1.322,
FSVF 18.866 | 5.788 | 22.618g 0.221 0.348 0.569,
SMF 10.399 | 3.367 | 27.792, 1.000 1.000 2.000,
STraE 14.935 | 6.611 24.6485 0.583 0.126 0.7095
ST with
) 14.441 | 5.222 | 24.939,4 0.628 0.501 1.129;
saturation
Our learning
ST method | 14.347 | 5.277 | 24.996; 0.637 0.486 1.1234
(two stage)
Our learning
ST method | 15.161 | 7.080 | 24.517 0.562 0.000 0.562g

(one stage)
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(d) Corrupted Boat image with 60% salt and pepper noise

RMSE- MAE-
RMSE | MAE | PSNR SUM
Filter normalized | normalized
APG 26.985|14.667| 19.508, 0.816 0.493 1.309,
CWMF 48974 121.161 | 14.332¢ 0.000 0.011 0.011e
PGF 26.259110.449 | 19.746, 0.843 0.805 1.648;
FSVF 45988 121.310| 14.878g 0.111 0.000 0.111g
SMF 22.023 | 7.823 | 21.274, 1.000 1.000 2.000,
STraE 26.895112.443 | 19.5384 0.819 0.657 1.476¢
ST with
i 26.865|11.292 | 19.5475 0.820 0.743 1.563;
saturation
Our learning
ST method |26.840|12.294 | 19.5565 0.821 0.669 1.4904
(two stage)
Our learning
ST method |26.843|12.309 | 19.555,4 0.821 0.667 1.4895

(one stage)
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5.2 Results of Random-Valued Impulse Noise Correction

In this experiments, we have added the random-valued impulse noise, as shown
in Fig. 5.3, to four gray-scale images as our training input images. Similarly, we have

obtained the good performances by setting the initial values of o =0.75, «, =0.25,

learning constants 7, =17, =1, =1, =0.0035, noisy pixel threshold 7'=6 and

saturation threshold 7, =18 in the first training stage. After 9 learning epochs in the

first training stage, we select the best parameters as the initial values of our second
training stage. In the second stage of our training method, we can obtain the best
parameter set after 30 learning epochs. If the percentage of noise ratio is less than
20%, we will correct it by using alpha-trimmed mean filter using ranking central three
pixels, when the pixel is regarded as a noisy pixel. Otherwise, we will correct it by

using median filter when it is detected as a noisy pixel.

Fig. 5.5. Four 10% random-valued impulse noise training images with size of

128x128.
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According to TABLE II, the performance of our proposed method is above
average no matter what the sample corruption probability is. Fig. 5.5 and Fig. 5.6
show the correction results by different filters of noisy Pepper image, with 20% and
40% random-valued impulse noise, respectively. Fig. 5.7 shows the correction results

by different filters of noisy Boat image with 60% random-valued impulse noise.




Fig. 5.6. Noisy pixel correction results of Pepper image filtered by different filters. (a) Original image.
(b) Corrupted image with 20% random-valued impulse noise. (c)—(i) are filtering results. Image
filtering results filtered by (c) our proposed filter with two stages. (d) our proposed filter with one stage.
(e) Adaptive Peer Group (APG). (f) Center Weighted Median Filter (CWMF). (g) Peer Group Filter
(PGF). (h) Fast Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median

Filter (SMF). (j) “ST” method. (k) “ST with saturation” method.
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Fig. 5.7. Noisy pixel correction results of Pepper image filtered by different filters.
(a) Original image. (b) Corrupted image with 40% random-valued impulse noise. (c)
—(i) are filtering results. Image filtering results filtered by (c) our proposed filter with
two stages. (d) our proposed filter with one stage. (¢) Adaptive Peer Group (APG). (f)
Center Weighted Median Filter (CWMF). (g) Peer Group Filter (PGF). (h) Fast
Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median

Filter (SMF). (j) “ST” method. (k) “ST with saturation” method.

59



(2) (b)

(d)

60



(k)

Fig. 5.8. Noisy pixel correction results of Boat image filtered by different filters. (a)
Original image. (b) Corrupted image with 60% random-valued impulse noise. (c)—(i)
are filtering results. Image filtering results filtered by (c) our proposed filter with two
stages. (d) our proposed filter with one stage. (e) Adaptive Peer Group (APG). (f)
Center Weighted Median Filter (CWMF). (g) Peer Group Filter (PGF). (h) Fast
Similarity-based impulsive noise removal Vector Filter (FSVF). (i) Switching Median

Filter (SMF). (j) “ST” method. (k) “ST with saturation” method.
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TABLE 11
THE NOISE REMOVAL RESULTS BY DIFFERENT FILTERS

(a) Corrupted Pepper image with 10% random-valued impulse noise.

