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Abstract 

We examined the effectiveness of an infinite cylindrical superconducting impurity of radius a in an infinite type-II 
superconductor as a pinning center. The impurity and the superconducting background h~/ve the penetration depth A i and A s, 
respectively. With regard to a single-quantum vortex, the free energy of the system and the pinning potential for a vortex 
were calculated, based upon the London model of the vortex line. Here, the pinning potential Upi . is defined by the 
difference between the free energy of a vortex being at the center of the impurity and that being infinitely distant from the 
impurity. Upi . is negative for A i > A s. On the other hand, Upi . is positive for Aa < A s. In the limit of a >> A~ and A s, the 
pinning potential is found to be Up~ n = ~bo2(l/A~ - i/A2s) In K/47rtz o. In the limit of a << A~ and A s, the pinning potential is 
found to be Upl . = &2[(l/Ai 2 - l/A2s) In K + (1/A~s) In(As/a) - (1/Ai 2) ln(A~/a)]/4~rl.%. There is a clear correlation 
between the intrinsic property of these two superconducting materials and the pinning potential. 

1. Introduct ion 

For technical applications of superconductors, in- 
vestigating the pinning properties for vortices is one 
of  the most important problems. The properties of  
pinning centers strongly affect a number of electrical 
and magnetic behaviors of  the superconductors. Many 
experimental  trials have been done to introduce the 
pinning centers into high-T c superconductors [ I -6 ] .  
These pinning materials were modeled in analogy to 
defects or insulating precipitates. These nonsuper- 
conducting defects which interact with vortices would 
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induce the screening currents and lead to the so-called 
electromagnetic pinning [7]. 

For  the purpose of  understanding theoretically the 
pinning nature for bulk type-II superconductors, the 
simple case of  a single straight vortex in the pres- 
ence of a cylindrical defect has been calculated [8] in 
the London limit K >> 1. The theory of Ref. [8] has 
been generalized to a periodic structure of  columnar 
defects [9]. The numerical results of  the Ginzburg- 
Landau equations for various values of  r in type-II 
superconductors with a columnar defect have been 
obtained by Takezawa and Fukushima [10]. Buzdin 
et al. [7,11] have analyzed the interaction of  a vortex 
with a cylindrical defect of  radius a by employing 
the image method. They have derived the interaction 
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energy f i n t ( r )  ~ In(1 - a2//r 2) at short distances, 
both in superconducting thin film and bulk material. 
Chen [12] has obtained a general expression of the 
interaction energy and the pinning potential for a 
vortex interacting with a circular defect in a thin 
film. His results do not only verify the results of 
Buzdin et al., obtained by considering the interaction 
at short distances but also predict that the vortex-de- 
fect interaction energy decrease with r - 4  at large 
distances; this is in contrast to the exponential de- 
crease in the case of a vortex interacting with a 
cylindrical defect in a bulk superconductor. If, how- 
ever, the pinning centers are not defects but instead 
superconducting materials, the pinning of the vortex 
could be an issue of concern. 

In this paper we consider an infinite cylindrical 
type-II superconducting impurity of radius a in an 
infinite type-II isotropic superconductor, and a vor- 
tex parallel to this cylindrical impurity. We investi- 
gate the interaction between a vortex and a supercon- 
ducting impurity inside a superconductor based on 
the London theory. We calculate the free energy of 
this system and the dependence of the pinning poten- 
tial on the size of the impurity pinning center. In 
general we shall examine certain limiting cases in 
which progress can be made analytically. 

2. Calculation of the free energy 

2.1. Vortex located outside the superconducting im- 
purity 

We choose cylindrical coordinates ( p, 0, z) with 
the z-axis parallel to the central axis of the cylindri- 
cal superconducting impurity, and consider a vortex 
parallel to the z-axis and located at a distance r from 
the center of the impurity, where r > a, as shown in 
Fig. 1. The London equation can be expressed as 

B2+As2V× VxB=d~o~(P-r)~:, p>a, (1) 
B2+A2V× V×B=O, p<a. (2) 

The effective depth to which the applied field pene- 
trates into the ideally isotropic superconductor is A s 
and the superconducting impurity is A~. th0 is the 
flux quantum and 8( p -  r)  is the two-dimensional 
delta function. 

