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以模糊規則為基礎之日夜動作辨識及步態辨識 
 

學生:顏宏年            指導教授: 張志永博士 

 

國立交通大學電控工程研究所 

 

摘要 

 

 本篇論文實現一套自動化日夜居家監視系統，此系統為了提供良好的監控服

務，著重於動作辨識和步態辨識，藉由步態辨識技術，掌控環境內每位成員的身

份，其辨識動作以了解每個人的行動。本篇論文使用兩台攝影機在實驗室進行人

物辨識及動作辨識。 

 

 動作辨識與步態辨識主要的資訊來自於人，擷取出人體部份為辨識的依據，

為了更精確的擷取前景，使用灰階域與HSV色彩空間，建立兩種背景模型，並能

有效的消除影像中陰影部分，使得擷取的前景能夠完整。接著將前景經由特徵空

間轉換及標準空間轉換後，投影到維度較小的空間且能保有原影像的資訊。接著

進行訓練，本方法加入時間資訊，將前景 5:1 減低抽樣取出影像，累積三張影

像，建立模糊法則。辨識工作方面，使用預先學習且建立的模糊法則，進行辨識。 
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Fuzzy Rule Based Day-and-Night 

 Action Recognition and Gait Recognition 

 

STUDENT: Hong- Nien Yen       ADVISOR: Dr. Jyh-Yeong Chang 

 

Institute of Electrical Control Engineering 
National Chiao-Tung University 

 

ABSTRACT 

 

 In this thesis, we implement an automatic home health care system that combines 

action recognition and gait recognition in the day and night environments (bright and 

dark). Gait recognition can identify each person in the lab; action recognition can 

identify each person's actions. We use two cameras to recognize actions and gait, 

respectively. 

 

 We build two background models, one in grayscale, and the other in the HSV 

color space, that extract the human region correctly. We also reduce the shadowing 

effect. For better efficiency, the binary image is transformed into a new space by 

eigenspace and canonical space transformation. Then we gathered three image frame 

sequence, 5:1 down sampling from the video, to convert to a posture sequence by 

template matching. The posture sequence is classified to an action or a person’s gait 

by fuzzy rules inference, which combines temporal sequence information for 

recognition. 
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Chapter 1  Introduction 
 

1.1  Motivation  

 

 According to the European Union (EU) commission’s projection, the number of 

older people will increase threefold between 2008 and 2060. This envisages great 

challenges towards care for older people with limited available resources [1]. Most of 

the home nursing care service is provided by many professional people, but human 

resources are limited. Therefore, the home automated healthcare system becomes a 

popular research area.  

 

 In this thesis, we design a home automated healthcare system which includes the 

action recognition and gait recognition. Human action recognition is an open problem 

that has been studied intensely within the areas of video surveillance, homeland 

security, and more recently, elder care. In the video surveillance, human action 

recognition system identifies each person’s action. In the elder care, human action 

recognition identifies whether there is abnormal action, in order to ensure the health 

of elders. However, we can not understand who is doing the action, hence we propose 

to use each person's gait to identify each person.  

 

 Finally, we combine gait recognition with an action recognition system to 

enhance its effectiveness. We hope that the developed system can recognize a person 

in his home and also recognize and record his activity in the daily living environment. 

Our system flowchart is shown in Fig 1.1. 
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Fig. 1.1.  Block diagram showing the action and gait recognition system. 
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1.2  Foreground Extraction  

 

 The first step of the activity recognition system is foreground extraction. We 

need to construct a background model. Background subtraction is a method typically 

used to segment moving regions in image sequences taken from a static camera by 

comparing each new frame to a model of the scene background [2]. There are many 

methods to build background models. W4 [3] is such a popular example that using 

frame-difference with a threshold. In addition, foreground subject extraction is 

commonly affected by the additional inclusion of shadows. A lot of attempts have 

been developed to tackle the shadow suppression. Horprasert et al. [4] and Cucchiara 

et al. [5] utilized the rationale that shadows have similar chromaticity, but lower 

brightness than the background model. In our system, we construct two background 

models for more correct foreground extraction; one is based on grayscale value and 

the other is based on HSV color space. After subtracting each pixel value of 

background model from that current image frame, the resulting image is converted to 

a binary image by setting a threshold. Therefore, we can set a threshold in the 

histogram of the binary image to extract a rectangular image, which represents the 

shapes of a person. Then, the rectangle image is resized to the specified resolution for 

normalization. 

 

1.3  Eigenspace and Canonical Space Transformation  

 

 In most of video and image processing, the size of frame is usually very large 

and it usually has some redundancy. The redundancy possesses no information of an 

image. Hence, some space transformations are introduced to reduce redundancy of an 
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image by reducing the data size of the image. The first step of redundancy often 

transforms an image from spatiotemporal space to another data space. The 

transformation can use fewer dimensions to approximate the original image. There are 

many well-known transformation methods such as Fourier transformation, wavelet 

transformation, Principal Component Analysis and so on. Our transformation method 

combines eigenspace transformation and canonical space transformation which are 

described as follows. 

 Eigenspace transformation (EST), based on Principal Component Analysis, has 

been demonstrated to be a potent scheme used widely as shown below: automatic face 

recognition proposed in [6], [7]; gait analysis proposed in [8]; and action recognition 

proposed in [9]. The subsequent transformation, Canonical space transformation (CST) 

based on Canonical Analysis, is used to reduce data dimensionality and to optimize 

the class separability and improve the classification performance. Unfortunately, CST 

approach needs high computation efforts when the image is large. Therefore, we 

combine EST and CST in order to improve the classification performance while 

reducing the dimension, and hence each image can be projected from a 

high-dimensional spatiotemporal space to a single point in a low-dimensional 

canonical space. In this new space the recognition of human activities becomes much 

simpler and easier. 

 

1.4  Action and Gait Recognition  

 

 In this thesis each segmented foreground in a video segmentation is transformed 

into an image feature vector by extracting features from images. We extract image 

features by using eigenspace transformation and canonical space transformation. We 
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have grouped three contiguous 5:1 down-sampled images and transform them to three 

consecutive feature vectors. Then, the three contiguous images are down-sampled and 

its sample rate is usually 6 frames per second. Next, the time-sequential images are 

converted to a posture sequence by using these three feature vectors. The posture 

sequence is dignified by the number of the templates. 

 In the learning stage, we build a transition model in terms of three consecutive 

posture sequences which is the category symbol of the posture template. For human 

action recognition, the fuzzy rule, in the learned fuzzy rule based system for 

recognition which best matches the observed posture sequence is chosen as the 

recognized action category. We make use of fuzzy rule-base techniques to classify 

human activity and gait, not using the shape of an image. Thus our activity 

recognition can be tolerant of dissimilarity, uncertainty, ambiguity and irregularity 

exists in the data. 