RMSE- MAE-
RMSE | MAE | PSNR SUM
Filter normalized | normalized
APG 7.900 | 1.687 | 30.179g 0.714 0.627 1.341g
CWMF 4.054 | 0.663 | 35.976, 1.000 1.000 2.000,
PGF 4726 | 0.806 | 34.644 0.950 0.948 1.898¢
FSVF 4329 | 0.726 | 35.407, 0.980 0.977 1.957,
SMF 17.490 | 3.408 | 23.275¢ 0.000 0.000 0.0009
STraE 5.199 | 0.967 | 33.8144 0915 0.889 1.804,
ST with
) 4.608 | 0.808 | 34.8625 0.959 0.947 1.9065
saturation
Our learning
ST method 4422 | 0.792 | 35.221; 0.973 0.953 1.926;
(two stage)
Our learning
ST method 4499 | 0.828 | 35.0724 0.967 0.940 1.9074

(one stage)
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(b) Corrupted Pepper image with 20% random-valued impulse noise.

RMSE- MAE-
RMSE | MAE | PSNR SUM
Filter normalized | normalized
APG 13.040 | 4.107 | 25.826% 0.637 0.517 1.154¢
CWMF 6.319 | 1.501 32.119, 1.000 1.000 2.000,
PGF 7.359 | 1.817 | 30.7965 0.944 0.941 1.8855
FSVF 6.859 | 1.570 | 31.408, 0.971 0.987 1.958,
SMF 24.826 | 6.894 | 20.233¢ 0.000 0.000 0.0009
STraE 7.874 | 2.123 | 30.207; 0.916 0.885 1.8014
ST with
i 7.375 | 1.820 | 30.7776 0.943 0.941 1.884¢
saturation
Our learning
ST method 7.056 | 1.729 | 31.161; 0.960 0.958 1.918;
(two stage)
Our learning
ST method 7.189 | 1.849 | 30.999, 0.953 0.936 1.8894

(one stage)
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(c) Corrupted Pepper image with 40% random-valued impulse noise.

RMSE- MAE-
RMSE | MAE | PSNR SUM
Filter normalized | normalized
APG 28.480 | 13.748 | 19.040g 0.347 0.108 0.455g
CWMF 13.614 | 4.578 | 25.452, 1.000 0.976 1.976,
PGF 14.835| 5.094 | 24.707¢ 0.946 0.927 1.873¢
FSVF 15.138 | 4.327 | 24.532; 0.933 1.000 1.933,
SMF 36.392 1 14.894 | 16.911, 0.000 0.000 0.0009
STtaE 15.269 | 5.786 | 24.4564 0.927 0.862 1.789;
ST with
. 14.750 | 4.981 24.7564 0.950 0.938 1.8884
saturation
Our learning
ST method | 14.695| 4910 | 24.789, 0.953 0.945 1.898;
(two stage)
Our learning
ST method | 14.781 | 5.119 | 24.738s 0.949 0.925 1.8745

(one stage)
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(d) Corrupted Boat image with 60% random-valued impulse noise.

RMSE- MAE-
RMSE | MAE | PSNR SUM
Filter normalized | normalized
APG 45.189 | 33.151| 15.030% 0.259 0.000 0.259
CWMF 37.469 | 18.380 | 16.658, 0.987 1.000 1.987,
PGF 37.329120.461 | 16.690, 1.000 0.859 1.859,
FSVF 43.470)21.081| 15.3164 0.397 0.817 1.2144
SMF 47.939126.934| 14.517, 0.000 0.421 0.421g
STraE 38.733123.599| 16.3705 0.868 0.647 1.5155
ST with
) 37.978 | 21.201 | 16.5404 0.939 0.809 1.7484
saturation
Our learning
ST method |37.924 | 20.893 | 16.553; 0.944 0.830 1.774;
(two stage)
Our learning
ST method |38.933 24.292| 16.325 0.849 0.600 1.449¢

(one stage)
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Chapter 6 Conclusions

In this thesis, we integrate the weighted mean aggregation and Interval-Valued
Fuzzy Relation (IVFR) for detecting noise of an image. For each 3x3 sliding
window, the upper and lower weighted mean aggregations of central pixel and its
eight neighbor pixels can be calculated, which constitute the interval-valued fuzzy
relations. To counter the over-weighting of a big difference term, we introduce a
saturation threshold transfer function for pixel difference values. Moreover, the
difference between the upper and lower aggregations reflects the degree of intensity
variation between central pixel and its eight neighbor pixels. That is, we will identify
the central pixel as a noise candidate if it is larger than threshold. Along this line of
reasoning, the learning formula of'the weighting parameters are derived to decrease
the noise detection error of an image. However, there could be no solution for perfect
noise map. Therefore, we have exploited the pocket algorithm to our learning
algorithm.

The effectiveness of our noise detection scheme is verified by various impulse
noise images. Finally, our designed model is applied to noise detection of natural
image. Results indicate that the method we proposed is proven to be more superior

than the other noise detection and correction algorithms.
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