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摘 要       

在這篇論文中，我們主要探討兩個主題：I﹒低維半導體中的電子自旋馳

豫 II﹒微生物鞭毛間的流體動力交互作用。這兩個主題分別隸屬於凝態和

軟物質兩個不同的物理領域。 

在主題 I 中，我們探究低維半導體 (二維電子氣) 中，基於 Elliott-Yafet

和 D’yakonov-Perel’自旋馳豫機制所導致的電子自旋馳豫現象。我們運用

Ensemble Monte Carlo (EMC) 和 Semiclassical path integral (SPI) 方法來研

究這些問題。藉由運用 EMC 和 SPI 這兩個方法來加以計算，我們發現其結

果與一些理論推演和實驗數據互相一致。並且我們也預測出一些有趣的結

果，這些發現可作為將來實驗設計的指導方針。 

在主題 II 中，我們試著揭露出細菌地毯鞭毛運動的集體行為。我們提出

兩 個 簡 單 模 型 Microorganism-flagellum-rotor matrix (MFRmatrix) 和

Microorganism-flagellum-rotor sweep (MFRsweep) 來摹擬真實世界中複雜萬

分的細菌鞭毛轉動和甩動的行為。我們使用 Blake-Oseen tensor (BOT) 來描

述細菌鞭毛彼此之間和鞭毛與示蹤粒子之間的流體動力交互作用。藉由運

用 MFRmatrix 和 MFRsweep 這兩個模型以及 BOT 來研究微生物鞭毛陣列的行

為，我們提出一些合理的見解來解釋最近的一些實驗結果。此外我們也預

測出一些有趣的現象，這些發現可作為將來實驗設計的指導方針。 
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ABSTRACT 

 

In this thesis we explore two main topics: I. Spin relaxations in low dimensional 

semiconductors and II. Hydrodynamic interactions between microorganism 

flagella. These two topics belong to two different physical fields, condensed 

matter and soft matter fields. 

 

In Part I we focus on exploring the Elliott-Yafet and D'yakonov-Perel' spin 

relaxation mechanisms inducing electron spin relaxation in low dimensional 

semiconductors (two-dimensional electron gas). The main exploration 

approaches are Ensemble Monte Carlo (EMC) and Semiclassical path integral 

(SPI) methods. By utilizing these two methods, some consistent results between 

our study and some theoretical and experimental results are obtained. In addition 

our study also predicts some interesting findings which may offer as design 

guidance for future experiments setting up. 

 

In Part II we try to reveal the bacterial carpet collective behavior. We propose 

two minimal models Microorganism-flagellum-rotor matrix (MFRmatrix) and 

Microorganism-flagellum-rotor sweep (MFRsweep) to mimic the real and 

complex bacterium flagella rotation and sweep behavior, respectively. And in 

order to properly describe the hydrodynamic interaction between the bacterium 

flagella themselves and between the bacterium flagellum and tracer particle, the 

hydrodynamic interaction Blake-Oseen tensor (BOT) is employed. By utilizing 

these two models and BOT in studying microorganism matrix, we give some 

reasonable explanation to account for recent experimental results. Besides, our 

study also predicts some interesting findings which may offer as design 

guidance for future experiments setting up. 
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Chapter 1

Spin Relaxation Mechanisms

1.1 Introduction

The achievement of modern science and technology is largely based on the

blooming development of electronics, which mainly make use of the charge prop-

erty of carriers in solid state physics. However, charge is not the only intrinsic

carrier property one can take advantage of from carriers. In addition to it, spin

is a not yet widely utilized degree of freedom which may enrich device functions.

Sophisticated manipulation on the carrier charge has revolutionized our daily life

over a century. The possibility of utilizing carrier spin creates another hope for a

new generation of spin-based devices. This expectation has attracted numerous

studies in the past decades and boosted our understanding on spin systems in

solid state physics. Researches along this direction have formed the field of spin

electronics, or simply spintronics.

The expectation for a spin technology era is not a pure mirage. In fact, some

spin-based devices have been realized and even in use commercially. A prominent

example is the read head and the memory-storage cell of the giant-magnetoresistive

(GMR) multilayer structure, composed of alternating ferromagnetic and nonmag-

netic metal layers, developed around 1988 [1,2]. Since the magnetoresistance of the

device depends on the relative orientation of the magnetizations in the magnetic

layers, it can be used to sense changes in magnetic fields. After GMR, the stud-

ies on spintronics devices have split into two branches. While one of them tends

to perfect the existing GMR-based technology, the other seeks more radically for

new mechanisms for tailoring desired spin transport properties from, for instance,

semiconductors. The idea of spin field-effect-transistor proposed by Datta and

Das for semiconductors served as a milestone example, which stimulates extensive

theoretical and numerical studies in spintronics [3]. Despite of those promising
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progresses, the route towards a spin era of technology is not obstacle free. From

the aspect of basic physics, spin flipping energy can be readily affected by ther-

mal fluctuations. How to retain a spin information unaffected against thermal

fluctuations and extract a spin information from the noisy environment are tricky

problems. Without a solution to these problems, spintronics is only a laboratory

toy at low temperature environments and cannot be coupled into daily used elec-

tric circuits functioning at the room temperature. Furthermore, from the aspect

of material science, band unmatching on the metal-semiconductor interface and

the fast spin relaxation rate in semiconductors are other notorious problems for

device designs. As a whole, problems in constructing spin-based semiconductor

devices can be summarized into three key issues: spin injection, detection, and

manipulation [4]. During spin manipulation, the life time of a polarized spin state

is of special concern, which leads to numerous investigations on various spin relax-

ation mechanisms. The importance of life time of spin state can be reflected from

the recent interest on the persistent spin mode experimentally created and mea-

sured by IBM scientists in 2012 [5]. These spin helices of synchronized electrons

persisting for more than a nanosecond is longer than the duration of a modern

processor clock cycle, which is regarded as a hope for spin information processing.

In fact, the existence of a similar kind of long-lived spin mode along a quasi one-

dimensional system has been analytically proved and numerically confirmed in our

previous study [6]. Doubtlessly, spin relaxation is a central problem in spintronics.

It is the main ingredient in Part I of this thesis.

The samples studied in this thesis are focused on low-dimensional systems,

such as quasi-two dimensional (quasi-2D) quantum wells (QWs) and quantum

wires (QWires), as well as two dimensional electron gas (2DEG), built of III-

V semiconductor heterostructures. Spin evolutions in these systems are strongly

affected by the Elliott-Yafet and the D’yakonov-Perel’ spin relaxation mechanisms.

To analyze these mechanisms, we employee the Ensemble Monte Carlo Method

for carrier dynamics and develop the Semiclassical Path Integral Method for spin

dynamics. Our theoretical results agree very well with the existing experimental

data, unravel some experimental puzzling questions, and predict several sample

behaviors beyond experimentally accessible parameters regimes.

The spin relaxation, or spin de-coherence, of electrons and holes are frequently

observed phenomenon in solid materials. There exist many relaxation mecha-

nisms responsible for this phenomenon. The most prominent ones are the Elliott-

Yafet(EY) mechanism [7, 8, 9, 10], the D’yakonov-Perel’(DP) mechanism [11, 12,

13,14,15], the Bir-Aronov-Pikus (BAP) mechanism, and the hyperfine-interaction

4



Carrier
Charge
+
Spin

Metal

Semiconductor

Others

Spin injection

Spin manipulation

Spin detection

Others

System

Approach

Quasi-2D QWs and Quasi-2D QWires, and 2DEG

Analytical approach
+          
Numerical approach- Ensemble Monte Carlo Method & 
                                    Semiclassical Path Integral Method

Figure 1.1: A tree plot shows the main concepts and key words which is included
in Chapters 1 and 2. They highlight the necessary theoretical foundation and our
study approaches in the spin relaxation issue which explored in Part I.

mechanisms. In this chapter we briefly sketch the EY and DP mechanisms.

1.2 Elliott-Yafet mechanism

An electron in a crystal is usually modeled as a particle moving in a perfect

lattice described by a periodic lattice potential. The Schrödinger equation of the

electron is [
p2

2m
+ V (r)

]
Ψ = EΨ, (1.1)

where m, p and r are the free electron mass, momentum operator and position

vector. Here, V (r) is the lattice potential, which follows both point and trans-

lational symmetries of the lattice. The wave function Ψ is the well-known Block

function

uke
ik·r, (1.2)

where uk obeys the above both symmetries of the lattice. In order to introduce

the spin-orbit interaction into (2.1), we start with the four-component Dirac equa-

tion and reduce it to two components in the usual way [16]. After taking some

approximations, it yields the Schrödinger equation

[
p2

2m
+ V (r) +

~
4m2c2

(∇V (r)× p) · σ
]

Ψ = EΨ, (1.3)
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where c and σ are the speed of light and Pauli matrices and the third term is the

spin-orbit coupling. The corresponding Hamiltonian operator and the wave func-

tions of the electron still have the point and translational symmetries of the lattice.

Since the spin-orbit coupling is present in this Hamiltonian, the eigenfunctions Ψ

will be linear combinations of different spin functions,

[ak|Sz+〉+ bk|Sz−〉] eik·r, (1.4)

where ak and bk are two functions with the same symmetry as V (r) and uk and the

spin states |Sz±〉, which have the angular momentum ±1
2
~ along the z direction.

The system we are interested in contains two kinds of symmetries: the inversion

symmetry of space and the time-reversal symmetry. Combining the former, which

changes wave vector from k into −k, with the latter, which flips the spin states,

it yields another set of eigenfunctions with the same k and energy,

[a−k
∗|Sz−〉 − b−k

∗|Sz+〉] eik·r. (1.5)

The expressions (2.4) and (2.5) indicate that if the spin-orbit interaction (the third

term in (2.3)) is present, the eigenfunctions of the Schrödinger equation (2.3) are

generally no longer a pure spin state. It makes sense to call the eigenfunctions (2.4)

and (2.5) the spin-up (+) and spin-down (−) states, respectively, since typically

|ak| and |a−k| ≈ 1 and |bk| and |b−k| ¿ 1.

In the EY mechanism, the spin can be flipped only when its carrier collides

with impurities. To discuss this process, let us consider an extra interaction Hint

for scattering, which can be caused by the impurities, heavy holes, phonons, piezo-

acoustic modes, or boundaries, etc. [7,8,9]. If Hint scatters the electron from k to

k
′
without changing its spin, its matrix element is

∫
ak

′ ∗Hint ak ei(k−k
′
)·rdr. (1.6)

If Hint can cause spin flip, the matrix element must be replaced by

∫
(a−k

′Hintbk − b−k
′Hintak)e

i(k−k
′
)·rdr. (1.7)

The transition rate is proportional to the square of the matrix elements of an

interaction Hint between the electron and the impurity or the lattice as represented

in Appendix and the reference paper therein [17]. For a collision process without

spin change, the transition rate is related to the electron momentum relaxation

6



time τp by

1

τp

∝
∣∣∣∣
∫

(ak′
∗Hintak)e

i(k−k
′
)·rdr

∣∣∣∣
2

. (1.8)

If this process contains spin flip, the rate is

1

2T1

∝
∣∣∣∣
∫ (

a−k
′Hintbk − b−k

′Hintak

)
ei(k−k

′
)·rdr

∣∣∣∣
2

, (1.9)

where T1 is the spin relaxation time, which is also referred to the longitudinal time

or spin-lattice time [18].

1.3 D’yakonov-Perel’ mechanism

In the discussion of EY mechanism in Sec. 2.1, the combined effect of inversion

symmetry of space and time reversal symmetry yields a twofold degeneracy of

single-particle energies

E+(k) = E−(k), (1.10)

where for convenience (+) and (−) denote the two states (2.4) and (2.5). If the

spatial inversion symmetry is lifted, the spin-orbit interaction shall lead to a spin

splitting of the electron state even at zero magnetic field, B = 0. The spin splitting

can be caused by the bulk inversion asymmetry (BIA) of the underlying crystal

structure. Examples include the zinc blende structure of III-V (such as GaAs

and InSb) and II-VI (such as ZnSe and HgCdTe) compounds without center of

inversion. These materials are different from Si and Ge, which have a diamond

structure. Furthermore, the spin splitting can be caused by the structure inversion

asymmetry (SIA) of the confined potential V (r). This potential may contain

a built-in or an external potential, as well as the effective potential from the

position-dependent band edges. To the lowest order of the wave vector k, the BIA

induced spin splitting is caused by the so-called Dresselhause term, whereas the

SIA induced one is generated by the so-called Rashba term. The spin splitting

of higher orders of k can be described by, for instance, the 8 × 8 or the 14 × 14

extended Kane model.

For BIA, examples can be found in the conduction bands Γ-point of [001]

grown GaAs/AlAs and alike (type-I) quasi-2D quantum wells or two dimensional

electron gas (2DEG) systems. In these systems, the Hamiltonian matrix Hk‖ of
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the Dresselhause term is

Hk‖=


 Ec + ẽ + γ

2
k̃z(k

2
x − k2

y)
γ
2

[
k̃2

z(kx + iky)− ikxky(kx − iky)
]

γ
2

[
k̃2

z(kx − iky) + ikxky(kx + iky)
]

Ec + ẽ− γ
2
k̃z(k

2
x − k2

y)


 ,

(1.11)

where Ec is the energy at the bottom of the conduction band, ẽ = ~2/2m∗(k2
x +

k2
y + k̃2

z) is the energy operator, kx and ky are the electron momenta in x and

y directions, m∗ is the Γ-point conduction-band effective electron mass, γ is the

spin-splitting parameter, and k̃z is the operator id/dz [19, 20]. This Hamiltonian

can be reduced as

HBIA = β
[
σxkx

(
k2

y − 〈k2
z〉

)
+ σyky

(
〈k2

z〉 − kx
2
)]

, (1.12)

with a material-specific coefficient β, where σx and σy are two components of the

Pauli matrices.

For SIA, examples can also be found in the conduction bands Γ-point of [001]

grown GaAs/AlAs and alike (type-I) quasi-2D quantum wells or two dimensional

electron gas (2DEG) systems. In these systems, the Hamiltonian matrix Hk‖ of

the Rashba term is

Hk‖ = α (σ × k) · ν, (1.13)

where α is a pre-factor which depends on the constituting materials and on the

geometry of the quasi-2D or 2DEG systems, σ are the Pauli matrices, ~k is the

electron momentum, and ν is a unit vector perpendicular to the 2D plane. If we

assume that ν is in the z direction, then this Hamiltonian becomes

HSIA = α (σxky − σykx) . (1.14)

A comparison shows that the energy degeneracy of spin orbit interaction or the

quasi-spin up and down states can be lifted in different ways in BIA and SIA. The

former can be achieved by removing spatial inversion symmetry or time reversal

symmetry, while the latter can be accomplished by applying an external magnetic

field. The expressions (1.12) and (1.14) have a general form

HSOI =
1

2
~σ ·Ω(k), (1.15)

where SOI denotes the spin orbit interaction, σ are the Pauli matrices, B(k)

is a k-dependent effective magnetic field around which electron spins precess
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with the Larmar frequency Ω(k) = (e/m∗)B(k), with the effective electron mass

m∗ [12,13,15]. This expression gives a clear picture why the effective magnetic field

B(k) causes the electron spin relaxation. That is, a collision event will change the

electron momentum ~k and subsequently the electron spin precession axis. There-

fore, the randomized precession axis will help smearing the electron spin coherence.

If the momentum relaxation time is longer than the spin precession period, e.g.,

under dilute impurities, the electron spins shall precess freely and lose their coher-

ence between two collision events. In contrast, if the momentum relaxation time is

shorter than the spin precession period, e.g., under dense impurities, the electron

spins will not precess much before the carrier changes its momentum or the carrier

spin changes its precession axis. It shall lead to the dynamical narrowing which

helps preserving spin coherence.

Owing to different underlying mechanisms, the EY and DP spin relaxation

times have opposite impurity density dependence. Under the EY mechanism,

spin flip is a temporally discrete event and can only happen at a electron-impurity

collision. Thus, more frequent collision events will cause faster spin relaxation.

Under the DP mechanism, each single spin precesses between two collisions. Less

collision events will lead to longer precession and faster spin decoherence. Accord-

ingly, there exists a trend between the momentum relaxation time τp and the spin

relaxation times τEY
s and τDP

s of EY and DP mechanisms, respectively

τEY
s ∝ τp and τDP

s ∝ 1

τp

. (1.16)

1.4 Supplement: general definition of spin relaxation time

To study spin relaxations, let us consider a system consisting of N+ electrons

with spin state |Sz+〉 and N− electrons with spin state |Sz−〉. The total electron

number is N = N++N− and the net magnetization at any instance can be defined

as

D = N+ −N−. (1.17)

If at equilibrium the net magnetization is Deq, one expects that the evolution of

D will follow the equation

dD

dt
=

Deq −D

T
, (1.18)
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with the relaxation time T . Let N∓→± be the number of spins which flip per

second from |Sz∓〉 to |Sz±〉 and W∓→± be the transition rate of electrons from

|Sz∓〉 to |Sz±〉. The evolution of D is then given by

dD

dt
=

Deq −D

T
=

2 (N−→+ −N+→−)

1
= 2 (W−→+ −W+→−) . (1.19)

These transition rates W∓→± are proportional to the square of the matrix elements

of an interaction Hint between the electron and the impurity or the lattice that

causes a spin flip [17].
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Chapter 2

Methods for Carrier Transport, Carrier

Scattering, and Spin Evolution

Using full quantum mechanical approach to study the carrier transport, carrier

scattering, and spin evolution of many-body systems in solids is a formidable task.

To overcome this complexity, we introduce the Ensemble Monte Carlo (EMC)

method and Semiclassical Path Integral to tackle these dynamical problems.

2.1 Carrier transport

When we consider the carrier transport, e.g., electron transport, in a semi-

conductor crystal, it is essentially an extremely complicated many-body problem.

However, we can focus on the motion of an electron and approximate the effective

influence of atomic nuclei and other electrons on the studied electron by a poten-

tial V (r). Then the original many-body problem can be reduced to the problem

of a single electron [1,2]. Under this reduction, V (r) is still periodic with the same

periodicity as that of the crystal lattice. The electronic state under such V (r) can

be obtained by solving the Schrödinger equation

[
p2

2m
+ V (r)

]
Ψ(r) = EΨ(r), (2.1)

where m is the free electron mass, Ψ(r) is the eigenfunction to be determined, and

E is the energy eigenvalue. The Bloch theorem tells us that the solutions for a

perfectly periodic potential have the form

Ψk(r) = uk,n(r)eik·r (2.2)
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where uk,n(r) is periodic with the same periodicity of V (r), k is the wave vector

of electron and n is the index of bands. Besides, the energy eigenvalue Ek,n is

periodic with the periodicity of the reciprocal lattice.

The relation between Ek,n and k, that is the energy band structure, can be

expressed in one period of the reciprocal lattice because of the periodicity of Ek,n.

Conventionally, the first Brillouin zone, which is a period centered about at the

origin of the k-space, is used to show the energy band structure. This structure

is usually depicted along some significant crystallographic orientations, such as Λ,

∆, and Σ directions. The energy band structure reveals an energy region where

electronic states can not be found. This forbidden energy region is termed the

energy gap and electronic states are permitted above and below this gap. While

the bands above the gap are the conduction bands, those below it are the valence

bands. The energy separation between the minimum of the lowest conduction band

and the maximum of the highest valence band is the band gap energy Eg. The

band model offers the information about the energy levels of the band extremes

and the relations between the electron energy Ek and the electron wave vector k,

described by various band parameters.

The structures near the conduction band minima and the valence band maxima

are important, because carriers located near the band edges are responsible for

the transport property. The conduction band near the minimum is frequently

approximated by a quadratic function of k. If the band minimum is located at

|k| = 0, Ek can be expressed as

Ek =
~2k2

2m∗ , (2.3)

where k2 = (k2
x + k2

y + k2
z) and

1

m∗ ≡
1

~2

∂2Ek

∂k2
(2.4)

is the inverse of the effective mass. The Ek relation given by (2.3) shows that

the electrons in a crystal behave just like electrons moving in a free space, except

for a change in the mass. Here ~k plays the role of momentum, which is termed

the crystal momentum. Ek represents the electron kinetic energy measured from

the conduction band minimum. Such simple model is rather widely used for

simplifying the calculation of carrier transport.

Since electrons in crystal behave just like electrons in free space, except for

the change in the mass. This picture suggests that the motion of electrons in
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a crystal may be described by the classical equations of motion. The idea is

valid when the potential energy felt by the electrons varies slowly compared to the

crystal potential so that quantum mechanical effects such as reflection, interference

and tunneling can be ignored. Following this concept, the classical motion of an

electron can be described by the equation of motion based on its total energy

Hamiltonian

H = Ek + U, (2.5)

where Ek is the kinetic energy and U is the potential energy. For an electron in a

conduction band, one has

H = Ek + Ec(r), (2.6)

where Ek represent the kinetic energy in terms of the crystal momentum and the

effective mass and Ec(r) is the conduction band minimum. Then the equations of

motion of the system are the Hamiltonian dynamics

dk

dt
= −1

~
∇rH (2.7)

dr

dt
=

1

~
∇kH, (2.8)

where ∇r is del operator with respect to position vector r and ∇k is the del

operator with respect to wave vector k. We can easily check that for the quadratic

band, the group velocity v = dr/dt simply gives

v =
~k
m∗ , (2.9)

which has the similar form of the free electron momentum divided by mass.

