

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

利用環場攝影機於車內做基於擴增實境技術的室外園

區導覽

In-car Tour Guidance in Outdoor Park Areas Based on

Augmented Reality Techniques Using an Omni-camera

研 究 生：衛彥成

指導教授：蔡文祥 教授

中 華 民 國 一 O 二年 六 月

利用環場攝影機於車內做基於擴增實境技術的室外園區導覽

In-car Tour Guidance in Outdoor Park Areas Based on Augmented

Reality Techniques Using an Omni-camera

研 究 生：衛彥成 Student：Yen-Cheng Wei

指導教授：蔡文祥 Advisor：Wen-Hsiang Tsai

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2013

Hsinchu, Taiwan, Republic of China

中華民國一 O二年六月

 i

In-car Tour Guidance in Outdoor Park Areas Based

on Augmented Reality Techniques Using an

Omni-camera

Student: Yen-Cheng Wei Advisor: Wen-Hsiang Tsai

Institute of Multimedia Engineering,

College of Computer Science

National Chiao Tung University

ABSTRACT

In this study, an augmented-reality based tour guidance system for use in park

areas using a vehicle and computer vision techniques has been proposed. With the

proposed system, a user in the vehicle driven in a park area can get from the system

tour guidance information about the names of nearby buildings along the path. The

building names are augmented on the passenger-view image which is displayed on the

mobile device held by the user in the vehicle.

To implement the proposed system with the augmented reality function, firstly an

environment map is generated in the learning phase, which includes the information

about the path of the tour, the along-path line features which can be detected for

vehicle localization, and the building names. All the data are learned either manually

or semi-automatic, and saved into the database for use in the navigation phase.

Secondly, a method for detecting along-path vertical-line features which appear

in the omni-image is used to localize the vehicle. The method detects edges in the

input omni-image, and analyzes them to detect continuous or broken vertical lines

 ii

with widths.

Next, a method for vehicle localization is proposed, which analyzes the detected

line features and computes the vehicle position by a modified longest common

subsequence algorithm. Meanwhile, motion vectors are used to estimate the vehicle

speed for locating the vehicle when there is no detectable feature around the vehicle.

Finally, a method is proposed for generating a passenger-view image by

transforming the omni-image acquired from the omni-camera onto the user’s

mobile-device screen. And with the passenger-view image as a base, a method has

been designed to augment the building name on the image for display according to the

computed position of the building yielded by the vehicle localization process.

Good experimental results are also presented to show the feasibility of the

proposed methods for real applications.

 iii

利用環場攝影機於車內做基於擴增實境技術的室外園

區導覽

研究生: 衛彥成 指導教授:蔡文祥 博士

國立交通大學多媒體工程研究所

摘要

本研究利用車輛與電腦視覺技術，建立一個基於擴增實境(augmented

reality; AR)技術的室外園區導覽系統。利用此系統，使用者開車在園區時可以

接收到導覽資訊，例如路徑上車輛周圍之建築物名稱。此導覽資訊出現在車內使

用者的手持裝置上影像的建築物上。

為實現此一擴增實境導覽系統，本研究首先在學習階段建立環境地圖，地圖

中包含導覽的路徑、周圍欲偵測之垂直線特徵、附近建築物所在位置及其名稱等

資料。所有資料經過手動或半自動的學習之後，會儲存至一資料庫以供導航階段

使用。

接下來，本研究提出一個利用環場影像偵測路徑上車輛周圍的垂直特徵物進

行車輛定位的方法，該系統利用環場攝影機取得之影像來分析垂直線，垂直線即

使不連續或是有寬度仍然能夠偵測出來。

此外，本研究利用最長共同子序列的演算法分析偵測到的直線，並計算出車

輛的位置，來對車輛進行定位。若無法用特徵物做定位，則利用動態向量(motion

vector)來預估車輛速度，藉以計算車輛所到達位置。

最後，本研究利用環場攝影機所取得的影像經過轉換後，產生出模擬副駕駛

看出車外的影像，並且將此影像顯示在手持裝置上。同時，以此影像為基底，並

利用車輛定位的結果，將建築物在影像上的位置計算出來，藉以疊加此建築物的

名稱在該影像上。

 iv

上述方法經過實驗得到良好的結果，顯示本研究所提出的系統確實可行。

 v

ACKNOWLEDGEMENTS

 The author is in hearty appreciation of the continuous guidance, discussions, and

support from his advisor, Dr. Wen-Hsiang Tsai, not only in the development of this

thesis, but also in every aspect of his personal growth.

 Appreciation is also given to the colleagues of the Computer Vision Laboratory

in the Institute of Computer Science and Engineering at National Chiao Tung

University for their suggestions and help during his thesis study.

 Finally, the author also extends his profound thanks to his dear mom and dad for

their lasting love, care, and encouragement.

 vi

CONTENTS

ABSTRACT (in English) ... i

ABSTRACT (in Chinese) .. iii

ACKNOWLEDGEMENTS ... v

CONTENTS ... vi

LIST OF FIGURES.. x

LIST OF TABLES .. xvi

Chapter 1 Introduction ... 1

1.1 Background and Motivation ... 1

1.2 Survey of Related Studies .. 4

1.3 Overview of Proposed Methods ... 5

1.3.1 Terminologies ... 5

1.3.2 Brief Descriptions of Proposed System 5

1.4 Contributions ... 8

1.5 Thesis Organization ... 9

Chapter 2 System Design and Processes ... 10

2.1 Ideas of Proposed Method .. 10

2.2 System of Configuration .. 12

2.2.1 Hardware Configuration ... 13

2.2.2 Software Configuration... 15

2.2.3 Network Configuration ... 16

2.3 Network System ... 17

2.3.1 Server-side System ... 17

2.3.2 Client-side System .. 18

2.3.3 Cooperation between Client and Server Sides 18

2.4 System Processes ... 20

2.4.1 Learning Process .. 20

 vii

2.4.2 Navigation Process ... 21

Chapter 3 Learning of Environments .. 23

3.1 Ideas of Proposed Environment Learning Techniques 23

3.2 Coordinate Systems Used in This Study ... 24

3.3 Construction of Environment Map ... 25

3.3.1 Information Included in Environment Map 26

3.3.2 Creation of Database for Environment Map 27

3.4 Learning of Environment Features ... 28

3.4.1 Learning of Navigation Paths.. 28

3.4.2 Learning of Vertical Lines in Environments 30

3.4.3 Learning of Building Information ... 34

3.5 Experimental Results ... 35

Chapter 4 Automatic Detection of Vertical Lines in Environments with an

Omni-camera... 37

4.1 Introduction ... 37

4.2 Idea of Analysis of Vertical Lines in Omni-images 38

4.3 Detection of Vertical Lines in Environments... 44

4.3.1 Initial Detection by Canny Edge Detector 44

4.3.2 Detection of Lines with Widths ... 45

4.3.3 Detection of Broken Lines .. 47

4.4 Algorithm for Vertical Line Detectin .. 49

4.5 Experimental Results ... 51

Chapter 5 Vehicle Localization for Tour Guidance in Outdoor Park Areas by

Computer Vision Techniques ... 54

5.1 Introduction ... 54

5.2 Estimation of Vehicle Speed ... 55

 viii

5.2.1 Computation of Motion Vectors .. 55

5.2.2 Vehicle Speed Estimation Using Motion Vectors....................... 57

5.3 Vehicle Localization by Single Line Features 58

5.3.1 Idea of Vehicle Localization by Line Features 59

5.3.2 Algorithm for Vehicle Localization by Single Line Features 60

5.4 Vehicle Localization by Multiple Line Features 61

5.4.1 Review of Longest Common Subsequence (LCS) Algorithm 61

5.4.2 Vehicle Localization using Multiple Features by LCS Algorithm

 63

5.5 Knowledge-based Analysis of Tours ... 64

5.5.1 Uses of Knowledge about Environments................................... 64

5.5.2 Algorithm for Vehicle Localization in Tours 66

5.6 Experimental Results ... 67

Chapter 6 Proposed Augmented Reality-Based Tour Guidance Using an

Omni-camera... 70

6.1 Ideas of Proposed Techniques... 70

6.2 Construction of Images from Front Passenger’s View 71

6.2.1 Construction of Image-to-space Mapping Table 71

6.2.2 Review of Adopted Method for Perspective-view Image

Generation ... 79

6.2.3 Review of Generation of Perspective-mapping Table 82

6.2.4 Generation of Passenger-view Image .. 84

6.3 Augmenting Names of Buildings on Passenger-view Images 88

6.3.1 Calculating Positions of Buildings in Passenger-view Images ... 89

6.3.2 Algorithm of Augmenting Names of Buildings on Images 90

6.4 Tour Guidance in Park Areas .. 93

 ix

6.4.1 Ideas of Tour Guidance in Park Areas 93

6.4.2 Algorithm for Tour Guidance in Park Areas 93

6.5 Experimental Results ... 95

Chapter 7 Experimental Results and Discussions .. 97

7.1 Experimental Results ... 97

7.2 Discussions ...101

Chapter 8 Conclusions and Suggestions for Future Works103

8.1 Conclusions ..103

8.2 Suggestions for Future Works ..104

 x

LIST OF FIGURES

Figure 1.1 Proposed AR-based tour guidance system. (a) Image of the used vehicle.

(b) Illustration of proposed AR-based guidance system working on a

moving vehicle. ... 3

Figure 1.2 A flowchart of proposed learning process. ... 7

Figure 1.3 A flowchart of proposed navigation process. .. 8

Figure 2.1The video surveillance vehicle used in this study with an omni-camera

affixed on the car roof. (a) A front view of the vehicle. (b) A side view of

the vehicle. .. 10

Figure 2.2 Positions of the omni-imaging device affixed to the video surveillance

vehicle roof and the corresponding FOV. (a) The device is affixed at the

rear-middle of the car roof. (b) The device is affixed at the right-front of

the car roof. .. 11

Figure 2.3 Structure of the proposed surveillance system. 13

Figure 2.4 The component of the camera device and entire device. (a) AISYS

ALTAIR U500C cameras. (b) JHF8M-5MP lens. (c) Entire camera device.

.. 15

Figure 2.5 The architecture of the local network used in this study. 16

Figure 2.6 Cooperation between client and server sides. ... 19

Figure 2.7 Flowchart of learning process. ... 21

Figure 2.8 Flowchart of proposed tour guidance system. .. 22

Figure 3.1 The three coordinate systems used in the proposed system. (a) The global

coordinate system. (b) The camera coordinate system. (c) The image

coordinate system. ... 25

 xi

Figure 3.2 User interface for real-world map construction by use of OpenStreetMap.

.. 26

Figure 3.3 The real-world map we use in the proposed system. 27

Figure 3.4 The vehicle on a path while detecting a feature. (a) An illustration of the

vehicle driving on the path. (b) An omni-image with a detected feature 

a light pole. ... 30

Figure 3.5 Illustrations of multiple feature detection. (a) Illustration of detected

feature on the map. (b) The angle of features detected. (c) Illustration of

calculating the angle of θf. ... 32

Figure 3.6 Learning of buildings. (a) An illustration of learning the building. (b)The

result of learning the building in the map. .. 34

Figure 3.7 The environment map we use in the proposed system. 36

Figure 3.8 The environment map with the path. .. 36

Figure 3.9 The environment map with the path and features. 36

Figure 4.1 Camera and image coordinate systems. ... 40

Figure 4.2 Illustration of a space line projected on to the image plane. 41

Figure 4.3 An illustration of detection of lines with widths in the image. The black

boxes are line points; the yellow area is the region we define as a line; and

the red line specifies the direction of this line. 46

Figure 4.4 An illustration of a line detection. The black painted box is line points.

The red painted box is the scan point Ps. The green painted box is the

neighbor points Pn. .. 47

Figure 4.5 An illustration of a broken line detection. (a) A broken line with a 80%

density. (b) Two lines whose overall density is 80%. 48

Figure 4.6 An illustration of vertical lines in an omni-image. The area of red points

are the center of the omni-image, and each green line corresponds to a

 xii

vertical line in the real-world space. .. 50

Figure 4.7 Illustrations of the phenonmenon that a vertical line become a radial line

in the omni-image. (a) Scene 1. (b) Scene 2. .. 52

Figure 4.8 Results of Canny edge detection. (A) Result of Figure 4.7(a). (B) Result

of Figure 4.7(b). .. 52

Figure 4.9 Results of vertical line detection. (a) Result obtained from Figure 4.8(a).

(b) Result obtained from Figure 4.8(b). ... 53

Figure 5.1 An illustration of searching for the best-match macroblock.................... 55

Figure 5.2 An illustration of cutting a part of the omni-image for motion vector

computation. The area enclosed by the red line is the part we cut. 57

Figure 5.3 An illustration of locating the vehicle. (a) An omni-image with a detected

line feature. (b) An illustration of locating the vehicle on the map. 59

Figure 5.4 An Illustration Of Omni-Image. (A) The Omni-Image Which Divided Two

Parts. (B) Two parts of image and the purple line is direction of system to

detect the line features. .. 65

Figure 5.5 Detected motion vectors in an omni-image. (a) The original image. (b)

The detected motion vectors. ... 68

Figure 5.6 The localization of vehicle by using single feature. (a) The omni-image

acquired from the camera. (b) A binary omni-image, in which the red line

is the detected line feature. (c) The map showing the position of vehicle

where the red point is the position of the vehicle and the blue points are

the positions of features. .. 68

Figure 5.7 Vehicle localization by using multiple features. (a) The omni-image

acquired from the camera. (b) A binary omni-image, in which the red lines

indicate detected line features. (c) The map showing the position of

vehicle, where the red point is the position of the vehicle and the blue

 xiii

points are the positions of the detected features. 69

Figure 6.1 The space points and their corresponding image points. 72

Figure 6.2 Finding out the focal point Om. .. 73

Figure 6.3 The interface for acquiring the data of the world space points. 74

Figure 6.4 Nonlinear property of an omni-camera with mirror surface shape. 75

Figure 6.5 Mapping between pano-mapping table and omni-image. 77

Figure 6.6 Creation of pano-mapping table... 78

Figure 6.7 A Top-view configuration for generating a perspective-view image. 79

Figure 6.8 A lateral-view configuration for generating a perspective-view image. .. 82

Figure 6.9 Illustration of construction of a perspective-mapping table. (a) A Top-view

configuration for generating a perspective-mapping table. (b) A

lateral-view configuration for generating a perspective-view image. 84

Figure 6.10 An illustration of viewpoint in the vehicle. (a) Top-view of the vehicle

where the blue star is the viewpoint and the red line is the region of the

view. (b) Side-view of the vehicle where again the blue star is the

viewpoint and the red line is the region of view. 85

Figure 6.11 An illustration of viewpoints through the windshield. (a) The left side

angles, where the yellow line is a horizontal line with an angle of zero,

and the red line is the boundary of the viewpoint. (b) The right side angles.

(c) The upside angles, where the yellow line is a vertical line with an

angle of zero, and the red line is the boundary of the viewpoint. (d) The

downside angles. (e) all view of the viewpoint. 86

Figure 6.12 An illustration of shifting the viewpoint. (A) Top-view of shifting the

viewpoint where the blue star is the viewpoint we set and the green star is

the viewpoint of camera. (B) Side-view of shifting the viewpoint where

the blue star is the viewpoint we set and the green star is the viewpoint of

 xiv

camera... 87

Figure 6.13 Illustration of construction of passenger-view images. (a) A Top-view

configuration for generating a passenger-view image. (b) A lateral-view

configuration for generating a passenger-view image. 89

Figure 6.14 An illustration for calculating the angle of the direction to the building.90

Figure 6.15 An illustration for calculating the position of the building. 90

Figure 6.16 An illustration of calculating the building position. 91

Figure 6.17 An illustration of the view of the image. (a) The entire building can be

seen in the image. (b) Only part of the building can be seen in the image.

