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Abstract

In this thesis, we study numerical approximation for hyperbolic conservation laws
arising from physical models. In/particular, we introduce modified and new semidiscrete
central-upwind schemes with different slope limiters, which are believed to monotone
scheme, to reduce numerical dissipation. Furthermore, we compare and present numerical
results with different slope limiters.

In Chapter 1, we briefly introduced hyperbolic conservation laws. We also recalled
numerical methods for this type of equations in the literature. In particular, we consider
a Godunov-type finite volume scheme.

In Chapter 2, we followed the ideas on less numerical dissipative numerical schemes for
hyperbolic conservation laws schemes as in [6]. Our goal is to reduce numerical dissipation
and to obtain more accurate solutions. Then we use different limiters at reconstruction

and evolution step in these new semidiscrete up-wind schemes.
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In Chapter 3, we discussed that the numerical fluxes we choose satisfy the monotonic
property.
In Chapter 4, we presented some numerical resolutions and observed performance of

the new second-order semidiscrete central-upwind schemes.

Keywords: Hyperbolic systems of conservation laws, semi-discrete central-upwind schemes,

numerical dissipation.
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Chapter 1

Introduction

We consider the systems of hyperbolic conservation laws with flux vector f(u):

0 0
o Mt e f(u(a6) & 0. (L.1)

The system arises from:physical principles such-as conservation of mass, momentum,or
energy and we refer thereader to see [10, 13] for more detailed information. Such a system
aries in many applications such as traftfic flow.

As for numerical methods for hyperbolic conservation law/ (1.1), we often use finite
difference [8], finite element [17, 4], and finite volume methods [10, 1, 9]. The finite
difference method is the differential.operator replaced by finite difference and to use
computing grids to construct difference, and approximate derivatives. The finite volume
method is to use subdivision of spatial computing domain and computing integral of these
control volumes to approximate the flux through the endpoints of the intervals in space
dimension one.

The finite volume type that we consider is a Godunov-type scheme. The scheme is to
use cell average at time level t", construct piecewise polynomial, evolve at time level "1,
and finally project onto space of piecewise interpolant (see in [7, 12]).

In this thesis, we use new semidiscrete central-upwind schemes with anti-diffusion
terms for hyperbolic conservation laws. We focus on modifying slope limiters that satisfy

Total Variation Diminishing Diminishing (TVD) [15] at reconstruction step, choosing the



same slope limiters at projection step and comparing performance of these numerical
results with the new semidiscrete central-upwind schemes.

The rest point of this thesis is organized as follows: In Chapter 2, we recall origi-
nal semi-discrete central-upwind schemes and introduce new semi-discrete central-upwind
schemes with modified limiters. In Chapter 3, monotonicity of numerical schemes derived
in Chapter 2 is studied. Finally, we present numerical results and compare numerical
solutions with different slope limiters. Furthermore, some concluding remarks are also

given in Chapter 4.




Chapter 2

Semidiscrete central-upwind schemes

In this Chapter, we recall the original semidiscrete central-upwind schemes and intro-
duce new numerical schemes to reduce the numerical dissipation in the original scheme
(see [7]). The motivationneomes fromthe choices-of the slope limiters which are introduced
to avoid oscillatory.

In this Chapter, we consider the following one dimensional hyperbolic conservation

laws:

u, + f(u), = 0, (2.1)

where u = u(z,t) : R x RT — R” is«the unknewn, the flux f(u) is a function from R

to R™ and n is a positive integer. Equation (2.1) is hyperbolic if the Jacobian matrix

( gf_), i, j=1,...n satisfies the property that the matrix has only real eigenvalues and is
J

diagonalizable.
For the discretization, we consider the uniform grids z; = jAz, ;. 1= (j £ %)Am

and t,, = nAt where Ax and At are the mesh size in space and time respectively; j is an

integer and n is positive integer. We denote the cell average u} by

L[ e b)) de ~ T = 0,41, 42
A u n ~ujg, =Y, ) RS
Az [, TR

I=3

and [; = (x];%,xj%).