Due to the advances of modern semiconductor fabrication techniques, we can

easily grow compositionally non-uniform heterostructure semiconductors. For in-

stance, by placing two compositionally different materials next to each other, a

heterojunction is established. A thin two-dimensional conducting layer, termed

two dimensional electron gas (2DEG), is formed at the interface of the heterojunc-

tion, for example, the interface between GaAs and AlGaAs. Besides, with the use

of modern epitaxial growth techniques, the alloy composition can be varied on an

atomic scale, so a very sophisticated layer structures consisting of several barriers

and wells can be fabricated. For example, a triple alloys compound AlGaAs-GaAs-

AlGaAs offers a quantum well in the layer GaAs which the thickness of the well

may be about 100Å or less. Because of the confined electron motion in the well,
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the electrons behavior just like a quasi-two dimensional motion. The electrons

running at the thin two dimensional conducting layer or the confined well are

called the two dimensional electron gas (2DEG). Studying 2DEG is important,

since quantum confinements frequently exist in modern heterostructure devices.

Let us assume the aforementioned electron motion is confined in the z di-

rection and the electron can move freely in the xy plane. The corresponding

three-dimensional Schrödinger equation is

− ~2

2m∗∇2Ψ(r) + Ec(r)Ψ(r) = EΨ(r). (2.10)

The strategy to solve (2.10) is trying to separate the variables. We assume the

plane wave solutions in the xy direction since the electrons are free to move on

the xy plane. So the total wave function is represented as

Ψ(r) = Cψ(z)eikxxeikyy, (2.11)

where C is the normalization coefficient. Substituting (2.11) into (2.10), we get

an equation for ψ(z),

− ~2

2m∗
∂2ψ(z)

∂z2
+ Ec(z)ψ(z) = Enψ(z), (2.12)

where

En = E − E‖ (2.13)

is the energy associated with confinement in the z direction and E‖ = ~2
2m∗ (k

2
x +k2

y)

is the kinetic energy associated with the motion parallel to xy plane.

2.2 Carrier scattering

Carrier motion in semiconductor crystals is mainly made up of the scattering

and drift processes. Here we briefly introduce the theory for scattering process,

which plays a role in our study. The scattering theory is based on Fermi’s golden

rule, which is derived from the first-order time-dependent perturbation theory.

It gives the transition probability per unit time between two eigenstates of the

unperturbed Hamiltonian H0 caused by the perturbation potential H ′(r, t). While

H0 can be the free electron Hamiltonian in general, it is the effective mass electron
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Hamiltonian in solid crystals. At first let us write down the Schrödinger equation

[H0 + λH ′(r, t)] Ψ(r, t) = i~
∂Ψ(r, t)

∂t
, (2.14)

where λ is a real dimensionless parameter. We assume the equation for the un-

perturbed Hamiltonian H0 has been solved as

H0ψk = Ekψk, (2.15)

where Ek is the energy eigenvalue and ψk is the corresponding eigenfunction. The

time evolution of the eigenfunction can be represented as

Ψ0
k(r, t) = ψk(r)e

−iEkt

~ . (2.16)

Since the eigenfunctions Ψ0
k(r, t) form a complete and orthonormal set, the solution

of the perturbed problem can be constructed by the linear combinations of Ψ0
k(r, t),

Ψ(r, t) =
∑

k

ck(t)Ψ
0
k(r, t), (2.17)

where the coefficient ck(t) describes how the perturbation makes the component at

Ψ0
k(r, t) vary with time. Substituting (2.17) into (2.14) and multiplying both sides

of the arranged equation by ψ∗k′e
−iEk′ t
~ , integrating with respect to r, and using

the orthogonality of ψk, we obtain the following differential equation for ck(t)

i~
∂ck′(t)

∂t
= λ

∑

k

〈k′|H ′|k〉ck(t)e
i(Ek′−Ek)t

~ , (2.18)

where 〈k′|H ′|k〉 is the expectation value defined as

〈k′|H ′|k〉 =

∫

Ω

ψ∗k′(r)H
′ψk(r)dr, (2.19)

with Ω the volume of the crystal.

The expression (2.18) indicates that ck(t) depends on time if λ is not zero.

Since ck(t) is expected to vary slowly with time if the perturbation is weak, it can

be expanded as a power series of λ,

ck(t) = c
(0)
k + λc

(1)
k (t) + λ2c

(2)
k (t) + · · · . (2.20)

Substituting (2.20) into (2.18) and equating terms of like powers of λ on the two
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sides, we have

i~∂c
(0)

k′ (t)

∂t
= 0

i~∂c
(1)

k′ (t)

∂t
=

∑
k〈k′|H ′|k〉c(0)

k e
i(Ek′−Ek)t

~

i~∂c
(2)

k′ (t)

∂t
=

∑
k〈k′|H ′|k〉c(1)

k (t)e
i(Ek′−Ek)t

~

...

(2.21)

The first equation of (2.21) shows that the zero-order coefficients c
(0)
k′ are time

independent. The first-order approximation c
(1)
k′ (t) of ck′(t) can be evaluated from

the second equation of (2.21). The first-order approximation will be sufficient

precise, provided that the interaction is very weak.

For an initial state in a definite unperturbed eigenstate ki, the above results

give

ck′(t) = c
(0)
ki

= 1

ck(t) = c
(0)
k = 0, for k 6= ki

(2.22)

and subsequently

i~
∂c

(1)
k′ (t)

∂t
= 〈k′|H ′|ki〉ck(t)e

i(Ek′−Eki
)t

~ . (2.23)

As an application of (2.23), we consider a constant perturbation turned on at t = 0

H ′(t) =

{
0, for t<0

H ′, for t≥0.
(2.24)

Substituting (2.24) into (2.23) and carrying out some integrations, we obtain

c
(1)
k′ (t) =

1

i~
〈k′|H ′|ki〉ck(t)eωt

2
sin(ωt

2
)(

ωt
2

) t, (2.25)

where ω =
(Ek′−Eki

)

~ . The probability of finding an electron with the wave vector

k′ at time t is then given by |c(1)
k′ (t)|2. Thus, the transition rate S(ki,k

′) from the

state ki to the state k′ is

S(ki,k
′) = lim

t→∞
|c(1)

k′ (t)|2
t

. (2.26)

By using the relation limt→∞ 1
π

sin2 αx
αx2 = δ(x), the transition rate becomes

S(ki,k
′) =

2π

~
|〈k′|H ′|ki〉|2 δ(Ek′ − Eki

). (2.27)
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Integrating S(ki,k
′) given by (2.27), with respect to all accessible final states k′,

we obtain the scattering rate,

W (k) =
Ω

(2π)3

∫
S(ki,k

′)dk. (2.28)

This formula is independent of the dimension of the systems. For quasi 2DEG, we

need only to put the wave function given by (2.11) to obtain the corresponding

scattering formula.

2.3 Ensemble Monte Carlo method

The Monte Carlo transport calculation is usually referred to the single particle

Monte Carlo method or the ensemble Monte Carlo (EMC) method. As discussed

above, carrier transport in a semiconductor crystal is a many-body problem with

a huge number of mutually interacting carriers. However, if in some parameter

regimes the carriers can be approximately treated as an ensemble of independent

carriers, the macroscopic behaviors of the system might be approached by the long

time behavior of a single particle. It is the principal idea of the single particle

Monte Carlo method. This method is a useful for calculating carrier transport,

especially in the case of steady-state carrier transport under a static and uniform

electric field. However, if the problems of interest are not steady, the long time

average has to be replaced by ensemble average, which gives rise to the ensemble

Monte Carlo method. This method can be used more widely for many other

purposes, such as carrier diffusion, the carrier transport in an inhomogeneous

field, the non-stationary behavior of carriers, etc. In the study of spin evolution,

we need to use the ensemble Monte Carlo method to monitor the transient process

of electron spin. But each member, i.e., single particle, in the ensemble follows

the same calculation process as that in the single particle Monte Carlo method.

The ensemble Monte Carlo method is based on the successive and simultaneous

calculations of the motions of many carriers during a small time increment ∆t.

The method is essentially dynamic and thus is suitable for the analysis of transient

carrier motion. A key step to execute the ensemble Monte Carlo calculation is

deciding the free flight time, that is the duration between two successive scattering

events. This duration depends on the total scattering rate which is the sum

of various scattering rates of individual scattering mechanisms. The probability

density, P (τ), of finding an electron traveling for a time τ without being scattered
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is expected to follow the relation

dP (τ)

dτ
= − P (τ)(

1
WT (Ek)

) , (2.29)

where the total scattering rate

WT (Ek) =
N∑

j=1

Wj(Ek) (2.30)

is the sum of the scattering rates of N different scattering mechanisms. Since the

scattering rate of each scattering mechanism is a function of electron energy Ek,

the total scattering rate is also a function of Ek.

The solution of (2.29) is

P (τ) = WT (Ek) exp

[
−

∫ τ

0

WT (Ek)dt

]
. (2.31)

To determine the free flight time by P (τ), we have to evaluate the integral in

(2.31). Unfortunately, there is no analytical form for that integral because of the

complicated form of general Wj(Ek). A simple strategy to get rid of this problem is

adding a virtual scattering process, called self-scattering, with the scattering rate

W0(Ek) to the original total scattering process, so that the new total scattering

rate Γ becomes a constant [3],

W0(Ek) = Γ−
N∑

j=1

Wj(Ek) or Γ =
N∑

j=0

Wj(Ek). (2.32)

The inclusion of the self-scattering makes no change to the k wave vector of the

particle and has an advantage that (2.31) can be recast simply as

P (τ) = Γ exp−Γτ . (2.33)

The free flight time τ for a carrier scattering process is a random variable following

the distribution P (τ). This distribution gives the mean free flight time τm =∫∞
0

τP (τ) dτ = 1/Γ. To see which value Γ should is taken, let us consider a

carrier with Fermi velocity vF , which has the free flight length l = vF τ and the

mean free path lmfp =
∫∞
0

lP (τ) dτ = vF /Γ. That is, once vF and lmfp of a system

are known, Γ can be decided. In numerical simulations, τ can be generated by

substituting a uniformly distributed random number x ∈ [0, 1] into the following
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the formula

τ = − ln(x)

Γ
. (2.34)

Equivalently, one can calculate its mean free path by

l = −lmfp ln(x). (2.35)

This classical picture is valid, when the sample size is larger than the de Broglie

wave length of the carriers.

2.4 Semiclassical Path Integral formalism

With the knowledge of carrier transport and scattering, now we proceed to the

evolution of carrier spin. Since the spin dynamics of the semiconductors discussed

below is related to the electron dynamics by the spin-orbit coupling, how the spin

evolves is decided by the carrier evolution discussed in the last chapter. While

the former is stochastic due to impurity collisions, the latter is deterministic and

fully decided by the former. In the following, in combination with the ensemble

Monte Carlo method, we apply the Semiclassical Path Integral (SPI) method to

the EY and DP spin relaxation mechanisms in a quasi-2DEG system to reveal the

intriguing behaviors of carrier spin evolution.

The original semiclassical path integral method was formulated for Rashba

systems [4, 5, 6], which has the Hamiltonian

H = H0 + HSOI, (2.36)

where H0 consists of the kinetic and potential energies of an electron in the system

and HSOI represents its spin orbit interaction (SOI). Since the energy of spin orbital

coupling in the interested material is usually much smaller than the kinetic and

potential energies, the electron trajectory γ can be determined purely by H0. The

spin dynamics of this electron will be described by an evolution operator in the

path integral formalism,

Uγ = exp

[
− i

~

∫

γ

HSOI(t) dt

]
. (2.37)

If the electron collides with the impurities or boundaries nγ times at points ξ1, ξ2,
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· · · , ξnγ , its trajectory γ will comprise nγ straight segments,

γ = γnγ + · · ·+ γ2 + γ1. (2.38)

The corresponding spin evolution operator Uγ becomes a product

Uγ = Uγnγ
× · · · × Uγ2 × Uγ1 (2.39)

of the individual operators Uγj
= exp

[− i
~HSOItγj

]
, where tγj

is the time the

electron spends to travel through the distance γj. These operators own a time

order property and do not commute with each other. This formalism is originally

for Rashba Hamiltonian, but can be easily extended to other systems governed

by the DP mechanism, such as the Dresselhaus Hamiltonian, and even to the EY

mechanism as we shall show below.

2.5 Spin evolution under EY mechanism

For systems under EY mechanism, the Hamiltonian of the electron can be

separated into two parts

H = H0 + Hint. (2.40)

The unperturbed part H0 has the form shown in the expression (1.1). The second

term Hint can be treated as a perturbed Hamiltonian which contains several inter-

actions responsible for electron scattering. These scattering potentials could arise

from impurities, heavy holes, phonons, piezo-acoustic modes, and boundaries.

For EY mechanism, the spin may flip when the carrier is scattered. The

crucial task is to determine the spin flip probability in each scattering event. Let

us consider a scattering described by Hint, which changes the electron momentum

from k to k
′
. According to Sec. 1.1, if the electron spin does not flip during this

scattering, the electron momentum relaxation time τp is related to Hint by

1

τp

∝
∣∣∣∣
∫

a∗
k
′Hintake

i(k−k
′
)·rdr

∣∣∣∣
2

. (2.41)

If the spin flips during the scattering, the spin relaxation time T1, often called the

longitudinal time or spin-lattice time, is given by

1

2T1

∝
∣∣∣∣
∫

(a−k
′Hintbk − b−k

′Hintak)e
i(k−k

′
)·rdr

∣∣∣∣
2

, (2.42)
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which has around the same proportionality constant as (2.41). When the electron

encounters a scattering at event ξ, whether its spin state flips or not will be

determined by the stochastic operator [8]

Uξ =





(
0 1

1 0

)
:= Iflip, flip probability φ

(
1 0

0 1

)
:= Inonflip, nonflip probability 1− φ

(2.43)

where 0 ≤ φ ≤ 1. To realize this process in a calculation, one can randomly take

a number x between 0 and 1 at a scattering. Then the operator

Uξ = Θ(φ− x)Iflip + Θ(x− φ)Inonflip (2.44)

will decide stochastically whether the spin will flip, where Θ is the Heaviside

function. The flip probability φ is related to the flip rate in Eqs. (2.41) and (2.42)

by

1
τp

1
2T1

=
1− φ

φ
or φ =

τp

2T1 + τp

. (2.45)

That is, φ can be calculated from T1 and τp, provided they have been measured

from experiments.

In a simulation, if an electron encounters nγ times of scattering at points ξ1,

ξ2, · · · , ξnγ , the corresponding spin evolution operator Uγ will be

Uγ = Uξnγ
× · · · × Uξ2 × Uξ1 . (2.46)

Since this formula for the EY mechanism resembles (2.39) for the Rashba systems,

one can regard (2.46) as a generalization of (2.39). However, Uγ in (2.46) is as-

sumed to flip the spin only at discrete times when scattering events occur, whereas

that in (2.39) changes the spin at any time. With the microscopic information

on each individual spin from (2.46), any macroscopic average of a crowd of spins

can be calculated. Suppose the quasi-2DEG system is on the xy plane. The main

quantity of concern is the spin polarization in z direction

Pz(t) =
1

n(t,D)

∑

electrons at (t,D)

sz(t), (2.47)

which averages over the z component of the spin states sz(t) of all n(t,D) electrons
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in an observation window D at time t. When the spin of an electron is polarized

to z direction, sz is set to 1. Therefore, the maximum value of |Pz(t)| is 1, which

corresponds to all electrons being aligned in z direction.

2.6 Spin evolution under DP mechanism

For systems with Rashba SOI, the Hamiltonian consists of two parts

H = H0 + HR, (2.48)

where H0 represents the sum of the kinetic and potential energies of an electron

with its effective mass in a quasi-2DEG. The second part HR = α (σ × k) · z
represents the Rashba SOI, where α is the spin orbit coupling constant, σ stands

for Pauli matrices, ~k denotes the electron momentum, and z is the unit vec-

tor perpendicular to the quasi-2D sample. The Hamiltonian HR will cause spin

precession, when the carrier of the spin moves along a classical trajectory. A char-

acteristic length determining this precession is the spin rotation length Lso = ~2
αm∗ ,

where m∗ is the effective mass of the particle. In real semiconductor materials, the

energy ratio HR/H0 can be as large as 1/10, such as that in the InSb sample [9].

But even for this ratio, HR is still small compared with H0. In such systems,

the electron dynamics is not affected strongly by its spin dynamics, so that in

the leading approximation classical trajectories are determined by H0. Thus, we

can apply the ensemble Monte Carlo method to determine the trajectory and

scattering process for each electron in quasi-2DEG system.

For a free electron moving along a straight trajectory γ of length l, the dynam-

ics of its spin state is governed by the evolution operator U in the path integral

formalism [6]

U = exp

[
− i

~

∫

γ

HR(t) dt

]
= exp

[
−i

l

Lso

b · σ
]

, (2.49)

where b = z × k/|k|. This operator represents simply the spin rotation. If an

electron collides with impurities or boundaries nγ times, its trajectory γ will consist

of nγ straight segments γ = γnγ + · · ·+ γ2 + γ1, The corresponding spin evolution

operator Uγ becomes a product

Uγ = Uγnγ
× · · · × Uγ2 × Uγ1 , (2.50)
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where the individual operators

Uγj
= exp

[
−i

lj
Lso

bj · σ
]

= 1 cos

(
lj

Lso

)
− i(bj · σ) sin

(
lj

Lso

)
(2.51)

along different straight segments do not commute with each other. In analogy to

the case in of EY mechanism, the microscopic information on each individual spin

from (2.50) allows us to calculate any macroscopic average of a crowd of spins, as

discussed in (2.46), in analogy to (2.47).
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Chapter 3

EY Spin Relaxation in Quantum Wells and

Narrow Wires

In the following, we apply the ensemble Monte Carlo method and the semiclas-

sical path integral method to study the spin relaxation of the Elliott-Yafet mecha-

nism in low-dimensional systems. In quantum wells, the spin properties calculated

by these methods confirmed the experimental results. In two dimensional narrow

wires, size and impurity effects on the Elliott-Yafet relaxation were predicted, in-

cluding the wire-width-dependent relaxation time, the polarization evolution on

the sample boundaries, and the relaxation behavior during the diffusive-ballistic

transition. For ballistic narrow wires, we derived an exact relation between the

Elliott-Yafet relaxation time and the wire width, which confirmed the above sim-

ulations.

3.1 Introduction

Spin relaxation is one of the central issues in the study of spintronics [1, 2, 3].

This phenomenon is ubiquitous in materials with spin polarization and has a long

research history dating back to the Elliott-Yafet (EY) relaxation in simple met-

als (see [3] and recent papers citing this review). The study in this context is

largely motivated by a fundamental interest in material properties. However, pur-

suing efficient spin manipulation in devices might further boost the progress in

this field. Today, several types of mechanisms responsible for different spin relax-

ations have been found [4, 5, 6, 7], and among these, the D’yakonov-Perel’ (DP)

and EY mechanisms play an essential role. The former is due to spin precession

between the momentum scattering events, while the latter happens ”during” the
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momentum scattering events. These mechanisms affect the spin dynamics in var-

ious materials. For instance, in zinc-blende semiconductors at low temperatures,

the spin relaxation is dominated by the DP mechanism [8, 9, 10, 11, 12, 13]. In In-

GaAs/InP multiple-quantum wells at room temperature [14,15] and the Te-doped

InSb/Al0.15In0.85Sb at low temperatures [16], the spin lifetime depends mainly on

the EY mechanism [17, 18, 19, 20]. In the past, a large number of experimental

and theoretical studies have been devoted to the DP mechanism, either in the

3D bulk or in low-dimensional systems like quantum wells (QWs) and 2D narrow

wires [13, 21, 22, 23, 24, 25, 26, 27, 28]. However, comparatively less effort has been

put into studying the EY relaxation, especially in low-dimensional systems [29].

In this work, we apply the ensemble Monte Carlo method and the semiclassi-

cal path integral method to investigate the EY relaxation in QWs and 2D narrow

wires in both diffusive and ballistic regimes. The study gave results in accor-

dance with the experimentally measured values in real samples [16]. Based on

this consistency, we used these methods to study the impurity and sample size

effects on the EY relaxation under broad sample conditions. The main issues

were how the relaxation time changed with sample width, how the polarization

evolved on the boundary, and how the impurity density variation from diffusive

to ballistic regimes affected the EY relaxation. Furthermore, the DP relaxation

was calculated under the same sample conditions in order to compare it with the

EY results. Finally, an analytical formula was derived for ballistic narrow wires,

which confirmed our simulations and revealed exactly how the EY relaxation time

varied with the wire width.

This chapter is organized as follows. In Sec. 2, the validity and precision of

using the EMC and the SPI methods on the experimental samples are examined

and compared with the theoretical results. In Sec. 3 and Sec. 4, the effects of size

and impurity, respectively, on the EY relaxation are studied and compared with

the DP relaxation. Finally, a summary and discussion are given in Sec. 5, and a

supplementary material for spin relaxation process is represented in Sec. 6.

3.2 The EMC and SPI methods on experimental samples

The spin relaxation caused by the EY mechanism has been explored by some

experimental groups [14,15,16]. In [16], a sample is InSb/Al0.15In0.85Sb single QW

grown by MBE on the GaAs substrates. The QW has a well width of 20 nm

(corresponding to the height in Figure 3.1) and was uniformly Te-doped (sample

number me1831F). The electron density in this sample is 5.7×1011 cm−2 at 77K

28
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area~1x200( m2)
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x

Figure 3.1: A quasi-2D sample and an observation window which is a stripe of
area 1 × 200 µm2. For a quantum well with large L and W , the stripe is long
and the average spin behavior therein is almost the same as that in the whole well
(for cases in Figures 3.2 and 3.3). For a narrow wire with large L but small W ,
the stripe is short and the average spin behavior inside it is a local spin dynamics
along the wire (for the case in Figure 3.7).

and 7.3×1011 cm−2 at 300K. Since the carrier concentration of semiconductor is

proportional to T [30], the concentration for other T in between can be linearly

interpolated, as ne(T ) ≈ (0.0072T + 5.15) × 1010 cm−2. The mobility of this

sample was measured by means of the Hall effect and behaves as log10 µ(T ) ≈
0.28 × log10 T − 0.55 m2V−1s−1 within T = 50 ∼ 300K. For more temperature

dependent factors in spin relaxations, it is referred to [23].

