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自動擷取並量化神經細胞影像的型態特徵 

學生：柯志錡                            指導教授：陳玲慧 博士 

學生：柯志錡                            指導教授：何信瑩 博士 

ABSTRACT (IN CHINESE) 

國立交通大學多媒體工程研究所碩士班 

摘  要 

 神經細胞型態的分析對於研究神經細胞的架構和功能之間的關係很重要。為了避免

於大量神經細胞影像中費力且漫長的型態特徵分析，以電腦輔助的系統不可或缺。在神

經細胞型態中，神經軸結構(如第一神經軸、第二神經軸)的辨認能表徵實驗調節後產生

的差異。為了分析神經軸結構，基礎神經細胞型態偵測以及神經軸分枝次序決定是必需

的。基礎神經細胞型態，如細胞本體、神經軸，的偵測已被廣泛研究，然而，神經軸分

枝次序決定的研究僅有少數。商業軟體 HCA-Vision 是其中最傑出的研究之一。本研究

發展出 NeurphologyS，一個可從稀疏染色神經細胞之影像自動擷取並量化型態特徵的系

統。提出之系統可自動化量化由五個子集組成的 53 個型態特徵，其中包含神經軸結構

特徵。為了做到神經軸分枝次序決定，我們提出了一個基於規則的神經軸增長以及反向

分枝優先順序決定的方法(RANBO)。RANBO 包含兩個步驟：1) 基於區域神經軸角度規

則的神經軸樹增長 2) 反向的神經軸分枝優先順序決定及分枝次序指派。兩個影像資料

集被用以評估提出之系統，其一為經綠色螢光蛋白轉染之海馬迴神經細胞影像，另一為

可在 HCA-Vision 網站上取得的 Sez-6 knockout 皮質神經細胞影像。由量化結果可知，

提出之系統具備如同 HCA-Vision 的區分神經分枝微妙改變之能力；而提出之系統在神

經軸結構的量化方面與 HCA-Vision 相較下表現良好。以 MATLAB 實作之 NeurphologyS

是開放源碼的且可無償取得。  
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Automatic Extraction and Quantification of 

Morphological Features from Neuron Images 

Student：Chih-Chi Ke                  Advisor：Dr. Ling-Hwei Chen  

Student：Chih-Chi Ke                  Advisor：Dr. Shinn-Ying Ho 

ABSTRACT (IN ENGLISH) 

Institute of Multimedia Engineering  

National Chiao Tung University 

ABSTRACT 

Analysis of neuronal morphology is crucial for studying the relation between structure 

and function of neurons. For avoiding laborious and tedious manual analysis of 

morphological features of massive neuron images, a computer-aided system is indispensable. 

Out of neuronal morphologies, identification of neurite structure such as primary neurites or 

secondary neurites can characterize the differences after experimental modulation. For 

analysis of neurite structure, detection of basic neuronal morphologies and neurite branch 

order decision is necessary. Detection of basic neuronal morphology (such as soma or neurite) 

has been well studied, however, there are few studies that can achieve neurite branch order 

decision. The commercial software, HCA-Vision, is one of the most outstanding studies. This 

study develops NeurphologyS, a system to automatically extract and quantify morphological 

features from images of sparsely stained neurons. With the proposed system, 53 

morphological features categorized into 5 subsets, can be quantified automatically. For neurite 

branch order decision, a rule-based neurite tree growing and backward branch priority 

decision (RANBO) is proposed. RANBO has two steps: 1) neurite tree growing based on 
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local neurite angle rules 2) backward decision of neurite branch priority and branch order 

assignment. Two image datasets are utilized to evaluate the proposed system, one is image 

dataset of GFP transfected hippocampal neurons, and the other is the Sez-6 knockout cortical 

neuron image dataset available on HCA-Vision website. It can be known from our 

quantification results that the proposed system possesses the ability to differentiate subtle 

changes in neurite branching as HCA-Vision, and that the proposed system performs well 

compared to HCA-Vision in the quantification of neurite structure. The 

MATLAB-implemented NeurphologyS is open-source and freely available. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Motivation 

The development of fluorescent microscopy facilitates high-throughput neuron 

image acquisition. In the domain of neuroscience, neuronal morphology plays an 

important role. Discovery of novel molecular pathway or pharmacological discovery 

will benefit from quantitative analysis of massive amount of neuron images. 

However, analysis of neuron images is labor-intensive and time-consuming. In 

addition, manual analysis of massive amount of images is unrealistic and prone to bias. 

Hence, development of computer-aided morphological feature extraction and 

quantification from neuron images is indispensable. 

 

 

(a) 

 

(b) 

Fig. 1 An example of neuronal morphologies. 

(a) Basic neuronal morphologies. (b) Neurite structure. 

 

To date, most computer-aided methods possess the ability to extract basic 

neuronal morphologies. Here we refer to cell body (soma), neurite and critical points 

as basic neuronal morphologies (Fig. 1 (a)). Moreover, we do not distinguish axons 

and dendrites, and the term neurite is adopted. Despite the importance of neurite, 

simple metrical measurements such as total neurite length or mean neurite length do 



 

2 

not always have discriminating power for morphological differences [1, 2]. Hence the 

more detailed description of neurite concerning its structure is required. 

To describe structure of neurite, extraction and quantification of neurites with 

different branch orders is a well-employed approach. Neurites with different branch 

orders, such as primary neurites elongating from soma directly, secondary neurites 

sprouting from primary neurites, tertiary neurites sprouting from secondary neurites 

and so on, are referred to as neurite structure in this study (Fig. 1 (b)). Neurite 

structure has been widely analyzed in various topics of neuroscience [2-9] including 

pathway discovery, neural regeneration, neurite growth mechanism etc. However, 

most of them adopt manual or semi-automatic tracing. 

Automatic extraction of neurite structure consists of basic neuronal morphology 

detection and neurite branch order decision. Detection of basic neuronal morphologies 

has been well studied. However, although neurite structure is important, to our 

knowledge, there are few studies that can analyze neurite structure [10-23]. Thus, in 

this thesis, we propose an automatic system for extraction and quantification of 

neuronal morphological features, including neurite structure features. 

 

1.2 Related Works 

In this section, the related works are arranged into two subsections, one is about 

how neurite structure features are utilized in various topics of neuroscience and the 

other is about computer-aided methods for 2D neuron image analysis. 
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1.2.1 Applications of Neurite Structure in Neuroscience 

Gene modulation or pharmacological perturbation might induce morphological 

differentiations in neuron cells. Neurite length, out of the neuronal morphologies, has 

been well-studied for characterizing these differences. However, neurite length cannot 

reflect all morphological changes [1, 2]. 

Except for neurite length, neurite structure is known to be one of the neuronal 

morphologies that can characterize neuronal growth. The versatile neurite structure is 

employed in many studies. For analysis of neurite structure, decision of neurite branch 

order is necessary. By definition, primary neurites are neurites elongating directly 

from soma, secondary neurites are neurites sprouting from primary neurites and so on.  

Table 1 summarizes the studies that will be mentioned below, and how neurite 

structure features work. For instance, [2] found that independent of axon outgrowth, 

axon branching in response to guidance cues can occur over different time courses by 

different cellular mechanisms; [3] showed that the PI3K-Akt-mTOR signaling 

pathway promotes the growth and branching of dendrites in cultured hippocampal 

neurons; [4] demonstrated a role for locally synthesized actin-binding protein 

β-thymosin in the regulation of normal patterns of neurite outgrowth; [5] investigated 

an approach demonstrating the ability to combine gene delivery with physical 

guidance and can be tailored to target specific axonal populations; [6] suggested that 

to the dichotomy in medium spiny neurons, dendritic area was a major contributor to 

the dichotomy in electrophysiological properties; [7] compares the results obtained for 

dendritic branching and predominant dendritic spatial distribution in both subnuclei of 

male rats and diestrus female rats; [8] suggested that FRMD7 is involved in multiple 

aspects of neuronal development and has direct importance to further understanding 

the pathogenesis of IIN; [9] found that secreted ligand Reelin promotes directional 

growth into marginal zone, an otherwise exclusion zone of L6 neurites. 
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Table 1 Neurite structure related applications. 