 In our system, we propose a fuzzy rule-based approach for human activity 

recognition and gait recognition. Each action is represented in the form of fuzzy 

IF-THEN rules, extracted from the posture sequences of the training data. Each 

IF-THEN rule is fuzzified by employing an innovative membership function in order 

to represent the degree of the similarity between a pattern and the corresponding 

antecedent part in the training data. When our system classifies an unknown action or 

gait, it will be inferred by each fuzzy rule learned before using three consecutive 

sampled images of the video frames. The accumulated similarity measure associated 

with these three consecutive postures is to match the posture sequence representing an 

activity model or a gait model of the training database, and the unknown action or gait 

is classified to the one yielding the highest accumulative similarity. Our system can 

work in day and night (bright and dark) environments. 
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1.5  Thesis Outline  

 

 The thesis is organized as follows. In Chapter 2, we introduce the basic concepts 

of object extraction, the HSV color space, eigenspace and canonical space transform. 

In Chapter 3, we describe our system that includes “Foreground Extraction,” “activity 

recognition system” and “gait recognition system.” In Chapter 4, the experiment 

results of our recognition systems are shown. At last, we conclude this thesis with a 

discussion in Chapter 5. 
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Chapter 2  Basic Concepts 
  

 In this chapter, we explain the basic concepts of object extraction in the section 

2.1 and the HSV color space in the section 2.2. Then in the section 2.3 we introduce 

the basic concepts of eigenspace and canonical space transform. 

 

2.1  Object Extraction 
 

 The first step of human activity recognition system and human gait analysis is   

object extraction. We have to construct a background model for foreground extraction. 

There are many well-known background models. The most common one is that 

applies frame difference with a threshold. 4W  is such a typical example with some 

modifications. In this section, we will introduce 4W  how to construct the 

background model and detect the foreground region [3].  

 

2.1.1  Background Model 

 

 4W  obtains the background model even if there are moving foreground objects. 

It uses a two stage method based on without moving pixels from background model 

computation.  

 In the first stage, a pixel-wise median filter is applied to several seconds of video 

to distinguish moving pixels from stationary pixels. 

 In the second stage, those stationary pixels are processed to construct the 

background model. Let V  be an array containing N  consecutive images,  iV x  

is the intensity of a pixel location x  in the -thi  image of V .  x  is the standard 
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deviation and  x  is the median value of intensities at pixel location x  in all 

images in V . The background model for a pixel location x ,    ,  ,  ( )m x n x d x   , 

is obtained as follows: 

 

                   
 
 
 

  
  

    1

min

max ,

max

z
z

z
z

z z

V xm x
n x V x
d x V x V x

 
   
      
      

                (2.1) 

 

where      2 .zV x x x     Here,  zV x  is classified as stationary pixels. 

 

2.1.2  Foreground Region Detection  

 

 Each pixel is classified as either a background or a foreground pixel using the 

background model. Giving the minimum  m x , maximum  n x , and the median of 

largest interframe absolute difference d  images over the entire image that represent 

the background scene model  B x , pixel x  from the image tI  is a foreground 

pixel if: 

 

             
   
   

     
0   background     

  or 

1   foreground       otherwise.                     

t

t

I x m x kd

B x I x n x kd





       


         (2.2) 

 

 The threshold k  is determined by experiment according to different 

environments.   
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2.2  The HSV Color Space  

 

 The HSV (hue, saturation and value) color space corresponds closely to the 

human perception of color. Conceptually, the HSV color space is a cone as shown in 

Fig. 2.1 (a). Fig. 2.1 (b) shows a circular and horizontal cross-section of HSV value 

“1,” the hue is represented by the angle of each color in the circle relative to the 0  

line, which is traditionally assigned to be red. The saturation is represented as the 

distance from the center of the circle. The colors with high saturation are on the outer 

edge of the cone, whereas gray tones (which have no saturation) are at the very center. 

The value is determined by the color vertical position in the cone. At the point end of 

the cone, there is no brightness, so all colors are black. At the fat end of the cone are 

the bright colors. 

 

 

 

     
(a)                             (b) 

 

Fig. 2.1  (a) The HSV Cone. (b) Cross-section of HSV value “1.” 
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 The formula of RGB transfers to HSV is defined as: 

 

0 ,                                              if 

60 0 ,        if  and 

60 360 ,    if  and 

60 120 ,    if 

RGB RGB

RGB
RGB RGB

RGB
RGB RGB

R
RGB RGB

max min

G B max R G B
max min

G BH max R G B
max min

B R max
max min




   




    




 





 

 

 

60 240 ,    if 

GB

RGB
RGB RGB

G

R G max B
max min














 




    
 

 

 

 

          

0,                     if 0

,       otherwise                 

RGB

RGB RGB

RGB

max

S
max min

max

 
 




 

 

 

          RBGV max ,                                          (2.3) 

 

where  max , ,RGBmax R G B  and  min , ,RGBmin R G B  

 The hue parameter is the value which represents color information without 

brightness. Therefore, the hue is not affected by changing the illumination brightness 

and direction. Although the hue is the most useful attribute, there are three problems 

in using hue attribute for color segmentation: (1) hue is meaningless when the 
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intensity value is very low; (2) hue is unstable when the saturation is very low; and (3) 

saturation is meaningless when the intensity value is very low [10]. Accordingly, 

Ohba et al [11]. use three criteria (intensity value, saturation, and hue) to obtain the 

hue value reliably 

 

 Intensity Threshold Value:  

    If tV V , then 0H  ,where V , tV , and H  are an intensity value, the 

intensity threshold value, and a hue value, respectively. If measured color is not 

bright enough, the color is discarded. Then, the hue value is set to a 

predetermined value, i.e., 0. 

 

 Saturation Threshold Value:  

    If tS S , then 0H  , where S , and H  are a saturation value, the 

saturation threshold value, and a hue value, respectively. Using this equation, 

measured color close to gray is discarded in the image. 

 

 Hue Threshold Value:  

    If tH P   or 2 tH P   ,  then 0H  . The range of hue value is 

from 0 to 2 , and it has discontinuity at 0 and 2 . We use the phase threshold 

value to avoid the discontinuity effect. 
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 2.3  Eigenspace and Canonical Space Transform 

 

 In computer vision systems need to deal with many images, dimensions of the 

image data are often extremely large. Because there are great deals of redundancies in 

images, it is common to the transform image from high-dimensional space to 

low-dimensional space to reduce redundancy. Many methods like Fourier 

Transformation, wavelet, Multi-Dimensional Scaling (MDS), Principal Component 

Analysis (PCA) and Eigenspace transformation (EST) has actually been demonstrated 

to reduce the dimension of data.  

 However, PCA based on the global covariance matrix of the full set of image 

data is not sensitive to class structure in the data. In order to increase the recognition 

rate of different various actions, Etemad and Chellappa [12] use Linear Discriminant 

Analysis (LDA), also called Canonical Analysis (CA), which can be used to optimize 

the class separability of different activity classes and improve the classification 

performance. The features are obtained by maximizing between-class and minimizing 

within-class variances. Unfortunately, this approach has high computation cost when 

using large images. We call this approach canonical space transformation (CST) Fig. 

2.2 illustrates the processing steps that generate feature vectors by eigenspace 

transformation and canonical space transformation [13].  