.. 91

Figure 6.18 (a)The omni-image acquired from the omni-camera. (b)The

passenger-view image transformed from (a). (c)The omni-image acquired

from the omni-camera. (d)The passenger-view image transformed from (c)

.. 95

Figure 6.19 Two passenger-view images with the building names augmented. 96

Figure 7.1 The environment map we use in the proposed system. 97

Figure 7.2 An experimental result of the learning stage. (a) An image of the vehicle

driven on the path and detecting the line feature. (b) An omni-image

acquired from the omni-camera. (c) A line feature detected by the system.

.. 98

Figure 7.3 An experimental result of detecting the line features and locating the

vehicle. (a) An omni-image acquired from the omni-camera. (b) Another

omni-image acquired from the omni-camera. (c) A line feature detected by

the system. (d) Another line feature detected by the system. (e) The

location of the vehicle computed by the system and indicated by the red

point. (f) Another location of the vehicle computed by the system and

 xv

indicated by the red point. ... 99

Figure 7.4 AR-based navigation. (a) An image of the vehicle on the path. (b) An

omni-image acquired with the omni-camera. (c) The passenger-view

image with an augmented building name. (d) Another image of the vehicle

on the path. (e) Another omni-image acquired with the omni-camra. (f)

Another passenger-view image augmented with the building name.100

 xvi

LIST OF TABLES
Table 2.1 Specifications of the laptop computers and the pad used in this

study... 14

Table 2.2 Specification of the CMOS cameras used in the imaging device 15

Table 2.3 Specification of the lens used in the imaging device 15

Table 6.1 Example of pano-mapping table of size M×N 73

 1

Chapter 1

Introduction

1.1 Background and Motivation

With the advance of technology, video cameras are widely used in many applications

that bring convenience in our daily life. For instance, a vehicle equipped with on-top

video cameras can help a driver to monitor surrounding environments and to be aware of

dangerous situations so that car accidents could be avoided. Furthermore, if people drive

cars which are equipped with video cameras working like digital event recorders, then

when car accidents occur, they can clarify the responsibility by checking the recorded

video.

Most researches of vision-based techniques are based on the use of traditional

projective video cameras, but the limited field of view (FOV) of this type of camera

causes some problems. For example, if we want to see all the views surrounding the car,

we need more than four projective cameras in general. This needs more cost and

superfluous computation time. Thus, we choose to use an omni-camera to be our imaging

equipment in this study.

Moreover, we can use this camera system to develop interesting and useful

applications by combining real-world images captured from the cameras and augmenting

them with guidance information created by computers for the purpose of tour guidance in

outdoor environments. In other words, the real-world environment can be augmented by

computer-generated information (labels, texts, objects, etc.) to enhance the perception of

the real world, and this is the so-called augmented reality (AR)-based tour guidance.

 2

In more detail, the AR technique can help implementing a car navigation system

which provides the driver with information of roads and surrounding buildings by

projecting the names on the windshield or on a display device such as an iPAD [1] in an

AR way. There exist products of head-up displays (HUDs) on the windshield, which can

show information like the vehicle speed and the engine speed. With the HUD, the driver

can easily catch the information from the HUD device instead of looking down at the

dashboard, allowing he/she to focus on driving without being disturbed. Sometimes, the

latter action of looking down is the reason of a car accident. In addition, although AR

techniques based on the Global Positioning System (GPS) are getting popular nowadays,

sometimes they are difficult to utilize for the purpose of car positioning because of their

imprecision in positioning with errors ranging from 3 to 15 meters. Also, the GPS does

not work in tunnels or inside buildings.

Therefore, we propose in this study to integrate the uses of omni-cameras and AR

techniques with a vehicle to implement a more accurate and effective non-GPS guidance

system for driving tours in park areas. Furthermore, instead of using the HUD device

for displaying the augmented image, Chen and Tsai [1] showed the augmented image

on an iPAD and projected the image onto the car windshield for the driver to inspect

during driving without looking down. In this study, we, however, assume that the

AR-based guidance information is to be inspected by a passenger sitting in the car, so

we display the guidance information on the screen of an iPAD held by the passenger

all the time during the driving guidance session. Moreover, in order to get the

information of an environment map, we use computer vision techniques to obtain the

positions of nearby buildings via analysis of the features in the omni-images acquired

by the omni-camera.

In summary, the research goal in this study is to develop a tour guidance system

for use by passengers in cars. To accomplish this goal, we use a vehicle equipped

 3

with an omni-camera on the vehicle top as an experimental platform. Also, we use an

iPAD as a display device for showing the augmented image. The iPAD is held by a

passenger sitting in the car.

An image of the used vehicle is shown in Fig. 1.1(a) and an illustration of the

proposed system is shown in Fig. 1.1(b). Listed below are more detailed descriptions

of the desired capabilities of the proposed AR-based park-area guidance system.

Building 2Building 1

Car

Building1 /

building2
Feature

Omni-

camera

Figure 1.1 Proposed AR-based tour guidance system. (a) Image of the used vehicle. (b)

Illustration of proposed AR-based guidance system working on a moving vehicle.

1. The system can learn the environment map automatically.

2. The system can detect vertical line features in the environment automatically and

measure their positions. It then marks the relative locations of the vehicle with

respect to the line features on the environment map.

3. The system is capable of computing the accurate vehicle position so that relevant

augmented information can be computed accordingly and displayed on the iPAD

at correct locations.

4. The image appearing on the iPAD shows in an AR way as a combination of the

real-world image and the nearby building names for tour guidance.

 4

1.2 Survey of Related Studies

In this section, we give a survey of related studies, such as video surveillance,

design of omni-cameras for uses on vehicles, vehicle navigation, AR techniques, etc.

In recent years, video surveillance for various applications has been studied more

intensively. For instance, Trivedi et al. [2] proposed methods to enhance driving

safety by video surveillance systems using omni-cameras. In addition, Jeng and Tsai

[3, 4] proposed a method based on the concept of pano-mapping table to calibrate

omni-cameras without knowing the extrinsic parameters of the omni-cameras.

Moreover, a new type of omni-vision system designed by combining two projective

cameras and two mirrors attached back to back was proposed in Kuo and Tsai [5].

Furthermore, a lot of methods for vehicle navigation by using landmarks have

been proposed. Betke and Gurvits [6] proposed a localization method to identify

surrounding landmarks and find their locations in an environment map. For detection

of landmarks in omni-images, Ho and Chen [7] proposed an algorithm to detect

ellipses, and Wu and Tsai [8] proposed a method which uses the features of lines to

localize the vehicle.

In a similar work, Grosch [9] proposed a method for vehicle navigation in the

indoor environment by using panoramic images. Moreover, more and more outdoor

environment applications using AR techniques have been proposed. Lee et al. [10]

proposed a method using omni-camera to conduct object tracking in outdoor

environments, simulating the user’s view with AR techniques. Reitmayr and

Drummond [11] proposed a model-based tracking system for augmented reality in

urban environments by using handheld devices. Furthermore, Sandor et al. [12]

proposed a method that uses AR techniques for delivering information to a driver by a

head-up display device.

 5

1.3 Overview of Proposed Methods

1.3.1 Terminologies

The definitions of some related terms used in this study are described as follows.

1. Omni-camera: an omni-camera has a mirror with a hyperboloidal or other

geometric shape in front of a conventional projective camera, which projects a

360-degree surrounding scene onto the camera’s imaging plane to form an

omni-image by the mirror surface reflection function.

2. Omni-image: the image captured with an omni-camera device.

3. Video surveillance vehicle: a car with an omni-camera equipped on the top of the

car.

4. Environment map: a real-world map constructed by “OpenStreetMap” (an open

source for the Internet) and including features learned by our system.

5. Features of vertical lines: features in the real world which has vertical-line

shapes such as light poles on street sidewalks, edge lines on building walls, etc.

6. Perspective-view image: an image originally acquired with the omni-camera and

later perspectively-transformed into another image as it is seen by the human

eye.

1.3.2 Brief Descriptions of Proposed System

There are four goals in the proposed system as described in the following.

1. The system is able to learn the environment objects automatically such as defined

features, navigation paths, and building information on the map.

2. The system is able to detect vertical lines in outdoor environments.

3. The proposed system is able to compute the information of the position of the

 6

vehicle.

4. The system is able to generate the passenger-view image for viewing on an iPAD

and augment nearby building names on it.

In order to achieve the above goals, the system operations can be divided into

two phases: the learning process and the navigation process. The following are the

major steps of the learning process.

1. Construct a real-world map by the open source “OpenStreetMap” available on the

Internet.

2. Select a path on the map, and specify manually as nodes the positions of

landmarks (such as street light poles or wall edges on buildings), whose features

are usable for vehicle localization, along the path on the map.

3. Set up the omni-camera on the top of video surveillance vehicle on the front-right

corner, drive the vehicle to follow every node along the path, acquire an image of

the node environment, “learn” (1) the features of the corresponding landmark in

the acquired image and (2) the buildings which are located around the vehicle, and

record the data into a database.

4. Calculate the corresponding relation of the path and the features automatically.

A brief illustration of the above learning process is shown in Fig. 1.2. And the

following are the major steps of the proposed navigation process.

1. Set up the t omni-camera on the top of video surveillance vehicle on the

front-right corner.

2. Load environment map information learned in advance and the mapping table for

the omni-image into the system.

3. Detect vertical line features in the surround of the video surveillance vehicle using

the omni-camera.

4. Use the detected features to calculate the position of the vehicle on the

 7

environment map.

5. Calculate the position of the nearby building on the map by using the computed

location of the vehicle.

6. Generate the passenger-view by transforming the omni-images acquired by the

omni-camera.

7. Augment the building name on the passenger-view image.

8. Repeat the above steps until the vehicle reaches a pre-selected destination.

A brief illustration of the above navigation process is shown in Fig. 1.3.

Process of
Learning Stage

Start of Learning Process

Calculation the
Corresponding Relation

Detection of the feature

Learn the Features of
Building

Learn the Features of
Landmark

Record the Data into a
Database

Select a Path on the Map

Construct the Real-world Map

Figure 1.2 A flowchart of proposed learning process.

 8

Process of

Navigation Stage

Start of Tour Guidance

Display Resulting Image

Detection of features

Generation of

Passenger-view Image
Calculation Position of

the vehicle

Calculation Position of

the Building

Augment the Building

name on Image

Figure 1.3 A flowchart of proposed navigation process.

1.4 Contributions

The following is a list of the major contributions made in this study.

1. A method is proposed to learn the environment map automatically.

2. A method for detecting features of vertical lines in outdoor environments using

omni-camera is proposed.

3. A method for computing the position of the vehicle on a pre-selected path by

detecting one or more vertical–line features in the real world is proposed.

4. A method for generating the passenger-view image by transforming the acquired

omni-image and calculating the boundary position of the passenger’s view is

proposed.

 9

5. A method for computing the positions of buildings on the passenger-view image,

and augmenting the names of the buildings on it is proposed.

6. A tour guidance system for use on a vehicle in a park area by using AR techniques

and an omni-camera is proposed.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, the

configuration of the proposed system and the system processes are introduced in

detail. In Chapter 3, the proposed method for constructing the environment map and

learning of the environment is described. In Chapter 4, the proposed method for

detecting vertical–line features in the outdoor environment with an omni-camera is

presented. In Chapter 5, the proposed method for vehicle localization in tours in

outdoor park environments by using computer vision techniques is described. In

Chapter 6, the proposed method for AR-based tour guidance is presented. In Chapter

7, experimental results and discussions are included. Finally, conclusions and some

suggestions for future works are given in Chapter 8.

 10

Chapter 2

System Design and Processes

2.1 Ideas of Proposed Method

In order to monitor the surrounding environment of the video surveillance

vehicle, we choose the use of omni-cameras instead of traditional projective cameras

to acquire environmental images. In this study we affix an omni-camera on top of the

vehicle as shown in Figure 2.1. The omni-cameras in the device can monitor a

360-degree view of the car surround and acquire necessary scene information outside

the vehicle.

(a) (b)

Figure 2.1 The video surveillance vehicle used in this study with an omni-camera

affixed on the car roof. (a) A front view of the vehicle. (b) A side view of the vehicle.

The video surveillance vehicle has high mobility so that we can move the

system to everywhere. But we have to determine the best locations on top of the

vehicle where the omni-imaging device should be affixed in order to enhance the

imaging effect. As illustrated in Figures 2.2(a) and 2.2(b), if we affix the device at the

front middle of the top of the vehicle, a half of the omni-image acquired with the

 11

device will be occupied by the vehicle body. On the contrary, if we affix it at the

right-front position on the top of the vehicle, only a quarter of the omni-image is

occupied by the vehicle body instead. Therefore, in this study we decide to affix an

omni-imaging device at the right-front of the top of the vehicle.

(a) (b)

Figure 2.2 Positions of the omni-imaging device affixed to the video surveillance

vehicle roof and the corresponding FOV. (a) The device is affixed at the rear-middle

of the car roof. (b) The device is affixed at the right-front of the car roof.

Furthermore, we choose the upper omni-camera in the omni-imaging device for

capturing features at larger heights such as those of buildings and light poles. In more

detail, it is noted at first that each omni-camera captures a view of a hemisphere shape,

so we can use this wide view to detect the vertical lines in the environment. In

addition, a characteristic of the vertical line in the real world, when projected into the

omni-image, is that the line appearing in the omni-image will go through the center of

the omni-image. Therefore, we may consider vertical lines in the real world as good

features and detect them in omni-images utilizing this characteristic.

Next, we localize the vehicle using combinations of line features. For example,

at some positions along navigation paths, the omni-camera may detect the feature

lines of buildings and light poles in the meantime. In such cases, we regard the

 12

combination of the two types of features as a new type of feature learned by the

system.

Moreover, we generate perspective-view images, transform them into

passenger-view images seen on the mobile device held by the passenger, and augment

tour-guidance information on it. Even if the back-seat passenger in the vehicle can

watch the front passenger’s view image on his/her own mobile device for tour

guidance.

Finally, we implement the system by using a 4G/LTE network for data

transmission. By using such a high-speed network, we can send the data to the server

to achieve faster computations and send the results to the mobile device held by the

passenger. Every passenger in the vehicle can view the tour guidance via the system.

Furthermore, because we display the result on the web, even people not in the vehicle

can also enjoy this AR-based tour guidance.

2.2 System of Configuration

In this section, we introduce the configuration of the proposed system in more

detail. The hardware of the system includes: 1) a video surveillance vehicle, 2) an

omni-camera, and 3) a laptop computer, 4) a server computer, and 5) a pad. The

software includes: 1) a program used to integrate the components of the proposed

system, 2) the drivers of the omni-cameras, and 3) the program for image acquisition

developed by AYSIS VISION Company which is a provider of CCD cameras. The

omni-camera is controlled by the laptop computer, and the pad receives information

from the server computer which is kept at a cloud site.

 13

2.2.1 Hardware Configuration

The surveillance vehicle, named Delica, is made by Mitsubishi Co. It is a vehicle

with size 469cm×169cm×196cm with a working table and a power supply. System

operators may sit inside the surveillance vehicle to operate the laptop computer and

monitor the entire surrounding environment. Moreover, a steel frame is affixed to the

top of the vehicle, on which the omni-imaging device is affixed. And extension USB

cords and a cross-over cable crossing the video surveillance vehicle were added to

facilitate transmitting images captured with the omni-imaging device. The entire

video surveillance system is shown in Fig. 2.3.

4G/LET Network

Server

Computer

Laptops

surveillance vehicle

Camera

System

Affixed on

Pad

Figure 2.3 Structure of the proposed surveillance system.

 14

In order to control the entire guidance system, we use a laptop computer, a server

computer, and a pad as control units, with the laptops handling the omni-imaging

device. The laptop is produced by TOSHIBA Computer, Inc. The pad, named Eee Pad

Slate B121, is produced by ASUS Computer, Inc. Detailed specifications of these

devices are listed in Table 2.1.

