
Chapter 2 
 
LITERATURE REVIEW 
 
  Theories and experimental studies to estimate the lateral pressure acting on a 

retaining wall close to a rock face are summarized in this chapter. Theoretical and 

empirical relationship to estimate the lateral pressure of granular material acting on 

silos or storage bunkers were proposed by Janssen (1895), and Reimbert and 

Reimbert (1976). Spangler and Handy (1982) suggested theories to estimate the earth 

pressure near a rock face. Frydman and Keissar (1987) used the centrifuge modeling 

technique to test a small model wall, which rotated about its base, to observe the 

changes in pressures from the at-rest to active condition. Details of these theories are 

introduced in following sections. 

 

2.1 Earth Pressure at-Rest 
 

  2.1.1 Coefficient of Earth Pressure 

  Donath (1891) was the first to introduce the concept of “the stationary 

pressure of unlimited ground”. Donath defined the coefficient as the ratio of 

the effective horizontal pressure ( hσ ) to the effective vertical earth pressure 

( vσ ) resulting in soil due to the application of vertical load. 
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2.1.2 Coefficient of Earth Pressure at-Rest 
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  The coefficient at-rest Ko is refer to the condition where no lateral yielding 

occurs, under the condition of constrained lateral deformation. As shown in 

Fig. 2.1(a), the overburden pressure vσ  compresses the soil element A 

formed in a horizontal sedimentary deposit. During the formation of the 

deposit, the element is consolidated under this vertical pressure. The vertical 

stress produces a lateral deformation against surrounding soils due to the 

Poisson’s ratio effect. However, based on the definition and the field 

observation, over the geological period, the horizontal strain is kept to zero. It 

is concluded that the surrounding soil resists the lateral deformation with a 

developed lateral stress hσ . A stable stress state will develop in which hσ  

and vσ  become stresses acting on the vertical and horizontal planes as shown 

in Fig. 2.1(b). For an isotropic soil element shown in Fig. 2.2, if the soil 

behaved as an ideal elastic material, based on the mechanics of materials, the 

lateral strain yε  can be expressed as: 
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where E is the elastic modulus and ν  is the Poisson’s ratio of the soil. 

  Base on the definition of the at-rest condition, the lateral strain would be 

zero under the application of stress state and the hσ = Ko vσ . Then the Eq. 2.3 

can be written as: 
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and the coefficient of earth pressure at-rest Ko: 
 

ν
ν
−
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  It should be mentioned that Eq. 2.5 is applicable for the isotropic and 

elastic materials only. However, the behavior of soil element is more complex 

and far from these assumptions. It is evident that the relationship between Ko 

and elastic parameter ν  of Eq. 2.5 is obsolescent for predicting in-situ 

horizontal stress. 

 

2.1.3 Jaky’s Formula 

  Attempts have been made to establish a theoretical relationship between the 

strength properties of a soil and Ko. The empirical relationship to estimate Ko 

of coarse-grained soil is discussed in this section. 

  Mesri and Hayat (1993) reported that Jaky (1944) arrived at a relationship 

between Ko and angle of internal friction φ  by analyzing a talus of granular 

soil freestanding at the angle of repose. Jaky (1944) assumed that the angle of 

repose is equal to the angle of internal friction φ . This assumption is 

reasonable for sedimented, normally consolidated materials for which the 

angle of repose is equal to the constant-volume friction angle, cvφ  (Cornforth, 

1973). Darwin (1883) defined the angle of repose as the greatest inclination to 

the horizon at which a talus will stand. Jaky (1944) reasoned that the sand 

cone OAD in Fig. 2.3 is in a state of equilibrium and its surface and inner 

points are motionless. The horizontal pressure acting on OC is the earth 

pressure at-rest. Slide planes exist in the inclined sand mass. One set of these 

planes makes an angle φ  with the horizontal, and the second set of slide 

planes crosses the first one at an angle of ( 90 φ° − ). However, as OC is a line 

of symmetry, shear stresses can not develop on it. Hence OC is a principal 
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stress trajectory. Based on the equations of equilibrium, Jaky expressed the 

coefficient of earth pressure at-rest with the angle of internal friction, 
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  In 1948, Jaky presented a simplified version of the expression given by Eq. 

2.6. 

 
φsin1 −=oK                       (2.7) 

 

  These expressions were the first attempt to relate the coefficient of earth 

pressure at-rest to the angle of resistance of the soil. Eq. 2.7 is still widely 

used due to its practical significance and attractive simplicity. It should be 

mentioned that Jaky’s analysis was for a soil with cvφ φ= . Thus, these 

expressions were suitable for Ko of sedimented, normal consolidated clays and 

granular materials that have not been densified by vibration or compaction. 