Figure 3.2 shows the product of the spin relaxation time with the temperature,

τsT , versus the carrier mobility µ. Its inset depicts the spin relaxation time versus

the temperature of the sample. In both plots, the triangles are the experimental

data measured from the sample me1831F, which is mainly governed by the EY

mechanism. The black dots are calculated from the formula [16]

1

τs

= CEYη2

(
1− m∗

m

)2
E1e

E2
g

kT
1

τp

. (3.1)

Therein, m is the free electron mass, m∗ denotes the effective mass in the con-

duction band, Eg represents the band gap, E1e stands for the confinement energy

of the lowest electron subband, τs is the EY mechanism induced spin relaxation

time which is equal to T1 in Eq. (1.9), and η = ∆/(Eg + ∆) with the spin orbit

splitting energy ∆. The momentum relaxation time τp is related to the mobility

µ by τp = µm∗/e and the dimensionless constant CEY is believed to be of the

order of unity. The black dots in Figure 3.2 are calculated from (3.1) by using the

following parameters of me1831F: ∆ ≈ 0.81 eV, Eg ≈ 0.24 eV, m∗/m ≈ 0.014,
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Table 3.1: The simulation protocols. T1 is calculated by (3.1), τp = µm∗/e,
vF = (~/m∗)

√
2πne, lmfp = vF τp, and φ is calculated by (2.45).

T(K) 50 70 100 120 150 170 200 250 300
T1(ps) 2.54900 1.99790 1.54320 1.35230 1.15060 1.05090 0.93424 0.79486 0.69656
τp(ps) 0.06619 0.07263 0.08014 0.08428 0.08963 0.09278 0.09703 0.10320 0.10852
vF (µm/ps) 1.5381 1.5580 1.5874 1.6067 1.6353 1.6540 1.6817 1.7270 1.7710
lmfp(µm) 0.10180 0.11316 0.12722 0.13541 0.14656 0.15345 0.16318 0.17821 0.19219
φ 0.01282 0.01785 0.02531 0.03022 0.03749 0.04228 0.04937 0.06096 0.07227

E1e ≈ 0.08 eV and CEY ≈ 7.5 [16]. Recall that τs can be affected by various

scattering potentials mentioned in Sec. 1.2. Among others, phonons will become

more significant at high T .

Figure 3.2 shows that both the experimental and theoretical studies give the

relation τsT ∝ µ for most µ. But two experimental points have an opposite trend

τsT ∝ µ−1 at high µ, which corresponds to the high T regime in the sample

me1831F, as known from the empirical µ(T ) relation mentioned at the beginning

of this section. One believes that this opposite trend is because the DP mechanism

overrides the EY mechanism in the high µ regime, according to the current under-

standing that τsT ∝ µ for EY mechanism and τsT ∝ µ−1 for DP mechanism [16].

The latter is supported by the observation on the sample me1833 (remotely n-

doped with Te 20 nm above the well) in [16], which follows the DP mechanism

and has the property τsT ∝ µ−1.

Next, the relaxation properties will be calculated by the ensemble Monte Carlo

method and the semiclassical path integral method. To compare with above ex-

perimental results, the simulations needs to insert the following experimental pa-

rameters. First, the spin flip probability φ will be calculated by (2.45), where how

τp = µm∗/e and T1 vary with T is based on the above empirical relation µ(T ) and

the black dots in the inset of Figure 3.2, which are calculated from (3.1). Second,

vF can be derived from vF = ~/m∗√2πne with the above empirical electron den-

sity ne(T ). Notice that since ne lies between 5.5 × 1011 and 7.3 × 1011 cm−2, the

corresponding de Broglie wavelength λF =
√

2π/ne ranging from 34 to 30 nm is

larger than the sample hight 20 nm, as shown in Figure 1. Thus, the electrons

are confined in the z direction of the sample. Third, the size of the experimental

sample was not explicitly mentioned in [16]. However, (3.1) therein is referred

to [14,15], where the sample sizes are about 2 inches (approximately 5× 104 µm)

in length. Our simulation is performed on a smaller square of 2×102 µm in length

for less computational consumption. Both the experimental and simulation sam-

ples belong to bulk systems. Since their scales are much larger than the de Broglie

30



wavelength λF (30 ∼ 34 nm), the electron motion on the xy plan is more particle-

like and the validity of ensemble Monte Carlo method and the semiclassical path

integral method are justified. We put 4× 106 electrons into our 2D sample, which

are initially in the standard initial condition and follow the simulation protocols

at 50 ∼ 300K in Table 1. The time course of the polarization Pz(t) is recorded in

the middle of the sample (Figure 3.1).
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Figure 3.2: A comparison between the analytical, numerical and experimental
relations between τsT and mobility µ, as well as between τs and temperature T
(inset). The large triangle size indicates the experimental error bar.

The observed Pz(t) is an exponential function with a relaxation time τs. During

the temperature variation in Table 3.1, the relations (τsT, µ) and (τs, T ) can be

calculated, which are plotted as red squares in the main plot and the inset of Figure

3.2, respectively. Note that our recent theoretical study and simulation reveal that

the Pz(t) of the DP relaxation in a narrow wire will transit from an exponential

function to a Bessel function during the impurity density decline [27]. Such Pz(t)

deviation from an exponential function will not occur in the EY mechanism, as

we shall prove in Sec. 4. Thus, here we can characterize Pz(t) properly by the

parameter τs without worrying its deformation.

The red squares in Figure 3.2 calculated by our methods show very close values

to the theoretical and experimental results for most µ, with the same relation

τsT ∝ µ. The opposite experimental trend τsT ∝ µ−1 in the high µ regime is

not to see in our simulation. It indirectly supports the previous hypothesis that

τsT ∝ µ−1 arises from other mechanisms, because the pure EY mechanism in
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our ensemble Monte Carlo method and the semiclassical path integral method

simulation cannot produce this trend. The main plot of Figure 3.2 does not

explicitly tell us how τs varies with T . In fact, T can influence the sample me1831F

through two ways. First, a large T will increase the electron mobility µ and

subsequently τp = µm∗/e, which in turn will reduce the electron scattering pro unit

traveling distance. However, a large T also will enhance the spin flip probability

φ (see Table 3.1) and make spin flip more frequently. When two effects blend

together, it is hard to predict how τs will change with T . Nevertheless, an obvious

τs decay is readily seen, when we transform the (τsT, µ) data into the (τs, T ) plot

in the inset.

3.3 The size effect on the EY relaxation

The size effect on the spin relaxation is another interesting issue in spintronics.

For instance, the group of Awschalom has carried out some measurements on the

DP relaxation in narrow wires of different widths [26]. However, to the best of

our knowledge, very few experiments have investigated the size effect on the EY

relaxation. A study close to this topic was the EY relaxation in the granular

systems [29], but the sample size there was fixed. In this section, we will study

how the EY spin relaxation changes with the width of a wire. Our sample has 200

µm in length, while its width varies between 0.1 µm (narrow wire) and 200 µm

(2D quantum well). We take 8 × 105 electrons in the standard initial condition

and use the parameter values from Table 3.1 for simulations as before.

Figure 3.3 depicts the relaxation time τs versus the sample width W at various

temperatures T . Three conclusions can be drawn from this plot:

(1) τs decreases with T .

(2) τs is nearly a constant for W > 1 µm at all T .

(3) τs drops abruptly to zero, when W < 1 µm.

Phenomenon (1) has the same reasoning as that at the end of Sec. 3.2. To account

for phenomena (2) and (3), remember that for W > 1 µm the sample is like a

bulk system. The electron spin in this system are flipped mainly by the impurities

in the bulk and less by the sample boundaries. Therefore, the relaxation time

τs is almost fully determined by the impurity density and is thus a constant of

W . However, for W < 1 µm, the boundary induced spin flip becomes more

significant. The smaller the sample width, the higher the collision frequency will
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Figure 3.3: The EY spin relaxation time versus the wire width at five different
temperatures, observed on a stripe of area 1 × W µm2. The inset is magnified
from the main plot.

be, and the faster the spin will flip. When W approaches zero, τs tends to zero,

because almost all electrons collide with the boundaries infinitely often, except

the minority electrons moving exactly along the wire axis.

It is well known that the DP relaxation near the sample boundary behaves

differently from that far from the boundary [27, 31, 32]. An interesting question

is whether the EY relaxation will behave similarly on the boundary. To answer

this question, we shrink the observation window to a small square of area 1 × 1

µm2 and use this window to scan the local τs at different places along the width

direction of a wire. Figure 3.4 depicts the EY relaxation time τs, which remains

close to a constant inside the sample, up to the drops near two boundaries. How

close to the boundaries τs will begin to drop is an open question requiring further

study. Moreover, the inset of Figure 3.4 shows that Pz(t) is almost flat up to the

slight drops on the boundaries. These drops will become apparent, if we magnify

the individual Pz(t) curves.

For a comparison, we calculate the τs of the DP relaxations along a wire of

width 6 ∼ 50 µm, as shown in Figure 3.5. The initial electron and spin states

in the simulation are the same as above EY cases, while its temperature is as

low as 5K to mimic the real experimental environment. The corresponding Fermi

velocity and mean free path are vF = 0.37 µm/ps and lmfp = 0.28 µm and its spin
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Figure 3.4: The EY spin relaxation time versus four wire widths at 50K, observed
on a square of area 1× 1 µm2 scanning along the wire width in the middle of the
sample. The inset is the evolution of spin polarization along the width W = 20
µm.
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width in the middle of the simulation sample. The inset is the evolution of spin
polarization along the width W = 50 µm.
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rotation length (as defined in [24,25,27]) is Lso = 2 µm. The simulation method is

referred to [27]. In contrast to the EY relaxation, the DP relaxation time near the

boundary is larger than that elsewhere (Figure 3.5). Moreover, the Pz(t) of the

DP relaxation on the boundary exhibits a hump structure (inset of Figure 3.5),

which is opposite to the EY relaxation and is a main difference between these two

relaxations. The τs increase on the boundary in the DP relaxation is ascribed to

the reversal rotation of spins [27,32], whereas the τs decrease on the boundary in

the EY relaxation is due to more frequent boundary collisions.

3.4 The impurity effect on the EY relaxation

When the mean free path of the electrons exceeds the wire width, the system

will enter the ballistic regime. The Pz(t) of the DP relaxation undergoes a drastic

change from an exponential function to a Bessel function during the diffusive-

ballistic transition [27]. In this section, we will examine how the Pz(t) of the EY

relaxation behaves in the ballistic regime.

Suppose an ensemble of electrons in the standard initial condition are put in

a narrow wire as in Figure 3.6. The spin polarization Pz(t) observed at the origin

p0 at time t is averaged from the spin states of all electrons which arrive at p0 at

time t. These electrons can arrive through a straight trajectory or various zigzag

ones, like p1p0 and p̃2p0 in Figure 3.6, all of which have the same length l = vF t.

Depending on the trajectory types, these electrons will launch at different x at

time 0. Suppose s̃z(x) is the z component of the spin state of an electron at p0 at

time t when it starts at x at time 0. Then Pz(t) is an average over all these spin

states [27],

Pz(t) =

∫ l

−l
s̃z(x)ρw(x)Wdx

∫ l

−l
ρw(x)Wdx

, (3.2)

where w(x) is a weight proportional to the number of electrons starting at x and

contributing to s̃z(x) and ρ denotes the constant surface density of the electrons

in the wire. Notice that since the spin flip in the EY mechanism is a stochastic

process, two electrons, even when running along the same trajectory, may have

different final spin states. Thus, the spin state s̃z(x) should be understood as an

ensemble average taken from all electrons running along the same trajectory. The

fluctuation around this average is extremely small for real materials having the
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typical electron density 1011 cm−2. If an electron starting between x and x + ε

(for the case x ≥ 0) has to arrive at p0 at time t, its initial outgoing angle must

lie between θ(x) and θ(x + ε), with ε ¿ 1 (see the example for x = ξ in Figure

3.6). Thus, the weight w(x) becomes the fraction of the electrons at x running

within these two angles over those within the whole 2π angle. If the electrons are

uniformly distributed in the wire with isotropic outgoing angles, the fraction of

electron number equals the fraction of orientation range [27],

w(x) =
1

2π
· 2 · [θ(x)− θ(x + ε)]

=
1

π

[
arccos

(x

l

)
− arccos

(
x + ε

l

)]
, (3.3)

where the factor 2 arises from the two mirror-symmetric orientations ±θ.

Figure 3.6: In a ballistic narrow wire, a straight trajectory p1p0 and a zigzag
trajectory p̃2p0 have the same length l = vF t. The length of p̃2p0 is equal to that
of p2p3, since the former can be regarded as a multiple mirror reflection of the
latter with respect to the horizontal dashed lines. The values θ(ξ) and θ(ξ + ε)
are the outgoing angles of the electrons at ξ and ξ + ε, respectively, along which
the electrons can reach p0 after running through the same distance l. The inset is
a magnification of p̃2p0.

While the fraction w(x) for EY relaxation is similar to that for DP relaxation,

s̃z(x) is completely different for both. To obtain s̃z(x) of the EY mechanism, we

need to know how many scatterings an electron running from x to p0 will encounter

36



and how its spin state will be changed by these scatterings. If an electron is initially

polarized in z direction and encounters n times of scattering, its z component of

the spin state will on average change to the value (see (3.9) in Supplement)

s̄z(n) = exp
(
−n

τ

)
, with τ =

1− φ

2φ
, (3.4)

where φ is the spin flip probability in (2.45). Note that sz(t), s̃z(x), and s̄z(n) in

Eqs. (2.47), (3.2), and (3.4) describe the spin state as a function of t, x, and n,

respectively. If an electron at p2 in Figure 3.6 has the outgoing angle θ(p2) and

travels a distance l = vF t along a zigzag trajectory to arrive at p0 at time t, it will

collide with the two boundaries n times with

n ≈ x

∆l
=

x

W · cot θ(p2)
=

√
l2 − x2

W
, (3.5)

where ∆l is the distance between two collisions projected on the x axis (inset of

Figure 3.6). Inserting (3.5) into (3.4), s̄z(n) becomes a function of x,

s̃z(x) = exp

[
−

(√
l2 − x2

W

)
· 1

τ

]
. (3.6)

Inserting (3.3) and (3.6) into (3.2), the evolution of Pz(t) at the observation point

p0 will become completely known. Though this formula is too complicated to have

a closed form, its value can be evaluated numerically.

To test the accuracy of (3.2), let us consider three wires of width W = 0.01,

0.02, and 0.04 µm with the parameter values of 50K in Table 3.1 and record Pz(t)

in the middle of the wire. In the main plot of Figure 3.7, the black squares,

red circles, and blue triangles come from simulations, while the black dotted,

red dotted-dashed, and blue dashed curves are calculated by (3.2). Both data

agree very well with each other. They behave like exponential functions with the

relaxation times plotted in the inset of Figure 3.7. In this simulation, we narrowed

W down to 10 nm. This value is smaller than the height H = 20 nm of the

experimental sample and has reached the quantum regime in the width direction,

since the Fermi wavelength at 50 K is about 30 nm for semiconductors. Taking

this extreme W in the simulation is to verify whether (3.2) was mathematically

correctly derived. The readers should not be puzzled with the physical validity

of the semiclassical approach. For samples with W = 0.2 µm, this formula still
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predicts a rather close value to the simulated relaxation time (see inset in Figure

3.7).
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Figure 3.7: The polarization Pz(t) versus the time t in three wires of different
widths. The square, circle, and triangle symbols denotes the simulation data and
different lines are calculated by the formula (3.2). The inset shows the spin relax-
ation time versus the wire width from simulations (green rhombus) and analytical
approach (3.2) (red cross), fitted by a straight line (blue dotted). All these are
results of (3.2) for specular boundary reflections. For diffusive reflections, the
(τs, W ) relation is plotted by the black circles in the inset.

Figure 3.7 also indicates that in a ballistic wire the DP and EY relaxation

times vary rather differently with the wire width W . When W → 0, the Pz(t)

of the DP relaxation will converge to a Bessel function [27], but that of the EY

relaxation (main plot of Figure 3.7) remains as an exponential function, whose

relaxation time decreases with the vanishing W . That is, at W ≈ 0, the DP

relaxation is insensitive to W , but the EY relaxation is sensitive to W . The reason

is that in the limit W → 0, most electrons are confined in the width direction and

collide with the boundaries at very high frequencies. The spins of these electrons

tend to be frozen (in width direction) in the DP mechanism, due to the motional

narrowing effect [31], but will be accelerated to flip in the EY mechanism, due to

the increasing collision frequency. It leads to the drastic distinction between the

Pz(t) of DP and EY mechanisms in the ballistic narrow wires.

In the inset of Figure 3.7, the τs obtained from (3.2) begin to deviate from

that of EMC and SPI methods simulation at W ≈ 0.1 µm. This W is five times
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larger than the sample height in [16]. Beyond this W , higher order corrections in

Eqs. (3.3) and (3.6) are required to improve the accuracy of (3.2). For W → 0,

both simulation and exact formula give the same ratio τs/W ≈ 47.48. To account

for this value, notice that the denominator of (3.2) is independent of l and t. The

function s̃z(x) in the numerator varies slowly for most x ∈ [−l, l], but increases

sharply with |x| in the two small regions [−l,−l + ε′] and [l− ε′, l], with the limit

s̃z(±l) = 1. In contrast, w(x) increases comparatively moderately within [−l, l],

with the limit w(l − ε′) = arccos(1 − ε′/l)/π ≈ (
√

2ε′/l)/π. Thus, w(x) can be

approximately regarded as a constant C and taken out of the the integral in the

numerator of (3.2). Dropping all l-independent terms, one obtains the proportional

relation

Pz(t) ∝ C

∫ l

−l

s̃z(x)dx ∝
∫ l

l−ε′
s̃z(x)dx ≈ s̃z(x)ε′|x≈l . (3.7)

Using a Taylor expansion in (3.6), it yields a rough estimation

Pz(t) ∝ exp

[
− l

τW

(
1− 1

2

(x

l

)2

− ...

)]

x≈l

≈ exp

(−vF t

2τW

)
≡ exp

(−t

τ ′

)
, (3.8)

where τ ′ = 2τW/vF , which, together with (3.4), gives the ratio τ ′/W = ( 1
φ
−

1)/vF ≈ 50.08. This ratio has been very close to 47.48 obtained from the simula-

tion (inset of Figure 3.7), even though we only consider a small part of the integral

around x ≈ ±l in Eq. (3.2). Physically, it highlights the essential contribution of

the electrons starting at x ≈ ±l. These electrons run almost along the wire axis

and are nearly free from collisions with the boundaries. They have no spin flip

within time t and will give the main contribution to the non-zero value of Pz(t)

at t.

The Pz(t) discussed above comes from the expression (3.2), which is based on

the assumption of specular reflections on the boundary. For diffusive reflections,

a large number of new trajectories will contribute to Pz(t), in additional to the

old ones in (3.2). Along the channel direction, an old trajectory can only have

unidirectional movement, while a new trajectory usually contains both forward

and backward motions, similar to the trajectories of a random walker. Given an

initial point p2, a final point p0, and a fixed time t, there exists only one old

trajectory (Figure 3.6); however, a bunch of new trajectories are allowed under

the same conditions. The shorter the distance p2p0, the more the allowed new
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trajectories can be found, just like a random walker has more possible routes to

reach a point closer to its initial position. Since the trajectories of shorter p2p0 have

more boundary collisions under a fixed t, Pz(t) for diffusive reflections contains

on average more trajectories of high reflection frequencies than Pz(t) for specular

reflections. Thus, intuitively one would expect a faster polarization relaxation for

diffusive reflections, which is indeed true, as confirmed by the simulations depicted

by the black circles in the inset of Figure 3.7.

3.5 Conclusion

In this chapter, we apply the ensemble Monte Carlo method and the semiclassi-

cal path integral method to the systems governed by the EY relaxation mechanism.

The spin relaxation times calculated by these methods are in accordance with the

values measured in experiments (Figure 3.2). For the size effect, the EY relax-

ation time τs remains nearly constant for large wire width, but drops abruptly to

zero if W shrinks to certain extent (Figure 3.3). This trend is robust against var-

ious temperatures, electron mobilities, and electron densities. Near the geometry

boundaries, the local τs falls rapidly (Figure 3.4), because the boundaries enhance

the scattering frequency and the spin relaxation speed, in contrast to that in the

DP relaxation. The τs and relaxation patterns of both EY and DP mechanisms

were calculated and compared (Figure 3.4 and Figure 3.5). For ballistic narrow

wires, we derived an analytical formula (3.2) for the EY spin relaxation, which

confirms the above simulated Pz(t) (Figure 3.7). This formula explicitly relates

the EY spin relaxation time τs to the wire width. The predicted τs is in a good

agreement with the simulated value (inset of Figure 3.7).

The above results were calculated based on two assumptions. First, all elec-

trons contributing to the polarization were on the Fermi surface. In reality, the

electron velocity may deviate from this unique value. However, our tests on var-

ious velocity distributions showed that the spin relaxation behaviors, especially

the relation τsT ∝ µ, were less sensitive to this factor. Thus, we presented the

simplest distribution concentrated at the Fermi velocity. Second, the scattering

rates on the boundary and impurities were assumed to be the same. It was owing

to the lack of microscopic details on each individual scattering. Despite that this

assumption may not be true for general materials, it does not bother our compar-

ison with the experimental results on the quantum wells, because these wells are

so large that the details of boundary scattering is insignificant. For ballistic nar-

row wires, the boundary scattering becomes important and the results presented
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here was only a special example. Once the boundary reflection property for other

systems is known, the extension of the spin relaxation study to these systems is

straightforward.