The omni-imaging device used in this study consists of two omni-cameras

combined coaxially in the longitudinal direction, connected back to back, and

tightened by a specially-designed steel holder. Each camera includes a lens of model

JHF8M-5MP which is shown in Fig. 2.4(a), and a CMOS sensor of model AISYS

ALTAIR U500C which is shown in Fig. 2.4(b). The JHF8M-5MP model is a

mega-pixel lens with the parameters of 2/3", 8mm, and F2.8-22. The specification of

the CMOS camera sensor is shown in Table 2.2 and the specification of the lens are

shown in Table 2.3. The entire omni-imaging device shown in Fig. 2.4(c) is formed

with a pair of AISYS ALTAIR U500C cameras and is affixed on the top of the steel

holder.

Table 2.1 Specifications of the laptop computers and the pad used in this study.

 Satellite A660 Eee Pad Slate

CPU Intel Core i5-480M

2.66/2.93GHz

Intel Core

i5-470UM 1.33GHz

RAM 2G DDR3

1066MHz

4GB DDR3

1066MHz

GPU ATI HD5650 None

Network Fast Ethernet LAN WLAN 802.11

b/g/n 2.4GHz

 15

Table 2.2 Specification of the CMOS cameras used in the imaging device

AISYS ALTAIR U500Color Camera 5.0M

Sensor type CMOS

Sensor size 1/2.5" (5.70 x 4.28 mm)

Pixel size 2.2 x 2.2 μm

Frame per

second

3~7 FPS

Transfer Type USB 2.0(480 million bytes per second)

Table 2.3 Specification of the lens used in the imaging device

(a)

(b)

(c)

Figure 2.4 The component of the camera device and entire device. (a) AISYS ALTAIR

U500C cameras. (b) JHF8M-5MP lens. (c) Entire camera device.

2.2.2 Software Configuration

We use a Visual Studio 2010 (VS 2010) as the development platform to build our

guidance system. The VS 2010 is a program development tool for the operating

system of Windows. The programming language we use is C++. It is a widely used

language. The laptop and the pad run under the operating system of Windows 7.

Lens JHF8M-5MP

Focal Length 8 mm

Maximum Relative Aperture 1:2.8

Iris F2.8 – 22

Angular Field of View 57.9 X 45.0 deg

Image Format 8.8 X 6.6 mm (D11mm)

Minimum Object Distance 0.1 m (From Front Vertex)

 16

In order to use the camera devices, we have to install the drivers of the ALTAIR

U500C cameras into the laptop. The camera company also provides corresponding

software development kits (SDKs). In addition, we can get the source codes and so we

can understand the purpose of the call functions in the program. Accordingly, we can

adjust the parameters of each camera, such as the value of exposure or the global

color gain, through the SDK. Moreover, the camera company not only provides the

VS 2010 but also the BCB, VB.NET, or C#.NET to the programmers.

2.2.3 Network Configuration

The configuration of the network used in this study is as shown in Figure 2.5,

where the cameras and the laptop computer are connected through the USB cable. The

computer server at the cloud site can access the images captured by the omni-cameras

through the laptop by the 4G/LTE network, and so one can make sure that the system

always accesses correct and immediate images and messages. Moreover, the Pad

accesses the resulting images from the server computer via the 4G/LTE network also.

Display

USB port

Laptop

4G/LET Network

Pad

Omni-image

Server

Camera

Figure 2.5 The architecture of the local network used in this study.

 17

2.3 Network System

In this section, we describe in detail the design of the proposed network system

used in this study. In Section 2.3.1, the server-side system used for conducting

complicated works with long computing time in the server computer at the cloud site

is described. In Section 2.3.2, we describe the client-side which includes two

functions: 1) displaying the result on the pad device, and 2) sending the omni-image

data to the servers. Finally, in Section 2.3.3, we will introduce the cooperative

operations between the client and the server sides.

2.3.1 Server-side System

The server-side system runs on a virtual machine (VM) of the cloud server. It is

connected to the laptop computer to send image data to the server, and the pad device

receives the result from the server. Moreover, it has heavy computation loads while

carrying out the programs implementing the proposed vision-based techniques, so we

use a more powerful cloud server to implement it.

The system in the server computer gets images from the cameras on top of the

vehicle. Then, it detects the line features in the images. Because the computational

work is heavy, we divide the work into four parts to run them on the multi-CPU server.

Next, we use the detected line features and the learned data to locate the vehicle

position.

In more detail, the database of the learned information is saved in the cloud

server that has lots of storage. Furthermore, the system uses the information of the

location of the vehicle and the learned data to calculate the positions of the buildings

in the generated perspective image, and augments the building names on it for the

passenger to inspect. Finally we put the resulting image on the web site as well so that

 18

all the users, not just the passengers inside the car, can get tour guidance by

connecting to the web site.

2.3.2 Client-side System

The client-side system involves two components, namely, the laptop computer

and the pad device. The laptop computer acquires the images by connecting to the

omni-imaging device via the USB cable. Moreover, it transforms the omni-image

into the passenger-image. Consequently, the client-side system of the laptop sends

two images, which are the passenger-image and the omni-image, to the server after

their resolutions are reduced to one sixteenth. Reduction of the omni-image

resolution to be one sixteenth will not make the vehicle localization result wrong in

most cases, but will advantageously decrease lots of data and increase the entire

processing speed of the system. After all, we propose the methods that reduce the

huge data into two parts; and in the meantime, the system can run continually with

high vehicle localization precisions.

Finally, the pad device displays the processed images by connecting to the

server and receiving processed images from it. As mentioned previously, the server

system sends the processed images for AR-based guidance via the Internet, so the

user can just visit the web site by using the pad device without running other

applications.

2.3.3 Cooperation between Client and Server Sides

The details of the functions of the server and client side systems are described in

Sections 2.3.1 and 2.3.2, respectively. Here we describe the cooperation between them

in more detail. An illustration of the cooperation between the two systems is shown in

Figure 2.6.

 19

After the client-side of the laptop computer acquires an omni-image, the system

transforms the omni-image into a passenger-image firstly. Then, it sends the two

images, which are the passenger-image and a reduced version of the original

omni-image, to the server.

After the server gets the data, it starts to analyze the data. First, the system detects

the vertical line features in the reduced omni-image, and matches them with the

learned feature data to localize the vehicle. Next, the system calculates the positions

of the building and augment its name on the passenger-view image. Finally, the

system sends the AR result to the client-side device via the web site. That is, the

client-side uses the pad device to displays the AR result by visiting the web site so

that any user in the vehicle can enjoy the guidance by using this system.

Server

Web Site

Client

Pad Device

Result Image

Detection of Vertical

Line
Laptop Computer

Omni-camera Image

passenger-view Image

Omni-Camera

Vehicle Localization

Augmenting

Information on

Passenger-view image

Result Image

Figure 2.6 Cooperation between client and server sides.

 20

2.4 System Processes

2.4.1 Learning Process

The first part of our guidance system is the learning process. It plays an important

role in our system. At the beginning, we need a real-world environment map.

Therefore, we choose the open-source map on the Internet to construct the first part of

the environment map. Next, we choose a path on the environment map and define it.

Then, we save the result in into the database.

Next, we equip the omni-camera on the top of the vehicle and drive it on the path

we choose. When travelling on the path, the learning system detects vertical lines

“seen” in the images acquired with the omni-camera in the meantime. The operator

can see the vertical lines detected by system on the laptop computer, and then he/she

makes the vehicle stop and starts to “learn” the features. The learned information

includes two types: are building and light pole. The system saves information, such as

the type of each feature (building or light pole), the position of the feature in the map,

the angle of the feature, etc., as the learning result into the database. The detail of the

feature information will be discussed in Chapter 3. After traveling the path, the system

analyzes the information automatically. In this process, the system works like

simulating the traveling once again, and saves the analyzed data in the form of tables

which may be looked up in the navigation process to speed up the guidance system. In

more detail, the system can use the tables to match the detected features while running

the navigation system rather than to analyze it again and again. A flowchart of the

above learning process is shown in Fig. 2.7.

 21

Start of Learning Map

Sequential

omni-

images

Detecting the

Vertical Line

Computing the Position

of the Features

Integrating the Information

of Landmarks and Buildings

to LocaL Map

Getting the

Distance of

Features

Learning All Features in Path

Analysis Learning Data

Yes

No

Ending of Learning Process

Construct the Real

World Map

Choose the Path of

Environment Map

Drive the Vehicle on the Path

Figure 2.7 Flowchart of learning process.

2.4.2 Navigation Process

The second part of the proposed guidance system is the navigation process. In

Section 2.4.1, we mentioned how we learn about environment through the learning

process. Accordingly, we can estimate the position of the vehicle on the environment

 22

map and implement our tour guidance system in the navigation process. First of all,

we use the captured omni-image to detect the vertical line-shaped objects in the

environment. This process will be introduced elaborately in Chapter 4. Then, by using

the learning information and the detected features, the system can localize the current

position of the vehicle in the environment map. The detailed process will be

introduced in Chapter 5. Next, the system can calculate the position of the building

and augment the building information on the passenger-view image. The detailed

process will be introduced in Chapter 6. The entire navigation process is shown as a

flowchart in Figure 2.8.

Start of Touring Guidance

Sequential

omni-images

Display Result Image

Detection of Feature

Localization of

Vehicle

Analyzing of Current

Map

Computing Position

of the Buildings

Augment

Information on the

Image

Learning

Data

Learning

Data

Figure 2.8 Flowchart of proposed tour guidance system.

 23

Chapter 3

Learning of Environments

3.1 Ideas of Proposed Environment

Learning Techniques

In this chapter, we describe the details of the method we propose to generate the

environment map for use in the proposed AR-based tour guidance system. In order to

complete the system, we must construct the environment map for use in the

navigation phase, which includes the information about the path of the tour, the line

feature detected for vehicle localization, and the building information.

The first part of environment learning is the construction of a real-world map. We

choose the “OpenStreetMap” to construct our environment map. The OpenStreetMap

is an open data commons where peoples can modify the map free on the internet like

Wikipedia. We use the real-world map acquired from there as the base of the

environment map for this study, and define features of the environment for my system.

In more detail, each feature we define will be marked with an icon on the map. The

selected path is also marked on the map. In addition, the system can also show the

vehicle position on the map during the tour so that the user can see the map clearly.

Next, we learn the line-shaped features for vehicle localization. In order to make

our system more accurate, we have to get more information about the features. In

addition, we not only learn the position of each feature on the map but also learn the

information of the feature about how the camera on the vehicle can “see” It. The

detail will be described in Section 3.3.

 24

Furthermore, we learn the building information for the system to show in the AR

image. The building information includes the building name, the building area in the

map, the area where the camera can see, and so on.

Finally, we merge all the data of the environment as the environment map that the

system can use for navigation in the tour. The detail of environment learning will be

described in the following.

3.2 Coordinate Systems Used in This

Study

In this section, we will introduce the coordinate systems used in this study, which

describe the relations between the used devices and the environment map. The

following are the four coordinate systems used in this study.

(1) World coordinate system (WCS): denoted as (x, y, z) as shown in Figure

3.1(a). The origin OW of the WCS, a pre-defined point on the ground, is

regarded as the starting position of the path traversed by the vehicle during

the learning and navigation processes.

(2) Camera coordinate system (CCS): denoted as (X, Y, Z) as shown in Figure

3.1(b). The origin Om of the CCS, a focal point of the hyperboloidal-shaped

mirror, lies on the X-Y plane which is coincident with the image plane. The

Z-axis coincides with the optical center of the lens of the upper CMOS

camera in the omni-imaging device.

(3) Image coordinate system (ICS): denoted as (u, v) as shown in Figure 3.1(c).

The u-v plane of this system coincides with the image plane with the origin

OC located at the center of the image plane.

(4) Map coordinate system (MCS): denoted as (Mx, My) as shown in Figure

 25

3.1(d). The MCS is used to represent the environment map. The Mx-My

plane coincides with the image plane of the floor. The origin is at the

left-top position of the image plane.

Z

Y

X

OW

Evironment

(a) X

Y

Z

Om

Om

(b)

v

u
OC

(c)

Y

X
O

MAP

 (d)

Figure 3.1 The three coordinate systems used in the proposed system. (a) The global

coordinate system. (b) The camera coordinate system. (c) The image coordinate

system.

3.3 Construction of Environment Map

In this section, we will introduce the method we propose to construct the

 26

environment map. The environment map is like a database, which contains the

information that we use in the navigation process.

3.3.1 Information Included in Environment Map

The information put in the environment map includes the real-world map, the

navigation path, the vertical lines in environment, the building information. The

real-world map is constructed by the use of the “OpenStreetMap” in a website, as

shown in Figure 3.2. It is constructed by the geometry and the text describing the

buildings. In addition, we define a path on the map using piecewise line segments.

The information of the path includes the positions of the end points of the path and

the length of it. Moreover, the features for matching along the path are also learned.

Next, we define the features for each line segment, which includes its position on

the map, the relation of the path and the feature, and the angle between the feature

and the road. Finally, building information for showing the AR image is learned,

which includes the area of the building, the name of the building, the relation

between the building and the path.

Figure 3.2 User interface for real-world map construction by use of OpenStreetMap.

 27

3.3.2 Creation of Database for Environment Map

In order to create a database for use by the system in the navigation process, we

have to save the data orderly. First, we construct a 2-dimension (2D) environment

map by the “OpenStreetMap” and choose a part of the area on the map which is big

enough to include the park environment. Next, we set an appropriate scale and a data

type for the map. In this study, the scale of the map is 1 centimeter to 10 meters, and

the data type of the map is set to be “.jpeg” as shown in Figure 3.3.

Figure 3.3 The real-world map we use in the proposed system.

Furthermore, we save the data of the path into a data structure we designed.

Specifically, we divide the path into some line segments, each being represented by

two points. Moreover, the length of any line segment is also calculated and saved in

the database. The length distp of each line segment p with end points at coordinates (x1,

y1) and (x2, y2) is calculated by the following equation:

2

21

2

21)()(yyxxdistp  . (3.1)

In addition, the orientation p of the line segment p is also calculated and saved,

which is calculated by the following equation:

 28

)(tan
21

211

yy

xx
p




  . (3.2)

where the orientation θp means the angle between the line segment and the horizontal

direction in the map.

The subsequent major task is to save the information about the features which

match with the path. In more detail, we save the number of features matched and the

tag of each feature we defined.

Also, the system has to “learn” as well the vertical lines for vehicle localization.

For this, it saves the position of each vertical line found in the environment as a point

in the map. Also, while the vehicle is moving on the path, only on a part of the path

can be “seen” by the cameras on the vehicle; therefore, for each detected vertical line,

we save the orientations in which the first time and the last time the system in the

vehicle can detect the vertical line. In other words, we learn the range of the views in

degrees in which the vertical line can be seen.

Finally, the system learns the building for showing the AR image. For this, the

information of the building we save into the system includes the geometry of the

building drawn by lines, the building name, and the tag of the building we defined.

3.4 Learning of Environment Features

In this section, we introduce the proposed methods to learn the information about

the environment. The learning process is a necessary step for the system to get ready

to run.

3.4.1 Learning of Navigation Paths

A path for car driving in the real world is not just a straight line, but in the study,

we use piecewise line segments to describe a path. Furthermore, the system “sees”

 29

each line segment as a unit which includes a lot of information about it. The detail of

learning a navigation path is described in the following algorithm.

Algorithm 3.1 Learning of a navigation path.

Input: A real world map.

Output: An environment map with line segments drawn on it as a selected path and

the information of the path in a type of data structure.

Steps:

Step 1. Choose a line segment which can be used to compose a desired path by

defining the start point and the end point on the map for the line segment.

Step 2. Calculate the length of the line segment by using Equation (3.1) and save it

into the data structure of the path.

Step 3. Calculate the angle of the line segment by using Equation (3.2) and save it

into the data structure of the path.

Step 4. Add all the features that the vehicle driving on the line segment of the path

can “see,” and save the number of the features also, into the data structure

of the path.

Step 5. Repeat Steps 1 to 4 until all the line segments of the desired path are

chosen.

Step 6. Draw all the line segments as a path on the map.

It noted that the action of adding the features in Step 4 will be described in more

detail in Section 3.4.2. After learning the path, the system can use the path data

together with other learned data to navigate in the environment.