 

2.2 Effects of Soil Compaction 

 

  Compaction of soil can produce a stiff, settlement-free and less permeable 

mass. It is usually accomplished by mechanical means that cause the density 

of soil to increase. At the same time the air voids are reduced and the 

co-ordination number of the grains is increased. It has been realized that the 

compaction of the backfill material has an important effect on the earth 

pressure on the wall.  

  Some theories introduce the idea that compaction represents a form of 

overconsolidation, where stresses resulting from a temporary or transient 
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loading condition are retained following removal of this load. 

 

2.2.1 Study of Peck and Mesri 

  Based on the elastic analysis, Peck and Mesri (1987) presented a calculation 

method to evaluate the compaction-induced earth pressure. The lateral 

pressure profile can be determined by four conditions on σh, as illustrated in 

1. Lateral pressure resulting from the overb

Fig. 2.4 and summarized in the following. 

urden of the compacted backfill, 

 
zh γφσ )sin1( −=                         (2.8) 

 
. Lateral pressure limited by passive failure condition, 

 

                     (2.9) 

3. Lateral pressure resulting from backfill overburden plus the residual horizontal   

 

2
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  stresses, 

hh z σγφσ φ ∆−+−= )15(
4
1)sin1( sin2.1                (2.10) 

 

  where ∆σh is the lateral earth pressure increase resulted from the surface co

 Lateral pressure profile defined by a line which envelops the residual lateral

mpaction loading of the last backfill lift and can be determined based on the e

lastic solution. 

 

4.

   pressures resulting from the compaction of individual backfill lifts. This line

   can be computed by Eq. 2.11. 
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Fi at near the surface of backfill, from point a to b, the lateral 

pr

2.2.2 Study of Chen 

Chen (2003) utilized the acility to investigate the earth 

pr

g. 2.4 indicates th

essure on the wall is subject to the passive failure condition. From b to c, the 

overburden and compaction-induced lateral pressure profile is determined by Eq. 2.10. 

From c the lateral pressure increases with depth according to Eq. 2.11 until point d is 

reached. Below d, the overburden pressure exceeds the peak increase in stress by 

compaction. In the lower part of the backfill, the lateral pressure is directly related to 

the effective overburden pressure. 

 

NCTU model wall f

essures against a non-yielding wall with a 250 mm × 250 mm vibratory 

compactor. Chen (2003) represented four points of view: (1) compaction 

process does not result in any residual stress in the vertical direction. The 

effects of vibratory compaction on vertical overburden pressure are 

insignificantly, as indicated in Fig. 2.5; (2) after compaction, the lateral stress 

measured near the top of backfill is almost identical to the passive earth 

pressure estimated with Rankine theory (Fig. 2.6). The compaction-influenced 

zone rises with rising compaction surface. Below the compaction-influenced 

zone, the horizontal stresses converge to the earth pressure at-rest, as 

indicated in Fig. 2.6(e); (3) when total (static + dynamic) loading due to the 

vibratory compacting equipment exceeds the bearing capacity of foundation 

soils, the mechanism of vibratory compaction on soil can be described with 

the bearing capacity failure of foundation soils; and (4) the vibratory 

compaction on top of the backfill transmits elastic waves through soil 

elements continuously. For soils below the compaction-influenced zone, soil 

particles are vibrated. The passive state of stress among particles is disturbed. 
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The horizontal stresses among soil particles readjust under the application of a 

uniform overburden pressure and constrained lateral deformation, and 

eventually converge to the at-rest state of stress. 
 

2.3 Methods to Estimate Lateral Pressure on Silos and 

 These methods are based on equilibrium of the stored material in a static 

  2.3.1 Janssen’s Method 

e different equation for the equilibrium of a 

Bunkers 

 

 

condition. Elastic interaction with the bin structure is not considered, nor is 

strain energy in either the stored material or the structure. 