3.6 Supplement: spin relaxation process

As discussed in the text before Eq. (3.3), the spin state in the EY mechanism

should be understood as an ensemble average, since the spin flip in this mechanism

is a stochastic process. Let S↑(n) and S↓(n) be the probabilities of a spin being at

up and down states, respectively, after its electron encounters n times of scattering.

Clearly,

S↑(n) + S↓(n) = 1. (3.9)

Under the EY mechanism, we have

S↑(n + 1) = (1− φ) · S↑(n) + φ · S↓(n)

= S↑(n) · (1− 2φ) + φ, (3.10)

with the spin flip probability φ for each scattering, where (3.9) has been used.

After n and n + 1 times of scattering, the average spin states in z component are

respectively

s̄z(n) = S↑(n)− S↓(n) = 2S↑(n)− 1

s̄z(n + 1) = 2S↑(n + 1)− 1. (3.11)

Thus, it yields the relation

∆s̄z(n)

∆n
=

s̄z(n + 1)− s̄z(n)

(n + 1)− n
= −1

τ

s̄z(n + 1) + s̄z(n)

2
, (3.12)

with τ = (1− φ)/(2φ). In the continuous limit, it yields

ds̄z

dn
= −1

τ
s̄z. (3.13)
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According to this equation, if an electron is initially polarized in z direction, i.e.,

s̄z(0) = 1, the z component of this spin will evolve to

s̄z(n) = exp
(
−n

τ

)
, (3.14)

after n times of scattering.

Alternatively, (3.14) can be obtained through a different way. Suppose we

have an ensemble of electrons initially under standard conditions in a diffusive

bulk sample, with the momentum relaxation time τp. If the average z component

of the spin state, sz(t), undergoes a longitudinal spin relaxation, it will decay

exponentially, with the same relaxation time T1 as that in (2.45),

sz(t) = exp

(
− t

T1

)
≈ exp

(
− n

τ ∗

)
, (3.15)

where τ ∗ = (1 − φ)/(2φ), because t ≈ nτp for n collisions within time t and

τp/T1 = (2φ)/(1 − φ) according to (2.45). A comparison shows that τ in (3.14)

and τ ∗ in (3.15) are exactly the same.
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Chapter 4

DP Spin Relaxation in Narrow Wires

In this chapter we apply the ensemble Monte Carlo method and the semiclas-

sical path integral method to study spin relaxations in a narrow 2D strip with

the Rashba spin-orbit interaction. Our numerical calculations show a good agree-

ment with the experimental data. We also calculated the relaxation of a uniform

spin-density distribution in the ballistic regime of very narrow wires. With the

decreasing wire width, the spin polarization exhibits a transition from the expo-

nential decay to the oscillatory Bessel-like relaxation. The EMC and SPI methods

have also been employed to calculate the relaxation of the particularly long-lived

helix mode. A good agreement has been found with calculations based on the

diffusion theory.

4.1 Introduction

The spin relaxation rate is an important spin transport parameter. Recent

calculations and measurements of this parameter in semiconductor systems have

to a great extent been motivated by numerous ideas of spintronic applications [1].

In view of these applications, as well as from the fundamental point of view, one

of the most interesting problem is the spin relaxation in quantum dots (QD) and

quantum wires (QW). In zincblende semiconductors at low temperatures the spin

lifetime is mainly determined by the D’yakonov-Perel’ (DP) [2] mechanism associ-

ated with spin orbit effects. In systems with restricted dimensions this relaxation

mechanism is strongly suppressed, as has been calculated in the case of QD [3]

and QW [4,5,6]. The physics of such a suppression in QW became clear from the

analytical solution of the diffusion equation for nonuniform spin distributions con-

fined in a wire [4]. Surprisingly the suppression starts when the width w of a wire
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becomes less than the characteristic length Lso of the spin orbit interaction. In

typical zincblende semiconductor systems it varies from several thousands Å up

to several microns and can be much larger than the electron mean free path l.

Hence, such a spin lifetime enhancement can not be considered as a manifesta-

tion of the motional narrowing effect when a restricted geometry of the system

imposes the upper limit on the mean free path. Indeed, recent measurements [7]

have demonstrated that the spin lifetime τs starts to increase already at w & 10 l.

On the other hand, the observed slowdown of the spin relaxation appears to be

not so strong, as expected from the theory. To understand such a behavior, one

has to take into account that in experiments [7] the measured parameter is the re-

laxation time of a particular spatial spin distribution, rather than of an individual

electron spin. At the same time, as shown in Ref. [4] only two kinds of spin dis-

tributions have very long lifetimes in narrow 2D wires. The first one corresponds

to a polarization which is homogeneous along the wire with spins oriented in the

plane of a 2D electron gas (2DEG) and perpendicular to the wire axis. The second

distribution is a nonuniform helix mode with the wavelength determined by Lso.

As it will be pointed out below, none of these distributions have been excited by

an incident light beam in the experiment [7].

In order to interpret experimental data we will analyze relaxation of various

spin distributions. We will study diffusive, as well as ballistic regimes of electron

motion in the wire. The EMC and SPI methods previously applied to QD [3] will

be employed to calculate the spin relaxation in a wide parameter range, including

the ballistic regime w . l, and at time intervals less than the electron momentum

relaxation time. To apply the EMC and SPI methods numerically, a large num-

ber of electrons are initially randomly distributed in the channel with uniform or

helix spin configurations as explained below. In the following, we assume that the

channels have smooth boundaries on which the electron reflection is specular. In

the diffusive regime (as in the experimental sample in Ref. [7]), the spin relax-

ation behavior under this assumption is the same as in the case of non-smooth

boundaries, because, even when electron trajectories are not randomized by the

smooth boundary, they will be immediately randomized by the impurities near

the boundaries. In the ballistic regime, the relaxation behaviors in systems with

smooth and non-smooth boundaries are different. Here we focus on the simple

example of specular reflection. Once the boundary roughness of a ballistic sample

is known, the extension to the non-specular case is straightforward.

This chapter is organized by the following way: in Sec. 4.2 the spin relax-

ation of a homogeneous spin distribution is calculated and a comparison with the
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experiment is given; in Sec. 4.3 some analytical results are presented useful for un-

derstanding the spin relaxation behavior in the ballistic range; Sec. 4.4 is devoted

to an analysis of long-lived helix spin distributions, beyond the diffusion theory of

Ref. [4]. The conclusion is presented in Sec. 4.5.

4.2 Relaxation of uniform spin modes

The spin relaxation times obtained in the experiments of Ref. [7] were measured

in a 2D n-InGaAs channel of the length L = 200 µm and the width w = 0.42 ∼
20 µm. The SOI in the sample is dominated by the Rashba coupling. In the

notation of Ref. [7] it corresponds to the characteristic length lSP ' 1 µm, which

is related to the above defined spin rotation length Lso as Lso = 2 lSP .
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Figure 4.1: The spin relaxation times τs’s of [1, 0, 0] sample (circle) and [1, 1, 0]
sample (star) versus channel width w are taken from the experiments in Ref.
[7]. The τs calculated by the EMC and SPI methods are extracted from the
polarization curve Pz(t), fitted by Eq. (4.1) with free parameters A and c (red
solid curve) and with fixed parameters A = 1 and c = 0 (black dash-dotted
curve). The experimental τs saturates at 11.5 µm (pink dashed straight line) for
large w, the same as the analytically estimated value for Lso = 2.19 µm. The inset
demonstrates three examples of Pz(t) for channel width w = 1.6 µm, 2.8 µm, and
4.4 µm.

The sample is characterized by the electron mean free path l = 0.28 µm, the
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momentum scattering time τM = 0.76 ps, and its Fermi velocity can accordingly

be estimated as vF = 0.28 µm÷0.76 ps ≈ 0.37 µm/ps. For the carrier concen-

trations ns = 5.4 ∼ 7.0 × 1011 cm−2 used in Ref. [7], the de Broglie wavelength

λf =
√

2π/ns of electrons in the 2DEG is around 30 ∼ 34 nm. The sample was

patterned along various crystallographic directions and electron spins have been

optically oriented parallel to the growth direction [0, 0, 1]. The relaxation times

τs measured in Ref. [7] are replotted by the circles and the stars connected by the

blue and the green curves in Fig. 4.1.

Since the width range 0.4 µm ≤ w ≤ 20 µm used in our calculations is much

larger than the de Broglie wavelength λf , the quantum effects are negligible and

the validity of the EMC and SPI approaches is justified. With the above exper-

imental parameters, the EMC and SPI calculations are represented in Fig. 4.1,

where the inset shows the relaxation curves Pz(t) for three channels of different

widths. All electron spins were initially aligned in z direction. The relaxation

time τs can be determined by a fitting of these Pz(t) curves with the exponential

function

Pz(t) = A exp(−t/τs) + c. (4.1)

For example, the (red) solid curve in Fig. 4.1 represents the relaxation time of

1.2 × 107 electrons in channels of different widths w’s. A comparison with the

experimental data (circles and stars) leads to following conclusions:

(i) At large widths (w > 15 µm), the electron spin can be regarded as relaxing

in bulk systems. In the experiments in Ref. lSP was estimated to be 1.0 ±
0.1 µm, corresponding to Lso = 2.0± 0.2 µm. This experimental uncertainty

results in τs = 9.7± 2.1 ps, when calculated by the EMC and SPI methods.

However, each τs obtained from the EMC and SPI methods agrees very well

with that determined by the analytical expression of DP relaxation τs =

L2
so/(4vF l) for boundless systems. Thus, if the experimental samples are

governed by pure Rashba Hamiltonian, as in our calculation, these samples

most likely have Lso = 2.19 µm. This value is used in our EMC and SPI

simulations to obtain the red and black curves in Fig. 4.1.

(ii) For intermediate widths (1.4 µm< w < 15 µm), there is no an analytical

expression for τs to compare with. The EMC and SPI result deviates slightly

from the experimentally measured τs. The maximum deviation is around 3

ps for [1, 1, 0] sample and 4 ps for [1, 0, 0] sample at w = 5 µm. The calculated

τs is closer to the τs of the [1, 1, 0] sample.
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(iii) For small widths (w < 1.4 µm), the experimentally measured τs saturates

at 28 ps for [0, 0, 1] sample and 20 ps for [0, 1, 1] sample. It is assumed

in Ref. [7] that this saturation might be related to other mechanisms, like

the bulk inversion asymmetry. However, the calculated τs in Fig. 4.1 is also

bounded by a maximum value around 24 ps, although in our calculation only

the Rashba Hamiltonian was considered, without any additional mechanisms

involved.

Figure 4.2: In the inset, a spin configuration in a channel of the length 8π µm
relaxes to zero, depicted at three different times. These configurations are spa-
tially uniform up to the ripples at two ends caused by boundary effect. Record-
ing the polarization Pz(t) at the middle point of the channel gives the relax-
ation curve (green solid thick) in the main plot. This curve can be fitted by the
exponential function in Eq. (4.1) with [τs, A, c] = [7.127, 1.274, −0.055] (blue
dashed curve) and [τs, A, c] = [4.323, 1, 0] (red dotted curve). For t close to
zero, most electrons have not been reflected by impurities or boundaries. In
this range Pz(t) does not behave as an exponential function. Later, after most
of the electrons and their spins have been randomized by impurities or bound-
aries, Pz(t) became more exponential-like. The physical parameters used are
[w, Lso, vF , l] = [0.1 µm, 2 µm, 0.37 µm/ps, 0.3 µm] with 6× 104 electrons.

An important factor affecting the interpretation of the experimental data is

how to determine the relaxation time τs from the function Pz(t). The solid curve

in Fig. 4.2 is an example of Pz(t) in a channel with w = 0.1 µm and l = 0.3 µm.

At first sight it looks like an exponential function to be fitted with a relaxation
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time τs in Eq. (4.1). But a closer look shows that it is not a pure exponential

function. Indeed, if we gradually increase l by reducing the number of impurities

in the channel, the monotonically decreasing Pz(t) in Fig. 4.2 will transform to

an oscillatory function. In the extreme case of an infinitely thin impurity-free

channel, we shall prove in the next section that the evolution of Pz(t) will follow

the Bessel function

Pz(t) = J0

(
2vF t

Lso

)
. (4.2)

This analytical formula is depicted by the smooth (red) dashed curve in Fig. 4.3.

A corresponding result of a numerical EMC and SPI simulations is plotted as a

(green) rugged solid curve in the same figure.
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Figure 4.3: In a 1D channel without impurities, a spin polarization Pz(t) behaves
like a sinusoidal function Eq. (4.3) (blue dash-dotted curve). In an infinitely thin
channel without impurities, Pz(t) behaves like a Bessel function Eq. (4.2) (smooth
red dashed curve), which agrees with the numerically obtained Pz(t) simulated
by 5 × 104 electrons (rugged green solid curve). The physical parameters are
[w, Lso, vF , l] = [0.1 µm, 2 µm, 0.37 µm/ps, 104 µm].

During transition from the diffusive to the ballistic regime, Pz(t) will undergo a

crossover from an exponential to a Bessel function. In principle, it is meaningless to

use an exponential function to extract τs from such a crossover function, especially

when it is far from an exponential behavior. But if one would like to carry out

this procedure, the so obtained τs will depend on the choice of the parameters A

and c in Eq. (4.1):

(A) If A = 1 is chosen, Eq. (4.1) can precisely fit the real initial polarization
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Pz(t) = 1 at t = 0 (red dotted curve in Fig. 4.2).

If A 6= 1, Eq. (4.1) can provide a better fitting to Pz(t) in a wider range of

times at t > 0 (blue dashed curve in Fig. 4.2). On this reason, such a choice

of A seems to be more appropriate.

(B) Further, if c 6= 0 the fitted values of c and τs will be strongly dependent on

the observation time cutoff. The reason is that usually the tail of Pz(t) is

oscillating, if the system within the considered range of times is not in the

diffusive regime. The closer the system to the ballistic regime, the larger is

the oscillation amplitude. The Bessel function in Eq. (4.2) for ‘pure’ ballistic

regime has the largest amplitude. If the non-oscillating Eq. (4.1) is used

to fit an oscillating Eq. (4.2) truncated at some cutoff, the fitted τs and c

will depend on the cutoff. The corresponding uncertainty of τs will decrease

with an increasing observation time.

In the experiments [7], the width of the channel varies between w ≈ 1.5 l and

70 l. Since at the smallest w the system is not far from the ballistic regime, the

difference between Pz(t) and the exponential function should be observable. In-

deed, the value of τs fitted by Eq. (4.1) with A = 1 and c = 0 (black dash-dotted

curve in Fig. 4.1) is somewhat distinct from τs at A 6= 1 and c 6= 0 (red solid

curve in Fig. 4.1). Since our observation time is sufficiently long, the fitted value

of c is close to zero. A disagreement produced by different fitting procedures will

become more remarkable when the system approaches the ballistic regime with

strongly oscillating Pz(t). Hence, when comparing τs’s obtained by different re-

search groups, it is important to know the whole set of the fitting parameters (A,

c, and observation time). Even when the same Pz(t) curve is considered, the re-

ported τs’s could be different. One more problem with the fitting procedure is that

even in the diffusive regime the evolution of the spin polarization not necessarily

follows the exponential behavior with a single relaxation time. For example, a

homogeneous Pz distribution is not an eigenstate of the diffusion equation in a 2D

channel. Therefore, as shown in Ref. [6], edge states can contribute to the Pz(t)

evolution with the relaxation time different from that of the bulk eigenstate. The

weight of edge states increases with decreasing w.

In regime (ii), the experimental data deviate slightly from the EMC and SPI

calculations with a maximum difference τs ≈ 3 ∼ 4 ps at w ≈ 5 µm. This

discrepancy is too large to be attributed to different fitting procedures. One of

the explanations for such a behavior might be a specific role of long-lived edge

states. The lifetime of such modes depends on the boundary conditions [6]. Our
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EMC and SPI calculations assumed a specular reflection of electrons from hard

wall boundaries of the wire. Probably, the experimental situation in Ref. [7]

corresponds to other boundary conditions which give rise to the edge states with

larger τs. This problem requires a more thorough analysis.

In regime (iii), the relaxation time goes to a finite value at w → 0 in both

experimental and EMC and SPI calculated plots in Fig. 4.1. For a homogeneous

spin distribution along the channel, the diffusion theory [4] also predicts a sat-

uration of τs at w → 0. The saturated value should be twice of the bulk DP

spin relaxation time. With the experimental bulk value τs=11.5 ps, one expects

τs=22.8 ps at w = 0. Experimental and EMC and SPI curves at Fig. 4.1 are

not far from this value, although the diffusion approximation fails at w ' l. At

the same time, one should not forget that in a narrow channel the time evolution

of the spin polarization strongly deviates from the exponential function. On this

reason, in regime (iii) τs can not be a representative parameter to describe the

spin relaxation.

4.3 Bessel relaxations in ballistic channels

Depending on the ratio between the channel width and the electron wavelength,

one encounters two limiting cases. If the wire carries only one propagating channel,

we have effectively a 1D situation. In the opposite limit, if the width of the wire

is much larger than the electron wavelength, semiclassical electrons are able to

move in both x and y directions. Therefore, the system is two-dimensional, even

if geometrically the channel is narrow, with w much less than other characteristic

lengths, such as Lso and l. Below, we will consider the evolution of electron

polarization in the ballistic regime for these two limiting cases.

1D ballistic channels

Let us consider a 1D impurity-free channel where at t = 0 spins of all electrons

are aligned in z direction. Since impurities and the electron-electron interaction

are absent, electrons can only move in +x or −x directions along the channel axis

with a constant velocity. The spins of all these electrons will rotate simultaneously

along different geodesics connecting the north and south poles on the spin sphere.

A 2π spin rotation takes place when an electron passes a distance πLso during a

time period πLso/vF . Therefore, the angular frequency of this rotation is 2 vF /Lso,

the same for all spins. The spin polarization at any place in the channel will then
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evolve according to

Pz(t) = cos

(
2 vF t

Lso

)
(4.3)

and oscillate without any amplitude decay, as shown by the blue dash-dotted curve

in Fig. 4.3.

2D ballistic channels

Now we suppose that the channel is a 2D thin ballistic wire where all electron

spins are initially aligned in the z direction, as in the 1D case. Given an observation

point, say p0(x0, y0) in Fig. 4.4, the polarization Pz(t) at x0 at time t is the average

of the spins of all electrons which will arrive at this moment at the x0 cross section.

These electrons can arrive through a straight trajectory p1p0 of length l = vF t, or

through different zigzag trajectories of the same length, as the path p̃2p0 in Fig.

4.4.

Figure 4.4: Two kinds of trajectories with the same length l = vF t in a thin
channel: the straight trajectory p1p0 and the zigzag trajectory p̃2p0. The latter
has the same length as the straight line p2p3, since it can be obtained through
a multiple mirror reflection of p2p3 with respect to the horizontal dotted lines.
The symbol θ(ξ) denotes a certain outgoing angle of an electron located at ξ, as
explained in the text. The trajectory p̃2p0 is magnified in the inset.

As follows from Eq. (2.50), the spin state of an electron running along the

zigzag trajectory p̃2p0 in the inset of Fig. 4.4 will evolve according to the spin
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evolution operator

Up̃2p0 = exp

(
−i

ln ·σ
Lso

)
... exp

(
−i

l2 ·σ
Lso

)
exp

(
−i

l1 ·σ
Lso

)

=

[
1− i

ln ·σ
Lso

+...

]
...

[
1− i

l2 ·σ
Lso

+...

][
1− i

l1 ·σ
Lso

+...

]

= Up2p0 + O

(
w2

L2
so

)
, (4.4)

Making the above expansion up to the linear in w term, the operator Up2p0 can be

written as

Up2p0 := exp

(
−i

l · σ
Lso

)
=

[
1− i

∑n
j=1 lj · σ
Lso

+ ...

]
,

with the vector l pointing from p2 to p0. Equation (4.4) indicates that the spin

evolution of an electron moving along the zigzag trajectory p̃2p0 is approximately

the same as that of an electron drifting along the shorter straight line p2p0 with

a drift velocity vF x/l slower than vF , where l = |l1| + |l2| + ... + |ln| and x =

|l1 + l2 + ... + ln|. As discussed in the previous subsection, if an electron moves a

distance x, its spin will rotate the angle 2x/Lso in the spin space. If initially this

spin is aligned along the z direction, its z component will become

sz(x) = cos

(
2x

Lso

)
+ O

(
w2

L2
so

)
. (4.5)

To determine how many electrons will contribute to Pz(t), let us uniformly

divide the channel axis into small intervals [ξi, ξi+1] of length ε separated by points

ξi with i = 0, 1, 2, .... Let θ(ξi) be the outgoing angle of an electron at ξi. This

angle is chosen so that when the electron travel a zigzag path of the length l = vF t,

its drift length will be x. Hence, this electron will arrive at p0 at time t. If outgoing

angles are isotropically distributed, the number of such electrons within [ξi, ξi+1]

is proportional to the spanned angle W (ξi) = θ(ξi) − θ(ξi+1). For a given small

interval ε = ξi+1 − ξi this angle is related to x by

W (x) = θ(x)− θ(x + ε) = arccos
(x

l

)
− arccos

(
x + ε

l

)

=
ε√

l2 − x2
+ O

(ε

l

)
, (4.6)

where the outgoing angle θ(x) of the trajectory along p̃2p0 is the same as the angle
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of p2p3 (see Fig. 4.4). According to Eq. (2.47), the spin polarization Pz(t) at p0

will be contributed from electrons traveling from different initial locations x:

Pz(t) =

∫ l

0

ρW (x) sz(x) dx

∫ l

0

ρW (x) dx

, (4.7)

where ρ is the line density of electrons along the channel axis. Inserting Eq. (4.5)

and (4.6) into Eq. (4.7) yields

Pz(t) =

∫ l

0

ε√
l2 − x2

cos

(
2x

Lso

)
dx

∫ l

0

ε√
l2 − x2

dx

= J0

(
2vF t

Lso

)
+ O

(
w2

L2
so

)
,

which at the w → 0 limit is the Bessel function in Eq. (4.2). Hence, uniformly

polarized spins in a ballistic narrow channel will relax to the zero polarization

through a Bessel function. This phenomenon is in contrast to our conventional

intuition that a relaxation is a monotonically exponential process. It is worthwhile

to note that the Bessel-like spin dynamics also takes place in other SOI systems

[11].