 Combining EST based on PCA and CST based on CA, our approach reduces the 

data dimensionality and optimizes the class separability of different gait sequences 

and action classes. Image data in high-dimensional image space are converted to 

low-dimensional eigenspace using EST. The obtained vector this is further projected 

to a smaller canonical space using CST. Recognition is accomplished in the canonical 

space. 



image sequence 

image vectors 

eigen feature 
vectors 

Eigenspace transformation 

Canonical transformation 

…      

(x(1),…, x(n)) (x(1),…, x(n)) (x(1),…, x(n)) (x(1),…, x(n)) 

 

 

(z(1),…, z(c-1)) (z(1),…, z(c-1)) (z(1),…, z(c-1)) (z(1),…, z(c-1)) (z(1),…, z(c-1)) canonical feature 
vectors 

(x(1),…, x(n)) 

(y(1),…, y(k)) (y(1),…, y(k)) (y(1),…, y(k)) (y(1),…, y(k)) (y(1),…, y(k)) 
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where each ,i jx  is an image with n pixels. 

 At first, the brightness of each training image is normalized by 

 

                          ,
,

,

.i j
i j

i j






x
x

x
                             (2.5) 

 

 After normalization, we can get the mean pixel value for the full image set is 

given by 

 

                        ,
1 1

1  .
iNc

i j
i jTN  

 xm x                         (2.6) 

 

 The training set can be rewritten as a Tn N  matrix X  by subtracting xm . 

And each image forms a column of X , that is 

 

               
11,1 1, ,, , , , .

cN c N     x x xX x m x m x m                 (2.7) 

 

2.3.1  Eigenspace Transformation (EST) 

 

 EST is widely used in the recognition of human faces and gait. Basically it is 

used to reduce the dimensionality of an input space by mapping the data from a 

correlated high-dimensional space to an uncorrelated low-dimensional space while 

maintaining the minimum mean-square error for the data information loss. EST uses 

the eigenvalues and eigenvectors generated by the data covariance matrix to rotate the 
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original data coordinates along the direction of maximum variance. 

 

 If the rank of the matrix TXX  is K , then the K  nonzero eigenvalues of 

TXX , 1, , K  , and their associated eigenvectors, 1, , Ke e  satisfy the 

fundamental eigenvalue relationship 

 

                      ,         1, ,i i i i K   e R e                       (2.8) 

 

where R  is a square, symmetric n n  matrix derived from X  and its transpose 

TX  by 

 

                             . TR XX                             (2.9) 

 

    In order to solve Equation (2.8), we need to calculate the eigenvalues and 

eigenvectors of the n n  matrix TXX , it is computationally intractable for typical 

image sizes. Based on singular value decomposition theory, we can get the 

eigenvalues and eigenvectors by computing matrix R  instead, that is 

 

                             , TR X X                           (2.10) 

 

in which the size of the matrix R  is T TN N  , which is much smaller than n n  

of R .Suppose the matrix R  has K  nonzero eigenvalues 1, , K   and 

associated K  eigenvectors 1, , Ke e  which are related to those in R  by 
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 

1
2

            
,                1, , .

i i

i i

i K
 




 
 

e  X e




 
                (2.11) 

 

 These K  eigenvectors are used as an orthogonal basis to span a new vector 

space. Each image can be projected to a point in this K -dimensional space. Based on 

the theory of PCA, each image can be approximated by taking only the k K  

largest eigenvalues 1 2      k      and their associated eigenvectors 

1, , Ke e . This partial set of k  eigenvectors spans an eigenspace in which ,i jy  are 

the points that are the projections of the original images ,i jx  by the equation 

 

         T
, 1 ,, ,  ,  1, ,  ;  1, , .i j k i j ci c j N  y e e x             (2.12) 

 

    We called this matrix  T
1, , ke e  the eigenspace transformation matrix. After 

this transformation, each image ,i jx  can be approximated by the linear combination 

of these k  eigenvectors and ,i jy  is a one-dimensional vector with k  elements 

which are their associated coefficients.  

 

2.3.2  Canonical Space Transformation (CST) 

 

 Based on canonical analysis in [14], we explain the basic concepts of CST. 

Suppose  1 2Φ ,Φ , , Φc  represents the classes of transformed vectors by 

eigenspace transformation and ,i jy  is the -thj  vector in the class i . The mean 
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vector of entire set can be written as 

 

                         ,
1 ,

iNc

y i j
i jTN

 m  y                       (2.13) 

 

and the mean vector of the -thi  class can be presented by 

 

                         
,

,
 Φ

1 .
i j i

i i j
iN 

 
y

m y                         (2.14) 

 

 Let wS  denote the within-class matrix, bS  denote the between-class matrix, 

then 

 

                  
  

  
,

T

w , ,
1 Φ

T

b
1

1

1    

i j i

c

i j i i j i
i yT

c

i i y i y
iT

N

N
N

 



  

  

 



S y m y m

S m m m m
 

 

 

 Where wS  represents the mean of within-class vectors distance and bS  

represents the mean of between-class vectors distance. The objective is to minimize 

wS  and maximize bS  simultaneously and it is to minimize the criterion function 

known as the generalized Fisher linear discriminant function, given by 

 

                         .
T

b
T

w

W S WJ(W) =
W S W

                        (2.15) 
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 The ratio of variances in the new space is maximized by the selection of feature 

transformation W  if 

 

                              0.



J
W

                           (2.16) 

 

 Suppose that *W  is the optimal solution where the column vector *
iw  is a 

generalized eigenvector and corresponds to the -thi  largest eigenvalue i . According 

to the theory [14], equation (2.16) can be solved and represented as  

 

                           * *
b w=  .i i iS w S w                         (2.17) 

 

 After we get the generalized eigenvalue equation, we can obtain  1c   

nonzero eigenvalues and their corresponding eigenvectors  1 1, , cv v  that create 

another orthogonal basis and span a  1c  -dimensional canonical space. By using 

this basis, each point in eigenspace can be projected to another point in the canonical 

space by 

 

                        T
, 1 1 ,, , ,i j c i jz v v y                       (2.18) 

 

where ,i jz  represents the new point and the orthogonal basis  T
1 1, , cv v is called 

the canonical space transformation matrix. By merging equation (2.12) and equation 
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(2.18), each image can be projected into one point in the new ( 1)-dimensionalc   

space by 

 

                               , , ,i j i jz H x                        (2.19) 

 

in which    T T
1 1 1, , , , .c kH = v v e e   
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Chapter 3  Activity and Human Recognition System 
 

3.1  Foreground Extraction 

 

 The first step of human activity recognition and person identification system is 

foreground subject extraction. We extract foreground subject by using background 

model methods. There are many well-known background models. 4W  is such a 

famous example [3]. It records the maximum, minimum and maximum inter-frame 

difference grayscale of each pixel in background video frames. If the pixel’s grayscale 

is in the interval between the maximum and minimum grayscale with toleration, the 

pixel is classified to a foreground one. But we cannot detect reliably those foreground 

pixels whose luminance component close to background pixel. In order to solve this 

problem, we build another background model in the HSV color space. We detect 

reliably foreground pixels in grayscale and the HSV domain. 

 

3.1.1  Background Model 
 

 Fig. 3.1 show the framework we construct for the background models. 

