

I BRIHEPAB D N RANHHAF AP EIFEFET

In-car Tour Guidance in Outdoor Park Areas Based on Augmented
Reality Techniques Using an Omni-camera

BoyoA L iEp Student : Yen-Cheng Wei
EFRR R Advisor : Wen-Hsiang Tsali
B e i s &

I o B R A S s
RO T
A Thesis

Submitted to Institute of Multimedia Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
June 2013

Hsinchu, Taiwan, Republic of China

In-car Tour Guidance in Outdoor Park Areas Based
on Augmented Reality Techniques Using an

Omni-camera

Student: Yen-Cheng Wei Advisor: Wen-Hsiang Tsai

Institute of Multimedia Engineering,
College of Computer Science

National Chiao Tung University

ABSTRACT

In this study, an augmented-reality based tour guidance system for use in park
areas using a vehicle and computer vision techniques has been proposed. With the
proposed system, a user in the vehicle driven in a park area can get from the system
tour guidance information about the names of nearby buildings along the path. The
building names are augmented on the passenger-view image which is displayed on the
mobile device held by the user in the vehicle.

To implement the proposed system with the augmented reality function, firstly an
environment map is generated in the learning phase, which includes the information
about the path of the tour, the along-path line features which can be detected for
vehicle localization, and the building names. All the data are learned either manually
or semi-automatic, and saved into the database for use in the navigation phase.

Secondly, a method for detecting along-path vertical-line features which appear
in the omni-image is used to localize the vehicle. The method detects edges in the

input omni-image, and analyzes them to detect continuous or broken vertical lines

with widths.

Next, a method for vehicle localization is proposed, which analyzes the detected
line features and computes the vehicle position by a modified longest common
subsequence algorithm. Meanwhile, motion vectors are used to estimate the vehicle
speed for locating the vehicle when there is no detectable feature around the vehicle.

Finally, a method is proposed for generating a passenger-view image by
transforming the omni-image aequired from the omni-camera onto the user’s
mobile-device screen. And with the passenger-view image as a base, a method has
been designed to augment the building name on the image for display according to the
computed position of the building yielded by the vehicle localization process.

Good experimental results are also presented to show the feasibility of the

proposed methods for real applications.

FIFR GRS BN ME R R R =ZSNE
EEE

e

AEE R Al B R E TGAR L AT 02 2 - B AN H F & (augnented
reality; AR)$kiiming LBl % BI04 S o JIT 0 s > R ¥ X B A AFT T
BA T bRt SR B SR T AL R NS) R
¥ —Jﬁﬁaiﬁr’;{iﬂii BijrmE q) .

AR - %ﬁ\m’iFipiiﬁ”“FﬁfﬁﬁH@’H%
LA %ﬁ?m&)‘u FREA R LE P HITE AT e 2 H AR

TR owd FREGLIH AL A HNEY 268 g o33 - FREDEE LR
B* o
T R AT R A B TR R B R B Bl
78 iﬁ?,:ifi_’rﬁ"‘v ER AR LS £2 2 3-8 S G-I A VAR T B I S
AAFEEF TR ARN ORI K
Borbs AR R RS RS HUR B A4 ERIFehE R T e
FReni ¥ o R D R (T R e F A PP A B B e £ (motion
vector) k7 fz B f@iE & > %ﬁ' FEEEeTIE Y -
Bots s A I BB T P S B R(S 0 A S RA R
FNB i F PR M AT FER L PR B AR
FI* B R g o BZ AP AR g R Ak Bt E A o

ACKNOWLEDGEMENTS

The author is in hearty appreciation of the continuous guidance, discussions, and
support from his advisor, Dr. Wen-Hsiang Tsai, not only in the development of this
thesis, but also in every aspect of his personal growth.

Appreciation is also given to the colleagues of the Computer Vision Laboratory
in the Institute of Computer Science and Engineering at National Chiao Tung
University for their suggestions and help during his thesis study.

Finally, the author also extends his profound thanks to his dear mom and dad for

their lasting love, care, and encouragement.

CONTENTS

ABSTRACT (in ENGHSN)...coiiiiieie e i
ABSTRACT (IN ChINESE) ...ttt ii
ACKNOWLEDGEMENTS ..ot Y
CONTENTS ot e ettt e e et b e e e s s bb e e e e s antbeeas vi
LIST OF FIGURES. ...ttt X
LIST OF TABLESottt XVi
Chapter 1 INTrOTQUCTIONuee it it dhee e bttt 1
1.1 Background ant MOTIVATION .. i i nnbene it 1
1.2 Survey of Related STUAIESccooiiiiiiieiie et s shb et 4
1.3 Overview of Proposed Methodsceiiureiiiueeeiiee it caiiinee e 5
1.3.1 Tegnimotooes . . B B .. WA ... A9 5
1.3.2 Brief Descriptions of Proposed SyStemcccveviveeiiieeninnnn. 5
1.4_5 [ContriBUEIONS -l R 8
1.5 ThesSiS OrganizZatiOncccc.....cieeesueeessuueesssueeasseeeasneessnneesssasasseseessesesnnees 9
Chapter 2 System DeSIgN @N0 PrOCESSESeiuuuresssusssssnsssssnseessreeessmsancnsansssssenneeeens 10
2.1 ldeas of Proposed Method................c.i ittt e 10
2.2 System of ConfIQUrationccccvveiiiieiiiee s ciie e cie s stie e seee e 12
2.2.1 Hardware Configurationcui e 13
2.2.2 Software Configuration..............coieiirieeiiiee e 15
2.2.3 Network Configurationcccceevveeeiiie e 16

2.3 NEtWOTIK SYSEEIM.....coiiiiieiie e 17
2.3.1 Server-side SYSIEMcociii i 17

2.3.2 Client-Side SYStEM......cccvieiiiie e 18

2.3.3 Cooperation between Client and Server Sides..........c..ccccvveennee. 18

2.4 SYSLEM PIrOCESSEScciiviiiiiiie e e ettt e et a e e e e e s s rr e e e e e e s e 20
24.1 Learning PrOCESScuuviieiiiiiie ettt 20

24.2 NaVIQatIoN PrOCESSveeiieiiieiiiieitie et 21

Chapter 3 Learning of ENVIFONMENTSc.cuviiiiiiiiiiiiesiieeee e 23
3.1 lIdeas of Proposed Environment Learning Techniques.............cccccceenveen. 23
3.2 Coordinate Systems Used in This StUdYcccooeiiiiiiiiiiiiiciieins 24
3.3 Construction of ENVIronmMent Mapcccocveiieeiieiiieniienie e 25

331 Information Included in Environment Mapcccoevenieeninens 26
3.3.2 Creation of Database for Environment Map............c.cccoovenneene. 27
3.4 Learning of ENVIFONMENE FEALUIES wiuvu. . ieiueciine e itbiiiesiiiesiie e 28
34.1 Learning of Navigation Paths..............cci it 28
3.4.2 Learning.of Vertical Lines in Environmentscceeeevveernnnnns 30
34.3 Learning of Building INformationcoevveevoiiieiiee e 34
3.5 Experimental RESUILSccooiiiiiiiiineiiiiini e see e 35

Chapter 4 Automatic Detection of Vertical Lines in Environments with an

OMNiTCamBI@.................... T " G - 37
4 lagiRiroductigiie P 37

4.2 _ldea of Analysis of Vertical Lines in Omni-images.........ccccivueeervveeennn. 38

4.3 Detection of Vertical Lines in ENVIrONMENLS.......cccootiiiieeieeneeineinene 44
4.3.1 Initial Detection by Canny Edge Detector................ccccveevvennne. 44

4.3.2 Detection of Lines With WIdths.........c.....ccooiiiiiii 45

4.3.3 Detection Of BroKen LiNeSccoveieinienieiiiieiesecsee e 47

4.4 Algorithm for Vertical Line Detectin..........ccccccvvvveivieeeiiee e, 49

45 Experimental RESUILSc.ccoviuieiiiiieie e 51

Chapter 5 \ehicle Localization for Tour Guidance in Outdoor Park Areas by

Computer ViSion TEChNIQUEScvvveiiiee ettt 54
51 INEFOAUCTION ... 54
5.2 Estimation of Vehicle Speed..........ccoovii i, 55

5.3

5.4

5.5

5.6

5.2.1 Computation of Motion VECIOIS..........ccovvviiieiiieiiieie e 55

5.2.2 Vehicle Speed Estimation Using Motion \Vectors....................... 57
Vehicle Localization by Single Line Featurescccooovevveiieniiennn, 58
531 Idea of Vehicle Localization by Line Features............ccccoceenunen. 59

5.3.2 Algorithm for Vehicle Localization by Single Line Features 60
\ehicle Localization by Multiple Line Features............cccovviiveniieninn, 61
541 Review of Longest Common Subsequence (LCS) Algorithm.... 61

54.2 \ehicle Localization using Multiple Features by LCS Algorithm

63
Knowledge-based AnalysiS OF TOUIS........ccoveiieireiiiisinine e sisiiecieeesienns 64
551 Uses of Knowledge about EnVironments............coccevveeiveeennee. 64
5.5.2 Algorithm for Vehicle Localization in Tourscccccoeeveevnnnnn 66
Experimental RESUILSc.. i it e 67

Chapter 6 Proposed Augmented Reality-Based Tour Guidance Using an

Omni-GANEEER ... [W 70
6.1 ldeas of Proposed TEChNIQUES........ ..ot iei it it et e 70

6.2 Construction of Images from Front Passenger’s View.........ccccccvvveeeinnne 71
6.2.1 Construction of Image-to-space Mapping Table........................ 71

6.3

6.4

6.2.2 Review of Adopted Method for Perspective-view Image

GBNEIALION ...ttt ne e 79
6.2.3 Review of Generation of Perspective-mapping Table................. 82
6.2.4 Generation of Passenger-view Imageccccevvveeviveecnee e, 84

Augmenting Names of Buildings on Passenger-view Images................ 88

6.3.1 Calculating Positions of Buildings in Passenger-view Images... 89
6.3.2 Algorithm of Augmenting Names of Buildings on Images 90

Tour GUIANCE 1N PArK ATBASceeee e 93

6.4.1 Ideas of Tour Guidance in Park Areascooeeeeeeeeeeeieeeeeeeennn, 93

6.4.2 Algorithm for Tour Guidance in Park Areas...........cccccoeevvernnnnns 93

6.5 Experimental RESUILSceeiiiiieiiieciie e 95
Chapter 7 Experimental Results and DiSCUSSIONS..........ccccuveirireiiireeiiieesiieesieeens 97
7.1 Experimental RESUILSccveviiiiieiieecee e 97

7.2 DISCUSSIONS ...ttt 101
Chapter 8 Conclusions and Suggestions for Future WOrkscccccceveevveennnnen. 103
8.1 Conclusio A7 TR 103

8.2 Sugge or Future WOrks.........c.cccevvennnn 7 T 104

LIST OF FIGURES

Figure 1.1 Proposed AR-based tour guidance system. (a) Image of the used vehicle.

(b) Hlustration of proposed AR-based guidance system working on a

MOVING VENICIE. ... 3
Figure 1.2 A flowchart of proposed learning procCess.ccccevvvenieiiieenineenee s 7
Figure 1.3 A flowchart of proposed navigation ProCESS. iu..........ccveerveerueereesinesnens 8

Figure 2.1The video surveillance vehicle used in this study with an omni-camera
affixed on the car roof. (a) A front view of the vehicle. (b) A side view of
WY ICle Bremeewendll.. . B RN 10
Figure 2.2 Positions of the omni-imaging device affixed to the video surveillance
vehicle roof and the corresponding FOV. (a) The device is affixed at the
rear-middle of the car roof. (b) The device Is affixed at the right-front of
e car roof..... [. S S;— ... 11
Figure 2.3 Structure of the proposed surveillance system.cccccccuvveeinennnn 13
Figure 2.4 The component of the camera device and entire device. (a) AISYS

ALTAIR U500C cameras. (b) JHF8M-5MP lens. (c) Entire camera device.

.. 15
Figure 2.5 The architecture of the local network used in this study. 16
Figure 2.6 Cooperation between client and server Sides.ccccveeviveeiieeeciveeenn, 19
Figure 2.7 Flowchart of 1earning ProCess.cccveeiiieeiiieeiiire e 21
Figure 2.8 Flowchart of proposed tour guidance SyStem.cccoveevvveeiiveeesveeennn, 22

Figure 3.1 The three coordinate systems used in the proposed system. (a) The global
coordinate system. (b) The camera coordinate system. (c) The image

COOTAINALE SYSTEIM. ..eiiiiiiiiii ettt 25

Figure 3.2 User interface for real-world map construction by use of OpenStreetMap.

Figure 3.3 The real-world map we use in the proposed SyStem.ccccovverveennns 27
Figure 3.4 The vehicle on a path while detecting a feature. (a) An illustration of the
vehicle driving on the path. (b) An omni-image with a detected feature —
A NIGNE POIE. ..o 30
Figure 3.5 Illustrations of multiple feature detection. (a) Illustration of detected
feature on the map. (b) The angle of features detected. (c) Illustration of
calculating the angle of Gr.oooviiiiiii i e 32

Figure 3.6 Learning of buildings. (a) An illustration of learning the building. (b)The

result of learning the building Inthe Map........ic.cccee e, 34
Figure 3.7 The environment map we use in the proposed System.cccceeeveennne. 36
Figure 3.8 The environment map with the path...............cccc e 36
Figure 3.9 The environment map with the path and features.cc.coec oo 36
Figure 4.1 Camera and image co0rdiNate SYSLEIMS.ueesssuresseerervrreiineeesmnsnsssnneeens 40
Figure 4.2 Hlustration of a space line projected on to the image plane. 41

Figure 4.3 An illustration of detection of lines with widths in the image. The black
boxes are line points; the yellow area is the region we define as a line; and
the red line specifies the direction of this line.ccccooviieinn, 46
Figure 4.4 An illustration of a line detection. The black painted box is line points.
The red painted box is the scan point Ps. The green painted box is the
NEIGNDOr POINES Pr..vveeeiicc e 47
Figure 4.5 An illustration of a broken line detection. (a) A broken line with a 80%
density. (b) Two lines whose overall density is 80%.ccccccevveennen. 48
Figure 4.6 An illustration of vertical lines in an omni-image. The area of red points

are the center of the omni-image, and each green line corresponds to a

Xi

vertical line in the real-world Space. ... 50
Figure 4.7 Illustrations of the phenonmenon that a vertical line become a radial line
in the omni-image. (a) Scene 1. (b) Scene 2........ccccvevieiiiiienicie 52
Figure 4.8 Results of Canny edge detection. (A) Result of Figure 4.7(a). (B) Result
OF FIQUIE 4.7(1). .ot 52
Figure 4.9 Results of vertical line detection. (a) Result obtained from Figure 4.8(a).
(b) Result obtained from Figure 4.8(D).cccovvvieniiiiiiiiieieeee 53
Figure 5.1 An illustration of searching for the best-match macroblock.................... 55
Figure 5.2 An illustration of cutting a part of the omni-image for motion vector
computation. The area enclosed by the red line is the part we cut. 57
Figure 5.3 An illustration of locating the vehicle. (a) An omni-image with a detected
line feature. (b) An illustration of locating the vehicle on the map. 59
Figure 5.4 An Illustration Of Omni-Image. (A) The Omni-Image Which Divided Two
Parts. (B) Two parts of image and the purple line is direction of system to
detect the 1IN FEALUIES.uvressressressssnnsssnessnssnne e sbne sheenna s 65
Figure 5.5 Detected motion vectors in an omni-image. (a) The original image. (b)
P dBeSed MOTION VECTONS.eeeeeeeeeee R 68
Figure 5.6 The localization of vehicle by using single feature. (a) The omni-image
acquired from the camera. (b) A binary omni-image, in which the red line
is the detected line feature. (¢) The map showing the position of vehicle
where the red point is the position of the vehicle and the blue points are
the poSItions Of TEALUIES.c.eceiivie e 68
Figure 5.7 \ehicle localization by using multiple features. (a) The omni-image
acquired from the camera. (b) A binary omni-image, in which the red lines
indicate detected line features. (¢) The map showing the position of

vehicle, where the red point is the position of the vehicle and the blue

Xii

points are the positions of the detected features.ccccccvviveiiieennnn. 69

Figure 6.1 The space points and their corresponding image points............cccocvevveen. 72
Figure 6.2 Finding out the focal POINt Om.ceviviiiiiiiieiie e 73
Figure 6.3 The interface for acquiring the data of the world space points................ 74
Figure 6.4 Nonlinear property of an omni-camera with mirror surface shape. 75
Figure 6.5 Mapping between pano-mapping table and omni-image.cc.c...... 77
Figure 6.6 Creation of pano-mapping table. ... 78