 30

3.4.2 Learning of Vertical Lines in Environments

The learning of vertical lines includes two parts. The first part is to learn a line

feature at a time. The second is for the system to learn multiple line features

simultaneously.

It is noted that learning the path should be conducted before learning the vertical

line features. Furthermore, the most important step in our system is to calculate the

angle of the feature orientation on the map. In more detail, an illustration showing the

vehicle on the road is shown in Figure 3.4(a). And an illustration of a detected feature,

a light pole, is shown in Figure 3.4(b). We can easily calculate the angle of the

orientation of the feature as can be seen from the illustrations. The following

algorithm describes the first part of the proposed learning process  learning of

vertical-line features along the selected path.

θ

Light pole

Car Orientation

(a)

θ

Light pole

Car Orientation

(b)

Figure 3.4 The vehicle on a path while detecting a feature. (a) An illustration of the

vehicle driving on the path. (b) An omni-image with a detected feature  a light pole.

Algorithm 3.2 Learning of vertical line features.

Input: A real-world map with the path information and an omni-image I1 acquired by

 31

with the omni-imaging device on the vehicle.

Output: An environment map with the along-path features drawn on it and the

information of the features in a type of data structure.

Steps:

Step 1. Drive the vehicle along each line segment li along the path and detect the

vertical lines in image I1 using the feature detection method described in

Chapter 4.

Step 2. While the vertical lines are being detected, stop the vehicle and do the

following steps.

2.1 Measure the position of the feature on the map using the scale of the

map and save it into the environment map by associating the feature

with the corresponding line segment li of the path.

2.2 Compute the orientation by which the system detects the feature for the

first time, call it the first-angle of the feature, and save it into the

environment map.

2.3 Drive the vehicle forward until the feature can no longer be detected by

the system.

2.4 Compute the orientation by which the system detects the feature for the

last time, call it the last-angle of the feature, and save it into the

environment map.

Step 3. Repeat Steps 1 and 2 until the vehicle arrives at the end point of the path.

Step 4. Draw all the features on the map.

Next, learning multiple features simultaneously is different from learning one at a

time. The learning of multiple features conducted in this study is a new method. For

vehicle localization using multiple line features, we propose to use the longest

 32

common subsequence (LCS) algorithm in this study, which is based on the dynamic

programming technique. It enables the vehicle to drive on the path by using the data

learned from Algorithm 3.2 and the path information.

In some cases, the vehicle on the path may detect many features at a time like the

case illustrated in Figure 3.5(a). And the system has to learn these multiple features by

saving all the angles of the features as illustrated in Figure 3.5(b). In more detail, we

calculate the orientation of a feature by the following equation:

pgf   (3.3)

where θp means the angle between the line-segment path and the horizontal direction

in the map that is learned by Algorithm 3.1; θg is the feature direction with respect to

the horizontal direction in the map; and θf is the feature direction with respect to the

path direction as shown in Figure 3.5(c). Then, we save the value of θf into the

learning data.

θ

Light

pole

Car

Orientation

Light

pole

Light

pole

(a)

θ1

Car

Orientation

θ2

θ3

(b)

θg

Car

Orientation

θf

θp

Horizontal

Direction

(c)

Figure 3.5 Illustrations of multiple feature detection. (a) Illustration of detected feature

 33

on the map. (b) Detected angle of features. (c) Illustration of calculating the angle of θf.

We use the detected line features to localize the vehicle by matching the angles of

the features using the LCS algorithm to. The details are described in Chapter 5. In the

following, the algorithm for learning multiple line feature data to localize the vehicle

is described.

Algorithm 3.3 Learning of multiple line features.

Input: A real-world map with the path and feature information.

Output:

A table T of the multiple line feature data.

Steps:

Step 1. Start with the first line segment l of the pre-selected path in the map.

Step 2. Start with the first point/pixel of line segment l.

Step 3. Calculate the angle between l and each feature which matches l by do the

following steps.

3.1 Choose the feature associated with l whose data are learned from

Algorithm 3.2.

3.2 Calculate the feature angle by using Equations 3.2 and 3.3 which

setting the point/pixel of the vehicle and the point/pixel of the feature

as two end points.

3.3 Save the result into table T.

3.4 Repeat Steps 3.1 to 3.3 until all the features matching l are learned.

Step 4. Move to the next point/pixel along the line segment.

Step 5. Repeat Steps 3 and 4 until the end point/pixel of the current segment is

reached.

Step 6. Repeat Steps 2 to 5 until the end line segment of the path is reached.

 34

3.4.3 Learning of Building Information

Since the system must show the building information in the AR image, an

algorithm for learning the building is necessary and is derived in the following. An

illustration of the algorithm is shown in Figure 3.6(a). The learning of the building

corner is shown in Figure 3.6(b). In more detail, we learn the edge line of the building

by connecting two corners. And it noted that the edge line we learn is the side which

the vehicle can “see”. In other worlds, there is no need to learn the side which can’t be

seen when driving on the path. Then, the system can calculate the position of the

building while driving on the path by the result of learning the edge line segments.

The details of showing the AR image will be described in Chapter 6.

Car

Orientation

Building

(a)

Car

Orientation

Building

Corner

Building

Corner

Building

Corner

(b)

Figure 3.6 Learning of buildings. (a) An illustration of learning the building. (b)The

result of learning the building in the map.

Algorithm 3.4 Learning of building information.

Input: A real-world map image with the path information.

Output:

A table of the data of learned buildings.

Steps.

 35

Step 1. Drive the vehicle on the path and detect the building(s) in the acquired

image.

Step 2. If a building is detected, stop the vehicle and do the following steps.

2.1 Save the position of the building corner Pi on the map by measuring it

and using the scale of the map to calculate the position of Pi on the

map.

2.2 Repeat Step 2.1 until all building corners Pi are learned.

2.3 Define a line by connecting every two corners Pi.

2.4 Save the building name in the data structure.

Step 3. Repeat Steps 1 and 2 until the vehicle arrived at the end point of the path.

3.5 Experimental Results

The map of our experimental environment is shown in Figure 3.7. It is the final

result of learning all features and the path. In more detail, we will present the results

of applying the proposed algorithm in this chapter step by step. First, in the part of

learning the navigation path, we defined a path in the environment as shown in Figure

3.8. After learning the path, we have a lot of information about it. Next, in the part of

learning vertical line features, we define points of features in the environment as

shown in Figure 3.9. Furthermore, the different colors of the features represent

different kinds of them, such as light pole and edge line on building walls, etc. After

the learning processes are completed, the system can use the resulting information to

locate the vehicle. Finally, in the part of learning building information, we show the

result in Figure 3.7. All the learned data are saved in the system in many data

structures we defined. Before the system starts to run, the data will be loaded into the

 36

system.

Figure 3.7 The environment map we use in the proposed system.

Figure 3.8 The environment map with the path.

Figure 3.9 The environment map with the path and features.

 37

Chapter 4

Automatic Detection of Vertical

Lines in Environments with an

Omni-camera

4.1 Introduction

In this chapter, we describe the proposed method for detecting vertical-line

features in omni-images around the vehicle. Vertical-line features include light poles

on street sidewalks or edge lines on building walls. Sometimes, such features can

even be tree trunk or some non-artificial object. In other worlds, all the objects with

the shapes of vertical lines can be features for use in our system. So our system can

match most application environments.

At first, our main idea of vertical-line feature analysis is that a vertical line in real

world, when mapped into the omni-image, becomes a radius line in the image. In

more detail, the object we see in the omni-image will generally be distorted. But only

the vertical line in the omni-image will not be so. So we take advantage of this

characteristic and regard the vertical line as a feature for use in our study.

Secondly, a vertical line in the real world is not just a line in the mathematical

meaning; in other worlds, it has a certain width and may not be totally straight

everywhere on the line. It might be a broken line as well. So it has a lot of problems to

be solved before it can be well detected in omni-images by a software program. In this

study, we propose many techniques to solve the problems and a method using the

 38

techniques to detect vertical line features in the real world successfully.

The idea behind the proposed method will be described in Sections 4.2, and the

related techniques and an algorithm to implement the method will be described in

Section 4.3. The algorithm is designed mainly for localizing the vehicle position in

the outdoor environment. And while the vehicle is driven in an outdoor environment,

the system uses the algorithm to detect vertical-line features which can be seen along

the pre-selected path.

Finally, some experimental results will be shown in Section 4.5, including some

figures and descriptions about the result.

4.2 Idea of Analysis of Vertical Lines in

Omni-images

In this study, we use vertical line as a feature to localize the vehicle. In addition,

the vertical line in the real-world space becomes a radial line in the omni-image. And

this fact has been provided by Wu and Tsai [8]. It is reviewed subsequently.

As mentioned previously, the hyperbolical shape of the mirror in an omni-camera

may be described as:

1
2

2

2

2


b

z

a

R
, 22 += yxR , 22 bac  . (4.1)

As depicted in Figure 4.1, the omni-camera and omni-image coordinate systems are

specified by coordinates (x, y, z), and (u, v), respectively; and the projection

relationship between the omni-image coordinates (u, v) and the omni-camera

coordinates (x, y, z) can be described as follows [13]:

 39

2 2

2 2 2 2 2

()

()() 2 (z)

xf b c
u

b c z c bc c x y




     
,

2 2

2 2 2 2 2

()

()(z) 2 (z)

yf b c
v

b c c bc c x y




     
, (4.2)

where the parameter f is the focal length of the omni-camera.

According to [14][15], the relation between the coordinates (X, Y, Z) of a space

point P and the image coordinates (u, v) of its corresponding projection point p in the

image may be described by

2 2

2 2

()sin 2
tan

()cos

b c bc

b c






 



; (4.3)

22
cos

fr

r


 ; (4.4)

22
sin

fr

f


 ; (4.5)

22
tan

YX

cZ




 , (4.6)

where 22 vur  and f is the camera’s focal length. We assume that a, b, c, and

f are known in advance. Also, according to the rotational invariance property of the

omni-camera [4], we have

2 2
cos

X

X Y
 


; (4.7)

22
sin

YX

Y


 , (4.8)

2 2
cos

u

u v
 


; (4.9)

 40

22
sin

vu

v


 , (4.10)

where  is both the angle of space point P with respect to the X-axis, and that of

image point p in the image coordinate system with respect to the u-axis. The above

equations may be used to derive the relation between (u, v) and (X, Y, Z).

f

c

c

b

Om

P(X, Y, Z)

I(u, v)
omni-image

Ol

Oa





Figure 4.1 Camera and image coordinate systems.

As shown in Figure 4.2, given a space line L with an end point P0 with camera

coordinates (X0, Y0, Z0), any point P on L with camera coordinates (X, Y, Z) and point

P0 together form a vector V0 = (X  X0, Y  Y0, Z  Z0). On the other hand, let the

direction vector of L be denoted as VL = (dX, dY, dZ). Then, since V0 and VL are parallel,

we get the equality V0 = VL, or equivalently,

(X, Y, Z) = (X0 + dX, Y0 + dY, Z0 + dZ) (4.11)

where  is a parameter. Also, let S be the space plane going through line L and the

 41

mirror base center Om at camera coordinates (0, 0, c), and let NS = (l, m, n) be the

normal of S. Then, any point P' at camera coordinates (X, Y, Z) on S and point Om

together form a vector Vm = (X  0, Y  0, Z  c) = (X, Y, Z – c) which is perpendicular

to NS so that the inner product of Vm and N becomes zero, leading to the following

equality:

O m

omni-image

Ol

S

L

IL

Figure 4.2 Illustration of a space line projected on to the image plane.

lX + mY + n(Z  c) = 0, (4.12)

or equivalently,

lX mY
Z c

n


   . (4.13)

Now we want to derive the equation of the projection of space line L on the

image, which expresses the relation between the camera coordinates (X, Y, Z) of a

space point P′ on L and the image coordinates (u, v) of the image point p′

 42

corresponding to P′. Note that P′ is also on plane S. Combining (4.6) through (4.10)

and (4.13), we get

2 2
tan

Z c

X Y






 =

2 2 2 2

X Y
l m

X Y X Y

n


 



=
2 2 2 2

u v
l m

u v u v

n


 

 =
2 2

()
lu lv

n n

u v






. (4.14)

On the other hand, substituting (4.4) and (4.5) into (4.3), we get

2 2

2 2

2 2

2 2

() 2

tan

()

f
b c bc

f r

r
b c

f r



 







 =
2 2 2 2 2

2 2 2 2

() 2
.

()

b c f bc f u v

b c u v

   

 
 (4.15)

Equating (4.14) and (4.15) leads to

)(

2

)(

)(
22

222

22

22

cb

vufbc

cb

fcb

n

mv

n

lu











which may be squared and reduced to get the following desired result:

2 2 2 2 2 2() 2 () 2 2 0A D u ABuv B D v ACu BCv E        (4.16)

where

l
A

n
 ,

m
B

n
 ,

2 2

2 2

()

()

b c f
C

b c





,

2 2

2

()

bc
D

b c



, E = C

2
  D

2
f
2
. (4.17)

Multiplying (4.16) by n
2
, we can get an alternative form of (4.16) without A and B as

follows:

(l
2
  n

2
D

2
)u

2
 + 2lmuv + (m

2
  n

2
D

2
)v

2
 + 2lnCu + 2mnCv + n

2
E = 0. (4.16a)

Equation (4.16) or (4.16a) shows that the projection of a space line on the image

 43

is a conic section curve. And (4.17) shows that the coefficients of the equation may be

described indirectly in terms of the parameters of the normal NS = (l, m, n) of plane S.

These coefficients actually are related to the elements of the direction vector VL= (dX,

dY, dZ) of L by the equality NSVL = (l, m, n)(dX, dY, dZ) = 0 because NS and VL are

perpendicular, or equivalently,

ldX + mdY + ndZ = 0. (4.18)

Furthermore, Equation(4.16), as derived above, has a good property that the

unknown parameters l, m, and n are confined to appear in just two variables A and B,

as shown by (4.17).

When the space line L is vertical, the projection equation described by (4.16a)

may be simplified further. Specifically, the direction vector of the vertical line L is VL

= (dX, dY, dZ) = (0, 0, 1). Therefore, (16) leads to 0l + 0m + 1n = 0, or equivalently,

n = 0. Accordingly, (4.16a) becomes l
2
u

2
 + 2lmuv + m

2
v

2
 = 0, or equivalently, (lu +

mv)
2
 = 0 which describes a line going through the image center at (0, 0) of the form v

= (l/m)u. That is, every vertical line in the real-world space becomes a radial line in

the image space going through the image center, which can be described by

v = Ku, (4.19)

where

K =
l

m
. (4.20)

Equation 4.19 above has only one parameter K, the slope of the radial line, and

this fact facilitates the extraction of the radial line from the image.

 44

4.3 Detection of Vertical Lines in

Environments

4.3.1 Initial Detection by Canny Edge Detector

In this section, we introduce the initial step of vertical line detection. After an

image is acquired with the camera, the first step is to reduce the resolution of the

image. For this, we reduce the image to be 1/4  1/4 in size to speed up the system

operation, and our experimental experience showed that this will not create errors in

the detection results. Then, we transform the image in the RGB color model into the

YUV model by the following equations:

0.299 0.587 0.11 ;

0.147 0.289 0.436 ;

0.615 0.515 0.100 ,

Y R G B

U R G B

V G B

  

  

  

 (4.21)

and use the Y values of the image for the detection work after composing all Y values

in the range of 0 to 255 as a gray-level image. Subsequently, we use the canny edge

detector to compute edge points in the resulting gray-level image.

