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使用不同斜率的限制在半離散中央上風法對雙曲保
守律的數值研究與比較

學生：張佑民 指導教授：薛名成 教授

國立交通大學應用數學系（研究所）碩士班

摘 要

本論文，我們研究對雙曲保守律的數值近似方法。我們使用有反擴散項的半離散中央上

風法，在重構和投影的步驟裡使用不同的斜率限制，而這些我們所選取的斜率限制它滿

足單調的特性。此外我們呈現使用不同斜率限制的數值結果並且進行比較。在第一章

節，我們簡單介紹雙曲保守律和一些計算這類系統的數值方法。在第二章節，我們在新

半離散中央上風法裡的重構和投影步驟中使用不同的斜率限制。在第三章節，我們探討

選取的數值通量滿足單調特性。在第四章節，我們呈現數值結果並且觀察它們的特性。

關鍵詞：雙曲保守律、半離散中央上風法、數值耗散。

i



Numerical study and comparison of semidiscrete
central-upwind schemes for hyperbolic conservation

laws with different slope limiters

Student: Yu-Ming Chang Advisors: Ming-Cheng Shiue

Department (Institute) of Applied Mathematics

National Chiao Tung University

Abstract

In this thesis, we study numerical approximation for hyperbolic conservation laws

arising from physical models. In particular, we introduce modified and new semidiscrete

central-upwind schemes with different slope limiters, which are believed to monotone

scheme, to reduce numerical dissipation. Furthermore, we compare and present numerical

results with different slope limiters.

In Chapter 1, we briefly introduced hyperbolic conservation laws. We also recalled

numerical methods for this type of equations in the literature. In particular, we consider

a Godunov-type finite volume scheme.

In Chapter 2, we followed the ideas on less numerical dissipative numerical schemes for

hyperbolic conservation laws schemes as in [6]. Our goal is to reduce numerical dissipation

and to obtain more accurate solutions. Then we use different limiters at reconstruction

and evolution step in these new semidiscrete up-wind schemes.

ii



In Chapter 3, we discussed that the numerical fluxes we choose satisfy the monotonic

property.

In Chapter 4, we presented some numerical resolutions and observed performance of

the new second-order semidiscrete central-upwind schemes.

Keywords: Hyperbolic systems of conservation laws, semi-discrete central-upwind schemes,

numerical dissipation.
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Chapter 1

Introduction

We consider the systems of hyperbolic conservation laws with flux vector f(u):

∂

∂t
u(x, t) + ∂

∂x
f(u(x, t)) = 0. (1.1)

The system arises from physical principles such as conservation of mass, momentum,or

energy and we refer the reader to see [10, 13] for more detailed information. Such a system

aries in many applications such as traffic flow.

As for numerical methods for hyperbolic conservation law (1.1), we often use finite

difference [8], finite element [17, 4], and finite volume methods [10, 1, 9]. The finite

difference method is the differential operator replaced by finite difference and to use

computing grids to construct difference, and approximate derivatives. The finite volume

method is to use subdivision of spatial computing domain and computing integral of these

control volumes to approximate the flux through the endpoints of the intervals in space

dimension one.

The finite volume type that we consider is a Godunov-type scheme. The scheme is to

use cell average at time level tn, construct piecewise polynomial, evolve at time level tn+1,

and finally project onto space of piecewise interpolant (see in [7, 12]).

In this thesis, we use new semidiscrete central-upwind schemes with anti-diffusion

terms for hyperbolic conservation laws. We focus on modifying slope limiters that satisfy

Total Variation Diminishing Diminishing (TVD) [15] at reconstruction step, choosing the
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same slope limiters at projection step and comparing performance of these numerical

results with the new semidiscrete central-upwind schemes.

The rest point of this thesis is organized as follows: In Chapter 2, we recall origi-

nal semi-discrete central-upwind schemes and introduce new semi-discrete central-upwind

schemes with modified limiters. In Chapter 3, monotonicity of numerical schemes derived

in Chapter 2 is studied. Finally, we present numerical results and compare numerical

solutions with different slope limiters. Furthermore, some concluding remarks are also

given in Chapter 4.
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Chapter 2

Semidiscrete central-upwind schemes

In this Chapter, we recall the original semidiscrete central-upwind schemes and intro-

duce new numerical schemes to reduce the numerical dissipation in the original scheme

(see [7]). The motivation comes from the choices of the slope limiters which are introduced

to avoid oscillatory.

In this Chapter, we consider the following one dimensional hyperbolic conservation

laws:

ut + f(u)x = 0, (2.1)

where u = u(x, t) : R × R+ −→ Rn is the unknown, the flux f(u) is a function from R

to Rn and n is a positive integer. Equation (2.1) is hyperbolic if the Jacobian matrix

( ∂fi
∂uj

), i, j=1,...n satisfies the property that the matrix has only real eigenvalues and is

diagonalizable.

