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ABSTRACT

In this study, several-methods and strategies are proposed for 3D environment
modeling and monitoring using an octagonal-shaped 9-KINECT imaging device for
video surveillance.

Firstly, an environment modeling method is proposed which, based on the
pinhole camera model, converts KINECT images into 3D images. In the method, at
first a new technique is employed to correct geometrically the bending phenomenon
existing in constructed 3D images. The technique is based on the use of an MMSE
paraboloid approximation scheme and a data interpolation scheme. Also, a technique
is proposed to calibrate spatial relations between KINECT devices by the ICP
algorithm. Finally, a technique using the calibration result and the constructed 3D
images as inputs is proposed to construct the indoor environment model.

Secondly, a human tracking method is proposed, by which human activities can
be detected and tracked using the 9-KINECT imaging device. Specifically, a human
detection process is conducted first, which includes the operations of background
subtraction, mathematical morphology, and region growing. Then, during the human

tracking process, the tilting devices of the KINECTSs are used dynamically to track a



human. The problem of handoff between KINECT devices, which occurs during the
human tracking process, is also solved in this study.

Finally, to extract the features of tracked humans for use in security monitoring, a
human modeling method is proposed, in which sequences of 3D images constructed
from KINECT images are integrated, using the distance-weighted correlation (DWC)
measure and the K-d tree structure, to form a human model. From the model, human
features like body height, width, and thickness may be extracted for use in security
monitoring and off-line video search.

Good experimental results are also shown, which prove the feasibility of the

proposed methods for real applications.
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Chapter 1 Introduction

1.1 Background and Motivation

With the advance of technology, there are more and more vision-based devices in
our daily life for different applications. Some of them are used to monitor events in
environments or track objects dynamically. Others are used as event recorders, and the
recorded data are used for event analysis or other applications.

In recent years, Microsoft releases a new type of sensing device — KINECT. It
can capture not only RGB color images and audio data but also depth information as
well as the data of the human skeleton at the same time. With the depth information,
we can translate it into 3D information. It is beneficial to researches of 3D object
detection and modeling.

So, in this study it is desired to design a 3D video surveillance system using
multiple KINECT devices and implement some applications described as follows.

1. Monitoring an indoor environment and displaying the captured images of the
environment in ‘3D manners for users to inspect the recorded environment data
from different viewpoints.

2. Using the depth information provided by KINECT devices to detect and track
human activities and providing changes of viewpoints from different KINECT
devices.

3. Creating human models when users browse the records acquired by the KINECT
devices, and providing the features of the humans such as height, body width,

body thickness, etc.



1.2 Review of Related Works

In this section, we conduct a survey of related works about the construction of the
3D video surveillance system, including 3D environment modeling and motion object
detection and tracking.

Many modeling techniques have been proposed for object or environment
modeling using data acquired with the KINECT device. Zollhofer [1] proposed a
simple algorithm which uses robust non-rigid registration. and merging of the
deformation face model to simulate a high-quality virtual interactive 3D face. The
data used in the modeling work were captured with the KINECT device. This
technique can be applied to computer animation. Shahram [2] proposed a technique,
called KinectFusion, which uses the depth information acquired by moving the
KINECT device to build up a high-quality and geometrically-precise 3D model
quickly. In the operation of his system, a user takes a KINECT device and moves
around.the indoor environment, and the system will scan and model the entire
environment in a short time. The precision of the model can also be adjusted by
changing the distance from the target to the KINECT device.

Henry [3] proposed a 3D mapping system which uses visual features and a
shape-joint optimization algorithm with RGB color images and depth information
acquired with KINECT devices as inputs. In a cooperative project conducted by the
MIT, the University of Washington, and Intel Lab. [4], the researchers put the
KINECT device on a small airplane to acquire data and built a full view of the 3D
environment using the features extracted from the acquired data and an RGBD-SLAM
algorithm.

Many algorithms were proposed for motion detection and tracking. Chaiyawatana

[5] constructed an automatic system for vehicle detection by a frame subtraction



technique. The algorithm adopts a suitable threshold and subtracts each frame from its
previous one. The results are analyzed by some process units to detect motion objects
using the threshold value. Tian [6] used pixels from continuous video frames and a
Gaussian distribution to build up and adjust a background model. By this way, noise
coming from light changing, leaf swaying from the background, and so on, in each
frame can be avoided when the human detection work is conducted by background
subtraction. Xia [7] used the depth information from the KINECT device to do 2D
chamfer matching and adopted some human features to figure out human shapes to
conduct human activity tracking. Meltem [8] proposed a standard video tracking and
person classification system. \When.a human is tracked under multiple video devices,
the system puts the faces and the soft biometric features. into the feature domain to
develop an algorithm of feature extraction. This algorithm can acquire the features of
the human sex, the human race, and other soft biometric features in the low-resolution
video or in the unknown illumination video. It also solves the handoff problem
between multiple video devices. Pantrigo [9] considered, in a video processing system,
the descriptions of human activities under different situations such as sport technique
analysis and video surveillance. A highly efficient system was proposed for
multiple-object tracking, which can not only merge particle filtering and the memetic
algorithm correctly but also track multiple targets precisely in image sequences and

classify the extracted human beings if needed.

1.3 Overview of Proposed Methods

To reach the goal of this study mentioned above, at first we should construct a
device for use as a 3D video surveillance system. The device is constructed in this

study by use of multiple (nine) KINECT devices and all of them are placed in the



device at fixed positions. The device will be called an octagonal 9-KINECT imaging
device in the sequel of this thesis. More than one octagonal 9-KINECT imaging
device have been produced in this study. A picture of one of such devices is shown
Fig. 1.1. Each of them is then fixed on the ceiling of our experimental environment
with a suitable height, and the KINECT devices in it may be used to acquire images

of the environment around from top to bottom from the full view of 360°. More

details about such devices, su tﬂé d¢sug’n }qdea. and the inside structure, will be
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Figure 1.1 A picture of the proposed octagonal 9-KINECT imaging device.



The next major task in the proposed system is integration of the data acquired
with the octagonal 9-KINECT imaging device. Because the depth information
acquired with each KINECT device is not 3D in nature, we convert the depth
information acquired by the device into 3D data form. The detail about the data
structure and the proposed method for such conversions will be introduced in Chapter
4. Some definitions will also be given in that chapter.

With the 3D data, we can calibrate the spatial relations between the KINECT
devices before modeling the indoor environment. Because all of the KINECT devices
are placed at fixed positions, it is easier to use a calibration target to conduct the
calibration work. The details of the proposed calibration technique will be explained
in Chapter 5.

After getting the results from the calibration process, we use them next to
construct the indoor environment model. More specifically, we shift the 3D data for
each KINECT device to a proper position for registering the data acquired by the
neighboring device so that we can build up a complete indoor environment model.
The details of the proposed shifting method and the modeling construction process
will be described in Chapter 5.

After building up the environment model, we start to detect and track humans and
associated activities. For this, we make two assumptions as follows.

1. The indoor environment is unchangeable all the time.

2. The detected motion objects are humans for security surveillance.

These assumptions are helpful for designing schemes to detect human activities,
which will be presented in Chapter 6.

As for the purpose of tracking human activities, because the KINECT device can
be tilted in space, we use this function to track human activities dynamically. Besides,

because we use multiple KINECT devices, device handoff problems will occur in our



system, which will affect the ways of displaying the recorded data. We will explain
our human tracking strategy and the proposed solution to the handoff problem in
Chapter 6 as well.

Finally, when users browse the records of indoor monitoring, the proposed
system will access the saved 3D data which have been recorded by the 9-KINECT
imaging devices, and converted them to model any detected human. From the model,
the system will also extract the features of the human, such as his/her height, body
width, body thickness, etc. The details of the modeling algorithm and the feature

extraction process are introduced in Chapter 7.

1.4 Contributions

Some contributions of this study are listed in the following.

1. Designing a 3D video surveillance system using multiple KINECT devices and
integrating all the data acquired by different KINECT devices.

2. Displaying in 3D ways of the monitored environment after integrating all the view
images acquired by the KINECT devices and providing different viewpoints for
convenient browsing by the user.

3. Fully using the capabilities of KINECT devices by tilting the devices to track
human activities dynamically.

4. Extracting more features from the human model than from 2D images such as

height, body width and body thickness.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we introduce



the configuration of the proposed system and the system process in detail. In Chapter
3, we introduce the design of the hardware device of the 3D video surveillance system
in detail, and analyze its performance. In Chapter 4, we describe the proposed
schemes for conversion of KINECT data into 3D image data, and correction of the
conversion result. In Chapter 5, we describe the proposed methods to calibrate the
KINECT devices and to model the indoor environment. In Chapter 6, we introduce
the proposed human detection and tracking method. In Chapter 7, we introduce the
proposed human modeling method and the 3D way we use for displaying the result. In
Chapter 8, we will show some experimental results of the entire system process. At

last, conclusions and some suggestions for future works are given in Chapter 9.



Chapter 2
Ideas of Proposed Methods and
System Design

2.1 ldeas of System Design

To complete the construction of the proposed 3D video surveillance system, it is
important to design an appropriate. structure of the video acquisition device for the
system. The field of view of a single KINECT device is not wide enough, so we
construct an octagonal 9-KINECT imaging device using multiple KINECT devices to
extend the view of field. It not only can monitor an indoor environment which is large
enough as a whole, but also can fully use the tilting mechanism in the KINECT device
for dynamic human activity tracking. The detail of the octagonal 9-KINECT image
device will be introduced in Chapter 3.

After constructing the octagonal 9-KINECT imaging device, we affix it on the
ceiling of our experimental environment at a suitable height, and the KINECT devices
in it are used to acquire image data of the around environment by tilting them from
top to bottom for a full view of 360°. Because the KINECT devices in the octagonal
9-KINECT imaging device work individually and the computer controller acquires
images sequentially, we set an image acquisition order for the KINECT devices.
When acquiring the data from KINECT devices, we will sort the data by this order of
KINECT devices.