Author How neurite structure employed   

Dent et al. 

(2004) 

Number and length of primary branch and total axon length 

of neuron cultures treating different guidance cues, or the same 

guidance cue with different doses were compared. 

[2] 

Jaworski et 

al. (2005) 

Higher-order (secondary and tertiary) dendrite length was 

compared for effect of rapamycin-treating and mTOR 

knockdown neuron cultures. 

[3] 

Kesteren et 

al. (2006) 

Mean lengths of primary neurites of intact cultures 

with/without dsRNA inhibition of β-thymosin were compared, 

while total neurite lengths of transected neurites were 

compared. 

[4] 

Houchin-Ra

y et al. 

(2007) 

Primary and secondary neurite length normalized to surface 

area of cultures with different PLG channel widths were 

compared. Besides, the former was compared with varying 

NGF concentration for a given PLG channel width. 

[5] 

Gertler et al. 

(2008) 

Anatomical differences between D1 MSNs and D2 MSNs were 

measured by dendritic length, Sholl's analysis, and number of 

primary neurites, critical points, dendrite segments and 3D 

convex hull analysis (dendritic area). 

[6] 

Dall'Oglio et 

al. (2008) 

Number of dendritic branches in each arborization level, 

number of branching points, Sholl's analysis and predominant 

spatial distribution of branches were analyzed for neurons of 

male and female rats, respectively. 

[7] 

Henderson et 

al. ( 2010) 

For examination of effect of shRNA-FRMD7, percentage of 

cells with neurites, cell with neurite branching, average number 

of neurite and average primary neurite length were compared 

between undifferentiated and differentiated NEURO2A cells. 

[8] 

O'Dell et al. 

(2012) 

Primary neurite length, total neurite arbor length, numbers of 

neurites of different order and Sholl's profile were analyzed for 

wild-type, Reelin-deficient or Reelin-conditioned neuron 

cultures. 

[9] 

 

 

However, most of the studies utilizing neurite structure employ manual or 

semi-automatic analysis. Adoption of automatic extraction and quantification of 

neurite structure will save great amount of time and labor.  
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1.2.2 Computer-Aided Methods for 2D Neuron Image Analysis 

It is labor-intensive and time-consuming to analyze even a single neuron for its 

neuronal morphologies. Manual analysis of large-database is therefore impractical and 

user bias is inevitable due to the long-term analysis procedure. As a consequence, 

development of computer-aided neuronal neuron image quantification method is 

indispensable. Recently, many computer-aided neuronal morphology extraction and/or 

quantification tools have been developed (Table 2). 

 

Table 2 Computer-aided studies for 2D neuron images. 

 

Mode: S, semi-automated; A, automated. 

Quantification: N, number; A, area; L, length; M, mean number; I, intensity information. 

Soma: P, perimeter; S, shape. Neurite: T, tree level order; S, neurite structure; O, orientation. 

 

For example, NeuronJ [10] provides a semi-automated and accurate neurite 

labeling GUI, given a pair of starting point and ending point, it can extract an optimal 

path with globally minimal cost under a predefined cost function; NeuronStudio [11] 

achieves automated 3D detection and shape classification of dendrite spine, but 

semi-automatic neurite tracing of 2D neuron image is also provided; NeuronMetrics 

[12] estimates fundamental information about size and shape of neurite arbors, but it’s 
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semi-automatic and require some extent of manual intervention; the commercial 

software HCA-Vision [13] is an automatic neurite branching detection and analysis 

system that is fast, sensitive and reliable; NeuriteTracer [14] analyzes fluorescent 

microscopy images of neurites and nuclei, traces neurite and measures the neurite 

length; NeuronIQ [15] aims to provide an automated pipeline for quantitative, 

reproducible and accurate detection and analysis of neuron dendritic spines; [16] 

automatically exacts contour from 2D neuron images, however, source code and 

quantification result are not available; NeuronCyto [17] presents a fully automatic 

solution for neurite length measurement and complexity analysis; [18] presents a 

robust method for quantifying and statistically analyzing the morphology of neuron 

cells in high content screening images; NeurphologyJ [19] can automatically extract 

five neuronal morphology descriptors from neuron images with a set of user-defined 

parameters; NeuriteQuant [20] provides a framework for morphometric analysis of 

neuronal development, including readily adaptable feature extraction and web-based 

data management; WIS-NeuroMath [21] is a software package for automated 

measurement of neuronal process, including neurite growth, branching, regeneration 

or degeneration under different experimental paradigms; Neuritent [22] provides 

unsupervised method with tunable parameters for neurite extraction; NEMO [23] is 

developed to handle massive images for automatic batch process and applying 

multivariate classification and feature extraction. 

As Table 2 shows, there are few studies that can automatically analyze neurite 

structure. However, HCA-Vision, one of these outstanding studies, despite its 

performance and user-friendliness, is a commercial software. Therefore, in this study, 

we aim at developing NeurphologyS, an automatic system to extract and quantify 

neuronal morphological features including neurite structure descriptors. Because of 

the complexity of neurite outgrowth, automated analysis of neurite structure from 



 

7 

images of densely cultured neurons is impractical with existence of overlapping 

neurites. The proposed system is tailored toward sparsely stained neuron population. 

For extraction of neurite structure, branch order decision is a necessary task. 

NeurphologyS achieves branch order decision with the proposed RANBO method. 

Given a sparsely stained neuron image and a set of user-defined parameters, we will 

automatically extract and quantify 53 neuronal morphological features that perform 

well compared to HCA-Vision. Owing to its fully-automated property, NeurphologyS 

eliminates possible discrepancies resulted from different human biases or from 

unreliable human subjective, and high-throughput analysis of large amount of image 

dataset is possible. 

 

1.3 Organization of the Thesis 

The thesis is organized as follows. In Chapter 1, motivation of this work and 

related applications and methods are mentioned. In Chapter 2, we describe the 

datasets used and the proposed system, including basic neuronal morphologies 

detection, the proposed RANBO method, morphological feature quantification and 

graphical user interface (GUI). In Chapter 3, experimental results are given to 

compare the performance of the proposed system with that of existing commercial 

software. Finally, in Chapter 4, brief conclusion and future works are discussed.  

 

1.4 Participants 

The GFP hippocampal neuron images used for developing the proposed system 

are provided by Dr. Eric Huang’s laboratory. And the hippocampal neurons were 

cultured, imaged and manually annotated by research assistant Wen-Shin Chen. 

Thanks to her work on neuron image acquisition and neurite structure annotation.  
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CHAPTER 2  

PROPOSED SYSTEM 

 

In this chapter, we will describe the neuron image datasets used in this thesis, 

and then the proposed system for automatic extraction and quantification of neuronal 

morphological features. As Fig. 2 shows, the system includes basic neuronal 

morphologies detection, the proposed RANBO method for neurite branch order 

decision and quantification of all detected morphological features. Finally, we 

describe how to utilize the proposed system with the GUI. 

 

 

Fig. 2 Block diagram of NeurphologyS. 
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2.1 Neuron Image Dataset 

Two neuron image datasets are used in this thesis, one is image dataset of green 

fluorescent protein (GFP) transfected hippocampal neurons, the other is the 

seizure-related gene 6 (Sez-6) knockout cortical neuron image dataset available on the 

website of HCA-Vision [13].  

 

2.1.1 GFP Transfected Hippocampal Neuron Image 

Of the GFP transfected dataset, embryonic hippocampal neuron cells were 

cultured and transfected with shRNA and GFP expressing plasmid by liposome. Since 

only up to 25% of the neuron cells can be successfully transfected with GFP, we can 

acquire images of neuron cells that were not in contact with other cells from the 

sparsely GFP expressing neuron population.  

Forty GFP neuron images, including 41 target neuron cells, were collected as a 

dataset for the development of NeurphologyS. The dataset can be divided into two 

subsets according to the complexity of neurite structure of the target neuron. The one 

without neurite crossovers consists of 23 images (Fig. 3 (a), (b)), and the other with 

neurite crossovers consists of 17 images (Fig. 3 (c), (d)). Neurite structure of all the 

target neurons was annotated by a neuroscientist with NeuronJ [24]. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 3 Cropped example images of the GFP dataset. 