 

  Janssen (1895) was the first to derive th

slice of solid in a silo. Janssen assumed that the ratio of horizontal pressure against the 

wall to the mean vertical stress in the stored solid (the lateral pressure ratio K) is 

invariant with depth in the silo. Janssen’s method is based on equilibrium of a thin 

horizontal layer of stored material, as shown in Fig. 2.7. Equating the vertical forces 

to zero gives: 

 

( )'dqqA Ady A q dy p Udy
dy

γ µ
⎡ ⎤

+ = + +⎢ ⎥
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              (2.12) 

 
  where 

c vertical pressure at depth Y   q = stati

  A = area of horizontal cross section through the silo 

lls at depth Y below surface of stored    

  U = perimeter of horizontal cross section 

  = pressure of stored material against wap

      material 
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  'µ = tanδ = coefficient of friction between stored material and wall 

  γ  = u eight of stored material nit w

draulic radius”  Substituting kq  for p , and “hy R  for , the differential /A U

equation of equilibrium becomes: 

 
'/ kdq dy q

R
µγ= −                       (2.13) 

 

  where is the ratio of horizontal pressure to vertical. 

sen’s formula for vertical 

k  

  The solution to this differential equation is the Jans

pressure at depth Y : 
 

' /1
'

kY RRq e
k

µγ
µ

−⎡ ⎤= −⎣ ⎦                      (2.14) 

 

  Hence, to compute the horizontal pressure , Eq. 2.14 is multiplied by  Thus

s: 

p k . , 

the Janssen’s equation for horizontal pressure i

 
' /1

'
kY RRp e µγ

µ
−⎡ ⎤= −⎣ ⎦                      (2.15) 

 

 The above derivation makes no assumption as to the shape of the silo’s cross  

section. If the cross section is rectangular with side lengths a and b, there will have 

different pressures on short and long sides. A common procedure is to let '/ 4R a=  

when computing pressure on the long side b, where: 
 

2' aba
a b

=
+

                          (2.16) 

  An alternate value of suggested by Reimbert and Reimbert (1976) is to use 
 

'a  
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b
−
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  Based on the Janssen’s method, Fig. 2.8 estimates the distribution of earth pressure 

acting on the wall of a rectangular bunker filled with dry Ottawa sand. It is assumed 

that the rectangular storage bunker has a constant long-side length b = 1.5 m, while 

the short-side width varies from 50 to 1500 mm. In Fig. 2.8, it is found that the 

horizontal earth pressure decreases with the decrease of the short-side width a. Fig. 

2.8 shows that the estimation of earth pressure with Jaky’s formula appears to be 

conservative. 

  

2.3.2 Reimbert and Reimbert’s Method 

  In 1953 and 1954, Reimbert and Reimbert presented their method for computing 

static pressure on the silo walls due to the stored material. Their derivation recognizes 

that at large depth , the distribution of lateral pressure becomes asymptotic to the 

vertical axis. This can be shown by plotting pressures given by the Janssen equation 

or by noting that for large -values, the first derivative, 

Y

Y dp dy , approaches zero. At 

that depth, the lateral pressure reaches a maximum, shown as maxp  on Fig. 2.9(a). A 

lamina of material at this depth shows in Fig. 2.9(b). Assuming it has equal vertical 

pressure above and below. Consequently, the lamina weight is exactly balanced by 

wall friction, or: 

 
max'Ady p Udyγ µ=                       (2.18) 

 
Thus: 

 
max 'p Rγ µ=                         (2.19) 

 

where R  is the hydraulic radius, A U . 
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  Note that, whereas the Janssen equations were derived from theory alone, the 

Reimbert and Reimbert’s equations depend on the shape of a curve suggested by 

experimental data. 

  The Reimbert and Reimbert’s equation for lateral static pressure at depth  is: Y
 

2

max 1 1Yp p
C

−⎡ ⎤⎛ ⎞= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

                    (2.20) 

 
  For rectangular silos with short-side width a and long-side length b, maxp and  
(characteristic abscissa) on the longer wall are as follows: 

C

 
max ' 4 'p aγ µ=                        (2.21) 

 
'
'

aC
kπµ

=                          (2.22) 

 

where 
22' ab aa

b
−

= . 

Based on Reimbert and Reimbert’s method, Fig. 2.10 estimates the distribution of 

earth pressure acting on the wall of a rectangular silo filled with dry Ottawa sand. It is 

assumed that the rectangular silo has a constant long-side length b = 1.5 m, while the 

short-side width varies from 50 to 1500 mm. In Fig. 2.10, it is found that the 

horizontal earth pressure decreases with the decrease of the short-side silo width a. 

Near the top of the silo wall, estimation of horizontal pressures based on Reimbert 

and Reimbert’s method are higher than Jaky’s solution. With the decrease of 

short-side width a, Reimbert and Reimbert’s solution will be much smaller than Jaky’s 

solution near the bottom of walls. 