Finally, we design several software process units to analyze the data acquired

from the KINECT devices and display the result. More details about the hardware



devices which we use in this study and the software for processing image data and
displaying the processing result will be described in Section 2.2. The system

processes are introduced in Section 2.3.

2.2 System Configuration

In this section, we introduce the configuration of the proposed 3D video
surveillance system. The hardware of the proposed system includes the KINECT
devices we use in this study widely and the necessary devices for acquiring data from
multiple KINECT devices. It will be introduced in detail in Section 2.2.1. In Section
2.2.2, we will describe the software development environment for processing data and

displaying results.

2.2.1 Hardware Configuration

The sensor we use in this study widely is the KINECT device which is made by
Microsoft. It consists of one RGB camera, a couple of 3D depth sensors, a set of
multi-array microphone, and one motorized tilt. Its appearance is shown in Figure 2.1.
Its vertical and horizontal viewing angles are 43° and 57 °, respectively. Its vertical
tilt angles range from =27 ° to 27°. Its sensing distances for the color image, the depth
image, or the skeleton tracking ranges from 1.2 meters to 3.6 meters, but the actual
sensing distance used in this study will be larger and will be discussed in Section
2.2.2. The maximum resolution of the color image and the depth image captured from
the KINECT device is up to 1280x960 pixels with a lower frame rate. For
performance efficiency, we usually use the resolution of 640x480 pixels and 320x240
pixels in our system, and the frame rate is kept 30 fps. Its audio format is 16-kHz and

24-bit mono pulse code modulation (PCM). Its audio unit has a four-microphone



array with a 24-bit analog-to-digital converter (ADC), and a Kinect-resident signal
processing unit with the functions of acoustic echo cancellation and noise suppression.

In this study, we won’t use the audio device and the skeleton tracking function.

Figure 2.1 The KINECT device used in this study.

A single KINECT device uses a USB to deliver its data to the data-processing
device (a computer), so the data-processing device should prepare more USB ports for
multiple KINECT ‘devices. Furthermore, the data volume delivered by a single
KINECT device is too huge, so we can’t use a general USB port extension without
adding a USB controller to the data-processing device. In this case, the KINECT
device relies on more USB controllers than USB ports, so we should prepare more
USB controllers instead of more USB ports for the data-processing device. As
previously mentioned, we install the Aguila SU16T Base and the Aguila SU16T
Expansion to our data-processing device to extend USB ports and controllers. The

Aguila SU16T Base and the Aguila SU16T Expansion are shown in Figure 2.2. The
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Aguila SU16T Base is installed on the mother board by PCI Express with 16 ports,
and the Aguila SU16T Expansion is installed on the Aguila SU16T Base. The Aguila
SU16T Base and the Aguila SU16T Expansion provide 8 USB controllers and each

USB controller has 2 USB ports.

' v ./ M\/\ g

‘glJ\lpT Base is on the top of PCI Eaep’;g&gxi;’ﬁ and the Aguila
- N #/ 'd—) \\ \‘>

SU16T Expansion |${%lt Wb%-

Figure 2. 2The\ﬁ§ﬁ-1g

2.2.2 Software Conflguratlon

After the hardware of the 3D video surveillance system is constructed, we build
up a data-processing system to implement the desired functions of the 3D video
surveillance system. The system is written in the C++ programming language using
the Microsoft Visual Studio 2010 development environment, and run under the

Windows 7 operating system. The system initializes the KINECT device and acquires
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the image data from the KINECT devices through the Kinect-for-Windows SDK,
which is provided by Microsoft. By the way, the maximum sensing distance is 4
meters by using the Kinect-for-Windows SDK, because Microsoft considers that
distances smaller than 4 meters is more precise than those larger than 4 meters. The
system also uses open sources such as the Open Source Computer Vision (OpenCV)
and the Open Graphics Library (OpenGL) to assist data processing. By using the
OpenCV application programming interface (API), the system can process the image

data easily, and display the result in 3D manners by the OpenGL API.

2.3 System Processes

With the hardware and software configuration completed, we will introduce the
whole process of the proposed processing system in detail in this section. For this, we
separate the system process into four parts.

The first part is a data conversion process. Because the depth information
acquired from the KINECT devices is not 3D in nature, we should convert it to 3D
data and the converted data can also be used for other processes. The detail of the
conversion scheme will be described in Chapter 4.

The second part is:a model construction process of the indoor environment. First,
we use the 3D data, which are obtained from the data conversion process just
mentioned, from each KINECT devices to calibrate the spatial relation between
KINECT devices. Afterwards, we use the calibration result to merge the 3D data and
construct an indoor environment model. Finally, we show the model with color
images in 3D manners. The flow of the process is shown in Figure 2.3, and the details
of the calibration strategy, the merging algorithm, and the model display scheme will

be introduced in Chapter 5.
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Figure 2.3The model construction process of the indoor environment

The third part is a process of human activity tracking. First, we use depth images

to detect human activities. By the detection strategy used in this study, we conduct
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background learning and noise elimination. The detail of human detection will be
described in Section 6.2. Next, we use the result of detection to track human activities.
When tracking human activities, we will adjust the tilter of the KINECT device
dynamically. Furthermore, we will also change the viewpoint by the in-time handoff
between KINECT devices and display the result with color images in 3D manners.
The flow of the whole process is shown in Figure 2.4. The details of the tracking

algorithm will be introduced in Section 6.3, and some experimental results will be

shown in Section 6.4
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process 7 detect?
Color Depth
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background

Noise elimination
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display

0

Figure 2.4 The process of tracking human activities.
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The forth part is a process of human model construction and human activity
display. We will convert the 3D data, which are recorded by the KINECT devices, by
a data conversion process proposed in this study to build up the human model. For
this, at first we segment the human activity in each frame out from individual
KINECT devices by using the detection method described in Section 6.2. Next, we
merge the 3D data obtained for the individual KINECT devices. Then, we use the
merging results of individual KINECT devices to_merge again to build up a finer
human model. Finally, we display the human model and show the human features
extracted from the model. The whole process is shown in Figure 2.5, and the detail of

the process will be introduced. in.Chapter 7.
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Figure 2.5 The process of constructing human model and displaying human activities.
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Chapter 3
Design of Proposed Octagonal
9-KINECT Imaging Device

3.1 Introduction to KINECT Device

In this study, we have designed an octagonal 9-KINECT imaging device for
environment monitoring.. About the basic unit of the imaging device, namely, the
KINECT device, we have presented some of its basic specifications in Section 2.2.1,
but we would like to introduce the structure of the KINECT device in detail in this
section.

The height of the whole KINECT device is 70 millimeters, the width of the main
part of the KINECT device is 283 millimeters, and the thickness of the main part of
the KINECT device is 60 millimeters. The area of the basement of the KINECT
device is 90x72 square millimeters. The structure specifications are shown in Figure
3.1.

The KINECT device can also change its panning angle by manual adjustment, but
we won’t use the panning angle in this study because the constructed 9-KINECT
imaging device is hung high up on the ceiling for monitoring the environment from a
higher position. The KINECT device contains a gravity sensor which can detect the
tilting angle between the device and the ground. We will use this tilting function to

monitor wider areas of the environment.
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90 mm

(d)

Figure 3.1 The Structure specifications for each part of the KINECT device. (a) The
height of the KINECT device. (b) The width of the main part of the KINECT device.
(c) The thickness of the main part of the KINECT device. (d) The area of the

basement of the KINECT device.
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3.2 ldeas of Proposed Design

In this study, we want to use multiple KINECT devices for the proposed 3D video
surveillance system, but we can’t directly use multiple KINECT devices without
being organized. So we propose the octagonal 9-KINECT imaging device to organize
multiple KINECT devices. The idea of the design of this system is described in this
section.

Firstly, we have to know how many KINECT devices we should use. As we
mention in the previous sections, the horizontal viewing angles of a single KINECT
device is 57°, so we should.use at least 7 KINECT devices for a full view of 360°. In
our design, we would like to use 8 KINECT devices to.cover the full view with a
certain degree of overlapping. But when we use the 8 KINECT devices to sense
outward for a full view of 360° there is a missing field of view which appears in the
combination of the 8 views given by the 8 KINECT devices, namely, the middle part.
So, we add an additional downward-looking KINECT device to make up the missing
field of view. So, totally 9 KINECT devices are used to establish the system. The
basic placement idea of the 9 KINECT devices is illustrated in Figure 3.2.

With the basic placement idea, we can make a container for the 9 KINECT
devices as shown in Figure 3.3 which 1s a copy of Figure 1.1. We also consider the
utility of the tilting device within each KINECT device, so we place the 8 KINECT
devices, which are sensing outward for a full view of 360°, on their individual bases

outside the container as shown in Figure 3.3.
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Figure 3.2 The basic placement idea of the proposed octagonal 9-KINECT imaging

device. The central KINECT device looks downward and the others senses outward.

3.3 . Details of Design-

With the design idea as described above, we will now introduce the design
specification of the proposed octagonal 9-KINECT imaging device in 'det.ail. We will
separate the design specification into three main parts: interchangeable bases for
KINECT devices, the container, and the top part. The whole appearance of the

octagonal 9-KINECT imaging device is already shown in Figure 3.3.

Figure 3.3 The octagonal 9-KINECT imaging device.
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3.3.1 Interchangeable Bases for KINECT Devices

The first part is interchangeable bases for the outer 8 KINECT devices. We want
to use the outer 8 KINECT devices to sense more information above the ground when
the outer 8 KINECT devices are placed on the bases with a suitable height. Therefore,
we designed an incline for every base. The tilt angle of the incline is 30°. Because the
area of the basement of the KINECT device is 90x72 square millimeters, we design
the incline to have the area of 100x100 square millimeters to fit the basement. We also

make two screw holes to fix the whole base. The base is shown in Figure 3.4.