(a) and (b) are neurons without neurite crossovers, (c) and (d) are neurons with neurite 

crossovers. 
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2.1.2 Sez-6 Knockout and Wild-type Cortical Neuron Image 

Seizure-related gene 6 (Sez-6) is required for normal dendrite arborizaiton, lack 

of Sez-6 will cause excessive neurite branching [25]. The Sez-6 knockout and 

wild-type cortical neuron cells were cultured in low density and imaged by 

HCA-Vision [13]. Fifty images were acquired for wild-type neuron population (Pos) 

and 46 images were acquired for Sez-6 knockout neuron population (Min). Of the 96 

neuron images, 101 image fields of cortical neurons were analyzed (Fig. 4).  

By comparing 51 wild-type neurons with 50 Sez-6 knockout neurons, they 

derived statistical differences in several morphological features of the two types, in 

agreement with semi-automated analysis results. The image dataset, quantification 

results accompanied with result images overlaid with automated neurite structure 

annotation are all available on the website of HCA-Vision. 

 

Table 3 Image and Neuron Amount of Sez-6 Dataset. 

  Wild-type (Pos) Sez-6 Knockout (Min) Total 

Image Number 50 46 96 

Neuron Number 51 50 101 
 

 

 

(a) 

 

(b) 
 

(c) 

 

(d) 

Fig. 4 Cropped example images of the Sez-6 dataset. 

(a) and (b) are wild-type neurons, (c) and (d) are Sez-6 knockout neurons. 
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2.2 Basic Neuronal Morphology Detection 

In this section, we will detect several basic neuronal morphologies from the 

neuron images. The basic neuronal morphologies include soma (the neuron cell body), 

neurite and critical points (attachment points, endpoints and branch points). 

 

2.2.1 Soma Detection 

At first, we will segment soma region out from neuron images. Due to individual 

differences of neuron cells, the ability of each neuron to express fluorescence varies  

(Fig. 5). As a consequence, it is hard to use only one global threshold to segment the 

soma region even for neurons in the same image dataset.  

 

 

(a) 

 

(b) 

Fig. 5 Variance of fluorescence expression. 

Red and blue represents maximal and minimal brightness, respectively. (a) A neuron with 

strong fluorescence expression. (b) A neuron with weak fluorescence expression. 

 

In help of manual soma threshold selection, we adopt histogram modification 

based method [26] as HCA-Vision [13, 27, 28]. The block diagram of soma detection 

is depicted in Fig. 6. 
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Fig. 6 Block diagram of soma detection. 

  

At the beginning, we linearly stretch the dynamic range of the neuron image to 

[0, 65535] as the function below: 

𝐼𝑛𝑒𝑤 =
𝐼− 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
× 65535, 

where 𝐼 is the original intensity value, 𝐼𝑚𝑎𝑥 and 𝐼𝑚𝑖𝑛 are the maximal and minimal 

intensity of the original image and 𝐼𝑛𝑒𝑤 is the normalized intensity value. 

After, a Gaussian filter is applied for noise suppression. And then we correct the 

background intensity by morphological top-hat transform [29] with a disk structural 

element larger than the largest soma. Eventually, to suppress influence of the 

neurite-like structures, morphological open operation is applied (Fig. 7). 

 

 

(a) 

 

(b) 

Fig. 7 Image preprocessing intermediate result of soma detection. 

(a) Original image. (b) Preprocessed image, neurite-like structures are eliminated. 

 



 

13 

With the preprocessed image, we employ histogram modification based method 

[26] to help soma threshold selection [13, 27, 28]. We expect the region of foreground 

(soma) and background to have slight intensity change. Hence a gradient filter can get 

high responses only in background-foreground transient pixels (Fig. 8 (a)). The 

adequate threshold for foreground segmentation will possibly locate at these pixels. 

This property is utilized to suppress foreground and background pixels.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8 Histogram modification method for threshold selection. 

Follow the example of Fig. 7. (a) Sobel gradient magnitude. (b) Gradient weighted 

histogram. (c) Cumulated histogram for threshold selection. (d) Segmented soma region. 

 

Firstly, we calculate the gradient magnitude of Sobel filter (Fig. 8 (a)). The 

gradient magnitudes of the pixels with the same gray-level value are averaged. All 

these averaged gradient magnitudes can compose a one-dimensional array, referred to 

as gradient weighted histogram (Fig. 8 (b)). And the cumulated histogram of the 

gradient weighted histogram is calculated (Fig. 8 (c)).  
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As described above, owing to the suppression of foreground and background, 

transient intensities will account for most of the cumulated histogram. Manual 

selection of quantile will result in different thresholds for different images (Fig. 8 (d)). 

In addition, the soma is dilated for avoiding the missing of primary neurite. The 

neurons possess different expression ability as shown in Fig. 5 can now be segmented 

with the same manually selected cumulated histogram quantile (Fig. 9). 

 

 

(a) 

 

(b) 

Fig. 9 Example soma detection results. 

Soma detection with histogram modification corresponding to Fig. 5. 
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2.2.2 Neurite Detection 

At first, image processing is applied as described in soma detection step, but 

eliminating the neurite suppressing morphological open operation. The instability of 

intensity along neurite in neuron image (Fig. 10) makes it more difficult to segment 

neurite than segment soma. Hence, multiple directional non-maximal suppression 

(MDNMS) [13, 30] is employed to extract neurite centerline. 

 

 

(a) 

 

(b) 

Fig. 10 Variability of neurite intensity. 

(a) A neuron image overlaid with a neurite marked in white. (b) Intensity profile along the 

neurite centerline in (a). 

 

After, we filter small connected component and skeletonize the MDNMS result 

to ensure one-pixel wide neurite centerline. Since it is possible that MDNMS fails to 

detect neurite centerline nearing intersection of neurite, a neurite gap closing step is 

applied. The overall block diagram is depicted (Fig. 11). 

 

 

Fig. 11 Block diagram of neurite detection 
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NMS method is for finding image pixels that locate at intensity cross section 

maxima within a local liner neighborhood (Fig. 12 (a)). The linear features found 

perpendicular to the linear window satisfy what we expect neurite centerlines to be 

(Fig. 12 (b)). Besides, the difference between the local maximal intensity and the 

averaged intensities of the two-side neighborhoods must exceed a certain extent for 

maintaining confident high-contrast linear features.  

 

  

(a) 

 

(b) 

Fig. 12 Schematic diagram of linear features. 

(a) NMS find local maxima with the intensity differences (Diff1 and Diff2) higher than a 

threshold. (b) Linear windows can detect the neurite centerline. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig. 13 Example 9-by-9 linear windows 

Eight directions of linear windows are shown, with dark squares mark centers of each linear 

window, and gray squares mark the neighborhoods. (a) 0∘(b) 45∘(c) 90∘(d)135∘(e)22.5

∘(f)67.5∘(g)112.5∘(h)157.5∘ 

 

Multiple linear windows of different orientations (Fig. 13) can be used in the 

NMS process. And MDNMS is the union of results of multiple NMS. With MDNMS, 

pixels where neurite centerlines of different orientations possibly locate can be 
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detected (Fig. 14 (a)). We then filter smaller connected components of MDNMS result, 

and apply skeletonization for one-pixel wide skeleton (Fig. 14 (b)).  

 

 

(a) 

 

(b) 

Fig. 14 Neurite centerline detection with MDNMS. 

Follow the example of Fig. 8. (a) MDNMS result. (b) Result after filtering of small 

connected components and skeletonization, the soma is encircled white. 

 

To fix the possible disconnection of neurites from MDNMS result, at first, we 

find the neurites overlaid with soma, since only the neurites connected to soma are 

under consideration. And then we explore the neighborhood of the overlaid neurites as 

well as soma for finding neighboring isolated connected components (Fig. 15 (a)). 

The connected components with too small radius or brightness are ignored. 

 

 

(a) 

 

(b) 

Fig. 15 Neurite gap closing. 

(a) Overlaid region are marked in blue. The region encircled white is the extended region. 