We conclude that the spin relaxation dynamics even in a very thin 2D channel

is remarkably different from that in a 1D channel, as can be seen from a comparison

of Eq. (4.2) with Eq. (4.3). It can be understood from the fact that no matter how

narrow the width of a 2D channel is, it contains a large number of electrons moving

along various zigzag trajectories bouncing between two channel boundaries. These

trajectories give a significant contribution and change the dynamics of Pz(t) from

a sinusoidal oscillation in 1D systems to a Bessel-function decay in 2D systems.

4.4 Relaxation of helix spin modes

In previous sections, all initial electron spins were polarized along the z axis.

The relaxation dynamics of such spin configuration does not change dramatically

at small w (the maximum τs only reaches 28 ps in Fig. 4.1.), in agreement with the

experiment [7]. In fact, this behavior is expected from the analysis of eigenstates of
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the spin diffusion equation. As shown in Ref. [4], the only homogeneous eigenstate

is Ψ0 in Fig. 4.5(a), which has all spins polarized in the y direction and whose

relaxation time strongly increases in narrow wires. In addition to this mode there

are two nonuniform slowly relaxing eigenstates.

Figure 4.5: (a) Long-lived spin eigenmodes: Ψ0 denotes the spin mode with all
spins aligned in y direction. Ψ+1 − Ψ−1 represents the helix spin modes with
spin rotating on the xz plane. (b) An electron in the channel moves a distance
πLso from the left end x1 to the right end x9. Due to Rashba SOI, the spin of
the electron precesses from n1 to n9 and completes a phase period of 2π. (c) A
schematic plot of the decay of the helix mode at 1 (dotted), 35 (dash), and 170
(solid) time units. Ψ±1 in Fig. 4.5(a) has been replaced by Ψ+1 −Ψ−1.

These two long-lived eigenmodes exist in a 2D channel where w ¿ lSP . Using

a perturbation method with respect to w/lSP , one can solve a diffusion equation

and obtain its unperturbed eigensolution [4]

ψ̃M,k,m(x, y) = exp(ikx)χm(y)ΨM , (4.8)

with the eigenvalue (relaxation rate)

Γ0
M,k,m = D(πm/d)2 + D(k −Ml−1

SP )2. (4.9)
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Therein, ΨM are the eigensolutions of the momentum operator Jy with eigenvalues

M = 0,±1 and χ2n(y) = cos(2πyn/d), as well as χ2n+1(y) = − sin[πy(2n + 1)/d].

In Fig. 4.5(a), Ψ±1 will construct the helix eigenmodes with the wave vectors

k = ∓1/lSP . We note that the eigenmode of the diffusion equation is a spin

configuration exponentially decreasing in time, but its shape remaining unchanged.

Taking the second order correction in w/lSP , one obtains

ΓM,k,m = Γ0
M,k,m +

(2−M2)w2

24τs0 l2SP

(4.10a)

= Γ0
M,k,m +

2(2−M2)w2vF l

3L4
so

(4.10b)

for | k − M/lSP |¿ 1/lSP , where τs0 = l2SP /vF l and lSP = Lso/2 have been

used in the second equality. The modes with m = 0, and k = M/lSP will relax

most slowly, since in these cases the first term Γ0
M,k,m in Eqs. (4.10a) and (4.10b)

disappears. The second term indicates that the spin relaxation time τs = 1/ΓM,k,m

will be proportional to 1/w2. In the limit Lso À w, we thus have τs much larger

than the D’yakonov Perel’ relaxation time τs0 in 2D boundless systems [2]. Such

a behavior will become more clear from the following simple consideration in a

1D system. Let us consider an electron at x1 in a 1D channel with an initial spin

pointing to n1, as shown in Fig. 4.5(b). Under the Rashba SOI, the spin will

rotate to n2, n3, ..., when this electron moves to x2, x3, .... It is easy to see

that if each electron spin in an initial spin density distribution follows this (xi, ni)

relation, such a distribution will not change in time. Hence, its relaxation time is

infinite. In a realistic 2D wire the relaxation time is finite at finite width. That

is because electrons there can move in the y direction. The polarization Pz(t)

contributed from electrons moving along the channel is frozen, as in the 1D case,

while electrons moving along the the y axis give rise to the relaxation of the helix

distribution.

Since the above expressions have been obtained under the assumption l ¿
w ¿ Lso, it is interesting to extend the analysis beyond this limits. Within the

EMC and SPI methods we studied the relaxation of the helix mode in the range

l . w, choosing Lso = 12.5 µm, l = 0.5 µm, and vF = 0.37µm/ps. Given the

initial helix spin mode Ψ+1−Ψ−1 corresponding to spins oriented along the z-axis

at x=0 in Fig. 4.5(a), the spin relaxation time τs(w) calculated by the EMC and

SPI methods is represented by squares in the inset of Fig. 4.6. In the range of

w < 10 µm, this time increases dramatically and strongly deviates from the τs of
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the corresponding uniform mode (red solid curve). Note that in order to display

the divergent τs, we choose a large τs-axis scale in the inset of Fig. 4.6. At this

scale the uniform mode τs (red curve) almost overlaps with the τs = 0 axis. The

relaxation time of the uniform mode will saturate at some value for w → 0. It

is τs ≈ 28 ps for [Lso, l, w] = [2.19, 0.28, 1.4] µm in Fig. 4.1 and τs ≈ 441.1 ps

for [Lso, l, w] = [12.5, 0.5, 0.4] µm. In contrast to these uniform modes, τs of the

helix mode strongly increases for w → 0 (if w À l). This behavior is consistent

with the theoretical result Eq. (4.10a). On the other hand, if w is as large as

20 µm, the relaxation time ≈ 1927.4 ps of the helix mode is still much larger than

τs ≈ 241.0 ps corresponding to the uniform mode. This difference can be easily

seen by magnifying the τs-axis of the inset in Fig. 4.6.
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Figure 4.6: The relaxation time τs of the uniform mode (red solid) and the helix
mode (black square) versus the channel width w in the inset. For small w, the
square curve of the helix mode is redrawn as 1/τs against w2 in the main plot, to
compare with the τs’s derived from the analytical formula (4.10b) (red circle) and
the semi-analytical formula (4.10a) (green triangular).

The main plot in Fig. 4.6 shows the 1/τs dependence on w2. The squares show

the helix relaxation rate corresponding to the data in the inset. The line with

circles for the helix mode is obtained from the analytical expression Eq. (4.10b),

while the line with triangles is obtained from Eq. (4.10a). In the latter line, τs0

is simulated numerically, instead of using the analytical relation τs0 = l2SP /vF l

mentioned below Eq. (4.10b). The lines with circles and triangles are valid only
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at l ¿ w ¿ Lso, while that with squares is valid for all w. One can clearly see

that the curve calculated by the EMC and SPI methods agrees very well with Eqs.

(4.10a) and (4.10b) at small w between w1 = 2 µm (the smallest calculated width)

and w2 = 10 µm. It is interesting to note that although formula Eq. (4.10a) and

(4.10b) was derived under the condition l ¿ w ¿ Lso, it seems to be valid in

a wider range of w, because w1 is close to the ballistic regime crossover point at

w ∼ l = 0.5 µm and w2 is close to Lso = 12.5 µm. Finally, one should not expect

that the linear trend in Fig. 4.6 can continue down to w2 → 0 because in this

range the system will eventually reach the ballistic regime and Pz(t) will decay

like a crossover function between the exponential and the Bessel functions. Similar

to the discussion of the uniform initial spin configuration in Section 4.2, it does

not make sense to consider τs at extremely small w, because Pz(t) is no longer an

exponential function.

4.5 Conclusion

The ensemble Monte Carlo method and semiclassical path integral method

has been applied to study the spin relaxation in thin 2D wires with the Rashba

spin-orbit interaction. We considered the relaxation of a uniform spin polarization

along the z axis, as well as of the long-lived helix mode. In the former case we

found a good agreement of τs calculated in the regime of large w (w ≈ 20 µm) with

the well known bulk DP spin relaxation rate and with the experimental data from

Ref. [7]. At smaller w our numerical results deviate slightly from the experimental

data. The nature of this distinction is not clear. We assume that the edge spin

diffusion modes can contribute to the spin relaxation, so that the conditions for

electron reflections from the wire lateral boundaries become important. Also, the

Dresselhaus spin orbit interaction can give rise to the observed dependence of τs on

the orientation of the wire axis in the xy plane. At w → 0 the relaxation time has a

tendency to saturate at a value which is about twice of the bulk τs, as predicted by

the spin diffusion theory. Although both EMC-SPI and experimental data show

similar saturation behavior, one must take into account that at w approaching

the crossover w ∼ lf to the ballistic regime the evolution of the spin polarization

can not be described by an exponential function. Hence, in this regime τs is not a

representative parameter to describe the spin relaxation. We studied the evolution

of the spin polarization in the ballistic regime and found that it is described by the

Bessel function. The numerical EMC and SPI results fit well to this behavior. For

the helix spin distribution, the linear dependence of 1/τs on w2 predicted in the
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framework of the diffusion theory [4] coincides precisely with that calculated by

the EMC and SPI methods. The EMC and SPI methods also allowed to calculate

the spin relaxation beyond the constraints of those analytic results [4].
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Part II

Hydrodynamic Interactions

Between Microorganism Flagella
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Chapter 5

Flagellum Model under Hydrodynamic

Interactions

5.1 Introduction

There are enormous swimming microorganisms living in our world. Examples

include the bacteria inhabiting in our guts, the protozoa swimming in the ponds,

and the algae living in the ocean. The reasons of these microorganisms move

are similar. For instance, bacteria detect and move to high concentration area of

nutrients; spermatozoa of many organisms swim to the ovum; cells swim to evade

predators. However, the swimming strategies they use are very different from those

employed by large organisms. This difference is ascribed to the low Reynolds num-

ber environment where the microorganisms live. In this environment, the damping

of viscosity is paramount and inertia of the system is negligible. Swimming strate-

gies employed by larger organisms at high Reynolds number, such as insets, birds,

and fishes, are ineffective at the small scale. So that microorganisms have evolved

propulsion strategies that successfully overcome their external drags. Many mi-

croorganisms use one or more appendages, termed flagellum, for propulsion. The

appendages could be a relative stiff helix that is rotated by a motor embedded in

the cell wall, or it could be a flexible filament undergoing whip-like motions due

to the action of molecular motors distributed along the length of the filament [1].

In addition, these microorganisms usually live in a population status. Their

behaviors are similar to those of the populations of macroscopic organisms, such

as the wingless locusts marching, a vortex of fish school, a herd of zebra, and

human traffics [2]. These systems usually have nontrivial collective motions, which

cannot be easily predicted from their individual motions. Since the flagella of
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microorganisms quite often live in a population status, their behaviors are expected

to exhibit collective effects. Studying the collective behaviors of flagella is not just

due to scientific curiosity. It may also offer some real potential applications [3].

Concerning the techniques for exploring flagellum behaviors, there are at lease two

possibilities. One is to observe the swimming response of these microorganisms

when they swim in free space. The other is to examine the flagella response

of these microorganisms when we confine these microorganisms bodies, says by

optical tweezers, or immobile the microorganism bodies on a substrate surface.

The former offers a comparatively realistic environment to reveal the flagellum

behavior. But due to the larger degree of freedom, says the cell bodies movement

and their flagella action constitute two degrees of freedom, more efforts needs to be

paid to clarify the interaction between them. On the other hand, the later offers

an examination environment which decreases the degree of freedom, the degree of

freedom of the cell bodies movement is removed. So that the effect due to pure

microorganisms flagella action behavior may be exhibited more clearly.

The microorganism carpet is a suitable experimental setup for the later ap-

proach [4]. But according to the resolution limitation of the present experimental

instruments, sometimes it is still hard to realize the microorganisms flagella be-

havior by means of direct observation on the microorganism carpet itself. One of

the strategies to overcome this obstacle is examine the tracer particle response,

which is controlled at some height located over the microorganism carpet. In this

article, in order to reveal the secret of the microorganisms flagella action behavior

when they stay together to form a carpet, we propose a simplified microorganism-

flagellum-rotor (MFR) matrix model, MFRmatrix, to mimic and effectively catch

the real microorganism flagellum carpet behavior. The tracer particle response,

which is directly mapped to the MFR matrix behavior, is presented and expected

from theoretical and numerical approaches. We hope to inversely reveal the secret

and the unknown of the MFR matrix behavior by means of directly observing and

realizing the tracer particle response.

5.2 Microorganism-Flagellum-Rotor Model and

Blake-Oseen Tensor Role

In our study, we offer a microorganism-flagellum-rotor (MFR) model to replace

the so complex real microorganism flagellum, says helical-like flagellum, action

behavior [5]. The MFR model is a rotor-like unit. To try to catch the whole effects
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produced by real microorganism flagellum, the MFR model is represented by some

specified characteristic parameters. They are the rotor hight h (measured from

the microorganisms planted substrate surface), rotor arm length r, rotor sphere

radius a, and a thrust Fth with strength Fth and zenith angle α and azimuthal

angle β.

Note that in our analytical and numerical calculation, we treat each MFR as an

active unit and follow the torque-speed relationship under some ion concentration

[6]. This calculation strategy or assumption implies that we assign a specific

strength Fth to each active MFR regardless of such MFR now may stays in the

status which with different, higher or lower, rotation rate compared with others.

The situation β = 0 is a singularity point in our calculation strategy. Since

a reasonable physical picture suggests that the rotation rate of a studied MFR

and the corresponding Fth should be zero in the situation β = 0. But base on our

calculation strategy, in the situation β = 0 the Fth is still assigned with a non-zero

strength Fth. Anyhow, although such calculation strategy may cause something

strange and unmeaning results in some cases, e.g., some results appeared in the

circular motion mode (discussed in Subsection 6.3.1 and Figure 6.5). But it’s not

necessary to worry about these special cases too much, the important thing we

have to keep in mind is that such calculation strategy offers two points of view to

treat all studied cases in this article. The first is that it offers an absolute point

of view to see what happens when we vary the strength of the thrust Fth for the

studied cases. The second is that it gives a relative point of view to look into

what’s going on when vary the ratio, ratio of normal, tangential, and z direction

components of the thrust Fth, for the studied cases. The calculation results can be

understood and reflected by both the absolute value assignment and the relative

value assignment approaches for this Fth parameter.

To explore the interaction between two MFRs or N ×N MFRs which make up

a MFR matrix. We need to assign an additional parameter d, the space between

two MFRs, into our studied MFR matrix system. If we consider further step

the tracer particle response. Another two parameters have to be considered for

the MFR matrix system, that is the tracer particle located height H (measured

from the microorganisms planted substrate surface) and the tracer particle bead

radius, b. So the whole parameter set specified for the MFR matrix configuration

is denoted by

MFRmatrix ≡ [H, b, N ×N, h, d, r, a, Fth, α, β]

(µm, pN, degree or radian).
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Thereafter it acts as a standard parameter set representation to assign our specified

study case. Figure 5.1 (a) depicts the detailed aspects about these parameters

tagged on the MFR matrix configuration.
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Figure 5.1: The top view (upper part) and front view (lower part) of the MFR
matrix system is depicted in (a). The magenta sphere is the bead which attached
on the arm end of the MFR, and the green sphere means the tracer particle.
The top view of two MFRs system is depicted in (b). The checkerboard-like
configuration of MFR matrix is shown in (c). The red circles and blue squares
indicate the position of each MFR arm bead, where βp and βn tagged on them
denote two different types of azimuthal angles.

Remember that the microorganisms live at low Reynolds number environment.

The suitable description for these microorganisms flagella action and our MFR

model is the Stokes equation for the hydrodynamic flow field v

η∇2v = −∇P, (5.1)

where the pressure P is a Lagrange multiplier to impose the constraint of incom-

pressibility, ∇ · v = 0. The far field generated by a moving sphere in the vicinity

of a surface can be calculated by considering the solution of the Stokes equation
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to a point-like force Fi at position xi = 〈xi, yi, zi〉, which is of the form

v(x) = G(xi,x)Fi. (5.2)

The tensor G, termed Black-Oseen tensor (BOT), consists of a Stokeslet GS, which

describes the flow field around a small isolated particle, and an image, required to

satisfy the no-slip boundary condition on the surface [7]. The image is located at

the particle position, mirrored over the surface plane, x̃i = xi−2ziez, and consists

of an anti-Stokeslet, a Stokes doublet GStoD, and a source doublet GSouD. The

complete BOT GC has the form

GC(xi,x) = GS(x− xi)−GS(x− x̃i)

− 2ziG
StoD(x− x̃i) + 2z2

i G
SouD(x− x̃i),

(5.3)

with

GS
αβ(x) =

1

8πη

(
δαβ

|x| +
xαxβ

|x|3
)

,

GStoD
αβ (x) = (1− 2δβz)

∂

∂xβ

GS
αz(x), (5.4)

GSouD
αβ (x) =

1

8πη
(1− 2δβz)

∂

∂xβ

(
xα

|x|3
)

,

where η is the fluid viscosity. The leading behavior of GC which describes the far

field, for R À zi, z, can be recast as

GA(xi,x) ≈ 3

2πη

ziz

R3




cos2 ϕ sin ϕ cos ϕ 0

sin ϕ cos ϕ sin2 ϕ 0

0 0 0


 , (5.5)

where tan ϕ = (yi − y)/(xi − x) and R2 = (xi − x)2 + (yi − y)2 [8].

Consider the rotation rate of an MFR member i which lay in an N ×N MFR

matrix. The bead center of this MFR member i is indicated by the position vector

xi = 〈xi, yi, zi〉. The complete equation of motion for the bead attached on this
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MFR member i can be cast as

ri ×maẍi = ri × (−γẋi) + ri × Fthermal + ri × Fth,i

+
N×N∑

j=1,j 6=i

ri × FBOT
th,j + ri × Fexternal, (5.6)

where ri = ren,i is the arm vector of such MFR member i, en,i is the normal

component unit vector attached on the bead of the MFR member i as shown in

Figure 5.1 (a); ma is the bead mass of the MFR; γ = 6πηa is the Stokes drag

constant; Fthermal is the external forces induced by thermal fluctuation; FBOT
th,j

is the equivalent force acting on the arm bead of the MFR member i which is

induced from Fth,j by means of BOT hydrodynamic interaction; and Fexternal is

the other possible external forces which is excluded from those forces mentioned

above, for example, the optical tweezers trapping force is one of the possible forces

Fexternal. Consider the ez direction components of these torque terms described in

equation (5.6). By neglecting the inertia term, and does not consider the thermal

fluctuation temporarily and other external forces except for the hydrodynamic

interaction which comes from other member j of this MFR matrix. Equation

(5.6) can be simplified and represented as

ωi(t) =
1

r

(
1

γ
Fth,i +

{
N×N∑

j=1,j 6=i

G(xj,xi)Fth,j

})
· et,i,

(5.7)

where ωi(t) = 1
r
(en,i × ẋi) · ez is the rotation rate of MFR member i in an N ×N

MFR matrix.

If we look into the tracer particle response, which is located at position x =

〈x, y, H〉. The complete equation of motion for the tracer particle bead can be

wrote down as

mbẍ = (−γẋ) + Fthermal +
N×N∑
j=1

FBOT
th,j + Fexternal, (5.8)

where mb is the tracer particle bead mass, and FBOT
th,j is the equivalent force act-

ing on this tracer particle bead which is induced from Fth,j by means of BOT

hydrodynamic interaction. Follow the similar simplification procedure as done on
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equation (5.6). The simplified flow field acting on the tracer particle, which is

produced only from all N ×N members of an MFR matrix, can be represented as

u(t) =
N×N∑
j=1

{G(xj,x)Fth,j} , (5.9)

where u(t) = ẋ is the flow field around the tracer particle. Equations (5.7)

and (5.9) govern our study main content in this article. But because that there

are some nontrivial characteristics embedded in them, a lot of interesting results

should be produced from these nontrivial characteristics. We should represent and

discuss these findings below.
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Chapter 6

Tracer Particle Responses on Microorganism

Flagellum Matrixes

6.1 Introduction

Motivated by the scientific curiosity and possible applications of microorganism

flagellum matrix. Two minimal models, the microorganism-flagellum-rotor matrix

(MFRmatrix) model introduced in Chapter 5.2 and microorganism-flagellum-rotor

sweep (MFRsweep) model are proposed to mimic the complex real microorganism

flagellum rotation and sweep behaviors. In these two models , the hydrodynamic

interaction described by the complete BOT, GC , and its far field limit, GA, are

considered. The key issues to explore include (1) the collective motions of two

MFRs, (2) the collective motions of an N ×N MFR matrix, and (3) the behavior

of a tracer particle exposed to an N × N MFR matrix. For (1), the solution

of the synchronized motion can be analytically derived and a phase portrait is

presented to show how the dynamics of the system converges to this motion. For

(2), the conditions for synchronization, repellency, and freezing states are studied

and the rotation rates of synchronization and repellency states are investigated.