Figure 3.4 The interchangeable base.

3.3.2 Container

The second part is the container. All the lines of the KINECT devices are put in
the container. We design the container in an octagon shape for the outer 8 KINECT
devices. Because the width of the main part of the KINECT device is 283 millimeters
and we don’t want to make collisions when changing the tilting angles of the
KINECT devices, we designed each of the edges of the octagon to be 320 millimeters.
The height of the octagonal container is 300 millimeters.

Then, on each side of the octagonal container, we make one square hole and two

screw holes. The size of the square hole on the side of the octagonal container is
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25x25 square millimeters. For the each KINECT devices on the interchangeable base
outside the octagonal container, we can put the transmission line and power line of the
KINECT device into the container through the square hole. We also used the two
screw holes to fix the interchangeable base.

Furthermore, we made a rectangular hole whose size is 70x150 square
millimeters on the center of the bottom of the octagonal container. The inner KINECT
device can look downward through the rectangular hole.

Finally, the cap of the octagonal container is a cross-shaped plate. We used the
crossed plate as a plate to connect with the top part. The width edge of the
cross-shaped plate is 320 millimeters and the length of it is 775 millimeters. We made
one circular hole whose diameter is 230 millimeters and. twelve screw holes on the
cross-shape plate. We can put the plugs of the 9 KINECT devices into the top part and
arrange all lines of the KINECT devices through the circular hole. We use the twelve
screw holes to connect the octagonal container with the top part. The octagonal

container is shown in Figure 3.5.

(b)

Figure 3.5 The octagonal container. (a) The whole appearance of the octagonal
container. (b) The side of the octagonal container. (c) The bottom of the octagonal

container. (d) The cap of the octagonal container.
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(c) (d)

Figure 3.5 The octagonal container. (a) The whole appearance of the octagonal
container. (b) The side of the octagonal container. (c). The bottom of the octagonal

container. (d) The cap of the octagonal container (cont’d).

3.3.3 Top Part

The third part is the top part. We separate the top in three parts. The first part of
the top part is a circular plate. The diameter of the circular plate is 600 millimeters.
There are four screw holes on the plate. We use the four screw holes to fix the whole
octagonal 9-KINECT imaging device on the ceiling.

The second part of the top part is a hollow cylinder. We set two sockets of power
extension cords in the hollow cylinder. The two sockets of power extension cords are
used to extend the power lines of the 9 KINECT devices. The diameter of the hollow
cylinder is 400 millimeters and its height is 650 millimeters. \WWe make one square hole
and one rectangular hole on the surface of the hollow cylinder. The size of the square
hole is 100x100 square millimeters. We put two plugs of the socket of the power
extension cords into the outer socket through the square hole. The size of the
rectangle hole is 400x150 square millimeters. A user can put their hands into the
octagonal 9-KINECT imaging device through the rectangular hole.

The third part of the top part is another cross-shaped plate. The design

specification is the same as the cross-shaped plate of the octagonal container. A user
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can arrange all lines of the 9 KINECT devices through the circular hole. We connect
the top part and the octagonal container with the twelve screw holes. Finally, we

welded the three parts of the top together. The top part is shown in Figure 3.6.

(b)

(d)

Figure 3.6 The top part. (@) The whole appearance of the top part. (b) The circular
plate of the top part. (¢) The hollow cylinder of the top part. (d) The crossed plate of

the top part.

3.4 Analysis of Device Performance

In this study, we think the suitable height from the bottom of the octagonal
9-KINECT imaging device to the ground is 3,000 millimeters. If the suitable height is
not 3,000 millimeters, we can change the hollow cylinder of the top part. The vertical
tilt angle of the outer 8 KINECT devices on the interchangeable bases ranges from

-3° to -57°. We can change the range of the vertical tilt angle by changing the
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interchangeable base with the different tilt angle of the incline. But it should be
noticed that the tilting device of the KINECT device won’t work, when the vertical tilt
angle of the KINECT device is smaller than —60°, because of the gravity sensor on the
KINECT device. We would like to use the range of the vertical tilt angle from —25° to

—55°.

3.4.1 Coverage of Views

With the height from the bottom of the octagonal 9-KINECT imaging device to
the ground and the range of the vertical tilt angle, we can analyze the coverage of
views of the octagonal 9-KINECT. imaging device. We separate the analysis of the
coverage of views into the color image side and the depth image side.

On the color image side, we use a single KINECT device to analyze the
maximum and minimum sensing ranges of the field of view. The maximum sensing
range is approximate 45,000 millimeters with a —25° vertical tilt angle of the KINECT
device. A diagram illustrating this case Is shown in Figure 3.7. The minimum sensing
range is approximate 2,350 millimeters with the —55°vertical tilt angle of the
KINECT device and an illustration diagram is shown in Figure 3.8.

We now analyze the coverage of views when all of the 9 KINECT devices are
used. Because we want to have more overlapping views between the 9 KINECT
devices to facilitate human model construction, we use the minimum sensing range.
Also, we can use a circle whose diameter is approximate 6,730 millimeters to
represent the coverage of views of the 9 KINECT devices from the top view, as can be
figured out from the illustration diagram shown in Figure 3.9, in which the blue
region is the view of the outer 8 KINECT devices, the red is the view of the inner
KINECT device, and the yellow circle represents the coverage of views of the 9

KINECT devices.
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On the depth images side, as we mentioned in the previous sections, the
maximum sensing distance is 4 meters which is decided by the Kinect-for-Windows
SDK provided by Microsoft. So the sensing range of the depth images is smaller than

that of the color image, and an illustrative diagram is shown in Figure 3.10.

%
sANCY

a

3,000 millimeters

Approximate 2,350 millimeters

Figure 3.8 The maximum sensing range from the side view.
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Figure 3.10 The coverage of the views by the depth image from side view.

3.4.2 Imaging Sequence and Speed

As we mentioned in the previous sections, we acquire the data from the 9

KINECT devices sequentially. When we take a frame consisting of a color image and
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a depth image from a single KINECT device, the frame rate of the device is 30 fps. In
other words, we take a frame from a single KINECT device in 33 milliseconds. Then,
when we use the 9 KINECT devices to take 9 frames sequentially, on the whole the
imaging speed is 33 x 9 = 297 milliseconds, so the fps is 1/297 ~ 3.37. But we assume
that the monitored object or human moves not too fast, so it will not be a problem to

our processing work.




Chapter 4
Construction of 3D Images from
KINECT Images

4.1 Introduction

The data acquired from a KINECT device each time consists of a color image and
a depth image. We call them KINECT images. The KINECT images are not 3D in
nature and so inconvenient for processing for 3D video surveillance applications. So,
we want to construct a corresponding 3D image from each pair of KINECT images.
The 3D image contains three kinds of data. One is color data which come from the
color image directly. Another is the 3D data which are obtained by converting the
depth image into a 3D version. The third is a mapping array, which is obtained by
using the Kinect-for-Windows SDK provided by Microsoft and is used as a tool for
combining the former two parts, the 3D data and the color data. With the 3D image,
we not only can conduct appropriate processing works required by a 3D video
surveillance system more conveniently, but also can display results in 3D manners

more easily.

4.2 Review of KINECT Image
Structures

In this section, we will introduce the structure of the KINECT images in detail.

As we mentioned in the last section, the KINECT images include a color image and a
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depth image. We use the KINECT device, which yields images with the resolution of
640x480 pixels, together with the Kinect-for-Windows SDK to get KINECT images.
Each pixel in the color image has four bytes. The first three bytes are used to show the
color and the last one is used to show the skeleton information. We can directly
display the color image as a picture. An example of such color images is shown in
Figure 4.1(a). Each pixel in the depth image has a value of an unsigned short integer.
In other words, each pixel in the depth image has sixteen bits. The first thirteen bits
are used to represent depth information and the last three bits are used to specify the
skeleton information. We can display a depth image as a gray level image. An

example of such depth images.is.shown in Figure 4.1(b).

(b)

Figure 4.1 An example of a KINECT image pair. (2) The color image. (b) The depth

image.

4.3 Construction of 3D Images

4.3.1 Review of Pinhole Camera Model

The pinhole camera [10] is a simple camera model. Its structure is an opaque box

with an aperture of only the pinhole size on one side. The light reflected from the
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object and passing through the pinhole produces a projection of the scene in front of
the pinhole. In the projection, right and left, and up and down are both reversed. An

illustration is shown in Figure 4.2.

Figure 4.2 An-illustration of the pinhole camera model.

The pinhole camera model describes the mathematical relationship between the
coordinates of a 3D point and its projection on the image plane of the pinhole camera.
An example of the geometry of the pinhole camera model is shown in Figure 4.3.

More specifically, in Figure 4.3(a), there is a 3D orthogonal coordinate system
with its origin at O. The origin O Is also the location of the camera aperture. The three
axes of the 3D orthogonal coordinate system are referred to as X;, X; and Xs. The
Xs-axis is pointing in the viewing direction of the camera and is referred to as the
optical axis. There is also a 2D coordinate system on the image plane with its origin at
R. The origin R is at the intersection of the optical axis and is referred to as the image
center. The two axes of the 2D coordinate system in the image plane are referred to as
Y; and Y, which are parallel to the axes of X; and X,, respectively. The distance from
point O to R is f. The distance f is referred to as the focal length of the pinhole camera.

With the basic definitions given above, we can find out the relation between the

point P with the 3D coordinates (x,, X,, X;) and the projection point Q with the 2D
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coordinates (y,, Y,). When we look in the negative direction of the X,-axis from
Figure 4.3(a), we get Figure 4.3(b). From the two similar triangles appearing in Figure
4.3(b), we can derive the following equation according to the similar-triangle
principle:

A (4.1)
foox

When we look in the negative direction of the Xj-axis, the following equation can be

derived similarly:

X (4.2)

Summarizing these two equations, we get the following vector equation:

A AR
(yzj_ Xs(xzj “3

which describes the relation between point P.with the 3D coordinates (X,, X,, X;)

and the projection point Q with 2D coordinates (y,, V,).