Integrating (2.1) over the space time domain I; x (t,,%,4+1), the resulting equation

gives
n+1 1 T. 1 1
/ (2, 8)ddt — (/ " e th)da:—/ " (e t)de)
_1 x xj,l x],L
2 2 2
(2.2)
_ —=n+l1 n
= U,
and

/ ’ 1)) ddt = Al[ / (F(ur;.y.1)) - f(u(rcj-;t)))dt]- (23)

to

We can infer from (2.2) and (2.3) that

tnl

o Aix{ / ~(Ealar . ) f(u(xj_é,t)))dt}. (2.4)
The construction of central-upwind schemes for-one time step consists of three con-

secutive steps : reconstruction, evolution and projection back ontorthe original grid.
The first step is to reconstruct the second-order piecewise linear interpolant such that
its averages are equal to the data {ﬁ”} The second step is‘to evolve the approximate
solution represented by a global piecewise linear interpolant u(z,t,), to the next time
level using the integral form of the conservation law (2.4). Finally, we use the piecewise
linear interpolant reconstruction from the evolved intermediate cell average, and project
back onto the original grids. Now we start to discuss these steps for the detailed procedure

as follows:
Reconstruction:

First,we reconstruct the second-order piecewise linear interpolant u(z,t,) from the
cell averages {u] }. That is, we find a suitable polynomial p}(z) such that its cell average

on I; is equal to uj for j.

u(z,t,) =pj(z) =0} +s;(vr—x;), €l Vj (2.5)



More specifically, the slope s7 is considered as the form of

s = Y(R;) (W — wj-1), (2.6)

where R;L is the ratio of forward differences to backward ones in the solution defined as

R" = U1 — Uy
7T = — )
u; —u;1

and the limiter ¢ is introduced to satisfy the property of Total Variation Diminishing
(TVD) and avoid numerical oscillatory. In this thesis, we study five kinds of limiters
(superbee, Barth-Jespersen, van Leer, van Albada, and mimod) which have been analyzed

in [15, 11]. Now, let us denote the following limiters by,

(superbee) Yg(R) =minfmax{1l, R}, 2, 2R)],
(Barth-Jespersen).. ¢p;(R) = %(R + 1)minfmin(1; };‘—fl)’ min (1, Ri—i-l)]’
2R
(Van Leer) ¢VL(R) — R——|-17 (27)
R*+R
(van Albada) Yya(R) = T
(min) Ymin(R) = min{l, R}.

Notice that for these limiters, a negative value of R indicates an extremum in the

solution, and set (R < 0) = 0. (see Figure 2.1)

Evolution:

The discontinuities of piecewise polynomial (2.5) may appear at the interface point

{:cj Jr%} propagating with right- and left-sides local speeds, which can be computed by

at |, = max {Av(A(w), 0)},
Jt3 weC(u ut )
4
and
a. , = min {M(A(w),0)}
I3 welC(u_ ,u’ ;)
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Figure 2.1: Slope limiters

Here, A\ < Ay < ... < Ay are the N eigenvalues of the Jacobian A := %, and
C(u_,,u’ ,)isthe curve inthe phase space that connects théleft, u_ , = lim u(x,t"),
Jj+3 ]+2 ]+5 z—=x
i+3
and the right u;zrl = 1ir£1 u(z, t™).-The local speeds can be estimated by
2 x—)zj+%
of of
L o O =
G = max{/\N(au(ujJr%)), AN(au(uﬂ*%))’ 0}, (2.8)
and
_ of of =
a7,y i () A A0} (29)
Next, we consider the non-equal rectangular domains
[x?7%’77$?+%,[] X [tnvtn+1]7 [x?+%,l’ x;‘l+%,7-] X [tnvtn—H]
where 2" i = Tl + Ata I and a: i T T + Ata;;%(see Figure 2.2).

Integration of (2.1) over these domains, the nonsmooth cell averages are computed by

n

—n 1 ith n T n
W= R [/ ’ P; (x)dx+/ e Py (7)d].
xT x 1

- n

1 xZ. 1
Jt+z.r Jtgl L i+d

The evolution of these nonsmooth cell averages can be approximated by applying

midpoint quadrature for the temporal and spatial integrals. That is,
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Figure 2.2: Central-upwind differencing



n

+1 1 xj+% n mj"'%ﬂ" n
w]’;% = P (w)dx + Piyi(z)d
T S WA @

. s 1
J+dil its
tn+l

_ /tn (Fu(aly s . 1)) _f(u(fﬂﬁé,l,t)))dt}

(By midpoint quadrature)

