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Learning a Scene Background
Model via Classification
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Abstract—Learning to efficiently construct a scene background
model is crucial for tracking techniques relying on background
subtraction. Our proposed method is motivated by criteria leading
to what a general and reasonable background model should be,
and realized by a practical classification technique. Specifically,
we consider a two-level approximation scheme that elegantly com-
bines the bottom-up and top-down information for deriving a back-
ground model in real time. The key idea of our approach is simple
but effective: If a classifier can be used to determine which image
blocks are part of the background, its outcomes can help to carry
out appropriate blockwise updates in learning such a model. The
quality of the solution is further improved by global validations
of the local updates to maintain the interblock consistency. And a
complete background model can then be obtained based on a mea-
surement of model completion. To demonstrate the effectiveness of
our method, various experimental results and comparisons are in-
cluded.

Index Terms—Background modeling, boosting, classification,
tracking, SVM.

1. INTRODUCTION

ISUAL tracking systems using background subtraction
V often work by comparing the upcoming image frame with
an estimated background model to differentiate moving fore-
ground objects from the scene background. Hence, the perfor-
mance of such systems depends heavily on how the background
information is modeled initially, and maintained thereafter. In
this work, we aim to establish a learning approach to reliably es-
timate a background model even when substantial object move-
ments are present during the initialization stage. As illustrated
in Fig. 1, the overall idea is to efficiently identify background
blocks from each image frame through online classifications,
and to iteratively integrate these background blocks into a com-
plete model so that a tracking process can be automatically ini-
tiated in real time. In developing such a progressive processing
scheme for initializing a background model, some criteria are
considered.

» Stationary scene adaptation: It is commonly agreed that
stationary scenes are considered as background. Thus,
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in our design, when a moving object becomes stationary
over a certain period of time, it will be incorporated into a
background model. This would yield an initial background
model accommodating the most recent statistics about the
background scene, e.g., a parking car or an occluded area.

* Gradual variation adaptation: The computation of a
background model should take account of small variations
caused by, e.g., gradual illumination changes, waving
trees, and faint shadows. It allows a system to reduce the
false detection rate of foreground objects.

* Model completion: Depending on object movements, the
number of image frames needed in estimating an initial
background could vary significantly. Hence, a measure-
ment for the availability of a background model has to be
defined so that the system can immediately begin to track
objects upon the completion of model initialization.

* Efficiency: A background model must give rise to effi-
cient online derivations to guarantee real-time tracking
performance.

The first two criteria listed above manifest what kind of scene
contents are considered as background. The last two ones illus-
trate the design requirements of a background model initializa-
tion system: it should be capable of deriving a complete back-
ground model in a progressive manner and in real time.

In the proposed approach, two features will be observed.
First, we utilize learning methods to identify background
blocks. Rather than developing discrimination rules or models,
we adopt learning approaches to construct a background block
classifier. This strategy not only provides a convenient way of
defining some preferred background types from image exam-
ples, but also avoids complicated issues of manually setting
discriminating parameters, because they can be resolved by
learning from the chosen data. Second, the derived background
model fulfills the four criteria. To achieve efficiency, a pro-
gressive estimation scheme is developed and a fast classifier
adopted. For the model completion criterion, an effective
definition is given to indicate that a complete background
model is obtained, and the subsequent tracking procedures can
be started. Regarding the adaptation criteria, we implement
a bottom-up block updating, in either a gradual or an abrupt
fashion, for capturing the background variations and scene
changes, respectively.

A. Related Work

Background modeling for tracking typically involves three
issues: representation, initialization, and maintenance. For ex-
ample, one could represent a scene background by assuming a
single Gaussian distribution for each pixel, initialize the model
by estimating from an image sequence, and maintain it during
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Estimated Background

Fig. 1. Through performing online classifications and by iteratively integrating the framewise detected background blocks of images captured with a static monoc-

ular camera, the scene background can be reliably estimated in real time.

tracking by updating Gaussian parameters of the background
pixels. While the emphases of most previous works, including
those to be described later, are mainly on representation and
maintenance, the task to compute an initial background model
has been somewhat neglected or otherwise simplified by not
allowing large object movements throughout the initialization
process, e.g., [10], [25], and [38].

1) Background Representation and Maintenance: Gaussian
models are perhaps the most popular representation for mod-
eling a scene background, e.g., [4], [23], [26], [33], and [38].
Their maintenance is usually carried out in the form of temporal
blending to update intensity means and variances. Thus, related
researches often differ in the number of Gaussian distributions
used for each pixel, and the update formulas for the Gaussian pa-
rameters. In [15], Gao et al., further investigate possible errors
caused by Gaussian mixture models, and then apply statistical
analysis to estimate related parameters.

Apart from Gaussian assumptions, Elgammal ez al. [9] con-
sider kernel smoothing for a non-parametric estimate of pixel
intensity over time. In [35], Toyama et al. propose a wallflower
algorithm to address the problem of background representation
and maintenance in three levels: pixel, region, and frame levels.
Ridder et al. [30] use a Kalman-filter estimator to identify
the respective pixel intensities of foreground and background
from an image sequence, and to suppress false foreground
pixels caused by shadow borders. In [19], a mixture of local
histograms is proposed to construct a texture-based background
model that is more robust to background variations, e.g., illu-
mination changes.

