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以正規轉換為基礎之日夜人物辨識 

 

學生: 高仲義            指導教授: 張志永博士 

 

國立交通大學電控工程研究所 

 

摘要 

 
人物辨識系統在電腦視覺領域是很熱門的研究與應用目標。在監控系統中，

最常見的方式是使用固定式攝影機，對拍攝場景的人物進行人物辨識。 

 本論文實現一套監控系統，此系統是在日夜環境中，分別使用多角度步態辨

識系統及人臉辨識系統。本文研究對於使用兩台近紅外線攝影機進行人物辨識，

一台近紅外線攝影機設置在遠處，用於擷取不同方向的步態影像，另一台近紅外

線攝影機設置在近處，用於擷取人臉正面影像。 

在人臉辨識系統方面，我們利用近紅外線攝影機擷取人臉影像。人臉擷取的

方法是使用 Haar 疊層分類器，這是一種基於特徵運算的演算法，這種演算法比

基於逐點的更快速，接著人臉影像經過特徵空間轉換與正規空間轉換後，累積五

張上述人臉影像後，藉由多數決的方式，完成人物辨識。 

在步態辨識系統方面，我們利用近紅外線攝影機擷取步態影像。為了擷取出

完整的人體部分，本文使用背景相減法在灰階空間與 HSV 色彩空間建立背景模

型，並提升消除影像中陰影部分，使得擷取前景影像能夠更完整，接著步態影像

經過特徵空間轉換與標準空間轉換後，累積五張上述步態影像後，藉由多數決的

方式，完成人物辨識。 
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ABSTRACT 
 

Human recognition system is a very popular subject for research and application. 

Using a camera to recognize human is widely seen in surveillance system. 

In this thesis, we implement the surveillance system that can recognize 

multi-angle human gait and human face of a person in the bright and dark 

environments. We use two near infrared (NIR) cameras for human recognition. One 

NIR camera, set in remote location, capture the gait images from different angles. And 

the other NIR camera, set in the vicinity, capture the face images from the person 

frontal view.  

In human face recognition system, face region of an image is extracted based on 

Haar cascade classifier, which is a feature-based algorithm and works much faster 

than the pixel-based algorithm. Then, the face image is transformed to a new space by 

eigenspace and canonical space transformation for better efficiency and separability. 

The recognition is finally done in canonical space. Moreover, we gather five 

consecutive face images from video, and use majority vote to recognition the human.  

In human gait recognition system, we build two background models, one in 

grayscale and one in HSV color space to extract the foreground image correctly. Then 

we reduce the shadowing effect. The gait image is then transformed to a new space by 
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eigenspace and canonical space transformation for better efficiency and separability. 

The recognition is done in the canonical space. Finally, we gather five consecutive 

gait images from video, and use majority vote to recognition the person.  
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Chapter 1 Introduction 

1.1 Motivation 

 Human recognition plays an important role in applications such as surveillance 

systems, home nursing care system and security applications. Most of the security 

service firm is provided by professional people, such as security guard. However, the 

service cost is very expensive and the security guard cannot watch camera video in 24 

hours. Therefore, the automatic surveillance system becomes a popular research area 

in recent years. For example, an automatic system will trigger an alarm condition 

when the automated surveillance system detects and recognizes suspicious human.   

 In this thesis, we implement the day-and-night (bright and dark) surveillance 

system that separately using multi-angle human gait and human face recognition of a 

person in an In-door Environment. We use two cameras for human recognition. One 

camera being used to capture the gait image from different angle is set in a remote 

location. And the other camera being used to capture the face image from the person 

frontal view is set in the vicinity. Fig 1.1 is illustrated our system flowchart. Our 

system can be separated into three components. The first component is video frame 

preprocessing which contain foreground subject extraction and human face extraction. 

The second component is the transformation of human gait image or human face 

image in a space smaller and easier for human recognition. The third component is the 

human recognition of an image frame using majority vote. 
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Fig. 1.1.  The flowchart of our human recognition system. 
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1.2 Video Frame Preprocessing for Human Recognition 

The first step of human gait recognition system is foreground subject extraction. 

We have to construct a background model for foreground subject extraction. 

Background subtraction is widely used for detecting moving objects from image 

frames of fixed cameras. The rationale of this approach is to detect the moving objects 

by the difference between the current image frame and a reference image frame, often 

called the “background model.” There are many well-known methods to build 

background models. A review is given in [1] where many different approaches were 

proposed in recent years. In our human gait recognition system, we construct two 

background models for more correct foreground subject extraction; one is based on 

grayscale value, and the other is based on HSV color space. Basically, the background 

image is a representation of the static scene. We have to update the background model 

after the subject enters the scene. After the subject leaves the scene, the background 

model will also be updated accordingly. 

After construct two background models, we can extract foreground subject from 

video frames by subtracting each pixel value of background model from that current 

image frame. Then, the resulting image is converted to a binary image by setting a 

threshold. The binary image contains foreground subject and shadow. Therefore, we 

need to remove the shadow by using a shadow filter. Then, we can set a threshold in 

the histogram of the binary image to extract a rectangle image, which is the most 

resemble shape of a person. When we want to remove shadow pixels, some 

foreground pixel will be lost and this makes the foreground image broken. Therefore, 

we will repair the rectangle image by using opening and closing operations. Finally, 

the rectangle image is resized to the specified resolution for normalization. 

The first step of human face recognition system is human face extraction. The 
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purpose of face detection is to localize and extract the face region from the scene with 

human. We use Haar cascade classifier, proposed by Viola et al. [2], from OpenCV 

package [3] to detect the face regions.  

 

1.3 Video Frame Human Recognition Procedure 

 In gait video or face video, the dimensions of gait image or face image are often 

extremely large, and these images usually contain great deals of redundancies. Hence, 

some space transformations are introduced to reduce redundancy of an image by 

reducing the size of the image. The first step of redundancy reduction often 

transforms an image from spatiotemporal space to another data space. The 

transformation can use fewer dimensions to approximate the original image. There are 

many well-known transformation methods for human recognition, for example, 

wavelet transformation, Fourier transformation, Locally Linear Embedding (LLE), 

Multi Dimension Scaling (MDS), Principal Component Analysis (PCA), eigenspace 

transformation (EST), and so on. Our transformation method combines eigenspace 

transformation and canonical space transformation which are described as follows. 

Eigenspace transformation (EST), which uses Principal Component Analysis 

(PCA) for dimensionality reduction, has been demonstrated to be a potent scheme 

used below: automatic face recognition proposed in [4], [5]; gait analysis proposed in 

[6]; and action recognition proposed in [7]. The subsequent transformation, Canonical 

space transformation (CST) based on Canonical Analysis, is used to reduce data 

dimensionality and to optimize the class separability and improve the classification 

performance. Unfortunately, CST approach needs high computation efforts when the 

image is large. Therefore, we combine EST and CST in order to improve the 

classification performance while reducing the dimension, and hence each image can 
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be projected from a high-dimensional spatiotemporal space to a single point in a 

low-dimensional canonical space.  

Due to the above classification we used nearest neighbor concept to do the 

human recognition in the video. There could be misclassifications in some frames; we 

have adopted the majority vote to conduct the human recognition, to overcome this 

problem. 

 

1.4 Thesis Outline 

The thesis is organized as follows. In Chapter 2, we introduce video frame 

preprocessing for human gait recognition and human face recognition. In Chapter 3, 

we describe our human recognition system that includes “eigenspace transform,” 

“canonical transform,” “human recognition,” and “majority vote.” In Chapter 4, the 

experiment results of our human recognition systems are shown. At last, we conclude 

this thesis with a discussion in Chapter 5.
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Chapter 2 Video Frame Preprocessing for Human 

Recognition 

In this chapter, we describe background model construction and foreground 

extraction in grayscale and the HSV color space. We also briefly introduce the basic 

concepts of HSV color space which transforms the coordinate system in RGB color 

space to HSV color space. Finally, we introduce face detection method whose the 

principle is based on object detection technology proposed by Viola et al. [2]. 

2.1 The HSV color space 

 The HSV color space stands for hue, saturation, and value, also called HSB (B 

for brightness), which corresponds closely to the human perception of color. Fig. 2.1 

illustrates the HSV color space whose shape is like a cone. From this figure, the hue is 

represented by the angle of each color in the cone relative to the 0° line, which is 

traditionally corresponded to be red. The saturation is representing as the distance 

from the center of the circle. Highly saturation color is on the outer edge of the cone, 

whereas gray tones (which have no saturation) are at the very center. The value is 

determined by the colors vertical position in the cone. At the point end of the cone, 

there is no brightness, so all colors are blacks. At the fat end of the cone are the 

brightness colors. 
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Fig. 2.1.  The HSV color space. 
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0 ,                                     if 

60 0 ,        if  and 

60 360 ,    if  and 

60 120 ,    if 

60 240 ,    if 

max min

G B max R G B
max min

G B max R G B
H max min

B R max G
max min

R G max B
max min


 ° =


 −

°× + ° = ≥
−

−
°× + ° = <

= −

−
°× + ° =

−

−
°× + ° =

−

 

0,                                      if  0
 

1 ,      otherwise

 

max
S max min min

max max
V max

















=
= −

= −
=

         (2.1)          



 

8 

where ( ) ( )max , ,  and min , ,max R G B min R G B= = . 