 

 

 

Fig. 3.1.  The framework we construct the background models. 

Background video 

Training the HSV color space 
background model 

Training the grayscale value 
background model 
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A.  Grayscale Value Background Model  

 

 In the grayscale value background model, each pixel of background scene is 

characterized by three statistics: minimum grayscale value   , ,m x y  maximum 

grayscale value   ,n x y  and maximum inter-frame difference   ,d x y  of a 

background video. Because these three values must be obtained through statistics, so 

we need a background video without any moving objects for background model 

training. Let I  be an image frame sequence and contains N  consecutive images.

  ,gray
iI x y  is the grayscale value of a pixel which is located at  ,x y  in the -thi  

frame of .I  The grayscale value background model,         , ,  , ,  ,m x y n x y d x y   , 

of a pixel is obtained by 

 

 
 
 

  
  

    

 
 

  

 
  

1

min ,,
, max , ,        1,  2,  ,  .
, max , ,

ii

ii

i ii

I x ym x y
n x y I x y i N
d x y I x y I x y

 
   
       
       

     (3.1) 

 

 

B.  HSV Color Space Background Model  

 

 Along similar line of reasoning of above, we build another background model 

like a grayscale value background model in each dimension of HSV (hue, saturation 

and value) space. Then, we also record the inter-frame ratio in the brightness 

information and the inter-frame different in the chromatic information. We use the 
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same background video to build the HSV color space background model background 

model.  ,H
iI x y  is the pixel’s hue value at  ,x y  of the -thi  image frame. 

 ,S
iI x y  is the pixel’s saturation value at  ,x y  of the -thi  image frame. 

 ,V
iI x y  is the pixel’s brightness value at  ,x y  of the -thi  image frame. The  

HSV background model of a pixel is obtained by 

 

 
 
 

  
  

    -1

min ,,
, max , ,              1,  2,  ,  .
, max , ,

H
H ii

H H
ii

H
H H
i ii

I x ym x y
n x y I x y i N
d x y I x y I x y

 
   
       
       

          (3.2) 
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i ii

I x ym x y
n x y I x y i N
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   
       
       

          (3.3) 
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3.1.2  Extraction of Foreground Object 

 

 Fig. 3.2 shows the framework we apply to foreground subject extraction. Our 

framework of foreground subject extraction is composed of four components. The 

first component is foreground subject extraction. The second component is the 

shadow suppression. The third component is the object segmentation. And the last 

component is the foreground image compensation to recover the foreground pixels 

those are wrongly classified to the background. 

 

 

 
 

Fig. 3.2.  The framework we develop for foreground subject extraction. 

Input image 

Extraction of foreground subject by the 
HSV color space background model 

Extraction of foreground subject by the 
grayscale value background model 

Shadow suppression in the grayscale 
value background model 

Shadow suppression in the HSV color 
space background model 

Object segmentation 

Foreground image compensation 

Output image 
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 Each pixel of the video frame is classified to either a background or a foreground 

pixel by the difference between the background model and a captured image frame, 

then foreground objects can be segmented from every frame of the video stream.  

 First, we utilize the minimum grayscale value   ,m x y , maximum grayscale 

value   ,n x y  and maximum inter-frame difference   ,d x y  of the grayscale 

value background model to segment a foreground by 

 

 

   
   

  

  
 

0,           if , ,

             or , ,                      ,

255,       otherwise,                                                

i

gray i
fg

I x y m x y k

I x y n x y kI x y





  

   




        (3.5) 

 

where   ,iI x y  is the intensity of a pixel which is located at  ,x y ,   ,gray
fgI x y  is 

the gray level of a pixel in the foreground binary image,   is the median of all 

  ,d x y , and k  is determined by experiments according to different environments. 

We usually use 2k   in our system. 

 In addition to segment a foreground by Eq. (3.5), we also utilize the minimum 

value    ,Vm x y , the maximum value    ,Vn x y  and maximum inter-frame value 

ratio    ,Vd x y  of the HSV color space background model to segment the 

foreground pixel by  
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    (3.6) 
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where   ,V
iI x y  is the intensity of a pixel which is located at  ,x y ,   ,HSV

fgI x y   

is the gray level of a pixel in a binary image, threshold Vk  is determined by the light 

as of the scene. Threshold Vk  will be reduced for in-sufficient light condition and 

increased otherwise. 

 

3.1.3  Shadow Suppression 

 

 The shadows of the object are easily classified as foreground pixels in normal 

condition. The situation causes an object merging and object shape distortion in the 

binary foreground image. Therefore, we need to remove the shadow by using the 

shadow filter. We assume that the observed intensity of shadow pixels is directly 

proportional to incident light. Consequently, shadowed pixels are scaled versions 

(darker) of corresponding pixels in the background model. 

 

 In the first place, we utilize the estimate of Normalized Cross-Correlation (NCC) 

[15] to quantify the similarity between the background image and an image of the 

video sequence. The NCC estimate method is described as follows. Let  ,B x y  be 

the background image formed by temporal median filtering, and  ,I x y  be an 

image of the video sequence. For each pixel  ,x y  belonging to the foreground, 

consider a 3 3  template such that    , , ,xyT m n I x m y n    for 

1 1,  1 1m n       (i.e. xyT  corresponds to a neighborhood of pixel  ,x y ). 

Then, the NCC between template xyT  and image B  at pixel  ,x y  is given by:  
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 
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                          (3.7) 
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 
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                (3.8) 

 

 If a pixel  ,x y  is in a shadowed region, the NCC in a neighboring region xyT  

should be large, and the energy 
xyTE  of this region should be lower than the energy 

  ,BE x y  of the corresponding region in the background images. Therefore, we get 

 

 
   

 

shadow,          ,  and  ,
,

foreground,    otherwise.                                           

xyncc T B
gray

NCC x y L E E x y
S x y
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

 



      (3.9) 

 

 Where nccL  is a fixed threshold. If nccL  is low, several foreground pixels may 

be misclassified as shadow pixels. On the other hand, selecting a large value of nccL ,  

then the shadow pixels may not be detected.  

 We know that the shadow pixels have similar chromaticity but lower brightness 

than the background model. Therefore, we can detect the shadow region in the HSV 
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color space. We will build another shadow filter  HSVS  for each  ,x y  point as 

follows: 
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     (3.10) 

 

where  ,H
iI x y ,  ,S

iI x y ,  ,V
iI x y  are respectively the HSV channel of a pixel 

located at  ,x y . Values Sk  and Hk  are selected threshold values that used to 

measure the similarities of the hue and saturation between the background image and 

the current observed image. We extract the foreground objects from the two 

background models which is the shadow or foreground is obtained through the  grayS  

and  .HSVS  We set a hard threshold for each background model, then we obtain the 

foreground objects which have less noise, but missing some foreground objects. 