For (3), the tracer particle is found to response to the MFR matrix by three modes:

circular motion (CM), linear oscillation (LO), and a sharp jumping (SJ). These

behaviors of MFRmatrix and MFRsweep can reasonably explain the results of some

recent experiments of bacterial carpets.
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6.2 The collective motions of MFRs

6.2.1 Two MFRs

Let us explore the hydrodynamic interaction between two MFRs. The system

layout is depicted in Figure 5.1 (b), and Figure 5.1 (a) offers a three-dimensional

structure configuration as reference. Consider the following special case, we ex-

amine two same MFRs and imposed the conditions β1 = β2 (β1 = −β2) and d À r

in them. By applying approximation GA (equation (5.5)) we can write down the

explicit forms of the rotation rates ω1 and ω2 for the two MFRs, respectively. If

we assume the two MFRs enter into synchronization state (repellency state) as

time goes on, and set a new variable φ = ∆φ = φ1 − φ2 (φ = Σφ = φ1 + φ2).

Surprisingly, we find the two rotation rates ω1 = dφ1

dt
and ω2 = dφ2

dt
can combine

into one simple expression

C0
d2φ

dt2
= −dφ

dt
+ C cos β sin φ, (6.1)

where C0 is an artificial coefficient which is just applied for representing the phase

diagram φ - dφ
dt

evolution, and C = − 3
2πη

h2

rd3 Fth is the evolution coefficient for

this two MFRs system. To illustrate numerically the phase diagram evolution,

we assume η = 1.5 × 10−6( µg
µmµs

) that treated as a standard value and employed

thereafter without change unless mentioned specially, and the standard parameter

set [H, b,N ×N, h, d, r, a, Fth, α, β] = [×,×, 1× 2, 10, 15, 5, 1, 10, π
2
, π

6
] to calculate

C, and set C0 = C as both with the similar evolution strength. Here we give a

very profound notice about the specification of the strength of Fth. In general, the

strength of Fth is just about in the order Fth = 0.1 (pN) in our considered system.

The reason that we assume Fth = 10 (pN), this value treated as a standard value for

calculation here and thereafter, is due to it can save the computer calculation time

and does not lose the underlay physical intrinsic properties. The phase diagram,

φ - dφ
dt

evolution of expression (6.1), is depicted in Figure 6.1. As time goes on, the

two MFRs system enters into a fixed point, it implies the synchronization state or

repellency (and freezing) state. For checking further step whether this tendency

is dependent on the assumption of the hydrodynamic interaction forms, GC or

GA. We numerically calculate the hydrodynamic interaction between two MFRs

by utilizing complete GC . We find this tendency is still established well. These

phenomena possibly imply and suggest that when we extend two MFRs system

to MFR matrix system, the synchronization and repellency (and freezing) states
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can exist stably under some specified conditions.
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Figure 6.1: The φ - dφ
dt

phase diagram, which is plotted from equation (6.1).
Equation (6.1) is deduced by utilizing GA (equation (5.5)). Note that both cases
φ = ∆φ = φ1 − φ2 and φ = Σφ = φ1 + φ2 give us the same phase diagram. The
red bold curve is the plot of the limiting case C0

C = 0 in equation (6.1). The three
black blank squares depict the fixed points of this two MFRs system.

6.2.2 Synchronization state in a uniform MFR matrix

Let us apply equation (5.7) and give the condition βi = β for all members i

of the studied MFR matrix. The system configuration is shown in Figure 5(a).

Assume all members i of this MFR matrix enter into synchronization state, then

equation (5.7) can be simplified as

ωi(t) ≈ 1

r

(
1

γ
Fth +

{
N×N∑

j=1,j 6=i

G(xj,xi)

}
Fth

)
· et

≈ 1

r

(
1

γ
Fth + ζGRRFth

)
· et

≈ 1

r
Fth sin α sin β

(
1

γ
+ ζGRR,11

)
. (6.2)
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Here base on the numerical calculation analysis, we define

ζGC/A
RR =

{
N×N∑

j=1,j 6=i

GC/A(xj,xi)

}

≈ ζ



GC/A

RR,11 0

GC/A
RR,22

0 GC/A
RR,33




≈ ζGC/A
RR,11




1 0

1

0 δ
C/A
RR


 , (6.3)

where δC
RR ≈ 1 for small N ×N but δC

RR ≈ 0 for large N ×N , and δA
RR = 0 for all

N×N , and ζ = 3
2πη

h2

d3 is a normalized unit which is related to the leading behavior

of GC . Here and thereafter the superscripts C/A attached on each tensors, says

G, H and I, denote that they are calculated by applied GC/A, respectively. Look

into deeply the equation (6.3), we find GRR is just like a function of variables h,

d, r and N . We can treat GRR as a pure geometry function determined only by

this studied MFR matrix configuration.

Apply equations (6.2) and (6.3), the semi-analytical calculation result of ωi

by utilizing both GC/A is plotted in Figure 6.2. Note that ωi, here plotted in

Figure 6.2, is the rotation rate of member i MFR which located at around the

center region of the studied MFR matrix. It acts as a representative role. Because

that due to the loss of the symmetric property for a finite members MFR matrix,

ωi should exhibit somewhat difference between the member i located at around

the center region and near around the marginal region. Figure 6.2 also shows the

numerical calculation result of ωi by inputing the standard parameter set [H, b, N×
N, h, d, r, a, Fth, α, β] = [×,×, 50 × 50, 10, 15, 5, 1, 10, 90◦, 0◦ ∼ 40◦] specified for

the MFR matrix configuration. At the same time, the normalization unit ζ =
3

2πη
h2

d3 ≈ 9.4314 × 103( µs
µg

) is obtained, this value is treated as a standard one

applied here and thereafter without change unless mentioned specially. It shows

that the semi-analytical and numerical calculation results are very consistent in

the region β = 0◦ ∼ 40◦ for both GC/A. We also find that when β > 40◦ the

MFR matrix system enters into vortex or random phase state, regardless of the

calculation is for cases GC/A and for almost various MFR matrix configuration

that specified by various parameter sets. This is a very interesting phenomenon.

There seems to exist a universal critical azimuthal angle β ≈ 40◦ which switches

76



0 20 40 60 80

0.00

0.04

0.08

0.12

0.16

0 100 200

0

2

4

6

Vortex state

 

 
R

ot
at

io
n 

ra
te

 
 (r

ad
ia

n 
/ 

s)

Thrust azimuthal angle  (0o ~ 90o)

Synchronization state
Semi-analytical:

 Completeness
 Approximation
 Single MFR

Numerical:
 Completeness
 Approximation

 

 

 

 

 

 

C
/A

R
R

,1
1 

or
 2

2 (U
ni

t o
f 

)

N (Number of MFRs = NxN)

 Comple. C
RR,11

 Approx. A
RR,11

Figure 6.2: Plot of rotation rate ω versus the thrust azimuthal angle β for the
case of a studied MFR matrix stays in the synchronization state. The red dash-
doted and blue dash-dot-doted curves denote the semi-analytical calculation re-
sults which are plotted from equations (6.2) and (6.3) by applying both GC (equa-
tions (5.3) and (5.4)) and GA (equation (5.5)). The numerical calculation result of

GC/A
RR in equation (6.3) is shown in the inset, where the magenta triangle and green

square symbols denote GC
RR and GA

RR, respectively. The orange doted curve shown
in the main plot is also plotted from equation (6.2), but we ignore the contribu-
tion of ζGRR,11 (equation (6.3)). It is just right the ω0(t) shown in equation (6.4).
The red triangle and blue square symbols are the numerical calculation results by
utilizing both GC/A, respectively. Due to the study of such MFR matrix system
here, we numerically find that there seems to exist a universal critical azimuthal
angle β ≈ 40◦. The synchronization state can be established stably when β < 40◦,
but once β > 40◦ the MFR matrix should enter into vortex or random phase state.
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on the circuit that connects the two different states.

To realize the effect that comes from other members, the member i is excluded,

in a studied MFR matrix. We define an indicator

χ =
ωi(t)

ω0(t)
=

1
γ

+ ζGRR,11

1
γ

, (6.4)

to reveal such effect. The rotation rate ω0(t) is just comes from the single MFR

itself, but the speeded-up ωi(t) is contributed from both the member i itself and

other synchronized members in the studied MFR matrix. Applying the standard

parameter set, utilized in Figure 6.2, we obtain χ ≈ 1.57 and χ ≈ 2.18 in the

cases of GC and GA for all β, respectively. χ offers a very profound hint to

explain the onset of a possible synchronization status in a microorganism cluster.

According to the torque-speed relationship [1], the speeded-up ωi(t) for member

i implies that a larger thrust and consequently a larger flow field can be created

from this speeded-up effect. From the following two points of view, (1) larger

flow field that produced from MFR rotation, can be relatively equivalent to a

smaller thermal fluctuation and (2) larger flow field seems to able to redistribute

the thrust Fth components, that is, larger flow field seems to be able to shrink the

azimuthal angle β. Base on smaller thermal fluctuation extends the upper bond of

β, that the synchronization state can exist stably when β smaller this upper bond,

and small β benefits to the synchronization state exists stably [2]. The onset of a

possible synchronization state in an MFR matrix can be attributed to the increase

of χ. The recent experiments [3] offers a test bed to judge this scenario. And our

theoretical and numerical approaches seems to give a reasonable explanation and

consistent prediction to these experiments.

6.2.3 Repellency and freezing states in a checkerboard-like

MFR matrix

Let us apply equation (5.7) and give the condition βp = β and βn = −β where

members n are the nearest neighbors of members p. The two different kinds of

member sets p and n form a checkerboard-like configuration in a studied MFR

matrix. The system configuration is shown in Figures 5.1 (a) and 5.1 (c). Assume

this studied MFR matrix enters into repellency state, then equation (5.7) can be
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simplified as

ωp/n(t)

≈ (+/−)
1

r


1
γ
Fth,p/n

+
{∑(N×N)/2

j=1,j∈p/n,j 6=p/n G(xj,xp/n)
}

Fth,j

+
{∑(N×N)/2

j=1,j∈n/p G(xj,xp/n)
}

Fth,j


 · et,p/n

≈ (+/−)
1

r




1
γ
Fth,p/n

+ζHCr
RRFth,p/n

+ζHSt
RRFth,n/p


 · et,p/n

≈ (+/−)
1

r
Fth sin α

(
1
γ

sin β

+ζ
{HCr

RR,11 sin β −HSt
RR,11 sin(∆φ + β)

}
)

,

(6.5)

where ∆φ = φp − φn. Here we define two tensors HSt
RR and HCr

RR. Base on the

numerical calculation analysis, the two tensors have the following characteristics

{
HC,St

RR ≈ HC,Cr
RR ; HC,St

RR +HC,Cr
RR ≈ GC

RR

HA,St
RR ≈ 2HA,Cr

RR ; HA,St
RR +HA,Cr

RR ≈ GA
RR.

(6.6)

Since these tensors HC/A,St or Cr
RR are related to tensors GC/A

RR shown in equation

(6.3). The characteristics of these tensors are similar to the one of the tensors

GC/A
RR , and can be realized by referred to the statement about the tensors GC/A

RR .

Utilize equations (6.5) and (6.6), we can plot the semi-analytical calculation

results of ωp/n. As the notice mentioned in the subsection Synchronization state

in MFR matrix shown above, the rotation rates ωp/n plotted in Figure 6.3 by

applying GC and in Figure 6.4 by using GA is just a representative value. It

is right the calculation result for the member p/n located at around the center

region of the studied MFR matrix. Due to the loss of the symmetric property

for a finite members MFR matrix, some deviation should appear for the member

p/n which located near around the marginal region. Figures 6.3 and 6.4 also

depict the numerical calculation results of ωp/n with the standard parameter set

[H, b, N × N, h, d, r, a, Fth, α, β] = [×,×, 50 × 50, 10, 15, 5, 1, 10, 90◦, 15◦ ∼ 60◦]
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Figure 6.3: Plot of rotation rates ωp (upper set) and ωn (lower set) versus ∆φ
(= φp − φn) for the case of a studied MFR matrix stays in the repellency and
freezing states. The various colored curves denote the semi-analytical calculation
results corresponding to the thrust azimuthal angle β = 15◦ ∼ 60◦, which are
plotted from equations (6.5) and (6.6) by applying GC (equations (5.3) and (5.4)).
The numerical calculation results of HC,St

RR and HC,Cr
RR in equation (6.6) are shown

in the inset, where the pink filled triangle and pink blank triangle symbols denote
HC,St

RR and HC,Cr
RR , respectively. The various colored symbols are the numerical

calculation results corresponding to some chosen β ranged between 15◦ ∼ 60◦ by
employing GC (equations (5.3) and (5.4)). In the studied MFR matrix system
here, we find numerically the repellency state can be established stably when β
lay about in the range 15◦ ∼ 60◦. Once β < 15◦ (β > 60◦) this MFR matrix
should enter into freezing state (vortex or random phase state).
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Figure 6.4: Plot of rotation rates ωp (upper set) and ωn (lower set) versus ∆φ
(= φp − φn) for the case of a studied MFR matrix stays in the repellency and
freezing states. The various colored curves denote the semi-analytical calculation
results corresponding to the thrust azimuthal angle β = 25◦ ∼ 40◦, which are
plotted from equations (6.5) and (6.6) by applying GA (equation (5.5)). The
numerical calculation results of HA,St

RR and HA,Cr
RR in equation (6.6) are shown in

the inset, where the olive filled square and olive blank square symbols denoteHA,St
RR

andHA,Cr
RR , respectively. The various colored symbols are the numerical calculation

results corresponding to some chosen β ranged between 25◦ ∼ 40◦ by exploiting
GA (equation (5.5)). When applying GA (equation (5.5)) to calculate ωp and ωn

(equations (6.5) and (6.6) ), we find an interesting phenomenon. Because that the
GA (equation (5.5)) loses its accuracy in the near field situation, the numerical
calculation results reflect such property of GA. Although the numerical calculation
results try to follow the prediction of the semi-analytical calculation, anyhow an
obvious distortion appearing and the range of β, which the repellency state is
still remained somewhat stably, is shrank about into 25◦ ∼ 40◦. Once β < 25◦

(β > 40◦) this MFR matrix should enter into freezing state (vortex or random
phase state).
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specified for the studied MFR matrix configuration. Interestingly, in the case of

GC shown in the Figure 6.3, the semi-analytical and numerical calculation results

are so consistent in the region β = 15◦ ∼ 60◦. But, an obvious deviation appears

between the semi-analytical and numerical calculation results for the case of GA

shown in Figure 6.4. The secret embedded in this phenomenon comes from the

usage of GA. The suitable situation of employing GA is when we consider and

concern the far field phenomena. GA overvalues and distorts the flow field in near

field. It has to be very careful in theoretical deduction and numerical calculation

when one applies the GA.

Our study in the repellency state in MFR matrix here shows us some new

findings which do not appear in the case of the synchronization state in MFR

matrix as discussed in the previous subsection. One of them is that when the

azimuthal angle β ≤ 15◦, a new state appears. We name it as freezing state. Such

naming is for catching the characteristics of zero rotation rate tendency in each

MFR member. It comes from the equal competition strengths between the two

oppositely rotated tendency MFR member sets p and n. It is an unstable state,

can be easily destroyed by some surrounding fluctuation, for example, the thermal

fluctuation. Verification of this freezing state is an attractive thing in future

experimental study. Another new finding is the upper bound of the azimuthal

angle β can be extended up to β ≈ 60◦. When β ≤ 60◦ the repellency state in the

checkerboard-like configuration of MFR matrix still can remain stably. We guess

the reasons are due to in a checkerboard-like configuration of MFR matrix, the

member belongs to member set p and the member belongs to member set n feel a

weakened BOT hydrodynamic interaction each other. So that a stable repellency

state still can survive even though the azimuthal angle β has reached about 60◦.

6.3 Tracer particle responses on an MFR matrix

As usually seen in microscopic scale manipulation, the behavior of a system

can be detected and revealed from the response of some trackers. A prominent

example is the optical tweezers-microsphere assay, which is employed to explore

the microorganism flagellum behavior. To unravel the flagellum behavior, we offer

a direct mapping between the tracer particle responses and the microorganism

flagellum matrix behavior. The tracer particle exhibits nontrivial behaviors in

response to various subtle types of behaviors of the microorganism matrix. We

discovered three response modes, tried to apply them to account for the recently
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found experimental outcomes, and use them as a guidance for designing new ex-

periments for future studies.

6.3.1 Circular motion mode

Suppose a tracer particle is trapped at around the position x = 〈x, y,H〉, by

applying the hydrodynamic interaction BOT G and our MFR matrix model, the

flow field acting on this tracer particle can be cast as shown in equation (5.9).

Consider the case that this underlay MFR matrix stays in the synchronization

state. The equation (5.9) then can be simplified as

u(t) ≈
{

N×N∑
j=1

G(xj,x)

}
Fth

= ζGRPFth. (6.7)

Base on the numerical calculation analysis, we define

ζGC/A
RP =

{
N×N∑
j=1

GC/A(xj,x)

}

≈ ζ



GC/A

RP,11 0

GC/A
RP,22

0 GC/A
RP,33




≈ ζGC/A
RP,11




1 0

1

0 δ
C/A
RP,CM


 , (6.8)

where δC
RP,CM ≈ 1 for small N×N but δC

RP,CM ≈ 0 for large N×N , and δA
RP,CM =

0 for all N × N , and ζ = 3
2πη

h2

d3 is a normalized unit which is related to the

leading behavior of GC . Look into deeply the equation (6.8), we find GRP is

just like a function of variables H, h, d, r and N . We can treat GRP as a pure

geometry function determined only by the tracer particle combined MFR matrix

configuration. The characteristics of this tensor GC/A
RP is almost similar to the one

of the tensor GC/A
RR discussed in section 6.2.2.
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Substitute equation (6.8) into equation (6.7) we get

u(t) ≈ ζGC/A
RP,11Fth




sin α cos (β + φ)

sin α sin (β + φ)

δ
C/A
RP,CM cos α


 , (6.9)

note that here in fact dφ
dt

= ωi(t) as shown in equation (6.2). We decompose u(t)

into uxy(t) and uz(t), it then gives the form

{
uxy = ζGC/A

RP,11Fth,xy and 〈uxy(t)〉φ or t = 0

uz = 〈u(t)〉φ or t = ζGC/A
RP,33Fth,z,

(6.10)

where Fth,xy = Fth sin α, Fth,z = Fth cos α, and 〈· · · 〉φ or t denotes the φ or t average.

In the low Reynolds number environment according to the Stokes’ law, the

flow field acting on the tracer particle can be equivalently treated as existing a

drag force imposing on it. So equations (6.9) and (6.10) show us that the tracer

particle should exhibit a 3-dimensional (3D) cone-shrinking-like (α < π
2
) or cone-

expanding-like (α > π
2
) helical trajectory as time goes on; or a 2-dimensional (2D),

on xy plane, circular (α = π
2
) trajectory. We name these 3D helical or 2D circular

trajectories as Circular motion (CM) mode.

The radius of this 2D circular motion trajectory can be easily calculated

RCM =
uxy

ωi(t)
. (6.11)

Since ωi(t) ∝ sin β, according to equation (6.2), we find RCM with such character-

istics RCM ∝ csc β. Figure 6.5 shows the semi-analytical and numerical calculation

results for the 2D circular motion trajectory case by employing the standard pa-

rameter set [H, b, N×N, h, d, r, a, Fth, α, β] = [20/40, 1, 50×50, 10, 15, 5, 1, 10, 90◦,

15◦ ∼ 60◦] specified for the studied tracer particle and MFR matrix combined

configuration. A so consistent outcome calculated from both approaches above is

observed in Figure 6.5.

Note that sometimes in real experimental situation, for instance, in the per-

forming an optical tweezers microsphere assay, limited by the sampling frequency

resolution of the observation equipments, says order 1 (Hz). The recorded data for

this tracer particle response is a time average outcome. Because the rotation rate

of the microorganism flagellum is usually lay in the order 102 or 103 (Hz), compare
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Figure 6.5: Plot of tracer particle rotation radius RCM versus thrust azimuthal
angle β for the case of circular motion mode. The red dash-doted and blue dash-
dot-doted curves denote the semi-analytical calculation results corresponding to
the tracer particle located at H = 20 and H = 40 (µm), respectively. They are
calculated from equation (6.11). The numerical calculation results of GC

RP for both
H = 20 and H = 40 (µm) in expression (6.8) is shown in the inset, where the
magenta reverse-triangle and green circle symbols denote GC

RP for both H = 20 and
H = 40 (µm), respectively. The red reverse-triangle and blue circle symbols are
the numerical calculation results corresponding to some chosen β ranged between
5◦ ∼ 40◦ by using GC (equations (5.3) and (5.4)). In this plot, we find some
interesting phenomena. One of them is, the tracer particle located height H
seems not to give a significant effect on RCM . This phenomenon can be realized
by inspecting the inset of this plot. We observe that when N = 50 (our calculation
standard employment), the difference of GC

RP,11 in both H = 20 and H = 40 (µm)
cases is small. The second is, from Figure 3 we find the rotation rate ω(t) → 0
when β → 0. So inserting it into equation (6.11), we get RCM →∞. A singularity
point β = 0 and the corresponding strange phenomenon RCM = ∞ are found in
this plot. The reasonable physical picture should give us that RCM = 0 when
β = 0. This strange phenomenon is nothing but just comes from the calculation
strategy (or assumption) exploited in our MFR matrix model as mentioned in
Chapter 5.2.
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this with the sampling frequency which lay in the order 1 (Hz), the plane compo-

nents ex and ey of the flow field should be washed out. Recently, the group [3]

performed an experiment which shows that (1) an attractive (or repulsive) force Fz

acting on the tracer particle that located at height H (measured from a bacterial

carpet stuck substrate surface) with the trend Fz ∝ H−3 (2) there are no forces

can be detected in the plane components ex and ey direction from the optical

microsphere assay. These phenomena can be explained easily from our circular

motion mode viewpoint. We find that an MFR matrix with members about the

order 10, the trend Fz ∝ H−3 can be reappeared by calculated from equation

(6.10). Besides, equations (6.9) and (6.10) reply the question why the measured

drag force can be detected only in ez component.