(a) (b)
Figure 4.3 The geometry of a pinhole camera model. (a) Seen from a 3D point. (b)

Seen from the Xs-axis.

32



4.3.2 ldea of 3D Image Construction and Coordinate

Conversion

With the concept of the pinhole camera model, we can construct the 3D image
from the depth image of the KINECT image by coordinate conversion. We will use

Figure 4.3 to help us to explain the conversion process. From Equation 4.3, we get:

X
X1:—T3><yl; (4.4)
K==y (4.5)
&:%xﬁ (4.6)

and from Figure 4.3(a)-and-by the similar-triangle principle again, we have the

equation:

2 2 2
X X X+ X 47)

LN S A YT

where \[(=y, ' +(-y,)’ £ isthe length of the line segment OQ, and (7 +x.7 + x

is the length of the line segment OP which is the depth captured by the KINECT
device and is denoted as d in the sequel. Let R represent the center of the depth image,
which is located at coordinates (320, 240) in a depth image of resolution 640x480

acquired by the KINECT device. And let Q be a pixel located at image coordinates

(X,,Y,),and let y, and vy, represent the distance to the center R in the vertical and

horizontal directions, respectively. The focal length f of the KINECT device is 600.
The equations (4.7), (4.4), (4.5) and (4.6) can be rewritten according to the mentioned
parameter values to be:

% d ; (4.8)

3
£ Jlx, —320F +(y, —240F +600?
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d
- x(x, —320); 4.9
- J(x, ~320F +(y, —240F + 6007 b, ~320) )

d
- —240); 4.10
& J(x, —320F +(y, — 240F + 6007 <y -240 19
X; = d %600, (4.12)

J(x, ~320F +(y, - 240F + 6007
The unitof x, and y, is pixel and that of x;, x, and X, is millimeter. With the

above equations, we can convert the depth image of the KINECT image into a 3D
image. The color data of the 3D image uses the color image acquired from the
KINECT device directly.-The mapping array can be produced by using the
Kinect-for-Windows SDK, provided by Microsoft, with the depth image of the

KINECT image.

4.3.3 Construction Algorithm

With the required data for constructing the 3D Iimage ready, we can use the
construction algorithm to construct the 3D image. A flowchart of the 3D image
construction algorithm is shown in Figure 4.4. The detail of the construction
algorithm is as follows.

Algorithm 4.1: 3D image construction.

Input: a depth image |4 and a color image I, acquired from the KINECT device.

Output: a 3D image I3p formed from converted lq and original 1. combined with a
mapping array A.

Steps:

Step 1. Convert the coordinates of the depth image I4 into 3D data by the coordinate

conversion process described in Section 4.3.2.
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Step 2. Use the Kinect-for-Windows SDK provided by Microsoft with the converted
depth image Id as input to get a mapping array A.

Step 3. Display the 3D image 13D by drawing 3D data in the 3D space with the
corresponding color, which is produced by the color image Ic and the

mapping array A, by the OpenGL.
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Figure 4.4 The flowchart of the 3D image construction algorithm.



4.4 Geometric Correction of 3D Images

4.4.1 Need of Correction

In our experiments of this study, when we displayed a plane in the 3D image, we
discovered that the plane becomes a curved surface rather than a flat one. An example
of such a phenomenon is shown in Figure 4.5. The reason why this problem arises is
that the infrared light rays sent out by the KINECT device for depth sensing do not go
in parallel. It affects the accuracy of the depth because the depth is not a vertical
distance anymore. In order to solve this problem, we propose a method for the

geometric correction of 3D-images.

Figure 4.5 The 3D image of a plane (a wall).

4.4.2 Proposed Correction Technique by

Interpolation

The idea of the proposed correction technique is to use a paraboloid to
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approximate the curved surface formed by the 3D data of the 3D image. An
illustration is shown in Figure 4.6. When the paraboloid equation is found, we can
substitute the values of the coordinates x and y of each pixel of the 3D image into the
paraboloid equation to compute the correction distance. Then, we subtract the
correction distance from the value of the coordinate z of the 3D data of the 3D image,
and we get the correction result.

But we discovered that when we use the KINECT device to sense planes with the
different distances from the KINECT device, the degrees of the curvature for the
curved surfaces formed by the 3D data of the 3D image are also different. So we try to
find several paraboloid equations with different sensing distances from the KINECT
device. And we use these paraboloid equations according to the value of the
coordinate z of the 3D data of the 3D image to find suitable correction distances by

the interpolation.

s Axx*+Bxy*+C

Zeomestion —

Figure 4.6 The paraboloid equation.

4.4.3 Correction Algorithm

In this section, we will describe the method for getting the paraboloid equation

37



and the process of the interpolation mentioned previously. The criterion of minimum
sum of squared errors (MSSE) is used to decide the parameters of the approximating
shape. That is, we will use the MSSE criterion to approximate the paraboloid. The
detail of the process is as follows.

First, let the paraboloid equation be described by:

= Axx*+Bxy*+C (4.12)

ZCorrection

where C is the distance between the KINECT device and the apex of the paraboloid,

as shown in Figure 4.6. The equation for computing the value SSE of the SSE is:

SSE="3 |z —(Axxf+B><yf+c)]2 (4.13)

i=0
where x;, Yy, and z, are-the-coordinates of a set of sample 3D data of the curved
surface. To find the coefficients A, B, and C which minimize the SSE value, we

compute the partial derivatives of Equation (4.13) with respect to variables A, B, and

C, respectively, to produce the following equations:

640x480

2% E) _Zi—(Axxiz+B><yi2+C)]x(—Xi2):O; (4.14)
640x480 —

2 x i% _Zi—(AxXi2+Bxyi2+C)]x(—yi2):O, (4.15)

2% 3| 2, —(AxxE +Bx y? +C) | (1) =0. (4.16)

i .
The values of A, B, and C are computed by solving the simultaneous equations (4.14),
(4.15) and (4.16). For this, we substitute all the known values of x,, y, and z, into
the simultaneous equations (4.14), (4.15) and (4.16) to get three three-variable linear
equations. We use the substitution and elimination method to solve three
three-variable linear equations. After solving these three independent equations, we
can get the values of A, B, and C.

But, as mentioned we need more solutions of the values A, B, and C by using

different sets of 3D data of the 3D image with different distances between the
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KINECT device and the planes, and the results are shown in Table 4.1.

Table 4.1 Results of paraboloid coefficient estimations using different sets of 3D data

of the 3D image with the different distances between the KINECT device and planes.

coefficient
A B C

distance

1003.62 (mm) 0.000495949 0.000499793 -1003.62
1535.92 (mm) 0.000323624 0.000380348 -1535.92
2120.88 (mm) 0.000232773 0.000281706 -2120.88
2560.30 (mm) 0.000188799 0.000248159 -2560.30
3111.78 (mm) 0.000155055 0.000205877 -3111.78

With Table 4.1, we can use it to decide which equations we will use to do
interpolation by the value of the coordinate z of the 3D data of the 3D image. When
the equations are found, we subtract the value of C of the equations themself from the
equations  to get correction  equations. Then, we substitute the wvalues of the
coordinates X and Yy of the 3D data of the 3D image into the correction equations
to get correction distances. We use the correction distances and the values of the
coordinates z of the 3D data of the 3D image to do the interpolation by the
proration principle and get the result of the interpolation. Finally, we subtract the
result of the interpolation from the value of the coordinate z of the 3D data of the
3D image to get the correction result. A flowchart of the correction algorithm is
shown in Figure 4.7 and the detail of the correction algorithm is as follows.
Algorithm 4.2: correction algorithm.

Input: the values of the coordinates X, y, and z of the 3D data of the 3D image.
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Output: the correction value z.,,.eq -

Steps:
Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Use the values of the coordinate z to find the paraboloid equations PEs.
Subtract the values of C from the paraboloid equations PEs themselves and
get correction equations CEs.

Substitute the values of the coordinates x and y into the correction equations

ZCorrections_

CEs to get the solutions

Zcorrections and the values  of the coordinate Z to do

Use the solutions
interpolation and get the result Zinterpolaton

Subtract the result “™ewolaion from the values of the coordinate Z and get

z

final corrected valug “Corrected
i 3D Data ;
Value of Value of Value of
Coordinate Coordinate Coordinate
X y z
\ | ‘
Find equations
Compute [«
* r Equations
Result from
Solving Interpolation
Equation
y

Subtraction

Result from
Interpolation
Result of
Correction

Figure 4.7 A flowchart of the correction algorithm.
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4.5 Experimental Results

4.5.1 Results of 3D Image Construction

We use the KINECT image to construct 3D images and display them by the

OpenGL. An example of the results of 3D image construction is shown in Figure 4.8.

(b)

(©) (d)

Figure 4.8 An example of construction of 3D images. (a) The color image of the
KINECT image. (b) The depth image of the KINECT image. (c) The 3D image seen

from the top. (d) The 3D image seen from a side.
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4.5.2 Results of 3D Image Correction

We use the correction algorithm to correct the 3D data of the constructed 3D
image and display the result by the OpenGL. But there is still a problem. That is, the
corners of the 3D image are still curved irregularly. For this, on solution is to avoid
the use of the 3D data of the corners of the 3D image. An example of the results of
such geometric corrections for planes is shown in Figure 4.9. Another example of the
results of such geometric corrections for an indoor environment is shown in Figure

4.10.