In more detail, the function of Canny edge detection can be divided into three

steps. The first step is noise reduction. Because the Canny edge detector is easily

affected by noise, it uses a filter based on a Gaussian distribution to convolve the raw

gray-level image mentioned above. The result looks slightly blurred, compared with

the original image. But it can reduce the effect of noise. The second step is to find the

intensity gradients of the image. An edge in an image may point to a variety of

directions. Therefore, the Canny edge detector uses four filters to detect horizontal,

vertical, and diagonal edges. Each edge filter returns a value of the first derivative in

the horizontal direction Gx or/and the vertical direction Gy. From this, the edge

gradient and direction can be determined by the following equations:

 45

22 GyGxG  ; (4.22)

)(tan 1

Gx

Gy . (4.23)

Subsequently, the edge direction angle is rounded to one of four angles

representing vertical, horizontal and the two diagonals, which are 0, 45, 90 and 135

degrees. The third step is to trace the edges in the image and to conduct hysteresis

thresholding. Large intensity gradients are more possible to correspond to edges than

small ones. It is impossible to specify a threshold that fit in most cases. Therefore,

Canny used thresholding with hysteresis. Thresholding with hysteresis requires two

thresholds which are high and low. Making the assumption that important edges

should be along continuous curves in the image allows us to follow a small section of

the given line and discard noisy pixels that do not constitute a line but have produced

large gradients. Therefore, we begin by applying a high threshold. The edges we can

be sure are genuine. Starting from the result and using the directional information

derived earlier, we can trace the edges in this image. While doing so, we apply the

lower threshold as well to trace small sections of the edges as long as we find the

starting point. Finally, after this process is completed, we have a binary image where

each pixel is marked as either an edge pixel or a non-edge pixel.

4.3.2 Detection of Lines with Widths

In this section, we introduce the method to detect lines with widths. A line-shape

object in the real world is not just a line in the mathematical meaning; instead, a line

in the image is more like many small line segments lying in the same direction. So

we set an area in a line shape with a width as shown as Figure 4.3. After the image is

processed by the Canny edge detector algorithm, we use the result to detect lines

 46

with certain widths. The proposed method for such line detection with widths is

described as an algorithm in the following. It is noted that the line is continuous in

this algorithm, and we will introduce a scheme for detection of broken lines in

Section 4.3.3.

Figure 4.3 An illustration of detection of lines with widths in the image. The black

boxes are line points; the yellow area is the region we define as a line; and the red line

specifies the direction of this line.

Algorithm 4.1 Detection of Lines with Widths.

Input: a binary image I, a start position of point P0, and the pre-set width w and the

direction angle θ of the to-be-detected line L.

Output: the length l and the final postion Pe of L.

Steps.

Step 1. Set the position of the scan point Ps to be P0.

Step 2. Set l to be zero.

Step 3. Compute the set of positions of points Pn(xn, yn) which are neighbors of

Ps(xs, ys) where Pn is on the line Ln which is perpendicular to L and through

Ps as shown in Figure 4.4.

3.1 Compute the direction vector D = (dx, dy) of Ln by following equation:

o

o

cos(90);

sin(90).

dx

dy





 

 
 (4.24)

 47

3.2 Compute the coordinates (xn, yn) of all possible Pn by the following

equations, where i = w/2 ~ w/2:

;

.

n s

n s

x i dx x

y i dy y

  

  
 (4.25)

3.3 Compute the Boolean value B by the following equation where bn is

the value of the position Pn in image I:

nbbbB  ...21 . (4.26)

Step 4. Check whether the Boolean value of B is true or false: if true, set l = l + 1

and move Pe to Ps.

Step 5. Move the scan point Ps to the next point by the following equations:

cos ;

sin .

s s

s s

x x

y y





 

 
 (4.27)

Step 6. Repeat Steps 2 to 5 until Ps is moved to the end of L.

Figure 4.4 An illustration of a line detection. The black painted box is line points. The

red painted box is the scan point Ps. The green painted box is the neighbor points Pn.

4.3.3 Detection of Broken Lines

In this section, we introduce the method to detect the broken line. The line in the

image acquired by the camera may not be a continuous line when seen with eyes. If

the system can detect the broken line, the system will become more accurate and

 48

effective. The idea of detecting the broken line is to calculate the density of the line. A

higher density means that it is more possible for a line to be existing. In Figure 4.5(a),

we can see a broken line which has a high density of 80%. It must be a line but it is

not continuous. It is worth noting that two lines with a gap may be calculated to have

a high density as shown in Figure 4.5 (b). The density of it is also 80%, but we can

easily recognize them as two lines. So a detection result with a long gap but having a

high density is not regarded as a line. The detection of the broken line is described as

an algorithm in the following.

(a) (b)

Figure 4.5 An illustration of a broken line detection. (a) A broken line with a 80%

density. (b) Two lines whose overall density is 80%.

Algorithm 4.2 Detection of Broken Lines.

Input: a binary image I, a start position of point P0, a threshold g of the gap size, and

the direction angle θ of the line L.

 49

Output: a set S including the length l and the density d of the detected L.

Steps.

Step 1. Set the position of scan point Ps to be P0.

Step 2. Move Ps to the next point in the direction of L by using Equation 4.27.

Step 3. Repeat Step 2 until the Boolean value of the position of Ps is true in I.

Step 4. Set the value of l to be zero, set the value of accumulating line points acc to

be zero, and set a value gc to be g to count the number of gap points.

Step 5. Move Ps to the next point in the direction of L by using Equation 4.27.

Step 6. Set l = l + 1..

Step 7. Set acc = acc + 1 if Ps is true.

Step 8. If Ps is false, set gc = gc  1; else, set gc to be g.

Step 9. Repeat Steps 4 to 7 until the value of gc is equal to zero.

Step 10. Save the value of l into S.

Step 11. Compute d by the following equation and save it into S:

l

acc
d  . (4.28)

Step 12. Repeat Steps 2 to 10 until Ps is moved to the end of L.

4.4 Algorithm for Vertical Line

Detection

In this section, we introduce the algorithm for vertical line detection. The

algorithm includes all the schemes described before to detect vertical lines in

omni-images. First, the vertical line in the real-world space becomes a radial line in

the omni-image as illustrated in Figure 4.6. Next, we set the center of the image as an

 50

area, shown as the red points in Figure 4.6. The vertical lines in the real world space

may not be vertical completely. The system uses these points as the center of a circle

to find the radial lines by searching lines of all directions like a radar. The use of an

area as the circle center can endure to some degree the phenonmenon of incomplete

verticalness just mentioned, and improve the effectiveness of the proposed method,

which is The described as an algorithm in the following.

Figure 4.6 An illustration of vertical lines in an omni-image. The area of red points are

the center of the omni-image, and each green line corresponds to a vertical line in the

real-world space.

Algorithm 4.3 Detection of Vertical Lines.

Input: a binary image I, a set of positions of center points Pi, a threshold g of gap size,

and the width w of the vertical line to be detected.

Output: a set Si for each detected line L which includes the length lsum, the density d,

and the direction angle of the line.

Steps.

Step 1. Set the position of the scan point Ps to be Pi.

 51

Step 2. Set the direction angle θ of the to-be-detected line La to be zero.

Step 3. Set lsum to be zero; define acc as the value of accumulated line points with

its initial value set to be zero as well; and set gc as a value to count the

number of gap points with g as its maxmum value.

Step 4. With the image I, the width w, the angle θ and the point Ps as inputs,

perform Algorithm 4.1 to conduct detection of thick lines (i.e., with a

certain width), yielding the results l and Pe which are the length and the

final postion of L, respectively.

Step 5. Compute the distance dis between Ps and Pe by Equation (2.1).

Step 6. Set lsum = lsum + dis, acc = acc + l, and the currnet gap gc = dis  l.

Step 7. Move Ps to Pe.

Step 8. Repeat Steps 3 to 7 until the value of gc is equal to g or Ps is moved to the

end of La.

Step 9. Save the value of lsum and θ into Si.

Step 10. Compute d by Equation (4.28), and save it into Si.

Step 11. Set θ = θ + 1.

Step 12. Repeat Steps 2 to 11 until θ is equal to 360
o
.

Step 13. Move Ps to Pi+1.

Step 14. Repeat Steps 1 to 13 until all the points of Pi are used.

4.5 Experimental Results

We have described the proposed methods for detecting vertical-line features

around the vehicle in omni-images before. In the first part, we described the idea of

detection of vertical lines in omni-images. Figure 4.7 shows the phenonmenon that the

 52

vertical line in the real-world space becomes a radial line in the omni-image. In

addition, the canny edge detector is applied as the initial process of line detection.

Figure 4.8 shows the result of Canny edge detection applied to Figure 4.7. And Figure

4.9 shows the result of vertical line detection using the proposed method. The red line

shows the line detected by the system.

(a)

(b)

Figure 4.7 Illustrations of the phenonmenon that a vertical line become a radial line in

the omni-image. (a) Scene 1. (b) Scene 2.

(a)

(b)

Figure 4.8 Results of Canny edge detection. (A) Result of Figure 4.7(a). (B) Result of

Figure 4.7(b).

 53

(a)

(b)

Figure 4.9 Results of vertical line detection. (a) Result obtained from Figure 4.8(a).

(b) Result obtained from Figure 4.8(b).

 54

Chapter 5

Vehicle Localization for Tour

Guidance in Outdoor Park Areas by

Computer Vision Techniques

5.1 Introduction

In this chapter, we introduce the proposed method for vehicle localization for

navigation in outdoor park areas by computer vision techniques. The vehicle

localization method is needed for the system to navigate and compute building

positions for AR display. The first part of the vehicle localization work is to estimate

the vehicle speed.

In more detail, the speed is estimated in this study by computing the motion

vectors of the vehicle in acquired images. It is impossible that there exist features to

detect at every spot on the path. In other words, the system must have a method to

locate the vehicle without using features at certain spots on the path. In this study, we

use the vehicle speed to solve this problem. The detail is described in Section 5.2.

On the contrary, in normal cases we use the correlation between vertical lines in

the environment, when available, and the vehicle to locate the vehicle. Specifically,

the system detects a single feature to locate the vehicle in certain cases; and in other

cases, the system uses multiple features to locate the vehicle. The more features the

system detects, the more accurately the system conducts the vehicle localization task.

Moreover, we use the longest common subsequence (LCS) algorithm to

 55

implement the system’s work of vehicle localization using multiple features. The

detail is described in Section 5.4. Finally, we analyze the information about the

environment to make the system to detect vertical lines more accurately. The detail is

described in Section 5.5.

5.2 Estimation of Vehicle Speed

In this section, we introduce the proposed method to estimate the vehicle speed.

At certain positions, the system cannot use features to locate the vehicle due to

unavailability of appropriate local features. So we propose a method to use the result

of motion-vector estimation to compute the vehicle speed, and use the estimated

speed to locate the vehicle. The detail is described in the following.

5.2.1 Computation of Motion Vectors

To estimate the vehicle speed, we compute motion vectors using acquired images.

An illustration of motion estimation for each macroblock in an image is depicted in

Figure 5.1. For each macroblock B in the current image frame, a search window in the

reference frame is searched for the best-match macroblock B' with respect to B. The

computation of motion vectors is described as an algorithm in the following.

Reference Image Current Image

Current Macroblock BcSearch window

Best Match

Macroblock B’

Figure 5.1 An illustration of searching for the best-match macroblock.

 56

Algorithm 5.1 Computation of Motion Vectors.

Input: a reference image Ir, the current image Ic, and a kl search window W.

Output: a set S of motion vectors.

Steps.

Step 1. Divide the current image Ic into macroblocks B0 through Bn of size 16  16.

Step 2. Set the current block Bc in the current image Ic to be Bk with k = 0.

Step 3. Search the best-match macroblock in the search window W within the

reference image Ir by the following steps.

3.1 Set the search block Bs to be at the position (i0, j0) of the left-upper side

with the distances from Bs to Bc being k and l, respectively, in the two

axis directions in the image coordinate system.

3.2 Compute the cost function Costk by the following formula where C(a, b)

is the value of the pixel at coordinates (a, b) in Ic, and R(a, b) is the

value of the pixel at coordinates (a, b) in Ir, and the coordinates of Bs

are (ik, jk):

15 15
0 02

1
(,) (,)

16
k lkCost C x k y l R x i k y j l          . (5.1)

3.3 Move Bs to the next position by shifting a pixel in a raster scan order.

3.4 Save the motion vector Vs(vx, vy) computed in the following way if

Costk is smaller than every other Costj:

0

0

;

.

kx k

ky k

v i i

v j j

 

 
 (5.2)

3.5 Repeat Steps 3.1 to 3.4 until all possible blocks in the window are

processed.

Step 4. Move Bc to the next block.

Step 5. Repeat Steps 3 and 4 until all the blocks are searched.

 57

At the end of executing the above algorithm, each block Bk in the current image Ic

will have a corresponding motion vector Vk(vkx, vky).

5.2.2 Vehicle Speed Estimation Using Motion Vectors

In this section, we describe a method we propose to estimate the vehicle speed

using motion vectors by modifying the algorithm which is described in Section 5.2.1.

The resulting algorithm will make our system more accurate. In more detail, the

motion vectors we compute include many directions. But the vehicle is driven just

forward in one direction. So, the valid motion vectors must all be in the same

direction; motion vectors in the other directions might be noise or errors due to

incorrect detection results. Furthermore, not all the motion vectors in the entire

omni-image are useful for our purpose of vehicle localization. Therefore, we cut the

part of the omni-image which only includes the road for our use, as shown in Figure

5.2. The motion vectors in this part should be in the same direction. So, we use this

image part to compute motion vectors. Finally, we average all the motion vectors in

the vehicle direction, and compute the vehicle speed accordingly. An algorithm

describing the above process is presented in the following.

Car Orientation

Tre
e Tree

Figure 5.2 An illustration of cutting a part of the omni-image for motion vector

computation. The area enclosed by the red line is the part we cut.

 58

Algorithm 5.2 Estimating the vehicle speed.

Input: a reference omni-image Ir, the current omni-image Ic, a search window W with

size kl, the direction D(dx ,dy) of the vehicle, and two threshold values Tu and

Td.

Output: a value s of the vehicle speed.

Steps.

Step 1. Cut out parts of Ir and Ic as Ir' and Ic', respectively, in which the road

appears, as shown in Figure 5.2.

Step 2. Use the cut image Ir' and Ic' and the kl search window W as inputs, perform

Algorithm 5.1 to compute motion vectors, and save the result into a set S.

Step 3. Delete those motion vectors Vi(vx, vy) of S that are not in the direction of D

by the following steps.

3.1 If one of dx and vx is positive and the other is negative, then delete Vi.

3.2 If one of dy and vy is positive and the other is negative, then delete Vi.

Step 4. Delete vi if vi is larger than Tu or smaller than Td.

Step 5. Compute the mean value of vi by the following equation and take the result

as the desired vehicle speed s, where N is the number of the remaining

motion vectors:

N

v
s

i
 . (5.3)

5.3 Vehicle Localization by Single Line

Features

Vehicle localization is necessary for the system to navigate in a tour. By vehicle

localization, the positions of buildings can be computed and used to show the AR

 59

information about the building. In this study, we propose to locate the vehicle by

using line features. In more detail, the features in omni-images are detected by

Algorithm 4.3. Then, we use the angles of the resulting features and the learned data

to locate the vehicle. In the simple case, the system uses only one feature to locate the

vehicle. The detail is described in the following.

5.3.1 Idea of Vehicle Localization by Line Features

After detecting the vertical lines in an omni-image, the system uses the resulting

angle of the line feature in the image to locate the vehicle as shown in Figure 3.4.

Because the feature line is learned into the environment map, we can use the relation

between the feature and the vehicle on the path to locate the vehicle position. And the

relation between them may be expressed in terms of angle. The vehicle in different

positions will yield features of different angles, as can be figured out from Figure 5.3,

one angle of the feature corresponds to one position in the path uniquely. Accordingly,

we can use the detected line feature to calculate the vehicle position on the path by

Equation 3.3. And the algorithm is shown in Section 5.3.2.

θ

Line
Feature

Car Orientation

(a)

θ

Car Orientation

Line

Feature

(b)

Figure 5.3 An illustration of locating the vehicle. (a) An omni-image with a detected

line feature. (b) An illustration of locating the vehicle on the map.

 60

5.3.2 Algorithm for Vehicle Localization by Single

Line Features

In this study, we propose an algorithm to locate the vehicle by single line features.