Figure 6.7 A Top-view configuration for generating a perspective-view image. 79
Figure 6.8 A lateral-view configuration for generating a perspective-view image. .. 82
Figure 6.9 Illustration of construction of a perspective-mapping table. (a) A Top-view
configuration for generating a perspective-mapping table. (b) A
lateral-view configuration for generating a perspective-view image....... 84
Figure 6.10 An illustration of viewpoint in the vehicle. (a) Top-view of the vehicle
where the blue star is the viewpoint and the red line is the region of the
view. (b) Side-view of the vehicle where again the blue star is the
viewpoint and the red line is the region of VIieW.c..cccccienvneecnenne, 85
Figure 6.11 An illustration of viewpoints through the windshield. (a) The left side
angles, where the yellow line is a horizontal line with an angle of zero,
and the red line is the boundary of the viewpoint. (b) The right side angles.
(c) The upside angles, where the yellow line is a vertical line with an
angle of zero, and the red line is the boundary of the viewpoint. (d) The
downside angles. (e) all view of the viewpoint.cccoceevieeiineennen. 86
Figure 6.12 An illustration of shifting the viewpoint. (A) Top-view of shifting the
viewpoint where the blue star is the viewpoint we set and the green star is
the viewpoint of camera. (B) Side-view of shifting the viewpoint where

the blue star is the viewpoint we set and the green star is the viewpoint of

Xiii

(072 10 1C] - TP PP PP PPPPPPPP 87
Figure 6.13 Illustration of construction of passenger-view images. (a) A Top-view
configuration for generating a passenger-view image. (b) A lateral-view
configuration for generating a passenger-view image.ccccccvevveenennns 89
Figure 6.14 An illustration for calculating the angle of the direction to the building.90
Figure 6.15 An illustration for calculating the position of the building.................... 90
Figure 6.16 An illustration of caleculating the building position.ccccocveieens 91
Figure 6.17 An illustration of the view of the image. (a) The entire building can be

seen in the image. (b) Only part of the building can be seen in the image.

Figure 6.18 (a)The omni-image acquired from the omni-camera. (b)The
passenger-view image transformed from (a). (¢)The omni-image acquired

from the omni-camera. (d)The passenger-view image transformed from (c)

.. 95
Figure 6.19 Two passenger-view images with the building names augmented. 96
Figure 7.1 The environment map we use in the proposed system.c.ccevveernennnne. 97

Figure 7.2 An experimental result of the learning stage. (a) An image of the vehicle
driven on the path and detecting the line feature. (b) An omni-image

acquired from the omni-camera. (c) A line feature detected by the system.

Figure 7.3 An experimental result of detecting the line features and locating the
vehicle. (a) An omni-image acquired from the omni-camera. (b) Another
omni-image acquired from the omni-camera. (c) A line feature detected by
the system. (d) Another line feature detected by the system. (e) The
location of the vehicle computed by the system and indicated by the red

point. (f) Another location of the vehicle computed by the system and

Xiv

indicated by the red POINt.cooiiiiiiiie e 99
Figure 7.4 AR-based navigation. (a) An image of the vehicle on the path. (b) An
omni-image acquired with the omni-camera. (c) The passenger-view
image with an augmented building name. (d) Another image of the vehicle
on the path. (e) Another omni-image acquired with the omni-camra. (f)

Another passenger-view image augmented with the building name.100

LIST OF TABLES

Table 2.1 Specifications of the laptop computers and the pad used in this

] (1)P SUSPPR 14
Table 2.2 Specification of the CMOS cameras used in the imaging device 15
Table 2.3 Specification of the lens used in the imaging device.................. 15

Table 6.1 Example of pano-mapping table of size MXN.............ccccevvennne. 73

Chapter 1
Introduction

1.1 Background and Motivation

With the advance of technology, video cameras are widely used in many applications
that bring convenience in our daily life. For instance, a vehicle equipped with on-top
video cameras can help a driver to monitor surrounding environments and to be aware of
dangerous situations so that-car-accidents.could be avoided. Furthermore, if people drive
cars which are equipped with video cameras working like digital event recorders, then
when car accidents occur, they can clarify the responsibility by checking the recorded
video.

Most researches of vision-based techniques are based on the use of traditional
projective video cameras, but the limited field of view (FOV) of this type of camera
causes some problems. For example, if we want to see all the views surrounding the car,
we need more than four projective cameras in general. This needs more cost and
superfluous computation time. Thus, we choose to use an omni-camera to be our imaging
equipment in this study.

Moreover, we can use this camera system to develop interesting and useful
applications by combining real-world images captured from the cameras and augmenting
them with guidance information created by computers for the purpose of tour guidance in
outdoor environments. In other words, the real-world environment can be augmented by
computer-generated information (labels, texts, objects, etc.) to enhance the perception of

the real world, and this is the so-called augmented reality (AR)-based tour guidance.

1

In more detail, the AR technique can help implementing a car navigation system
which provides the driver with information of roads and surrounding buildings by
projecting the names on the windshield or on a display device such as an iPAD [1] in an
AR way. There exist products of head-up displays (HUDs) on the windshield, which can
show information like the vehicle speed and the engine speed. With the HUD, the driver
can easily catch the information from the HUD device instead of looking down at the
dashboard, allowing he/she to focus on driving without being disturbed. Sometimes, the
latter action of looking down is the reason of a car accident. In addition, although AR
techniques based on the Global Positioning System (GPS) are getting popular nowadays,
sometimes they are difficult to utilize for the purpose of car positioning because of their
imprecision in positioning with errors ranging from 3 to 15 meters. Also, the GPS does
not work in tunnels or inside buildings.

Therefore, we propose in this study to integrate the uses of omni-cameras and AR
techniques with a vehicle to implement a more accurate and effective non-GPS guidance
system for driving tours in park areas. Furthermore, instead of using the HUD device
for displaying the augmented image, Chen and Tsai [1] Showed the augmented image
on an iPAD and projected the image onto the car windshield for the driver to inspect
during driving without looking down. In this study, we, however, assume that the
AR-based guidance information is to be inspected by a passenger sitting in the car, so
we display the guidance information on the screen of an iPAD held by the passenger
all the time during the driving guidance session. Moreover, in order to get the
information of an environment map, we use computer vision techniques to obtain the
positions of nearby buildings via analysis of the features in the omni-images acquired
by the omni-camera.

In summary, the research goal in this study is to develop a tour guidance system

for use by passengers in cars. To accomplish this goal, we use a vehicle equipped
2

with an omni-camera on the vehicle top as an experimental platform. Also, we use an
IPAD as a display device for showing the augmented image. The iPAD is held by a
passenger sitting in the car.

An image of the used vehicle is shown in Fig. 1.1(a) and an illustration of the
proposed system is shown in Fig. 1.1(b). Listed below are more detailed descriptions

of the desired capabilities of the proposed AR-based park-area guidance system.

Building 1 Building 2

Figure 1.1 Proposed AR-based tour guidance system. (a) Image of the used vehicle. (b)
Illustration of proposed AR-based guidance system working on a moving vehicle.

1. The system can learn the environment map automatically.

2. The system can detect vertical line features in the environment automatically and
measure their positions. It then marks the relative locations of the vehicle with
respect to the line features on the environment map.

3. The system is capable of computing the accurate vehicle position so that relevant
augmented information can be computed accordingly and displayed on the iPAD
at correct locations.

4. The image appearing on the iPAD shows in an AR way as a combination of the

real-world image and the nearby building names for tour guidance.

1.2 Survey of Related Studies

In this section, we give a survey of related studies, such as video surveillance,
design of omni-cameras for uses on vehicles, vehicle navigation, AR techniques, etc.
In recent years, video surveillance for various applications has been studied more
intensively. For instance, Trivedi et al. [2] proposed methods to enhance driving
safety by video surveillance systems using omni-cameras. In addition, Jeng and Tsai
[3, 4] proposed a method based on the concept of pano-mapping table to calibrate
omni-cameras . without knowing the extrinsic parameters of the omni-cameras.
Moreover, a new type of omni-vision system designed by combining two projective
cameras and two mirrors attached back to back was proposed in Kuo and Tsai [5].

Furthermore, a lot of methods for vehicle navigation by using landmarks have
been proposed. Betke and Gurvits [6] proposed a localization method to identify
surrounding landmarks and find their locations in an environment map. For detection
of landmarks in omni-images, Ho and Chen [7] proposed an algorithm to detect
ellipses, and Wu and Tsai [8] proposed a method which uses the features of lines to
localize the vehicle.

In a similar work, Grosch [9] proposed a method for vehicle navigation in the
indoor environment by using panoramic images. Moreaver, more and more outdoor
environment applications using AR techniques have been proposed. Lee et al. [10]
proposed a method using omni-camera to conduct object tracking in outdoor
environments, simulating the user’s view with AR techniques. Reitmayr and
Drummond [11] proposed a model-based tracking system for augmented reality in
urban environments by using handheld devices. Furthermore, Sandor et al. [12]
proposed a method that uses AR techniques for delivering information to a driver by a

head-up display device.

1.3 Overview of Proposed Methods

1.3.1 Terminologies

The definitions of some related terms used in this study are described as follows.

1. Omni-camera: an omni-camera has a mirror with a hyperboloidal or other
geometric shape in front of a conventional projective camera, which projects a
360-degree surrounding scene onto the camera’s imaging plane to form an
omni-image by the mirror surface reflection function.

2. Omni-image: the image captured with an omni-camera device.

3. Video surveillance vehicle: a car with an omni-camera equipped on the top of the
car.

4. Environment map: a real-world map constructed by “OpenStreetMap” (an open
source for the Internet) and including features learned by our system.

5. Features of vertical lines: features in the real world which has wvertical-line
shapes such as light poles on street sidewalks, edge lines on building walls, etc.

6. Perspective-view image: an image originally acquired with the omni-camera and
later perspectively-transformed into another image as it is seen by the human

eye.

1.3.2 Brief Descriptions of Proposed System

There are four goals in the proposed system as described in the following.

1. The system is able to learn the environment objects automatically such as defined
features, navigation paths, and building information on the map.

2. The system is able to detect vertical lines in outdoor environments.

3. The proposed system is able to compute the information of the position of the

4.

vehicle.
The system is able to generate the passenger-view image for viewing on an iPAD
and augment nearby building names on it.

In order to achieve the above goals, the system operations can be divided into

two phases: the learning process and the navigation process. The following are the

mayjor steps of the learning process.

1.

Construct a real-world map by the open source ‘“OpenStreetMap” available on the
Internet.

Select a path on the map, and specify manually as nodes the positions of
landmarks (such as street light poles or wall edges on buildings), whose features
are usable for vehicle localization, along the path on the map.

Set up the omni-camera on the top of video surveillance vehicle on the front-right
carner, drive the vehicle to follow every node along the path, acquire an image of
the node environment, “learn” (1) the features of the corresponding landmark in
the acquired image and (2) the buildings which are located around the vehicle, and
record the data into a database.

Calculate the corresponding relation of the path and the features automatically.

A brief illustration of the above learning process is shown in Fig. 1.2. And the

following are the major steps of the proposed navigation process.

1.

Set up the t omni-camera on the top of video surveillance vehicle on the
front-right corner.

Load environment map information learned in advance and the mapping table for
the omni-image into the system.

Detect vertical line features in the surround of the video surveillance vehicle using
the omni-camera.

Use the detected features to calculate the position of the wvehicle on the
6

environment map.

5. Calculate the position of the nearby building on the map by using the computed
location of the vehicle.

6. Generate the passenger-view by transforming the omni-images acquired by the
omni-camera.

7. Augment the building name on the passenger-view image.

8. Repeat the above steps until the a pre-selected destination.

A brief illustration o

Figure 1.2 A flowchart of proposed learning process.

Process of
Navigation Stage

|

Gtart of Tour Guidanc9

|

Detection of features

A A

Calculation Position of Generation of
the vehicle Passenger-view Image

I

Calculation Position of
the Building

Augment the Building
name on Image

I

Display Resulting Image

Figure 1.3 A flowchart of proposed navigation process.

1.4 Contributions

The following is a list of the major contributions made in this study.

1. Amethod is proposed to learn the environment map automatically.

2. A method for detecting features of vertical lines in outdoor environments using
omni-camera is proposed.

3. A method for computing the position of the vehicle on a pre-selected path by
detecting one or more vertical-line features in the real world is proposed.

4. A method for generating the passenger-view image by transforming the acquired
omni-image and calculating the boundary position of the passenger’s view is

proposed.

5. A method for computing the positions of buildings on the passenger-view image,
and augmenting the names of the buildings on it is proposed.
6. Atour guidance system for use on a vehicle in a park area by using AR techniques

and an omni-camera is proposed.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, the
configuration of the proposed system and the system processes are introduced in
detail. In Chapter 3, the proposed method for constructing the environment map and
learning of the environmentis-described. In. Chapter 4, the proposed method for
detecting vertical-line features in the outdoor environment with an omni-camera is
presented. In Chapter 5, the proposed method for vehicle localization in tours in
outdoor. park environments by using computer vision techniques is described. In
Chapter 6, the proposed method for AR-based tour guidance is presented. In Chapter
7, experimental results and discussions are included. Finally, conclusions and some

suggestions for future works are given in Chapter 8.

Chapter 2
System Design and Processes

2.1 ldeas of Proposed Method

In order to monitor the surrounding environment of the video surveillance
vehicle, we choose the use of omni-cameras instead of traditional projective cameras
to acquire environmental images. In this study we affix an omni-camera on top of the
vehicle as shown in Figure-2.1. The.omni-cameras In the device can monitor a
360-degree view of the car surround and acquire necessary scene information outside

the vehicle.

Figure 2.1 The video surveillance vehicle used in this study with an omni-camera
affixed on the car roof. (a) A front view of the vehicle. (b) A side view of the vehicle.
The video surveillance vehicle has high mobility so that we can move the
system to everywhere. But we have to determine the best locations on top of the
vehicle where the omni-imaging device should be affixed in order to enhance the
imaging effect. As illustrated in Figures 2.2(a) and 2.2(b), if we affix the device at the

front middle of the top of the vehicle, a half of the omni-image acquired with the

10

device will be occupied by the vehicle body. On the contrary, if we affix it at the
right-front position on the top of the vehicle, only a quarter of the omni-image is
occupied by the vehicle body instead. Therefore, in this study we decide to affix an

omni-imaging device at the right-front of the top of the vehicle.

CE_II‘ Car 7
~.. N
(@) (b)

Figure 2.2 Positions of the omni-imaging device affixed to the video surveillance
vehicle roof and the corresponding FOV. (a) The device is affixed at the rear-middle
of the car roof. (b) The device is affixed at the right-front of the car roof.

Furthermore, we choose the upper omni-camera in the omni-imaging device for
capturing features at larger heights such as those of buildings and light poles. In more
detail, it is noted at first that each omni-camera captures a view of a hemisphere shape,
so we can use this wide view to detect the vertical lines in the environment. In
addition, a characteristic of the vertical line in the real world, when projected into the
omni-image, is that the line appearing in the omni-image will go through the center of
the omni-image. Therefore, we may consider vertical lines in the real world as good
features and detect them in omni-images utilizing this characteristic.

Next, we localize the vehicle using combinations of line features. For example,
at some positions along navigation paths, the omni-camera may detect the feature

lines of buildings and light poles in the meantime. In such cases, we regard the
11

combination of the two types of features as a new type of feature learned by the
system.

Moreover, we generate perspective-view images, transform them into
passenger-view images seen on the mobile device held by the passenger, and augment
tour-guidance information on it. Even if the back-seat passenger in the vehicle can
watch the front passenger’s view image on his/her own mobile device for tour
guidance.