Superconductor 
(p,O) 

I-U/z-axis 

cylindrical superconducting impurity 

Fig. 1. A cylindrical superconducting impurity with radius a and 
infinite length embedded in an isotropic superconductor. We 
choose a cylindrical coordinate system whose z-axis is parallel to 
the central axis of the impurity. A vortex line exists parallel to this 
impurity and is located at a distance r from it. These two 
superconductors have penetration depths A i and A s. 

The magnetic field B = B~: can be written in the 
form 

B s + Bout,  p > a ,  

B =  Bin, p < a ,  (3) 

where B s is the particular solution of Eq. (1) (i.e., 
directly contributed from the vortex line), Bou t and 
B~n satisfy, respectively, the homogeneous solutions 
of Eq. (1) and Eq. (2). The solutions of Eqs. (1) and 
(2) are 

Bs= K0(t o-rl/A,), 

= ( 2~A2 ),nS~_= l'~( r </As) Km( r> /As)eim°' 

(4) 

where r> = max( p, r), r< = min( p, r), meaning, 
respectively, the smaller or larger p and r, 

Bi. = ~b° Am(r)Im( p/Ai)e  i"°, (5) 
= - - ~ x ;  

4a° B,,( r)K,,( p/As)e i"°, (6) 
Bou t = 2 - ~ s  2 = - 

where both I,, and K,, are called the modified 
Bessel functions of order m. To determine the coeffi- 
cients Am(r) and Bin(r), the following boundary 
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conditions should be met: (i) the magnetic field B is 
continuous at p = a, (ii) the tangential component of 
A2(V× B) is continuous at p =  a, i.e., ensuring the 
continuity of supercurrents across the interface be- 
tween these two superconductors. From Eqs. (4)-(6) 
and the boundary conditions, we have 

Ira(a/hi)  Am = Ira(a/As) Kin(r/As) 

+K in (a lAs )B in ,  

AA~i I '( a /A  i ) (7) 
A,, = I ' ( a / A s )  K,,(r/As) 

t + ICm( a/As)8m, 

where 1" ( K ' )  is the first derivative of 1,, (K,,) 
with respect to its own argument. The coefficients 
are obtained immediately: 

Am(r) 

(As/a)Km(r/As) 
(Ai/As)l'.,(a/Ai)Km(a/As) - l , , ( a / A i ) K '  ( a / A s ) "  

(8) 

Bin(r) 

Im(a/Ai ) l ' , , (a /As)  - ( Ai/As)l',(a/Ai)lm(a/As) 
(.~/AOr.,(~/AJK.,(~/AO- 1.,(./AJK'm(a/AO 

XK,,(r/A,). (9) 

Once the fields are determined, then the free 
energy is given by the formula 

F(r )=  1---1-f(B2+A21VXBI2)dv. (10) 
2/~0 

The integral is taken over the sample volume except 
for the core region of the vortex line, which is 
excluded. The free energy per unit length of the 
vortex located outside the impurity, Fo,t(r), is ex- 
pressed as 

F°ut(r) = 4-~o Z 

(11) 

where ~ is the effective coherence length of the 
isotropic superconductor. The first term in Eq. (11) 
represents the self-energy of the single vortex in this 

isotropic superconductor. The second term in Eq. 
(11) represents the interaction energy between the 
vortex and the superconducting impurity. 

2.2. Vortex located inside the superconducting impu- 
rity 

Now we deal with the vortex located inside the 
superconducting impurity, i.e., r < a. The London 
equation of the system in question can be expressed 
as 

B+A~VX V x B = O ,  p>a, (12) 

B + A ~ V × V × B = q b o 6 ( R - r ) ~  :, p<a.  (13) 

We follow the same procedures as we did in the 
previous case. The solution can be written as 

•Bou t , p>a,  (14) 
B= [ Bs + B~n. p < a. 