Therefore, using the union is better than the intersection. Because of using the union 

can increase the foreground with less noise. Finally, the foreground subject is defined 

as: 

      , , , .gray HSV
fgI x y S x y S x y                  (3.11) 

 

3.1.4  Object Segmentation 

 

 According to the binary image  
fgI  segmented by above, we extract the region 
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of the foreground object to minimize the image size. Foreground region extraction can 

be accomplished by simply introducing a threshold on the histograms in the X and Y 

directions. Fig. 3.3 shows an example of foreground region extraction. We utilize the 

binary image and project it into the X and Y directions. The interested foreground 

section has higher counts in the histogram. We obtain the boundary coordinates 1x , 

2x  of X-axis and 1y , 2y  of Y-axis from the projection histogram. We can use these 

boundary coordinates as four corners of a rectangle to extract a foreground region and 

the size of this rectangle is adjusted to 96 128  for normalization. Fig. 3.4 is the 

extracted foreground region. 

 

            
 

 

 

Fig. 3.3.  Histogram of binary image projection in X and Y direction. 

 

 

Fig. 3.4.  The binary image of extracted foreground region. 
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3.1.5  Foreground Image Compensation  

 

 It is difficult to detect all the foreground pixels and remove all the shadows in 

each frame. When we want to remove shadow pixels, some foreground data will be 

lost and this makes the foreground image broken. In order to solve the problem, we 

will repair the foreground image by opening filter and closing filter [16], Fig. 3.5  

shows the image which is to be repaired.  

 

 

 

          
(a)              (b) 

 

Fig. 3.5.  (a) Foreground image. (b) Foreground image after opening and closing repair of (a). 

 
  



 

30 
 

3.2  Background Update 

 

 If the facilities in room are moved, they will be detected as foreground pixels of 

human and the human activity recognition will be misclassified. Therefore, we have 

to adopt a scheme that can update background models in order to avoid above 

situation. If the video does not vary for a long time and there is nobody in the scene 

the background models will be updated. By Eq. (3.12), we calculate how many times 

the binary values are unchanged. 

 

 
     

 

 1  , 1,   if , ,               
,

, ,       otherwise,                                   

t t
fg fgupdate x y I x y I x y

update x y
update x y

  


 



     (3.12) 

 

where   ,t
fgI x y  is the gray level of a pixel in binary image and it is located at 

 ,x y . Value  ,update x y  is a record of how many times   ,t
fgI x y  remains 

unchanged. When  ,update x y  exceeds a threshold, the pixel  ,x y  will be 

included in the background model. 
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3.3  Skin Color Detection 

 

 By skin color detection, we can analyze whether there is a person in the scene. If 

a person in the scene, the background is not updated. 

 First, the input image is transferred into the normalized RGB color space by: 

 

,                                                  (3.13)

.                                                 (3.14)

Rr
R G B

Gg
R G B


 


 

                         

 

 According to Soriano and Martinkauppi [17], a boundary condition of skin color 

in the r-g plane is defined as 

 

 

 

2

2

1.3767 1.0743 0.1452,                              (3.15)

0.7760 0.5601 0.1766.                             (3.16)
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f r r r

f r r r
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   

 

 

 If a pixel satisfies the following four conditions, it will be labeled as skin pixel. 

Therefore, we know there is a person or not from the following skin pixel marking: 

 

   

   2 2

  and   ,                                    (3.17)

0.33 0.33 0.0004,                                   (3.18)

                  ,                                             
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 

   

          (3.19)

                  45.                                                    (3.20)R G 
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3.4  Template Selection 

 

 Cameras usually capture image frames in high frequency (30 frames / Sec.), but 

human action transforms are much slower than the camera capturing speed. There are 

few differences between two consecutive image frames. Therefore, we select a key 

frame, called as essential template image, from a sequence with a fixed interval to 

represent an action and gait. In our approach, we select an essential template image 

every 5 frames and the schematic diagram is shown in Fig. 3.7. The number of 

essential template image about an action and gait is dependent on the period of the 

action.  

 

 

 

Fig. 3.6.  Using 5:1 down-sampling rate to select the essential template image. 

 

 

 These essential templates are transformed into a new space by eigenspace 

transformation (EST) and canonical space transformation (CST). The approximation 

will lose slight information of the image with little differences, but it can decrease 

massive data dimensions. However, two similar image frames will converge to two 

template   
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nearest points after eigenspace and canonical space transformation.  

 As described in Section 2.3, each image frame is transformed into a 

( -1)-dimensionalc  vector by EST and CST methods [13]. Assume that there are n  

training models and c  clusters in the system. Therefore, we have tN  templates, 

where tN  is equal to n  multiplied by c . Let ,i jg  be a vector of template image of 

the -thj  training model and the -thi  category and ,i jt  be the transformed vector 

of ,i jg , ,i jt  is computed by 

 

, , ,            1,  2,  ,   ;   1,  2,  ,         i j i j i c j n   t H g           (3.21) 

 

where H  denotes the transformation matrix combing EST and CST and n  is the 

total number of posture images in the -thi  cluster. ,i jt  is a ( -1)-dimensionalc  

vector and each dimension is supposed to be independent. Hence, ,i jt  is rewritten as 

 

T1 2 1
, , , ,,  ,  ,  .c

i j i j i j i jt t t    t                         (3.22) 

 

 The transformation of each training model’s template is treated as a mean vector. 

That is, 

 

,
1

1 ,
n

i i j
jn 

 μ t                            (3.23) 

 

where i  is the number of template categories. 
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The standard deviation vector of the -thm  dimension is computed by 

 

 2

,
1 1 .

1

c n
m m
i j i

i j
m

tN
  






 t μ
                         (3.24) 

 

3.5  Construction of Fuzzy Rules from Video Stream 

 

 Transitional relationships of postures in a temporal sequence are important 

information for human activity classification. If we only utilize one image frame to 

recognize actions or gait, it may be not sufficient to obtain high correct rate because 

human’s actions may have similar postures in two different action sequences or gait 

sequences. For example, the actions of “jumping” and “crouching” both have the 

same postures called common states as shown in Fig. 2.10. Besides, the posture 

sequence of each activity is dissimilar in different people.  

 
 

 
Fig. 3.7.  Common states of two different activities. 

 common states 
t 

an image sequence of  
the activity “Jumping” 

an image sequence of  
the activity “Crouching” 
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 Hence, we use the fuzzy rule-based approach to solve aforesaid problem. The 

approach combines temporal sequence information for recognition.  

 

 We use the membership function to represent the feature’s possibility of each 

cluster. Many types of membership functions are frequently used in fuzzy system, we 

choose the Gaussian type membership function to represent the features because the 

Gaussian type membership function can reflect the similarity via the first order and 

second order statistics of clusters and is differentiable. 

 

 Firstly, when the -thk  training image frame kX  is inputted, the feature vector 

ka  is extracted by 

 

,k ka H x                          (3.25) 

 

where H  denotes the transformation matrix of EST and CST. As the same as ,i jt  in 

Eq. (3.22), ka  can be rewritten as 

 

T1 2 1,  ,  ,  .c
k k k ka a a    a                      (3.26) 

 

 If we assume the dimensions of the feature vectors are independent, a local 

measure of similarity between the training vector and each template vector can be 

computed. Let   and μ  denote respectively the covariance matrix and mean 

vector of all essential template vectors and iC  denote the -thi  class of essential 

templates of postures. The membership function is given by 
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a μ Σ a μ


          (3.27) 

 

where m  is the number of dimension and j  is the training model, i.e., action 

person, index. .i kr  denotes the grade of membership function of category the -thk  

image frame. After that we can obtain which category posture the image belongs to by 

 

,arg max  k i ki
P r                         (3.28) 

 

 The membership function describes the probability of which one it is like most. 