For the discretization, we consider the uniform grids xj = j∆x, xj± 1
2
= (j ± 1

2
)∆x

and tn = n∆t where ∆x and ∆t are the mesh size in space and time respectively; j is an

integer and n is positive integer. We denote the cell average un
j by

1

∆x

∫ x
j+1

2

x
j− 1

2

u(x, tn)dx ≈ un
j , j = 0,±1,±2, ...,

and Ij = (xj− 1
2
, xj+ 1

2
).
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Integrating (2.1) over the space time domain Ij × (tn, tn+1), the resulting equation

gives

1

∆x

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

ut(x, t)dxdt =
1

∆x

( ∫ x
j+1

2

x
j− 1

2

u(x, tn+1)dx−
∫ x

j+1
2

x
j− 1

2

u(x, tn)dx
)

= un+1
j − un

j ,

(2.2)

and

1

∆x

∫ tn+1

tn

∫ x
j+1

2

x
j− 1

2

fx(u(x, t))dxdt =
1

∆x

[ ∫ tn+1

tn

(
f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))

)
dt

]
. (2.3)

We can infer from (2.2) and (2.3) that

un+1
j = un

j −
1

∆x

[ ∫ tn+1

tn

(
f(u(xj+ 1

2
, t))− f(u(xj− 1

2
, t))

)
dt

]
. (2.4)

The construction of central-upwind schemes for one time step consists of three con-

secutive steps : reconstruction, evolution and projection back onto the original grid.

The first step is to reconstruct the second-order piecewise linear interpolant such that

its averages are equal to the data {un
j }. The second step is to evolve the approximate

solution represented by a global piecewise linear interpolant ũ(x, tn), to the next time

level using the integral form of the conservation law (2.4). Finally, we use the piecewise

linear interpolant reconstruction from the evolved intermediate cell average, and project

back onto the original grids. Now we start to discuss these steps for the detailed procedure

as follows:

Reconstruction:

First,we reconstruct the second-order piecewise linear interpolant ũ(x, tn) from the

cell averages {un
j }. That is, we find a suitable polynomial pnj (x) such that its cell average

on Ij is equal to un
j for j.

ũ(x, tn) = pnj (x) := un
j + snj (x− xj), x ∈ Ij ∀j. (2.5)
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More specifically, the slope snj is considered as the form of

snj = ψ(Rj)(uj − uj−1), (2.6)

where Rn
j is the ratio of forward differences to backward ones in the solution defined as

Rn
j =

uj+1 − uj

uj − uj−1

,

and the limiter ψ is introduced to satisfy the property of Total Variation Diminishing

(TVD) and avoid numerical oscillatory. In this thesis, we study five kinds of limiters

(superbee, Barth-Jespersen, van Leer, van Albada, and mimod) which have been analyzed

in [15, 11]. Now, let us denote the following limiters by

(superbee) ψsb(R) = min[max{1, R}, 2, 2R],

(Barth-Jespersen) ψBJ(R) =
1

2
(R + 1)min[min(1, 4R

R + 1
),min(1, 4

R + 1
)],

(van Leer) ψV L(R) =
2R

R + 1
,

(van Albada) ψV A(R) =
R2 +R

R2 + 1
,

(min) ψmin(R) = min{1, R}.

(2.7)

Notice that for these limiters, a negative value of R indicates an extremum in the

solution, and set ψ(R ≤ 0) = 0. (see Figure 2.1)

Evolution:

The discontinuities of piecewise polynomial (2.5) may appear at the interface point

{xj+ 1
2
} propagating with right- and left-sides local speeds, which can be computed by

a+
j+ 1

2

:= max
ω∈C(u−

j+1
2

,u+

j+1
2

)
{λN(A(ω), 0)},

and

a−
j+ 1

2

:= min
ω∈C(u−

j+1
2

,u+

j+1
2

)
{λ1(A(ω), 0)}.

5



Figure 2.1: Slope limiters

Here, λ1 < λ2 < ... < λN are the N eigenvalues of the Jacobian A := ∂f
∂u , and

C(u−
j+ 1

2

,u+
j+ 1

2

) is the curve in the phase space that connects the left, u−
j+ 1

2

= lim
x→x−

j+1
2

ũ(x, tn),

and the right u+
j+ 1

2

= lim
x→x+

j+1
2

ũ(x, tn). The local speeds can be estimated by

a+
j+ 1

2

:= max{λN(
∂f
∂u(u+

j+ 1
2

)), λN(
∂f
∂u(u−

j+ 1
2

)), 0}, (2.8)

and

a−
j+ 1

2

:= min{λ1(
∂f
∂u(u+

j+ 1
2

)), λ1(
∂f
∂u(u−

j+ 1
2

)), 0)}. (2.9)

Next, we consider the non-equal rectangular domains

[xn
j− 1

2
,r
, xn

j+ 1
2
,l
]× [tn, tn+1], [xn

j+ 1
2
,l
, xn

j+ 1
2
,r
]× [tn, tn+1]

where xn
j+ 1

2
,l
:= xj+ 1

2
+∆ta−

j+ 1
2

and xn
j+ 1

2
,r
:= xj+ 1

2
+∆ta+

j+ 1
2

(see Figure 2.2).

Integration of (2.1) over these domains, the nonsmooth cell averages are computed by

wn
j+ 1

2
=

1

xn
j+ 1

2
,r
− xn

j+ 1
2
,l

[

∫ x
j+1

2

xn

j+1
2 ,l

pnj (x)dx+

∫ xn

j+1
2 ,r

x
j+1

2

pnj+1(x)dx].