(b)

(d)

Figure 4.9 Results of geometric correction. (a) Original data seen from the top before
correction. (b) Data seen from the top after correction. (c) Original data seen from the

side before correction. (d) Data seen from the side after correction.
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(b)

(c) (d)

Figure 4.10 Results of geometric correction. (a) Original data seen from the top before
correction. (b) Data seen from the top after correction. (¢) Original data seen from the

front before correction. (d) Data seen from the front after correction.
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Chapter 5
Construction of 3D Indoor
Environment Model from Multiple

KINECT Images

5.1 Introduction

In this chapter, we describe how we construct the indoor environment model for
3D video surveillance using images acquired by the octagonal 9-KINECT imaging
device. More specifically, we use the nine KINECT devices to get nine sets of
KINECT images and convert them into nine 3D images individually. Then, we merge
the nine 3D images to build up an indoor environment model. But, before doing so,
we should calibrate the spatial relation between the nine KINECT devices in advance.
The detail of the proposed calibration technique will be described in Section 5.2. After
the calibration work, we use the results to merge the nine 3D images by shifting,
rotating, and merging them to build up the indoor environment model. Finally, we
display the model in 3D manners. The details of data merging and model displaying

will be shown in Sections 5.3 and 5.4, respectively.

5.2 Calibration of KINECT Devices
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5.2.1 Review of Iterative Closest Point (ICP)

Algorithm

The iterative closest point (ICP) algorithm [11] can be employed to minimize the
difference between two groups of points. It is often used to match objects, which are
constructed by many points, to compute their similarity. It is useful for constructing
2D or 3D images from different views, because object registration or stitching
requires shape matching.
The concept of the algorithm is simple. It iteratively revises the transformation,
including translation and rotation, from an object into another in order to minimize the
total distance between the-points-of the two objects. The algorithm'is as follows.
Algorithm 5.1: ICP algorithm
Input: a group of points Ga, another group of points Gg, a set of transformations T;s,
an initialized minimum value M, and an initialized transformation T.

Output: Atransformation T which is the relation between group Ga and group Gg.

Steps:

Step 1. Apply a transformation T;, which is not used yet, to all points in group Gg.

Step 2. Find points Pyps with the minimum distance in group G, for each point in
group Gg.

Step 3. Compute the values Vyps of the minimum distance between the found points
Pmps in group Ga and the corresponding points in group Gg.

Step 4. Sum up the values Vyps to get a total sum Ts.

Step 5. If the total sum Ts is small than the input minimum value M, update the
minimum value M with the total sum Ts and the desired transformation T
with the transformation Ti;.

Step 6. Repeat Step 1 through Step 5 if the transformations T;s are not exhausted yet.
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Step 7. Take the last updated transformation T as the output.

5.2.2 Calibration of Spatial Relation between
KINECT Devices

In this section, we want to use the ICP algorithm to calibrate the spatial relations
of the nine KINECT devices in the octagonal 9-KINECT imaging device. By using
the ICP algorithm to merge the 3D images of two objects which are the same object
but come from two different KINECT devices, we can get the result of the
transformation between them, which is just the spatial relation of the two KINECT
devices, because the transformation between 3D images is equivalent to the
transformation between KINECT devices. With the concept above, we should prepare
three things before starting calibration.

First, we should decide the range of the transformation parameters, and for this,
we divide the transformation into two parts — a rotation and a translation. For the
rotation, because the sensing directions of the nine KINECT devices of the octagonal
9-KINECT imaging device are fixed, the angles between the nine KINECT devices
are also fixed. We can use the values of these angles for the rotation. For the
translation, we divide it into two directions to facilitate running the ICP algorithm.
The place of each of the nine KINECT devices is fixed, so the distance between every
two of the nine KINECT devices is also fixed. We would like to enlarge values of
these distances and divide these distances into two directions for the translation of the
two directions.

Second, we should find out the overlap region of the 3D images acquired from
every two KINECT devices. Using the overlap region, we can merge the 3D images

of an identical object “seen” from different KINECT devices by the ICP algorithm in
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order to get the result of the transformation. The overlap regions may be found by
manpower.

Third, we should choose objects, whose 3D images from different KINECT
devices can be merged in the overlap regions, and we will call them calibration
targets. Basically, we should use a calibration target which is big enough and can
appear in the overlap region apparently. For this, we use common objects which
appear in the indoor environment as calibration targets, such as couch, table, chair,
clapboard, etc. Sometimes, we will also‘ use a box which is put at suitable height as
the calibration target, if there is no apparent object in the dverlap region. Some

calibration targets are shown.in.Figure 5.1.

(b)

Figure 5.1 Some calibration targets used in this study. (a) A couch. (b) A clapboard. (c)

A chair and a table. (d) A box with a suitable height.
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5.2.3 Algorithm for KINECT Device Calibration

With the preparation done, we start to calibrate the spatial relations between the
nine KINECT devices in the octagonal 9-KINECT imaging device. Firstly, we label
the nine KINECT devices by numbers, and two consecutively numbered KINECT
devices mean that they are neighboring. Then, we use the 3D images, which include
the pre-selected calibration target in their overlap region, to calibrate the
inter-KINECT relation parameters by the ICP algorithm. Totally, we conduct such
calibration for eight times.

Before we conduct such calibrations each time, we reset the range of the possible
transformations between the two devices for the ICP algorithm, set the two 3D images
including the calibration target from two neighboring KINECT devices as inputs to
the ICP algorithm, and use the overlap region in the images to assist the calibration
work. The proposed algorithm for KINECT-device calibration is as follows.
Algorithm 5.2: KINECT device calibration.

Input: the 3D images CTy, CTy, ..., CTg which are constructed from KINECT images
acquired by the nine KINECT devices Dy, D1, ..., Dg and include the
calibration target; the transformation NT; and the overlap region OR; between
every two neighboring KINECT devices D; and Dj:; where j =0, 1, ..., 7; a
counter with its value C set to be 0 initially.

Output: the transformation Ry between every two KINECT devices Dy and Dy.q,
where k =0, 1, ..., 7, which can be used to “register” the 3D images CT, and
CTks1.

Steps:

Step 1. Take two 3D images CT. and CTc.1, which include the calibration target in

their overlapping region, as input data for the ICP algorithm.
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Step 2. Set the transformation NT. to be the transformation sets for the ICP
algorithm.

Step 3. Start the ICP algorithm described in Section 5.2.1 while using the overlap
region OR to assist finding the calibration target for the ICP algorithm.

Step 4.  Store the result of transformation of the ICP algorithm as the result of the
transformation R.

Step 5. Increment the value C of the counter by 1.

Step 6.  If the value C'is smaller than eight, then repeat Steps 1 through 5; else, exit.

5.3 Environment Model Construction

5.3.1 ldea of Construction

After calibrating the spatial relations between the nine KINECT devices in the
octagonal 9-KINECT imaging device, we can get eight transformations between the
nine KINECT devices. As we mentioned previously, a transformation between two 3D
images is equivalent to the transformation between the two corresponding KINECT
devices, and vice versa. So we will use the results of the transformation to “register”
the nine 3D images, which are constructed from KINECT images acquired by the nine
KINECT devices. By doing so, we can merge the nine 3D images into one to

construct the indoor environment model.

5.3.2 Merge of Multiple 3D Images

In Section 5.2.3, we label the nine KINECT devices by numbers. It means that we
also label the nine 3D images by numbers which are the same as the numbers of the
nine KINECT devices. We then merge the nine 3D images sequentially according to

the numbers. We use the first 3D image as a pivot and the others are merged into it,
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and so to each of the last eight 3D images, more transformations should be applied.

The merging processing will be run eight times. The result from merging the nine 3D

images is just an indoor environment model which we desire. The merging algorithm

is as follows.

Algorithm 5.3: merging nine 3D images.

Input: nine 3D images ISy, ISy, ..., I1Sg constructed from images acquired by the nine

KINECT devices Dg, Dy, ..., Dg respectively; eight transformations RTy,
RTy, ..., RT; from the calibration results where RT; represents the spatial
relation between the two KINECT devices D; and Dis; and'i =0, 1, ..., 7; a

counter with its value C set to be 0 initially.

Output: the merging result MR.

Steps:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

5.4

Use the 3D image ISy as the pivot.

Put the 3D image IS into the merging result MR.

Merge the transformations RT,, RT3, ..., RTc and get a merged
transformation called MRTc.

Apply the transformation MRT¢ to the 3D image ISc+1 and put the result
TISc into the merging result MR.

Increment the value C of the counter by 1.

If the value C is smaller than eight, then repeat Steps 3 through 5; else, go to
the next step.

Take the final merging result MR as the desired indoor environment model.

Experimental Results

The result of indoor environment modeling by merging the nine 3D images
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acquired from the nine KINECT devices of the octagonal 9-KINECT imaging device

is shown in Figure 5.2,

Figure 5.2 The constructed indoor environment model. (a) The indoor environment
model seen from the top. (b) and (c) The indoor environment model seen from

different views.
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Chapter 6
Human Tracking by Tilting KINECT
Devices

6.1 Introduction

In this chapter, we will introduce the proposed human tracking method by using
the octagonal 9-KINECT imaging device for 3D video surveillance system. To track
human activities, we should detect the human first. So we will separate the subject
into two parts: human detection and human tracking.

In the human detection part, the depth image acquired by the KINECT device
may be considered also as a kind of image like gray level image, so we may apply
some method of motion object detection, which have been used for the color image, to
the depth image to conduct human detection. For this, at first we use the background
subtraction technigue to detect moving objects in the depth image. Then, we use a
noise reduction scheme to reduce noise in the resulting image. Finally, we apply a
region growing scheme with a suitable threshold to the image resulting from noise
reduction, and get the whole moving object in the depth image as the result. The detail
of the proposed detection algorithm will be described in Section 6.2.