 

The hue parameter is the value which represents color information without 

brightness. Therefore, the hue is not affected by change of the illumination brightness 

and direction. Although the hue is the most useful attribute, there are three problems 

in using hue attribute for color segmentation: 1) the hue is unstable when the 

saturation is extremely small. 2) The hue is meaningless when the intensity value is 

extremely small. 3) The saturation is meaningless when the intensity value is 

extremely small [8]. Accordingly, Ohba et al. [9] use three criteria (intensity value, 

saturation, and hue) to obtain the hue value reliably. 

 Intensity Threshold Value: 

If tV V< , then 0H = , where V, tV , and H are an intensity value, the 

intensity threshold value, and a hue value, respectively. Using this equation, the 

measured color close to dark is discarded. Then, the hue value is set to a 

predetermined value, i.e., 0. 

 Saturation Threshold Value: 

If tS S< , then 0H = , where S, tS , and H are a saturation value, the 

saturation threshold value, and a hue value, respectively. Using this equation, 

measured color close to gray is discarded in the image. 

 Hue Threshold Value: 

If tH P< ∆  or 2 tH Pπ− < ∆ , then 0H = , where H and tP∆  are a hue 

value, and the phase threshold value, respectively. The range of hue value is from 

0 to 2π, and it has discontinuity at 0 and 2π. We use the phase threshold value 

tP∆  to avoid the discontinuity effect. 
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2.2 Background Model Construction and Foreground Extraction 

 The first step of human gait recognition system is foreground extraction. We 

have to construct the background model for foreground extraction. There are many 

well-known methods to build background models. 4W  is such a typical example 

with some modifications [10]. It records the maximum grayscale value and the 

minimum grayscale value and the maximum inter-frame absolute difference of each 

pixel in the background video frames. Then each foreground image frame subtracts 

the maximum and minimum intensity value of each pixel. If the pixel’s absolute value 

of the subtraction operation is larger than the maximum inter-frame difference, the 

pixel is classified as a foreground pixel. 4W  admits some rules make the 

background model be adaptive to varying environment.  

 

2.2.1 Background Model Construction 

 If we only construct the luminance background model for foreground extraction, 

it cannot detect reliably those foreground pixel whose luminance component close to 

background pixel. In order to solve this problem, we construct another background 

model in HSV color space. The HSV color space corresponds closely to the human 

perception of color. We can have the luminance information and the chromatic 

information simultaneously. The hue is unreliable in some condition, so we use the 

three criteria (intensity value, saturation, and hue) described in sections 2.1 to obtain 

the hue value reliably. Fig. 2.2 shows the framework of background model 

construction. 
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Background 
video frames

Background model construction 
in the grayscale space

Background model construction 
in the HSV color space

The grayscale space 
background model

The HSV color space 
background model

 

 

Fig. 2.2.  The framework of background model construction. 

 

 

A. Grayscale Value Background Model 

The grayscale value background scene is modeled by representing each pixel by 

three values: the maximum grayscale value ( ),  n x y  and the minimum grayscale 

value ( ),m x y  and the maximum inter-frame difference ( ),  d x y  of each pixel in 

the background video frames. Because these three values are statistical, we need a 

background video without any moving foreground objects for background model 

training. Let I be a background image frame sequence and contains N consecutive 

image frames. ( ),  iI x y  be the grayscale value of a pixel location ( ),  x y  in the i-th 

background image frame of I. The grayscale value background model for a pixel 

location ( ),  x y , ( ) ( ) ( ),  ,  ,  ,  ,  n x y m x y d x y   , is obtained by  
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( )
( )
( )
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( ){ }
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,  min ,  ,       1, 2,  ,
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ii
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i ii
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 
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   = =   
     −  

     (2.2) 

 

B. HSV Color Space Background Model 

Along similar line of reasoning of above, we construct another background model 

in each dimension of HSV (hue, saturation and value) space [11]. Then, we record the 

maximum value ( ) ( ) ( )( )S,  ,  ,  ,  ,  H Vn x y n x y n x y    and the minimum value 

( ) ( ) ( )( )S,  ,  ,  ,  ,  H Vm x y m x y m x y    and the inter-frame ratio in the brightness 

information and the inter-frame different in the chromatic information. Similarly, we 

use the same background video without any moving foreground objects for 

background model training. Let I be a background image frame sequence and contains 

N consecutive background image frames. ( ),  H
iI x y  is the hue value of a pixel 

location ( ),  x y  in the i-th background image frame of I. ( ),  S
iI x y  is the saturation 

value of a pixel location ( ),  x y  in the i-th background image frame of I. ( ),  V
iI x y  

is the brightness value of a pixel location ( ),  x y  in the i-th background image frame 

of I. The HSV color space background model of a pixel is obtained by 
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( )
( )

( ){ }
( ){ }

( ) ( ){ }1

max ,  ,  

,  min ,  ,      1, 2,  ,
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HH ii

H H
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H H
i ii

I x yn x y

m x y I x y i N

d x y I x y I x y−

 
   
   = =   
      −  

       (2.3) 
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m x y I x y i N

d x y I x y I x y−

 
   
   = =   
      −  

       (2.4) 
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d x y I x y

I

−

−
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 
  ≥ 
 

     
= 

 
  
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,  ,   otherwise
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                                                                                              1, 2,  ,
                           

V
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i ii

x y

I x y I x y

i N

−









       

= 

                                                                  
 (2.5) 

 

2.2.2 Background Update 

 The background model cannot be expected to stay the same for a long time. If 

the facilities in room are moved, they will be detected as foreground pixels of human 

and the human recognition will be misclassified. Therefore, we have to adopt a 

scheme that can update the background models in order to avoid above situation. The 

background models will be updated if the real-time video does not vary for a long 

time and there is nobody in the scene. By Eq. (2.6), we can calculate how many times 

the binary value remain unchanged. 

 



 

13 

( )
( ) ( ) ( )

( )

1,  1,   if  ,  ,  

,  
,  ,        otherwise

t t
foreground foregroundupdate x y I x y I x y

update x y
update x y

− + =


= 



   (2.6) 

 

where ( ),  t
foregroundI x y  is the grayscale value of a pixel location ( ),  x y  in the binary 

image. The ( ),  update x y  value is a record of how many times ( ),  t
foregroundI x y  

remains unchanged. When ( ),  update x y  exceeds a threshold, the pixel ( ),  x y  will 

be included in the background model. 

 

2.2.3 Foreground Extraction 

 The framework of foreground extraction is composed of four steps. The first step 

is foreground detection in the grayscale value and the HSV color space background 

models. The second step is the shadow suppression in the grayscale value and the 

HSV color space background models. The third step is the foreground object 

segmentation. And the final step is the foreground image compensation to recover the 

foreground pixels those are wrongly classified to the background. Fig. 2.3 shows the 

framework of foreground extraction. 
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Video frames

 Foreground detection by grayscale 
value background model

Foreground detection by HSV color 
space background model

Shadow suppression by grayscale value 
background model

Foreground object segmentation

Foreground image compensation

Foreground 
image

Shadow suppression by HSV color 
space background model

 

 

Fig. 2.3.  The framework of foreground extraction. 

 

 

A. Foreground Detection  

The foreground objects can be detected from the background in each frame of the 

video sequence. Each pixel of the video frame is classified to either a foreground or a 

background pixel using the background model. First, we use the maximum grayscale 
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value ( ),  n x y  and the minimum grayscale value ( ),m x y  and the maximum 

inter-frame difference ( ),  d x y  of the grayscale value background model to detect 

the foreground pixel by 

 

( )

( ) ( )
( ) ( )

0 background,    if  ,  y ,  

                          or ,  y ,  ,  

1 foreground,    otherwise.
                                                      

 

gray gray
i gray

gray gray
i gray

fg

I x n x y k d

I x m x y k dI x y

µ

µ

 − <

 − <= 




  (2.7) 

 

where ( ),  iI x y  is the grayscale value of a pixel location ( ),  x y  in the i-th video 

frame, ( ),  fgI x y  is the gray level of a pixel in the foreground binary image, dµ  is 

the median of all ( ),  grayd x y , and grayk  is a threshold. Threshold grayk  is 

determined by experiments according to different environments.  