Isolated linear features are in green. (b) The arrows indicate the added components. 
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For each of the candidate connected components, we want to find a path of high 

intensity from its endpoint to a nearest neurite-soma overlaid pixel. The intensity of 

each current possible direction is considered, the higher the intensity, the lower the 

cost. Besides, the local orientation of the connected components is used to limit the 

possible directions of path finding. The positions located at orthogonal or reversed 

direction of the local orientation are rejected. The path found is added to the skeleton 

and the candidate connected component is now connected with soma (Fig. 15 (b)). 

Eventually, we preserve only the skeleton overlapped with soma. 

 

 

(a) 

 

(b) 

Fig. 16 Ending segment filtering. 

(a) Neurites are in red, and eliminated segments are in green. (b) Result neurite. 

 

The neurite skeleton might contain ignorable spurious linear features, including 

the linear features inside neuron cell and short ending neurite segments. Ending 

segment means the segment from endpoints to a nearest branch point or attachment 

point. Detection of these critical points will be described in the next subsection. For 

filtering short ending segments, we repeatedly remove the short ending segments until 

there doesn’t exist any short ending segments (Fig. 16). 
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2.2.3 Critical Point Detection 

Critical points (Fig. 17) here include 1) attachment points, pixels where neurite 

originates from soma 2) endpoints, pixels located at the terminal positions of neurite 3) 

branch points, pixels where the one-pixel wide neurite bifurcates into two branches. 

 

 

Fig. 17 Schematic diagram of critical points. 

 

The neurite pixels next to the soma perimeter are marked attachment points. And 

the terminal points of neurite except for attachment points are marked as endpoints. 

For branch point detection, since the neurite is skeletonized, the bifurcations of 

the centerline can be identified in each 3-by-3 local region. Hence we design 16 pairs 

of 3-by-3 masks (Fig. 18 (a)) representing possible branching patterns. Employing 

hit-or-miss transform [29] with these masks, we find 50 possible branching patterns 

(Fig. 18 (c)). As the method mentioned in [31], each 3-by-3 branching pattern can be 

uniquely represented by a convolution value after convolving the neurite image with a 

special 3-by-3 mask (Fig. 18 (b)). Therefore, we can fast locate branch points by 

finding their corresponding convolution value. An example result of critical points 

detection is shown (Fig. 19). 
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(a) 

 

(b) 

 

(c) 

Fig. 18 Brach point pattern detection. 

(a) The 16 3x3 masks used by hit-or-miss transform, white represents foreground pixel, 

black represents background pixel and grey represents don’t care pixel. (b) The 3x3 

convolution mask. (c) Branch patterns found by hit-or-miss transform accompanied with 

their convolution numbers. 

 

 

Fig. 19 Result of critical point detection. 

The critical points are colored as described Fig. 17. 
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2.3 Rule-based Neurite Tree Growing and Backward Brach 

Priority Decision (RANBO) 

In this section, we will extract neurite structure based on previously detected 

basic neuronal morphologies. As described before, neurite structure includes neurites 

of different branch orders. Neurites of low branch order, of high branch priority in 

other words, are considered as the backbone of the neurite tree originated from it.  

Hence, heuristically, we would expect a lower-order neurite possesses longer 

length, smoother curve, wider width, stronger fluorescent expression and greater 

amount of branches compared to higher-order neurites. HCA-Vision employed only 

the stronger fluorescent expression heuristic within its process of neurite branch 

priority decision. 

To better mimic the human annotation behavior, the proposed RANBO method is 

established on more than one of these heuristics. Out of the heuristics, the concept of 

curve smoothness is adopted in the rule-based neurite tree growing step. On the other 

hand, the concepts of longer length as well as number of branches are adopted in the 

backward branch priority decision step. 

 

2.3.1 Rule-based Neurite Tree Growing 

With neuronal morphology represented neurons (Fig. 20 (a)), we will construct 

tree-representation of neurite. Each attachment point will be taken as root of the 

neurite tree originating from it, namely, the attachment points are starting points of 

depth-first search (DFS). Hence, all the neurite pixels will be assigned to a specific 

attachment point. Separated with critical points, detected neurites can be further 

divided into neurite segments. In our tree-representation, the internal nodes are the 

neurite segments ending with a branch point, and the leaf nodes are the neurite 
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segments ending with an endpoint (Fig. 20 (b)). 

 

 

(a) 

 

(b) 

Fig. 20 Schematic diagram of tree representation. 

(a) A neuronal morphology represented neuron. (b) Tree representation corresponding to (a). 

 

However, a tree can be constructed without difficulty only when the neurite 

anatomy is simple, in other words, when there doesn’t exist any neurite crossovers or 

loops (Fig. 21). Because of the complex neurite growth, we have to decide in each 

internal node whether this is a bifurcation or a crossover. Complex neurite anatomy 

will seriously affect the correctness of the constructed tree.  

 

 

(a) 

 

(b) 

Fig. 21 An example of neurite crossover. 

The region enclosed by white circle is considered a neurite crossover. (a) A neuronal 

morphology represented neuron. (b) A tree representation separates neurites correctly, 

separated trees are differently colored. 
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Hence we will try to employ a local angle related rule set, including empirical 

rules and bifurcation conditions, to solve this problem. In situations judged as 

crossovers by the rule set, at least one child segment will be recorded as failed 

segments. After the current DFS is finished, as long as there are still unvisited failed 

segments, we continue to add them back one by one as DFS starting points from the 

one with the minimal angle with its parent segment. The overall flowchart of 

rule-based neurite tree growing, a DFS combined with rule set applying and crossover 

handling, is depicted below (Fig. 22).  

 

 
Fig. 22 Flowchart of rule-based neurite tree growing.  
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To ensure correct tree hierarchy, we will exam several empirical rules concerning 

the local angle between neurite segments in the DFS process. These rules mimic the 

human behavior that selects a smooth neurite as the backbone of neurite tree, and 

what a neurite crossover might look like. 

We generalize the situation nearing branch points as Fig. 23. There will be a 

parent segment P and two branched child segments C1 and C2, where the three 

segments are internal nodes or leaf nodes in our tree representation. Here we define 

three local angles, the angle between C1 and C2 as A, the angles between extended line 

of P and C1 are A1 and the angles between extended line of P and C2 are A2. 

 

Fig. 23 Situation nearing a branch point. 

Parent segment P and Child segments C1 and C2 are colored differently. The dashed line 

represents extension of P. And the branch point is marked by point. Three angles are 

defined here: A is the angle between the two children; A1 and A2 are angles between the 

extended line and the two child segments, respectively. 

 

From observations, four major rules concerning local segment angle are 

empirically concluded in Table 4, where the bifurcation angle upper bound α1, lower 

bound α2 and angle ratio threshold β are parameters defined by user. The angle 

ratios are defined as β1 =
𝐴1

𝐴
 and β2 =

𝐴2

𝐴
 for C1 and C2 respectively. Since we 

prefer a smoother neurite curve, when the situation is a bifurcation, the child segment 

with smaller angle with parent segment will possess higher priority in DFS trace than 

the other. 
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Table 4 Local Angle Empirical Rules. 

Rules Content Result 

Rule 1 When A > α1 , the C1 and C2 seem to comprise 

another neurite together; we consider this situation a 

crossover and stop the trace (Fig. 24 (a)). 

P is a 

crossover. 

Rule 2 When A < α2, that any combination of angle degree 

of A2 and A3 seems reasonable, this situation is 

considered a bifurcation (Fig. 24 (b)). 

Bifurcation. 

Rule 3 When α1 ≥ A ≥ α2, if 𝛽1 < 𝛽, we prefer C1 over 

C2 (Fig. 24 (c)).  

C1 is a 

crossover. 

Rule 4 When α1 ≥ A ≥ α2, if 𝛽2 < 𝛽, we prefer C2 over 

C1 (Fig. 24 (d)). 

C2 is a 

crossover. 

Otherwise The situation otherwise is considered a bifurcation. Bifurcation. 
 

   

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 24 Schematic diagrams of empirical rules. 

(a) A is too large to form a bifurcation. (b) A bifurcation situation. (c)(d) One child 

segment will be taken as crossover depending on the preference ratio. 
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In addition to the above mentioned empirical rules, we take the conditions in 

Table 5 as bifurcations, with corresponding schematic diagrams depicted in Fig. 25. 