In the human tracking part, by analyzing the moving object in two consecutive
frames of the depth images, we can know where the object will go and how large the
distance the object moves in the two images. Accordingly, we can adjust the tilt angle
of the KINECT devices in the 9-KINECT imaging device to track the object or do the

handoff between KINECT devices. The detail of the proposed human tracking process
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will be introduced in Section 6.3. And the experimental result will be shown in

Section 6.4.

6.1.1 Review of Background Subtraction

The background subtraction is a technique commonly used in the fields of image
processing and computer vision for object segmentation. We can use the background
subtraction technique to separate the foreground of the image from its background
because when we read the image, we are usually interested in the objects in the
foreground of the image. The background subtraction technique is also a widely used
approach for detecting moving.objects in videos acquired from static cameras. The
basic approach is to detect moving objects from the difference between the frame
including moving objects and a reference frame often called the background image.

An example of background subtraction results is shown in Figure 6.1.

(©) (d)
Figure 6.1 An example for the background subtraction. (a) The background image. (b)

An image with moving objects. (c) The image of the difference between (a) and (b)

with some noise. (d) The resulting image of background subtraction.



6.1.2 Review of Noise Reduction Method

There are many methods to reduce noise in the image. Mathematical morphology
operations are often used to assist reducing noise in the image. Mathematical
morphology is a theory for analysis and processing of geometrical structures. It is
most commonly applied to digital images. Mathematical morphology has two basic
operators. One is the erosion operator and the other is the dilation operator.

Before explaining the two operators, we should define some variables for input
data. We use the variable A as the input image and use the variable B as the
structuring element. The structuring element is a binary image with a simple and
pre-defined shape but smaller-than the input image. We also use the variable a as the
pixel of the input image A and use the variable b as the pixel of the structuring
element B. With the definitions above, we start to describe the two operators.

For the erosion operator, the erosion of the input image A by the structuring
element B is defined by:

ASB= [A,. (6.1)

beB

When the structuring element B has a center and this center is located on an origin,
then the erosion of A by B can be understood as the locus of points reached by the
center of B when B moves inside A. An example of the results of applying the erosion

operator is shown in Figure 6.2.

fOPO topo

Figure 6.2 An example for erosion results. (a) The original image. (b) The image after

erosion.
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For the dilation operator, the dilation of the input image A by the structuring
element B is defined by:

A®B= (JA. (6.2)

beB

If the structuring element B has a center on the origin, then the dilation of A by B can
be understood as the locus of the points covered by B when the center of B moves
inside A. An example of the respectively of applying the dilation operator is shown in

Figure 6.3.

topo’ - top

+

(b)

Figure 6.3 An example for dilation operator. (a) The original image. (b) The image

after dilation operator.

From Figure 6.2, the thin parts of the object in the original image disappear in
Figure 6.2 (b) after the erosion operator is applied. From Figure 6.3, the thin parts of
the object in the original image can be seen to get thicker in Figure 6.3 (b) after the
dilation operator is applied. So we can use the erosion operator to reduce noise in the
image and use the dilation operator to restore the lost parts of objects which are

produced by the erosion operator.
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6.2 Human Detection

6.2.1 Background Learning

To use the background subtraction technique, we should conduct background
learning of the indoor environment, which is the experimental place in this study, and
get the 3D image of the background first. However, when we used a KINECT device
to sense a static region, we discovered that the same locations of a pixel in two
consecutive depth images of the KINECT image acquired from the same KINECT
device are sometimes different. One has a value of depth information, but the other
has no value of depth information. This problem comes from the infrared light rays
sent out by the KINECT device. Because the reflective path of the infrared light rays
will be interfered in some situations, the total amount of reflective infrared light rays
will be different for different times of depth information detection and will also affect
the production of the depth image indirectly.

To solve the problem and complete the background learning, we use a KINECT
device to sense a static region for a while to get a multiple of KINECT images. Then,
we average the values of all the pixels in the depth images at the same locations to get
an average depth image. Also, we choose one color image from the acquired color
images as the background color image. And finally, we choose one mapping array
from the multiple ones produced by the Kinect-for-Windows SDK as the final
mapping array, which will be used for constructing the 3D image of the background.
With the three measures above, we can construct a 3D image of the background.
Because we want to use the depth image to do background subtraction technique
actually, we won’t construct the 3D image of the background immediately but regard

the results of the three measures as a set of the 3D image constructor of the
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background.

But when the vertical tilt angle of the KINECT device is changed, the field of
view of the KINECT device is also changed. So we should redo the background
learning with different vertical tilt angles of the KINECT device. Because the vertical
tilt angle ranges from —25° to —55° we do the background learning by the
increment steps of 2 degrees of the vertical tilt angle from —25° to — 55°
Furthermore, we use nine KINECT devices in the octagonal 9-KINECT imaging
device to do the background learning, so we apply the processing task described
above to the images taken by the nine KINECT devices in the experimental place and
get many sets of 3D image constructors of the background. But the one KINECT
device, which is at the center of the octagonal 9-KINECT imaging device and senses
from top to bottom, is used to do background learning only once. The background
learning algorithm using the nine KINECT devices of the octagonal 9-KINECT

imaging device is as follows.

Algorithm 6.1: background learning algorithm for the nine KINECT devices of
the octagonal 9-KINECT imaging device

Input: the nine KINECT devices Dy, Dy, ..., Dg of the octagonal 9-KINECT imaging
device, where the KINECT device Dy is at the center of the octagonal
9-KINECT imaging device and senses from top to bottom; the experimental
place EP without moving objects; an angle value AG; a counter with it value
C set to be 0 initially.

Output: many sets of the 3D image constructors of the background BG whose depth
images will be used to the background subtraction technique.

Steps:

Step 1.  Set the value AG of the angle to —25°.
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Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

Step 14.

If the KINECT device D¢ is not the KINECT device Dg, then set the tilt
angle of the KINECT device D¢ with the angle value AG; else, go to the
next step.

Use the KINECT device D¢ to sense the experimental place EP for a while,
and get a set of depth images, DI, of the KINECT images and a set of color
images, Cl, of the KINECT images.

Average the multiple depth images in Dl to get an average depth image
AVGD.

Choose one color image from those color images of the KINECT images as
the background color image BGC.

Use the Kinect-for-Windows SDK with those depth images in DI as input to
produce a set of mapping arrays, MA.

Choose one mapping array from MA as the final mapping array FMA for
constructing the 3D image of the background.

Regard the average depth image AVGD, the background color image BGC
and the final mapping array FMA as a set of the 3D image constructor of
the background, CT3p.

Put CT3p into the set of the 3D image constructors of the background BG.
Decrement the angle value AG by — 2.

If the KINECT device Dc is the KINECT device Dy, then go to Step 13; else,
go to the next step.

If the value AG is larger than —55° then repeat Steps 2 through 10; else,
go to the next step.

Increment the value C of the counter by 1.

If the value C is smaller than nine, then repeat Steps 1 through 13; else, exit.
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6.2.2 Human Detection by Depth Image

With the background learning done, we start to conduct human detection. As we
mentioned in Chapter 1, we make two assumptions as follows.

1. The indoor environment is unchangeable all the time.

2.  The detected motion objects are humans for security surveillance.
We will follow these two assumptions to design the background subtraction technique.
When we use a KINECT device to sense the indoor environment with human
activities and get a pair of KINECT images, we subtract the depth image in this pair
from the background depth image acquired from the results of the background
learning and get a subtracted depth image. In the subtracted depth image, there are
many fragments and the human shape. The fragments are caused by the fact that the
reflective infrared light rays are interfered in some situations as described in Section
6.2.1 to cause fluctuations in the depth image. We will regard the fragments as a kind
of noise. We so apply the erosion operator of mathematical morphology to the
subtracted depth image to reduce the small fragments. Then, we apply the dilation
operator of mathematical morphology to the resulting depth image to restore the lost
parts of the human shape and big fragments which are shrunken by the erosion
operator. Finally, we apply the region growing scheme with a suitable threshold to the
resulting depth image to find the human shape. An example of the results of human

detection is shown in Figure 6.4.
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(© (d)

(e)

Figure 6.4 An example of human detection results. (a) The background depth image.
(b) The depth image with human activities. (c) The subtracted depth image with many
fragments and the human shape. (d) The depth image with the human shape and big
fragments after doing erosion and dilation. (e) The final human depth image after

applying the region growing scheme with a suitable threshold.
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6.2.3 Detection Algorithm

With the idea of human detection described in Section 6.2.2, we will propose an

algorithm to implement the idea by using the nine KINECT devices of the octagonal

9-KINECT imaging device. The result will be used for human tracking. The detection

algorithm is as follows.

Algorithm 6.2: Human detection by the nine KINECT devices.

Input: the nine KINECT devices Dy, D1, ..., Dg of the octagonal 9-KINECT imaging

device; the background depth images BDIs from the results of the
background learning; the threshold value T which will be used in the region
growing scheme; the indoor environment IE; a counter with its value C set to

be O initially.

Output: The device RD which detects human activities.

Steps:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Use a KINECT device D¢ to sense the indoor environment IE and get a
depth image DI.

Subtract the depth image DI from the background depth image BDI and get
a subtracted depth image SDI.

Apply the erosion and dilation operators of mathematical morphology to the
subtracted depth image SDI to get the temporary depth image TDI.

Apply the region growing scheme to the temporary depth image TDI with
the threshold value T, and get the final depth image FDI.

If there is a human shape in the final depth image FDI, then go to Step 8;
else, go to the next step.

If the value C is smaller than nine, then increment the value C of the counter

by 1; else, set the value C to be 0.
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Step 7. Repeat Steps 1 through 6.

Step 8. Record the KINECT device D¢ as the result device RD and exit.