 

On the other hand, we use the maximum value ( ),  Vn x y  and the minimum value 

( ),Vm x y  and the maximum inter-frame ratio ( ),  Vd x y  of the HSV color space 

background model to detect the foreground pixel by 

 

( )

( ) ( ) ( )
( ) ( ) ( ) 

0 background,    if  ,  y / ,  ,  

                        or ,  y / ,  ,  ,  

1 foreground,     otherwise.

 

V V V
i V

V V V
HSV i V
fg

I x n x y k d x y

I x m x y k d x yI x y

 <


<= 




  (2.8) 
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where ( ),  yV
iI x  is the intensity value of a pixel location ( ),  x y  in the i-th video 

frame, ( ),  HSV
foregroundI x y  is the gray level of a pixel in binary image, and threshold Vk  

is determined by light as of the scene. Threshold Vk  will be reduced for in-sufficient 

light condition and increased otherwise. 

 

B. Shadow Suppression 

The shadows of the foreground object are easily detected to foreground pixels in 

normal conditions. The situation causes foreground object merging and foreground 

object shape distortion in binary image. Therefore, we need to remove the shadow by 

using the shadow filter. We assume that the observed intensity of shadow pixels is 

directly proportional to incident light. Consequently, shadowed pixels are scaled 

versions (darker) of corresponding pixels in the background model [12].  

First, we construct the shadow filter in the grayscale value. Let ( ),  B x y  be the 

background image formed by temporal median filtering, and ( ),  I x y  be an image of 

the video sequence. For each pixel ( ),  x y  belonging to the foreground, consider a 

3 3×  template xyT  such that ( ) ( ),  ,  xyT m n I x m y n= + + , where  -1 m 1, -1 n 1≤ ≤ ≤ ≤  

(i.e. xyT  corresponds to a neighborhood of pixel ( ),  x y ). Then, the NCC between 

templates xyT  and background image B at pixel ( ),  x y  is given by 

 

( ) ( )
( )

,  
,  

,  
xyB T

ER x y
NCC x y

E x y E
=                    (2.9) 
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where 

( ) ( ) ( )

( ) ( )

( )

1 1

1 1

1 1
2

1 1

1 1
2

1 1
  

,  ,  ,  ,

,  ,  ,

       ,  .
xy

xy
m n

B
m n

T xy
m n

ER x y B x m y n T m n

E x y B x m y n

E T m n

=− =−

=− =−

=− =−

= + +

= + +

=

∑ ∑

∑ ∑

∑ ∑

         (2.10) 

 

 

For a pixel ( ),  x y  in a shadow region, the NCC in a neighboring region xyT  should 

be large (close to one), and the energy 
xyTE  of this region should be lower than lower 

than the energy BE  of the corresponding region in the background image. Therefore, 

we get 

 

( )
( ) ( ) shadow,        if  ,   and ,  

,  
foreground,   otherwise

ncc B

gray

NCC x y L E E x y

S x y

≥ <
= 



xyT

   (2.11) 

 

where ( ),  grayS x y  is the shadow mask to class the pixel in grayscale domain , and 

nccL  is a fixed threshold. If nccL  is low, several foreground pixels corresponding to 

moving objects may be misclassified as shadow pixels. Otherwise, selecting a larger 

value of nccL , then the shadow pixels may not be detected.  

 

 On the other hand, we know that the shadow pixels have similar chromaticity, 
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but lower brightness than the background model. Therefore, we construct another 

shadow filter in the HSV color space is intuitively designed as follows 

 

 ( )

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) 

  

shadow,          if  ,  / ,  1

                     and ,  ,  ,  
,  

                     and ,  ,  ,  

foreground,  otherwise

 
 

V V
i

H H H
i HHSV

S S S
i S

I x y m x y

I x y n x y k d x y
S x y

I x y n x y k d x y

 <


− <
= 

− <



   (2.12) 

 

where ( ) ( ) ( ),  ,  ,  ,  and ,  H S V
i i iI x y I x y I x y  are respectively the HSV channel of a 

pixel location ( ),  x y  in the i-th video frame, and ( ),  HSVS x y  is the shadow mask to 

class the pixel in HSV domain. Values Sk  and Hk  are selected threshold values 

used to measure the similarities of the hue and the saturation between the background 

image and the current observed image. 

 

 In order to reduce the impact caused by shadow and noise on the foreground 

object, we calculate the union of ( ),  grayS x y  and ( ),  HSVS x y . The reason why we 

choose the union operator is that the union can increase the foreground with less noise. 

Finally, the binary image is obtained by 

 

( ) ( ) ( ),  ,  ,  gray HSV
fgI x y S x y S x y= ∨            (2.13) 

 

C. Foreground Object Segmentation 

According to the binary image ( ),  fgI x y  segmented by above, we extract the 
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region of foreground object to minimize the image size. Foreground region extraction 

can be accomplished by simply introducing a threshold on the histograms in the X and 

Y directions. Fig. 2.4 shows an example of foreground region extraction. From this 

figure, we use the binary image and project it into the X and Y directions. The 

interested foreground section has higher counts in the histogram. We obtain the 

boundary coordinates 1 2,  x x  of X axis and 1 2,  y y  of Y axis from the projection 

histogram. We can use these boundary coordinates as four corners of a rectangle to 

extract foreground region and the size of this rectangle is adjusted to 64 48×  for 

normalization. Fig. 2.5 is the extracted foreground region. 

 

 

 
 

Fig. 2.4.  Histogram of binary foreground image projection in X and Y direction. 
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Fig. 2.5.  The binary foreground image of extracted foreground region. 

 

 

D. Foreground Image Compensation 

Detecting all foreground pixels and removing all shadows simultaneously are 

difficult. When we want to remove shadow pixels, some foreground pixels will be 

lost and this makes the foreground image be broken. Therefore, we will repair the 

foreground image by opening and closing operations [13]. Fig. 2.6 (a) shows all 

foreground pixels after shadow removal, and Fig. 2.6 (b) shows the result after 

applying the opening and closing operations. 

 

 

      
(a)          (b)                            

            

Fig. 2.6.  (a) Foreground image. (b) Foreground image after opening and closing of 

(a). 
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2.3 Face Extraction 

 The first step of human face recognition system is face extraction. We use Haar 

cascade classifier, proposed by Viola et al. [2], from OpenCV package [3] to detect 

the face regions. The classifier is based on the value of simple features. The 

feature-based system operates much faster than the pixel-based system. The 

feature-based system utilizes three kinds of features. The two-rectangle feature, 

three-rectangle feature and four-rectangle feature to classify facial region and not 

facial region (see Fig. 2.7). The sum of the pixels which lie within the white 

rectangles is subtracted from the one within the gray rectangles, and then the value is 

considered as a feature. 

 

 

 
 

Fig. 2.7.  Rectangle features shown relative to the enclosing detection window. 

 

 

 The cost of calculation of rectangle features can be reduced by using the integral 

image. The integral image intensity at location ( , )x y  is the sum of the pixels above 

and to the left of ( , )x y , the mathematical description as follows: 
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( ) ( )
, 

,  ,  
x x y y

ii x y i x y
′ ′≤ ≤

′ ′= ∑                    (2.14) 

 

where ( ),  ii x y  is the integral image and ( ),  i x y′ ′  is the original image (see Fig. 

2.8) 

 

 

 
 

Fig. 2.8.  Sum of all pixels marked is the integral image intensity at ( , )x y . 

 

 

The integral image can be computed in just one pass over the original image by using 

the following pair of recurrences: 

 

( ) ( ) ( ),  ,  1 ,  s x y s x y i x y= − +                  (2.15) 

( ) ( ) ( ),  1,  ,  ii x y ii x y s x y= − +                  (2.16) 

 

where ) ,( yxs  is the cumulative row sum, 0)1 ,( =−xs  and 0) ,1( =− yii . Any 
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rectangular sum can be computed in four array references (see Fig. 2.9). The sum of 

pixels in rectangle A is the integral image intensity at location 1. The sum of A+B is at 

location 2, A+C is at location 3 and A+B+C+D is at location 4. Therefore, the sum of 

pixels in rectangle D can be computed as 4+1－(2+3). 

 

 

 

 

Fig. 2.9.  The sum of pixels in rectangle D can be computed as 4+1－(2+3). 

 

 

 A variant of AdaBoost is used to select the features and train the classifier. The 

objective of the AdaBoost algorithm is to form a stronger classifier by combining a 

collection of weak classification functions. If the correct rate of a weak classifier is 

above 50%, it is a good weak classification function. Finally, the Haar cascade 

classifier is built by stringing strong classifiers for detecting face region more 

accurately. 
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Chapter 3 Video Frame Human Recognition 

Procedure 

3.1 Human Representation 

In video and image processing, the dimensions of image data are often very large. 