These conditions are examined prior to empirical rules. Once any one of them 

matched in the DFS process, the situation will be regarded as a bifurcation. The 

empirical rules accompanied with bifurcation conditions work as a rule set for 

deciding whether the situation is a crossover or a bifurcation. 

 

Table 5 Bifurcation Conditions. 

Conditions Content 

Condition 1 When both C1 and C2 are leaf nodes, there are no more 

possible disturbances for tree construction (Fig. 25 (a)). 

Condition 2 Both C1 and C2 end at the same point (Fig. 25 (b)). 

Condition 3 P is too short to calculate effective angles (Fig. 25 (c)). 
 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 25 Schematic diagrams of bifurcation conditions. 

(a) C1 and C2 are leaf nodes. (b) C1 and C2 end at the same point. (c) P is too short. 

 

  



 

27 

And then we describe how the rule set works in detail. Firstly, the bifurcation 

conditions are examined with the order of Condition 1, Condition 2 and Condition 3. 

Next, the empirical rules are checked from Rule 1 to Rule 4. Once a condition or a 

rule is matched, examination of the remaining portion of the rule set will be skipped. 

According to the matched rule, four kinds of decisions can be made: 1) the parent 

segment p is a crossover 2) the child segment C2 is a crossover 3) the child segment 

C1 is a crossover 4) the situation is a bifurcation. The flowchart of rule set application 

is depicted (Fig. 26). An example is given to demonstrate the rule-based neurite tree 

growing method ( Fig. 21). 

 

 

Fig. 26 Flowchart of the rule set application. 
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(a) Neuronal Morphology 

 

 

(b) Condition 1 

 

 

(c) Rule 1 

 

(d) Rule 3 

 

 

(e) Otherwise 

 

 

(f) Otherwise 

 

(g) Rule 4 

 

 

(h) Condition 1 

 

 

(i) Rule 4 

 

(j) Rule 3 

 

 

(k) Neurite Tree 

  

 Fig. 27 An example of rule-based neurite tree growing. 

(b)~(j) The visited neurite trees are labeled with thin lines of different colors. The bold lines 

represent the current situation: P (red), C1 (green) and C2 (blue). 
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2.3.2 Backward Branch Priority Decision 

With previously constructed neurite trees, in this subsection, we deal with branch 

order decision. In the neurite tree representation, we can uniquely find all the 

ancestors of any node until the root node, namely, the paths from an arbitrary 

attachment point to any branch point or endpoint are unique. However, if we make 

branch priority decision from the root node, the backbone in the tree originated from 

the node is unknown. And the power of the information of the subtree is wasted. 

Therefore, we employ a backward branch priority decision, in other words, we 

begin from the leaf nodes and decide branch priority of two subtrees at each 

bifurcation instead of merely two neurite segments. So, at a bifurcation, only when the 

two subtrees of the current node are finished can we make priority decision (Fig. 28). 

The algorithm of backward branch priority decision is described in Algorithm 1. 

Besides, an example is given (Fig. 29). 

Taking the heuristic of longer neurite length and more branches together into 

consideration, here we adopt total subtree length, which is summed neurite length of 

all decedent nodes of a node, to decide the branch priority of the two children in the 

internal nodes. 

 

 

Fig. 28 Schematic diagram of backward branch priority decision. 

The square with black frame represents the current node. Dotted line represents segment of 

low priority and solid line represents segment of high priority. 
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Algorithm 1 Backward Branch Priority Decision 

 Input: tree-represented neurite  

 Output: neurite tree branch priority 

01 Set all internal nodes unvisited.    

02 WHILE there exist unvisited nodes, do    

03  FOR each unvisited node, do   

04   IF the node has unvisited children, then  

05    Skip. 

06   Collect information for priority decision.  

07   Decide priority of the two subtrees.  

08   Set the node as visited. 

 

 

(a) Neurite Tree 

 

 

(b) Phase 1 

 

 

(c) Phase 2 

 

(d) Phase 3 

 

 

(e) Phase 4 

 

 

(f) Branch Priority 

 Fig. 29 An example of backward neurite branch priority decision. 

Follow the example in Fig. 27. In (b) ~ (f), the segments (nodes) with higher priority are 

marked purple and that with lower priority are marked yellow. 
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Eventually, after all priority decisions are made, the branch order can be assigned 

from the root node (Fig. 30), which is undoubtedly part of a primary neurite. For 

example, of the two child segments of a primary neurite, the one with higher priority 

will be concatenated with the original primary neurite, and the other will become a 

new secondary neurite. Similarly, a secondary neurite will elongate at a bifurcation 

and sprout a tertiary neurite simultaneously.  

 

 

Fig. 30 Schematic diagram of branch order assignment. 

Follow from Fig. 28, here red lines represent primary neurites, blue lines represent 

secondary neurites and yellow lines represent tertiary neurites. 

 

The Algorithm 2 is employed to collect neurites from the neurite tree and 

simultaneously assign branch order of these neurites. As the example shown (Fig. 31), 

primary neurites are collected first, and then secondary neurites and so on. After the 

branch order assignment is done, neurite structure detection is complete and the 

neurite structure descriptors can be extracted. 
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Algorithm 2 Neurite Collection with Branch Order  

 Input: neurite tree with branch priority 

 Output: neurites with branch order 

01 Collect root nodes of the tree as current stack. 

02 Set current branch order as primary.   

03 WHILE current stack is not empty, do   

04  FOR each node in current stack, do  

05   Trace neurite along high priority from the node. 

06   Append the neurite to current order neurites. 

07  Collect all branches along current order neurites as 

  current stack.  

08  Add current branch order by one.  

 

 

(a) Branch Priority 

 

 

(b) Primary Neurite 

 

(c) Secondary Neurite 

 

 

(d) Branch Order 

 Fig. 31 An example of neurite branch order assignment. 

Follow the example in Fig. 29. In (b) ~ (d), primary neurites are in red and secondary neurites 

are in blue. 
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2.4 Quantification of Neuronal Morphological Features 

After the extraction of basic neuronal morphologies and neurite structure, we 

will quantify detected morphological features for each neuron cell. In addition to the 

neurites, neurite segments, the line segments between critical points, are available for 

quantification as well (Fig. 32). 

 

 

(a) 

 

(b) 

Fig. 32 Schematic diagram of neurites and neurite segments. 

(a) A neuron with three neurites marked in different colors. (b) From (a), five neurite 

segments are separated by critical points. 

 

The 53 quantifiable morphological features for individual neurons of 

NeurphologyS are summarized (Table 6). Each of these features, according to the 

subject it describes, can be categorized into five subsets. The subsets accompanied 

with the number of features are listed: 

1) Soma related features (6). 

2) Neurite related features (32), including 24 features describing different orders 

of neurites. Neurites with branch order larger than tertiary are regarded as 

higher-order neurites. 

3) Critical point related features (3). 

4) Neurite segment related features (7). 

5) Other features that cannot be categorized in the above four subsets (5). 
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Table 7 describes how to calculate these quantification values. Due to the 

similarity of calculation, repeated descriptions of quantifications of neurite and 

neurite segment are eliminated. All the 31 morphological features available in 

HCA-Vision are included in the feature set of NeurphologyS. Table 8 shows the 

mapping of morphological features from HCA-Vision to NeurphologyS. 

 

Table 6 Quantifiable Morphological Features of NeurphologyS. 

Soma   Primary Neurites   Secondary Neurites 

somaArea   primaryNum   secondaryNum 

somaPerimeter   primaryLengthMax   secondaryLengthMax 

somaIntensityMax   primaryLengthMean   secondaryLengthMean 

somaIntensityMean   primaryLengthTotal   secondaryLengthTotal 

somaIntensityIntg   primaryBranchNum   secondaryBranchNum 

somaIntensityStdv   primaryBranchMean   secondaryBranchMean 

          

Tertiary Neurites   Higher Order Neurites*   All Neurites 

tertiaryNum   highorderNum   allNum 

tertiaryLengthMax   highorderLengthMax   allLengthMax 

tertiaryLengthMean   highorderLengthMean   allLengthMean 

tertiaryLengthTotal   highorderLengthTotal   allLengthTotal 

tertiaryBranchNum   highorderBranchNum   allIntensityMax 

tertiaryBranchMean   highorderBranchMean   allIntensityMean 

        allIntensityIntg 

    allIntensityStdv 

Critical Points  Neurite Segments   Others 

endpointNum  segmentNum   branchLayerMax 

allBranchNum  segmentLengthMax   branchLayerMean 

allBranchMean  segmentLengthMean   subtreeLengthMax 

  segmentLengthTotal   subtreeLengthMean 

  segmentIntensityMax   neuriteFieldArea 

  segmentIntensityhMean    

  segmentIntensityStdv    
 

Neurite related features (white) are further divided due to the amount. 