1
- +
At(ay+% B j+%)
a;+uﬁt a;+ﬂﬁt
— n 2 &z 3 2
— a]+1Atpj (w01 + 5 ) aj+%AtPj+1(f’3j+% + 9 ) (2.10)
n+i n+-
- autr ) S
Az +a. AL
1 it3
_ . At 5" 2
At(az,, Fazl) [ R 1 )
2
—Azx + a;_lAt . N
—n n 2 L2 n
ba At + e A = )
. 1 A T4 S? - S? — 2 + an
- (a;L+1 —a, 1) [_ ¥ & EajJr%Ax ) ¢ ?(a +§) ~ +4 i1
2
S?Jrl + 3?+1 + 32 n+ 4l
T STRERE, o el 2 )

Similarly, over the smooth areas, the evolution of the cell averages can be approxi-
mately by

(By midpoint quadrature)



- Az + At(ar, —at )@ + —(aF  +a7,,)s]) (211

Az + At(a. , —al ) {< T t(aﬂ% a]_%))(u] + 9 (a]_% +a]+§)5j) ( )

Jt3 J—3
n+s n+2

— At(f(ulF) — £ j_g,r>)}
_ 3 At + _ n At n—i—% n—l—%
= uj + 9 (ajfé +aj+%>5j - A$+At(a;+l _ajil) [f(uj+%,l) — f(uﬁ%’r)}

2 2

Here, the midpoint values utz at time 2 can/be obtained by using the Taylor

expansions about the correspending points (z; Ll t) and (z; PR t™),respectively,

n+l n At n
uj+%2’r = uj—l—%,’l‘ - Tf(uﬂ_%’r)x, (212)
and
n—‘,—l At n
uj+§’l = u;.l+%7l — Tf(u]+%7l)m (213)
Projection:

n+1

JT1oab
i+3

At the final step, we follow the idea.in [6], and choose reconstruction slope s
nonsmooth area to reduce numerical ‘dissipation. The piecewise linear interpolant is
{TV(J?, tn-i—l)

AP Y
}: —ntl | ontl Jt3d Jtar ] —n+1
= W. + s° xr — n n + W n n . 2.14
- {[ it3 J+%( 2 ) X[zj-!—%,l’mj-&-%,r] i Xy T ( )
J

i—g.r J

The construction of the scheme is completed by projecting w" ™ back onto the original

grid by averaging it over [;, the results of the cell averages are



" T 1 + "

5.l ity ]+ 11 J+ir

+ Wit dr + (Wi + s (z — =2 25))dz|.
= J Zn ]+2 3+2

n
=% J+d.

w\»—t

Using the midpoint quadrature for the spatial integrals, we find that

n+l _ at Wt +3 a2 AN o wt!
7 Az 7395 AT \ Ax +3 i+y
(2.15)
(At)?
14— ntl + -
+———=I[8"a ,a  , —sHa.a,
o DA St L
The slopes {s?ii} are computed by
2
W= Wit wit Wit
Sn+1 _ 1/}< d J‘*") Jt3 J
its Wil Wil L g g | — ",
j+3 J +27l J+ir J+3. J—3.7 9 16)
—n+1 —n+1 ( :
W 1 W
Jj+s J

T 2Ar+ A —at , —a )

x4 t( 1 +a+% a;_ aj+%)
We observe in (2.16) that 2" ,, + 2" , —2a" ., —a" , is of order Az for small

+27l J+27T J+§’l .]7577'

At, and the slope S”JE are proportional to Aw/Axz as At approaches to 0. Note that
we use uniform grids. Therefore, the spatial mesh size Az is fixed. When time step At
is small, at the last term on the RHS of (2.15) may vanish, so it may lead to a scheme
with a relatively large numerical dissipation as explained in [6]. Less dissipative way of
computing s;‘jj is to be proportional to Aw/At. First, we approximate the values of the

solution at the points x;, 1, and z;,1, at time level ¢ = t"*1. The solution is smooth
27 27

there, so we can use Taylor expansions, and obtain

10



(2.17)

+1 _
u?+%,r - u?—%n" N Atf(u?+%,T)x’
and
1 _
u?+%,l - u;'l+§,l - Atf(u?—i—%,l)z' (2.18)