Finally, we implement the system by using a 4G/LTE network for data
transmission. By using such a high-speed network, we can send the data to the server
to achieve faster computations.and.send the results to the mobile device held by the
passenger. Every passenger in the vehicle can view the tour guidance via the system.
Furthermore, because we display the result on the web, even people not in the vehicle

can also enjoy this AR-based tour guidance.

2.2 System of Configuration

In this section, we introduce the configuration of the proposed system in more
detail. The hardware of the system includes: 1) a video surveillance vehicle, 2) an
omni-camera, and 3) a laptop computer, 4) a server computer, and 5) a pad. The
software includes: 1) a program used to integrate the components of the proposed
system, 2) the drivers of the omni-cameras, and 3) the program for image acquisition
developed by AYSIS VISION Company which is a provider of CCD cameras. The
omni-camera is controlled by the laptop computer, and the pad receives information

from the server computer which is kept at a cloud site.

12

2.2.1 Hardware Configuration

The surveillance vehicle, named Delica, is made by Mitsubishi Co. It is a vehicle
with size 469cmx169cmx196cm with a working table and a power supply. System
operators may sit inside the surveillance vehicle to operate the laptop computer and
monitor the entire surrounding environment. Moreover, a steel frame is affixed to the
top of the vehicle, on which the omni-imaging device is affixed. And extension USB
cords and a cross-over cable crossing the video surveillance vehicle were added to
facilitate transmitting images captured with the omni-imaging device. The entire

video surveillance system is shown in Fig. 2.3.

Camera
System

‘ surveillance vehicle

&

4GILET Network akiche
Server
Computer \z

Figure 2.3 Structure of the proposed surveillance system.

13

In order to control the entire guidance system, we use a laptop computer, a server
computer, and a pad as control units, with the laptops handling the omni-imaging
device. The laptop is produced by TOSHIBA Computer, Inc. The pad, named Eee Pad
Slate B121, is produced by ASUS Computer, Inc. Detailed specifications of these
devices are listed in Table 2.1.

The omni-imaging device used in this study consists of two omni-cameras
combined coaxially in the longitudinal direction, connected back to back, and
tightened by a specially-designed steel holder. Each camera includes a lens of model
JHF8M-5MP which is shown in Fig. 2.4(a), and a CMOS sensor of model AISYS
ALTAIR U500C which..is-shown in Fig. 2.4(b). The JHF8M-5MP model is a
mega-pixel lens with the parameters of 2/3", 8mm, and F2.8-22. The specification of
the CMOS camera sensor is shown in Table 2.2 and the specification of the lens are
shown in Table 2.3. The entire omni-imaging device shown in Fig. 2.4(c) is formed
with a pair of AISYS ALTAIR U500C cameras and Is affixed on the top of the steel

holder.

Table 2.1 Specifications of the laptop computers and the pad used in this study.

Satellite A660 Eee Pad Slate

CPU Intel Core i5-480M Intel Core
2.66/2.93GHz 15-470UM 1.33GHz

RAM 2G DDR3 4GB DDR3

1066MHz 1066MHz
GPU ATl HD5650 None
Network Fast Ethernet LAN WLAN 802.11

b/g/n 2.4GHz

14

Table 2.2 Specification of the CMOS cameras used in the imaging device

AISYS ALTAIR U500Color Camera 5.0M

Sensor type CMOS
Sensor size 1/2.5" (5.70 x 4.28 mm)
Pixel size 2.2x2.2 um
Frame per 3~7 FPS
second
Transfer Type USB 2.0(480 million bytes per second)

Table 2.3 Specification of the lens used in the imaging device

Lens JHF8M-5MP

Focal Length 8 mm
Maximum Relative Aperture 1:2.8
Iris F2.8 22
Angular Field of View 57.9 X 45.0 deg
Image Format 8.8 X 6.6 mm (D11mm)
Minimum Object Distance 0.1 m (From Front Vertex)

Micro Type

(@) (b) (©)

Figure 2.4 The component of the camera device and entire device. (a) AISYS ALTAIR
U500C cameras. (b) JHF8M-5MP lens. (c) Entire camera device.

2.2.2 Software Configuration

We use a Visual Studio 2010 (VS 2010) as the development platform to build our
guidance system. The VS 2010 is a program development tool for the operating
system of Windows. The programming language we use is C++. It is a widely used

language. The laptop and the pad run under the operating system of Windows 7.

15

In order to use the camera devices, we have to install the drivers of the ALTAIR
U500C cameras into the laptop. The camera company also provides corresponding
software development kits (SDKSs). In addition, we can get the source codes and so we
can understand the purpose of the call functions in the program. Accordingly, we can
adjust the parameters of each camera, such as the value of exposure or the global
color gain, through the SDK. Moreover, the camera company not only provides the

VS 2010 but also the BCB, VB.NET, or C#.NET to the programmers.

2.2.3 Network Configuration

The configuration of the network used in this study is as shown in Figure 2.5,
where the cameras and the laptop computer are connected through the USB cable. The
computer server at the cloud site can access the images captured by the omni-cameras
through the laptop by the 4G/LTE network, and so one can make sure that the system
always accesses correct and immediate images and messages. Moreover, the Pad

accesses the resulting images from the server computer via the 4G/LTE network also.

Camera

USB port |

Omni-ima@
Laptop

4G/LET Network
Display

% Server

Pad

Figure 2.5 The architecture of the local network used in this study.

16

2.3 Network System

In this section, we describe in detail the design of the proposed network system
used in this study. In Section 2.3.1, the server-side system used for conducting
complicated works with long computing time in the server computer at the cloud site
is described. In Section 2.3.2, we describe the client-side which includes two
functions: 1) displaying the result-on the pad device, and 2) sending the omni-image
data to the servers.. Finally, in Section 2.3.3, we will introduce the cooperative

operations between the client and the server sides.

2.3.1 Server-side System

The server-side system runs on a virtual machine (VM) of the cloud server. It is
connected to the laptop computer to send image data to the server, and the pad device
receives the result from the server. Moreover, it has heavy computation loads while
carrying out the programs implementing the proposed vision-based techniques, so we
use a more powerful cloud server to implement it.

The system in the server computer gets images from the cameras on top of the
vehicle. Then, it detects the line features in the images. Because the computational
work is heavy, we divide the work into four parts to run them on the multi-CPU server.
Next, we use the detected line features and the learned data to locate the vehicle
position.

In more detail, the database of the learned information is saved in the cloud
server that has lots of storage. Furthermore, the system uses the information of the
location of the vehicle and the learned data to calculate the positions of the buildings
in the generated perspective image, and augments the building names on it for the

passenger to inspect. Finally we put the resulting image on the web site as well so that
17

all the users, not just the passengers inside the car, can get tour guidance by

connecting to the web site.

2.3.2 Client-side System

The client-side system involves two components, namely, the laptop computer
and the pad device. The laptop computer acquires the images by connecting to the
omni-imaging device via the USB cable. Moreover, it transforms the omni-image
into the passenger-image. Consequently, the client-side system of the laptop sends
two images, which are the passenger-image and the omni-image, to the server after
their resolutions are reduced. to one sixteenth. Reduction of the omni-image
resolution to be one sixteenth will not make the vehicle localization result wrong in
most cases, but will advantageously decrease lots of data and increase the entire
processing speed of the system. After all, we propose the methods that reduce the
huge data into two parts; and in the meantime, the system can run continually with
high vehicle localization precisions.

Finally, the pad device displays the processed images by connecting to the
server and receiving processed images from it. As mentioned previously, the server
system sends the processed images for AR-based guidance via the Internet, so the
user can just visit the web site by using the pad device without running other

applications.

2.3.3 Cooperation between Client and Server Sides

The details of the functions of the server and client side systems are described in
Sections 2.3.1 and 2.3.2, respectively. Here we describe the cooperation between them
in more detail. An illustration of the cooperation between the two systems is shown in

Figure 2.6.
18

After the client-side of the laptop computer acquires an omni-image, the system
transforms the omni-image into a passenger-image firstly. Then, it sends the two
images, which are the passenger-image and a reduced version of the original
omni-image, to the server.

After the server gets the data, it starts to analyze the data. First, the system detects

the vertical line features in the reduced omni-image, and matches them with the

Laptop Computer

Detection of Vertical
Line
Vehicle Localization

- -

Augmenting
Information on
Passenger-view image

Web Site Pad Device

Figure 2.6 Cooperation between client and server sides.

19

2.4 System Processes

2.4.1 Learning Process

The first part of our guidance system is the learning process. It plays an important
role in our system. At the beginning, we need a real-world environment map.
Therefore, we choose the open-source map on the Internet to construct the first part of
the environment map. Next, we choose a path on the environment map and define it.
Then, we save the result in into the database.

Next, we equip the omni-camera on the top of the vehicle and drive it on the path
we choose. When travelling-on the path, the learning system detects vertical lines
“seen” in the images acquired with the omni-camera in the meantime. The operator
can see the vertical lines detected by system on the laptop computer, and then he/she
makes the vehicle stop and starts to “learn” the features. The learned information
includes two types: are building and light pole. The system saves information, such as
the type of each feature (building or light pole), the position of the feature in the map,
the angle of the feature, etc., as the learning result into the database. The detail of the
feature information will be discussed in Chapter 3. After traveling the path, the system
analyzes the information automatically. In this process, the system works like
simulating the traveling once again, and saves the analyzed data in the form of tables
which may be looked up in the navigation process to speed up the guidance system. In
more detail, the system can use the tables to match the detected features while running
the navigation system rather than to analyze it again and again. A flowchart of the

above learning process is shown in Fig. 2.7.

20

C Start of Learning Map)

ing process.

2.4.2 Navigation Process

The second part of the proposed guidance system is the navigation process. In
Section 2.4.1, we mentioned how we learn about environment through the learning

process. Accordingly, we can estimate the position of the vehicle on the environment

21

map and implement our tour guidance system in the navigation process. First of all,
we use the captured omni-image to detect the vertical line-shaped objects in the
environment. This process will be introduced elaborately in Chapter 4. Then, by using
the learning information and the detected features, the system can localize the current
position of the vehicle in the environment map. The detailed process will be
introduced in Chapter 5. Next, the system can calculate the position of the building
and augment the building information on the passenger-view image. The detailed
process will be introduced in Chapter 6. The entire navigation process is shown as a

flowchart in Figure 2.8.

Gtart of Touring Guidancg

Sequential
omni-images

Detection of Feature

I

Localization of
Vehicle

I

Learning | Analyzing of Current
Data 7 Map

|

Learning | Computing Position
Data | of the Buildings

!

Augment
Information on the
Image

v

()isplay Result Image >

Figure 2.8 Flowchart of proposed tour guidance system.

22

Chapter 3
Learning of Environments

3.1 Ideas of Proposed Environment
Learning Techniques

In this chapter, we describe the details of the method we propose to generate the
environment map for use.in.the proposed AR-based tour guidance system. In order to
complete the system, we must construct the environment map for use in the
navigation phase, which includes the information about the path of the tour, the line
feature detected for vehicle localization, and the building information.

The first part of environment learning is the construction of a real-world map. We
choose the “OpenStreetMap” to construct our environment map. The OpenStreetMap
is an open data commaons where peoples can modify the map free on the internet like
Wikipedia. We use the real-world map acquired from there as the base of the
environment map for this study, and define features of the environment for my system.
In more detail, each feature we define will be marked with an icon on the map. The
selected path is also marked on the map. In addition, the system can also show the
vehicle position on the map during the tour so that the user can see the map clearly.

Next, we learn the line-shaped features for vehicle localization. In order to make
our system more accurate, we have to get more information about the features. In
addition, we not only learn the position of each feature on the map but also learn the
information of the feature about how the camera on the vehicle can “see” It. The

detail will be described in Section 3.3.
23

Furthermore, we learn the building information for the system to show in the AR

image. The building information includes the building name, the building area in the

map, the area where the camera can see, and so on.

Finally, we merge all the data of the environment as the environment map that the

system can use for navigation in the tour. The detail of environment learning will be

described in the following.

3.2

Coordinate Systems Used in This
Study

In this section, we will introduce the coordinate systems used in this study, which

describe the relations between the used devices and the environment map. The

following are the four coordinate systems used in this study.

1)

)

©)

(4)

World coordinate system (WCS): denoted as (x, y, z) as shown in Figure
3.1(a). The origin Ow of the WCS, a pre-defined point on the ground, is
regarded as the starting position of the path traversed by the vehicle during
the learning and navigation processes.

Camera coordinate system (CCS): denoted as (X, Y, Z) as shown in Figure
3.1(b). The origin O, of the CCS, a focal point of the hyperboloidal-shaped
mirror, lies on the X-Y plane which is coincident with the image plane. The
Z-axis coincides with the optical center of the lens of the upper CMOS
camera in the omni-imaging device.

Image coordinate system (ICS): denoted as (u, v) as shown in Figure 3.1(c).
The u-v plane of this system coincides with the image plane with the origin
Oc located at the center of the image plane.

Map coordinate system (MCS): denoted as (My, My) as shown in Figure
24

3.1(d). The MCS is used to represent the environment map. The My-M,
plane coincides with the image plane of the floor. The origin is at the

left-top position of the image plane.

Y
ow

Evironment

(@)

MAP

© (d)

Figure 3.1 The three coordinate systems used in the proposed system. (a) The global
coordinate system. (b) The camera coordinate system. (c) The image coordinate

system.

3.3 Construction of Environment Map

In this section, we will introduce the method we propose to construct the

25

environment map. The environment map is like a database, which contains the

information that we use in the navigation process.

3.3.1 Information Included in Environment Map

The information put in the environment map includes the real-world map, the
navigation path, the vertical lines in environment, the building information. The
real-world map is constructed by the use of the “OpenStreetMap” in a website, as
shown in Figure 3.2. It is constructed by the geometry and the text describing the
buildings. In addition, we define a path on the map using piecewise line segments.
The information of the path-includes the positions of the end points of the path and
the length of it. Moreover, the features for matching along the path are also learned.

Next, we define the features for each line segment, which includes its position on
the map, the relation of the path and the feature, and the angle between the feature
and the road. Finally, building information for showing the AR image is learned,
which includes the area of the building, the name of the building, the relation

between the building and the path.

R @Ry EE | Bl BA | R

W= S =
E sz - ; = i ey <
- ! 5 3,
BEENER = ST . & o
ok KM EE) \? &
/ o o~

OpenstreetMap ek &=t 4

Eltaff Wiki 2 B 120.095237 | 120.999509

24786842

opensiectiap S—EE . | EELORER i :
H§E§332'E£‘ﬁ : ERH ! /
RESERA) A PTRIERD - :
& Lt = RS £

ik GRS,

tw
LIS
Bl P

Ry)‘,}\\\
REVPi o P 2%

i R “a v 2 i
R & EEREE
k23 == [PNG [+]

- "
sl B-E1: 1964
R i
GPS #AdF
=0] FE 7] 883 X 666

= 50m 7 IE=f
Pp— =5 }—I G
® EFER) ~[100r] @ FAE WEEE Addanote

Figure 3.2 User interface for real-world map construction by use of OpenStreetMap.

26

3.3.2 Creation of Database for Environment Map

In order to create a database for use by the system in the navigation process, we
have to save the data orderly. First, we construct a 2-dimension (2D) environment
map by the “OpenStreetMap” and choose a part of the area on the map which is big
enough to include the park environment. Next, we set an appropriate scale and a data
type for the map. In this study, the scale of the map is 1 centimeter to 10 meters, and

the data type of the map is set to be ““.jpeg” as shown in Figure 3.3.

Figure 3.3 The real-world map we use in the proposed system.

Furthermore, we save the data of the path into a data structure we designed.
Specifically, we divide the path into some line segments, each being represented by
two points. Moreover, the length of any line segment is also calculated and saved in
the database. The length dist, of each line segment p with end points at coordinates (X,

y1) and (xz, y2) is calculated by the following equation:

dist, = /(% = %,)" + (¥~ ¥2)° - (3.1)
In addition, the orientation &, of the line segment p is also calculated and saved,
which is calculated by the following equation:

27

— X X
0, =tan"(——=

Yi— Y,

). (3.2)

where the orientation 8, means the angle between the line segment and the horizontal
direction in the map.