The solutions of the equations are 

8 s =  4,0 ira(r</A ) Kin(r>/A,)e,mO ' 

(15) 

qb° C,,(r)lm( Plhi)e '"°, (16) 8,n= mEo_ 

Bou t = C~O Din(r) K,,( P/hs)e ira°. (17) 

In the present case the boundary conditions imposed 
to Eqs. (15)-(17) yield 

C.,(r) 

( As/Ai)K.,(a/Ai)K',(a/As) - K 'm(a /A i )Km(a /As)  

K.,(alAs)r,(a/aO-(As/AJX'.,(a/aO1.,(a/A3 

XIm(r /A i ) ,  (18) 

D,,(r) 

( Ai / a ) I m ( r / A s )  

KAa/aO1~.(a/a 3 - i  ~/aOK'm(a/aOlm(a/aO " 

(19) 

The free energy (per unit length) of the single vortex 
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located inside the superconducting impurity. Fin(r). 
is expressed as 

1 
Fin ( r )  = - - (  ¢o/Ai)2 

41r/~ o 

X Ko(~ i /A i )  + E 

m = - o c  

r < a ,  

where ~s is the effective coherence length of the 
impurity. The first term in Eq. (20) represents the 
self-energy of the single vortex in this superconduct- 
ing impurity. 

C m l m ( r / h i ) ) .  

(20) 

3. Calculation of the pinning potential 

The pinning potential per unit length for a vortex, 
Upin(a), is defined by 

G i n ( a )  = F i n ( 0  ) - Fo,t(oc), (21) 

where F~,(0) is the free energy per unit length of the 
vortex at the center of the superconducting impurity, 
and Foot(~) is that of the vortex infinitely distant 
from the impurity. Substituting Eqs. (11) and (20) 
into Eq. (21) leads to the following form for Upi,(a), 
%.(a)  

= - ----~ In K + --~ 
4~'/x o gl s Ai 
K j( a /Ai )Ko(a/As)  - ( A s / A i ) K o ( a / A i )  K l ( a / h  s) ] 

K o ( a / X s ) l ~ ( a / X i ) + ~  ] 
(22) 

For simplicity of calculation and analysis, we have 
set K0(~i/Ai) = K0(sCs/As) at In K. The motivation 
for this assumption comes from the study of the 
phase diagram of the YBCO system. For instance, 
YBa2Cu4Os(124) has been identified as intergrowths 
in YBazCu30?(123), produced in thin films [13,14], 
and subsequently synthesized in bulk as a majority 
phase [15]. From the experimental measurements of 
the in-plane London penetration depth [ 16-18] Aab(0) 
and the coherence length [16,19] ~:ab(0) of Y-123 
and Y-124, the ratio of hab(O)/~ab(O)'~ 100 was 
obtained for both superconductors. 

We consider first the case, a / h  s, a / A  i >> 1, then 
Eq. (22) can be reduced to (' 
Upi,(a) = "/5"'77- In K. (23) 

47r/~ o A i A s 

In another limiting case, a /A s, a / A  i 
(22) can be reduced to 

U p i n ( a  ) ~ - -  In K 

, l ] 
+ -~2 I n ( A J a )  - -~2 l n ( A J a )  . 

<<1, Eq. 

(24) 

4. Discussion and summary 

We have derived the free energy of a vortex in an 
isotropic superconductor interacting with a cylindri- 
cal superconducting impurity of radius a, its axis 
parallel to the vortex, as expressed in Eq. (11) and 
Eq. (20). The second term in parentheses on the right 
hand side of both Eq. (11) and Eq. (20) represents 
the interaction energy between the vortex and the 
superconducting pinning center. By definition, Kin(x) 
tends to zero as x becomes large. Thus for the 
interaction energy to be small and negligible, the 
vortex must be located at a large distance from the 
pinning center. In this situation, the vortex may be 
considered as an isolated vortex; so only the self-en- 
ergy of the single vortex remains in Eq. (11). More- 
over, l , , (x)  is bounded as x when small in any 
bounded domain of x. In Eq. (20), the behavior of 
the interaction energy depends on the radius of the 
impurity and the location of the vortex inside the 
impurity. For certain limiting cases, one can get the 
interaction behavior in an analytical form. Consider 
the limiting case of a / A  s and a / h  i >> 1. Then the 
asymptotic forms of the sum term (or interaction 
energy) in Eqs. (11) and (20) can be reduced to 