We apply limiters in (2.4) to three consecutive values u;‘_ﬁ o u;‘ﬁ , and W;.L:i to compute
27 27 2

the slope s;.’ﬁ, which gives
2

117.L+i — .+i Wn—i_i — uT.H_il At
Sn+1__”¢( Jtar 3+2) J+3 It 5 = (a+- —a- ) (2 19)
L1 — - — T 1) .
i+3 Wj‘:i —u" : 2 te Ity
2

The time derivative of U, (1

a;r_l X
2 —u” 2.20

Ar At— v ) ( )
-

Ak s"tal a7 )

—2 lim wW"
Az At—0 It

From (2.10) and (2.11), we have

at uf, —a u, flu',)—flu )
lim Wl — 7tz I*3 Jts gty its Jt3 (2.21)
L1 — — .
At—0 Jt3 at , —a , at , —a. 7
Jt3 Jt3 Jt3 Jts

and

11



AJ} + At(a»_ 1 — a
( Ax Wi —uy)

1 (Ax +At(a,, —a

lim —
Ag—{lo At

1 a;%) [f(uj-i-%,l) - f(uj_;r)]) - #

1 (A:v + At(a”

i i+
= lim — 2
At—0 A\t

Ax
= [P E) = e ))

Azx

Then, we obtain

_ a’ ,u_, —at juf f(u_ ) —f(ut %) (2.29)
Az Az '
After substituting (2.21) and (2.22) in (2.20), we obtain the new semi-discrete central-

upwind scheme:

Loy = ot Tsll) (2.23)

12



The less dissipative numerical fluxes H, 1 are given by

+3 N Jt3 Jtz N its - its J+
H. .(t):= = = g 2 t+ata 2 —q..1 (2.24)
AR t—al it3 Jtilat | —a” +3 :
j+§ ]+§ J+% ]+%
and the correction term is
n+l _ =n+l —=nt+l _.n+l
1 . gl AL W1, T Wl Wan Ty
q; 1 =5 Im {Ats” } = lim —¢(=2% )
T2 2 A0 it3 At—0 2 T W —u"h )
(2.25)
+ ant int -
u’ , —w' w' —u
A Y d+3 V' i+3
D ¢(Wznt —u- )( CL+ o )a
Jt3 itz a0t it
where the intermediate values wé?j:l is derived from W' in (2.10) when At approachs
2 2
to 0. That is,
+ ot - - + -
a’ sul y —a. f(u ,)— f(u
| Vg U )
J+3 J+35 J+3 Jt3

Here, we have the following remarks:

If the limite is chosen to-be minmod, this method has'béen proposed in [6] and shows
that the resulting method provides a less.numerical dissipation compared with original
numerical schemes. In this thesis, we want to understand if different limiters can affect
numerical dissipation and figure out which limiters is more efficient. The corresponding

numerical experiments and examples are presented in Chapter 4.

13



Chapter 3

Monotone numerical schemes

In this Chapter, we study these new, and less numerical dissipative numerical schemes
for one-dimensional scalar conservation laws derived in Chapter 2. In particular, these
derived numerical schenies are monotone provided that the flux f(u) is smooth and convex
and some technical assumptions are given. The key feature for monotone schemes is that
numerical solutions satisfy all entropy conditions: Namely, these-numerical schemes do
not produce any nonphysical solutions (see [10]). In the literature, we refer the interesting
reader to see [3] and [2] for more detailed information.

In this Chapter, we foeus on one dimensional scalar conservation laws. Before study-
ing about the monotonicity ©f numerical schemes derived in Chapter 2, we recall the

monotonic property of the original‘mumerical schemes in [3] as follows:

Theorem 3.1. Assume that f(u) € C? is conver and the numerical flur H(u",u™) is

defined as

Huwt um) = —— [a* f(u) — a= f(ut)] + ——

at —a

(ut —u), (3.1)

at —a
where

at = a* (u",u”) = max{f(ut), f'(u”), 0},

and

a = a (ut,u”) = minff(u®), f'(u),0}.

14



Then the numerical flux H(u™,u™) is a monotone flux. That is, H(u",u™) is a non-
increasing function of u* and anon-decreasing function of u™.