The evolution of these nonsmooth cell averages can be approximated by applying

midpoint quadrature for the temporal and spatial integrals. That is,

6



Figure 2.2: Central-upwind differencing
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wn+1
j+ 1

2

=
1

xn
j+ 1

2
,r
− xn

j+ 1
2
,l

[ ∫ x
j+1

2

xn

j+1
2 ,l

pnj (x)dx+

∫ xn

j+1
2 ,r

x
j+1

2

pnj+1(x)dx

−
∫ tn+1

tn

(
f(u(xn

j+ 1
2
,r
, t))− f(u(xn

j+ 1
2
,l
, t))

)
dt

]

(By midpoint quadrature)

=
1

∆t(a+
j+ 1

2

− a−
j+ 1

2

)[
− a−

j+ 1
2

∆tpnj (xj+ 1
2
+
a−
j+ 1

2

∆t

2
) + a+

j+ 1
2

∆tpnj+1(xj+ 1
2
+
a+
j+ 1

2

∆t

2
)

−∆t(f(un+ 1
2

j+ 1
2
,r
)− f(un+ 1

2

j+ 1
2
,l
))

]
=

1

∆t(a+
j+ 1

2

− a−
j+ 1

2

)

[
− a−

j+ 1
2

∆t(un
j + snj

∆x+ a−
j+ 1

2

∆t

2
)

+ a+
j+ 1

2

∆t(un
j+1 + snj+1

−∆x+ a+
j+ 1

2

∆t

2
)−∆t(f(un+ 1

2

j+ 1
2
,r
)− f(un+ 1

2

j+ 1
2
,l
))

]
=

1

(a+
j+ 1

2

− a−
j+ 1

2

)

[
− a−

j+ 1
2

un
j −

snj
2
a−
j+ 1

2

∆x−
snj
2
(a−

j+ 1
2

)2∆t+ a+
j+ 1

2

un
j+1

−
snj+1

2
a+
j+ 1

2

∆x+
snj+1

2
(a+

j+ 1
2

)2∆t− (f(un+ 1
2

j+ 1
2
,r
)− f(un+ 1

2

j+ 1
2
,l
))

]
.

(2.10)

Similarly, over the smooth areas, the evolution of the cell averages can be approxi-

mately by

wn+1
j =

1

xn
j+ 1

2
,l
− xn

j− 1
2
,r

[ ∫ xn

j+1
2 ,l

xn

j− 1
2 ,r

pnj (x)dx−
∫ tn+1

tn

(
f(u(xn

j+ 1
2
,l
, t))− f(u(xn

j− 1
2
,r
, t))

)
dt

]

(By midpoint quadrature)

8



=
1

∆x+∆t(a−
j+ 1

2

− a+
j− 1

2

)

[
(∆x+∆t(a−

j+ 1
2

− a+
j− 1

2

))pnj (xj +
(a−

j+ 1
2

+ a+
j− 1

2

)∆t

2
)

−∆t
(
f(un+ 1

2

j+ 1
2
,l
)− f(un+ 1

2

j− 1
2
,r
)
)]

=
1

∆x+∆t(a−
j+ 1

2

− a+
j− 1

2

)

[
(∆x+∆t(a−

j+ 1
2

− a+
j− 1

2

))(un
j +

∆t

2
(a+

j− 1
2

+ a−
j+ 1

2

)snj )

−∆t
(
f(un+ 1

2

j+ 1
2
,l
)− f(un+ 1

2

j− 1
2
,r
)
)]

= un
j +

∆t

2
(a+

j− 1
2

+ a−
j+ 1

2

)snj −
∆t

∆x+∆t(a−
j+ 1

2

− a+
j− 1

2

)

[
f(un+ 1

2

j+ 1
2
,l
)− f(un+ 1

2

j− 1
2
,r
)
]
.

(2.11)

Here, the midpoint values un+ 1
2 at time tn+ 1

2 can be obtained by using the Taylor

expansions about the corresponding points (xj+ 1
2
,l, t

n) and (xj+ 1
2
,r, t

n),respectively,

un+ 1
2

j+ 1
2
,r
= un

j+ 1
2
,r
− ∆t

2
f(un

j+ 1
2
,r
)x, (2.12)

and

un+ 1
2

j+ 1
2
,l
= un

j+ 1
2
,l
− ∆t

2
f(un

j+ 1
2
,l
)x. (2.13)

Projection:

At the final step, we follow the idea in [6], and choose reconstruction slope sn+1
j+ 1

2

at

nonsmooth area to reduce numerical dissipation. The piecewise linear interpolant is

w̃(x, tn+1)

:=
∑
j

{[
wn+1

j+ 1
2

+ sn+1
j+ 1

2

(x−
xn
j+ 1

2
,l
+ xn

j+ 1
2
,r

2
)
]
χ[xn

j+1
2 ,l

,xn

j+1
2 ,r

] + wn+1
j χ[xn

j− 1
2 ,r

,xn

j+1
2 ,l

]

}
. (2.14)

The construction of the scheme is completed by projecting w̃n+1 back onto the original

grid by averaging it over Ij, the results of the cell averages are

9



un+1
j =

1

∆x

∫ x
j+1

2

x
j− 1

2

w̃n+1(x)dx

=
1

∆x

[ ∫ xn

j− 1
2 ,r

x
j− 1

2

(
wn+1

j− 1
2

+ sn+1
j− 1

2

(x−
xn
j− 1

2
,l
+ xn

j− 1
2
,r

2
)
)
dx

+

∫ xn

j+1
2 ,l

xn

j− 1
2 ,r

wn+1
j dx+

∫ x
j+1

2

xn

j+1
2 ,l

(
wn+1

j+ 1
2

+ sn+1
j+ 1

2

(x−
xn
j+ 1

2
,l
+ xn

j+ 1
2
,r

2
)
)
dx

]
.