6.3.2 Linear oscillation mode

Suppose a tracer particle is trapped at around the position x = 〈x, y,H〉, by

applying the hydrodynamic interaction BOT G and our MFR matrix model, the

flow field acting on this tracer particle can be casted as shown in equation (5.9).

Consider the case of this MFR matrix stays in the repellency and freezing states.

The equation (5.9) then can be simplified as

u(t) ≈




(N×N)/2∑
j=1,j∈p

G(xj,x)



Fth,p

+





(N×N)/2∑
j=1,j∈n

G(xj,x)



Fth,n

≈ ζIRP {Fth,p + Fth,n} . (6.12)

Due to the symmetry characteristics between
{∑(N×N)/2

j=1,j∈p G(xj,x)
}

and
{∑(N×N)/2

j=1,j∈n G(xj,x)
}

viewed from the tracer particle itself , we assume

ζIRP

≈




(N×N)/2∑
j=1,j∈p

G(xj,x)



 ≈





(N×N)/2∑
j=1,j∈n

G(xj,x)





≈ 1

2

{
N×N∑
j=1

G(xj,x)

}
. (6.13)
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In addition base on the numerical calculation analysis, we define

ζIC/A
RP ≈





(N×N)/2∑
j=1,j∈p or n

GC/A(xj,x)





≈ ζ



IC/A

RP,11 0

IC/A
RP,22

0 IC/A
RP,33




≈ ζIC/A
RP,11




1 0

1

0 δ
C/A
RP,LO


 , (6.14)

where δC
RP,LO ≈ 1 for small N×N but δC

RP,LO ≈ 0 for large N×N , and δA
RP,LO = 0

for all N × N , and ζ = 3
2πη

h2

d3 is a normalized unit which related to the leading

behavior of GC . Look into deeply the equation (6.14), we find IRP is just like a

function of variables H, h, d, r and N . We can treat IRP as a pure geometry

function determined only by the tracer particle and MFR matrix combined con-

figuration. The characteristics of the tensors IC/A
RP shown above is similar to the

tensors HC/A,St or Cr
RR shown in equation (6.6) of section 6.2.3.

Substitute equation (6.14) into equation (6.12), we get

u(t)

≈ ζIC/A
RP,11Fth







sin α cos (β + φp)

sin α sin (β + φp)

δ
C/A
RP,LO cos α


 +




sin α cos (−β + φn)

sin α sin (−β + φn)

δ
C/A
RP,LO cos α








≈ ζIC/A
RP,11Fth







sin α cos (β + φ)

sin α sin (β + φ)

δ
C/A
RP,LO cos α


 +




sin α cos (−β − φ)

sin α sin (−β − φ)

δ
C/A
RP,LO cos α








= ζIC/A
RP,112Fth




sin α cos (β + φ)

0

δ
C/A
RP,LO cos α


 , (6.15)

here note that in fact
dφp/n

dt
= ωp/n(t) as shown in equation (6.5), and φ = φp = −φn
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is set. We decompose u(t) into uxy(t) and uz(t), it then gives the form

{
uxy = ζIC/A

RP,112Fth,xy cos (β + φ)

uz = 〈u(t)〉φ or t = ζIC/A
RP,332Fth,z,

(6.16)

where Fth,xy = Fth sin α, Fth,z = Fth cos α, and 〈· · · 〉φ or t denotes the φ or t average.

.

In the low Reynolds number environment according to the Stokes’ law, the

flow field acting on the tracer particle can be equivalently treated as existing

a drag force imposing on it. So equations (6.15) and (6.16) show us that the

tracer particle should exhibit a 3-dimensional (3D), in fact it is just lay on a 2-

dimensional (2D) xz plane, cone-shrinking-like (α < π
2
) or cone-expanding-like

(α > π
2
) zigzag oscillation trajectory; or a 2-dimensional (2D), on xy plane, linear

oscillation (α = π
2
) trajectory. We name these 3D zigzag or 2D linear trajectories

as Linear oscillation (LO) mode.

In the 2D linear oscillation trajectory case (α = π
2
), the maximal displacement

LLO of the tracer particle can be calculated by integrating its u(t) spanned one

fourth of oscillation period T

LLO ≈ 2

∫ T
4

0

|u(t)|dt

≈ 2ζIC/A
RP,112Fth,xy∫ β+φ=π

2

β+φ=0

1

ωp/n(t)
cos (β + φ) d (β + φ)

≈ 2ζIC/A
RP,112Fth,xy

〈
ωp/n(t)

〉−1

φ or t
. (6.17)

If we approximate
〈
ωp/n(t)

〉
φ or t

∝ sin β, according to equation (6.5), LLO re-

veals us the characteristics LLO ∝ csc β. Figure 6.6 shows the semi-analytical and

numerical calculation results for the 2D linear oscillation trajectory case by apply-

ing the standard parameter set [H, b,N × N, h, d, r, a, Fth, α, β] = [20/40, 1, 50 ×
50, 10, 15, 5, 1, 10, 90◦, 15◦ ∼ 60◦] specified for the studied tracer particle and MFR

matrix combined configuration. In general, the two approaches give us a so con-

sistent outcome. But, there is a little bit discrepancy appearing in the region of

small β. The reasons maybe come from the competition characteristics embedded

in the repellency state due to the underlay checkerboard-like configuration of MFR

matrix. In the stronger competition situation, says small β region, tracer particle

approaches to the freezing state regime. So that tracer particle can not move
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Figure 6.6: Plot of tracer particle maximal displacement LLO versus thrust az-
imuthal angle β for the case of linear oscillation mode. The red dash-doted and
blue dash-dot-doted curves denote the semi-analytical calculation results corre-
sponding to the tracer particle located at H = 20 and H = 40 (µm), respectively.
They are calculated from equation (6.17). The numerical calculation result of IC

RP

for both H = 20 and H = 40 (µm) in expression (6.14) is shown in the inset, where
the magenta rhombus and green asterisk symbols denote IC

RP for both H = 20
and H = 40 (µm), respectively. The red rhombus and blue asterisk symbols are
the numerical calculation results corresponding to some chosen β ranged between
15◦ ∼ 60◦ by using GC (equations (5.3) and (5.4)). In this plot, we find some
interesting phenomena. At first, the tracer particle located height H seems not
to give an significant effect in LLO. This phenomenon can be realized easily by
inspecting the inset of this plot. We observe that when N = 50 (our calculation
standard employment), the difference of IC

RP,11 in both H = 20 and H = 40 (µm)
cases is small. The second is, the more obvious deviation appearing when β → 15◦.
The reasons maybe come from that when β → 15◦, the underlay MFR matrix ap-
proaches to the freezing state. We can image that when MRF approaches to the
freezing state, the resultant uxy (equation (6.16)) may be frozen at some position
(possibly nearby (∆φ + β) ≈ π

2
as shown in equation (6.5) and the plots depicted

in Figures 6.3 and 6.4) which gives a smaller magnitude than the average one that
is taken when we perform the integral calculation (equation (6.17)).
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freely and then gives us somewhat smaller displacement value than the expected

outcome calculated from semi-analytical calculation.

6.3.3 Sharp jumping mode

The strategies that the microorganisms change their movement direction or

stop movement are exploited by means of, says the tumble process or the sweep

process. The tumble process is said the microorganisms change their flagella mo-

tors to run from counterclockwise (CCW) to clockwise (CW) and makes the flagella

filaments work independently, then the microorganisms bodies move erratically

with little net displacement [4]. The sweep process means that the microorgan-

isms sweep abruptly their flagella filaments into a new direction, such that a thrust

is accompanied during this sweep process and makes the orientation of these mi-

croorganisms bodies change [5].

Here we combine the sweep process function into our MFR matrix model.

Although in this article the study is focus on the situation which the microorgan-

isms bodies are fixed. The consideration of the sweep process is still able to offer

some interesting and useful information to realize the microorganisms swimming

and movement action. To try to precisely describe the sweep process, by taking

the viewpoint of constructing a minimal parameter model, we propose a three

characteristic parameters constituted sweep model , MFRsweep, to represent the

microorganism flagellum sweep press,

MFRsweep ≡ [φonset, φjump,Fsweep]

(degree or radian, pN).

φonset is a sweep onset indicator. When the microorganism flagellum rotation

phase φ of some studied MFR member reaches φonset, φ is counted immediately

when a sweep event happens, the microorganism flagellum sweep process is turned

on. φjump is a sweep jumping or sweep shifting indicator. It is obvious that the

role of φjump is like a bonus given to φ. Mathematically it means that φ|t=t → (φ+

φjump)|t=t+δt, where δt is the sweep process action duration and we assume δt ≈ 0.

And Fsweep indicates the sweep inducing thrust that can be spread by means of

hydrodynamic interaction. Fsweep is a vector that includes both strength Fsweep

and orientation en(φ|t+δt = φ|t + φjump). The orientation en(φ|t+δt = φ|t + φjump)

is the normal component unit vector of the studied MFR, which is specified by
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time-dependent argument (φ|t + φjump).

Once the reasonable parameter values are given to the sweep model MFRsweep,

the combined process that constituted by MFRmatrix and MFRsweep models can

be explored. In order to offer a clearer physical picture, we consider and illus-

trate the following case. Consider a tracer particle that located over an MFR

matrix which originally stays in the synchronization state. Then by adding the

sweep process function MFRsweep and varying these parameter values therein, we

can see what happens on such tracer particle response trajectory. Figure 6.7

shows us this scenario by utilizing the parameter sets MFRmatrix = [20, 1, 50 ×
50, 10, 15, 5, 1, 10, 90◦, 20◦] and MFRsweep = [2π, π, 10/100/500/1000)] for cases (a)

∼ (d), respectively. In all cases the calculation time step is set as 2 (µs), and the

total calculation time period is 1200 (µs). Inspect Figure 6.7 in detail, we can

find many interesting phenomena induced from MFRsweep model. The underlay

MFR matrix behavior is affected by both thrust Fth, always accompanied with

each MFR member, and sweep induced thrust Fsweep, added when the summa-

tion of phase φ of some studied MFR member reaches the onset value φonset. So

by separating the effects of Fth (acting on the tracer particle) and Fsweep (acting

on the tracer particle), the tracer particle behavior responded or mapped to the

underlay MFR matrix action behavior can be realized more clearly.

In Figure 6.7, the blue, magenta, and green curves in each case (a) ∼ (d) are the

tracer particle response trajectories that correspond to consider the hydrodynamic

interaction BOT from thrust Fth, sweep inducing thrust Fsweep, and both of the

thrust Fth and sweep inducing thrust Fsweep, respectively. At first, let us compare

the blue and green curves in cases (a) and (b). When a sweep event MFRsweep

happened, the parameter φjump functions the MFR bead or the phase φ of almost

all members in the studied MFR matrix to jump or shift synchronously to a

new starting position. And concurrently the sweep inducing thrust Fsweep tends

to jump or shift the tracer particle to a new position immediately. The tracer

particle jumping displacement can be calculated easily

LSJ ≈ u(t)∆t

=

{
N×N∑
j=1

G(xj,x) (Fth,j + Fsweep,j)

}
∆t

≈
{

N×N∑
j=1

G(xj,x)

}
(Fth + Fsweep) ∆t

= ζGRP (Fth,j + Fsweep,j) ∆t, (6.18)
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Figure 6.7: Plot of the tracer particle response trajectories. The tracer par-
ticle is located over an MFR matrix, which originally stays in the synchro-
nization state. Here we concern the MFRmatrix and MFRsweep combined pro-
cess. (a) ∼ (d) show us the tracer particle response trajectories by exploit-
ing the parameter sets MFRmatrix = [20, 1, 50 × 50, 10, 15, 5, 1, 10, 90◦, 20◦] and
MFRsweep = [2π, π, 10/100/500/1000], respectively. In all cases the calculation
time step is 2 (µs) and the total calculation time is 1200 (µs). In general, the
green curve are the superposition of blue and magenta curves in all cases (a) ∼
(d). The tracer particle is originally located at 〈0, 0, 20〉 (µm) and it undergoes
about 7 circles based on the circular motion characteristics of CM mode, the mea-
sured RCM ≈ 7.5 µm coincides with the results shown in equation (6.11) and
Figure 6.5. And in the numerical calculation, the initial phase φ for each member
of the underlay MFR matrix is set φ = −20◦. Look into (a), the green (/magenta)
arrows and the accompanied numbers tagged nearby them illustrate the first three
circles, here for both green and blue ones, rotation orientation (/the first three
sharp jumping displacements direction) and their corresponding appearance se-
quence. A very small magenta triangle-like curve with side length ≈ 0.55 (µm)
depicts the corresponding first three sharp jumping displacements. Note that even
though the strength of Fsweep is larger than Fth up to one order scale Fsweep

Fth
= 0∼100

10
,

the underlay MFR matrix seems to still stay in the original synchronization sta-
tus. Such phenomena are revealed in cases (a) and (b). Anyhow once we increase
the strength of Fsweep up to about two order scale, Fsweep

Fth
= 500

10
/1000

10
, larger than

the strength of Fth, a very obvious distorted appearance is observed on the tracer
particle response trajectories as shown in the blue, magenta and green curves of
(c) and (d).
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where ζGRP can be obtained from equation (6.8) and the inset of Figure 6.5. For

the 2D case

LSJ ≈ uxy∆t, (6.19)

where uxy is right the one appeared in equation (6.10), but Fth,xy has to be substi-

tuted by (Fth + Fsweep)xy therein, and ∆t is the numerical calculation time step,

∆t = 2 (µs) used here. Apply equation (6.19) to calculate LSJ for cases (a) ∼ (d),

the outcomes are given about 0.55/5.5/27.5/55 (µm), respectively. The magenta

curves depict the jumping displacement, the so consistent results can be found

between equation (6.19) and cases (a) ∼ (d). The characteristics of the blue and

green curves in cases (a) and (b) exhibits a CM mode. The measured RCM ≈ 7.5

µm coincides with the results shown in equation (6.11) and Figure 6.5, it implies

that the underlay MFR matrix is still to stay in the synchronization state. Such

profound finding reveals us, even though the strength of Fsweep is larger than the

strength of Fth up to one order scale Fsweep

Fth
= 0∼100

10
, the underlay MFR matrix

seems to still stay in the original synchronization status. As time goes on, the

tracer particle response trajectories, green curves in (a) and (b), exhibit jumping

or shifting-like appearance. Here the reasons that produce the three circles-like

main configuration are due to the assignment of φonset = 2π such that a complete

circle can be formed, and φjump = 2π
3

so then an equilateral triangle like jumping

is established as shown in the magenta curves of (a) and (b) (or even for all cases

(a) ∼ (d)). Look into case (a), the arrows and the accompanied numbers tagged

nearby the blue and green curves (green arrows)/magenta curves (very small trian-

gle with side length ≈ 0.55 (µm), magenta arrows) illustrate the first three circles

rotation orientation and their corresponding appearance sequence/first three sharp

jumping displacements direction. In general, the green curve is the superposition

of blue and magenta curves in all cases (a) ∼ (d). For such new and interesting

phenomenon, indicated by blue or magenta or green curves, we name it as Sharp

jumping (SJ) mode.

Turn to the cases (c) and (d), a very obvious distorted and/or jumping ap-

pearance in blue, magenta and green curves are observed. The sharp jumping

effect which denoted by the ratio Fsweep

Fth
, Fsweep

Fth
= 500

10
/1000

10
in case (c)/(d), is too

large to sustain the underlay MFR matrix to keep in the synchronization state

stably. We have examined the time evolution of phase φ for each MFR member

in the studied MFR matrix and verify the correctness of such opinion above. This

phenomenon looks like reasonable and coincides with our intuition at first glance.
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Larger fluctuation destroys the underlay MFR matrix stability and then pushes

it into vortex or random phase state. But think about this phenomenon deeply,

this stability breakdown is happened in the situation that the strength of Fsweep

up to almost two order scale larger than the strength of Fth. The two order scale

magnitude for the ratio Fsweep

Fth
is seldom observed in real microorganisms. This

is the position to make a short complement and summary about the study in

SJ mode. The original state, says the synchronization or repellency sates, of the

MFR matrix does not be destroyed by purely varying the parameters φonset and

φjump (MFRsweep = [φonset, φjump,×]). The tracer particle trajectory still retains

the original characteristics, says CM or LO modes, which is reflected by the un-

derlay MFR matrix state. When the parameter Fsweep is considered, and once the

strength of Fsweep beyond some threshold, the original state of the underlay MFR

matrix should be destroyed and consequently map to an obvious distorted and

jumping tracer particle trajectory.

Recent experiments [6] described the tracer particle that located over a bac-

terial carpet exhibits a sub-diffusion behavior. In order to inspect the bacterial

flagella behavior in the underlay bacterial carpet, this group recorded the re-

sponse of two beads, each bead is attached on a bacterial flagellum and these two

bacteria are located nearby each other. Such experiments exhibit and imply a

synchronized-like sweep behavior between these two adjacent bacteria. Base on

these findings, this group suggests that a synchronization state maybe exist in a

bacterium cluster with small members that located at the bacterial carpet. At

first glance, such sub-diffusion behavior seems to violate our intuition. Because

that an abrupt sweep process seems to enhance the fluid fluctuation and make

the tracer particle to tend to a super-diffusion behavior. But if we assume the

underlay bacterium carpet, or just need to assume the underlay bacterium cluster

with small members, to stay in a synchronization state. Then from the viewpoint

of sharp jumping mode, such sub-diffusion behavior can be explained reasonably.

Since the strength of Fsweep is just about one order scale larger than the strength

of Fth as measured and estimated from experiments [6], the underlay MFR matrix

is still remained in the synchronization state and does not be destroyed by the

sweep process. From Figure 6.7 (a) and (b), the tracer particle is still caged in

a small region even though the sweep process is functioning and consequently a

sub-diffusion behavior is observed.

94



6.4 Conclusion and outlook

The microorganism flagellum behavior is a fascinating phenomenon in the

microscopic natural world. Trying to explore and realize such phenomenon is

not just due to scientific curiosity, but because it also offers a potential in aca-

demic and industrial application. In this study, we propose two minimal models,

the microorganism-flagellum-rotor matrix (MFRmatrix) and the microorganism-

flagellum-rotors with sweep process (MFRsweep), to get insight into these complex

systems. By employing these two models, we explore the hydrodynamic interaction

between flagella through the complete Blake-Oseen tensor GC and the approxi-

mated Blake-Oseen tensor GA, in the following systems: (1) 2 MFRs (2) N × N

MFR matrix (3) a tracer particle over an N ×N MFR matrix.

In issue (1), a phase portrait reveals the synchronization and repellency states,

which can exist stably and correspond to the fixed points in the portrait. In issue

(2), (a) the synchronization state can exist stably when the azimuthal angle β is

smaller than some threshold, and (b) the repellency state can exist stably when the

β lies within some range and concurrently freezing state can exist unstably in small

β regime. In issue (3), our studies reveal that the tracer particle can exhibit (a) a

circular motion (CM) mode, (b) a linear oscillation (LO) mode, and (c) a sharp

jumping (SJ) mode. These studies provide some hints to understand several recent

experimental findings. Firstly, our results supports the experimentally measured

decay Fz ∝ H−3 of the hydrodynamic drag force strength Fz along the distance

H measured from the substrate surface of the bacterial carpet. Secondly, it seems

to exist a rotation rate threshold which switches on the synchronized behavior in

the underlay bacterial carpet. Thirdly, a tracer particle can exhibit a sub-diffusive

behavior even though it locates over a bacterial carpet in which the flagella can

sweep.

Although this article has presented a lot of phenomena in the microorganism

flagellum matrix, there still exist many others waiting for exploring. For example,

we have found some interesting and new modes in the tracer particle trajectory

when the particle is located over an MFR matrix which stays in a vortex or random

phase state. In the future, we should try to unravel more interesting phenomena

about the microorganism flagellum matrix and carpet behavior, which includes

thermal fluctuations. Although our original formalisms in equations (5.6) and (5.8)

also include these fluctuations, their effects are neglected in this study. Certainly,

it is a topic which can be included in the future discussion.
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Chapter 7

Hydrodynamic Spreading of Forces from

Bacterial Carpet

7.1 Introduction

The phenomena of collective motions in self-propelled particles (SPP) are ubiq-

uitous in nature [1]. Under complex interplay between external driving and local

interactions, the orientational and velocity correlation length in a SPP system

can be several orders of magnitude larger than the individual characteristic di-

mension. The interaction between each SPP constantly competes with dissipation

and random noises in the system. Presence of boundaries enforces constraints

on available states and spreading of interactions. Rich phenomena are therefore

expected when ratio between each competing terms are varied or boundary condi-

tions are changed. From the viewpoint of statistical physics, SPP system provides

an ideal test bed for non-equilibrium many-body physics [2].

Among all SPP systems, bacterium is probably the most thoroughly stud-

ied due to its biological importance [3]. The complexity of behaviors that come

from these micro-organisms with such simple structures challenges our under-

standing in fluid dynamics and evolutionary biology [4]. Bacteria adapt to lives at

low Reynolds number with their flagellar motors that possess near-perfect torque-

speed relation [5]. For example, for a single polarly-flagellated bacterium, rotation

of the filamental helical propeller in counterclockwise (CCW) or clockwise (CW)

senses [6] exerts thrusts to the surrounding fluid environment and leads to for-

ward or backward (defined by the orientation of cell body) swimming motions.

In free space the force exerted from a swimming bacterium can be modeled as
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a force dipole under far field approximation and spread into the fluidic environ-

ment through hydrodynamic interactions with one r−2 dependence [7]. At close

proximity to surface, the swimming behavior of bacterium has been found to alter

dramatically due to complex interactions with boundaries [8,9,10], while the form

of hydrodynamic spreading of force generated from the swimming bacterium is

also changed [11]. The above effects are suggested to have significant impact on

cell signaling and bio-film formation [9]. The rich phenomena arise from collective

interactions between SPP and boundaries are interesting fluid dynamics issues to

be explored.