For the convenience, we recall and write down the proof of Theorem 3.1 as in [3].
Meanwhile, we consider only fluxes for which f’(u) changes sign due to the fact that the
numerical flux in (3.1) reduces to the upwind method otherwise. In such a case, there is
a well-known theorem.

Proof of Theorem 3.1:

Proof. To show that the numerical flux H(u™,u™) is a monotone flux, we need to check
that H(u™,u™) is a non-increasing function of u* and a non-decreasing function of u™.
First, we fix u~ and show that H(a",w") in (3.1) is'a non-increasing function of u. For
that purpose, we let u; > uy and want to show that the difference H (uy,u™) — H(ug,u™)
is less than zero. This is equivalent to prove that %%(u, u™) £ 0 since the flux f € C? is

convex and function a™ and ¢~ belong to C!. By direct calculation, we have

on _ o (@t W) = ur) )+ a (u))

at(u) —a ()

15



(3.2)
where we used the mean-value theorem and ¢ is a number between v and u~.
Now we discuss three cases to show that %—f(u, u”) <0.
Case 1: u; > up > u~. In this case, we have a™(uy) > a™(uz), (a*(u)) > 0 and

(a=(u))" = 0. Then,

Thus, 2% (u,u™) <0.
Case 2: u~ > uy >y In this case, we have a=(u1) > a™(us), (a”(u))’ > 0 and

(a™(u)) = 0. Then,

a“(u

(u N ( )(CL+<U) = fl(u)) < 07

a” (u)(a™(u))'(f'(§) = a”(u)) =0,

a*(u)(a”(u))'(f'(§) = a™(u)) < 0.
Thus, (u u”) <0.

Case 3: u; > u~ > uo. In this case, we consider

H(up,u”) — H(ug,u”) = H(uy,u™) — H(u",u”) + H(u",u”) — H(ug,u")

0 0
= 5 (& uT)(ur —uT) + o H (&, um)(u” — ua),

16



where & is a number between u; and u~ and & is a number between us and ™.
Due to the results in Case 1 and Case 2, we have 2 H (&, u™) < 0and & H (&, u™) <0,
which imply that
H(uy,u™) < H(ug,u™).
Then, this completes the proof that H(u,u™) is non-increasing in u. For the proof
that H(u™t,u) is non-decreasing in u, it can be done in a similar way. Then, Theorem 3.1

is complete. [

Now, we denote the numerical fluxes derived in Chapter 2 by

atf(u™)—a f(uh) ut —u~ w™ —

H¥m (™) = +ta a [m - ¢symbol(R>ﬁL (3.3)

at —a~
where ”symbol” represents five'different flux limiters (s, Yps, Vv, Yva, Umid),

e — as () D)

?

at —a~
and
U+ e wint
- wint < = .

Then, we write down the numerical fluxes %, HB/, HYE 'HY4 and H™™ explicitly.

For superbee flux limiter, we have

;

HF ) @ (0, =) S AL 1)

Hsb(utu™), APt ur ) <Q*(ut,u™) < AsP(ut,u™),
H(ut u™) = (3.4)

HP(ut u™), AP(ut u™) < Q% (ut,u™) < A (ut,u™),

| HPt un), APt ) < QP ),

where .
B g,
Q*(u*,u”) = (3.5)
f(u™) ,ut =u,




Aib(u_'_au_)_ 3 9
+ p—
Apt,un) = 1 (3.6)
J’_ —
APt ) = 220
3
and o) —a-fu)  atas
shy + oy atfum)—a flu ata +
Bt ) = R (- )
(3.7)
(3.8)
(3.9)
(3.10)

Note that we have the inequality
AP (uuT) S APt uT) < AP (u'uT)

, which makes the expression (3.4) reasonable.