But it just contains the information of a single image. Hence, we collect three images 

to form a basis for temporal information.  

 

 Assume we have c  linguistic labels, each linguistic label represents a category 

of essential template. Each image frame can be represented by one of these c  

linguistic labels. Three contiguous images are combined as a group  1 2 3,  ,  I I I  in 

our approach. The transformation of the image group can form a feature vector 

 1 2 3,  ,  a a a . There are 3c  combinations of the feature vector. Each combination 

represents the possible transition states of the three images. We use Eq. (3.27) to class 

each image frame. Hence, we can represent the feature vector  1 2 3,  ,  a a a  by 



 

37 
 

linguistic label sequence  1 2 3,  ,  p p p . An image sequence with a linguistic label 

sequence is associated with its output of corresponding activity. 

 As developed by Wang and Mendel [10], fuzzy rules can be generated by 

learning from training data. Such image sequence constitutes an input-output pair to 

be learned in the fuzzy rule base. In this setting, the generated rules are a series of 

associations of the form 

 

“IF antecedent conditions hold, THEN consequent conditions hold. ” 

 

 The number of antecedent conditions equals the number of features. Note that 

antecedent conditions are connected by “AND.” For example, an image sequence, its 

transformations of image 1, image 2, image 3 and belonging categories being 

concatenated as vector format, is given by 

 

 1 2 3 1,  ,  ;  P P P D                         (3.29) 

 

 

                

 

Fig. 3.8.  A fuzzy rule learned to classify action. 

 

1D  

image 1 image 2 image 3 
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 Suppose that images 1, 2, 3 belong to categories 1, 2, 3 respectively. Therefore, 

the image sequence (Images 1, 2, 3) is transferred to (P1, P2, P3). Finally, a rule is 

supported by these three images as given by 

 

 

Rule 1.  IF the activity’s 1I  is 1P   AND  its 2I  is 2P   AND  its 3I  is 3P , 

THEN  the action is 1D . 

 

  

 After the learning step of different actions, some conflicting rules may be 

generated. The conflicting rules have the same image sequence but refer to different 

activity. Therefore, we have to choose one from conflicting rules. To this end, we 

choose the rule that is supported by a maximum number of training data. Furthermore, 

to prune redundant or inefficient fuzzy rules, if the supporting actions of a rule are 

less than a threshold, the rule is excluded from defining an IF-THEN rule. 

 

 

3.6  Classification Algorithm 

 

 After constructing the rule base, we can grade the input image sequence with 

each fuzzy rule by grade of membership function. Let   denote the covariance 

matrix of all essential template vectors, ks  denote the image frame transformed by 

EST and CST and iC  denote the -thi  class of essential templates of postures. The 

membership function is given by 
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            (3.30) 

 

where j  is the training model number. ,i kr  denotes the grade of membership 

function in category i  of the -thk  image frame.   is the standard deviation of all 

essential templates. These membership functions are just the results of one image 

frame. We need to collect three images as a group as a group for recognizing an 

activity or gait analysis. Therefore, we use two transformed vectors of passed image 

frames, which are called 2ks  and 1ks . These three vectors from a feature vector 

 2 1,  ,  k k k s s s . We compute the membership functions of three vectors respectively. 

 

 In order to calculate the similarity between image sequence and each postural 

sequence in the training database, we take out the membership functions 
12,k nr  , 

21,k nr  , and 
3,k nr  which are corresponding to the three categories of linguistic labels, 

1nP , 
2nP ,and 

3nP , in the rule and have been calculated by Eq. (3.29). The summation 

of 
12,k nr  , 

21,k nr  , and 
3,k nr  is the similarity between current image sequence and the 

postural sequence of this rule. We can obtain the similarity related to all fuzzy rules of 

training database in the same manner. The rule, which has the highest value of 

similarity, is selected. Fig 3.10 shows the structure of the classification algorithm. 
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Fig. 3.9.  The structure of action recognition algorithm. 
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Chapter 4  Experimental Results 
 

 In our experiment, we test our system on videos. The videos captured by NIR 

cameras in bright and dark environments. The experimental environment is in our 

laboratory which is in the 5-th Engineering Building on NCTU campus.  

 The action recognition background is the real life environment and illumination 

of the environment is 432 Lux in the day (bright environment) and 0.26 Lux in the 

night (dark environment), respectively. The NIR camera (KMT-1651N with lighting 

LED cells) with a lens of 4.3 mm focus is set up at the location that is far from the 

object about 5 meters. This camera has a frame rate of 30 frames per second and the 

image resolution is 320×240 pixels. 

 The action recognition scenes in bright and dark environments are shown in Fig.  

4.1 we choose eleven actions: “walking from right to left,” “walking from left to right,”  

“bending,” “waving,” “sitting down on the left” “Sitting on the left” “standing up on 

the left” “sitting down on the right” “Sitting on the right” “standing up on the right” 

“walking straightly,” to recognize the action in our system. Fig. 4.2 and Fig. 4.3 

shows the examples video sequence form our LAB databases. 

 

       
(a)                              (b) 

Fig. 4.1.  (a) The action recognition experiment environment in the day, 

(b) The action recognition experiment environment in the night. 
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Fig. 4.2.  Typical video sequences for actions of our LAB in bright environment (432 Lux). 

From top to bottom: “walking from right to left,” “walking from left to right,”  “bending,” 

“waving,” “sitting down on the left,” “Sitting on the left,” “standing up on the left,” “sitting 

down on the right,” “Sitting on the right,” “standing up on the right,” “walking straightly.” 
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Fig. 4.3.  Typical video sequences for actions of our LAB in dark environment (0.26 Lux). 

From top to bottom: “walking from right to left,” “walking from left to right,”  “bending,” 

“waving,” “sitting down on the left,” “Sitting on the left,” “standing up on the left,” “sitting 

down on the right,” “Sitting on the right,” “standing up on the right,” “walking straightly.” 
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 The gait recognition background is the real life environment and illumination of 

the environment is 432 Lux in the day and 0.26 Lux in the night respectively. The 

NIR camera with a lens of 4.3 mm focus is set up at the location that is far from the 

object about 4 meters. This camera has a frame rate of 30 frames per second and the 

image resolution is 320×240 pixel. 

 The gait recognition scenes in bright and dark environments are shown in Fig.  

4.4 we choose “walking from left to right” to recognize the gait in our system. Fig. 4.5 

and Fig. 4.6 shows the examples video sequence form our LAB databases. 

 

 

       
(a)                              (b) 

Fig. 4.4.  (a) The gait recognition experiment environment in the day,             

(b) The gait recognition experiment environment in the night. 

 

       

Fig. 4.5.  Typical video sequences for gait of our LAB in bright environments. 