oc 

E 8 KAr/a3 
m = - o c  

f a -a X r-a- j r - a \  
-- [ - - I , / -  e-~r-'°/a*Ko I - "  , 

~ a s + a ~ ] V  r ~ * s ] 

r >> A s . (25) 
oc 

E Cmlm(r/Ai) 
m = - o ¢  

r >> A i. (26) 
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The exponential part controls the main behavior of  
the interaction between the vortex and the impurity, 
except for near the interface between the impurity 
and the superconducting background. It means that 
the interaction energy is small when this vortex is far 
from the interface for a large radius of the impurity. 
In another extreme case of  a/A s 
easy to show that 

:x :  

E B~K,~(r/As) 
m = - ~ c  

I ~ - ;7 - - -? -  In 1 -  
A s + A i 

a4 

+ 16A~ h~ A~ 

r ' ~ h  s, 

E C,.lm(rlAi) 

~ - - - - - ~ 2  in 1 -  + 

r << Ai- 

and a/A i << 1, it is 

(27) 

In - In 
As 

( 2 8 )  

Both show that the interaction energy between the 
superconducting impurity and the vortex line behave 
logarithmically at short distances for a small radius 
of the impurity. The interaction energy between a 
vortex and a columnar defect at short distances has 
been calculated in Refs. [8,11]. Formulas (27) and 
(28) coincide with the results of  these papers with 
logarithmic behavior, if the radius a of  the impurity 
is much smaller than the quantities A~ and A s. Figs. 
2 and 3 show the free energy as a function of the 
distance r from the center of  impurity for an impu- 
rity radius a = A~, K = 10 2, and Ai/A s = 0.5 and 2, 
respectively. It seems from the figures that there is a 
potential barrier opposing the entry of  the vortex line 
for Ai/A s = 0.5, in which case the vortex located 
outside the impurity is energetically favorable. But it 
seems there is a potential well, which always attracts 
the vortex line to itself, for Ai/A ~ = 2, in which case 
the vortex located inside the impurity is energetically 
favorable. 

20 

~ 1 6  

8 
"D 

~ 4  

\ 
1 0  2'0 3 0  

r/;~s 

Fig. 2. T h e  free energy as a function o f  the dis tance r from the 

center  o f  the impuri ty  o f  radius  a = A i, K = 102, and A i / A  s = 0.5. 

For simplicity, the pinning potential is defined by 
the difference between the free energy of  a vortex at 
the center of the impurity and of a vortex infinitely 
distant from the impurity. Then we obtain a depen- 
dence of the pinning potential on the impurity radius 
a, as shown in Eq. (22). We also consider two 
extremely limiting cases. They show a simple and 
clear expression for the pinning potential for a single 
vortex. The pinning potential explicitly correlates 
with the difference between the intrinsic property of  
the penetration depth of the superconducting impu- 
rity and that of  the superconducting background. If, 
for example, both superconductors are of  the same 
material, the pinning potential will be reduced to 
zero. As seen in Eqs. (23) and (24), the pinning 
potential  Upi n is negative if h~ > A s. The interaction 
between the vortex and the impurity pinning center 
is attractive. Therefore, the capture of  a vortex by the 
superconducting impurity is favored. On the other 
hand, if h i < A s, the pinning potential Upi n is posi- 

I= 

v 

~ 2  
/ 

210 ' i ' 1.0 3 0  4.0 5.0 6.0 

r/Zs 

Fig. 3. The free energy as a function o f  the dis tance r from the 

center  of  the impuri ty  o f  radius a = A i, K = 102, and h i / A  s = 2. 
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15 

~ 5 

~ 0 

- -  ~.l/~. =0.5  

. . . .  A t / X~ = 2 

"S0  ' 1~.0 ' 210 ' 3.0 
a/~. 

Fig. 4. The pinning energy for a vortex as a function o f  the radius 
a of the impurity for two different ratios of A i / A  s = 0.5 and 2, 
and K = 10 2. 

central axis of the impurity. Our study presents an 
analytical method to understand the variety of flux 
pinning mechanisms in superconductors. 
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