Each image data is suggested to transform from high-dimensional space into 

low-dimensional space to obtain a small set of composite feature for human 

recognition. There are many well-known transformation methods for human 

recognition, for example, wavelet transformation, Fourier transformation, Locally 

Linear Embedding (LLE), Multi Dimension Scaling (MDS), Principal Component 

Analysis (PCA), eigenspace transformation (EST), and so on. However, PCA based 

on the global covariance matrix of the full set of image data is designed for efficient 

data representation, not sensitive to the class structure existent in the image data. In 

order to enhance the discriminatory power of several image features, Etemad and 

Chellappa [14] use linear discriminant analysis (LDA), also called Canonical Analysis 

[6], which can be used to optimize the class separability of different image classes and 

improve the classification performance. To this end, the features are obtained by 

maximizing between-class and minimizing within-class variations. Unfortunately, this 

approach has high computation cost when applying to large images. It was only tested 

with small images. Here we call this approach canonical space transformation (CST). 

Combining EST based on PCA with CST based on CA, our approach reduces the data 

dimensionality and optimizes the class separability of different gait sequences.  

Images in high-dimensional space are first converted into low-dimensional 

eigenspace using EST. The obtained vector thus is further transformed to a smaller 

canonical space using CST. Human recognition is accomplished in the canonical 
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space. Fig. 3.1 shows the processing steps that generate feature vectors by eigenspace 

transformation and canonical space transformation each image is converted to an 

one-dimension canonical vector. Apparently, the reduced dimensionality results in 

concomitant decrease in computation cost. 

 

 

Canonical space transformation (CST)

Eigenspace transformation (EST)

Image 
sequence

Image 
vectors (x(1), ..., x(n)) (x(1), ..., x(n)) (x(1), ..., x(n)) (x(1), ..., x(n)) (x(1), ..., x(n))

Eigen feature 
vectors

Canonical 
feature vectors

(y(1), ..., y(k)) (y(1), ..., y(k)) (y(1), ..., y(k)) (y(1), ..., y(k)) (y(1), ..., y(k))

(z(1), ..., z(c-1)) (z(1), ..., z(c-1)) (z(1), ..., z(c-1)) (z(1), ..., z(c-1)) (z(1), ..., z(c-1))

…
 

 

 

Fig. 3.1.  The structure of human recognition by gait or face image sequence. 

 

 

Assume that there are c classes of person to be learned. Each class is represented 

by a specific viewing angle gait image sequences or face image sequences of a person, 

which were captured and used as the training image data. Training image , i j′x  is the 
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j-th image in the i-th class person, and iN  is the number of images of the i-th class 

image sequence acquired. The total number of training image data in training set is 

1 2T cN N N N= + + + . The training set can be represented as 

 

11, 1 1, 2, 1 , , , , , ,
cN c N ′ ′ ′ ′ x x x x                     (3.1) 

 

where each , i j′x  is an image data with n pixels. 

 

First, the intensity of each image data is normalized by 

 

, 
, 

, 

i j
i j

i j

′
=

′

x
x

x
                 (3.2) 

 

Then, the mean pixel value for the training set is obtained by 

 

, 
1 1

1 iNc

i j
i jTN = =

= ∑∑xm x                        (3.3) 

 

By subtracting the mean xm  from each image data, the training set can be rewritten 

as a Tn N×  matrix X, with each image data , i j′x  forms a column of X, then 

 

11, 1 1, c, , , , ,
cN N = − − − x x xX x m x m x m                 (3.4) 
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3.1.1 Eigenspace Transformation (EST) 

EST is used to reduce the dimensionality of an input space by mapping the image 

data from high-dimensional space into low-dimensional space while maintaining the 

minimum mean-square error to avoid information loss. EST uses the eigenvalues and 

eigenvectors generated by the image data covariance matrix to rotate the original 

image data coordinates along the directions of maximum variance sequentially. We 

can compute image data covariance matrix R, then 

 

T=R XX                            (3.5) 

 

where R is a square, symmetric n n×  matrix. 

 

If the rank of the matrix R is K, then the K nonzero eigenvalues of R,  

1 2λ ,  λ ,  ,  λK , and associated eigenvectors 1 2,  ,  ,  Ke e e  satisfy the fundamental 

relationship 

 

λ ,         1,  2,  ,  i i i Kι = =e Re                   (3.6) 

 

In order to solve Eq. (3.6), we need to compute the eigenvalues and eigenvectors 

of the n n×  matrix R. But the dimensionality of R is the image data size, it is often 

extremely large. Based on singular value decomposition, we can obtain the 

eigenvalues and eigenvectors by computing another image data covariance matrix R   

instead, that is 

T=R X X                            (3.7) 
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where R  is a square, symmetric T TN N×  matrix which is much smaller than n n×   

of R. 

If the rank of the matrix R  is K, then the K nonzero eigenvalues of R ,  

1 2λ ,  λ ,  ,  λK
   , and corresponding eigenvectors 1 2,  ,  ,  Ke e e    which are related to 

those in R by 

 

1
2

λ λ
,        1,  2,  ,  

λ

i i

i i i

i K
−

 = =
 =e Xe






                (3.8) 

 

These K eigenvectors are used as an orthogonal basis to span a new vector space. 

Each image data can be projected to a point in this K-dimensional space. Based on the 

theory of PCA, each image data can be approximated by taking only the k largest 

eigenvalues 1 2 ,  ,k k Kλ λ λ≥ ≥ ≥ ≤  and their corresponding eigenvectors 

1 2,  ,  ,  ke e e . This partial set of k eigenvectors spans an eigenspace in which , i jy   

are the data points that are the projections of the original image data , i jx  by the 

equation 

 

[ ]T, 1 2 , c,  ,  ,  ,      1,  2,  ,   and  1,  2,  ,  i j k i j i c j N= = =y e e e x       (3.9) 

 

This matrix [ ]T1 2,  ,  ,  ke e e  is called the eigenspace transformation matrix. After 

this transformation, each original image data , i jx  can be approximated by the linear 

combination of these k eigenvectors and , i jy  is a one-dimensional vector with k 

elements which are their corresponding coefficients. 
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3.1.2 Canonical Space Transformation (CST) 

According to the theory of canonical analysis [15], we suppose that 

{ }1 2,  ,  ,  cΦ Φ Φ  represents the classes of transformed vectors by eigenspace 

transformation and , i jy  is the j-th vector in class i. The mean vector of entire set is 

obtained by 

 

, 
1 1

1 iNc

i j
i jTN = =

= ∑∑ym y                      (3.10) 

 

and the mean vector of the i-th class can be represented by 

 

, 

, 
1

i j i

i j
iN ∈Φ

= ∑
y

m yi                       (3.11) 

 

Let bS  denote the between-class scatter matrix and wS  denote the within-class 

scatter matrix, then 

 

( )( )

( )( )
, 

1

, , 
1

1

1

i j i

c

b i i y i y
iT

c

w i j i i j i
iT

N
N

N

Τ

=

Τ

= ∈Φ

= − −

= − −

∑

∑ ∑
y

S m m m m

S y m y m

 

 

where bS  represents the mean of between-class vectors distance and wS  represents 

the mean of within-class distance vectors distance. The objective is to maximize bS  
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and minimize wS  simultaneously, which is known as the generalized Fisher linear 

discriminant function and obtained by 

 

( ) b

w

Τ

Τ=
W S WJ W
W S W

                      (3.12) 

 

The ratio of variances in the new space is maximized by the selection of feature 

transformation W if 

 

0∂
=

∂
J
W

                          (3.13) 

 

 We suppose the *W  is the optimal solution where the column vector *
iw  is a 

generalized eigenvector corresponding to the i-th largest eigenvalues 
iλ . Based on 

the theory of canonical analysis [15], we can solve Eq. (3.13) as follows 

 

* *
b i i w i= λS w S w                        (3.14) 

 

After Eq. (3.14) is solved, we will obtain 1c −  nonzero eigenvalues and 

associated eigenvectors 1 2 1, , , c−v v v  that create another orthogonal basis and span 

a ( )1c − -dimensional canonical space. By using these bases, each data point in 

eigenspace can be transformed to another data point in canonical space by 

 

[ ], 1 2 1 ,, , ,i j c i j
Τ

−=z v v v y                   (3.15) 
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where , i jz  represents the new data point. This orthogonal basis [ ]1 2 1, , , c
Τ

−v v v  is 

called the canonical space transformation matrix.  