*Branch order larger than tertiary are regarded as higher order. 
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Table 7 Morphological Feature Quantification. 

Feature Name Feature Computation 

Soma 

somaArea Total area of the soma. 

somaPerimeter Perimeter of the soma. 

somaIntensityMax Maximum intensity value in the soma. 

somaIntensityMean Averaged intensity value in the soma. 

somaIntensityIntg Summation of intensity values in the soma. 

somaIntensityStdv Standard deviation of intensity values in the soma. 

Neurites (Neurite Segments) 

Num Number of neurites. 

LengthMax Maximum length of neurites. 

LengthMean Averaged length of neurites. 

LengthTotal Summation of lengths of neurites. 

BranchNum Summation of numbers of branches on neurites. 

BranchMean Averaged number of branches on neurites. 

IntensityMax Maximum intensity value in all neurites. 

IntensityMean Averaged intensity value in all neurites. 

IntensityIntg Summation of intensity values in all neurites. 

IntensityStdv Standard deviation of intensity values in all neurites. 

Critical Points 

endpointNum Number of ending neurite segments. 

allBranchNum Number of branches of all neurite trees. 

allBranchMean Number of branches of all neurite trees divided by number 

of all neurites. 

Others 

branchLayerMax Maximum branch order of all neurite trees. 

branchLayerMean Maximum branch order of all neurite trees divided by the 

number of primary neurites. 

subtreeLengthMax Maximal total length of neurite trees of different roots. 

subtreeLengthMean Averaged total length of neurite trees of different roots. 

neuriteFieldArea Convex hull area that contains all the neurites. 
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Table 8 Corresponding Features of NeurphologyS and HCA-Vision. 

HCA-Vision  NeurphologyS 

Area  somaArea 

Perimeter  somaPerimeter 

TotalNeuriteLength  allLengthTotal 

MaxNeuriteLength  allLengthMax 

MaxBranchLayer  branchLayerMax 

MeanBranchLayer  branchLayerMean 

NumBranchPoints  allBranchNum 

NumOfRoots  primaryNum 

NumOfSegments  segmentNum 

NumOfExtremities  endpointNum 

NeuriteFieldArea  neuriteFieldArea 

MaxIntensity_Neurite  allIntensityMax 

MeanIntensity_Neurite  allIntensityMean 

IntegratedIntensity_Neurite  allIntensityIntg 

StdevIntensity_Neurite  allIntensityStdv 

Lvl1NoBranches  primaryNum 

Lvl1TotLength  primaryLengthTotal 

Lvl1MaxLength  primaryLengthMax 

Lvl2NoBranches  secondaryNum 

Lvl2TotLength  secondaryLengthTotal 

Lvl2MaxLength  secondaryLengthMax 

Lvl3NoBranches  tertiaryNum 

Lvl3TotLength  tertiaryLengthTotal 

Lvl3MaxLength  tertiaryLengthMax 

MaxIntensity_Neuron  somaIntensityMax 

MeanIntensity_Neuron  somaIntensityMean 

IntegratedIntensity_Neuron  somaIntensityIntg 

StdevIntensity_Neuron  somaIntensityStdv 

Mean primary length  primaryLengthMean 

Mean sec length  secondaryLengthMean 

Mean tert length  tertiaryLengthMean 
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2.5 Quantify Morphological Features with NeurphologyS 

NeurphologyS is implemented in MATLAB, hence it is cross-platform. For ease 

of use, a GUI is provided (Fig. 33). The usage of NeurphologyS GUI is divided into 

two phases, parameter setting phase and batch processing phase. Here we will 

describe each parameter in detail. The parameters required by NeurphologyS are 

separated into two sets, corresponding to basic neuronal morphology detection and the 

RANBO method. The parameter set of basic neuronal morphology detection is further 

divided into four parts, for soma detection, neurite detection, neurite gap closing and 

spur filter. The parameters are summarized in Table 9. 

 

 

Fig. 33 Graphical user interface of NeurphologyS. 
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Table 9 Parameters of NeurphologyS. 

Basic Neuronal Morphology Detection 

Soma Detection  Neurite Detection 

Gaussian filter width  Gaussian filter width 

Background correction width  Background correction width 

Neurite suppression width  MDNMS directions 

Cumulated histogram quantile  Linear window size 

Soma dilation size  NMS intensity difference 

  Smallest object size 

   

Neurite Gap Closing  Spur Filter 

Extension radius  Least ending segment length 

Object diameter   

Object contrast   

   

RANBO   

Angle upper bound   

Angle lower bound   

Length for angle calculation   

Angle ratio threshold   
 

 

Parameters for soma detection are listed: 1) window width of Gaussian filter, the 

larger the size, the larger the impact of blurring effect of the filter; 2) structural 

element width for background correction, the size must be larger than the largest soma, 

otherwise the soma might be eliminated; 3) structural element width for neurite 

suppression, the size is expected to be larger than the widest neurite width; 4) quantile 

of the gradient weighted histogram, the smaller the value, the thresholding becomes 

less sensitive but more noisy; 5) soma dilation size, since the neurite detected can be 

disconnected from soma detection, the user can specified a size for enlarging soma. 

Parameters for neurite detection are listed: 1) window width of Gaussian filter; 2) 

structural element width for background correction; 3) number of directions used for 

local linear windows, 4 directions including 0, 45, 90 and 135 degrees, and 8 
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directions will add 22.5, 67.5, 112.5 and 157.5 degrees in addition; MDNMS with 

more linear windows of different directions is expected to extract more complete 

neurite centerlines; 4) liner window width, the size is expected to be close to widest 

neurite width for detection of centerline; 5) intensity difference of MDNMS, this 

value means how much the distance from the maxima to the two sides of ridge, larger 

value eliminates weak linear features; 6) smallest object size, this value is to eliminate 

small connected components of linear features. 

Parameters for neurite gap closing are listed: 1) extend window radius, how far 

the candidate isolated linear structures can be located near the overlaid soma-neurite 

component; 2) object diameter, only the linear structures with diameter larger than 

this constraint are considered; 3) object contrast, linear structures with low contrast, 

namely, similar to background, are ignored. As for the spur filtering part, the shortest 

ending segment size determines the length of the ending segments to be removed. 

Until here the parameters for basic neuronal morphology are all described. 

Parameters for RANBO are listed: 1) local segment angle upper bound, the 

branch point will be regarded as crossover if the local angle is larger than this upper 

bound; 2) local segment angle lower bound, the branch point will be consider as a 

bifurcation if the local angle is smaller than this lower bound; 3) the length of 

segment to be used to calculate the angles; 4) angle ratio threshold, as mentioned 

before, the smaller the value, the more strictly that one of the two child branches will 

be regarded as a crossover. 

Given a test neuron image of a dataset, the user can tune parameters with the 

NeurphologyS wizards (Fig. 34 (a)). The result of parameter adjust of separated steps 

can be visualized. These parameters can be stored and be used in batch process phase 

(Fig. 34 (b)). In batch process phase, the user can select folders of neuron images to 

be processed with the stored parameters. In the end of the process, descriptors are 
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calculated for each detected soma, and the results are written into the same 

tab-delimited text file for the images in the same folder. In addition, result images can 

be saved also for visualization. 

 

 

(a) 

 

(b) 

Fig. 34 Two operation modes supported by the GUI. 