On the other hand, collective flow patterns have been observed and theoret-

ically predicted in fluidic environment near bacteria attached surfaces, namely

bacterial carpets [12, 13, 14, 15]. Under hydrodynamic interactions with the form

of long ranged Blake-Oseen tensor (BOT), transition to synchronization of flagellar

rotation can be found. Theoretically, synchronization requires phase lock between

adjacent rotors. Thrusts from neighboring rotors are propagated to one another

through the BOT. The accumulated thrusts lead to acceleration of phase changing

rate and enable phase synchronization between rotors. Moreover, it was suggested

that the modes of rotor motion could affect the degree of synchronization, in which

normal component thrust is more favorable than the tangential counterpart. To

date, no experimental examination of above statement has been conducted in any

physical or biological systems. Furthermore, whether there exists a threshold in

coupling strength above which onset of synchronization take place is still an open

issue. On the other hand, the collective flow patterns have been suggested to

be utilized in microfluidic devices for transport manipulation [16, 17]. Studies on

hydrodynamics near the bacterial carpets and manipulation of bacterial distribu-

tion near surface could help advancing our understanding in collective bacterial

behaviors and present opportunities for microbial-fluid interface engineering that

could boost microfluidic developments.

7.2 Experimental approaches and results

In this letter, we investigate hydrodynamics near bacterial carpets by pico-

newton force measurement with optical tweezers-microsphere assay. Single polarly-

flagellated bacterium strains with tunable flagellar rotational rate are employed.

Dense bacterial carpets with random cell orientation are formed by flow deposi-

tion of bacteria in microchannel. By conducting force measurements at varying

heights above bacterial carpet, the forms of the hydrodynamic spread of forces are
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determined. An effective attractive (repulsive) force is detected at height ≤ 20

µm above bacterial carpets. We found that the collective force takes the form of

force quadrupole or source doublet like behavior. The strength of force exhibits an

abrupt transition upon high flagellar rotational rate driving, suggesting a coupling

strength dependent collective effect akin to hydrodynamic synchronization. Dif-

ference in the force magnitude from the two bacterial carpet formed with different

strain suggests that degree of hydrodynamic synchronization may depend on the

mode of flagellar motions.

The sample preparation method is similar to what described elsewhere [15].

Two single polarly-flagellated bacterium strains are employed in this work. The

wild type vibrio alginolyticus VIO5 and its mutant strain NMB136 were kind gifts

from M. Homma [5]. The two strains differ in their swimming patterns. For VIO5,

the flagellar rotational sense could be CCW or CW, switched with a large angle

flicking motion. The typical trajectories of VIO5 are shown in Figure 7.1 (a).

Abrupt changes in swimming directions take places when flagellum performs large

angle flicking. Contrary to VIO5, NMB136 could only swim forward due to lack

of CW flagellar rotation (Figure 7.1 (b)). The bacteria containing solution was

densified to 20 folds higher in concentration (final concentration ∼ 1010 cell/µl)

than its original state at the time it was harvested, before injected into a custom

made 180 µm high, poly-L-lysine pre-treated micro-channel. When anchored to

solid substrate, most of the cell bodies stuck to substrate while the flagellum is free

to rotate. Under the dense injection condition, we seldom see tethered cell (one

to two cases in a 100 × 100 µm2 viewing plane) as the cell body seems to attach

more favorably on the pre-treated substrate. Most of the bacteria are observed

to lie flat on the substrate, probably due to the downward force induced by the

interactions with boundary [8]. To make sure if the flagellar rotation for attached

bacterium in a dense bacterial carpet is similar to its free swimming counterpart,

we employ standard bead assay [5] with a high speed CCD camera (CR450×2,

Optronis) with 1 KHz frame rate. To allow for bead assay measurement of the

flagellar rotation under the above condition, solution contains low concentration

of 1 µm fluorescence polystyrene bead was mixed with the bacterial solution and

incubated for about half an hour before densification. Empirically, we find that,

contrary to fluorescence labeled polystyrene microsphere, normal polystyrene mi-

crospheres do not tend to attach to flagellum under above treatment, probably due

to worse affinity between the unlabeled surfaces to the flagellum surface. Alterna-

tively, measuring rotational rate of the rare tethered cell also provide the required

information by considering the difference in Stokes drag between flagellum and

99



cell body [18]. Typical trajectories of tethered cell body attached are shown in

Figures 7.1 (c) and 7.1 (d) for VIO5 and NMB136, respectively. NMB136 shows

stable, single frequency CCW rotation. On the other hand, for VIO5, there are

clearly CW and CCW motions. As v. alginolyticus belongs to the category of

sodium-motive cells, both strains allow for precise rotational rate tuning by Na+

concentration control in the motility buffer. Figures 7.1 (e) and 7.1 (f) show the

measured rotational rate for each case. The distribution of CW and CCW rota-

tion duration shift more towards CW side as Na+ concentration is increased. The

flagellum spends more time in rotating in CW than in CCW sense. At Na+ concen-

tration > 50 mM, flagellum spends ∼ 80 percent time in CW motions (Figure 7.7

in Supplement). Furthermore, for VIO5, due to the large angle flicking motions,

centers for CCW and CW motions are distinctively separated, especially at high

Na+ concentration. Apart from the tangential component from the rotational flag-

ellar motions, the flicking motions introduce additional normal components in the

thrust to be propagated through BOT. The NMB136 deposited bacterial carpet

is an ideal experimental system for examination of theoretical model by Uchida

et. al., while the VIO5 deposited carpet can serve as a good reference system to

check the effect on the collective hydrodynamics under different mode of flagellar

motions. It is also noteworthy that we failed to form bacterial carpet with another

mutant strain, NMB102, which shows CW flagellar motion only and always swims

backward [19]. For NMB102, clustering of bacteria always occurs and it causes

highly non-uniform bacterial carpet formation. Nevertheless, since VIO5 spends

most time in rotating in CW senses at Na+ concentration > 50 mM, its effect on

the nearby flow field may be quite similar to NMB102.

After the flow deposition process, low concentration (average ∼ 1 particle in

100 × 100 µm2 view) 2 µm polystyrene particles are injected in 10 percent glyc-

erol mixed motility buffer. As the density is matched, particles can be found at

all heights in the micro-channel. As no pre-treatment was carried out for the

polystyrene particle, there is no observable attachment of the 2 µm particle on

flagellum in all the experiments conducted, judging from the particle trajecto-

ries. From previous study [15], we found significant sub-diffusive behavior in the

lateral trajectories at height around 10 µm above the VIO5 deposited carpet by

mean square displacement (MSD) measurement. The MSD converges to normal

Brownian motions as measured height > 20 µm (Figure 7.8 in Supplement). The

sub-diffusion observed was speculated to be correlated to the synchronous flicking

motions of flagella, as data showed shorter waiting duration between two adjacent

flicking when stronger sub-diffusive behavior was observed. Recent simulation
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Figure 7.1: The typical trajectories of VIO5 are shown in (a). Abrupt changes
in swimming directions take places when flagellum performs large angle flicking.
Contrary to VIO5, NMB136 could only swim forward due to lack of CW flagellar
rotation shown in (b). Typical trajectories of tethered cell body attached are
shown in (c) and (d) for VIO5 and NMB136, respectively. (e) and (f) show the
measured rotational rate for each case.
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shows possibility of sub-diffusive behavior due to synchronous back-and-forth flick-

ing induced forces from a matrix of rotors [20]. However, the order of magnitude

of the force to be spread to the tracer particle through hydrodynamic interaction

still remains unclear. Moreover, as the cell orientation on the deposited bacte-

rial carpet is basically random, it is unclear whether a collective force could be

generated and spread into the fluidic environment simply through hydrodynamic

interaction.

Implementation of an optical tweezers into the above system allows us to ex-

amine the hydrodynamic spreading of force generated from the bacterial carpet.

Fig. 7.2 (a) shows the schematic plot of the experiment setup. A focused 633 nm

He-Ne laser is introduced into the bacterial carpet micro-channel through 60 X oil

immersion microscope objective (Olympus UPLAPO, N. A. = 1.25). Calibration

of laser power and strength of random noises for precise determination of effec-

tive trapping force on the 2 µm polystyrene particle was carried out under similar

conditions (Figure 7.9 in Supplement). A motorized 3-D stage enables manipu-

lation of particle positions down to precision of 0.1 µm. We purposely restrain

the measurement height to above 10 µm in order to alleviate the possibility of di-

rect contact between tracer particle and flagellum. Furthermore, as we observed,

tracer particles could easily become attached to the underlying cell bodies and get

stuck, if kept at a height < 10 µm. The force at each measuring location is then

determined by continuously decreasing laser power until the tracer particle is no

longer trapped at the laser focus [21].

Figure 7.2 (b) shows the forces measured at various heights above bacterial

carpets. For NMB136 deposited carpet, a net attractive force (pulled toward to

bacterial carpet surface) is measured at each height. The magnitudes of the forces

decay as distances from bacterial carpet increase. Increase of Na+ concentration

in the motility buffer to above 100 mM leads to significant increase in the force

magnitude. On the contrary, VIO5 deposited carpets result in net repulsive forces

(pushed away from bacterial carpet surface). Interestingly, fitting of all curves

render a force form inversely proportional to cubic power of distance. As shown

in the inset of Figure 7.2 (b), normalizations of each curves with respect to the

force magnitude measured at 10 µm respectively lead to collapse of data points

into one curve with power = −3. On the other hand, no detectable force can be

measured in the lateral directions using this methodology, for all cases (Figure

7.10 in Supplement).

The above observation suggested that flow field induced by bacterium with

rotating flagellum attached on substrate may be explained by a superposition of
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Figure 7.2: (a) shows the schematic plot of the experiment setup. (b) shows the
forces measured at various heights above bacterial carpets.
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Figure 7.3: The distortion of flow fields may be pictured as the schematic plots
in (a) and (b).

fields due to the anchored force monopole and its associated image flow fields

located on the other side of the surface. It is known that the image system for

a force monopole parallel to a no-slip surface includes anti-force monopole, force

doublet, and source doublet terms [8, 23]. Physically, the anchoring of cell body

leads to vanishing of the forward flow field for a force dipole model used in free

space due to symmetry breaking and the close proximity of the surface boundary

inevitably results in back-flowing of the towards-surface flow components in the

flow field. Moreover, in bacterial carpet condition, the cell to cell distance between

each bacterium constitutes additional boundary condition that promotes bending

of flow lines. Considering the above scenarios, the distortion of flow fields may be

pictured as the schematic plots in Figure 7.3, where a far field velocity field with

force quadrupole or source doublet like behavior is expected.

The force measured by the optical tweezers-microbead assay is time averaged

result of such forces over a period > 0.1 sec, according to the temporal resolution

limit of the instrumentation. Experimentally, the measured force curves can be

fitted by

F (r) =
α

rβ
, (7.1)

with β ranging from 3.01 ∼ 3.02. The numerical calculation also gives force

curve with inverse cubic law, for 3 × 3 MFR matrix (cluster) case, as the dashed

line plotted in the inset of Figure 7.2 (b). We extract the coefficient α for each

Na+ concentrations. The Na+ concentration effects on flagellar rotational rate

and torque exerted on the surrounding fluid is well documented [5]. In Figure

7.4, the extracted values are plotted versus rotational rate measured under the

dense bacterial carpet conditions. The curve can be well fitted with a Boltzmann
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Sigmoidal function with

α ∝ 1

1 + exp (−γ(ω − ωc))
(7.2)

where γ is a strain dependent coefficient. The curve shows a phase transition

like behavior. Upon a critical ωc, the force spread through hydrodynamic cou-

pling increase abruptly. Similarly, as plotted in the inset of Figure 7.4, the force

curves with respect to sodium concentration (χ) also show sigmoidal form. From

the above measurement, it is possible that at high rotational rate, each flagellum

exerts stronger thrust to the surrounding fluid, results in stronger hydrodynamic

coupling between neighboring flagella, and leading to phase locking between each

flagellar rotation. The numerical calculation also supports this scenario above.

Under reasonable parameters assigned, each rotor’s rotational rate can speed up

about 2 times when a considered 3 × 3 MFR matrix (cluster) enters into the

synchronization state (Figure 7.6). The observation is reminiscence of theoretical

simulation by Uchida et. al. [12], where reduction of noise level leads to more pro-

nounced synchronization in rotor matrix. Similar concept has been shown recently

in Koumakis et. al. [24] where phase synchronization of rotating colloidal parti-

cles occurs more easily when the rotational speeds become faster due to stronger

hydrodynamic coupling from the neighbors. Our force measurement result shares

the common features and may be attributed to the hydrodynamic synchronization

of flagellar rotations when rotational rate exceed a threshold value. Nevertheless,

further experimental and theoretical works are needed in order to clarify the state-

ment above.

The force generated from the bacterial carpet in micro-channel may present

opportunity for flow manipulation in microfluidic devices. For instance, the at-

tractive force from a rotor carpet may be utilized for decontamination of solution.

Alternatively, by engineering the relative angles of channel walls, the repulsive

force from carpet can be utilized for flow pumping enhancement. Our work demon-

strate the possibility of such collective flow patterns, which hopefully could pave

the way for more sophisticated manipulation scheme in microfluidics devices.

In conclusion, we experimentally demonstrate the collective force generations

through hydrodynamic coupling from randomly oriented bacterial carpet matrix.

The senses of flagellar rotational motions determine the direction of forces. At-

tractive and repulsive forces are generated from carpet deposited with bacterium
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Figure 7.4: The extracted values are plotted versus rotational rate measured
under the dense bacterial carpet conditions.

strain with CCW and CW flagellar rotations, respectively. The forces show be-

havior r−3. The collective backflows from boundaries (image force monopole) are

attributed to the generation of force quadrupole or source doublet like force form.

Significantly stronger forces are detected upon increasing flagellar rotational rate

by increasing Na+ concentration in motility buffer. In particular, upon flagel-

lar rotation rate tuning above a threshold value, phase transition like behavior

is observed. The observation is attributed to probable transition to a state with

synchronous flagellar rotations under stronger hydrodynamic coupling.

7.3 MFR matrix model explanation

To explain the two main experimental results (1) Fz ∝ H−3 and (2) a phase

transition occurs in the plot of Fz versus ω when ω reaches a threshold. We

employ the MFRmatrix model to explain these findings. At first let us try to

explain the finding (1). If we assume the underlay MFR matrix or just assume

a cluster that is constituted of finite amount of MFR members enters into the

synchronization state, then the content in Chapter 6.3.1 (The circular motion

mode) can be fully applied. The calculation parameter set is taken as MFRmatrix =

[H, b, N×N, h, d, r, a, Fth, α, β] = [10 ∼ 40, b, 1×1 ∼ 61×61, 7, 1.2, 0.5, a, Fth, α, β].
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The reasons why we specify such values to these parameter are try to mimic the

real experimental situation. And because in our calculation, we just try to find the

trend between Fz and H. Some parameters just affect the proportional coefficient

such that they act as free parameters and are not relevant to our calculation, so

here we do not mention them precisely. Figure 7.5 shows the calculation result.

This figure reveals us that when the amount of MFR members N×N ≤ 5×5, the

calculated Fz decreases along with the increase of the tracer particle located height

H, in almost the whole calculation range 10 ∼ 40 µm, by a power law decay with

exponent about −3. This calculation result is consistent with our experimental

outcome which the tracer particle located height H, varied in the range 10 ∼ 20

µm, controlled by means of optical tweezers-microsphere assay. That is the MFR

matrix model implies a synchronized cluster can be established with the MFR

members N × N ≤ 5 × 5. This is a very reasonable magnitude, because there

are many defects existing in our experimental samples, so the formation of a

synchronized cluster with a large MFR members is unrealistic. But we have to

notice that we also perform the calculation in the situation that the MFR cluster

stays in the vortex or random phase state. We find it also gives the same result

as the one which MFR cluster stays in the synchronization state. The reason is

easily understood. Because that in the F(t) measurement, our sampling time is

a little bit large. So during the sampling process each MFR member in some

cluster, regardless of the cluster is in a synchronization state or in a random phase

state, can sweep over all phase. After time average, we cannot distinguish the

system stays in which one states. That is just base on the experimental result (1)

Fz ∝ H−3, it is not enough to claim the bacterium carpet has entered into some

synchronization state.

Next let us consider the finding (2). Again if we assume the underlay MFR

matrix or just assume a cluster that is constituted of finite number of MFR mem-

bers enters into the synchronization state, then the content in Chapter 6.3.1 (The

circular motion mode) can be fully exploited. Figure 7.6 illustrates the calculation

result about the ratio ωi

ω0
versus the number of MFR members N×N which consti-

tute a synchronized cluster, by utilizing the parameter set MFRmatrix = [H, b, N ×
N, h, d, r, a, Fth, α, β] = [×,×, 1 × 1 ∼ 201 × 201, 7, 1.2, 0.5, 0.1/0.3/0.5, Fth, α, β].

As we mentioned in Chapter 6.2.2 (Synchronization state in a uniform MFR ma-

trix), the ratio ωi

ω0
offers an indicator to reveal the enhanced rotational rate of the

studied rotor, the enhancement comes from the contribution of other synchronized

MFRs acting on the studied MFR due to BOT hydrodynamic interaction. Figure

7.6 reveals that the rotational rate ωi which is an indicator for most MFR members
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Figure 7.5: Plot of drag velocity uz (or drag force Fz) versus tracer particle
located height H. The various colored curves denote the drag velocity (equivalent
to drag force) varied along with the tracer particle located height variation in
case of different amount of MFR members. They are calculated by using the
parameter set MFRmatrix = [H, b, N ×N, h, d, r, a, Fth, α, β] = [10 ∼ 40, b, 1× 1 ∼
61 × 61, 7, 1.2, 0.5, a, Fth, α, β]. Notice that in the far field situation (H ' 20
µm), such relationship uz(or Fz) ∝ H−3 is established. But in near field situation
(H / 20 µm), the exponent of H can vary ranged about ≈ −3.34 ∼≈ 1.35
corresponding to N = 1 ∼ N = 61. That is depends on the amount of MFR
members N ×N specified, the different exponent value is obtained.
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Figure 7.6: Plot of rotation rate enhancement index χ = ωi

ω0
versus number of

MFRs (N × N). In this plot, we can find the bead radius of MFR arm a is a
key parameter. χ increases along with the increase of a, the reason is due to the
application of Stokes’ law in our MFR model. Larger bead radius a corresponds to
larger drag force when the drag velocity, which comes from the other surrounding
MFR members, is given. Estimate and make sure the scale of a is an interest-
ing and meaningful task by means of experimental and theoretical approaches in
future.
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in a synchronized MFR cluster, may increase up to several times when the amount

of MFR members, says N×N ≤ 5×5. The ratio ωi

ω0
depends on the choice of a (the

radius of the MFR arm), but provided a within about the range 0.1 ∼ 0.5 µm, ωi

ω0

should exhibit a profound magnitude. We think that the bacterial flagella rotate

in a real low Reynolds number fluid, the parameter a which is denoted equivalently

the drag force strength acting on the bacterial flagella, is reasonable to locate in

the range of 0.1 ∼ 0.5 µm. So we can suggest and assume that when the rotation

rate of the bacterial flagella reaches some threshold, a cluster with the amount of

MFR members N × N ≤ 5 × 5 should enter into a synchronization state. The

reason is due to the BOT hydrodynamic interaction, the rotation rate ωi of most

of the MFR members in the synchronized cluster should increase up to at least 2

times. Base on the Stokes’ law and our MFR model, this situation means that at

least 2 times of thrust strength can be exerted by each MFR member. From the

same logic and calculation procedure as done for getting Figure 7.5, we can find

a phase transition may appear between Fz and ω when ω reaches some threshold.

So the MFR matrix model could gives us a consistent and plausible explanation

to our experimental main result (2).

Finally, let us discuss a little bit about the issue of what possible reasons

could cause the existence of a rotation rate threshold which makes the onset of a

synchronized cluster. We offer two plausible reasons to account for this possibility.

One is that after exploring the MFR model, we understand the key parameter to

cause the MFR matrix entering into synchronization state is the azimuthal angle

β. If β larger than some threshold which is about 40o for almost various parameter

sets employment, the synchronization state cannot be established stably. So we

can imagine that fast rotation rate may shrink the azimuthal angle β. The reason

is that fast rotation rate seems to benefit to push out the flow in the tangential

direction et of the MFR and then shrink the azimuthal angle β. Another possible

reason is that fast rotation rate seems to be able to increase the flow strength and

then benefit to cause the bacteria flagella to form a bundle-like cluster or gather

each other more closely. We have calculated the Fz by varying the rotors space d,

we find a variation trend between Fz and d with the form Fz ∝ 1
d
. This calculation

justifies such argument.

7.4 Supplement

Figures 7.7 ∼ 7.10 are some additional experimental results to verify our ex-

periments situation.
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Figure 7.7: At Na+ concentration > 50 mM, flagellum spends ∼ 80 percent time
in CW motions.

Figure 7.8: The MSD converges to normal Brownian motions as measured height
> 20 µm.
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Figure 7.9: Calibration of laser power and strength of random noises for precise
determination of effective trapping force on the 2 µm polystyrene particle was
carried out under similar conditions.

Figure 7.10: There is no detectable force can be measured in the lateral directions.
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自 傳        

(Vita) 

 

Jengjan Tsai, a little boy who always feels and keeps interests in 

surrounding world. He is a lucky boy who owns some sensitive senses and a 

little bit talent to feel and realize the so complex world.  

A Chinese motto says “生也有涯，知也無涯”... This little boy really 

realizes the deep meaning of this motto. Well…, although his life is so limited, 

he still tries to reveal and enjoy the so deep and broad world during his life. 

Wish this little boy can reveal more mysteries of the colored world and enjoy the 

wonderful world in his so short life. Go ahead! Little boy Jengjan~~ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



116 

 