Using the midpoint quadrature for the spatial integrals, we find that

un+1
j =

∆t

∆x
a+
j− 1

2

wn+1
j− 1

2

+
∆x+∆t(a−

j+ 1
2

− a+
j− 1

2

)

∆x
wn+1

j − ∆t

∆x
a−
j+ 1

2

wn+1
j+ 1

2

+
(∆t)2

2∆x

[
sn+1
j+ 1

2

a+
j+ 1

2

a−
j+ 1

2

− sn+1
j− 1

2

a+
j− 1

2

a−
j− 1

2

]
.

(2.15)

The slopes {sn+1
j+ 1

2

} are computed by

sn+1
j+ 1

2

= ψ(
wn+1

j+1 − wn+1
j+ 1

2

wn+1
j+ 1

2

− wn+1
j

)
wn+1

j+ 1
2

− wn+1
j

xn
j+ 3

2
,l
+ xn

j+ 1
2
,r
− xn

j+ 1
2
,l
− xn

j− 1
2
,r

=
wn+1

j+ 1
2

− wn+1
j

2∆x+∆t(a+
j+ 1

2

+ a−
j+ 3

2

− a+
j− 1

2

− a−
j+ 1

2

)
.

(2.16)

We observe in (2.16) that xn
j+ 3

2
,l
+ xn

j+ 1
2
,r
− xn

j+ 1
2
,l
− xn

j− 1
2
,r

is of order ∆x for small

∆t, and the slope sn+1
j+ 1

2

are proportional to ∆w/∆x as ∆t approaches to 0. Note that

we use uniform grids. Therefore, the spatial mesh size ∆x is fixed. When time step ∆t

is small, at the last term on the RHS of (2.15) may vanish, so it may lead to a scheme

with a relatively large numerical dissipation as explained in [6]. Less dissipative way of

computing sn+1
j+ 1

2

is to be proportional to ∆w/∆t. First, we approximate the values of the

solution at the points xj+ 1
2
,r and xj+ 1

2
,l at time level t = tn+1. The solution is smooth

there, so we can use Taylor expansions, and obtain
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un+1
j+ 1

2
,r
= un

j+ 1
2
,r
−∆tf(un

j+ 1
2
,r
)x, (2.17)

and

un+1
j+ 1

2
,l
= un

j+ 1
2
,l
−∆tf(un

j+ 1
2
,l
)x. (2.18)

We apply limiters in (2.4) to three consecutive values un+1
j+ 1

2
,r
,un+1

j+ 1
2
,l

and wn+1
j+ 1

2

to compute

the slope sn+1
j+ 1

2

, which gives

sn+1
j+ 1

2

= ψ(
un+1
j+ 1

2
,r
− wn+1

j+ 1
2

wn+1
j+ 1

2

− un+1
j+ 1

2
,l

)
wn+1

j+ 1
2

− un+1
j+ 1

2
,l

δ
, δ =

∆t

2
(a+

j+ 1
2

− a−
j+ 1

2

). (2.19)

The time derivative of uj(t) is expressed as

d

dt
uj(t

n) = lim
∆t→0

un+1
j − un

j

∆t

=
a+
j− 1

2

∆x
lim
∆t→0

wn+1
j− 1

2

+ lim
∆t→0

1

∆t
(
∆x+∆t(a−

j+ 1
2

− a+
j− 1

2

)

∆x
wn+1

j − un
j )

−
a−
j+ 1

2

∆x
lim
∆t→0

wn+1
j+ 1

2

+
1

2∆x
lim
∆t→0

[
∆t(sn+1

j+ 1
2

a+
j+ 1

2

a−
j+ 1

2

− sn+1
j− 1

2

a+
j− 1

2

a−
j− 1

2

)

]
.

(2.20)

From (2.10) and (2.11), we have

lim
∆t→0

wn+1
j+ 1

2

=
a+
j+ 1

2

u+
j+ 1

2

− a−
j+ 1

2

u−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
f(u+

j+ 1
2

)− f(u−
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

, (2.21)

and
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lim
∆t→0

1

∆t
(
∆x+∆t(a−

j+ 1
2

− a+
j− 1

2

)

∆x
wn+1

j − un
j )

= lim
∆t→0

1

∆t

(∆x+∆t(a−
j+ 1

2

− a+
j− 1

2

)

∆x

(
un
j +

∆t

2
(a+

j− 1
2

+ a−
j+ 1

2

)snj

− ∆t

∆x+∆t(a−
j+ 1

2

− a+
j− 1

2

)

[
f(un+ 1

2

j+ 1
2
,l
)− f(un+ 1

2

j− 1
2
,r
)
])

−

∫ x
j+1

2

xj− 1
2

pnj (x)dx

∆x

)

= lim
∆t→0

1

∆t

(∆x+∆t(a−
j+ 1

2

− a+
j− 1

2

)

∆x

(
un
j +

∆t

2
(a+

j− 1
2

+ a−
j+ 1

2

)snj

− ∆t

∆x+∆t(a−
j+ 1

2

− a+
j− 1

2

)

[
f(un+ 1

2

j+ 1
2
,l
)− f(un+ 1

2

j− 1
2
,r
)
])

− 1

∆x

( ∫ xn

j− 1
2 ,r

x
j− 1

2

pnj (x)dx−
∫ xn

j+1
2 ,l

xn

j− 1
2 ,r

pnj (x)dx−
∫ x

j+1
2

xn

j+1
2 ,l

pnj (x)dx
))

(using the midpoint quadrature for the spatial integrals)

= lim
∆t→0

1

∆t

(∆x+∆t(a−
j+ 1

2

− a+
j− 1

2

)

∆x

(
un
j +

∆t

2
(a+

j− 1
2

+ a−
j+ 1

2

)snj

− ∆t

∆x+∆t(a−
j+ 1

2

− a+
j− 1

2

)

[
f(un+ 1

2

j+ 1
2
,l
)− f(un+ 1

2

j− 1
2
,r
)
])

− 1

∆x

(
a+
j− 1

2

∆t(un
j +

−∆x+ a+
j− 1

2

∆t

2
snj )

+ (∆x+∆t(a−
j+ 1

2

− a+
j− 1

2

))(un
j +

∆t

2
(a+

j− 1
2

+ a−
j+ 1

2

)snj )

− a−
j+ 1

2

∆t(un
j + (

∆x+ a−
j+ 1

2

∆t

2
)snj )

))
.