The subsequent major task is to save the information about the features which
match with the path. In more detail, we save the number of features matched and the
tag of each feature we defined.

Also, the system has to “learn” as well the vertical lines for vehicle localization.
For this, it saves the position of each vertical line found in the environment as a point
in the map. Also, while the vehicle is moving on the path, only on a part of the path
can be “seen” by the cameras on the vehicle; therefore, for each detected vertical line,
we save the orientations in which the first time and the last time the system in the
vehicle can detect the vertical line. In other words, we learn the range of the views in
degrees in which the vertical line can be seen.

Finally, the system learns the building for showing the AR image. For. this, the
information of the building we save into the system includes the geometry of the

building drawn by lines, the building name, and the tag of the building we defined.

3.4 Learning of Environment Features

In this section, we introduce the proposed methods to learn the information about
the environment. The learning process is a necessary step for the system to get ready

to run.

3.4.1 Learning of Navigation Paths

A path for car driving in the real world is not just a straight line, but in the study,

we use piecewise line segments to describe a path. Furthermore, the system “sees”
28

each line segment as a unit which includes a lot of information about it. The detail of

learning a navigation path is described in the following algorithm.

Algorithm 3.1 Learning of a navigation path.
Input: Areal world map.
Output: An environment map with line segments drawn on it as a selected path and

the information of the path in a type of data structure.

Steps:

Step 1. Choose a line segment which can be used to compose a desired path by
defining the start point and the end point on the map for the line segment.

Step 2. Calculate the length of the line segment by using Equation (3.1) and save it
into the data structure of the path.

Step 3. Calculate the angle of the line segment by using Equation (3.2) and save it
into the data structure of the path.

Step 4. « Add all the features that the vehicle driving on the line segment of the path
can “see,” and save the number of the features also, into the data structure
of the path.

Step5. Repeat Steps 1 to 4 until all the line segments of the desired path are
chosen.

Step 6. Draw all the line segments as a path on the map.

It noted that the action of adding the features in Step 4 will be described in more

detail in Section 3.4.2. After learning the path, the system can use the path data

together with other learned data to navigate in the environment.

29

3.4.2 Learning of Vertical Lines in Environments

The learning of vertical lines includes two parts. The first part is to learn a line
feature at a time. The second is for the system to learn multiple line features
simultaneously.

It is noted that learning the path should be conducted before learning the vertical
line features. Furthermore, the most important step in our system is to calculate the
angle of the feature orientation on the map. In more detail, an illustration showing the
vehicle on the road is shown in Figure 3.4(a). And an illustration of a detected feature,
a light pole, is shown in Figure 3.4(b). We can easily calculate the angle of the
orientation of the feature as can be seen from the illustrations. The following
algorithm describes the first part of the proposed learning process — learning of

vertical-line features along the selected path.

Light pole Car Orientation

Light pole

Car Orientation

(a) (b)
Figure 3.4 The vehicle on a path while detecting a feature. (a) An illustration of the
vehicle driving on the path. (b) An omni-image with a detected feature — a light pole.

Algorithm 3.2 Learning of vertical line features.

Input: A real-world map with the path information and an omni-image |; acquired by

30

with the omni-imaging device on the vehicle.
Output: An environment map with the along-path features drawn on it and the

information of the features in a type of data structure.

Steps:

Step 1. Drive the vehicle along each line segment I; along the path and detect the
vertical lines in image I, using the feature detection method described in
Chapter 4.

Step 2. While the vertical lines are being detected, stop the vehicle and do the
following steps.

2.1 Measure the position of the feature on the map using the scale of the
map and save it into the environment map by associating the feature
with the corresponding line segment |; of the path.

2.2 Compute the orientation by which the system detects the feature for the
first time, call it the first-angle of the feature, and save it into the
environment map.

2.3 Drive the vehicle forward until the feature can no longer be detected by
the system.

2.4 Compute the orientation by which the system detects the feature for the
last time, call it the last-angle of the feature, and save it into the
environment map.

Step 3. Repeat Steps 1 and 2 until the vehicle arrives at the end point of the path.
Step 4. Draw all the features on the map.

Next, learning multiple features simultaneously is different from learning one at a
time. The learning of multiple features conducted in this study is a new method. For

vehicle localization using multiple line features, we propose to use the longest

31

common subsequence (LCS) algorithm in this study, which is based on the dynamic
programming technique. It enables the vehicle to drive on the path by using the data
learned from Algorithm 3.2 and the path information.

In some cases, the vehicle on the path may detect many features at a time like the
case illustrated in Figure 3.5(a). And the system has to learn these multiple features by
saving all the angles of the features as illustrated in Figure 3.5(b). In more detail, we

calculate the orientation of a feature by the following equation:
6, =60,-6 (3.3)

where &, means the angle between the line-segment path and the horizontal direction
in the map that is learned by Algorithm 3.1; 6y is the feature direction with respect to
the horizontal direction in the map; and é; is the feature direction with respect to the
path direction as shown in Figure 3.5(c). Then, we save the value of ¢ into the

learning data.

Light
pole

Light

Light
pole

Car
Orientation

Car
Orientation

Horizontal
Direction

Orientation

(©)

Figure 3.5 Illustrations of multiple feature detection. (a) Illustration of detected feature

32

on the map. (b) Detected angle of features. (c) Illustration of calculating the angle of 6;.

We use the detected line features to localize the vehicle by matching the angles of
the features using the LCS algorithm to. The details are described in Chapter 5. In the
following, the algorithm for learning multiple line feature data to localize the vehicle

is described.

Algorithm 3.3 Learning of multiple line features.
Input: A real-world map with the pathand feature information.

Output: Atable T of the multiple line feature data.

Steps:

Step 1. Start with the first line segment | of the pre-selected path in the map.

Step 2. Start with the first point/pixel of line segment |.

Step 3. Calculate the angle between | and each feature which matches | by do the
following steps.

3.1 Choose the feature associated with | whose data are learned from
Algorithm 3.2.

3.2 Calculate the feature angle by using Equations 3.2 and 3.3 which
setting the point/pixel of the vehicle and the point/pixel of the feature
as two end points.

3.3 Save the result into table T.

3.4 Repeat Steps 3.1 to 3.3 until all the features matching | are learned.

Step 4. Move to the next point/pixel along the line segment.
Step 5. Repeat Steps 3 and 4 until the end point/pixel of the current segment is
reached.

Step 6. Repeat Steps 2 to 5 until the end line segment of the path is reached.

33

3.4.3 Learning of Building Information

Since the system must show the building information in the AR image, an
algorithm for learning the building is necessary and is derived in the following. An
illustration of the algorithm is shown in Figure 3.6(a). The learning of the building
corner is shown in Figure 3.6(b). In more detail, we learn the edge line of the building
by connecting two corners. And it noted that the edge line we learn is the side which
the vehicle can “see”. In other worlds, there is no need to learn the side which can’t be
seen when driving on the path. Then, the system can calculate the position of the
building while driving on the path by the result of learning the edge line segments.

The details of showing the AR image will be described in Chapter 6.

Building
Corner

Building

Building
Corner

Car

. . Car
Orientation

Orientation
Building
Corner

(@) (b)
Figure 3.6 Learning of buildings. (a) An illustration of learning the building. (b)The
result of learning the building in the map.

Algorithm 3.4 Learning of building information.
Input: Areal-world map image with the path information.

Output: A table of the data of learned buildings.

Steps.

34

Step 1. Drive the vehicle on the path and detect the building(s) in the acquired
image.
Step 2. Ifabuilding is detected, stop the vehicle and do the following steps.

2.1 Save the position of the building corner P; on the map by measuring it
and using the scale of the map to calculate the position of P; on the
map.

2.2 Repeat Step 2.1 until all building corners P; are learned.

2.3 Define a line by connecting every two corners P;.

2.4 Save the building name in the data structure.

Step 3. Repeat Steps 1 and 2 until the vehicle arrived at the end point of the path.

3.5 Experimental Results

The map of our experimental environment is shown in Figure 3.7. It is the final
result of learning all features and the path. In more detail, we will present the results
of applying the proposed algorithm in this chapter step by step. First, in the part of
learning the navigation path, we defined a path in the environment as shown in Figure
3.8. After learning the path, we have a lot of information about it. Next, in the part of
learning vertical line features, we define points of features in the environment as
shown in Figure 3.9. Furthermore, the different colors of the features represent
different kinds of them, such as light pole and edge line on building walls, etc. After
the learning processes are completed, the system can use the resulting information to
locate the vehicle. Finally, in the part of learning building information, we show the
result in Figure 3.7. All the learned data are saved in the system in many data

structures we defined. Before the system starts to run, the data will be loaded into the

35

system.

Figure 3.9 The environment map with the path and features.

36

Chapter 4

Automatic Detection of Vertical
Lines in Environments with an
Omni-camera

4.1 Introduction

In this chapter, we describe the proposed method for detecting vertical-line
features in.omni-images around the vehicle. Vertical-line features include light poles
on street sidewalks or edge lines on building walls. Sometimes, such features can
even be tree trunk or some non-artificial object. In other worlds, all the objects with
the shapes of vertical lines can be features for use in our system. So our system can
match most application environments.

At first, our main idea of vertical-line feature analysis is that a vertical line in real
world, when mapped into the omni-image, becomes a radius line in the image. In
more detail, the object we see in the omni-image will generally be distorted. But only
the vertical line in the omni-image will not be so. So we take advantage of this
characteristic and regard the vertical line as a feature for use in our study:.

Secondly, a vertical line in the real world is not just a line in the mathematical
meaning; in other worlds, it has a certain width and may not be totally straight
everywhere on the line. It might be a broken line as well. So it has a lot of problems to
be solved before it can be well detected in omni-images by a software program. In this

study, we propose many techniques to solve the problems and a method using the

37

techniques to detect vertical line features in the real world successfully.

The idea behind the proposed method will be described in Sections 4.2, and the
related techniques and an algorithm to implement the method will be described in
Section 4.3. The algorithm is designed mainly for localizing the vehicle position in
the outdoor environment. And while the vehicle is driven in an outdoor environment,
the system uses the algorithm to detect vertical-line features which can be seen along
the pre-selected path.

Finally, some experimental results will be shown in Section 4.5, including some

figures and descriptions about the result.

4.2 “ldea of Analysis of Vertical Lines In
Omni-images

In this study, we use vertical line as a feature to localize the vehicle. In addition,
the vertical line in the real-world space becomes a radial line in the omni-image. And
this fact has been provided by Wu and Tsai [8]. It is reviewed subsequently.

As mentioned previously, the hyperbolical shape of the mirror in an omni-camera

may be described as:

2 2
R_Z_z_:_l, R=x>+y?, c=+a’+b?. (4.1)

a’ b’
As depicted in Figure 4.1, the omni-camera and omni-image coordinate systems are
specified by coordinates (x, y, z), and (u, V), respectively; and the projection
relationship between the omni-image coordinates (u, v) and the omni-camera

coordinates (X, Yy, z) can be described as follows [13]:

38

xf (b® —c?)

u=

(b2 +¢2)(z—c)—2bcy[(z—c)? + X2 +y?

yf (b* —c?)

V =

(b2 +¢?)(z—c)—2bcy(z—C)* + X2 +y?

(4.2)

where the parameter f is the focal length of the omni-camera.

According to [14][15],

the relation between the coordinates (X, Y, Z) of a space

point P and the image coordinates (u, v) of its corresponding projection point p in the

image may be described by

(b® +c?)sin B—2bc

tana = 4.3
= (b® —c*)cos (43)
r :
r<+
. f
sinf = _ (4.5
r<+
tana= = (4.6)
X“+Y

where r— . u? 4 y2 and f is the camera’s focal length. We assume that a, b, c, and

f are known in advance. Also, according to the rotational invariance property of the

omni-camera [4], we have

cosf = 2 4.7)
X2 +Y?

] Y

o “9

oS0 = ——1 ; (4.9)
u? +v?

39

Vv

sin6’=—m , (4.10)

where @ is both the angle of space point P with respect to the X-axis, and that of
image point p in the image coordinate system with respect to the u-axis. The above

equations may be used to derive the relation between (u, v) and (X, Y, Z).

—

P(X,Y, 2)

omni-image

)
:__.il(u, Vv

Oy

Figure 4.1 Camera and image coordinate systems.

As shown in Figure 4.2, given a space line L with an end point Py with camera

coordinates (Xo, Yo, Zo), any point P on L with camera coordinates (X, Y, Z) and point
Po together form a vector Vo = (X — Xo, Y — Yo, Z — Zp). On the other hand, let the
direction vector of L be denoted as V| = (dx, dv, dz). Then, since V, and V_ are parallel,

we get the equality Vo = AV|, or equivalently,

(X, Y, Z) = (Xo + Adx, Yo + Ady, Zg + ﬂdz) (411)

where A is a parameter. Also, let S be the space plane going through line L and the

40

mirror base center O, at camera coordinates (0, 0, c), and let Ns = (I, m, n) be the
normal of S. Then, any point P' at camera coordinates (X, Y, Z) on S and point Op,
together form a vector Vi, = (X =0, Y -0, Z—-c) = (X, Y, Z—c) which is perpendicular
to Ns so that the inner product of Vi, and N becomes zero, leading to the following

equality:

K
% /,, /

s

" _omni-image

O

Figure 4.2 lllustration of a space line projected on to the image plane.

IX+mY+n(Z-c)=0, (4.12)
or equivalently,
IX +mY
7 c=— J; , (4.13)

Now we want to derive the equation of the projection of space line L on the
image, which expresses the relation between the camera coordinates (X, Y, Z) of a

space point P’ on L and the image coordinates (u, v) of the image point p’

41

corresponding to P’. Note that P’ is also on plane S. Combining (4.6) through (4.10)

and (4.13), we get

X Y

— 2 2 2 2

g e 2-C X2 4+Y X2 4+Y
X2+Y? n

u \ lu Iv
I [[2 2 +m 2 2 (—+—)
- _ u +v u +v — __Nn n (4 14)
n W2v? '

On the other hand, substituting (4.4) and (4.5) into (4.3), we get

(b* +c2)¥— 2bc

2 2 2 2 f—2 f2 2 2
v Jf +r (b +c%) bco\/ +U +Vv . (4.15)

(bz—cz)if zr _ (0% =c*)u’ +v?
+r

Equating (4.14) and (4.15) leads to

I_u+m+(b2+cz)f _2bcy f2+u’ +v?

n n (®-c’) (b®=c?)

which may be squared and reduced to get the following desired result:

(A* = D?*)u® + 2ABuv + (B> — D*)v* + 2ACu + 2BCv+E =0 (4.16)
where
2 2
2
A=l, B=m, C=w' D= Zbcz , E=C?’-D%. (4.17)
n n (b*—=c?) (b —c?)

Multiplying (4.16) by n?, we can get an alternative form of (4.16) without A and B as

follows:
(1 = "’ DU + 2Imuv + (M? — n?D*V? + 2InCu + 2mnCv + n°’E = 0. (4.16a)
Equation (4.16) or (4.16a) shows that the projection of a space line on the image

42

IS a conic section curve. And (4.17) shows that the coefficients of the equation may be
described indirectly in terms of the parameters of the normal Ns = (I, m, n) of plane S.
These coefficients actually are related to the elements of the direction vector V,-= (dx,
dy, dz) of L by the equality Ns-V. = (I, m, n)-(dx, dy, dz) = O because Ns and V| are
perpendicular, or equivalently,

|dx + mdy + ndz =0. (418)

Furthermore, Equation(4.16), as derived above, has a good property that the
unknown parameters |, m, and n are confined to appear in just two variables A and B,
as shown by (4.17).

When the space line L is vertical, the projection equation described by (4.16a)
may be simplified further. Specifically, the direction vector of the vertical line L is V.
= (dx, dy, dz) = (0, 0, 1). Therefore, (16) leads to Ox| + Oxm + 1xn = 0, or equivalently,
n = 0: Accordingly, (4.16a) becomes 12u? +2Ilmuv + m*? = 0, or equivalently, (lu +
mv)? = 0 which describes a line going through the image center at (0, 0) of the form v
= —(I/m)u. That is, every vertical line in the real-world space becomes a radial line in

the image space going through the image center, which can be described by

v = —Ku, (4.19)
where

K = (4.20)

!
-~
Equation 4.19 above has only one parameter K, the slope of the radial line, and

this fact facilitates the extraction of the radial line from the image.