 

       

Fig. 4.6.  Typical video sequences for gait of our LAB in dark environments. 
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4.1  Background Model and Foreground Object Extraction 

 

 In order to construct the background model, we first record a video of clear 

background about two second in bright and dark environments. We build the 

grayscale value and the HSV color space background models. We will extract the 

foreground pixel by using background models (see Eqs. 3.5 and 3.6). Then we use 

shadow filter to remove the shadow of the foreground (see Eq. 3.9). In order to obtain 

the good object extraction, we have to adjust some parameters in our system.  

 In the bright action recognition environment we set 2.8k   for the grayscale 

value background model and 1.6vk   for the HSV color background model. In the 

dark action recognition environment we set 1.7k   for the grayscale value 

background model and 1.3vk   for the HSV color background model; in the bright 

gait recognition environment we set 3.1k   for the grayscale value background 

model and 1.4vk   for the HSV color background model. In the dark gait 

recognition environment we set 1.4k   for the grayscale value background model 

and 1.1vk   for the HSV color background model.  

 The same parameter is used in bright and dark action recognition environment 

environments for shadow filter. We set 0.95nccL   in the grayscale value space and 

1.3Hk   and 1.3Sk   in the HSV color space to detect shadow pixels. Figs. 4.7 and  

4.8 show the results of foreground extraction in bright and dark action recognition 

environment environments, respectively. Fig. 4.9 and Fig. 4.10 show the results of 

foreground extraction in bright and dark gait recognition environments, respectively. 
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(a) 

 

   

(b)                                 (c) 

 

 
(d) 

 

Fig. 4.7.  The results of foreground extraction in bright action recognition 

environment. (a) Background image. (b) An action image frame. (c) Binary image 

after foreground detection. (d) Foreground region extracted. 
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(a) 

 

  

(b)                                 (c) 

 

 

(d) 

 

Fig. 4.8.  The results of foreground extraction in the dark action recognition 

environment. (a) Background image. (b) An action image frame. (c) Binary image 

after foreground detection. (d) Foreground region extracted. 
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(a) 

 

  

(b)                                 (c) 

 

 

(d) 

 

Fig. 4.9.  The results of foreground extraction in the bright gait recognition 

environment. (a) Background image. (b) An action image frame. (c) Binary image 

after foreground detection. (d) Foreground region extracted. 
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(a) 

 

  

(b)                                 (c) 

 

 

(d) 

 

Fig. 4.10.  The results of foreground extraction in the dark gait recognition 

environment. (a) Background image. (b) An action image frame. (c) Binary image 

after foreground detection. (d) Foreground region extracted. 
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4.2  Fuzzy Rule Construction for Action Recognition 

 

 We construct the template model matrix and the fuzzy rule database with the 

training data. Firstly, we choose key posture images as essential templates from each 

action, and the number of each action key posture image is in proportion to its period 

at about 1/6 sec per key posture. Key posture images of each action for one person are 

shown in Fig. 4.10. We will regard each posture as one class of posture types. 

 

 

             

(a) 

 

             

(b)  

 

             

(c) 
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(d) 

 

             

(e) 

 

 

(f) 

 

             

(g) 

 

             

(h) 
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(i) 
 

             

(j) 

 

 

(k) 

 

 

Fig. 4.11.  Key postures of the actions of person 1, (a) walking from right to left, (b) 

walking from left to right, (c) bending, (d) waving, (e) sitting down on the left, (f) 

Sitting on the left, (g) standing up on the left, (h) sitting down on the right, (i) Sitting 

on the right, (j) standing up on the right, (k) walking straightly. 
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 After determining the standard deviation vectors, the corresponding training 

video frames are inputted. The relationship between each image frame and each 

template is calculated by using Eq. (3.27) in Section 3.4.  

 We gathered three images as a group in order to include temporal information. 

The interval between each of these three images is five image frames which are the 

same as in key posture template selection. Training is accomplished in off-line 

situation using recorded video. Therefore, we gathered three images from different 

start points to train fuzzy rules. For examples: the first frame, the 6-th frame and 11-th 

frame are gathered together to train fuzzy rule; the second frame, the 7-th frame and 

12-th frame are gathered together to train another fuzzy rule; the third frame, the 8-th 

frame and the 13-th frame are gathered together to train another fuzzy rule, etc.  

 Different start points of image frames are used for training fuzzy rules in our 

experiment, because the starting posture of testing video and of training video may 

not be the same. By utilizing different start points, the system is able to learn much 

more combinations of image frames.  

 The group of the three images is converted to the posture sequence which has the 

maximum sum of three membership function values in Eq. (3.27). Each posture 

sequence will trigger a corresponding rule one time. If the corresponding rule is not 

exist, a new rule is built in the form of IF-THEN which is represented in Section 3.4. 

One of the fuzzy rule is represented in the view of template images in Fig. 4.11. 

 

   

P3    P2    P1 

 

Fig. 4.12.  The fuzzy rule of walk from right to left. 
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4.3  The Action Recognition Accuracy 
 

 In order to calculate the recognition rate of actions, we use off-line videos in our 

experiment. The off-line videos include five person videos and each person performed 

eleven actions. Then, we input the testing video from different starting frames, similar 

to the way for the training fuzzy rules. We recognize the video from the first frame, 

the second frame, the third frame and the fourth frame, etc. with the sampling 

intervals of five frames. 

 Table I and Table II show the recognition rate in bright and dark action 

environments respectively. We use leave-one-out cross-validation of five person 

videos. If we test these videos in Person 1, we will construct the templates and fuzzy 

rules by used the other three persons. That is, the testing video was not used for 

constructing key posture templates and fuzzy rules. 

 In the tables, WRL is the action “walking from right to left,” WLR is the action 

“walking from left to right,” BEND is the action “bending,” WAVE is the action 

“waving,” SDL is the action “sitting down on the left,” SL is the action “sitting on the 

left,” SUL is the action “standing up on the left,” SDR is the action “sitting down on 

the right,” SR is the action “sitting on the right,” SUR is the action “standing up on the 

right,” WS is the action “walking straight,” a
ccA  is the person’s action recognition 

accuracy in frame base. 

 The frame based accuracy is the total number of correct recognition divide by the 

total number of recognitions done. The following tables show the accuracy by using 

the video bases. 
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TABLE I 

THE ACCURACY RATE OF ACTION RECOGNITION IN THE BRIGHT ENVIRONMENT 

Person 

Action 
Person 1 Person 2 Person 3 Person 4 

WRL 98.67% (223/226) 98.88% (177/179) 98.59% (210/213) 96.27% (155/161) 

WLR 98.95% (189/191) 97.28% (143/147) 100%  (164/164) 95.60% (152/159) 

BEND 100%  (203/203) 100%  (161/161) 100%  (179/179) 92.25% (250/271) 

WAVE 98.48% (194/197) 90.52% (210/232) 97.55% (199/204) 95.26% (241/253) 

SDL 100%  (114/114) 88.89% (120/135) 93.50% (115/123) 78.57% (99/126) 

SL 98.65% (220/223) 100%  (158/158) 99.45% (182/183) 99.50% (200/201) 

SUL 98.90%  (90/91) 100%  (117/117) 97.46% (115/118) 88.57% (93/105) 