Then, we obtain

lim
∆t→0

1

∆t
(
∆x+∆t(a−

j+ 1
2

− a+
j− 1

2

)

∆x
wn+1

j − un
j )

=
a−
j+ 1

2

u−
j+ 1

2

− a+
j− 1

2

u+
j− 1

2

∆x
−

f(u−
j+ 1

2

)− f(u+
j− 1

2

)

∆x
. (2.22)

After substituting (2.21) and (2.22) in (2.20), we obtain the new semi-discrete central-

upwind scheme:

d

dt
uj(t

n) = −
Hj+ 1

2
(t)− Hj− 1

2
(t)

∆x
. (2.23)
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The less dissipative numerical fluxes Hj+ 1
2

are given by

Hj+ 1
2
(t) :=

a+
j+ 1

2

f(u−
j+ 1

2

)− a−
j+ 1

2

f(u+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+ a+
j+ 1

2

a−
j+ 1

2

[u+
j+ 1

2

− u−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

− qj+ 1
2

]
(2.24)

and the correction term is

qj+ 1
2
=

1

2
lim
∆t→0

{∆tsn+1
j+ 1

2

} = lim
∆t→0

∆t

2
ψ(

un+1
j+ 1

2
,r
− wn+1

j+ 1
2

wn+1
j+ 1

2

− un+1
j+ 1

2
,l

)
wn+1

j+ 1
2

− un+1
j+ 1

2
,l

δ

= ψ(
u+
j+ 1

2

− wint
j+ 1

2

wint
j+ 1

2

− u−
j+ 1

2

)(
wint

j+ 1
2

− u−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

),

(2.25)

where the intermediate values wint
j+ 1

2

is derived from wn+1
j+ 1

2

in (2.10) when ∆t approachs

to 0. That is,

wint
j+ 1

2
=
a+
j+ 1

2

u+
j+ 1

2

− a−
j+ 1

2

u−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

−
f(u+

j+ 1
2

)− f(u−
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

.

Here, we have the following remarks:

If the limite is chosen to be minmod, this method has been proposed in [6] and shows

that the resulting method provides a less numerical dissipation compared with original

numerical schemes. In this thesis, we want to understand if different limiters can affect

numerical dissipation and figure out which limiters is more efficient. The corresponding

numerical experiments and examples are presented in Chapter 4.
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Chapter 3

Monotone numerical schemes

In this Chapter, we study these new, and less numerical dissipative numerical schemes

for one-dimensional scalar conservation laws derived in Chapter 2. In particular, these

derived numerical schemes are monotone provided that the flux f(u) is smooth and convex

and some technical assumptions are given. The key feature for monotone schemes is that

numerical solutions satisfy all entropy conditions. Namely, these numerical schemes do

not produce any nonphysical solutions (see [10]). In the literature, we refer the interesting

reader to see [3] and [2] for more detailed information.

In this Chapter, we focus on one dimensional scalar conservation laws. Before study-

ing about the monotonicity of numerical schemes derived in Chapter 2, we recall the

monotonic property of the original numerical schemes in [3] as follows:

Theorem 3.1. Assume that f(u) ∈ C2 is convex and the numerical flux H(u+, u−) is

defined as

H(u+, u−) =
1

a+ − a−
[
a+f(u−)− a−f(u+)

]
+

a+a−

a+ − a−
(
u+ − u−

)
, (3.1)

where

a+ = a+(u+, u−) = max{f ′(u+), f ′(u−), 0},

and

a− = a−(u+, u−) = min{f ′(u+), f ′(u−), 0}.
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Then the numerical flux H(u+, u−) is a monotone flux. That is, H(u+, u−) is a non-

increasing function of u+ and anon-decreasing function of u−.

For the convenience, we recall and write down the proof of Theorem 3.1 as in [3].

Meanwhile, we consider only fluxes for which f ′(u) changes sign due to the fact that the

numerical flux in (3.1) reduces to the upwind method otherwise. In such a case, there is

a well-known theorem.

Proof of Theorem 3.1:

Proof. To show that the numerical flux H(u+, u−) is a monotone flux, we need to check

that H(u+, u−) is a non-increasing function of u+ and a non-decreasing function of u−.