43

4.3 Detection of VVertical Lines In
Environments

4.3.1 Initial Detection by Canny Edge Detector

In this section, we introduce the initial step of vertical line detection. After an
image is acquired with the camera, the first step is to reduce the resolution of the
image. For this, we reduce the image to be 1/4 x 1/4 in size to speed up the system
operation, and our experimental experience showed that this will not create errors in
the detection results. Then, we transform the image in the RGB color model into the

YUV model by the following equations:

Y-=0.299R +0.587G + 0.11B;
U =0.147R —0.289G +0.436B; (4.21)
V =0.615-0.515G —0.100B,

and use the Y values of the image for the detection work after composing all. Y values
in the range of 0 to 255 as a gray-level image. Subsequently, we use the canny edge
detector to compute edge points in the resulting gray-level-image.

In more detail, the function of Canny edge detection can be divided into three
steps. The first step is noise reduction. Because the Canny edge detector is easily
affected by noise, it uses a filter based on a Gaussian distribution to convolve the raw
gray-level image mentioned above. The ‘result looks slightly blurred, compared with
the original image. But it can reduce the effect of noise. The second step is to find the
intensity gradients of the image. An edge in an image may point to a variety of
directions. Therefore, the Canny edge detector uses four filters to detect horizontal,
vertical, and diagonal edges. Each edge filter returns a value of the first derivative in
the horizontal direction Gy or/and the vertical direction Gy. From this, the edge

gradient and direction can be determined by the following equations:

44

G =+/Gx* +Gy?; (4.22)
0= tan‘l(ﬂ). (4.23)
Gx

Subsequently, the edge direction angle is rounded to one of four angles
representing vertical, horizontal and the two diagonals, which are 0, 45, 90 and 135
degrees. The third step is to trace the edges in the image and to conduct hysteresis
thresholding. Large intensity gradients are more possible to correspond to edges than
small ones. It is impossible to specify a threshold that fit in most cases. Therefore,
Canny used thresholding with hysteresis. Thresholding with hysteresis requires two
thresholds which are high and low. Making the assumption that important edges
should be along continuous curves in the image allows us to follow a small section of
the given line and discard noisy pixels that do-not constitute a line but have produced
large gradients. Therefore, we begin by applying a high threshold. The edges we can
be sure are genuine. Starting from the result and using the directional information
derived earlier, we can trace the edges in this image. While doing so, we apply the
lower threshold as well to trace small sections of the edges as long as we find the
starting point. Finally, after this process is completed, we have a binary image where

each pixel is marked as either an edge pixel or a non-edge pixel.

4.3.2 Detection of Lines with Widths

In this section, we introduce the method to detect lines with widths. A line-shape
object in the real world is not just a line in the mathematical meaning; instead, a line
in the image is more like many small line segments lying in the same direction. So
we set an area in a line shape with a width as shown as Figure 4.3. After the image is
processed by the Canny edge detector algorithm, we use the result to detect lines

45

with certain widths. The proposed method for such line detection with widths is
described as an algorithm in the following. It is noted that the line is continuous in
this algorithm, and we will introduce a scheme for detection of broken lines in

Section 4.3.3.

*__-—

Figure 4.3 An illustration of detection of lines with widths in the image. The black
boxes are line points; the yellow area is the region we define as a line; and the red line
specifies the direction of this line.

Algorithm 4.1 Detection of Lines with Widths.
Input: a binary image I, a start position of point Py, and the pre-set width w and the
direction angle @ of the to-be-detected line L.

Output: the length | and the final postion P, of L.

Steps.

Step 1. Set the position of the scan point Psto be Po.

Step 2. Set | to be zero.

Step 3. Compute the set of positions of points P,(Xn, yn) Which are neighbors of
Ps(Xs, Ys) Where Py is on the line L, which is perpendicular to L and through
Ps as shown in Figure 4.4.

3.1 Compute the direction vector D = (dx, dy) of L, by following equation:

dx =cos(90° - 9);

dy =sin(90° —0). (4.24)

46

3.2 Compute the coordinates (x,, yn) of all possible P, by the following

equations, where i = —-w/2 ~ w/2:
X, =1xdX+X,;
Yo =ixdy+y..

3.3 Compute the Boolean value B by the following equation where b, is

(4.25)

the value of the position P, in image I:
B=Db vb,v..vb,. (4.26)
Step 4. Check whether the Boolean value of B is true or false: if true, set 1 =1+ 1
and move Pe to Ps.

Step 5. Move the scan point Ps to the next point by the following equations:
X, = X, +C0s 6,
| (4.27)
Y, =Y, +sino.

Step 6. Repeat Steps 2 to 5 until Ps is moved to the end of L.

Figure 4.4 An illustration of a line detection. The black painted box is line points. The
red painted box is the scan point Ps. The green painted box is the neighbor points Py,

4.3.3 Detection of Broken Lines

In this section, we introduce the method to detect the broken line. The line in the
image acquired by the camera may not be a continuous line when seen with eyes. If

the system can detect the broken line, the system will become more accurate and
47

effective. The idea of detecting the broken line is to calculate the density of the line. A
higher density means that it is more possible for a line to be existing. In Figure 4.5(a),
we can see a broken line which has a high density of 80%. It must be a line but it is
not continuous. It is worth noting that two lines with a gap may be calculated to have
a high density as shown in Figure 4.5 (b). The density of it is also 80%, but we can
easily recognize them as two lines. So a detection result with a long gap but having a
high density is not regarded as a line. The detection of the broken line is described as

an algorithm in the following.

(a) (b)
Figure 4.5 An illustration of a broken line detection. (a) A broken line with a 80%
density. (b) Two lines whose overall density is 80%.

Algorithm 4.2 Detection of Broken Lines.
Input: a binary image I, a start position of point Py, a threshold g of the gap size, and
the direction angle 0 of the line L.

48

Output: a set S including the length | and the density d of the detected L.

Steps.

Step 1.
Step 2.
Step 3.

Step 4.

Step 5.
Step 6.
Step 7.
Step 8.
Step 9.
Step 10.

Step 11.

Step 12.

4.4

Set the position of scan point Ps to be Py.

Move P; to the next point in the direction of L by using Equation 4.27.
Repeat Step 2 until the Boolean value of the position of Ps is true in 1.
Set the value of | to be zero, set the value of accumulating line points acc to
be zero, and set a value g to be g to count the number of gap points.
Move P; to the next point inthe direction of L by using Equation 4.27.
Setl=1+1.

Set acc = acc + 1.if Ps.is true.

I Ps is false, set gc ='gc. — 1; else, set g¢ to be g.

Repeat Steps 4 to 7 until the value of g. is equal to zero.

Save the value of | into S.

Compute d by the following equation and save it into S:
e P (4.28)

Repeat Steps 2 to 10 until Ps is moved to the end of L.

Algorithm for Vertical Line

Detection

In this section, we introduce the algorithm for vertical line detection. The

algorithm includes all the schemes described before to detect vertical lines in

omni-images. First, the vertical line in the real-world space becomes a radial line in

the omni-image as illustrated in Figure 4.6. Next, we set the center of the image as an

49

area, shown as the red points in Figure 4.6. The vertical lines in the real world space
may not be vertical completely. The system uses these points as the center of a circle
to find the radial lines by searching lines of all directions like a radar. The use of an
area as the circle center can endure to some degree the phenonmenon of incomplete
verticalness just mentioned, and improve the effectiveness of the proposed method,

which is The described as an algorithm in the following.

P AN
/ N
\
/ \
\ /
\ /
N\ /

Figure 4.6 An illustration of vertical lines in an.omni-image. The area of red points are
the center of the omni-image, and each green line corresponds to a vertical line in the
real-world space.

Algorithm 4.3 Detection of Vertical Lines.

Input: a binary image I, a set of positions of center points P;, a threshold g of gap size,
and the width w of the vertical line to be detected.

Output: a set S; for each detected line L which includes the length ls,n, the density d,
and the direction angle of the line.

Steps.

Step 1. Set the position of the scan point Ps to be P;.

50

Step 2.

Step 3.

Step 4.

Step 5.
Step 6.
Step 7.

Step 8.

Step 9.

Step 10.
Step 11.
Step 12.
Step 13.

Step 14.

4.5

Set the direction angle 6 of the to-be-detected line L, to be zero.

Set lsum to be zero; define acc as the value of accumulated line points with
its initial value set to be zero as well; and set g. as a value to count the
number of gap points with g as its maxmum value.

With the image I, the width w, the angle # and the point Ps as inputs,
perform Algorithm 4.1 to conduct detection of thick lines (i.e., with a
certain width), yielding the results | and P. which are the length and the
final postion of L, respectively.

Compute the distance dis between P and P by Equation (2.1).

Set lsym = lsum +-dis;acc =-acc + |, and the currnet gap ge = dis— .

Move P; to Pe.

Repeat Steps 3 to 7 until the value of g. is equal to g or Ps is moved to the
end of L,.

Save the value of lg;,m and @ Into S;.

Compute d by Equation (4.28), and save It Into S;.

Setf=0+ 1.

Repeat Steps 2 to 11 until & is equal to 360°.

Move Ps 10 Py

Repeat Steps 1 to 13 until all the points of P; are used.

Experimental Results

We have described the proposed methods for detecting vertical-line features

around the vehicle in omni-images before. In the first part, we described the idea of

detection of vertical lines in omni-images. Figure 4.7 shows the phenonmenon that the

51

vertical line in the real-world space becomes a radial line in the omni-image. In
addition, the canny edge detector is applied as the initial process of line detection.
Figure 4.8 shows the result of Canny edge detection applied to Figure 4.7. And Figure

4.9 shows the result of vertical line detection using the proposed method. The red line

shows the line detected by the system.

(b)
Figure 4.7 Illustrations of the phenonmenon that a vertical line become a radial line in
the omni-image. (a) Scene 1. (b) Scene 2.

Figure 4.8 Results of Canny edge detection. (A) Result of Figure 4.7(a). (B) Result of
Figure 4.7(b).

52

iR ol |

) I‘\‘I‘l‘\‘ \Enq.\

Figure 4.9 Results of vertical line detection. (a) Result obtained from Figure 4.8(a).
(b) Result obtained from Figure 4.8(b).

53

Chapter 5

Vehicle Localization for Tour
Guidance in Outdoor Park Areas by
Computer Vision Techniques

5.1 Introduction

In this chapter, we introduce the proposed method for vehicle localization for
navigation in outdoor park areas by computer vision techniques. The vehicle
localization method Is needed for the system to navigate and compute building
positions for AR display. The first part of the vehicle localization work is to estimate
the vehicle speed.

In ‘more detail, the speed is estimated in this study by computing the motion
vectors of the vehicle in acquired images. It is impossible that there exist features to
detect at every spot on the path. In other words, the system must have a method to
locate the vehicle without using features at certain spots on the path. In this study, we
use the vehicle speed to solve this problem. The detail is described in Section 5.2.

On the contrary, in normal cases we use the correlation between vertical lines in
the environment, when available, and the vehicle to locate the vehicle. Specifically,
the system detects a single feature to locate the vehicle in certain cases; and in other
cases, the system uses multiple features to locate the vehicle. The more features the
system detects, the more accurately the system conducts the vehicle localization task.

Moreover, we use the longest common subsequence (LCS) algorithm to

54

implement the system’s work of vehicle localization using multiple features. The
detail is described in Section 5.4. Finally, we analyze the information about the
environment to make the system to detect vertical lines more accurately. The detail is

described in Section 5.5.

5.2 Estimation of Vehicle Speed

In this section, we . introduce the proposed method to estimate the vehicle speed.
At certain positions, the system cannot use features to locate the vehicle due to
unavailability of appropriate local features. So we propose a method to use the result
of motion-vector estimation-to-compute the .vehicle speed, and use the estimated

speed to locate the vehicle. The detail is described in the following.

5.2.1 Computation of Motion Vectors

To estimate the vehicle speed, we compute motion vectors using acquired images.
An illustration of motion estimation for each macroblock in an image is depicted in
Figure 5.1. For each macroblock B in the current image frame, a search window in the
reference frame is searched for the best-match macroblock B* with respect to B. The

computation of motion vectors is described as an algorithm in the following.

Best Match
Macroblock B~

Search window Current Macroblock Bc

Reference Image Current Image

Figure 5.1 An illustration of searching for the best-match macroblock.

55

Algorithm 5.1 Computation of Motion Vectors.

Input: a reference image I, the current image I, and a kxI search window W.

Output: a set S of motion vectors.

Steps.
Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Divide the current image I into macroblocks By through B, of size 16 x 16.

Set the current block B in the current image I to be By with k = 0.

Search the best-match macroblock in the search window W within the

reference image I, by the following steps.

3.1 Set the search block Bs to be at the position (e, jo) of the left-upper side
with the distances from Bs to B being k and I, respectively, in the two
axis directions in the image coordinate system.

3.2 Compute the cost function Costk by the following formula where C(a, b)
is the value of the pixel at coordinates (a, b) in I;, and R(a, b) is the
value of the pixel at coordinates (a, b) in I, and the coordinates of Bs
are (ix, Ji):

ch% s 3B (K y 4 DRtk y+j+). (5.1)

3.3 Move Bs to the next position by shifting a pixel in a raster scan order.
3.4 Save the motion vector Vs(vx Vy) computed in the following way if
Costy is smaller than every other Cost;:

V., =i, —I,;
kx k O. (52)
Vg = k= Jo-
3.5 Repeat Steps 3.1 to 3.4 until all possible blocks in the window are
processed.

Move B; to the next block.

Repeat Steps 3 and 4 until all the blocks are searched.

56

At the end of executing the above algorithm, each block By in the current image I

will have a corresponding motion vector Vi(Viy, Viy)-

5.2.2 Vehicle Speed Estimation Using Motion Vectors

In this section, we describe a method we propose to estimate the vehicle speed
using motion vectors by modifying the algorithm which is described in Section 5.2.1.
The resulting algorithm will make our system more accurate. In more detail, the
motion vectors we compute include many directions. But the vehicle is driven just
forward in one direction. So, the valid motion vectors must all be in the same
direction; motion vectors.in.the other directions might be noise or errors due to
incorrect detection results. Furthermore, not all the motion vectors in the entire
omni-image are useful for our purpose of vehicle localization. Therefore, we cut the
part of the omni-image which only includes the road for our use, as shown in Figure
5.2. The motion vectors in this part should be in the same direction. So, we use this
image part to compute motion vectors. Finally, we average all the motion vectors in
the vehicle direction, and compute the vehicle speed accordingly. An algorithm

describing the above process is presented in the following.

Car Orientation

Figure 5.2 An illustration of cutting a part of the omni-image for motion vector
computation. The area enclosed by the red line is the part we cut.

57

Algorithm 5.2 Estimating the vehicle speed.
Input: a reference omni-image Iy, the current omni-image I, a search window W with
size kxI, the direction D(dy ,d,) of the vehicle, and two threshold values T, and
Tg.
Output: a value s of the vehicle speed.
Steps.
Step1l. Cut out parts of I, and I. as I," and I, respectively, in which the road
appears, as:shown in Figure 5.2.
Step 2. Use the cut image I," and I¢' and the kxI search window W as inputs, perform
Algorithm 5.1 to.compute motion vectors, and save the result into a set S.
Step 3. Delete those motion vectors V;(vx, vy) of S that are not in the direction of D
by the following steps.
3.1 If one of dy and vy is positive and the other is negative, then delete V.
3.2 If one of dy and vy Is positive and the other is negative, then delete V;.
Step 4. Delete v; if vj is larger than T, or smaller than Tj.
Step 5. Compute the mean value of v; by the following equation and take the result
as the desired vehicle speed s, where N is the number of the remaining

motion vectors:

2" . (5.3)

5.3 Vehicle Localization by Single Line
Features

\ehicle localization is necessary for the system to navigate in a tour. By vehicle

localization, the positions of buildings can be computed and used to show the AR

58

information about the building. In this study, we propose to locate the vehicle by
using line features. In more detail, the features in omni-images are detected by
Algorithm 4.3. Then, we use the angles of the resulting features and the learned data
to locate the vehicle. In the simple case, the system uses only one feature to locate the

vehicle. The detail is described in the following.