The environment map is one of the inputs of this algorithm, which includes the

learned data of the path and the detected vertical-line feature. Moreover, the angle of

the direction of the line which the system detected is also the input to the algorithm.

Algorithm 5.3 Vehicle Localization by Single Line Features.

Input: the angle θd of a detected line L, the feature F which corresponds to the line L,

and a path segment ps.

Output: the vehicle position Pv(xv, yv).

Steps.

Step 1. Check the angle θd whether is in the range from the first-angle θf to the

last-angle θl which are learned in learning stage in chapter 3. If it is not in

the range, do not use the this feature to locate the vehicle.

Step 2. Get the angle θp of the path segment ps from the learned data of the path in

the map Map.

Step 3. Get the position Pf(xf, yf) of the feature F from the learned feature data in the

map Map.

Step 4. Compute the angle θf of the direction from the feature to the vehicle by the

following equation:

()f p d     (5.4)

where d is the angle of the detected line L.

Step 5. Compute the line L(xl, yl) which goes through two points Pf and Pv by the

 61

following equation:

cos() ;

sin() .

l f f

l f f

x x t

y y t





  

  
 (5.5)

Step 6. Compute the vehicle position Pv(xv, yv) by the following steps:

6.1 Get the line equation F(x, y) of the path segment ps from the map Map.

6.2 Find the intersection point of F(x, y) and L(xl, yl) by substituting the

equations of L described by (5.5) into F(x, y) and solving the result to

get t.

6.3 Substituting t into Equation 5.5, and the solution (xl, yl) specifies the

desired Pv(xv, yv).

5.4 Vehicle Localization by Multiple

Line Features

In this section, we introduce the proposed method to locate the vehicle by

multiple line features. In some cases, the system can use multiple features to locate

the vehicle. The more features the system detects, the more accurately the system

conducts vehicle localization. But we need a method to match the features seen in the

current image against those in the map. So we propose a method which can conduct

such matching, which is based on the longest common subsequence (LCS) algorithm.

5.4.1 Review of Longest Common Subsequence (LCS)

Algorithm

The longest common subsequence (LCS) algorithm aims to find the longest

subsequence common to all sequences in a set of sequences. Note that a subsequence

 62

is a sequence that can be derived from another sequence by deleting some elements

without changing the order of the remaining elements. In this study, we use the angles

of feature lines as inputs to this algorithm, i.e., we regard such angles as the elements

of sequences and match the elements by the LCS algorithm. But we have to modify

the equality conditions used in the traditional LCS algorithm. because the angles

detected by the system may have errors. Specifically, we set a tolerant range for

defining whether two angles are equal or not. The algorithm is shown in the

following.

Algorithm 5.4 Longest common subsequence.

Input: two angle sequences Sx = < x1, x2, …, xn> and Sy = < y1, y2, …, ym> where all xi

and yj are angles of vertical lines; and a threshold d for judging the equality of

two angles.

Output: the length L of the longest common subsequence.

Steps.

Step 1. If n = 0 or m = 0 set L to be zero.

Step 2. If the absolute value of xn  ym is smaller than d, then do the following

steps.

2.1 With Sx' = < x1, x2, …, xn-1> , Sy' = < y1, y2, …, ym-1> and d as inputs,

perform Algorithm 5.4 to compute the length L' of the LCS of S'x and

S'y.

2.2 Set L = L' + 1.

Step 3. If the absolute value of xn  ym is larger than d, then do the following steps.

3.1 With the Sx, Sy', and d as inputs, perform Algorithm 5.4 to compute the

length Ln of the LCS of Sx and S'y.

 63

3.2 With the Sx', Sy, and d as inputs, perform Algorithm 5.4 to compute the

length Lm of the LCS of Sx' and Sy.

3.3 If Ln is larger than Lm, set L to be Ln; else, set L to be Lm.

5.4.2 Vehicle Localization using Multiple Features by

LCS Algorithm

In this study, we use vertical line as a new type of feature to locate the vehicle. In

other words, the position where the system can detect many features is a different case

for locating the vehicle. In Chapter 3, we introduce a method to learn multiple line

features. And we use the learned data, which include every position where the vehicle

can “see” features, to locate the vehicle on the path. Then, the system just matches the

angles of those “seen” features to find the best match position. But a problem arises

there in matching the features  because the features we detect are not recognized to

be correct, the detected line might be really a feature or just noise. And the features

we learned might not be detected by the system while the vehicle is driven on the path.

The LCS algorithm is modified to solve this problem in this study. The system uses

this algorithm to match those angles of vertical lines even if not all the features

around the vehicle are completely detected. These ideas of proposed vehicle

localization using multiple vertical-line features are described as an algorithm in the

following.

Algorithm 5.5 Vehicle localization by multiple features.

Input: an angle sequence Sx = < x1, x2, …, xn> detected by the system; a threshold d

for judging the equality of two angles; and a set Se of learned data which

include the vehicle position Pi and an angle sequence Si.

 64

Output: the vehicle position Pv and the length L of the subsequence computed by

Algorithm 5.4.

Steps.

Step 1. Set L to be zero, and i to be zero as well.

Step 2. With Si, Sx and d as inputs, perform Algorithm 5.4 to compute the length L'

of the LCS of Si and Sx.

Step 3. If L' is larger than L, set L to be L', and set Pv to be Pi which is included in

the learned data and corresponds to Si.

Step 4. Set i = i + 1.

Step 5. Repeat Steps 2 to 4 until i equals the number of Se.

5.5 Knowledge-based Analysis of Tours

In this section, we introduce a method we propose in this study by

knowledge-based analysis to make the system more accurate in vehicle localization.

The vertical lines are not always detected or the detection result sometimes will be

just noise. So, the proposed method tries to filter the noise and make the system more

accurate.

5.5.1 Uses of Knowledge about Environments

The main idea of the proposed method is to detect the right feature at the right

position. Specifically, the system uses the image sequence to analyze the position of

the vehicle. Firstly, the omni-image we use to detect features can divide into two parts,

the left side and the right one, as shown in Figure 5.4(a). The omni-camera can “see”

all the environment around the vehicle in 360 degrees. And the feature lines can be

 65

seen in the left side of the road or in the right side. So we can define the features in

the two sides when learning the feature. The two sides of features would be detected

individually. Secondly, the vehicle is driven just forward. So the detected features

must move backward in the image sequence as shown in Figure 5.4(b). Moreover, the

system predicts the position of the feature and detects it.

In more detail, in the proposed method we calculate the vehicle speed and then

use the last position of the vehicle to predict the next position of the vehicle on the

environment map. Next, we use the predicted position of the vehicle on the

environment map to calculate the predicted position of the features. Then, we use

such information to find out the feature in the detection area in the image as depicted

in Figure 5.4. If there is no feature detected in the area, we predict that no feature is

detected by the system. The system would not regard the feature as wrong one. Finally,

in the learning of features, we have recorded the positions where the feature can be

seen. So the system can check the position of the vehicle and the feature to see if the

position fits the learning data.

樹 樹

建
築

 2

樹

樹

房
屋

Car Orientation

(a)

樹 樹

樹

樹

Car Orientation

(b)

Figure 5.4 An Illustration Of Omni-Image. (A) The Omni-Image Which Divided Two

Parts. (B) Two parts of image and the purple line is direction of system to detect the

line features.

 66

5.5.2 Algorithm for Vehicle Localization in Tours

The algorithm for vehicle localization includes all the methods to locate the

vehicle described previously. In the general case, the system uses a single feature to

locate the vehicle. In some areas, the system can use multiple features to locate the

vehicle. And at certain positions, the system cannot use features to locate the vehicle

due to unavailability of appropriate local features, and uses the vehicle speed to locate

the vehicle.

Algorithm 5.6 Vehicle localization.

Input: an environment map Map which includes the learned data, the last position Pl

(xl, yl) of the vehicle, a reference omni-image Ir, the current omni-image Ic, a

search window W with size kl, the direction D(dx ,dy) of the vehicle, two

threshold values Tu and Td, an angle sequence Sx = < x1, x2, …, xn> detected by

the system, and a threshold d for judging the equality of two angles.

Output: the vehicle position Pv.

Steps.

Step 1. Predict the vehicle position P(xp, yp) using the vehicle speed by the

following steps.

1.1 With Ir, Ic, W, D(dx ,dy) and the two threshold values Tu and Td as inputs,

perform Algorithm 5.2 to compute the speed s of the vehicle.

1.2 Use the vehicle speed to compute the vehicle position by the following

equation where θ is the angle of the path obtained from Map:

.)sin(

;)cos(

syy

sxx

lp

lp








 (5.6)

Step 2. Use the predict position P to find the set Sf of features around P on Map.

 67

Step 3. If the set Sf is empty, use the vehicle speed to locate the vehicle, and set Pv

to be P.

Step 4. If only one feature F is in Sf , use the single feature to locate vehicle by the

following steps.

4.1 Find the angle θ which is the closest angle of the direction of P with

respect to F.

4.2 With F, the path segment ps from Map and θ as inputs, perform

Algorithm 5.3 to compute the position of vehicle.

Step 5. If many features Fi are in Sf , use the multiple features to locate vehicle in

the following way: with Sx = < x1, x2, …, xn>, a threshold d and a set Sf as

inputs, perform Algorithm 5.5 to compute the position of the vehicle.

5.6 Experimental Results

We have described the proposed methods for locating the vehicle. As described in

Section 5.2 we used motion vectors to compute the vehicle speed. An example of

detected motion vectors is shown in Figure 5.5. As described in Section 5.3, we also

used single features to locate the vehicle. Figures 5.6(a) and 5.6(b) show an example

of detecting just one feature to locate the vehicle. Finally, as described in Section 5.4,

we used multiple features to locate the vehicle, as shown by the example in Figure

5.7.

 68

(a)

(b)

Figure 5.5 Detected motion vectors in an omni-image. (a) The original image. (b) The

detected motion vectors.

(a)

(b)

(c)

Figure 5.6 The localization of vehicle by using single feature. (a) The omni-image

acquired from the camera. (b) A binary omni-image, in which the red line is the

detected line feature. (c) The map showing the position of vehicle where the red point is

the position of the vehicle and the blue points are the positions of features.

 69

(a)

(b)

(c)

Figure 5.7 Vehicle localization by using multiple features. (a) The omni-image acquired

from the camera. (b) A binary omni-image, in which the red lines indicate detected line

features. (c) The map showing the position of vehicle, where the red point is the

position of the vehicle and the blue points are the positions of the detected features.

 70

Chapter 6

Proposed Augmented Reality-Based

Tour Guidance Using an

Omni-camera

6.1 Ideas of Proposed Techniques

In this study, we use the AR technique to show the information about the

environment, especially about the along-path buildings, while driving the vehicle in there.

To show the AR information, we need the positions of the buildings. Therefore, we use

the location of the vehicle and the learned data to compute the positions of the buildings.

In more detail, at first the system detects the line features which can be “seen” along

the path while the vehicle is being driven. Next, the system uses the detected features to

locate the position of the vehicle. Furthermore, by using the learned data and the location

of the vehicle, the system can compute the relative position between the vehicle and the

building. Then, the system computes the position of the building on the mobile device

screen to show the AR information. Note that the camera used in this study is an

omni-camera. Because the image acquired by this camera is distorted, we transform the

omni-image into perspective view images as well before let it be displayed on the mobile

device screen, so that the user can see this image intuitively. In the meantime, the system

can also take the advantage of larger perspective views to detect features.

 71

6.2 Construction of Images from Front

Passenger’s View

In this section, we describe the details of the method proposed by Jeng and Tsai

[4] to generate perspective-view images from omni-images acquired with the

omni-imaging device used in this study. Their method is based on the use of a

so-called space-mapping table, which maps each image point to a space point without

involving the camera intrinsic and extrinsic parameters.

6.2.1 Construction of Image-to-space Mapping Table

To create the space-mapping table before it can be used for coordinate mapping,

it is essential to select some world space points with known positions and the

corresponding points in the omni-image. It is known that a point p in the image space

is formed by all the world space points which lie on an incoming light ray R, as

illustrated in Figure 6.1.

More specifically, at first three assumptions are made: (1) Om is the focal point of

the hyperboloidal-shaped mirror in the omni-camera; (2) Ow is on the mirror bottom

plane of the mirror; and (3) P1 and P2 are two world-space points on the light ray R. In

addition, suppose that the image point corresponding to both P1 and P2 is denoted by

p. Then, we have the corresponding point pairs (P1, p) and (P2, p) which can be used

to generate the pan-mapping table. However, if we took erroneously Ow instead of Om

as the focal point, then P1 and P2 would lie on different light rays, though the

corresponding image points are still a single one, namely, p. In this way, an incorrect

space-mapping table will be generated. To avoid this error, we must find out the real

position of the focal point of the hyperboloidal-shaped mirror.

 72

Figure 6.1 The space points and their corresponding image points.

For this purpose, as shown in Figure 6.2 we use two different landmark points L1

and L2 with known heights and horizontal distances from the axis of the mirror. Both

of L1 and L2 are projected onto the same image point p. Then, according to the

geometry shown in Figure 6.2, the position of the focal point Om with respect to the

center point Ow of the bottom plane of the mirror may be computed by the following

equations:

1 m w 2 1

1 2 1

O O
tan

H H H

D D D


 
 


;

2 1
m w 1 1 1 1

2 1

O O tan
H H

H D H D
D D




     


. (3.1)

Moreover, we describe here the method proposed by Jeng and Tsai [4] to build a

pano-mapping table using the coordinate data of the landmark point pairs. The

two-dimensional pano-mapping table with the horizontal and vertical axes being the

azimuth angle θ and the elevation angle ρ, respectively, is illustrated in Table 6.1,

which is described next.

 73

Figure 6.2 Finding out the focal point Om.

Table 6.1 Example of pano-mapping table of size M×N

 1 2 3 4 … M

1 (u11, v11) (u21, v21) (u31, v31) (u41, v41) … (uM1, vM1)

2 (u12, v12) (u22, v22) (u32, v32) (u42, v42) … (uM2, vM2)

3 (u13, v13) (u23, v23) (u33, v33) (u43, v43) … (uM3, vM3)

4 (u14, v14) (u24, v24) (u34, v34) (u44, v44) … (uM4, vM4)

 … … … … … …

N (u1N, v1N) (u2N, v2N) (u3N, v3N) (u4N, v4N) … (uMN, vMN)

The procedure for constructing the pano-mapping table includes three major

stages: (1) landmark learning, (2) estimation of the coefficients of a radial stretching

function describing the geometry of the mirror reflection in the omni-camera, and (3)

pano-mapping table creation.

1. Landmark learning

Landmark learning is a procedure in which several pairs of world space points

with known positions and their corresponding pixels in a taken omni-image are

selected for constructing the pano-mapping table. The omni-camera is first set

horizontally on the ground with both its mirror base plane and omni-image plane

 74

parallel to the ground, which is just the X-Y plane of the WCS. Then, a sufficient

number (more than six) of points in the world space, called landmark points hereafter,

are selected, and the coordinates of them are measured manually with respect to the

previously-mentioned origin Om. Especially, the origin Om of the camera coordinate

system with known world coordinates (X0, Y0, Z0) just appears to be the image center

Oc with known image coordinates (u0, v0). Let the image point pk at coordinates (uk, vk)

with respect to the origin Oc of the image coordinate system (ICS) and the

world-space point Pk at coordinates (Xk, Yk, Zk) with respect to the origin Om of the

corresponding world coordinate system (WCS) form a landmark point pair. Also,

assume that n sets of landmark point pairs (pk, Pk) are selected, where k = 0, 1, …, n –

1.

Figure 6.3 The interface for acquiring the data of the world space points.