18



For flux limiter 15, we have

HE (uh,um), QF (ut,um) < AP (uf,u),

HP (ut u™) = | HBI (ut,u7), AP (ut,u™) < QB (ut,u™) < ABY (u+,u-), (3.11)

HP (), AR () < QP ),

where )
FOf00) g
(3.12)
(3.13)
and
H{ (u u”)
(3.14)
, U ) - a_j|7
F (=) — = £+ +,-
HE (0, u™) a f(“al_z_f(u ) ai‘ _aa_(qu_u )
(3.15)
+ a’a (uh —u)[2Q% (ut,u") —at —a]
2(at —a™)? ’ ’
Fr =) — a— flu+ +
HE (ut 0 = a f(uan - Z_f(u ) i af_aa_ (ut —u")
(3.16)
—2 - ) - Q)

19



For flux limiter ¢y, we have

__atfum) —a fuh) ata” N
Yt ) = S 2O | ey

2 =)@+ () - f) - ata (- )

UCE RN

ut —u~
(3.17)
For flux limiter ¢y 4, we have
HY A (ut 0 = a* fu™) —a”

[(a+ () = F(u))
(=) u = (f(ut) = f(u))
+2(atut —a—u— — (f(u) — f(o at — a

(3.18)
For flux limiter ¥,:,, we have
HPn(ut u™), QM (utu™) < AT (ut,u™),
H™(u™ u™) = 4 (3.19)
Hym(ut u™), APin(ut,u™) < Q™ (ut,u™),
where )
B g
QMM (ut,u") = (3.20)




and

HMMut u™) = a+f(u(;2 — Z:f(u+) aiﬁ_a;_ (ut —u”)
(3.21)
+ .
" (a+a_aa—)2 (u+ u_) [szn(qu’ u_) - a_],
Hy™m(ub u™) = a+f(ua2 - Z:f(u+) aiﬁ_a;_ (ut —u”)
(3.22)
ata”

We believe that these five
(3.11), (3.17), (3.18), (3.19 S ill be studied elsewhere.
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Chapter 4

Numerical examples and concluding

remarks

In this Chapter, we present some numerical examples which are solved by apply-
ing modified semidiscrete central-upwind methods described in Chapter 2 and compare
numerical simulation jwith different slope limiters. We consider one-dimensional Euler

equation of gas dynamies as follows:

0 g 0 -

- o, 2 — AN _ P2

o | P +(93: pu” +p 0, (r=1(E 2“ ).
E w(FE +p)

Here, p, u, p, and E are the density, velocity, pressure, and the total energy with
~v = 1.4. We compared its performance with five kinds of limiters, and we use the CFL

number 0.2 in all computations as in [6].

Example 1: Moving contact wave

(14, 0.1, 1), 2<0.5

(p, u, p)(x,0) =
(1.0, 0.1, 1), 2 >05

In this example, we compute the approximate solution at final time t=2, and use

200 grids points. Figure 4.1 shows the density, computing by the NEW and the OLD
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central-upwind schemes. OLD central-upwind schemes is in (2.16) with the anti-diffusion
term ¢, , 1= 0. From those graphs, we know the NEW schemes have less dissipation than
the OLD schemes. Those solutions are especially close by the superbee limiters. The
difference in the results still clearly visible by else limiters and the difference especially
large in minmod limiters. Then we use NEW central-upwind schemes to compare five
kinds of limiters in Figure 4.2. Numerical results show that superbee limiters achieve
a better resolution but minmod limiters produce numerical dissipation larger than else

limiters.

Example 2: Stationary contact wave and traveling shock and rarefaction

(1, —19.59745,°1000), . = < 0.8
(1,.—19.59745, 0.01), _ 2> 0.8

(p, u, p)(r,0)=

In this example, weuse the 200-grids points-on interval [0,1] and compute the solution
at final time t=0.012. The computed density is plotted in Figure 4.3. The reference
solution is obtained by the NEW second-order semi-discrete central-upwind scheme with
2400 grid points and plotted in Figure 4.4 Two graphs show superbee limiters with less
dissipation in the neighborhood of the contact wave because fhe slope is sharper by using

superbee limiters.

Example 3

(3.857143, —0.920279, 10.33333), = <0
(p, u, p)(2,0) = ¢ (1 + esinbz, —3.549648 ,1.00000), 0 < z < 10
(1.000000, — 3.549648, 1.00000), z > 10
This example is taken from [5] that corresponds to density perturbation running left-
ward into stationary of Mach number 3. In this example, we computed the solution at
final time t=2 and take ¢ = 0.2. The five solutions by the NEW second-order central-
upwind schemes are obtained over interval (-15,15) with Az = . Figure 4.5 shows that
superbee limited solution has superiority of solution. The slope is least by using minmod

limiters, so minmod limited solution exhibits excessive dissipation.
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Example 4: Shock tube problem