5.3.1 ldea of Vehicle Localization by Line Features

After detecting the vertical lines in an omni-image, the system uses the resulting
angle of the line feature in the image to locate the vehicle as shown in Figure 3.4.
Because the feature line is-learned.into the environment map, we can use the relation
between the feature and the vehicle on the path to locate the vehicle paosition. And the
relation between them may be expressed in terms of angle. The vehicle in different
positions will yield features of different angles, as can be figured out from Figure 5.3,
one angle of the feature corresponds to one position in the path uniquely. Accordingly,
we can use the detected line feature to calculate the vehicle position on the path by

Equation 3.3. And the algorithm is shown in Section 5.3.2.

Car Orientation
Line
Feature

) Line
Feature

Car Orientation

(a) (b)
Figure 5.3 An illustration of locating the vehicle. (a) An omni-image with a detected
line feature. (b) An illustration of locating the vehicle on the map.

59

5.3.2 Algorithm for Vehicle Localization by Single

Line Features

In this study, we propose an algorithm to locate the vehicle by single line features.
The environment map is one of the inputs of this algorithm, which includes the
learned data of the path and the detected vertical-line feature. Moreover, the angle of

the direction of the line which the system detected is also the input to the algorithm.

Algorithm 5.3 Vehicle Localization by Single Line Features.

Input: the angle &y of a detected. line L, the feature F which corresponds to the line L,

and a path segment ps.

Output: the vehicle position Py(xy, Yv).

Steps.

Step 1. Check the angle 64 whether is in the range from the first-angle 6; to the
last-angle 6, which are learned In learning stage in chapter 3. If it is not in
the range, do not use the this feature to locate the vehicle.

Step 2. Get the angle 6, of the path segment ps from the learned data of the path in
the map Map.

Step 3. Get the position Px(xs, yr) of the feature F from the learned feature data in the
map Map.

Step4. Compute the angle & of the direction from the feature to the vehicle by the

following equation:
0, =—(6,+46,) (5.4)

where 6y is the angle of the detected line L.

Step 5. Compute the line L(x;, yi) which goes through two points Pr and P, by the

60

following equation:

X, = X; +c0s(6,) xt;
. (5.5)
y, =Y, +sin(6,) xt.

Step 6. Compute the vehicle position Py(xy, yy) by the following steps:
6.1 Get the line equation F(x, y) of the path segment ps from the map Map.
6.2 Find the intersection point of F(x, y) and L(x, y;) by substituting the
equations of L deseribed by (5.5) into F(x, y) and solving the result to
get t.
6.3 Substituting t into Equation 5.5, and the solution (X, yi) specifies the

desired Py(Xy, Yv)-

5.4..Vehicle Localization by Multiple
Line Features

In .this section, we introduce the proposed method to locate the wvehicle by
multiple line features. In some cases, the system can use multiple features to locate
the vehicle. The more features the system detects, the more accurately the system
conducts vehicle localization. But we need a method to match the features seen in the
current image against those in the map. So we propose a method which can conduct

such matching, which is based on the longest common subsequence (LCS) algorithm.

5.4.1 Review of Longest Common Subsequence (LCS)

Algorithm

The longest common subsequence (LCS) algorithm aims to find the longest

subsequence common to all sequences in a set of sequences. Note that a subsequence

61

IS a sequence that can be derived from another sequence by deleting some elements
without changing the order of the remaining elements. In this study, we use the angles
of feature lines as inputs to this algorithm, i.e., we regard such angles as the elements
of sequences and match the elements by the LCS algorithm. But we have to modify
the equality conditions used in the traditional LCS algorithm. because the angles
detected by the system may have errors. Specifically, we set a tolerant range for
defining whether two angles are equal or not. The algorithm is shown in the

following.

Algorithm 5.4 Longest common subsequence.

Input: two angle sequences Sy = < X1, X2, ..., Xn>and Sy = <y, Yo, ..., Ym> Where all X;
and y; are angles of vertical lines; and a threshold d for judging the equality of
two angles.

Output: the length L of the longest common subsequence.

Steps.

Stepl. Ifn=00rm=0setL to be zero.

Step 2. If the absolute value of x, — yn, is smaller than d, then do the following

steps.
2.1 With S¢' = < X1, X2, +.y Xn2> , Sy' = <Y1, Yo, ..., Ym1> and d as inputs,
perform Algorithm 5.4 to compute the length L' of the LCS of S'x and
S\.
22 SetL=L"+1
Step 3. If the absolute value of x, — yn, is larger than d, then do the following steps.
3.1 With the S,, Sy, and d as inputs, perform Algorithm 5.4 to compute the

length L, of the LCS of Sy and S'y.

62

3.2 With the S)', Sy, and d as inputs, perform Algorithm 5.4 to compute the
length Ly, of the LCS of S, and S,.

3.3 IfL,is larger than Ly, set L to be L,; else, set L to be L.

5.4.2 \ehicle Localization using Multiple Features by
LCS Algorithm

In this study, we use vertical line as a new type of feature to locate the vehicle. In
other words, the position where the system can detect many features is a different case
for locating the vehicle. In Chapter 3, we introduce a method to learn multiple line
features. And we use the learned data, which include every position where the vehicle
can “see” features, to locate the vehicle on the path. Then, the system just matches the
angles of those “seen” features to find the best match position. But a problem arises
there in matching the features — because the features we detect are not recognized to
be correct, the detected line might be really a feature or just noise. And the features
we learned might not be detected by the system while the vehicle is driven on the path.
The LCS algorithm is modified to solve this problem in this study. The system uses
this algorithm to match those angles of vertical lines even if not all the features
around the vehicle are completely detected. These ideas of proposed vehicle
localization using multiple vertical-line features are described as an algorithm in the

following.

Algorithm 5.5 Vehicle localization by multiple features.

Input: an angle sequence Sx = < Xy, Xo, ..., Xn> detected by the system; a threshold d
for judging the equality of two angles; and a set Se of learned data which
include the vehicle position P; and an angle sequence S;.

63

Output: the vehicle position P, and the length L of the subsequence computed by
Algorithm 5.4.

Steps.

Step 1. Set L to be zero, and i to be zero as well.

Step 2. With S;, S and d as inputs, perform Algorithm 5.4 to compute the length L'
of the LCS of S; and Sy.

Step3. IfL"is larger than L, set L to be L', and set P, to be P; which is included in
the learned data and corresponds to S;.

Step4. Seti=i+1

Step 5. Repeat Steps 2 to 4 until i.equals the number of S..

5.5 Knowledge-based Analysis of Tours

In"this section, we introduce a method we propose in this study by
knowledge-based analysis to make the system more accurate in vehicle localization.
The vertical lines are not always detected or the detection result sometimes will be
just noise. So, the proposed method tries to filter the noise and make the system more

accurate.

5.5.1 Uses of Knowledge about Environments

The main idea of the proposed method is to detect the right feature at the right
position. Specifically, the system uses the image sequence to analyze the position of
the vehicle. Firstly, the omni-image we use to detect features can divide into two parts,
the left side and the right one, as shown in Figure 5.4(a). The omni-camera can “see”
all the environment around the vehicle in 360 degrees. And the feature lines can be

64

seen in the left side of the road or in the right side. So we can define the features in
the two sides when learning the feature. The two sides of features would be detected
individually. Secondly, the vehicle is driven just forward. So the detected features
must move backward in the image sequence as shown in Figure 5.4(b). Moreover, the
system predicts the position of the feature and detects it.

In more detail, in the proposed method we calculate the vehicle speed and then
use the last position of the vehicle to predict the next position of the vehicle on the
environment map. Next, we use the predicted position of the vehicle on the
environment map to calculate the predicted position of the features. Then, we use
such information to find out the feature in the detection area in the image as depicted
in Figure 5.4. If there Is no feature detected in the area, we predict that no feature is
detected by the system. The system would not regard the feature as wrong one. Finally,
in the learning of features, we have recorded the positions where the feature can be
seen. So the system can check the position of the vehicle and the feature to see if the

position fits the learning data.

Car Orientation Car Orientation

) b

(@) (b)
Figure 5.4 An lllustration Of Omni-Image. (A) The Omni-Image Which Divided Two

Parts. (B) Two parts of image and the purple line is direction of system to detect the
line features.

65

5.5.2 Algorithm for Vehicle Localization in Tours

The algorithm for vehicle localization includes all the methods to locate the
vehicle described previously. In the general case, the system uses a single feature to
locate the vehicle. In some areas, the system can use multiple features to locate the
vehicle. And at certain positions, the system cannot use features to locate the vehicle
due to unavailability of appropriate local features, and uses the vehicle speed to locate

the vehicle.

Algorithm 5.6 Vehicle localization.

Input: an environment map-Map which.includes the learned data, the last position P,
(xi, y1) of the vehicle, a reference omni-image Iy, the current omni-image I, a
search window W with size kx|, the direction D(dy ,dy) of the vehicle, two
threshold values T, and T4, an angle sequence Sy = < Xy, Xa, ..., X,> detected by
the system, and a threshold d for judging the equality of two angles.

Output: the vehicle position P,.

Steps.

Step 1. Predict the wvehicle position P(X,, Yp) using the vehicle speed by the

following steps.
1.1 With 1y, I, W, D(dy ,dy) and the two threshold values T, and Ty as inputs,
perform Algorithm 5.2 to compute the speed s of the vehicle.
1.2 Use the vehicle speed to compute the vehicle position by the following

equation where 4 is the angle of the path obtained from Map:

X, =X +c0s(0) xs; -
y, =Y, +sin(6) xs. (6)

Step 2. Use the predict position P to find the set S; of features around P on Map.

66

Step 3. If the set St is empty, use the vehicle speed to locate the vehicle, and set P,
to be P.
Step 4. If only one feature F is in S¢, use the single feature to locate vehicle by the
following steps.
4.1 Find the angle 6 which is the closest angle of the direction of P with
respect to F.
4.2 With F, the path segment ps from Map and & as inputs, perform
Algorithm 5.3 to compute the position of vehicle.
Step 5. If many features F; are in S;, use the multiple features to locate vehicle in
the following way: with Sy = < X1, Xo, ..., X;>, a threshold d and a set S; as

inputs, perform Algorithm 5.5 to compute the position of the vehicle.

5.6 _Experimental Results

We have described the proposed methods for locating the vehicle. As described in
Section 5.2 we used motion vectors to compute the vehicle speed. An example of
detected motion vectors is shown in Figure 5.5. As described in Section 5.3, we also
used single features to locate the vehicle. Figures 5.6(a) and 5.6(b) show an example
of detecting just one feature to locate the vehicle. Finally, as described in Section 5.4,
we used multiple features to locate the vehicle, as shown by the example in Figure

5.7.

67

(a) (b)
Figure 5.5 Detected motion vectors in an.omni-image. (&) The original image. (b) The
detected motion vectors.

(a) (b)

SER BT

HABuilding 1
(c)

Figure 5.6 The localization of vehicle by using single feature. (a) The omni-image
acquired from the camera. (b) A binary omni-image, in which the red line is the
detected line feature. (c) The map showing the position of vehicle where the red point is
the position of the vehicle and the blue points are the positions of features.

68

(c)
Figure 5.7 \ehicle localization by using multiple features. (a) The omni-image acquired
from the camera. (b) A binary omni-image, in which the red lines indicate detected line
features. (¢) The map showing the position of vehicle, where the red point is the
position of the vehicle and the blue points are the positions of the detected features.

69

Chapter 6

Proposed Augmented Reality-Based
Tour Guidance Using an
Omni-camera

6.1 Ildeas of Proposed Techniques

In this study, we use the AR technique to show the information about the
environment, especially about the along-path buildings, while driving the vehicle in there.
To show the AR information, we need the positions of the buildings. Therefore, we use
the location of the vehicle and the learned data to compute the positions of the buildings.

In.more detail, at first the system detects the line features which can be “seen” along
the path while the vehicle is being driven. Next, the system uses the detected features to
locate the position of the vehicle. Furthermore, by using the learned data and the location
of the vehicle, the system can compute the relative position between the vehicle and the
building. Then, the system computes the position of the building on the mobile device
screen to show the AR information. Note that the camera used in this study is an
omni-camera. Because the image acquired by this camera is distorted, we transform the
omni-image into perspective view images as well before let it be displayed on the mobile
device screen, so that the user can see this image intuitively. In the meantime, the system

can also take the advantage of larger perspective views to detect features.

70

6.2 Construction of Images from Front

Passenger’s View

In this section, we describe the details of the method proposed by Jeng and Tsai
[4] to generate perspective-view images from omni-images acquired with the
omni-imaging device used in this study. Their method is based on the use of a
so-called space-mapping table, which maps each image point to a space point without

involving the camera intrinsic and extrinsic parameters.

6.2.1 Construction of Image-to-space Mapping Table

To create the space-mapping table before it can be used for coordinate mapping,
it is essential to select some world space points with known positions and the
corresponding points inthe omni-image. It is known that a point p in the image space
is formed by all the world space points which lie on an incoming light ray R, as
illustrated in Figure 6.1.

More specifically, at first three assumptions are made: (1) O Is the focal point of
the hyperboloidal-shaped mirror in the omni-camera; (2) Oy, is on the mirror bottom
plane of the mirror;and (3) P, and P are two world-space points on the light ray R. In
addition, suppose that the image point corresponding to both P; and P, is denoted by
p. Then, we have the corresponding point pairs (P, p) and (P2, p) which can be used
to generate the pan-mapping table. However, if we took erroneously Oy, instead of O,
as the focal point, then P; and P, would lie on different light rays, though the
corresponding image points are still a single one, namely, p. In this way, an incorrect
space-mapping table will be generated. To avoid this error, we must find out the real

position of the focal point of the hyperboloidal-shaped mirror.

71

image plane

Figure 6.1 The space points and their corresponding image points.

For this purpose, as shown in Figure 6.2 we use two different landmark points L;
and L, with known heights and horizontal distances from the axis of the mirror. Both
of L; and L, are projected onto the same image point p. Then, according to the
geometry shown in Figure 6.2, the position of the focal paint O, with respect to the
center point O,, of the bottom plane of the mirror may be computed by the following

equations:

tan g = H,-0,0, = HZ_Hl;
D, D, -D,
OmOW=Hl—D1><tan<9=Hl—D1xHZ_Hl. (3.1)
&

Moreover, we describe here the method proposed by Jeng and Tsai [4] to build a
pano-mapping table using the coordinate data of the landmark point pairs. The
two-dimensional pano-mapping table with the horizontal and vertical axes being the
azimuth angle @ and the elevation angle p, respectively, is illustrated in Table 6.1,

which is described next.

72

image plane

/

O, D,

Figure 6.2 Finding.out the focal point Op,.

Table 6.1 Example of pano-mapping table of size MxN

7] & & O O
01 (U11, Va1) | (U1, Vo1) | (Usa, Va1) | (Ua1, Vaz) (Um1, V1)
Jo) (U12, V12) | (U22,V22) | (us2, V32) | (Us2, Vo) (Um2, Vm2)
03 (Uz3, Va3) | (U23, V23) | (Uss, V33) | (Ua3, Va3) (Ums, Vm3)
joi (U14, V1a) | (U24, Voa) | (U3a, Vaa) | (Uas, Vas) (Una, Viva)
on | (Uin, van) | (Uzw, Van) | (Usw, Van) | (Usn, Van) (Umn, Vi)

The procedure for constructing the pano-mapping table includes three major
stages: (1) landmark learning, (2) estimation of the coefficients of a radial stretching
function describing the geometry of the mirror reflection in the omni-camera, and (3)
pano-mapping table creation.