First, we fix u− and show that H(u+, u−) in (3.1) is a non-increasing function of u. For

that purpose, we let u1 > u2 and want to show that the difference H(u1, u
−)−H(u2, u

−)

is less than zero. This is equivalent to prove that ∂H
∂u

(u, u−) ≤ 0 since the flux f ∈ C2 is

convex and function a+ and a− belong to C1. By direct calculation, we have

∂H

∂u
(u, u−) =

a−(u)
(
(a+(u))′(u− u−)− f ′(u) + a+(u)

)
a+(u)− a−(u)

+

(
(a+(u))′a−(u)− a+(u)(a−(u))′

)
(a+(u)− a−(u))2

(f(u)− f(u−)− a+(u)(u− u−))

=
a−(u)(a+(u)− f ′(u))

a+(u)− a−(u)
+
a−(u)(a+(u))′(u− u−)

a+(u)− a−(u)

+

(
(a+(u))′a−(u)− a+(u)(a−(u))′

)
(a+(u))2

(f ′(ξ)− a+(u))(u− u−)

15



=
a−(u)

a+(u)− a−(u)
(a+(u)− f ′(u)) +

u− u−

(a+(u)− a−(u))2
[
a−(u)(a+(u))′(f ′(ξ)− a−(u))

− a+(u)(a−(u))′(f ′(ξ)− a+(u))
]
,

(3.2)

where we used the mean-value theorem and ξ is a number between u and u−.

Now we discuss three cases to show that ∂H
∂u

(u, u−) ≤ 0.

Case 1: u1 > u2 ≥ u−. In this case, we have a+(u1) > a+(u2), (a+(u))′ > 0 and

(a−(u))′ = 0. Then,
a−(u)

a+(u)− a−(u)
(a+(u)− f ′(u)) ≤ 0,

a−(u)(a+(u))′(f ′(ξ)− a−(u)) ≤ 0,

a+(u)(a−(u))′(f ′(ξ)− a+(u)) = 0.

Thus, ∂H
∂u

(u, u−) ≤ 0.

Case 2: u− ≥ u1 > u2. In this case, we have a−(u1) > a−(u2), (a−(u))′ > 0 and

(a+(u))′ = 0. Then,
a−(u)

a+(u)− a−(u)
(a+(u)− f ′(u)) ≤ 0,

a−(u)(a+(u))′(f ′(ξ)− a−(u)) = 0,

a+(u)(a−(u))′(f ′(ξ)− a+(u)) ≤ 0.

Thus, ∂H
∂u

(u, u−) ≤ 0.

Case 3: u1 > u− ≥ u2. In this case, we consider

H(u1, u
−)−H(u2, u

−) = H(u1, u
−)−H(u−, u−) +H(u−, u−)−H(u2, u

−)

=
∂

∂u
H(ξ1, u

−)(u1 − u−) +
∂

∂u
H(ξ2, u

−)(u− − u2),
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where ξ1 is a number between u1 and u− and ξ2 is a number between u2 and u−.

Due to the results in Case 1 and Case 2, we have ∂
∂u
H(ξ1, u

−) ≤ 0 and ∂
∂u
H(ξ2, u

−) ≤ 0,

which imply that

H(u1, u
−) ≤ H(u2, u

−).

Then, this completes the proof that H(u, u−) is non-increasing in u. For the proof

that H(u+, u) is non-decreasing in u, it can be done in a similar way. Then, Theorem 3.1

is complete.

Now, we denote the numerical fluxes derived in Chapter 2 by

Hsymbol(u+, u−) :=
a+f(u−)− a−f(u+)

a+ − a−
+ a+a−

[u+ − u−

a+ − a−
− ψsymbol(R)

wint − u−

a+ − a−
]
, (3.3)

where ”symbol” represents five different flux limiters (ψsb, ψBJ , ψV L, ψV A, ψmid),

wint =
a+u+ − a−u− − (f(u+)− f(u−))

a+ − a−
,

and

R =
u+ − wint

wint − u−
.

Then, we write down the numerical fluxes Hsb, HBJ , HV L, HV A and Hmin explicitly.

For superbee flux limiter, we have

Hsb(u+, u−) =



Hsb
1 (u+, u−), Qsb(u+, u−) < Asb

1 (u
+, u−),

Hsb
2 (u+, u−), Asb

1 (u
+, u−) ≤ Qsb(u+, u−) ≤ Asb

2 (u
+, u−),

Hsb
3 (u+, u−), Asb

2 (u
+, u−) < Qsb(u+, u−) < Asb

3 (u
+, u−),

Hsb
4 (u+, u−), Asb

3 (u
+, u−) ≤ Qsb(u+, u−),

(3.4)

where

Qsb(u+, u−) =


f(u+)−f(u−)

u+−u− , u+ ̸= u−,

f ′(u−) , u+ = u−,

(3.5)
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Asb
1 (u

+, u−) =
a+ + 2a−

3
,

Asb
2 (u

+, u−) =
a+ + a−

2
,

Asb
3 (u

+, u−) =
2a+ + a−

3
,

(3.6)

and
Hsb

1 (u+, u−) =
a+f(u−)− a−f(u+)

a+ − a−
+

a+a−

a+ − a−
(u+ − u−)

+ 2
a+a−

(a+ − a−)2
(u+ − u−)

[
Qsb(u+, u−)− a−

]
,

(3.7)

Hsb
2 (u+, u−) =

a+f(u−)− a−f(u+)

a+ − a−
+

a+a−

a+ − a−
(u+ − u−)

− a+a−

(a+ − a−)2
(u+ − u−)

[
a+ −Qsb(u+, u−)

]
,

(3.8)

Hsb
3 (u+, u−) =

a+f(u−)− a−f(u+)

a+ − a−
+

a+a−

a+ − a−
(u+ − u−)

+
a+a−

(a+ − a−)2
(u+ − u−)

[
Qsb(u+, u−)− a−

]
,

(3.9)

Hsb
4 (u+, u−) =

a+f(u−)− a−f(u+)

a+ − a−
+

a+a−

a+ − a−
(u+ − u−)