By merging Eq. (3.9) and Eq. (3.15), each image data can be transformed into a 

new data point in the ( )1c − -dimensional space by 

 

, , i j i j=z Hx                          (3.16) 

, 
1

1 iN

i i j
jiN =
∑C = z                        (3.17) 

 

where [ ] [ ]1 2 1 1 2,  ,  ,  ,  ,  ,  c k
Τ Τ

−=H v v v e e e   and iC  is the centroid of class i. 

 

3.2 Human Recognition 

3.2.1 Person Recognition by Gait Image Classification in a Long 

Distance Setting 

 When a video stream is inputted for human gait recognition, we extract image 

frames from the video first. Then we use background model of Section 2.2 to extract 

foreground subject from the scene. The foreground object is a binary image, also 

called as the gait template which is converted to low-dimensional eigenspace using 

EST in high-dimensional image space. The obtained vector thus is further projected to 

a smaller canonical space using CST. As described in Section 3.1, each gait template 

is transformed to a (c－1)-dimensional vector by EST and CST methods. To 

recognize a gait template from the video frame sequence in the canonical space, the 

minimal Euclidean distance to each centroid is used. The recognized class is assigned 

to the class which assumes the minimal distance between a test gait template “g,” and 
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the gait class center “ iG ,” as given by 

 

arg min ,          1,  2,  ,  i gi
j g i c= − =G                (3.18) 

 

where gc  is number of gait class and j is the result of person recognition. 

  

3.2.2 Person Recognition by Face Image Classification in a Short 

Distance Setting 

 When a video stream is inputted for human face recognition, we extract image 

frames from the video first. Then we use face detection of Section 2.3 to extract 

human face from the scene. The human face is a grayscale image, also called as the 

face template which is converted to low-dimensional eigenspace using EST in 

high-dimensional image space. The obtained vector thus is further projected to a 

smaller canonical space using CST. As described in Section 3.1, each face template is 

transformed to a (c－1)-dimensional vector by EST and CST methods. To recognize a 

face template from the video frame sequence in the canonical space, the minimal 

Euclidean distance to each centroid is used. The recognition class is assigned to the 

class which assumes the minimal distance between a test face template “f,” and the 

face class center “ iF ,” as given by 

 

arg min ,          1,  2,  ,  i fi
j f i c= − =F                (3.19) 

 

where fc  is number of face class and j is the result of person recognition. 
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3.2.3 Majority Vote 

Due to the above classification which use each frame to do the human 

recognition in the video, there may have misclassifications in some frames. To 

overcome this problem, we have adopted the majority vote to conduct the human 

recognition. Fig. 3.2 shows the structure of the human classification.  

 

 

Eigenspace and Canonical space transformation

Image 
sequence

Image 
vectors (x(1), ..., x(n)) (x(1), ..., x(n)) (x(1), ..., x(n)) (x(1), ..., x(n)) (x(1), ..., x(n))

Canonical 
feature vectors (z(1), ..., z(c-1)) (z(1), ..., z(c-1)) (z(1), ..., z(c-1)) (z(1), ..., z(c-1)) (z(1), ..., z(c-1))

…… 

(x(1), ..., x(n))

(z(1), ..., z(c-1))

Time

Calculate the nearest cluster center

Majority vote

Human
 

 

Fig. 3.2.  The structure of human classification. 
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Chapter 4 Experimental Results 

In our experiment, we tested our system on videos taken by near infrared (NIR) 

camera (KMT-1651N with 12 lighting led cells) in our laboratory at the 5th 

Engineering Building in NCTU campus. We use two cameras for human recognition 

from facial and walking videos. The first is far NIR camera with a lens focus 4.3mm 

is set up at the location far from the object about 6 meters, and the second is near NIR 

camera with a lens focus 6.0mm is setup at the location far from the object about 2.5 

meters. These cameras have a frame rate of 30 frames per second and image 

resolution is 320 240×  pixels. The background of the experiment environment is in 

real life and the illumination of the environment is 398 Lux in the bright environment 

and 0.26 Lux in the dark environment, respectively. Fig. 4.1(a) shows the scene of 

human recognition for gait videos in the bright environment. Fig. 4.1(b) shows the 

scene of human recognition for gait videos in the dark environment. Fig. 4.1(c) shows 

the scene of human recognition for face videos in the bright environment. Fig. 4.1(d) 

shows the scene of human recognition for face videos in the dark environment.  

Our LAB gait multi-angle database consists of 32 image sequences consisting of 

eight persons walking in the bright and dark environments. Each person was done 

four times producing four sequences at three different walking angles (0°, 45°, and 315

°) with respect to the person frontal view in a clockwise sense. Thus, it contains a total 

of 4 8 3 96× × =  walking video sequences for human recognition. Fig. 4.2 shows the 

examples video sequence form our LAB gait multi-angle databases. On the other hand, 

our LAB face database consists of 36 video sequences consisting of nine persons in 

the bright and dark environments. Moreover, each person has four face video 

sequences in the bright and dark environments. Fig. 4.3 shows the examples video 

sequence form our LAB face databases. 
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Furthermore, we also tested our system on CASIA database [16] which contains 

multi-view gait sequences. The CASIA database [17] consists of 288 image sequences 

depicting 48 persons. Each person is depicted in six sequences at 11 different viewing 

angles (0°, 18°, 36°, 54°, 72°, 90°, 108°, 126°, 144°, 162°, and 180°) with respect to the 

person frontal view in a counterclockwise manner. Thus, it contains a total of 

6 48 11 3168× × =  gait sequences. Binary body image masks are provided in the 

CASIA database. Eleven video frames depicting person in the CASIA database from 

each viewing angle are illustrated in Fig. 4.4.  

 

         

(a)                                  (b)                
 

         

(c)                                  (d)                
 

Fig. 4.1.  (a) The scene of human gait recognition in the bright environment. (b) The 

scene of human gait recognition in the dark environment. (c) The scene of human 

face recognition in the bright environment. (d) The scene of human face recognition 

in the dark environment. 
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(a) 
 

    

    

    

(b) 

 

Fig. 4.2.  Example video sequences used in our experiments. (a) and (b) are typical 

video sequences for gaits of LAB in the bright and dark environments. From top to 

bottom: walking 0°, walking 45°, and walking 315°, respectively. 
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(a) 
 

    

    

    

(b) 

 

Fig. 4.3.  Example video sequences used in our experiments. (a) and (b) are typical 

video sequences for face of LAB in the bright and dark environments. From top to 

bottom: walking 0°, walking 45°, and walking 315°, respectively. 
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Fig. 4.4.  Eleven video frames depicting person of the CASIA multi-view gait 

recognition database from different viewing angles.  

 

 

4.1 Background Model Construction and Foreground Extraction  

 The background model is used for extracting the foreground object or subject. In 

our system, we first record a video of background (like Fig. 4.1(a) and Fig. 4.1(b)) 

about two seconds in the bright and dark environments to build the background 

models. After building the grayscale value and the HSV color space background 

models, we will detect the foreground pixels by using Eq. (2.7) and Eq. (2.8) in 

Section 2.2.3. Then, we continue to process the foreground image by using the 

shadow filter, the opening and the closing operations.  

In order to get the optimal result of foreground detection, we have to adjust some 

threshold in our system. We set 3.0grayk =  and 2.0grayk =  for the grayscale value 

background models and 1.6Vk =  and 1.1Vk =  for the HSV color background 
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models in the bright and dark environments, respectively. The same threshold is used 

in the bright and dark environments for shadow filter. We set 0.965nccL =  in the 

grayscale value space and 1.5Hk =  and 1.5Sk =  in the HSV color space to detect 

shadow pixels. Then, we simply introduce a threshold on the histograms in X and Y 

directions to determine the minimal size of foreground images, and then resize the 

images to 64×48 for normalization.  

Fig. 4.5(a) shows an image frame in the bright environment. Fig. 4.5(b) shows 

the binary image after performing foreground detection in the bright environment. 

Figs. 4.5(c) and 4.5(d) show the projection of Fig. 4.5(b) onto the X and Y directions, 

respectively. We can find the boundary coordinates of X and Y direction by observing 

the projection histogram. We used these boundary coordinates to define a rectangle to 

segment foreground region from Fig. 4.5(b). Fig 4.5(e) shows the result of foreground 

region segmentation in the bright environment. Fig. 4.6(a) shows an image frame in 

the dark environment. Fig. 4.6(b) shows the binary image after performing foreground 

detection in the dark environment. Figs. 4.6(c) and 4.6(d) show the projection of Fig. 