Prior assumptions about the foreground, background, and
shadows can be used to simplify the modeling complexity.
For vehicle tracking, Friedman and Russell [14] propose three
kinds of color models to classify pixels into road, shadow,
and vehicle. They employ an incremental EM to learn a
mixture-of-Gaussian for distinguishing the foreground and
background. In [31] and [36], prior knowledge at pixel level is
considered in learning the model parameters of the foreground
and background. Then, a high-level process based on Markov
random field is performed to integrate the information from all
pixels.

2) Background Model Initialization: The most straightfor-
ward way to estimate a background model is to calculate the
intensity mean of each pixel through an image sequence. Ap-
parently, this is rarely appropriate for practical uses. Haritaoglu
et al. [17], instead, compute intensity medians over time. Yet

a more general framework by Stauffer and Grimson [33] is to
use pixelwise Gaussian mixtures to model a scene background.
Mittal and Huttenlocher [26] later extend the Gaussian mixture
idea to construct a mosaic background model from images cap-
tured using a nonstationary camera. In [35], bootstrapping for
background initialization is proposed, and implemented with a
pixel-level Wiener filtering.

Among the above-mentioned approaches, initializing a back-
ground model is viewed more or less as part of the process for
background maintenance. They do not have a systematic way to
measure the quality, and determine the degree of completion for
such a model. Consequently, these methods often require simple
initializations, or otherwise start tracking activities with unreli-
able background models.

For computing an explicit background model, Gutchess ef al.
[16] use optical flow information to choose the most likely time
interval of stable intensity at each pixel. However, the quality
of their derived background model depends critically on the ac-
curacy of the pixelwise optical flow estimations. Cucchiara et
al. [6] represent a background model by pixel medians of image
samples, and specifically identify moving objects, shadows, and
ghosts! for different model updates using color and motion cues.
Based on the Gaussian mixture model, Hayman and Eklundh
[18] formulate a statistical scheme to derive a mosaic back-
ground model with an active camera. They consider a mixel
distribution to correct the errors in background registration. In
[7], De la Torre and Black apply principal component anal-
ysis (PCA) to construct the scene background from an image
sequence. More recently, Monnet et al. [27] propose an incre-
mental PCA to progressively estimate a background model and
detect foreground changes. Still, these systems all lack an ex-
plicit criterion for determining whether a background initializa-
tion is completed or not—a crucial and practical element for a
real-time tracking system.

Other techniques that explore layer decompositions of a video
sequence can also be used to estimate a background model.
Irani and Peleg [20] explore the decompositions of dominant
motions and apply them to the construction of an unoccluded
background image. In [12] and [21], sprite layers are derived
from probabilistic mixture models, in which cues of layer ap-
pearances and motions are encoded. In [1] and [2], Aguiar and
Moura consider rigid motions, intensity differences, and the re-
gion rigidity for figure—ground separation and formulate them as

Ghosts are false foreground objects detected by subtracting an inaccurate
background model from image frames.
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Fig. 2. (a)Online image stream: I; and I, _; are the image frames at time ¢ and # — 1, and their ith blocks are denoted as b} and bi _,, respectively. (b) Estimated
background model: For the background models, B,isa possible estimation at time ¢, while B, , is the best estimation up to time ¢ — 1. Accordingly, their ¢th
blocks are represented by bl and b}’ | (a) Online image stream and (b) Estimated background model.

a penalized likelihood model that can be optimized in efficient
ways. In [5], [22], and [37], graph-cut-based techniques, e.g.,
[3], are applied to decompose video layers via pixel labeling,
with various objective functions being optimized. Though all the
layer-based approaches are capable of deriving a background
model even for dynamic scenes, they often need to process a
video sequence in batch, which is different from the proposed
progressive scheme.

The rest of the paper is organized as follows. In Section II,
the proposed background estimation approach is presented. In
particular, the relationship between the classification and the es-
timation scheme is elaborated. Then the adopted classifiers are
introduced in Section III. In Section IV, some experiments are
demonstrated, including training results, background estimation
performance, and comparisons to other approaches. Finally, a
brief discussion is given in the same section to conclude this
work.

II. BACKGROUND MODEL ESTIMATION VIA CLASSIFICATION

Due to the restriction of limited memory space and the re-
quirement of real-time performance, only a small number of
recent image frames are stored and referred during the con-
struction of a background model. Thus, an iterative estimation
scheme is proposed in the following to progressively identify
background blocks in image frames and to incorporate their in-
formation into a background model.

A. Iterative Estimation Scheme

To illustrate the idea of the proposed iterative estimation
scheme, we begin by summarizing the notations and definitions
adopted in our discussion.

* We denote the test image sequence up to time instant ¢ as
I, ={,1I,...,1;}, and the most recent £ image frames
as Lo = {l 41, Ie—1, It }. We also use bi to stand
for the ith block of It, and by , = {bj_, 1, bi_1,b;}
for the set of 2th blocks from It ¢ (see Fig. 2).