− 2
a+a−

(a+ − a−)2
(u+ − u−)

[
a+ −Qsb(u+, u−)

]
,

(3.10)

Note that we have the inequality

Asb
1 (u

+, u−) ≤ Asb
2 (u

+, u−) ≤ Asb
3 (u

+, u−)

, which makes the expression (3.4) reasonable.
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For flux limiter ψBJ , we have

HBJ(u+, u−) =



HBJ
1 (u+, u−), QBJ(u+, u−) ≤ ABJ

1 (u+, u−),

HBJ
2 (u+, u−), ABJ

1 (u+, u−) < QBJ(u+, u−) < ABJ
2 (u+, u−),

HBJ
3 (u+, u−), ABJ

2 (u+, u−) ≤ QBJ(u+, u−),

(3.11)

where

Qsb(u+, u−) =


f(u+)−f(u−)

u+−u− , u+ ̸= u−,

f ′(u−) , u+ = u−,

(3.12)

ABJ
1 (u+, u−) =

a+ + 3a−

4
,

ABJ
2 (u+, u−) =

3a+ + a−

4
,

(3.13)

and
HBJ

1 (u+, u−) =
a+f(u−)− a−f(u+)

a+ − a−
+

a+a−

a+ − a−
(u+ − u−)

+ 2
a+a−

(a+ − a−)2
(u+ − u−)

[
QBJ(u+, u−)− a−

]
,

(3.14)

HBJ
2 (u+, u−) =

a+f(u−)− a−f(u+)

a+ − a−
+

a+a−

a+ − a−
(u+ − u−)

+
a+a−

2(a+ − a−)2
(u+ − u−)

[
2QBJ(u+, u−)− a+ − a−

]
,

(3.15)

HBJ
3 (u+, u−) =

a+f(u−)− a−f(u+)

a+ − a−
+

a+a−

a+ − a−
(u+ − u−)

− 2
a+a−

(a+ − a−)2
(u+ − u−)

[
a+ −QBJ(u+, u−)

]
,

(3.16)
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For flux limiter ψV L, we have

HV L(u+, u−) =
a+f(u−)− a−f(u+)

a+ − a−
+

a+a−

a+ − a−
(u+ − u−)

− 2
a+a−

(a+ − a−)3
(u+ − u−)

[
(a+ + a−)(f(u+)− f(u−))− a+a−(u+ − u−)

−
(
f(u+)− f(u−)

)2
u+ − u−

]
.

(3.17)

For flux limiter ψV A, we have

HV A(u+, u−) =
a+f(u−)− a−f(u+)

a+ − a−
+

a+a−

a+ − a−
(u+ − u−)

−
a+a−

[
(a+ + a−)u+u− − a−

[
(u+)2 + (u−)2

]
+ (u+ − u−)(f(u+)− f(u−))

]
(a+ − a−)2

(
(u+)2 + (u−)2

)
− 2(a+ − a−)(u+ + u−)(a+u+ − a−u− − (f(u+)− f(u−))

+2(a+u+ − a−u− − (f(u+)− f(u−))2
[a+(u+ − u−)− (f(u+)− f(u−))

a+ − a−
]
.

(3.18)

For flux limiter ψmin, we have

Hmin(u+, u−) =


Hmin

1 (u+, u−), Qmin(u+, u−) < Amin
1 (u+, u−),

Hmin
2 (u+, u−), Amin

1 (u+, u−) ≤ Qmin(u+, u−),

(3.19)

where

Qmin(u+, u−) =


f(u+)−f(u−)

u+−u− , u+ ̸= u−,

f ′(u−) , u+ = u−,

(3.20)

Amin
1 (u+, u−) =

u+ − u−

2
,
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and

Hmin
1 (u+, u−) =

a+f(u−)− a−f(u+)

a+ − a−
+

a+a−

a+ − a−
(u+ − u−)

+
a+a−

(a+ − a−)2
(u+ − u−)

[
Qmin(u+, u−)− a−

]
,

(3.21)

Hmin
2 (u+, u−) =

a+f(u−)− a−f(u+)

a+ − a−
+

a+a−

a+ − a−
(u+ − u−)

− a+a−

(a+ − a−)2
(u+ − u−)

[
a+ −Qmin(u+, u−)

]
.

(3.22)

We believe that these five numerical fluxes Hsb, HBJ , HV L, HV A and Hmin in (3.4),

(3.11), (3.17), (3.18), (3.19), respectively are monotone, which will be studied elsewhere.

21



Chapter 4

Numerical examples and concluding

remarks

In this Chapter, we present some numerical examples which are solved by apply-

ing modified semidiscrete central-upwind methods described in Chapter 2 and compare

numerical simulation with different slope limiters. We consider one-dimensional Euler

equation of gas dynamics as follows:

∂

∂t


ρ

ρu

E

+
∂

∂x


ρu

ρu2 + p

u(E + p)

 = 0, p = (γ − 1)(E − ρ

2
u2).

Here, ρ, u, p, and E are the density, velocity, pressure, and the total energy with

γ = 1.4. We compared its performance with five kinds of limiters, and we use the CFL

number 0.2 in all computations as in [6].