4.6(b) onto the X and Y directions, respectively. We can find the boundary coordinates 

of X and Y direction by observing the projection histogram. We used these boundary 

coordinates to define a rectangle to segment foreground region from Fig. 4.6(b). Fig 

4.6(e) shows the result of foreground region segmentation in the dark environment. 
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(a)                                  (b)                

 

   
(c)                                  (d)                

 

 

(e) 
 

Fig. 4.5.  Results of foreground detection. (a) an image frame in the bright 

environment, (b) binary image after performing foreground detection in the bright 

environment, (c) projection of (b) onto X direction, (d) projection of (b) onto Y 

direction, (e) foreground region segmentation in the bright environment. 
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(a)                                  (b)                

 

   
(c)                                  (d)                

 

 

(e) 
 

Fig. 4.6.  Results of foreground detection. (a) an image frame in the dark 

environment, (b) binary image after performing foreground detection in the dark 

environment, (c) projection of (b) onto X direction, (d) projection of (b) onto Y 

direction, (e) foreground region segmentation in the dark environment.           
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4.2 Experiments on our LAB Multi-Angle Gait Database  

 In our LAB multi-angle gait database, we use two methods to test our system. 

First method is single-angle human recognition by walking videos taken in our LAB 

database. Second method is multi-angle human recognition by walking videos taken 

in our LAB database. 

4.2.1 Single-Angle Human Gait Recognition 

In this experiment, activity videos depicting three walk sequences at one specific 

walking angle performed by eight persons in our LAB database were used for training. 

The recognition rate is measured based on leave-one-out strategy. Table I shows the 

human recognition rates at each walking angle without majority vote in the bright 

environment. Table II shows the human recognition rates at each walking angle with 

majority vote of three in the bright environment. Table III shows the human 

recognition rates at each walking angle with majority vote of five in the bright 

environment. Table IV shows the human recognition rates at each walking angle 

without majority vote in the dark environment. Table V shows the human recognition 

rates at each walking angle with majority vote of three in the dark environment. Table 

VI shows the human recognition rates at each walking angle with majority vote of 

five in the dark environment. In these tables, 0W °  represents the case of classification 

of person in 0° walking angle, 45W °  represents the case of classification of person in 

45° walking angle, and 315W °  represents the case of classification of person in 315° 

walking angle. 
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TABLE I 

THE HUMAN GAIT RECOGNITION RATES AT SPECIFIC WALKING ANGLE IN THE 

BRIGHT ENVIRONMENT, WITHOUT MAJORITY VOTE  

 0W °  45W °  315W °  

Accuracy 
94.51% 

(2581/2731) 
91.60% 

(2867/3130) 
89.92% 

(2846/3165) 

False alarm rate 
0.78% 

(150/19117) 
1.20% 

(263/21910) 
1.44% 

(319/22155) 

Average Accuracy 91.89% (8294/9026) 
Average False alarm rate 1.16% (732/63182) 

 

 

TABLE II 

THE HUMAN GAIT RECOGNITION RATES AT SPECIFIC WALKING ANGLE IN THE 

BRIGHT ENVIRONMENT, WITH MAJORITY VOTE OF THREE 

 0W °  45W °  315W °  

Accuracy 
95.54% 

(2548/2667) 
93.80% 

(2876/3066) 
92.42% 

(2866/3101) 

False alarm rate 
0.64% 

(119/18669) 
0.89% 

(190/21462) 
1.08% 

(235/21707) 

Average Accuracy 93.84% (8290/8834) 
Average False alarm rate 0.88% (544/61838) 
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TABLE III 

THE HUMAN GAIT RECOGNITION RATES AT SPECIFIC WALKING ANGLE IN THE 

BRIGHT ENVIRONMENT, WITH MAJORITY VOTE OF FIVE 

 0W °  45W °  315W °  

Accuracy 
96.27% 

(2506/2603) 
95.97% 

(2881/3002) 
95.23% 

(2892/3037) 

False alarm rate 
0.53% 

(97/18221) 
0.58% 

(121/21014) 
0.68% 

(145/21259) 

Average Accuracy 95.80% (8279/8642) 
Average False alarm rate 0.60% (363/60494) 

 

 

TABLE IV 

THE HUMAN GAIT RECOGNITION RATES AT SPECIFIC WALKING ANGLE IN THE 

DARK ENVIRONMENT, WITHOUT MAJORITY VOTE  

 0W °  45W °  315W °  

Accuracy 
94.37% 

(2783/2949) 
80.25% 

(2596/3235) 
84.64% 

(2701/3191) 

False alarm rate 
0.80% 

(166/20643) 
2.82% 

(639/22645) 
2.19% 

(490/22337) 

Average Accuracy 86.19% (8080/9375) 
Average False alarm rate 1.97% (1295/65625) 
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TABLE V 

THE HUMAN GAIT RECOGNITION RATES AT SPECIFIC WALKING ANGLE IN THE 

DARK ENVIRONMENT, WITH MAJORITY VOTE OF THREE 

 0W °  45W °  315W °  

Accuracy 
95.46% 

(2754/2885) 
84.11% 

(2667/3171) 
88.04% 

(2753/3127) 

False alarm rate 
0.65% 

(131/20195) 
2.27% 

(504/22197) 
1.71% 

(374/21889) 

Average Accuracy 89.01% (8174/9183) 
Average False alarm rate 1.57% (1009/64281) 

 

 

TABLE VI 

THE HUMAN GAIT RECOGNITION RATES AT SPECIFIC WALKING ANGLE IN THE 

DARK ENVIRONMENT, WITH MAJORITY VOTE OF FIVE 

 0W °  45W °  315W °  

Accuracy 
96.35% 

(2718/2821) 
88.90% 

(2762/3107) 
92.23% 

(2825/3063) 

False alarm rate 
0.52% 

(103/19747) 
1.59% 

(345/21749) 
1.11% 

(238/21441) 

Average Accuracy 92.37% (8305/8991) 
Average False alarm rate 1.09% (686/62937) 

 

 

 



 

46 

4.2.2 Multi-Angle Human Gait Recognition  

In this experiment, activity videos depicting three walk sequences at three 

walking angle performed by eight persons in our LAB database were used for training. 

The recognition rate is measured based on leave-one-out strategy. Table VII shows the 

recognition rates at all walking angle without majority vote in the bright environment. 

Table VIII shows the recognition rates at all walking angle with majority vote of three 

in the bright environment. Table IX shows the recognition rates at all walking angle 

with majority vote of five in the bright environment. Table X shows the recognition 

rates at all walking angle without majority vote in the dark environment. Table XI 

shows the recognition rates at all walking angle with majority vote of three in the dark 

environment. Table XII shows the recognition rates at all walking angle with majority 

vote of five in the dark environment. In these tables, PA represents the case of 

classification of person and walking angle as well. A stands for the case of 

classification of walking angle in all walking angle and P is the classification of 

person in all walking angle. 
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TABLE VII 

THE RECOGNITION RATES OF WALKING VIDEOS IN THE BRIGHT ENVIRONMENT, 

WITHOUT MAJORITY VOTE  

                Case 
 

PA A P 

Average Accuracy 
86.98% 

(7851/9026) 
98.49% 

(8890/9026) 
87.54% 

(7901/9026) 

Average False alarm rate 
0.57% 

(1175/207598) 
0.75% 

(136/18052) 
1.78% 

(1125/63182) 

 

TABLE VIII 

THE RECOGNITION RATES OF WALKING VIDEOS IN THE BRIGHT ENVIRONMENT, 

WITH MAJORITY VOTE OF THREE 

                Case 
 

PA A P 

Average Accuracy 
89.89% 

(7941/8834) 
98.98% 

(8744/8834) 
90.32% 

(7979/8834) 

Average False alarm rate 
0.44% 

(893/203182) 
0.51% 

(90/17668) 
1.38% 

(855/61838) 

 

TABLE IX 

THE RECOGNITION RATES OF WALKING VIDEOS IN THE BRIGHT ENVIRONMENT, 

WITH MAJORITY VOTE OF FIVE 

                Case 
 

PA A P 

Average Accuracy 
92.96% 

(8034/8642) 
99.21% 

(8574/8642) 
93.36% 

(8068/8642) 

Average False alarm rate 
0.31% 

(608/198766) 
0.39% 

(68/17284) 
0.95% 

(574/60494) 
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TABLE X 

THE RECOGNITION RATES OF WALKING VIDEOS IN THE DARK ENVIRONMENT, 

WITHOUT MAJORITY VOTE  

                Case 
 

PA A P 

Average Accuracy 
79.02% 

(7408/9375) 
96.31% 

(9029/9375) 
80.23% 

(7522/9375) 

Average False alarm rate 
0.91% 

(1967/215625) 
1.85% 

(346/18750) 
2.82% 

(1853/65625) 

 

TABLE XI 

THE RECOGNITION RATES OF WALKING VIDEOS IN THE DARK ENVIRONMENT, 

WITH MAJORITY VOTE OF THREE 

                Case 
 

PA A P 

Average Accuracy 
81.89% 

(7520/9183) 
97.01% 

(8908/9183) 
83.15% 

(7636/9183) 

Average False alarm rate 
0.79% 

(1663/211209) 
1.50% 

(275/18366) 
2.41% 

(1547/64281) 

 

TABLE XII 

THE RECOGNITION RATES OF WALKING VIDEOS IN THE DARK ENVIRONMENT, 

WITH MAJORITY VOTE OF FIVE 

                Case 
 

PA A P 

Average Accuracy 
87.15% 

(7836/8991) 
97.58% 

(8773/8991) 
88.17% 

(7927/8991) 

Average False alarm rate 
0.56% 

(1155/206793) 
1.21% 

(218/17982) 
1.69% 

(1064/62937) 
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4.3 Recognition Result on the CASIA Multi-View Gait Database 

In the CASIA multi-view gait database, we use two methods to test our system. 