6.3 Human tracking

6.3.1 Human Tracking with Single KINECT Device

Once the human is detected, we can start to track the human’s activities. We can
know which KINECT device of the nine KINECT devices of the octagonal
9-KINECT imaging device detects the human from the result of the human detection
algorithm in Section 6.2 and we call that KINECT device the tracking KINECT device.
When we use the tracking KINECT device to track the human’s activities, we get a
multiple of KINECT images. We can apply the methods described in Section 6.2.2 to
the depth images of those KINECT images with the background depth images
acquired from the results of the background learning to get the humans depth images.
Next, we construct the human’s 3D data from the human’s depth images by the
algorithm described in Chapter 4. Then, we analyze the human’s 3D data together
with the frame rate of the tracking KINECT device to get the moving velocity and
direction of the human. With the information above, we can predict the next position
the human will go, and the tracking KINECT device can adjust accordingly its tilt

angle dynamically to track the human.

6.3.2 Handoff between KINECT Devices

When the human is going out of the field of view of the tracking KINECT device,
we should use one of the other KINECT devices of the octagonal 9-KINECT imaging
device to keep tracking the human. So there is a handoff problem between the nine

KINECT devices. Because we have the spatial relations between the nine KINECT
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devices and the overlap regions of every two neighboring KINECT devices of the
nine KINECT devices, it is easier to conduct the task of handoff between the nine
KINECT devices. The handoff strategy we adopt is that when the human is going into
the overlap region of the tracking KINECT device and its neighboring KINECT
device, we let the neighboring KINECT device to assume the role of the new tracking

KINECT device to complete the handoff task.

6.3.3 Tracking Algorithm

With the dynamic human tracking technique described in Section 6.3.1 and with
single KINECT device and the handoff strategy described in Section 6.3.2, we can
integrate them into a tracking algorithm using the nine KINECT devices of the

octagonal 9-KINECT imaging device. The algorithm is described as follows.

Algorithm 6.3: human tracking using the nine KINECT devices

Input: the tracking KINECT device TKD which is assigned according to the result of
the human detection algorithm described in Section 6.2; the neighboring
KINECT devices NKDs of the tracking KINECT device TKD; the overlap
regions ORs of the tracking KINECT devicer TKD and its neighboring
KINECT devices NKDs.

Output: the new tracking KINECT device RKD for keeping tracking the human
activities, which will be set to be “null” if the human is going out of the
fields of view of the nine KINECT devices.

Steps:

Step 1. Use the tracking KINECT device TKD to track the human and get some

KINECT images KiIs.

Step 2.  Apply the methods described in Section 6.2.2 to the depth images of the
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Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

6.4

KINECT images Kls to get the human’s depth images HDIs.

Construct the human’s 3D data Hzps from the human depth images HDIs.
Analyze the human’s 3D data H3ps and get the moving velocity MV of the
human and the moving direction MD of the human.

Use the moving velocity MV and moving direction MD to predict the next
position NP.

If the position NP is still in the field of views of the tracking KINECT
device TKD, then repeat Steps 1 through 5; else, go to the next step.

If the position NP is in the field of view of the tracking KINECT device
TKD with different tilt angles, then change its tilt angle by its tilting device
and repeat Steps 1 through 6; else, go to the next step.

If the position NP is in the one of the overlap regions OR, then take the
involved neighboring KINECT device NKD, which shares this overlap
region with the tracking KINECT device TKD, as the new tracking
KINECT device RKD and exit; else, go to the next step.

If the position NP is out of the fields of view of all the nine KINECT

devices, then set the new tracking KINECT device RKD as null and exit.

Experimental Results

An example of the human tracking by tilting KINECT devices is shown in this

section. The path of the human activities is shown in Figure 6.5. The 3D image

sequences of the tracking human activities are displayed in 3D images by the OpenGL

and are shown in Figure 6.6.
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Figure 6.5 The red arrow indicates the path of the human activities.

(b)

Figure 6.6 The 3D image sequences of tracking human activities. In the 3D image
sequence from (a) to (f), we applied the tracking algorithm with the nine KINECT

devices of the octagonal 9-KINECT imaging device.
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Figure 6.6 The 3D image sequences of tracking human activities. In the 3D image
sequence from (a) to (f), we applied the tracking algorithm with the nine KINECT

devices of the octagonal 9-KINECT imaging device (cont’d).
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Chapter 7
Human Modeling and Display of
Human Activities

7.1 Introduction

When we use the tracking KINECT device, which is one of the nine KINECT
devices of the octagonal 9-KINECT imaging device and is assigned from the result of
human detection algorithm described in Section 6.2, to track human activities, we get
a KINECT image sequence. We store this sequence and the related mapping array
sequences, which are acquired by applying the Kinect-for-Windows SDK to the depth
images of the KINECT image sequence, as a set of constructor sequences for
constructing a 3D image sequence. When we use the tracking KINECT device to
track human activities, the handoff problem also occurs between the nine KINECT
devices. By using the tracking algorithm described in Section 6.3.3, we can get a new
tracking KINECT device to keep tracking human activities. So we store many sets of
constructor sequences from different tracking KINECT devices.

In this chapter, we will use the sets of constructor sequences to build up the
human model and display accordingly the human activities. First, we will build up
several human models by the sets of constructor sequences acquired from different
tracking KINECT devices respectively. The modeling method for the each set of
constructor sequences will be described in Section 7.2. And then, we merge the
resulting human models into one. The merge technique will be described in Section

7.3. The final resulting model will be shown in Section 7.4.
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7.2 Human Modeling from Single
KINECT Device

7.2.1 Review of Distance-weighted Correlation

(DWC)

The measure of distance-weighted correlation (DWC) was proposed by Fan and
Tsai [12] originally for automatic Chinese seal identification. The measure is defined
as the minimum distance between two groups S and T of pixels of seal imprint images
after the two seal imprint.images are overlapped. For each pixel s in group S, we will
find out a pixel t in group T which has the minimum distance to pixel s. If the pixel t

is in a limited circular region C with a pre-selected radius K, then a weight

wy =1/(d? +1) is defined where dj, is the distance between the pixels's and t;

otherwise, the weight wr*f Is defined to be zero. That is, for each pixel s, the weight

wr*f is defined as follows:

W"K:d2+1’ if 0<d, <K,
° (7.1)
w{f =0 otherwise,

where dp is the distance of point s in S to the closest point t in T. Note that K is a
threshold used to decide an effective distance so that any distance larger than this
threshold is discarded. Finally, the DWC for the two groups of pixels, S and T, is

defined as follows:

CK(s,T):%x(izwj +NizwtKJ, (7.2)

S seS$ T teT
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where the coefficient 1/2 is included to treat S and T symmetrically and Ns and N are
the total numbers of pixels in S and T, respectively. It can be verified that 0<C* <1,
and that C = 1 if and only if S = T. The DWC, though defined originally for seal
identification, is a general measure for point-type object shape matching, and so is

utilized in this study.

7.2.2 Review of K-d Tree

The K-d tree is a space-partitioning data Structure for organizing points in
k-dimensional space. It is a useful data structure for searching nearest points with high
dimensions on the tree. The K-d.tree is also a kind of binary tree in which every node
is a k-dimensional point. We use a group of k-dimensional points to construct the K-d
tree. Every non-leaf node on the K-d tree can be considered as a splitting plane, which
is perpendicular to the axis of one of the k-dimensions, to divide the spatial domain
into two parts. Points to the left of this splitting plane are represented by the left
subtree of that node and points to the right are represented by the right subtree. When
we want to search the closest point in a group of points, it will take less time to search
a K-d tree of the group rather than to search the whole group directly. The time
complexity of searching becomes O(N**¥) instead O(N) where the K is the number of
dimensions and is usually greater than one. So when we run algorithms using the
DWC, we can convert one of the input groups of points into the K-d tree form. It will

reduce the time for the step of searching points of the minimum DWC.

7.2.3 Modeling by Speeded-up DWC Using K-d Tree

We will use sets of constructor sequences described in Section 7.1 to build up
several models. For each set of constructor sequences, we convert all depth images in

the constructor sequences into the human’s depth images by the method described in
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Section 6.2.2. In this way, we can get sets of sequences of 3D human images. We then
take one of the sets of the sequences of the 3D human images as a human modeling
example. Because the sequence of 3D human images is recorded in accordance with
the time sequence, each human’s 3D image in the sequence is located at a different
position with a small distance from each other. We want to find some transformations
which can be used to merge every two consecutive 3D human images in the sequence.
And then, we extend these transformations to merge all 3D human images to construct
a human model. We will use the DWC measure and the K-d tree structure to assist
finding these transformations. An algorithm for finding such transformations between
3D human images by speeding up the DWC computation using the K-d tree is shown

as follows.

Algorithm 7.1: Finding transformations between 3D human images.

Input: a sequence of 3D human images lo, li, ..., In, Where N is the total number of
sequences of 3D human images; a prepared set of transformations T;s; the
threshold value K used in the computation of the DWC measure; an initial
maximum value M; a counter with its value C set to be 0 initially; an initial
transformation Tp.

Output: a set of transformations RT;s where each RT; is the transformation which,
when applied to 3D human image lj:1, will merge 3D human image I;:; and
3D human image I;, where j=0,1, ..., N-1.

Steps:

Step 1.  Set the maximum value M to be 0.

Step 2.  Apply the K-d tree structure to the 3D human image Ic and get a 3D image

IKDT in the K-d tree structure form.

Step 3. Apply a transformation T;, which is not used yet in the prepared
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Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

transformation set, to the 3D human image lc+; and get a 3D image IT.

Take the two 3D images IKDT and IT and the threshold value K as input
data for computing the DWC between them.

Start the DWC computation to get a DWC value RV.

If the value RV is greater than the maximum value M, then update the
maximum value M with the value RV and the desired transformation RT¢
with the transformation T;.

If the transformations T;s are not exhausted yet, then repeat Steps 2 through
6; else, go to the next step.

Increment the value C of the counter by 1.

If the value C is smaller than N, then repeat Steps 1 through 8; else, exit.