2. Estimation of coefficients of radial stretching function

Due to the nonlinear property of the hyperbolic mirror surface shape, the

radial-directional mapping should be specified by a nonlinear function fr. More

specifically, Figure 6.4 shows that each of the elevation angles corresponds to a radial

Image

center Oc Landmark

points

 75

distance, or by notations, that the elevation angle ρ of each world point P corresponds

to the radius distance r of its corresponding image point p. Therefore, the radial

distance r from each image pixel p at coordinates (u, v) in the omni-image to the

image center Oc at coordinates (u0, v0) may be computed by r = fr(ρ). In this study, we

call the function fr the radial stretching function of the omni-camera and approximate

it by the following 5th-degree polynomial function:

1 2 3 4 5

0 1 2 3 4 5()rr f a a a a a a                 (6.1)

where a0 through a5 are six coefficients to be estimated using the n landmark point

pairs, as described in the following algorithm [4].

Figure 6.4 Nonlinear property of an omni-camera with mirror surface shape.

Algorithm 6.1 Estimation of the coefficients of the redial stretching function.

Step 1. (Elevation angle and radial distance calculation) Use the coordinate data of

landmark point pair (Pk, pk), including (Xk, Yk, Zk) in the WCS and (uk, vk) in

the ICS, to calculate the elevation angle ρk of Pk in the world space and the

radial distance rk of ρk in the ICS by the following equations:

 76

1tan ()k
k

k

Z

D
  ; 2 2

k k kr u v  (6.2)

where Dk, is the distance from the landmark point Pk to the mirror center Om

in the X-Y plane of the WCS, computed by 2 2

k k kD X Y  .

Step 2. (Calculation of the coefficients of the radial stretching function) Substitute all

the data ρ0, ρ1, …, ρn−1 and r0, r1, …, rn−1 into Eqation (3.1) to get n

homogeneous equations as follows:

1 2 3 4 5

0 0 0 1 0 2 0 3 0 4 0 5 0

1 2 3 4 5

1 1 0 1 1 2 1 3 1 4 1 5 1

1 2 3 4 5

1 1 0 1 1 2 1 3 1 4 1 5 1

() ;

() ;

() ;

r

r

n r n n n n n n

r f a a a a a a

r f a a a a a a

r f a a a a a a

     

     

           

           

           

           

 (6.3)

and solve the equations to get the desired coefficients (a0, a1, a2,a3, a4, a5) of

the radial stretching function fr by a numerical analysis method.

3. Pano-mapping table construction

Each entry Eij with indices (i, j) in the pano-mapping table specifies an

azimuth-elevation angle pair (θi, ρj) as shown in Figure 6.5, which represents an

infinite set Sij of points in the world space passing through by the light ray with

azimuth angle θi and elevation angle ρj. These world space points in Sij are all

projected onto an identical pixel pij in an omni-image taken by the camera, forming a

pano-mapping fpm from Sij to pij.

Table 6.1 is shown an example of the pano-mapping table by filling entry Eij with

the coordinates (uij, vij) of pixel pij in the omni-image. A pano-mapping table Tpm of

M×N entries is created by dividing the range 2π (= 360°) of the azimuth angles into M

units as well as dividing the range of the elevation angles from ρs to ρe into N units.

 77

Figure 6.5 Mapping between pano-mapping table and omni-image.

According to the rotation-invariant property of the omni-camera, the azimuth

angle θ of a world point P which the light ray passes through is essentially identical to

the angle  of the corresponding pixel p with respect to the u-axis in the input image I.

That is, the azimuth-directional mapping denoted is an identity function fa such that

fa(θ) =  = θ. Accordingly, the entries of table Tpm may be filled by the following

algorithm.

Algorithm 6.2 Creation of the pano-mapping table.

Step 1. Divide the range 2π of the azimuth angles into M intervals, and compute the

ith azimuth angle θi by

(2 /), for 0, 1, ..., 1.i i M i M    

Step 2. Divide the range [ρs, ρe] of the elevation angles into N intervals, and estimate

the jth elevation angle ρj by

[() /] , for 0, 1, ..., 1.j e s sj N j N        

Step 3. Regard the pairs (rj, i) = (fr(ρj), θi) of all the image pixels to form a polar

coordinate system with the image coordinates (u, v) specified by

 78

cos () cos ;ij j i r j iu r f     

sin () sin ,ij j i r j iv r f     

and fill the entry Eij with the corresponding image coordinates (uij, vij) where

1 2 3 4 5

0 1 2 3 4 5() ,j r j j j j j jr f a a a a a a                

with the coefficients (a0, a1, a2, a3, a4, a5) being computed by Algorithm 6.1.

Finally, we use the above-mentioned method to create a pano-mapping tables

with size M×N. The elevation angle ranges of the field of view of the omni-images are

from ρus to ρue, respectively. The elevation angle ρ of the light ray horizontally going

through the focal point of the mirror is 0
o
, so ρus as well as ρls is negative and ρue as

well as ρle is positive.

Y

Z

Om1

ρue

ρus

X ρ= 0

Upper omni-camera

ρue

ρus

0 2π. . .

. . .

(u11, v11)

(u12, v12)

(u13, v13). . .

. . .

(uMN, vMN). . .

. . .

Figure 6.6 Creation of pano-mapping table.

 79

6.2.2 Review of Adopted Method for

Perspective-view Image Generation

A perspective-view image is a perspective projection of a scene appearing in an

omni-image onto a planar rectangular region perpendicular to the ground. By the

pano-mapping table, we can assign the color value of the pixel in an omni-image to

the planar rectangular region. More specifically, given an omni-image G and a

pano-mapping table Tpm with M×N entries, we can generate a perspective-view image

Q of any size MQ×NQ by projecting pixels in G to a planar rectangular region AP of

any size W×H at any distance D with respect to the mirror center Om.

A top view of the configuration for such a perspective-view image generation

process is shown in Figure 6.7, and the idea can be accomplished by the following

algorithm [4] for computing the azimuth angles θq and elevation angle ρq associated

with Eij and corresponding to qkl.

Om

Om

D

L

W

D

Pij

PijPr

Pr

θq

θq

h
β

β

r


d

Figure 6.7 A Top-view configuration for generating a perspective-view image.

Algorithm 6.3 Construction of a perspective-view image.

Input: an omni-image G, a pano-mapping table Tpm with M × N entries, and a planar

rectangular region Ap of size W × H at a distance D with respect to the mirror

center Om.

Output: a perspective-view image Q of any size MQ × NQ.

 80

Steps:

Step 1. As illustrated in Figure 6.1, calculate the angle  according to trigonometry to

be as follows:

 2 2 2 2 cos ,W D D D D       (6.4)

or equivalently, as follows:

2

1

2
cos [1].

2

W

D
  


 (6.5)

Step 2. Calculate the angle  shown in Figure 6.7 according to trigonometry to be as

follows:

 .
2

 



 (6.6)

Step 3. Compute the index i of entry Eij of table Tpm corresponding to pixel qkl in

image Q at coordinates (k, l) in the following way.

3.1 Let Pij denote the intersection point of the light ray Rq projected onto qkl

and the planar projection region Ap, and compute the distance d between

point Pij and the border point Pr shown in Figure 6.7 by linear

proportionality as:

 ,
Q

W
d k

M
  (6.7)

where the projection region Ap has a width of W, the image Q has a

width of MQ pixels, and pixel qkl has an index of k in the horizontal

direction.

3.2 Compute the distance L between point Pij and the mirror center Om

according to trigonometry as follows:

 81

 2 2 2 cos .L D d d D       (6.8)

3.3 Compute the distance h from point Pij to the line segment OmPr

connecting Om and Pr as:

 sin .h d   (6.9)

3.4 Compute the azimuth q of point Pij with respect to OmPr satisfying:

2 2

sin
sin ,

2 cos
q

h d

L D d d D







 

    
 (6.10)

which leads to

 1 1

2 2

sin
sin sin [].

2 cos
q

h d

L D d d D






  
 

    
 (6.11)

3.5 Compute the index i of entry Eij by linear proportionality as:

 .
2

q
i M




  (6.12)

Step 4. Compute the index j of entry Eij of table Tpm corresponding to pixel qkl in

image Q at coordinates (k, l) in the following way.

4.1 As shown in Figure 6.8 which is the involved imaging configuration

from a lateral view, let the height of the projection region Ap be H, divide

the image Q into NQ intervals, and compute the height of Pij by linear

proportionality again to be:

 .q

Q

H
H l

N
  (6.13)

4.2 Compute the elevation angle ρq according to trigonometry as:

 82

 1tan .
q

q

H

L
   

  
 

 (6.14)

4.3 Compute the index j of Eij by proportionality again to be:

()

.
()

q s

e s

N
j

 

 

 



 (6.15)

Step 5. Obtain the coordinates (uij, vij) in G with the indices (i, j) of Eij.

Step 6. Assign the color value of the image pixel pij of G at coordinates (uij, vij) to

pixel qkl of Q at coordinates (k, l).

Step 7. After all pixels of Q are processed, take the final content of Q as the desired

perspective-view image.

Om

D

H

N

NQ

Hq l

ρs

ρq

ρe

Panoramic

Image Q

Pij

Figure 6.8 A lateral-view configuration for generating a perspective-view image.

6.2.3 Review of Generation of Perspective-mapping

Table

According to the above-mentioned method for unwarping omni-images into

 83

perspective-view images, we can obtain the perspective-view images of the upper and

lower omni-images. However, a great amount of computation is repeated, as can be

seen from Equation 6.4 through 6.15, resulting in possible delays of image display in

the scene browsing system. Therefore, in order to avoid such massive computation, it

was found possible to establish a table in advance for an omni-camera to generate

perspective-view images in a faster way. The table is called a perspective-mapping

table. Such a table may be created from any view direction.

Specifically, given an omni-image G and a pano-mapping table Tpm with M×N

entries, we generate the perspective-mapping table according to the algorithm

described in the following.

Algorithm 6.4: Generation of a perspective-mapping table.

Input: an omni-image G and a pano-mapping table Tpm with M×N entries.

Output: a perspective-mapping table Tpe.

Steps.

Step 1. Decide the size of a maximum perspective-view image Q to be generated, say,

MP×NP.

Step 2. Establish an empty perspective-mapping table Tpe with the same size.

Step 3. Let  specify the “direction” for table Tpe, which is also the view direction

from which the perspective-view image Q is to be generated.

Step 4. Let e and s be the maximum and the minimum elevation angles used in

constructing the pano-mapping table Tpm.

Step 5. Define the size of a planar rectangular region AP to be W×H, which describe

the maximum size of a perspective-view image to be generated.

Step 6. Select a value D as the distance of AP to the mirror center Om, which is also

the distance of the perspective-view image to Om.

 84

Step 7. Compute H of AP according to the trigonometry as illustrated in Figure 6.9 by

the following equation:

 H = Dtane + |Dtans|. (6.16)

Step 8. Take  be zero, as shown in Figure 6.9(a).

Step 9. Apply Algorithm 6.3 to the omni-image G using pano-mapping table Tpm with

M×N entries and H as input, to generate a perspective-view image I.

Step 10. Record the corresponding indices (i, j) in Tpm of all pixels in I into the entries

Smn with indices (m, n) of Tpe.

Step 11. After all entries of Tpe are filled, take the final content of Tpe as the desired

perspective mapping table.

Om

W

D
θ=0o

(a)

Om

D

H

ρs

ρe

A planar

region AP

Perspective-view Image

MP

NP

(b)

Figure 6.9 Illustration of construction of a perspective-mapping table. (a) A Top-view

configuration for generating a perspective-mapping table. (b) A lateral-view

configuration for generating a perspective-view image.

6.2.4 Generation of Passenger-view Image

After establishing the perspective-mapping table Tpe, we can use it to generate

perspective-view images. In this study, we use the passenger-view image as the base

of the AR image. A user in the vehicle can see the front passenger’s views through the

 85

windows on the mobile-device screen. In order to generate the passenger-view image,

we have to measure some geometric information about the interior of the vehicle.

Firstly, we assume that the viewpoint originates from the front passenger seat as

shown in Figure 6.10, and measure the angles involved in the views that can be seen

through the windows from the viewpoint as shown in Figure 6.10.

θRθL

(a)

θU

θD

(b)

Figure 6.10 An illustration of viewpoint in the vehicle. (a) Top-view of the vehicle

where the blue star is the viewpoint and the red line is the region of the view. (b)

Side-view of the vehicle where again the blue star is the viewpoint and the red line is

the region of view.

In more detail, the region covered by the view, called view region, is not a

rectangle; instead, it is a quadrilateral, as shown in Figure 6.11(e). So we compute the

positions of its four vertices. And then, we use the positions of the vertices to cut a

part of the image which just fits the passenger’s view. Note that the viewpoint we set

is not the same as the camera. So we shift the image coordinate system to move the

viewpoint of the camera to the previously-mentioned front-passenger’s viewpoint as

illustrated in Figure 6.12. The following algorithm is proposed for generating the

passenger-view image on the mobile-device screen.

 86

θ1

θ2

(a)

θ3

θ4

(b)

θ5
θ6

(c)

θ7 θ8

(d)

V1 V2

V3 V4

(e)

Figure 6.11 An illustration of viewpoints through the windshield. (a) The left side

angles, where the yellow line is a horizontal line with an angle of zero, and the red line

is the boundary of the viewpoint. (b) The right side angles. (c) The upside angles, where

the yellow line is a vertical line with an angle of zero, and the red line is the boundary of

the viewpoint. (d) The downside angles. (e) all view of the viewpoint.

 87

Camera

(a)

Camera

(b)

Figure 6.12 An illustration of shifting the viewpoint. (A) Top-view of shifting the

viewpoint where the blue star is the viewpoint we set and the green star is the

viewpoint of camera. (B) Side-view of shifting the viewpoint where the blue star is

the viewpoint we set and the green star is the viewpoint of camera..

Algorithm 6.5 Generation of the passenger-view image.

Input: an omni-image G, a perspective-mapping table Tpe with MP×NP entries, the

center point C(xc, yc) of the image, and the pre-measured angles θi of the view

region as shown in Figure 6.11.

Output: a passenger-view image Ip to be displayed on the user’s mobile-device

screen.

Steps:

Step 1. Compute the position of the vertex Vi(xi, yi) of the passenger’s view image

according to the perspective-mapping table, Table Tpe, by the following

equation according to the principle of proportionality:

;
360

,
110

x
i c P

y

i c P

x x M

y y N





  

  

 (6.17)

where θx is the angle in the horizontal direction and θy is the angle in the

 88

vertical direction as shown in Figures 6.13(a) and (b) (note that the camera

has 360 degrees of view in horizontal direction and 100 degrees of view in

the vertical direction).

Step 2. Repeat Step 1 until the positions of the four vertices are all computed.

Step 3. Use the perspective-mapping table Tpe to draw the desired image Ip as

shown in Figure 6.13 by the following steps.

3.1 Set the shift index S(xs, ys) to be the position of the upper left vertex of

Vi.

3.2 Set print point P(xp, yp) to be (0, 0).

3.3 According to the coordinates (xs + xp, ys + yp) in the table Tpe, find the

corresponding image coordinates (u, v).

3.4 Assign the color value of each image pixel of G at coordinates (u, v) to

a pixel at coordinates (xp, yp) in the desired passenger’s view image Ip.

3.5 Move P to the next point.

3.6 Repeat Steps 3.3 to 3.5 until all the pixels in the region of

passenger-view image are drawn in Ip.

6.3 Augmenting Names of Buildings on

Passenger-view Images

After generating the passenger-view image, the system can use this image as the

base to augment the building name on it. In order to implement this, we need to

compute the information about the position of the building by the use of the learned

data and the location of the vehicle. The proposed method to augment the building

name is described in the next section.

 89

Om D
θ=0o

θx1 θx2

(a)

Perspective Mapping Table

MP

NP

Passenger-view Image

MP

MP

O

m

D

H

ρs

ρe

A planar

region

AP

ρc

V1

V3 V4

V2
V1

V3 V4

V2

θy1

θy2

θx1 θx2

θy1

θy2

Center

(b)

Figure 6.13 Illustration of construction of passenger-view images. (a) A Top-view

configuration for generating a passenger-view image. (b) A lateral-view configuration

for generating a passenger-view image.