First method is single-view human recognition in the CASIA database. Second 

method is multi-view human recognition in the CASIA database.  

4.3.1 Single-View Human Gait Recognition  

In this experiment, activity videos depicting five walk sequences at one specific 

viewing angle performed by 48 persons in the CASIA database were used for training. 

The recognition rate is measured based on leave-one-out strategy. Table XIX shows 

the human recognition rates at each viewing angle without majority vote in the 

CASIA database. Table XX shows the human recognition rates at each viewing angle 

with majority vote of three in the CASIA database. Table XXI shows the human 

recognition rates at each viewing angle with majority vote of five in the CASIA 

database. In these tables, 0W °  represents the case of classification of person in 0° 

viewing angle, 18W °  represents the case of classification of person in 18° viewing 

angle, 36W °  represents the case of classification of person in 36° viewing angle, 54W °  

represents the case of classification of person in 54° viewing angle, 72W °  represents 

the case of classification of person in 72° viewing angle, 90W °  represents the case of 

classification of person in 90 °  viewing angle, 108W °  represents the case of 

classification of person in 108 °  viewing angle, 126W °  represents the case of 

classification of person in 126 °  viewing angle, 144W °  represents the case of 

classification of person in 144 °  viewing angle, 162W °  represents the case of 
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classification of person in 162° viewing angle, and 180W °  represents the case of 

classification of person in 180° viewing angle. 

 

 

TABLE XIII 

THE HUMAN RECOGNITION RATES AT SPECIFIC VIEWING ANGLE IN THE CASIA 

DATABASE, WITHOUT MAJORITY VOTE  

 0W °  18W °  36W °  

Accuracy 
95.27% 

(27530/28896) 
85.38% 

(26422/30946) 
80.39% 

(24386/30334) 

False alarm rate 
0.10% 

(1366/1358112) 
0.31% 

(4524/1454462) 
0.42% 

(5948/1425698) 

 54W °  72W °  90W °  

Accuracy 
80.75% 

(22486/27845) 
90.77% 

(18413/20286) 
90.47% 

(16941/18726) 

False alarm rate 
0.41% 

(5359/1308715) 
0.20% 

(1873/953442) 
0.20% 

(1785/880122) 

 108W °  126W °  144W °  

Accuracy 
89.01% 

(17898/20108) 
88.75% 

(21732/24487) 
91.26% 

(23057/25266) 

False alarm rate 
0.23% 

(2210/945076) 
0.24% 

(2755/1150889) 
0.19% 

(2209/1187502) 

 162W °  180W °   

Accuracy 
92.72% 

(23209/25030) 
95.81% 

(24771/25853) 
 

False alarm rate 
0.15% 

(1821/1176410) 
0.09% 

(1082/1215091) 
 

Average Accuracy 88.86% (246845/277777) 
Average False alarm rate 0.24% (30932/13055519) 
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TABLE XIV 

THE HUMAN RECOGNITION RATES AT SPECIFIC VIEWING ANGLE IN THE CASIA 

DATABASE, WITH MAJORITY VOTE OF THREE 

 0W °  18W °  36W °  

Accuracy 
96.64% 

(27368/28320) 
87.96% 

(26712/30370) 
83.19% 

(24756/29758) 

False alarm rate 
0.07% 

(952/1331040) 
0.26% 

(3658/1427390) 
0.36% 

(5002/1398626) 

 54W °  72W °  90W °  

Accuracy 
84.11% 

(22937/27269) 
93.97% 

(18521/19710) 
93.58% 

(16984/18150) 

False alarm rate 
0.34% 

(4332/1281643) 
0.13% 

(1189/926370) 
0.14% 

(1166/853050) 

 108W °  126W °  144W °  

Accuracy 
92.06% 

(17981/19532) 
91.98% 

(21993/23911) 
93.73% 

(23141/24690) 

False alarm rate 
0.17% 

(1551/918004) 
0.17% 

(1918/1123817) 
0.13% 

(1549/1160430) 

 162W °  180W °   

Accuracy 
94.49% 

(23106/24454) 
96.87% 

(24485/25277) 
 

False alarm rate 
0.12% 

(1348/1149338) 
0.07% 

(792/1188019) 
 

Average Accuracy 91.36% (247984/271441) 
Average False alarm rate 0.18% (23457/12757727) 
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TABLE XV 

THE HUMAN RECOGNITION RATES AT SPECIFIC VIEWING ANGLE IN THE CASIA 

DATABASE, WITH MAJORITY VOTE OF FIVE 

 0W °  18W °  36W °  

Accuracy 
97.97% 

(27181/27744) 
92.36% 

(27518/29794) 
89.57% 

(26137/29182) 

False alarm rate 
0.04% 

(563/1303968) 
0.16% 

(2276/1400318) 
0.22% 

(3045/1371554) 

 54W °  72W °  90W °  

Accuracy 
90.75% 

(24225/26693) 
97.08% 

(18576/19134) 
96.89% 

(17027/17574) 

False alarm rate 
0.20% 

(2468/1254571) 
0.06% 

(558/899298) 
0.07% 

(547/825978) 

 108W °  126W °  144W °  

Accuracy 
96.15% 

(18226/18956) 
95.76% 

(22345/23335) 
96.39% 

(23243/24114) 

False alarm rate 
0.08% 

(730/890932) 
0.09% 

(990/1096745) 
0.08% 

(871/1133358) 

 162W °  180W °   

Accuracy 
96.55% 

(23055/23878) 
97.77% 

(24150/24701) 
 

False alarm rate 
0.07% 

(823/1122266) 
0.05% 

(551/1160947) 
 

Average Accuracy 94.94% (251683/265105) 
Average False alarm rate 0.11% (13422/12459935) 
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4.3.2 Multi-View Human Gait Recognition 

In this experiment, activity videos depicting five walk sequences at eleven 

viewing angle performed by 48 persons in the CASIA database were used for training. 

The recognition rate is measured based on leave-one-out strategy. Table XXII shows 

the recognition rates at all viewing angle without majority vote in the CASIA database. 

Table XXIII shows the recognition rates at all viewing angle with majority vote of 

three in the CASIA database. Table XXIV shows the recognition rates at all viewing 

angle with majority vote of five in the CASIA database. In these tables, PA represents 

the case of classification of person and viewing angle as well. A stands for the case of 

classification of viewing angle in all viewing angle and P is the classification of 

person in all viewing angle. 

 

 

TABLE XVI 

THE RECOGNITION RATES AT ALL VIEWING ANGLES IN THE CASIA DATABASE, 

WITHOUT MAJORITY VOTE  

       Case 
 

PA A P 

Average 
Accuracy 

60.42% 
(167819/277777) 

72.17% 
(200464/277777) 

78.03% 
(216740/277777) 

Average False 
alarm rate 

0.08% 
(109958/146388479) 

2.78% 
(77313/2777770) 

0.47% 
(61037/13055519) 
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TABLE XVII 

THE RECOGNITION RATES AT ALL VIEWING ANGLES IN THE CASIA DATABASE, 

WITH MAJORITY VOTE OF THREE  

       Case 
 

PA A P 

Average 
Accuracy 

62.21% 
(168866/271441) 

74.51% 
(202247/271441) 

80.63% 
(218854/271441) 

Average False 
alarm rate 

0.07% 
(102575/143049407) 

2.55% 
(69194/2714410) 

0.41% 
(52587/12757727) 

 

 

 

TABLE XVIII 

THE RECOGNITION RATES AT ALL VIEWING ANGLES IN THE CASIA DATABASE, 

WITH MAJORITY VOTE OF FIVE  

       Case 
 

PA A P 

Average 
Accuracy 

70.00% 
(185573/265105) 

78.03% 
(206870/265105) 

87.46% 
(231866/265105) 

Average False 
alarm rate 

0.06% 
(79532/139710335) 

2.20% 
(58235/2651050) 

0.27% 
(33239/12459935) 
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4.4 Experiments on our LAB Face Database 

4.4.1 Human Face Recognition 

In this experiment, a specific video randomly chosen from the four repeated 

videos is used for recognition and the other three are used for training, and this 

procedure is repeated in turn for four times. It is to be noted that all the facial 

recognition from video will be mostly effective only when the person is far from the 

near camera during the rage 1.8–2.5m. In this distance range, the face images 

captured for the camera were large and clear enough for face recognition purpose. 