7.2.4 Modeling Algorithm

After executing the algorithm for finding transformations described above in

Section 7.2.3, we get a set of transformations, by which we can start to merge all 3D

human images in the sequence. First, we use the first 3D human image as a pivot. And

then, merge the other 3D human images into the first one. Finally, we get a human

model. The merging algorithm is as follows.

Algorithm 7.2: merging 3D human images.

Input: the sequence of 3D human images lo, I, ..., In, where N is the total number of

the sequences of 3D human images; the transformations RTo, RTy, ..., RTn
obtained from Algorithm 7.1, where RT; is the transformation which, when
applied to 3D human image lj+1, will merge 3D human image lj;1 into 3D
human image I; where j = 0, 1, ..., N-1; a counter with its value C set to be 0
initially.

71



Output: the merging result MR.

Steps:

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

7.3

Use the first 3D human image I, as a pivot.

Put 3D human image |y into the merging result MR.

Merge the transformations RTy, RTy, ..., RT¢ to get a merged transformation
MRTc.

Apply the transformation MRT¢ to 3D human image Ic.1 to get an
integrated 3D human image Tle.

Put the resulting 3D human image Tl¢ into the merging result MR.
Increment the value C of the counter by 1.

If the value C is smaller than N, then repeat Steps 3 through 6; else, go to
the next step.

Take the final merging result MR as the desired human model.

Merging Human Models from

Multiple KINECT Devices

7.3.1 Calibration of Models from Multiple KINECT

Devices

As we mentioned in the previous section, we can get several human models by

the algorithms described in Section 7.2 with the multiple sets of sequences of 3D

human images as input. Because the data sources of these human models come from

different KINECT devices, each of these human models is displayed by the viewpoint

of their original KINECT device and this is inconvenient for the merging process. If
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we want to merge these human models more easily, we should calibrate the spatial
relation between these human models. Luckily, we have calibrated the spatial relation
between the nine KINECT devices of the octagonal 9-KINECT imaging device in
Chapter 5, and get the calibration results. We can use the calibration results directly
for the spatial relation between these human models, and convert them into the same

view.

7.3.2 Merge of Models by Speeded-up DWC Using
K-d Tree

With the human models displayed in the same view, there still existing some
distances between the models. So we can use the DWC and the K-d tree structure to
assist finding transformations between these human models. However, because each
of these human models contains too many 3D data of the 3D image, it will take a long
time for the processing work. To solve this problem, we would like to process their
data source — the sequences of 3D human image. Instead of using all 3D human
images in those sequences, we use the first 3D human images of these sequences as
pivot 3D images for the processing. To run the processing in order, we label these
pivot images by number. It means that we also label the related human models by
numbers. The algorithm for finding the transformations between the human models by

speeding up computation of the DWC using the K-d tree is as follows.

Algorithm 7.3: finding transformations between human models.
Input: the pivot images Ply, Ply, ..., Ply acquired from human models HMg, HM;y, ...,
HMy where N is the total number of the human models; a prepared set of

transformations MT;s; a threshold value K used in computing the DWC; an
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initial maximum value M; a counter with its value C set to be O initially; an
initial transformation MT

Output: a set of resulting transformations RMT;s where RMT; is the transformation

which will apply to human model HM;:; and let human model HM;.1 be
merged to human model HM; and j =0, 1, ..., N-1.

Steps:

Step 1.  Set the maximum value M to be 0.

Step 2.  Apply the K-d tree structure to the pivot image Plc to get a 3D image
PIKDT in the K-d tree structure form.

Step 3.  Apply a transformation. MT;, which is not used yet in the prepared set of
transformations, to the pivot image Plc+; to get a 3D image PIMT.

Step 4. Take two images PIKDT and PIMT and the threshold value K as input data
for computing the DWC between them.

Step 5. Start the DWC computation to get a DWC value RV.

Step 6. If the value RV is greater than the maximum value M, then update the
maximum value M with the value RV and the desired transformation RMT¢
with the transformation MT;.

Step 7. If the transformations MT;s are not exhausted yet, then repeat Steps 2
through 6; else, go to the next step.

Step 8.  Increment the value C of the counter by 1.

Step 9. If the value C is smaller than N, then repeat Steps 1 through 8; else, exit.

7.3.3 Merging Algorithm

With the resulting transformations which are acquired from the algorithm
described in Section 7.3.2, we can start to merge all human models. Because we label

the human models by numbers which are the same as those of the pivot images as
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mentioned in Section 7.3.2, we will merge the human models sequentially according
to these numbers. We use the first human model as a pivot model and the other
models will be merged into it one by one. The merging algorithm for human models is

as follows.

Algorithm 7.4: merging multiple human models.

Input: the human models HMp, HMy, ..., HMy where N is the total number of the
human models; the resulting transformations RMTy, RMTy, ..., RMTy.
obtained from the results of Algorithm 7.3 where RMTj; is the transformation,
which when applied.to-human model HM;1, will merge human model HM;.1
into human model HM;, where j = 0, 1, ..., N = 1; a counter with its value C
set to be O initially.

Output: a model-merging result FMR.

Steps:

Step 1. Use the first human model HMg as a pivot model.

Step 2.  Put the first human model HMy into the merging result FMR.

Step 3. Merge the transformation RMT,, RMT;, ..., RMT¢ to get a merged

transformation MRMTc.

Step 4. Apply the transformation MRMT¢ to the human model HMc+; to get a

transformed human model THMc.

Step 5. Put the resulting human model THMc into the merging result FMR.

Step 6.  Increment the value C of the counter by 1.

Step 7. If the value C is smaller than N, then repeat Steps 3 through 6; else, go to

the next step.

Step 8.  Take the final merging result MR as the desired human model.
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7.4 Display of Human Activities

7.4.1 Display of Merged Results

In this section, we will show the whole process for building up the human model.
First, we have a sequence of seven 3D human images, which we show by examples in
Figure 7.1. Then, we merge the sequence of the seven 3D human images into a human
model, which we show by an example in Figure 7.2. Next, we have two human
models acquired from two different sequences and we show the two pivot images of
the two human models in Figure 7.3. We use the result from calibrating the nine
KINECT devices to the two pivot images and show the result in Figure 7.4. Finally,

we merge the two pivot images and show the result in Figure 7.5.

(a) (b)

Figure 7.1 A sequence of 3D human images. In (g), the sequence from (a) to (f) is

displayed in the meantime.
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Figure 7.1 A sequence of 3D human images. In (g), the sequence from (a) to (f) is

displayed in the meantime (cont’d).
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Figure 7.2 A human model constructed from a sequence of 3D human images seen

from a side view.

(b)

(©)

Figure 7.3 Two pivot images of two models. In (c), we display the two pivot images in

(a) and (c) at the same time.
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Figure 7.4 Applying the calibration result to the two pivot images.

Figure 7.5 Merging result of the two pivot images.

7.4.2 Merge of Human Model and 3D Background

Because we assume that the indoor environment is always static, we can merge
the background model and the human model directly. An example of the merging

result is shown in Figure 7.6.
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Figure 7.6 An example of human model and background merging result. (a) The

human model. (b) The background model. (c) The merge result.

7.4.3 Extraction of Human Features from Human

Model

With the human model constructed, we can analyze the human model. And then,
we can get some features of the human such as height, body width, body thickness,
etc. Though these features may not be accurate because of the moving actions of the

human activities, they are still useful for security monitoring and person identification
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purposes. An example for extracting human features from the human model is shown

in Figure 7.7.

Figure 7.7 An example of human feature extraction from the human model. The red
frame can be used to compute the approximate human features like height, body width

and body thickness.
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Chapter 8
Conclusions and Suggestions for
Future Works

8.1 Conclusions

In this study, a system for 3D environment modeling and monitoring via KINECT

images for video surveillance has been proposed. To implement such a system,

several methods and strategies have been proposed, as summarized in the following.

1.

A conversion method based on the pinhole camera model has been proposed,
which is used to convert KINECT images into 3D images.

A method for geometric correlation has been proposed, which is used to correct
the bending phenomenon existing in the 3D image constructed from KINECT
images.

A method for calibration of spatial relations between KINECT devices based on
the concept of the ICP has been proposed, whose results are used to build up
indoor environment models.

A method for construction of indoor environment models has been proposed,
which uses the calibration results and 3D images converted from the KINECT
images acquired from the octagonal 9-KINECT imaging device to construct
indoor environment models.

A strategy for background learning has been proposed, whose results are used
for human detection.

A strategy for human detection based on background subtraction, mathematical
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morphology, and region growing has been proposed, which is applied to the
depth image acquired by the octagonal 9-KINECT imaging device and whose
result is used for human tracking.

A strategy of human tracking has been proposed, which utilizes the result of
human detection and the tilting device of the KINECT device to conduct
dynamic human tracking and solve the handoff problem between the nine
KINECT devices of the octagonal 9-KINECT imaging device.

A method for human modeling using the DWC and K-d tree structure has been

proposed, which is a two-step modeling method for constructing human models.

The experimental results-shown in the.previous chapters have revealed the

feasibility of the proposed methods.

8.2 _Suggestions for Future Works

The proposed methods and strategies, as mentioned in the last section, have been

implemented on the proposed 3D video surveillance system. Based on our

experimental experience, several suggestions and related interesting issues worth

further investigation in the future are listed as follows.

1.

It is desired to extend monitoring regions by using more octagonal 9-KINECT
imaging devices.

It is desired to increase the total frame rate of the octagonal 9-KINECT imaging
device by employing distributed computing systems.

It is desired to find a new conversion method for constructing 3D images from
KINECT images, which will produce more accurate 3D images.

It is worth studying techniques for filling tiny holes in the indoor environment
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model constructed from KINECT images.

It is desired to find a method to reduce the number of 3D images used in
constructing a human model.

It is desired to create more accurate human models by applying the mesh

structure to the model and rendering the model using textures.
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