Example 1: Moving contact wave

(ρ, u, p)(x, 0) =

 (1.4, 0.1, 1), x < 0.5

(1.0, 0.1, 1), x > 0.5

In this example, we compute the approximate solution at final time t=2, and use

200 grids points. Figure 4.1 shows the density, computing by the NEW and the OLD
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central-upwind schemes. OLD central-upwind schemes is in (2.16) with the anti-diffusion

term qj+ 1
2
= 0. From those graphs, we know the NEW schemes have less dissipation than

the OLD schemes. Those solutions are especially close by the superbee limiters. The

difference in the results still clearly visible by else limiters and the difference especially

large in minmod limiters. Then we use NEW central-upwind schemes to compare five

kinds of limiters in Figure 4.2. Numerical results show that superbee limiters achieve

a better resolution but minmod limiters produce numerical dissipation larger than else

limiters.

Example 2: Stationary contact wave and traveling shock and rarefaction

(ρ, u, p)(x, 0) =

 (1, − 19.59745, 1000), x < 0.8

(1, − 19.59745, 0.01), x > 0.8

In this example, we use the 200 grids points on interval [0,1] and compute the solution

at final time t=0.012. The computed density is plotted in Figure 4.3. The reference

solution is obtained by the NEW second-order semi-discrete central-upwind scheme with

2400 grid points and plotted in Figure 4.4. Two graphs show superbee limiters with less

dissipation in the neighborhood of the contact wave because the slope is sharper by using

superbee limiters.

Example 3

(ρ, u, p)(x, 0) =


(3.857143, − 0.920279, 10.33333), x < 0

(1 + ε sin 5x,−3.549648 , 1.00000), 0 < x < 10

(1.000000, − 3.549648, 1.00000), x ≥ 10

This example is taken from [5] that corresponds to density perturbation running left-

ward into stationary of Mach number 3. In this example, we computed the solution at

final time t=2 and take ε = 0.2. The five solutions by the NEW second-order central-

upwind schemes are obtained over interval (-15,15) with ∆x = 1
80

. Figure 4.5 shows that

superbee limited solution has superiority of solution. The slope is least by using minmod

limiters, so minmod limited solution exhibits excessive dissipation.
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Example 4: Shock tube problem

(ρ, u, p)(x, 0) =

 (1.0, 0.0, 1), x < 0.5,

(0.125, 0.0, 0.1), x > 0.5,
The exact solution of shock tube problem consists of rarefaction wave, shock wave, and

contact discontinuity plotted in Figure 4.6 (see in [14, 16]). The computation of exact

solution can be obtained in [16]. We compute the solution at final time t=0.2 and use

the 400 grids points on interval [0, 1]. And we use the OLD central-upwind schemes with

superbee limiters and NEW central-upwind schemes with superbee, and minmod limiters

for this problem, respectively. As in Figures 4.7 and 4.8, OLD and NEW central-upwind

schemes with superbee limiters have less numerical dissipation than one with minmod

limiters. However, they produce a large oscillatory than ones with minmod limiters.

Example 5: Burgers’ equation

In this example, we consider the inviscid Burgers’ equation

ut + (
1

2
u2)x = 0,

where

u(x, 0) =

 1, 0 < x < 1 ,

0, otherwise.
The exact solution of this example

u(x, t) =



0, x < 0,

x/t, 0 < x < t,

1, t < x < 1 + t
2
,

0, x > 1 + t
2
,

for t ≤ 2, and

u(x, t) =


0, x < 0 ,

x/t, 0 < x <
√
2t,

0,
√
2t < x,
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for t ≥ 2.

We computed the solution at final time t=1 and used the uniform grid with ∆x = 1/50.

In Figures 4.10 and 4.11, we show the results obtained by the OLD central-upwind schemes

with superbee limiters and NEW central-upwind schemes with superbee, and minmod

limiters. And we plot the exact solution at t=1 as in Figure 4.9. From these graphs, they

show that the new superbee limiters have less numerical dissipation than old superbee

limiters.

From these examples, the superbee, Barth-Jespersen, van Leer and van Albada limited

solution have less numerical dissipation but have oscillatory and perturbation for some

cases. This is why minmod limiters is usuaully used.

Concluding Remarks:

In this thesis, we use new semidiscrete upwind-central schemes with anti-diffusion to

reduce the numerical dissipation for hyperbolic conservation laws [6]. We modify the slope

limiters at reconstruction step, choose the same limiters at projection step, and compute

approximate solutions. The numerical results present that superbee limiter solution has

least numerical dissipation but minmod limiter solution exhibits excessive dissipation.

For the future work, we will study the case when using different slope limiters at

reconstruction and projection steps. We also will compare these resulting schemes to find

one which has less numerical dissipation effectively. Furthermore, we can extend the study

in one dimension to two dimension which is expected to be more complicated.
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Figure 4.1: Example 1 computed by the NEW and OLD second-order schemes with same

spatial grid
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Figure 4.2: Example 1 computed by the NEW second-order schemes with five kinds of

limiters

Figure 4.3: Example 2 computed by the NEW second-order schemes with five kinds of

limiters and zoom at [0.67:0.88]

Figure 4.4: Example 2 uniform grid with ∆x=1/2400
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Figure 4.5: Example 3 computed by the NEW second-order schemes with five kinds of

limiters

Figure 4.6: Exact solution of the shock tube problem at time t=0.2

Figure 4.7: Example 4 computed by the OLD and NEW second-order schemes at time

t=0.2
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Figure 4.8: Same as Figure 4.7—zoom at [0.45 0.88]

Figure 4.9: Exact solution of inviscid Burgers’ equation at time t=1

Figure 4.10: Example 5 computed by the OLD and NEW second-order schemes at time

t=1
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Figure 4.11: Same as Figure 4.10—zoom at [0.85 1.5]
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