1. Landmark learning

Landmark learning is a procedure in which several pairs of world space points
with known positions and their corresponding pixels in a taken omni-image are
selected for constructing the pano-mapping table. The omni-camera is first set

horizontally on the ground with both its mirror base plane and omni-image plane

73

parallel to the ground, which is just the X-Y plane of the WCS. Then, a sufficient
number (more than six) of points in the world space, called landmark points hereafter,
are selected, and the coordinates of them are measured manually with respect to the
previously-mentioned origin On,. Especially, the origin O, of the camera coordinate
system with known world coordinates (Xo, Yo, Zo) just appears to be the image center
O with known image coordinates (uo, Vo). Let the image point px at coordinates (U, Vi)
with respect to the origin O. of the image coordinate system (ICS) and the
world-space point Px at coordinates (Xk, Yk, Zx) With respect to the origin O, of the
corresponding world coordinate system (WCS) form a landmark point pair. Also,
assume that n sets of landmark-point pairs (px, Pk) are selected, where k=0, 1, ..., n—

1.

>k=’0—

‘World Coordinate

%o v|250 z[30

Image Coordinate

(uv)=(-285, 116) Add E‘

fLandmark

< 2 g i

Figure 6.3 The interface for acquiring the data of the world space points.

2. Estimation of coefficients of radial stretching function
Due to the nonlinear property of the hyperbolic mirror surface shape, the
radial-directional mapping should be specified by a nonlinear function f,. More

specifically, Figure 6.4 shows that each of the elevation angles corresponds to a radial

74

distance, or by notations, that the elevation angle p of each world point P corresponds
to the radius distance r of its corresponding image point p. Therefore, the radial
distance r from each image pixel p at coordinates (u, v) in the omni-image to the
image center O, at coordinates (uo, Vo) may be computed by r = f(p). In this study, we
call the function f, the radial stretching function of the omni-camera and approximate

it by the following 5th-degree polynomial function:
r=f(p)=g, taxp +ta,xp’ taxp' +a,xp' +a;xp’ (6.1)

where ap through as are six coefficients to be estimated using the n landmark point

pairs, as described in the following algorithm [4].

| 04(0. 0. 0) Y

5 /

[
Ny :
wWCs
omni-image ¥
Oc(”[y([)} ey a"d
!
/S / e
i ICS
/\ Y]

O

Figure 6.4 Nonlinear property of an omni-camera with mirror surface shape.

Algorithm 6.1 Estimation of the coefficients of the redial stretching function.

Step 1. (Elevation angle and radial distance calculation) Use the coordinate data of
landmark point pair (P, p«), including (Xk, Yk, Z) in the WCS and (u, Vi) in
the ICS, to calculate the elevation angle px of Py in the world space and the

radial distance ry of py in the ICS by the following equations:

75

po=tan (2); 1= (6.2)
k

where Dy, is the distance from the landmark point Py to the mirror center On,
in the X-Y plane of the WCS, computed by D, =/X,*+Y,* .

Step 2. (Calculation of the coefficients of the radial stretching function) Substitute all
the data po, p1, ..., pn1 and ro, i, ..., rp1 into Egation (3.1) to get n

homogeneous equations as follows:

=1 (po)=a+a x 0, +8,x P +8; Xy +ay X py+ 8% oy
n=f(a)=a,+axp +a,xp’ +a,xpl +a,%xp +a % p;;
M= fr (pn—l) :aﬂ+a1><pi_1+a2pr_l+as><pﬁ_l+a4><p:_l+a5Xpr?_l;

(6.3)

and solve the equations to get the desired coefficients (ap, a;, @,83, a4, as) of

the radial stretching function f; by a numerical analysis method.

3. Pano-mapping table construction

Each entry Ej with indices (i, j) in the pano-mapping table specifies an
azimuth-elevation angle pair (i, p;) as shown in Figure 6.5, which represents an
infinite set Sijof points in the world space passing through by the light ray with
azimuth angle #; and elevation angle pj. These world space points in S;; are all
projected onto an identical pixel p; in an omni-image taken by the camera, forming a
pano-mapping fom from S;; to pij.

Table 6.1 is shown an example of the pano-mapping table by filling entry E;; with
the coordinates (uj, vij) of pixel pjj in the omni-image. A pano-mapping table Ty of
MxN entries is created by dividing the range 27 (= 360°) of the azimuth angles into M

units as well as dividing the range of the elevation angles from ps to pe into N units.
76

omni-image pano-mapping table

Figure 6.5 Mapping between pano-mapping table and omni-image.

According to the rotation-invariant property of the omni-camera, the azimuth
angle 6 of a world point P which the light ray passes through is essentially identical to
the angle ¢ of the corresponding pixel p with respect to the u-axis in the input image I.
That is, the azimuth-directional mapping denoted is an identity function f, such that
fa(0) = ¢ = 6. Accordingly, the entries of table Tonm may be filled by the following

algorithm.

Algorithm 6.2 Creation of the pano-mapping table.
Step 1. Divide the range 2w of the azimuth angles into M intervals, and compute the

ith azimuth angle &; by
6 =ix(2zIM), fori=0,1, .., M -1.

Step 2. Divide the range [ps, pe] Of the elevation angles into N intervals, and estimate

the jth elevation angle p; by

IOJ = jx[(pe_ps)/N]+ps! forJ :Oy l; ey N_l

Step 3. Regard the pairs (rj, &) = (fi(pj), 6i) of all the image pixels to form a polar
coordinate system with the image coordinates (u, v) specified by

77

u; =r;xcosg = f (p;)xcosa;
v; =r;xsing = f (p;)xsing,
and fill the entry Ej; with the corresponding image coordinates (u, vi;) where
r="f.(p)=a,+a,xp;+a,x p; +a,x p} +8,x p} +asx pj,
with the coefficients (ao, a1, az, as, as, as) being computed by Algorithm 6.1.
Finally, we use the above-mentioned method to create a pano-mapping tables
with size MxN. The elevation.angle ranges of the field of view of the omni-images are
from pys 10 pye, respectively. The elevation angle p of the light ray horizontally going

through the focal point of the mirror is 0°% 0 pus as Well as pjs is negative and pye as

well as pje IS positive.

ue Pus

P> P=0

Upper omni-camera \‘pus

Figure 6.6 Creation of pano-mapping table.

78

6.2.2 Review of Adopted Method for

Perspective-view Image Generation

A perspective-view image is a perspective projection of a scene appearing in an
omni-image onto a planar rectangular region perpendicular to the ground. By the
pano-mapping table, we can assign the color value of the pixel in an omni-image to
the planar rectangular region. More specifically, given an omni-image G and a
pano-mapping table Tpm with MXN entries, we can generate a perspective-view image
Q of any size MgxNg by projecting pixels in G to a planar rectangular region Ap of
any size WxH at any distance D with respect to the mirror center Op,.

A top view of the configuration for such a perspective-view image generation
process is shown in Figure 6.7, and the idea can be accomplished by the following
algorithm [4] for computing the azimuth angles &, and elevation angle pq associated

with Eijand corresponding to gkl

Figure 6.7 A Top-view configuration for generating a perspective-view image.

Algorithm 6.3 Construction of a perspective-view image.

Input: an omni-image G, a pano-mapping table Tpmwith M x N entries, and a planar
rectangular region A, of size W x H at a distance D with respect to the mirror
center Om.

Output: a perspective-view image Q of any size Mq x Na.

79

Steps:
Step 1. As illustrated in Figure 6.1, calculate the angle ¢ according to trigonometry to

be as follows:
W? =D?+D?-2xDxDxcosd, (6.4)

or equivalently, as follows:

W2

=cos [1—
/ [2xD?

1 (6.5)

Step 2. Calculate the angle S shown in Figure 6.7 according to trigonometry to be as

follows:
p=—=. (6.6)

Step 3. Compute the index i of entry E; of table T,n corresponding to pixel gq in
image Q at coordinates (k, I) in the following way.

3.1 Let Pj; denote the intersection point of the light ray R, projected onto g

and the planar projection region A,, and compute the distance d between

point P; and the border point P, shown in Figure 6.7 by linear

proportionality as:

W
d=kx—, 6.7
T (6.7)

Q

where the projection region A, has a width of W, the image Q has a
width of Mq pixels, and pixel qq has an index of k in the horizontal
direction.

3.2 Compute the distance L between point Pj and the mirror center Op

according to trigonometry as follows:

80

L =/D? +d? —2xd x Dxcos 3. (6.8)

3.3 Compute the distance h from point P; to the line segment OnP
connecting O, and Py as:
h=d xsin g. (6.9)

3.4 Compute the azimuth &, of point Pj; with respect to OnP, satisfying:

sing, =%= g (6.10)

JD?+d?—2xdxDxcos B

which leads to

0, :sin‘lﬂzsin‘l[g sin 2 : (6.11)
L \/D2+d2—2><de><COS,B
3.5 Compute the index i of entry E;; by linear proportionality as:
.0
i=—1xM. (6.12)

Step 4. Compute the index j of entry E;; of table T, corresponding to pixel gy in
image Q at coordinates (k, 1) in the following way.

4.1 As shown In Figure 6.8 which is the involved imaging configuration

from a lateral view, let the height of the projection region A, be H, divide

the image Q into Ng intervals, and compute the height of P;; by linear

proportionality again to be:

qulxi.
Nq

(6.13)

4.2 Compute the elevation angle pq according to trigonometry as:

81

H
Py = tanl(TqJ. (6.14)

4.3 Compute the index j of Ej; by proportionality again to be:

j: (pq_ps)XN

6.15
(P, —p;) (6:19)

Step 5. Obtain the coordinates (u, vi;) in G with the indices (i, j) of Ej;.

Step 6. Assign the color value of the image pixel pi; of G at coordinates (uij, vij) to
pixel gy of Q at coordinates (k, I).

Step 7. After all pixels of Q are processed, take the final content of Q as the desired

perspective-view image.

Panoramic
Om‘ ps
~ _Pq
p— ., e, Hq I
H -~ p— ., ~— v
\ Pij

N Q
YN

A 4

Figure 6.8 A lateral-view configuration for generating a perspective-view image.

6.2.3 Review of Generation of Perspective-mapping

Table

According to the above-mentioned method for unwarping omni-images into

82

perspective-view images, we can obtain the perspective-view images of the upper and
lower omni-images. However, a great amount of computation is repeated, as can be
seen from Equation 6.4 through 6.15, resulting in possible delays of image display in
the scene browsing system. Therefore, in order to avoid such massive computation, it
was found possible to establish a table in advance for an omni-camera to generate
perspective-view images in a faster way. The table is called a perspective-mapping
table. Such a table may be created from any view direction.

Specifically, given an omni-image G and a pano-mapping table Tpn with MxN
entries, we generate the perspective-mapping table aceording to the algorithm

described in the following.

Algorithm 6.4: Generation of a perspective-mapping table.

Input: an omni-image G and a pano-mapping table Tpm with MXN entries.

Output: a perspective-mapping table Tpe.

Steps.

Step 1. Decide the size of a maximum perspective-view image Q to be generated, say,
MpxNp.

Step 2. Establish an empty perspective-mapping table Tye With the same size.

Step 3. Let @ specify the “direction” for table Tpe, Which is also the view direction
from which the perspective-view image Q is to be generated.

Step 4. Let p. and ps be the maximum and the minimum elevation angles used in
constructing the pano-mapping table Tym.

Step 5. Define the size of a planar rectangular region Ap to be WxH, which describe
the maximum size of a perspective-view image to be generated.

Step 6. Select a value D as the distance of Ap to the mirror center O, which is also
the distance of the perspective-view image to O,

83

Step 7. Compute H of Ap according to the trigonometry as illustrated in Figure 6.9 by

the following equation:
H = Dxtanp. + |Dxtanps|. (6.16)

Step 8. Take @be zero, as shown in Figure 6.9(a).

Step 9. Apply Algorithm 6.3 to the omni-image G using pano-mapping table Ty, with
MxN entries and H as input, to generate a perspective-view image I.

Step 10. Record the corresponding indices (i, j) In Tpm Of all pixels in 1 into the entries
Smn With'indices (m, n) of Tpe.

Step 11. After all entries of Ty are filled, take the final content of T, as the desired

perspective mapping table.

A planar
region Ap

4 Perspective-view Image

Mp

(@) (b)

Figure 6.9 Illustration of construction of a perspective-mapping table. (a) A Top-view
configuration for generating a perspective-mapping table. (b) A lateral-view
configuration for generating a perspective-view image.

6.2.4 Generation of Passenger-view Image

After establishing the perspective-mapping table Tpe, we can use it to generate
perspective-view images. In this study, we use the passenger-view image as the base

of the AR image. A user in the vehicle can see the front passenger’s views through the

84

windows on the mobile-device screen. In order to generate the passenger-view image,
we have to measure some geometric information about the interior of the vehicle.
Firstly, we assume that the viewpoint originates from the front passenger seat as
shown in Figure 6.10, and measure the angles involved in the views that can be seen

through the windows from the viewpoint as shown in Figure 6.10.

by

(a) (b)
Figure 6.10 An illustration of viewpoint in the vehicle. (a) Top-view of the vehicle
where the blue star is the viewpoint and the red line is the region of the view. (b)
Side-view of the vehicle where again the blue star is the viewpoint and the red line is
the region of view.

In more detail, the region covered by the view, called view region, is not a
rectangle; instead, it is a quadrilateral, as shown in Figure 6.11(e). So we compute the
positions of its four vertices. And then, we use the positions of the vertices to cut a
part of the image which just fits the passenger’s view. Note that the viewpoint we set
is not the same as the camera. So we shift the image coordinate system to move the
viewpoint of the camera to the previously-mentioned front-passenger’s viewpoint as
illustrated in Figure 6.12. The following algorithm is proposed for generating the

passenger-view image on the mobile-device screen.

85

s

b s
)
(@ (b)
R
&7 || s
(© (@)
A Vz’
V3 A\
(e)

Figure 6.11 An illustration of viewpoints through the windshield. (a) The left side
angles, where the yellow line is a horizontal line with an angle of zero, and the red line
is the boundary of the viewpoint. (b) The right side angles. (c) The upside angles, where
the yellow line is a vertical line with an angle of zero, and the red line is the boundary of
the viewpoint. (d) The downside angles. (e) all view of the viewpoint.

86

Camera

N
(a) (b)

Figure 6.12 An illustration of shifting the viewpoint. (A) Top-view of shifting the

viewpoint where the blue star is the viewpoint we set and the green star is the

viewpoint of camera. (B) Side-view of shifting the viewpoint where the blue star is
the viewpoint we set and the green star Is the viewpoint of camera..

Algorithm 6.5 Generation of the passenger-view image.
Input: an omni-image G, a perspective-mapping table Tpe with MpxNp entries, the
center point C(Xc, Y¢) Of the image, and the pre-measured angles 6; of the view
region as shown in Figure 6.11.
Output: a passenger-view image |, to be displayed on the user’s mobile-device
screen.
Steps:
Step 1. Compute the position of the vertex Vi(x;, yi) of the passenger’s view image
according to the perspective-mapping table, Table Tpe, by the following

equation according to the principle of proportionality:

X = X, +% xMg;
P (6.17)
=y +—2xN_,
y| yc 110 x P
where 6y is the angle in the horizontal direction and 6, is the angle in the

87

vertical direction as shown in Figures 6.13(a) and (b) (note that the camera
has 360 degrees of view in horizontal direction and 100 degrees of view in
the vertical direction).
Step 2. Repeat Step 1 until the positions of the four vertices are all computed.
Step 3. Use the perspective-mapping table Ty to draw the desired image I, as
shown in Figure 6.13 by the following steps.
3.1 Set the shift index S(xs, ¥s) to be the position of the upper left vertex of
Vi.
3.2 Set print point P(Xp, Yyp) to be (0, 0).
3.3 According-to-the.coordinates (Xs + Xp, Ys + Yp) in the table Ty, find the
corresponding image coordinates (u, v).
3.4 Assign the color value of each image pixel of G at coordinates (u, v) to
a pixel at coordinates (Xp, yp) in the desired passenger’s view.image I,.
3.5 Move P to the next point.
3.6 Repeat Steps 3.3 to 3.5 until all the pixels in the region of

passenger-view image are drawn in 1Ip.

6.3 Augmenting Names.of Buildings on
Passenger-view Images

After generating the passenger-view image, the system can use this image as the
base to augment the building name on it. In order to implement this, we need to
compute the information about the position of the building by the use of the learned
data and the location of the vehicle. The proposed method to augment the building

name is described in the next section.