6.3.1 Calculating Positions of Buildings in

Passenger-view Images

We calculate the position of the building by using the result of vehicle

localization. Then, we can use the position to calculate the angle of the direction of

the building as seen from the vehicle, as illustrated in Figure 6.14. Note that the

building appears to be an area instead of a point. Thus, we calculate three angles of

from the vehicle to two corners and the middle of the building by Equation (3.2) as

shown in Figure 6.14. Equation (3.2) is repeated in the following for convenience of

reference:

)(tan
21

211

yy

xx
p




  . (3.2)

Moreover, we use the angle to calculate the building position in the image. In

more detail, we know the position and the corresponding angle in the passenger-view

image after generating the image. Then, we just use the corresponding relation to

 90

compute the position of the building as shown in Figure 6.15. Finally, the system uses

the learned data to augment the correct building name on the passenger-view image.

θ

Car

Orientation

Building

Mid
corner

corner

Figure 6.14 An illustration for calculating the angle of the direction to the building.

Building

θX θRθL

Passenger-view Image

Figure 6.15 An illustration for calculating the position of the building.

6.3.2 Algorithm of Augmenting Names of Buildings

on Images

In this section, we introduce the proposed algorithm of augmenting the names of

buildings on images. After calculating the position of the building in the

passenger-view image, we can use the learned data of the building to augment the

building information on the image. However, we regard the building as a line in this

 91

study. In more detail, we learn the edge line of the building by connecting two corners

of it as shown in Figure 6.16. In some cases, the entire building is not seen in the

image; instead, only part of the building can be seen in the image as shown in Figure

6.17(b). In one case, the middle part of the building is in the image, and we can

augment the building name on it. In another case, only part of the building can be seen

in the image; then, we augment the building name on the boundary of the image. The

detail is described in the following as an algorithm.

Car

Orientation

Building

Mid

corner

corner

Figure 6.16 An illustration of calculating the building position.

Car

Orientation

Building

(a)

Car

Orientation

Building

(b)

Figure 6.17 An illustration of the view of the image. (a) The entire building can be

seen in the image. (b) Only part of the building can be seen in the image.

 92

Algorithm 6.6 Augmenting Names of Buildings on the Images.

Input: the position Pv of the vehicle, a passenger-view image Ip, the width W and

height H of Ip, the center point C(xc, yc) of the image, and the angles θL and θR

of the left boundary and the right boundary of the passenger-view image Ip,

respectively.

Output: the passenger-view image IAR with augmented information.

Steps:

Step 1. Set the angle θf of the direction of the building in Ip to be zero.

Step 2. Use the position Pv of the vehicle to compute the angle θBM of the direction

of the middle of the building in Ip by Equation 3.2 and Equation 3.3.

Step 3. Use Pv to compute the angle θBL of the direction of the left side of the

building in Ip by Equation 3.2 and Equation 3.3.

Step 4. Use Pv to compute the angle θBR of the direction of the right side of the

building in Ip by Equations 3.2 and 3.3.

Step 5. If the following equation is satisfied, set θf to be θBM and go to Step 8; else,

go to Step 6:

RBML   . (6.18)

Step 6. If the following equations are satisfied, set θf to be θL and go to Step 8; else,

go to Step 7:

.

;

RBRL

LBM








 (6.19)

Step 7. If following equation is true, set θf to be θR and go to step 8.

.

;

RBLL

BMR








 (6.20)

Step 8. Compute the position P(x, y) of the building by the following equation:

.

;

c

c

LR

f

yy

xWx











 (6.21)

 93

Step 9. Use the learned data to augment the name of building at position P(x, y) on

image Ip, and save it into IAR.

6.4 Tour Guidance in Park Areas

6.4.1 Ideas of Tour Guidance in Park Areas

By augmenting relevant information on the passenger-view image for inspection

on the user’s mobile-device screen, the system can give the user a good guidance in a

park area. Moreover, the system uses many methods described in Chapters 3 through

6. Firstly, the system learns the environment for constructing the environment map in

the park area. Secondly, the system detects the along-path line features for locating

the vehicle. Also, the system uses the features to locate the vehicle. Furthermore, the

system uses the location of the vehicle to compute the position of the building. Finally,

the system shows the augmented information on the passenger-view image generated

by the system. When the vehicle is driven in the park area, the user can enjoy the tour

guidance by all these functions!

6.4.2 Algorithm for Tour Guidance in Park Areas

In this section, we introduce the tour guidance algorithm which uses all the

methods described in the previous chapters. The algorithm is described in the

following.

 94

Algorithm 6.7 Tour guidance in park area.

Input: an environment map Map, a color omni-image Ic, a set of positions of center

points Pi, a threshold g of gap size, and threshold w of the line width, a

reference omni-image Ir, a search window W, two threshold values Tu and Td, a

threshold d for judging the equality of two angles, perspective-mapping table

Tpe with MP×NP entries, a center point C(xc, yc) of the image, and angles θL and

θR of the left boundary and the right boundary of the passenger-view image.

Output: a passenger-view image IAR with augmented information.

Steps:

Step 1. Transform the color omni-image Ic into a gray-level omni-image Ig.

Step 2. Transform the gray-level omni-image Ig into a binary omni-image Ib.

Step 3. With the binary image Ib, a set of positions of center points Pi, a threshold g

of the gap size, and the threshold w of line width as inputs, perform

Algorithm 4.3 to conduct detection of lines in a set Si.

Step 4. With the environment map Map, a set Si, a search window W, two threshold

values Tu and Td as inputs, perform Algorithm 5.6 to compute the position

Pv of the vehicle.

Step 5. With the omni-image Ic and the pano-mapping table Tpm with M×N entries

as inputs, perform Algorithm 6.5 to generate the passenger-view image Ip.

Step 6. With the position Pv of the vehicle, a passenger-view image Ip, and the

angles θL and θR as inputs, perform Algorithm 6.6 to generate the

passenger-view image IAR with the building name augmented on it.

Step 7. Display IAR on the mobile-device screen.

 95

6.5 Experimental Results

We have described the proposed methods for augmenting the building name on

the passenger-view image. As described in Section 6.2, we generate the

passenger-view image by transforming the omni-image. An example of the generated

passenger-view image is shown in Figure 6.18. As described in Section 6.3, we

augment the building name on the passenger-view image. An example of augmenting

the building name on the passenger-view image is shown in Figure 6.19.

(a)

(b)

(c)

(d)

Figure 6.18 (a)The omni-image acquired from the omni-camera. (b)The

passenger-view image transformed from (a). (c)The omni-image acquired from the

omni-camera. (d)The passenger-view image transformed from (c)

 96

(a)

(b)

Figure 6.19 Two passenger-view images with the building names augmented.

 97

Chapter 7

Experimental Results and

Discussions

7.1 Experimental Results

In this chapter, we will show some experimental results of applying the proposed

augmented reality guidance system for park touring on the vehicle. We will show the

results of learning the environment map for our experimental environment, which is

part of the National Chiao Tung University campus, and the results of the guidance

process based on the AR technique developed for this study. An illustration of the

guidance area consisting of a path, four buildings, ten light poles, and seventeen edge

lines on building walls along the sidewalk is shown in Figure 7.1.

Light pole

Edge lines on

building walls
Path

Building

Figure 7.1 The environment map we use in the proposed system.

 98

In the learning stage, we drive the vehicle on the path as shown in Figure 7.2(a).

When the system detects vertical lines, we save the information into the database as

shown in Figure 7.2(b) and (c).

(a)

(b)

(c)

Figure 7.2 An experimental result of the learning stage. (a) An image of the vehicle

driven on the path and detecting the line feature. (b) An omni-image acquired from

the omni-camera. (c) A line feature detected by the system.

After learning the environment, the system can use the learned data to offer

AR-based guidance to the user. Firstly, the system detects the vertical line features for

vehicle localization as shown in Figure 7.3.

 99

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.3 An experimental result of detecting the line features and locating the vehicle.

(a) An omni-image acquired from the omni-camera. (b) Another omni-image acquired

from the omni-camera. (c) A line feature detected by the system. (d) Another line

feature detected by the system. (e) The location of the vehicle computed by the system

and indicated by the red point. (f) Another location of the vehicle computed by the

system and indicated by the red point.

 100

After locating the vehicle, the system can use the result to show the AR image at

the mobile device. Figure 7.4 shows an example of such results for tour guidance. We

show images of the vehicle on the path in Figures 7.4 (a) and (d). Then, the system

augmented the building name in the passenger-view image on the mobile device as

shown in Figures 7.4 (c) and (f).

(a)

(b)

(c)

Figure 7.4 AR-based navigation. (a) An image of the vehicle on the path. (b) An

omni-image acquired with the omni-camera. (c) The passenger-view image with an

augmented building name. (d) Another image of the vehicle on the path. (e) Another

omni-image acquired with the omni-camra. (f) Another passenger-view image

augmented with the building name.

 101

(d)

(e)

(f)

Figure 7.5 AR-based navigation. (a) An image of the vehicle on the path. (b) An

omni-image acquired with the omni-camera. (c) The passenger-view image with an

augmented building name. (d) Another image of the vehicle on the path. (e) Another

omni-image acquired with the omni-camra. (f) Another passenger-view image

augmented with the building name (continued).

7.2 Discussions

The experimental results of the proposed tour guidance system presented

previously show that it is feasible to use the omni-camera equipped on the vehicle to

detect the vertical line features for locating the vehicle by using the vertical-line

features. Then, it is also practical to generate the passenger-view image and augment

the building name on it for display on user’s mobile–device screen.

However, the proposed system still has some problems. If the features in the

 102

environment are too few for the system to detect, the system might have errors

because erroneous localization of the vehicle. In more detail, if the distance between

two features is too large, then the system will use the estimated vehicle speed to locate

the vehicle for a long distance. The error of the location will possibly accumulate to a

very large amount and make the system show wrong AR information on the user’s

mobile-device screen. Therefore, the path we choose is important for the system.

Furthermore, if the network of the system breaks down, then the system cannot work

because the main process is conducted on the remote server computer. If the system

on the vehicle cannot connect to the server, the server cannot get the image and the

system will stop. In this case, the system can send the AR image to the mobile device,

but the user cannot see anything on the device. So the stability of the network is

important for running the proposed system.

 103

Chapter 8

Conclusions and Suggestions for

Future Works

8.1 Conclusions

A tour guidance system by augmenting reality techniques for uses in outdoor

environments by using an omni-camera imaging device has been proposed. To design

such a system, several techniques have been proposed as summarized in the

following.

1. A method for learning the environment map has been proposed, which generates

the environment map for the system to locate the vehicle position and compute

the position of the building.

2. A method for detecting vertical lines in omni-images has been proposed, which is

based on the canny edge detector and detects vertical lines, complete or broken,

with widths.

3. A method for locating the vehicle along the path has been proposed, which uses

the result of vertical-line detection to conduct vertical-line matching by the LCS

algorithm to provide the position of the vehicle on a map.

4. A method for generating the passenger-view image has been proposed, which

generates, as the base of the AR image, the view of the front passenger on the

user’s mobile-device screen, not seen by the user himself/herself but also other

passengers in/outside the car with hand-held mobile devices with wireless

communication capabilities.

 104

5. A method for tour guidance in the park area has been proposed, by which the

user can see augmented passenger-view images with building names on them on

the user’s mobile-device screen.

The experimental results shown in the previous chapters have revealed the

feasibility of the proposed system.

8.2 Suggestions for Future Works

According to the experience obtained this study, in the following we make

suggestions of some interesting issues, which are worth further investigation in the

future.

1. Increasing the speed of computations in feature detection and vehicle localization

for realtime applications.

2. Developing the capability of detecting features of different shapes adapt the

proposed system to more diversified environments.

3. Developing more applications of the proposed augmented reality techniques

using the omni-camera system and the vehicle.

4. Adding the capability of detecting various features acquired by the omni-cameras

on a fast-moving vehicle.

5. Including more useful information into the environment map for vehicle

localization, such as stores, vendors, lakes, etc.

 105

References
[1] B. C. Chen and W. H. Tsai, “A Study on Tour Guidance by Car Driving in Park

Areas Using Augmented Reality and Omni-vision Techniques,” in Computer

Vision,Graphics, and Image Processing, Aug 2012.

[2] Gandhi and M. M. Trivedi, “Motion analysis for event detection and tracking

with a mobile omni-directional camera,” ACM Multimedia Systems Journal,

Special Issue on Video Surveillance, vol. 10, no. 2, pp. 131–143, 2004.

[3] P. H. Yuan, K. F. Yang, and W. H. Tsai, “A Study on Monitoring of Nearby

Objects around a Video Surveillance Car with a Pair of Two-camera

Omni-directional Imaging Devices, ” Proceedings of 2010 Internaitonal

Computer Symposium (ICS), National Chiao Tung University, Hsinchu, Taiwan,

pp. 325-330, Dec. 2010.

[4] S. W. Jeng and W. H. Tsai, “Using pano-mapping tables for unwarping of

omni-images into panoramic and perspective-view images,” Journal of IET

Image Processing, Vol. 1, No. 2, pp. 149-155, June 2007.

[5] Y. T. Kuo and W. H. Tsai, "A new 3D imaging system using a portable

two-camera omni-imaging device for construction and browsing of

human-reachable environments," Proceedings of 2011 International Symposium

on Visual Computing, pp. 484-495, Las Vegas, Nevada, USA.

[6] M. Betke and L. Gurvits, “Mobile robot localization using landmarks,” IEEE

Transactions on Robotics and Automation, Vol. 13, No.2, pp. 251-263, April

1997.

[7] C. T. Ho and L. H. Chen, “A high-speed algorithm for elliptical object

detection,” IEEE Transactions on Image Processing, Vol. 5, No. 3, pp. 547-550,

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pei-Hsuan%20Yuan.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kuo-Feng%20Yang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wen-Hsiang%20Tsai.QT.&newsearch=partialPref

 106

March 1996.

[8] C. J. Wu, “New Localization and Image Adjustment Techniques Using

Omni-Cameras for Autonomous Vehicle Applications,” Ph. D. Dissertation,

Institute of Computer Science and Engineering, National Chiao Tung University,

Hsinchu, Taiwan, Republic of China, July 2009.

[9] T. Grosch, “PanoAR: Interactive Augmentation of Omni—Directional Images

with Consistent Lighting,” Proc. Computer Vision Computer Graphics

Collaboration Techniques and Applications (Mirage '05), University of

Koblenz-Landau, Germany, pp. 25-34, 2005.

[10] Lee, J.W., You, S., Neumann, U, “Tracking with Omni-Directional Vision for

Outdoor AR Systems,” Proceedings of IEEE ACM Int’l Symposium on Mixed

and Augmented Reality (ISMAR 2002), Darrnstadtt, Gkrmany, October 2002.

[11] G. Reitmayr and T.W. Drummond, “Going out: Robust model based tracking for

outdoor augmented reality,” Proc. IEEE Int'l Symp. Mixed and Augmented

Reality (ISMAR), Santa Barbara, California, USA, pp. 109–118, 2006.

[12] M. Tonnis, C. Sandor, G. Klinker, C. Lange, and H. Bubb. “Experimen-tal

evaluation of an augmented reality visualization for directing a car driver’s

attention.” Proc. of IEEE and ACM International Symposium on Mixed and

Augmented Reality, pp. 56–59, Vienna, Austria, Oct. 2005.

[13] B. D. Lucas and T. Kanade, “An iterative image registration technique with an

application to stereo vision,” Proceedings of 7th International Joint Conference

on Artificial Intelligence, Vancouver, Canada, pp. 674–679, 1981.

[14] T. Mashita, Y. Iwai, and M. Yachida, “Calibration method for misaligned

catadioptric camera,” IEICE Transactions on Information & Systems, vol. E89-D,

no. 7, pp. 1984-1993, July 2006.

[15] H. Ukida, N. Yamato, Y. Tanimoto, T. Sano, and H. Yamamoto,

 107

“Omni-directional 3D Measurement by Hyperbolic Mirror Cameras and Pattern

Projection,” Proceedings of 2008 IEEE Conference on Instrumentation &

Measurement Technology, Victoria, BC, Canada, May 12-15, 2008, pp. 365-370.