(a) Wizard mode, it’s for ease of tuning five different parameter sets. (b) Batch processing 

mode, with a set of parameters, the user can batch process images in selected directories. 
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CHAPTER 3  

EXPERIMENTAL RESULTS 

 

In this chapter we will evaluate performance of NeurphologyS by comparing 

with the existing commercial software HCA-Vision [13]. Firstly, both our method and 

HCA-Vision is applied on the GFP image dataset for evaluating the basic neuronal 

morphology quantifications. Secondly, we process the Sez-6 image dataset for 

proving the ability to differentiate subtle change in neurite branching. Finally, 

semi-automated method (NeuronJ [10]) results are taken as ground truth and show 

that NeurphologyS mimics human behavior well compared to HCA-Vision. 

 

3.1 Comparable Quantification Results with HCA-Vision 

To compare the performance of basic neuronal morphology quantification of the 

proposed system, in this experiment, we process our GFP dataset with both 

NeurphologyS and HCA-Vision (Fig. 35). The 40 neuron images are processed with 

the same set of parameters, and 41 neurons are selected for quantification. Although 

53 features can be quantified, only the 31 morphological features corresponding to 

that can be exported by HCA-Vision are shown for comparison. 

Table 10 shows the mean value and standard deviation of each features derived 

using NeurphologyS and HCA-Vision, respectively. In addition, Pearson’s correlation 

coefficients between corresponding features of NeurphologyS and HCA-Vision are 

calculated. The correlation values are used for ranking in the table to show what are 

the most correlated features. 
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(a) 

 

(b) 

Fig. 35 Example result image of the two methods on GFP dataset. 

(a) Result image of NeurphologyS. (b) Result image of HCA-Vision. 

 

Of the 31 morphological features, 17 descriptors are irrelevant to neurite 

structure, such as total neurite length, maximal neurite intensity or number of roots. 

These descriptors will not affected by neurite branch order decision. The remaining 14 

descriptors are neurite structure related. It can be observed from Table 10 that the 

most correlated features are neurite structure irrelevant and that most neurite structure 

related descriptors are less correlated. 

Of the 10 highly correlated features (with correlation value > 0.9), 7 of them are 

intensity-related features. This shows similarity of the soma detection and neurite 

centerline extraction of the two methods. The high correlation of total neurite length 

and neurite field area shows similarity of neurite detection also. Hence, the less 

correlated neurite structure features might be resulted from the difference of the two 

method in the composition of neurite branch order. 

As a brief conclusion, our detection of basic neuronal morphology is comparable 

to the validated commercial software. And the following comparisons on neurite 

structure can be made on this basis. 
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Table 10 Quantification results of the GFP dataset. 

 NeurphologyS  HCA-Vision  

Descriptors Mean STDV  Mean STDV Correlation 

MaxIntensity_Neuron 230.3  48.2   230.1  48.3  1.00 

IntegratedIntensity_Neuron 277644  107214   266542  105151  0.99 

IntegratedIntensity_Neurite 22073  24288   29390  33655  0.99 

StdevIntensity_Neuron 68.5  18.6   64.9  19.3  0.98 

NeuriteFieldArea 108473  119099   100807  108007  0.97 

StdevIntensity_Neurite 13.9  8.7   13.4  8.3  0.96 

MeanIntensity_Neurite 20.0  12.6   21.0  13.3  0.96 

TotalNeuriteLength 1097.6  855.5   1149.2  804.7  0.93 

MaxIntensity_Neurite 92.4  54.8   86.6  51.2  0.92 

Lvl3TotLength 47.6  99.1   147.6  354.7  0.91 

MaxNeuriteLength 405.5  290.8   476.4  354.1  0.88 

MeanIntensity_Neuron 100.0  27.1   110.9  28.4  0.87 

NumOfRoots 3.9  1.5   3.9  1.4  0.84 

Lvl1NoBranches 3.9  1.5   3.9  1.4  0.84 

NumOfExtremities 10.0  6.2   9.1  5.6  0.81 

NumOfSegments 19.0  13.8   14.7  10.9  0.81 

NumBranchPoints 7.4  6.6   5.2  4.8  0.80 

MaxBranchLayer 1.5  0.8   2.5  1.0  0.75 

Area 2738.0  641.8   2364.2  632.0  0.74 

Lvl1TotLength 715.3  398.8   640.3  350.2  0.72 

Perimeter 168.0  21.0   214.8  30.6  0.71 

Mean tert length 11.9  16.1   26.4  47.9  0.68 

Lvl3MaxLength 24.0  43.8   66.9  154.6  0.68 

Lvl2TotLength 331.5  426.7   361.3  402.3  0.65 

Lvl3NoBranches 1.5  2.5   2.1  4.7  0.63 

Mean primary length 189.6  106.1   169.0  84.1  0.61 

Lvl1MaxLength 404.7  290.4   359.2  237.4  0.60 

Lvl2NoBranches 5.7  4.2   3.6  2.8  0.59 

MeanBranchLayer 0.8  0.5   1.4  0.4  0.58 

Lvl2MaxLength 121.8  138.8   196.1  229.0  0.58 

Mean sec length 47.0  37.1   88.6  83.9  0.51 
 

Neurite structure irrelevant descriptors are highlighted. 

The Pearson’s correlation coefficients larger than 0.9 are in bold. 
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3.2 Ability to Characterize Neurite Branching 

Ability of HCA-Vision to characterize neurite branching was validated with 

Sez-6 image dataset [13]. The dataset includes a wild-type class (Pos) and a Sez-6 

knockout class (Min), consisting of 96 images totally. Only 101 neurons in these 

images were selected for quantification (Fig. 36 (a), (b)). They semi-automatically 

annotated Sez-6 dataset with NeuronJ [10], and 17 morphological features were 

exported. There were statistical differences in 9 of these features about neurite 

branching. HCA-Vision got the same result as the semi-automatic annotation. 

With the same set of parameters, we process all the neuron images of the two 

classes and generate neuronal morphology descriptors for the 101 neurons with 

NeurphologyS (Fig. 36 (c), (d)). Table 11 shows the mean value and standard 

deviation of each descriptor of Pos class and Min class, respectively. Besides, for each 

descriptor, Student’s t-test is applied between the two classes to derive the p-value. 

 

 

(a) Wild-type 

 

(b) Sez-6 Knockout 

 

(c) Wild-type 

 

(d) Sez-6 Knockout 

Fig. 36 Example result images of the two methods on Sez-6 dataset. 

(a)(b) Result images of HCA-Vision. (c)(d) Corresponding result images of NeurphologyS. 
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Table 11 Quantification results of Sez-6 dataset with NeurphologyS. 

 Pos  Min  

Descriptors Mean STDV  Mean STDV P-Value 

Area 3230.9  996.5   3150.3  1085.2  0.6984  

Perimeter 189.5  38.0   184.8  40.4  0.5494  

TotalNeuriteLength 1547.0  648.2   1631.2  765.7  0.5530  

MaxNeuriteLength 553.2  250.3   427.5  220.2  **0.0086  

MaxBranchLayer 2.7  0.7   1.8  0.5  0.7715  

MeanBranchLayer 1.7  0.2   0.8  0.3  0.7505  

NumBranchPoints 8.9  5.0   12.4  7.2  **0.0053  

NumOfRoots 5.7  1.6   6.9  2.3  **0.0030  

NumOfSegments 23.6  10.6   32.3  15.8  **0.0016  

NumOfExtremities 13.1  5.4   16.3  6.2  **0.0074  

NeuriteFieldArea 163886  106251   131063  84738  0.0890  

MaxIntensity_Neurite 162.5  54.6   158.5  60.8  0.7258  

MeanIntensity_Neurite 50.7  12.6   44.7  12.4  *0.0175  

IntegratedIntensity_Neurite 80177  43210   74887  43497  0.5  

StdevIntensity_Neurite 28.8  9.3   26.3  6.9  0.1379  

Lvl1NoBranches 5.7  1.6   6.9  2.3  **0.0030  

Lvl1TotLength 1023.2  345.3   1030.1  395.6  0.9260  

Lvl1MaxLength 553.2  250.3   427.5  220.2  **0.0086  

Lvl2NoBranches 7.4  3.8   10.3  5.4  **0.0018  

Lvl2TotLength 474.1  329.0   539.2  350.1  0.3382  

Lvl2MaxLength 156.7  127.8   130.8  85.8  0.2336  

Lvl3NoBranches 1.4  1.9   2.1  2.3  0.1033  

Lvl3TotLength 46.9  67.2   61.6  93.4  0.3646  

Lvl3MaxLength 28.5  38.2   28.2  28.8  0.9657  

MaxIntensity_Neuron 228.6  37.4   227.0  34.6  0.8252  

MeanIntensity_Neuron 120.3  25.5   113.0  23.7  0.1376  

IntegratedIntensity_Neuron 394668  153730   363061  162540  0.3  

StdevIntensity_Neuron 49.5  8.5   48.2  8.5  0.4266  

Mean primary length 188.0  76.6   153.3  47.9  **0.0077  

Mean sec length 65.6  43.3   50.8  17.5  *0.0277  

Mean tert length 21.5  26.7   21.5  19.8  0.9952  
 

Descriptors with statistical difference that reported in HCA-Vision are highlighted. 