Hence, all the experiment data shown below, all the face images were captured in the 

distance range of 1.8–2.5m from the near camera. Table XIII shows the recognition 

rates of human face without majority vote in the bright environment. Table XIV 

shows the recognition rates of human face with majority vote of three in the bright 

environment. Table XV shows the recognition rates of human face with majority vote 

of five in the bright environment. Table XVI shows the recognition rates of human 

face without majority vote in the dark environment. Table XVII shows the recognition 

rates of human face with majority vote of three in the dark environment. Table XVIII 

shows the recognition rates of human face with majority vote of five in the dark 

environment.  
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TABLE XIX 

THE RECOGNITION RATES OF HUMAN FACE VIDEOS IN THE BRIGHT ENVIRONMENT, 

WITHOUT MAJORITY VOTE  

 Person 1 Person 2 Person 3 

Accuracy 
96.01% 

(530/552) 

94.99% 

(739/778) 

98.22% 

(496/505) 

False alarm rate 
1.12% 

(59/5252) 

0.22% 

(11/5026) 

1.26% 

(67/5299) 

 Person 4 Person 5 Person 6 

Accuracy 
87.15% 

(631/724) 

97.20% 

(626/644) 

92.23% 

(665/721) 

False alarm rate 
0.00% 

(0/5080) 

0.93% 

(48/5160) 

0.45% 

(23/5083) 

 Person 7 Person 8 Person 9 

Accuracy 
98.11% 

(725/739) 

95.62% 

(546/571) 

98.95% 

(564/570) 

False alarm rate 
0.71% 

(36/5065) 

0.46% 

(24/5233) 

0.27% 

(14/5234) 

Average Accuracy 95.14% (5522/5804) 

Average False alarm rate 0.61% (282/46432) 
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TABLE XX 

THE RECOGNITION RATES OF HUMAN FACE VIDEOS IN THE BRIGHT ENVIRONMENT, 

WITH MAJORITY VOTE OF THREE 

 Person 1 Person 2 Person 3 

Accuracy 
97.59% 

(527/540) 
96.60% 

(738/764) 
99.20% 

(493/497) 

False alarm rate 
0.60% 

(31/5157) 

0.16% 

(8/4933) 

1.02% 

(53/5200) 

 Person 4 Person 5 Person 6 

Accuracy 
89.49% 

(630/704) 
97.96% 

(623/636) 

95.62% 
(677/708) 

False alarm rate 
0.00% 

(0/4993) 

0.69% 

(35/5061) 

0.30% 

(15/4989) 

 Person 7 Person 8 Person 9 

Accuracy 
99.31% 

(723/728) 
97.50% 

(546/560) 
99.82% 

(559/560) 

False alarm rate 
0.28% 

(14/4969) 

0.25% 

(13/5137) 

0.23% 

(12/5137) 

Average Accuracy 96.82% (5516/5697) 

Average False alarm rate 0.40% (181/45576) 
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TABLE XXI  

THE RECOGNITION RATES OF HUMAN FACE VIDEOS IN THE BRIGHT ENVIRONMENT, 

WITH MAJORITY VOTE OF FIVE 

 Person 1 Person 2 Person 3 

Accuracy 
97.01% 

(520/536) 

96.98% 

(739/762) 

99.80% 

(488/489) 

False alarm rate 
0.74% 

(38/5124) 

0.29% 

(14/4898) 

1.06% 

(55/5171) 

 Person 4 Person 5 Person 6 

Accuracy 
88.70% 

(628/708) 

98.57% 

(619/628) 

95.89% 

(676/705) 

False alarm rate 
0.00% 

(0/4952) 

0.62% 

(31/5032) 

0.22% 

(11/4955) 

 Person 7 Person 8 Person 9 

Accuracy 
99.31% 

(718/723) 

97.30% 

(540/555) 

99.46% 

(551/554) 

False alarm rate 
0.30% 

(15/4937) 

0.10% 

(5/5105) 

0.24% 

(12/5106) 

Average Accuracy 96.80% (5479/5660) 

Average False alarm rate 0.40% (181/45280) 
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TABLE XXII  

THE RECOGNITION RATES OF HUMAN FACE VIDEOS IN THE DARK ENVIRONMENT, 

WITHOUT MAJORITY VOTE  

 Person 1 Person 2 Person 3 

Accuracy 
96.97% 

(448/462) 

98.85% 

(771/780) 

95.84% 

(507/529) 

False alarm rate 
1.15% 

(60/5198) 

0.43% 

(21/4880) 

0.58% 

(30/5131) 

 Person 4 Person 5 Person 6 

Accuracy 
97.63% 

(617/632) 

98.07% 

(660/673) 

90.79% 

(651/717) 

False alarm rate 
0.06% 

(3/5028) 

0.90% 

(45/4987) 

0.10% 

(5/4943) 

 Person 7 Person 8 Person 9 

Accuracy 
89.13% 

(492/552) 

97.87% 

(598/611) 

89.35% 

(629/704) 

False alarm rate 
0.55% 

(28/5108) 

1.49% 

(75/5049) 

0.40% 

(20/4956) 

Average Accuracy 94.93% (5373/5660) 

Average False alarm rate 0.63% (287/45280) 
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TABLE XXIII  

THE RECOGNITION RATES OF HUMAN FACE VIDEOS IN THE DARK ENVIRONMENT, 

WITH MAJORITY VOTE OF THREE 

 Person 1 Person 2 Person 3 

Accuracy 
98.00% 

(442/451) 
99.48%  

(768/772) 

98.08% 
(510/520) 

False alarm rate 
0.96% 

(49/5101) 

0.23% 

(11/4780) 

0.42% 

(21/5032) 

 Person 4 Person 5 Person 6 

Accuracy 
99.03% 

(615/621) 
99.10% 

(658/664) 
92.60% 

(651/703) 

False alarm rate 
0.04% 

(2/4931) 

0.49% 

(24/4888) 

0.04% 

(2/4849) 

 Person 7 Person 8 Person 9 

Accuracy 
91.21% 

(488/535) 
98.84% 

(594/601) 
91.53% 

(627/685) 

False alarm rate 
0.38% 

(19/5017) 

1.31% 

(65/4951) 

0.12% 

(6/4867) 

Average Accuracy 96.42% (5353/5552) 

Average False alarm rate 0.45% (199/44416) 
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TABLE XXIV  

THE RECOGNITION RATES OF HUMAN FACE VIDEOS IN THE DARK ENVIRONMENT, 

WITH MAJORITY VOTE OF FIVE 

 Person 1 Person 2 Person 3 

Accuracy 
98.43% 

(439/446) 

100.00% 

(764/764) 

97.86% 

(502/513) 

False alarm rate 
1.12% 

(57/5070) 

0.27% 

(13/4752) 

0.36% 

(18/5003) 

 Person 4 Person 5 Person 6 

Accuracy 
99.68% 

(614/616) 

99.09% 

(651/657) 

92.72% 

(650/701) 

False alarm rate 
0.02% 

(1/4900) 

0.64% 

(31/4859) 

0.00% 

(0/4815) 

 Person 7 Person 8 Person 9 

Accuracy 
89.93% 

(482/536) 

98.66% 

(587/595) 

89.53% 

(616/688) 

False alarm rate 
0.32% 

(16/4980) 

1.46% 

(72/4921) 

0.06% 

(3/4828) 

Average Accuracy 96.17% (5305/5516) 

Average False alarm rate 0.48% (211/44128) 
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Chapter 5 Conclusion  

In this thesis, we implement the surveillance system that can recognize 

multi-angle human gait and human face of a person in the bright and dark 

environments. The human gait recognition system can be applied more easily than the 

human face recognition system, which is seriously restricted by obtaining frontal, 

large, clear face to recognize. 

By our method, the recognition rates of walking videos in the bright 

environment, with majority vote of five is 93.36%; and the recognition rates of 

walking videos in the dark environment, with majority vote of five is 88.17%. The 

recognition rates of human face videos in the bright environment, with majority vote 

of five is 96.80%; and the recognition rates of human face videos in the dark 

environment, with majority vote of five is 96.17%.  

It is difficult to recognize a person in the dark environment obtaining frontal, 

large, clear face to recognize. This research of human walking recognition provides a 

promising solution to recognize a person in the bright and dark, i.e., all day, 

environment.  
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