88

A planar
region Perspective Mapping Table
Mp

Center Passenger-view Image
\% a o] V: M
1 X1 x2| V2 8, A P Vs,
§ g E " W MP
N | ? e
P ; : Vs \Z
V3 ' Va
(a)
(b)

Figure 6.13 Illustration of construction of passenger-view images. (a) A Top-view
configuration for generating a passenger-view image. (b) A lateral-view configuration
for generating a passenger-view image.

6.3.1 Calculating Positions of Buildings in

Passenger-view Images

We calculate the position of the building by using the result of vehicle
localization. Then, we can use the position to calculate the angle of the direction of
the building as seen from the vehicle, as illustrated in Figure 6.14. Note that the
building appears to be an area instead of a point. Thus, we calculate three angles of
from the vehicle to two corners and the middle of the building by Equation (3.2) as
shown in Figure 6.14. Equation (3.2) is repeated in the following for convenience of
reference:

— X X
0, =tan"(——=

Yi— Y,

) (3.2)

Moreover, we use the angle to calculate the building position in the image. In
more detail, we know the position and the corresponding angle in the passenger-view

image after generating the image. Then, we just use the corresponding relation to

89

compute the position of the building as shown in Figure 6.15. Finally, the system uses

the learned data to augment the correct building name on the passenger-view image.

Building

corner

Car
Orientation

Figure 6.14 An illustration for calculating the angle of the direction to the building.

Passenger-view Image

Figure 6.15 An illustration for calculating the position of the building.

6.3.2 Algorithm of Augmenting Names of Buildings

on Images

In this section, we introduce the proposed algorithm of augmenting the names of
buildings on images. After calculating the position of the building in the
passenger-view image, we can use the learned data of the building to augment the

building information on the image. However, we regard the building as a line in this

90

study. In more detail, we learn the edge line of the building by connecting two corners
of it as shown in Figure 6.16. In some cases, the entire building is not seen in the
image; instead, only part of the building can be seen in the image as shown in Figure
6.17(b). In one case, the middle part of the building is in the image, and we can
augment the building name on it. In another case, only part of the building can be seen
in the image; then, we augment the building name on the boundary of the image. The

detail is described in the following as 00

(@) (b)
Figure 6.17 An illustration of the view of the image. (a) The entire building can be
seen in the image. (b) Only part of the building can be seen in the image.

Algorithm 6.6 Augmenting Names of Buildings on the Images.
Input: the position P, of the vehicle, a passenger-view image I,, the width W and
height H of I, the center point C(x, yc) of the image, and the angles 6, and 6
of the left boundary and the right boundary of the passenger-view image Iy,
respectively.
Output: the passenger-view image lag With augmented information.
Steps:
Step 1. Set the angle 6; of the direction of the building in I, to be zero.
Step 2. Use the position P, of the vehicle to compute the angle 8w of the direction
of the middle of the building in I, by Equation 3.2 and Equation 3.3.

Step 3. Use P, to compute the angle 6g. of the direction of the left side of the
building in I, by Equation 3.2 and Equation 3.3.

Step4. Use P, to compute the angle #gzr of the direction of the right side of the
building in I, by Equations 3.2 and 3.3.

Step 5. If the following equation is satisfied, set &; to be Osv and go to Step 8; else,
go to Step 6:

6, < Oqyy <6;. (6.18)

Step 6. If the following equations are satisfied, set 5 to be 4. and go to Step 8; else,

goto Step 7:
Oy <0,
BM L (6.19)
0, <Oy <6,.
Step 7. If following equation is true, set &; to be 6 and go to step 8.
0, < 0y,;
R BM (6.20)
0, <6, <6;.

Step 8. Compute the position P(x, y) of the building by the following equation:

X =

xW + X _;
0.0, ° (6.21)

Y=Y

92

Step 9. Use the learned data to augment the name of building at position P(x, y) on

image I, and save it into lag.

6.4 Tour Guidance in Park Areas

6.4.1 ldeas of Tour Guidance in Park Areas

By augmenting relevant information on the passenger-view image for inspection
on the user’s mobile-device screen, the system can give the user a good guidance in a
park area. Moreover, the system.uses many methods described in Chapters 3 through
6. Firstly, the system learns the environment for constructing the environment map in
the park area. Secondly, the system detects the along-path line features for locating
the vehicle. Also, the system uses the features to locate the vehicle. Furthermore, the
system uses the location of the vehicle to compute the position of the building. Finally,
the system shows the augmented information on the passenger-view image generated
by the system. When the vehicle is driven in the park area, the user can enjoy the tour

guidance by all these functions!

6.4.2 Algorithm for Tour Guidance in Park Areas

In this section, we introduce the tour guidance algorithm which uses all the
methods described in the previous chapters. The algorithm is described in the

following.

93

Algorithm 6.7 Tour guidance in park area.

Input:

an environment map Map, a color omni-image I, a set of positions of center
points P;, a threshold g of gap size, and threshold w of the line width, a
reference omni-image I, a search window W, two threshold values T, and Tg, a
threshold d for judging the equality of two angles, perspective-mapping table
Tpe With MpxNp entries, a center point C(x., yc) of the image, and angles 6, and

Or of the left boundary and the right boundary of the passenger-view image.

Output: a passenger-view image g with-augmented information.

Steps:

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Transform the color-omni-image I¢ into a gray-level omni-image Ig.
Transform the gray-level omni-image lq into a binary omni-image .

With the binary image Iy, a set of positions of center points P;, a threshold g
of the gap size, and the threshold w of line width as inputs, perform
Algorithm 4.3 to conduct detection of lines in a set S;.

With the environment map Map, a set S;, a search window W, two threshold
values T, and Ty as_inputs, perform Algorithm 5.6 to compute the position
P, of the vehicle.

With the omni-image I; and the pano-mapping table T, with MxN entries
as inputs, perform Algorithm 6.5 to generate the passenger-view image I,.
With the position P, of the vehicle, a passenger-view image I, and the
angles 6. and 6r as inputs, perform Algorithm 6.6 to generate the
passenger-view image lar With the building name augmented on it.

Display Iag on the mobile-device screen.

94

6.5 EXxperimental Results

We have described the proposed methods for augmenting the building name on
the passenger-view image. As described in Section 6.2, we generate the
passenger-view image by transforming the omni-image. An example of the generated
passenger-view image is shown in Figure 6.18. As described in Section 6.3, we
augment the building name on the passenger-view image. An example of augmenting

the building name on the passenger-view image is shown in Figure 6.19.

(b)

(d)
Figure 6.18 (a)The omni-image acquired from the omni-camera. (b)The
passenger-view image transformed from (a). (c)The omni-image acquired from the

omni-camera. (d)The passenger-view image transformed from (c)

95

(@) (b)

Figure 6.19 Two passenger-view images with the building names augmented.

96

Chapter 7
Experimental Results and
Discussions

7.1 EXxperimental Results

In this chapter, we will show some experimental results of applying the proposed
augmented reality guidance system.for park touring on the vehicle. We will show the
results of learning the environment map for our experimental environment, which is
part of the National Chiao Tung University campus, and the results of the guidance
process based on the AR technique developed for this study. An illustration of the
guidance area consisting of a path, four buildings, ten light poles, and seventeen edge

lines on building walls along the sidewalk is shown in Figure 7.1.

Edge lines on

building walls Rath

Light pole

‘Enginsering Bulkting 4 3 (side)

Building d

Building 3 (foce)

Figure 7.1 The environment map we use in the proposed system.

97

In the learning stage, we drive the vehicle on the path as shown in Figure 7.2(a).
When the system detects vertical lines, we save the information into the database as

shown in Figure 7.2(b) and (c).

}.

Tl s

R |

(b) (©)
Figure 7.2 An experimental result of the learning stage. (a) An image of the vehicle
driven on the path and detecting the line feature. (b) An omni-image acquired from
the omni-camera. (c) A line feature detected by the system.

After learning the environment, the system can use the learned data to offer
AR-based guidance to the user. Firstly, the system detects the vertical line features for

vehicle localization as shown in Figure 7.3.

98

° ° °

Photonic Building)
e ———

gineering Building 3 (face)

(e) ()
Figure 7.3 An experimental result of detecting the line features and locating the vehicle.
(a) An omni-image acquired from the omni-camera. (b) Another omni-image acquired
from the omni-camera. (c) A line feature detected by the system. (d) Another line
feature detected by the system. (e) The location of the vehicle computed by the system
and indicated by the red point. (f) Another location of the vehicle computed by the
system and indicated by the red point.

99

After locating the vehicle, the system can use the result to show the AR image at
the mobile device. Figure 7.4 shows an example of such results for tour guidance. We
show images of the vehicle on the path in Figures 7.4 (a) and (d). Then, the system
augmented the building name in the passenger-view image on the mobile device as

shown in Figures 7.4 (c) and (f).

(b) (c)
Figure 7.4 AR-based navigation. (a) An image of the vehicle on the path. (b) An
omni-image acquired with the omni-camera. (c) The passenger-view image with an
augmented building name. (d) Another image of the vehicle on the path. () Another
omni-image acquired with the omni-camra. (f) Another passenger-view image
augmented with the building name.

100

(d)

Figure 7.5 AR-based navigation. (a) An image of the vehicle on the path. (b) An
omni-image acquired with the omni-camera. (c) The passenger-view image with an
augmented building name. (d) Another image of the vehicle on the path. (e) Another
omni-image acquired with the omni-camra. (f). Another passenger-view image
augmented with the building name (continued).

7.2 Discussions

The experimental results of the proposed tour guidance system presented
previously show that it is feasible to use the omni-camera equipped on the vehicle to
detect the vertical line features for locating the vehicle by using the vertical-line
features. Then, it is also practical to generate the passenger-view image and augment
the building name on it for display on user’s mobile—device screen.

However, the proposed system still has some problems. If the features in the

101

environment are too few for the system to detect, the system might have errors
because erroneous localization of the vehicle. In more detail, if the distance between
two features is too large, then the system will use the estimated vehicle speed to locate
the vehicle for a long distance. The error of the location will possibly accumulate to a
very large amount and make the system show wrong AR information on the user’s
mobile-device screen. Therefore, the path we choose is important for the system.
Furthermore, if the network of the system breaks down, then the system cannot work
because the main process is conducted on the remote server computer. If the system
on the vehicle cannot connect to the server, the server cannot get the image and the
system will stop. In this case, the system can send the AR image to the mobile device,
but the user cannot see anything on the device. So the stability of the network is

important for running the proposed system.

102

Chapter 8
Conclusions and Suggestions for
Future Works

8.1 Conclusions

A tour guidance system by augmenting reality techniques for uses in outdoor

environments by using.an.omni-camera imaging device has been proposed. To design

such a system, several techniques have been proposed as summarized in the

following.

1.

A method for learning the environment map_has been proposed, which generates
the environment map for the system to locate the vehicle position and compute
the position of the building.

A method for detecting vertical lines in omni-images has been proposed, which is
based on the canny edge detector and detects vertical lines, complete or broken,
with widths.

A method for locating the vehicle along the path has been proposed, which uses
the result of vertical-line detection to conduct vertical-line matching by the LCS
algorithm to provide the position of the vehicle on a map.

A method for generating the passenger-view image has been proposed, which
generates, as the base of the AR image, the view of the front passenger on the
user’s mobile-device screen, not seen by the user himself/herself but also other
passengers in/outside the car with hand-held mobile devices with wireless

communication capabilities.
103

5. A method for tour guidance in the park area has been proposed, by which the
user can see augmented passenger-view images with building names on them on

the user’s mobile-device screen.

The experimental results shown in the previous chapters have revealed the

feasibility of the proposed system.

8.2 Suggestions for Future \Works

According to the experience obtained this study, in the following we make
suggestions of some interesting- issues, which. are worth further investigation in the
future.

1. Increasing the speed of computations in feature detection and vehicle localization
for realtime applications.

2. Developing the capability of detecting features of different shapes adapt the
proposed system to more diversified environments.

3. Developing more applications of the proposed augmented reality techniques
using the omni-camera system and the vehicle.

4. Adding the capability of detecting various features acquired by the omni-cameras
on a fast-moving vehicle.

5. Including more useful information into the environment map for vehicle

localization, such as stores, vendors, lakes, etc.

104

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

B. C. Chen and W. H. Tsai, “A Study on Tour Guidance by Car Driving in Park
Areas Using Augmented Reality and Omni-vision Techniques,” in Computer
Vision,Graphics, and Image Processing, Aug 2012.

Gandhi and M. M. Trivedi, “Motion analysis for event detection and tracking
with a mobile omni-directional camera,” ACM Multimedia Systems Journal,
Special Issue on Video Surveillance, vol. 10, no. 2, pp. 131-143, 2004.

P. H. Yuan, K. F. Yang, and W. H. Tsai, “A Study on Monitoring of Nearby
Objects around a~Video Surveillance. Car with a Pair of Two-camera
Omni-directional Imaging Devices, ” Proceedings of 2010 Internaitonal
Computer Symposium (ICS), National Chiao Tung University, Hsinchu, Taiwan,
pp.-325-330, Dec. 2010.

S."W. Jeng and W. H. Tsai, “Using pano-mapping tables for unwarping of
omni-images into panoramic and perspective-view images,” Journal of IET
Image Processing, Vol. 1, No. 2, pp. 149-155, June 2007.

Y. T. Kuo and W. H. Tsai, "A new 3D imaging system using a portable
two-camera omni-imaging device for construction and browsing of
human-reachable environments," Proceedings of 2011 International Symposium
on Visual Computing, pp. 484-495, Las Vegas, Nevada, USA.

M. Betke and L. Gurvits, “Mobile robot localization using landmarks,” IEEE
Transactions on Robotics and Automation, Vol. 13, No.2, pp. 251-263, April
1997.

C. T. Ho and L. H. Chen, “A high-speed algorithm for elliptical object
detection,” IEEE Transactions on Image Processing, Vol. 5, No. 3, pp. 547-550,

105

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pei-Hsuan%20Yuan.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kuo-Feng%20Yang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wen-Hsiang%20Tsai.QT.&newsearch=partialPref

March 1996.

[8] C. J. Wu, “New Localization and Image Adjustment Techniques Using
Omni-Cameras for Autonomous Vehicle Applications,” Ph. D. Dissertation,
Institute of Computer Science and Engineering, National Chiao Tung University,
Hsinchu, Taiwan, Republic of China, July 2009.

[9] T. Grosch, “PanoAR: Interactive Augmentation of Omni—Directional Images
with Consistent Lighting,” Proc. Computer Vision Computer Graphics
Collaboration _Techniques and Applications (Mirage '05), University of
Koblenz-Landau, Germany, pp. 25-34, 2005.

[10] Lee, J.W., You, S., Neumann, U, “Tracking with Omni-Directional Vision for
Outdoor AR Systems,” Proceedings of IEEE ACM Int’l Symposium on Mixed
and Augmented Reality (ISMAR 2002), Darrnstadtt, Gkrmany, October 2002.

[11] G. Reitmayr and T.W. Drummond, “Going out: Robust model based tracking for
outdoor augmented reality,” Proc. IEEE Int'l Symp. Mixed and Augmented
Reality (ISMAR), Santa Barbara, California, USA, pp. 109-118, 2006.

[12] M. Tonnis, C. Sandor, G. Klinker, C. Lange, and H. Bubb. “Experimen-tal
evaluation of an augmented reality visualization for directing a car driver’s
attention.” Proc. of IEEE and ACM International Symposium on Mixed and
Augmented Reality, pp. 56-59, Vienna, Austria, Oct. 2005.

[13] B. D. Lucas and T. Kanade, “An iterative image registration technique with an
application to stereo vision,” Proceedings of 7th International Joint Conference
on Artificial Intelligence, Vancouver, Canada, pp. 674-679, 1981.

[14] T. Mashita, Y. Iwai, and M. Yachida, “Calibration method for misaligned
catadioptric camera,” IEICE Transactions on Information & Systems, vol. E89-D,
no. 7, pp. 1984-1993, July 2006.

[15] H. Ukida, N. Yamato, Y. Tanimoto, T. Sano, and H. Yamamoto,
106

“Omni-directional 3D Measurement by Hyperbolic Mirror Cameras and Pattern
Projection,” Proceedings of 2008 IEEE Conference on Instrumentation &

Measurement Technology, Victoria, BC, Canada, May 12-15, 2008, pp. 365-370.

107