Descriptors exported with NeuronJ are in bold. 

The p-values of Student’s t-test smaller than 0.05 are in bold. 

*p<0.05, **p<0.01 
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In agreement with the results presented in report of HCA-Vision, the statistical 

results generated by NeurphologyS show statistical differences (p-value < 0.05) in 11 

features. Nine of these features showed statistical differences in both semi-automatic 

results and HCA-Vision results. And, since number of segments and mean neurite 

intensity cannot be quantified with NeuronJ, only the results of HCA-Vision are 

available for the two features. We get statistical differences in the 2 features also. 

Hence, the same conclusion as HCA-Vision can be made that knockout of Sez-6 

exhibits excessive neurite branching, and the neurite structure discriminating ability 

of NeurphologyS is ensured.  
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3.3 Performance of Neurite Structure Features 

Semi-automatic neurite tracing and branch order assignment of the GFP dataset 

is made by a neuroscientist with NeuronJ [10] for each of the 41 neurons (Fig. 37). To 

measure the performance of neurite structure feature extraction and quantification of 

NeurphologyS, we compare the correlation of NeurphologyS results and HCA-Vision 

results with the semi-automatic results. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 37 Example annotation result on GFP dataset. 

(a) Semi-automatic result. (b) NeurphologyS result. (c) HCA-Vision result. 

 

The neuronal morphology descriptors that can be directly derived from NeuronJ 

are showed in Table 12. In addition to the mean and standard deviation of 

semi-automatic tracing results, Pearson’s correlation coefficients are calculated 

between results generated manually and that of NeurphologyS and HCA-Vision, 

respectively.  
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Table 12 Semi-automatic quantification results of GFP dataset. 

 Semi-automatic  Correlation 

Descriptors Mean STDV  NeurphologyS HCA-Vision 

Sum Len 1112.2  914.7   0.98  0.91  

Max Len 495.0  444.4   0.90  0.86  

Lv1 No 3.5  1.2   0.73  0.66  

Lv1 Tot 850.8  567.2   0.95  0.61  

Lv1 Max 495.0  444.4   0.89  0.55  

Lv2 No 1.3  1.4   0.58  0.53  

Lv2 Tot 228.7  356.7   0.94  0.57  

Lv2 Max 124.5  161.8   0.89  0.50  

Lv3 No 0.2  0.6   0.70  0.64  

Lv3 Tot 32.8  84.3   0.78  0.61  

Lv3 Max 26.2  66.9   0.93  0.56  

Lv1 Mean 248.3  164.0   0.86  0.40  

Lv2 Mean 92.6  103.6   0.75  0.64  

Lv3 Mean 23.0  58.3   0.75  0.55  
 

Descriptors with higher correlation to semi-automated result are highlighted. 

The Pearson’s correlation coefficients larger than 0.9 are in bold. 

 

From the table, it is shown that the results of NeurphologyS acquire higher 

correlation with semi-automated results than HCA-Vision. NeurphologyS can perform 

well compared to HCA-Vision in mimicking annotation of human experts. Since we 

have compared performance of basic neuronal morphology detection, the main 

difference between the two methods will lie in branch order assignment. 

In HCA-Vision, only average neurite intensity is considered when constructing 

neurite tree and deciding the branch priority. However, ignorance of neurite length 

will lead to preference of short, high-intensity neurite segments (Fig. 38 (c), (f)). The 

RANBO method devised for neurite tree growing and neurite branch priority decision 

employs local neurite angle as well as neurite subtree length. Hence, a smooth, long 

neurite with many branches is preferred, and this is closer to what we expected to be a 

neurite with high priority (Fig. 38 (b)). Since NeurphologyS decides the priority more 
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globally than HCA-Vision, this accounts for the high correlation in secondary neurite 

length. But the adoption of subtree length in branch priority decision can result in 

mistakes due to disturbance of noise (Fig. 38 (e)). 

As in (Fig. 38 (g), (h), (i)), it can be shown that the neurite detection result of 

NeurphologyS is closer to semi-automatic method than that of HCA-Vision. This 

might result from the differences in method of neurite gap closing. And this can 

explain why NeurphologyS gets higher correlation in total or maximal neurite length. 

 

Semi-automatic NeurhpologyS HCA-Vision 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) (i) 

Fig. 38 Example results of GFP dataset. 

Images in a row are results of the same neuron image with different methods. (a)(b)(c) Global 

branch decision making of our method. (d)(e)(f) Disturbance of noise to our method. (g)(h)(i) 

Our method extracts neurite closer to semi-automatic result. 

  



 

50 

CHAPTER 4  

CONCLUSIONS AND FUTURE WORKS 

 

4.1 Conclusions 

The flourishing development of fluorescent microscopy benefits acquisition of 

massive neuron image dataset. Owing to the crucial role play by neuronal 

morphologies in neuroscience, numerous applications proved their versatile ability. 

Out of these features, neurite structure descriptors characterize neurite branching well. 

However, there are few studies aiming at extraction of neurite structure descriptor. 

Thus, in this thesis, we propose an automated system, NeurphologyS, for 

extraction and quantification of morphological features from neuron images, 

including neurite structure. The system consists of basic neuronal morphology 

detection and a proposed rule-based neurite tree growing and backward branch 

priority decision (RANBO) method for the task of neurite structure extraction. 

NeurphologyS is freely available, open-source and cross-platform with MATLAB 

implemented GUI. 

The correctness, ability to characterize neurite branch and performance of 

extracted neurite structure descriptor are evaluated with two neuron image datasets. It 

can be known from the results that NeurphologyS performs well compared to the 

outstanding commercial software, HCA-Vision. Resulted from the RANBO method, 

NeurphologyS can generate quantification results that get higher correlation with 

semi-automatic tracing results annotated by human experts. 
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4.2 Future Works 

Although the proposed RANBO method endeavors to simulate the behavior of 

human annotator, only simplified concept with local neurite segment angles are 

considered to solve neurite crossovers in 2D neuron images. Due to the complexity of 

neurite growth, RANBO cannot solve all the situations encountered perfectly.  

For the neurite tree growing task, more elaborated techniques can be designed 

for analyzing the complex neurite anatomy. Other conditions, such as intensity, curve 

smoothness or global trend of neurite, etc., can be integrated to construct a more 

robust and reliable tree growing result. 

And for the neurite branch priority decision, only one single feature, the total 

subtree length, is utilized in the backward branch priority decision, it is possible and 

heuristic that multiple features can be combined to generate results mimicking expert 

operators well. The backward property makes it possible to include more global 

features, such information of the whole parent neurite and the whole subtree thereafter 

of the current bifurcation points. 

NeurphologyS can quantify 53 morphological features including neurite structure 

descriptors. Since we cannot predict all the morphological differences caused by 

experimental modulation. It is necessary to incorporate more morphological features 

for describing the neuron cell.  

Analysis of advanced neuronal morphology, such as neurite structure, is highly 

limited by complex neurite outgrowth. The performance of NeurphologyS on densely 

stained neuron cultures cannot be ensured. However, a more global quantification 

about a whole neuron image instead of individual neurons is also necessary. A robust 

tool capable of quantify advanced neuronal morphologies among densely stained 

neuron population will be powerful and can be used in much more situations. 
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