SDR 87.18% (102/117) 91.18% (93/102) 100%    (91/91) 75.61% (93/123) 

SR 99.06% (211/213) 100%  (143/143) 99.38% (161/162) 92.80% (219/236) 

SUR 91.75%  (89/97) 100%    (84/84) 100%  (105/105) 90.32%  (84/93) 

WS 94.63% (370/391) 95.53% (278/291) 97.46% (307/315) 95.08% (425/447) 

a
ccA  

97.19% 

(2005/2063) 

96.28% 

(1684/1749) 

98.44% 

(1828/1857) 

92.46% 

(2011/2175) 

False alarm 

rate 

0.28% 
(58/20630) 

0.37% 
(65/17490) 

0.16% 
(29/18570) 

0.75% 
(164/21750) 

Total frame based accuracy: 96.34%; Total frame based false alarm rate: 0.40% 
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TABLE II 

THE ACCURACY RATE OF ACTION RECOGNITION IN THE DARK ENVIRONMENT 

 Person 1 Person 2 Person 3 Person 4 

WRL 97.62% (205/210) 98.94% (186/188) 100%  (205/205) 97.08% (166/171) 

WLR 98.43% (188/191) 100%  (158/158) 99.44% (177/178) 94.67% (160/169) 

BEND 100%  (218/218) 100%  (195/195) 100%  (167/167) 86.00% (221/257) 

WAVE 100%  (218/218) 82.57% (180/218) 83.87% (182/217) 94.44% (221/234) 

SDL 92.59% (100/108) 88.89% (120/135) 100%  (105/105) 79.59% (117/147) 

SL 97.96% (240/245) 92.06% (116/126) 100%  (117/117) 100%  (213/213) 

SUL 88.24% (90/102) 100%    (96/96) 95.70%  (89/93) 93.33%  (84/90) 

SDR 97.41% (113/116) 95.15% (98/103) 93.00% (93/100) 77.52% (100/129) 

SR 98.64% (217/220) 100%  (117/117) 100%  (171/171) 92.09% (233/253) 

SUR 71.43% (75/105) 97.14% (102/105) 94.12%  (80/85) 89.11% (90/101) 

WS 91.91% (375/408) 92.96% (251/270) 96.27% (258/268) 97.71% (470/481) 

a
ccA  

95.24% 

(2039/2141) 

94.62% 

(1619/1711) 

96.37% 

(1644/1706) 

92.42% 

(2075/2245) 

False alarm 

rate 

0.47%  

(102/21410) 

0.54%  

(92/17110) 

0.36%  

(62/17060) 

0.76%  

(170/22450) 

Total frame based accuracy: 94.54%; Total frame based false alarm rate: 0.55% 
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4.4  Fuzzy Rule Construction for Gait Recognition 

 

 We construct the template model matrix and the fuzzy rule database with the 

training data. Firstly, we choose key posture images as essential templates from each 

person’s gait images, and the number of each person’s gait key posture image is in 

proportion to its period at about 1/6 sec per key posture. Key posture images of each 

person for one gait video are shown in Fig. 4.12. We will regard each posture as one 

class of posture types. 

 

 

             

 

      

 

      

 

             
 

Fig. 4.12  Key postures of the eight person’s gait of one gait video. 



 

58 
 

4.5  The Recognition Rate of Gaits 
 

 In order to calculate the recognition rate of gaits, we use off-line videos in our 

experiment. The off-line videos include five gait videos, every gait video has eight 

person’s gait images. Then, we input the testing video from different starting frames 

which is similar to the way for the training fuzzy rules. We recognize the video from 

the first frame, the second frame, the third frame and the fourth frame, etc. with the 

sampling intervals of five frames. 

 

 Table III and Table IV show the recognition rate in bright and dark gait 

environments respectively. We use leave-one-out cross-validation of five gait videos. 

If we test these videos in first gait video, we will construct the templates and fuzzy 

rules by used the other three gait video. That is, the testing video was not used for 

constructing templates and fuzzy rules. a
ccA  represents the person identification by 

the gait videos. 

  

 The frame based accuracy is the total number of correct recognition divide by the 

total number of recognitions done. The following tables show the accuracy by using 

the video bases. 
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TABLE III 

THE ACCURACY RATE OF PERSON RECOGNITION BY THE GAIT VIDEOS IN THE BRIGHT ENVIRONMENT 

condition 
outcome 

Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Person 7 Person 8 

Person 1 363 8 2 2 6 11 6 3 
Person 2 10 325 8 6 2 15 12 2 

Person 3 0 1 398 9 3 10 21 8 

Person 4 4 27 15 421 11 14 16 22 

Person 5 8 8 14 2 468 5 6 12 

Person 6 6 5 10 11 5 355 7 1 

Person 7 6 15 22 22 2 5 363 14 

Person 8 18 0 9 0 5 15 17 352 
a
ccA  87.47% 83.55% 83.26% 89.01% 93.32% 82.56% 81.03% 85.02% 

False alarm rate 1.21% 1.74% 1.69% 3.54% 1.81% 1.44% 2.77% 2.04% 

Total frame based accuracy: 85.80%; Total frame based false alarm rate: 2.03% 

 

TABLE IV 

THE ACCURACY RATE OF PERSON RECOGNITION BY THE GAIT VIDEOS IN THE DARK ENVIRONMENT 

condition 
outcome 

Person 1 Person 2 Person 3 Person 4 Person 5 Person 6 Person 7 Person 8 

Person 1 192 0 7 0 0 3 0 0 

Person 2 1 228 11 11 0 0 0 0 

Person 3 6 18 282 4 0 4 3 20 

Person 4 10 5 15 302 4 15 25 16 

Person 5 12 0 7 6 300 11 0 6 
Person 6 13 8 1 15 20 257 0 15 

Person 7 3 7 9 5 3 0 323 10 

Person 8 5 10 0 2 1 0 16 248 
a
ccA  79.34% 82.61% 84.94% 87.54% 91.46% 88.62% 88.01% 78.73% 

False alarm rate 0.44% 1.04% 2.54% 4.19% 1.94% 3.27% 1.74% 1.56% 

Total frame based accuracy: 85.45%; Total frame based false alarm rate: 2.08% 
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Chapter 5  Conclusion 
 

 In this thesis, we implement the day and night automatic home health care 

system that combines the action recognition and gait recognition. The images are first 

extracted by background subtraction in action recognition system and gait recognition 

system. Then, the test images are transformed into a new space by eigenspace 

transform and canonical space transform for better efficiency and separability. Using 

three connective down-sampled images for fuzzy rule based inference system are used 

for action and gait recognition. 

 By our method, correct rate of action recognition in the bright environment is 

95.97%; and the correct rate of action recognition in the dark environment by about 

94.54%. The correct rate of person recognition by the gait recognition in the bright 

environment is 85.80%; and the correct rate of person recognition by the gait 

recognition in the dark environment is 85.45%. 

 The correct rates of action and gait recognition in dark environment are lower 

than those in the bright environment. This is because that the NIR image acquired in 

the dark environment will have little information on hue and saturation components 

than that in day time. 
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