(1.0, 0.0, 1), z < 0.5,
(0.125, 0.0, 0.1), z > 0.5,

(p, u, p)(x,0) =

The exact solution of shock tube problem consists of rarefaction wave, shock wave, and
contact discontinuity plotted in Figure 4.6 (see in [14, 16]). The computation of exact
solution can be obtained in [16]. We compute the solution at final time t=0.2 and use
the 400 grids points on interval [0, 1]. And we use the OLD central-upwind schemes with
superbee limiters and NEW central-upwind schemes with superbee, and minmod limiters
for this problem, respectively. As in Figures 4.7 and 4.8, OLD and NEW central-upwind
schemes with superbee limiters have less numerieal dissipation than one with minmod

limiters. However, they produce a large oscillatory than ones with minmod limiters.
Example 5: Burgers’ equation

In this example, we'consider the inviscid Burgers’ equation

1
U+ (§u2>x = O,

where

1, 0<a<<d,
u(z50) =
0, otherwise.

The exact solution of this example

0, x <0,

z/t, 0<uz<t,
u(z,t) = <

1, t<z<l+4,

0, x>1+1%
for t < 2, and
0, <0,
u(z,t) = z/t, 0<z< V2,
0, V2t <z,
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for t > 2.

We computed the solution at final time t=1 and used the uniform grid with Az = 1/50.
In Figures 4.10 and 4.11, we show the results obtained by the OLD central-upwind schemes
with superbee limiters and NEW central-upwind schemes with superbee, and minmod
limiters. And we plot the exact solution at t=1 as in Figure 4.9. From these graphs, they
show that the new superbee limiters have less numerical dissipation than old superbee
limiters.

From these examples, the superbee, Barth-Jespersen, van Leer and van Albada limited
solution have less numerical dissipation but have oscillatory and perturbation for some
cases. This is why minmod limiters is usuaully used.

Concluding Remarks:

In this thesis, we use new semidiscrete upwind-central schemes with anti-diffusion to
reduce the numerical dissipation for-hyperbolic conservation laws [6]. We modify the slope
limiters at reconstruction step, choose the same limiters at projection step, and compute
approximate solutions. The numerical results present that superbee limiter solution has
least numerical dissipation but minmod limiter solution exhibits excessive dissipation.

For the future work, we will study the case when using different slope limiters at
reconstruction and projection steps.We also will compare these resulting schemes to find
one which has less numerical dissipation effectively. Furthermore, we can extend the study

in one dimension to two dimension whichis-expected to be more complicated.

25



tho =2 tho t=2

14 T r . : T . 14 T r . : T .
OLD, superbee 5 OLD, Barth-Jespersen
135} : #  WEWY, superbee | | 1] e #  NEWY, Barth-Jespersen | |
N _x
13 f 13 : i
; ¥
125 : 1 1.25 : ]
i
1.2 + 12 : 4
3
115 : - 115 : i
: i
" : 1 1.1 : J
%
1.0 . 1 1.05 ; J
N 3
1 L L 1 1 L 1 L L 1 1 L

OLD, van Albada | |
= NEW, van Albada |

12} : i
#

115} B J
M

11 M 4
5

105 o 1

1 . . . WWWW

04 1K 0B o7 o8 08 1

Figure 4.1: Example 1 computed by the NEW and OLD second-order schemes with same
spatial grid
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Figure 4.2: Example 1 computed by the NEW second-order schemes with five kinds of

limiters
tho t=0.012 tho t=0012
BF T T T T T T T T T =l BF—T T T T T
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Figure 4.3: Example 2 computed by.the NEW second-order schemes with five kinds of
limiters and zoom at [0.67:0.88]
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Figure 4.4: Example 2 uniform grid with Axz=1/2400
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Figure 4.5: Example 3 computed by the NEW second-order schemes with five kinds of

limiters
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Figure 4.6: Exa ) iog of the shock tube prob at time t=0.2
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Figure 4.7: Example 4 computed by the OLD and NEW second-order schemes at time
t=0.2
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Figure 4.8: Same as Figure 4.7 —zoom at [0.45 0.88]

Figure 4.9: Exact uation at time t=1
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Figure 4.10: Example 5 computed by the OLD and NEW second-order schemes at time
t=1
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