   

2.3.3 Spangler and Handy’s Method 
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  Fig. 2.11 represents a section of a ditch conduit 1 unit in length. Considering a thin 

horizontal element of the fill material of height  located at any depth  below 

the ground surface. Equating the upward and downward vertical forces on the element, 

the following equation is obtained. 

dh h

 

2 ' d
d

VV dV K dh V B dh
B

µ γ+ + = +                 (2.23) 

 

where 

V = vertical force on the top of the element 

V dV+ = vertical force on the bottom of the element 

dB dhγ = weight of the fill element 

( )dK V B dh = the lateral force on each side of the element, it is assumed that the 

vertical pressure on the element is uniformly distributed over the 

width dB . Since the element has a tendency to move downward in 

relation to the sides of the ditch, these lateral pressures induce 

upward shearing forces equal to '( )dK V B dhµ . 

Eq. 2.23 is a linear differential equation, the solution for  is: V

 
2 '( )

2 1
2 '

dK h B

d
eV B

K

µ

γ
µ

−−
=                     (2.24) 

 

  Fig. 2.12 (a) shows some retaining walls are built in front of a stable rock face, not 

so much to retain soil as to prevent rockfalls. Granular backfill placed in the relatively 

narrow gap between the wall and the natural outcrop is partly supported by friction on 

each side, from the wall and form the outcrop. Since the friction is distributed 

vertically it reduces vertical stress within the soil mass, which in turn reduces the 

horizontal stress and the overturning moment. The weight of W  of a soil prism 

between the wall and the rock face parallel to the wall and at a distance B  from the 

wall (Fig. 2.12 (a)) is: 
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W Bhγ=                           (2.25) 

 

where γ  is the unit weight of the soil, and  is the height down from the top of the 

wall, as shown in Fig. 2.12(a). The vertical unsupported forceV from this weight is: 

h

 
2V W F= −                         (2.26) 

 

where  is the vertical component of wall friction. The vertical stress at any height 

 is 

F

h v V Bσ = , and the horizontal stress is: 

 

h
VK
B

σ =                          (2.27) 

 

where K  is the coefficient of lateral earth pressure. Substitution for  from Eq. 

2.24, gives: 

V

 

2 ( )1
2

K h B
h

B e µγσ
µ

−⎡ ⎤= −⎣ ⎦                     (2.28) 

 

where µ = tanδ  , µ  is the coefficient of friction between the soil and the wall. 

  Some solutions of Eq. 2.28 for different values of B  are shown in Fig. 2.12(b). It 

can be seen that the soil pressure, instead of continuing to increase with increasing 

values of , level off at a maximum value defined by Eq. 2.28. When h approaches 

∞, 

h

 

max 2 2 tan
B Bγ γσ
µ δ

= =                       (2.29) 

 

Based on Spangler and Handy’s method, Fig. 2.13 estimates the distribution 

of earth pressure in a narrow gap filled with dry Ottawa sand with different 
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distance B. For B = 1500 mm, estimation of horizontal pressure with Spangler 

and Handy’s is fair good agreement with Jaky’s solution. In Fig. 2.13, it can be 

found that, with wall height H = 1.5 m, horizontal earth pressures decrease 

with the decrease of distance B. It is obvious that, when the retaining wall is 

near to the rock face, the distribution of horizontal pressure may not be linear, 

and may not increase with depth. 

Fig. 2.14 shows the comparison of earth pressure calculated with Janssen, 

Reimbert and Reimbert, and Spangler and Handy theories for the wall height 

H = 1.5 m and the spacing between two walls d is 0.9 m. From Fig. 2.14, it can 

be observed that caculated Janssen’s earth pressure is similar to the Rankine 

active pressure. Spangler and Handy’s earth pressure distribution is similar to 

Jaky’s solution. Among three solutions, Reimbert and Reinmert’s prediction is 

the largest, while Janssen’s lateral pressure is the lowest. The theoretical 

solutions obtained will be compared with the test results in chapter 6. 

  

2.3.4 Study of Frydman and Keissar 

Frydman and Keissar (1987) used the centrifuge modeling technique to test 

a small model wall, and changes in pressure from the at-rest to the active 

condition were observed. The centrifuge system has a mean radius of 1.5 m, 

and can develop a maximum acceleration of 100 g, where g is acceleration due 

to gravity. The models are built in an aluminum box of inside dimensions 327 

× 210 × 100 mm. Each model includes a retaining wall made from aluminum 

(195 mm high × 100 mm wide × 20 mm thick) as shown in Fig. 2.15. The 

rock face is modeled by a wooden block, which can, through a screw 

arrangement, be positioned at varying distances d from the wall. Face of the 

block is coated with the sand used as fill, so that the friction between the rock 

and the fill is equal to the angle of internal friction of the fill. Frydman and 

Keissar found that Spangler and Handy’s solution may be used for estimating 
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lateral pressure for the no-movement (Ko) condition. 

 17