« Let B, be any possible background model estimation at
time ¢, and B;k_l be the estimated background model at
timef—1. Then, the ith blocks of B, and B;“_l are denoted
as bi and b* |, respectively.

* A training set of m samples, D = {(x1,%1),(x2,%2),

,(Xm,Ym)}, is used to build a binary classi-
fier, where each x; is a fixed-size image block
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Fig. 3. Flowchart depicts the interactions between the bottom-up block
updating and the top-down model validation processes. While the bottom-up
process handles blockwise updates of the background, the top-down one deals
with interblock consistency validations. The coupling of the two processes
forms an efficient scheme for deriving a background model.

(or simply the extracted feature vector), and y; €
{—1(foreground), +1(background)} is its label.

* With training data D, an optimal classifier f* can be de-
fined as

fr= arg;rlaxp(f |D). (1

Equation (1) manifests that a classifier f* can be derived from
a probabilistic maximum a posteriori (MAP) treatment [32]. It
is thus more desirable to have not only classification labels/
scores but also probabilistic outputs of f*. In Section III, we
will explain that either an SVM or a boosting-with-soft-margins
classifier is appropriate for delivering such probabilities. With
probabilistic outputs, a threshold can then be set to adjust the
classification boundary, which is useful for our background es-
timation. We will demonstrate this usage in Section IV-A-3).
The proposed iterative estimation scheme for deriving a back-
ground model consists of a bottom-up block updating and a top-
down model validation process. As shown in Fig. 3, a flowchart
is given to illustrate the interactions between the two processes.
The aim of the bottom-up process is to blockwise integrate iden-
tified background blocks into a model and to form a model can-
didate Bt. Then, in the top-down process, the interblock con-
sistency for all the updated background blocks are validated.
By assuming that significant background updates often occur in
groups, isolated updates that mainly result from noises will be
eliminated by restoring their block statistics back to the previous

estimates b;* ;.
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More specifically, in the bottom-up process, the image block
bi classified as background and the previously estimated back-
ground block l}{z_l act as two inputs to the background adap-
tation. Based on a dissimilarity measure between the current
image block b¢ and the previous background block b} ,, either
a maintenance step or a replacement step is invoked for a block
update. In the maintenance step, the case of the small block
difference is handled, assuming it is mostly caused by gradual
lighting variations or small vibrations. A new background block
estimate E; can thus be computed by a weighted average of the
two blocks bi and b¥* ;. On the other hand, when b and b} are
dissimilar, implying an occurrence of an abrupt scene change,
a replacement step is employed to calculate a renewed back-
ground block estimate bi, which is consistent with the image
block b:.

After the above bottom-up updates, a background model can-
didate ﬁt is obtained. To turn this model candidate into a final
estimate, a top-down process is introduced to assure the model
consistency between the current candidate B, and the previous
estimate Bt*—p by assuming a smooth changing in background
models. Although the checking of model consistency can be re-
alized in various ways, we choose to implement it in a simple
manner by finding the updates of isolated blocks and undoing
them. Thus, large and grouped background block updates are
preserved in this design, since they most likely belong to signif-
icant and stable background changes, such as newly uncovered
scenes or stationary objects. Through the validation process, a
final background model estimation l:)‘;f‘ is derived.

It is worth mentioning that the entire approach is somehow
linked to a MAP formulation, i.e.,

S ——

leehhood

x P(By|B; 1) ¢ (2
N————’

Prior

where it = {i|bi is classified as a background block by f*}
and i~ = {1,...,n} — iT. (Assume there are n blocks in
an image frame.) Interested readers can find the derivation
of (2) in the Appendix. The connections between (2) and our
approach are elaborated as follows. Regarding the likelihood
part, the two products can be viewed as blockwise updates after
the background classification. For the image block classified
as background, maximizing the probability P(bi |bi, b))
implies that similarities among the background estimate bi,
the image block b and the previous estimate b}* ; should be
retained. Likewise, for a foreground block, the corresponding
probability P(bi|b*,) is maximized by setting the current
block estimate b equal to the previous one b}’ . This is
what we do in the bottom-up process. Referring to the prior
term, it indicates that model level consistency between Bt and
éf_l needs to be maintained for maximizing the probability
P(B,|B;_,). This, as well, corresponds to the top-down
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model validation. However, we note that the background model
B;“ derived by our approach is only a rough approximation to
the MAP solution, since (2) is not exactly solved. In fact, to
optimize (2), the underlying distributions of the probability
terms should be further specified, and complicated optimiza-
tion techniques, e.g., EM-based estimations, may need to be
employed. Hence, instead of pursuing the MAP solution, our
focus is on the design of a practical and efficient algorithm for
background model estimation.

B. The Algorithm

1) Bottom-Up Process: We start by applying f* to each bi to
determine its probability of being a background block. A sim-
plified notation P(b: | £*) will be hereafter adopted to denote
such a probability, with the understanding that the most recent
¢ ith-blocks b's (i.e., bi ) are available for calculating useful
features, e.g., optical flow values, for classification. Observe that
only for those image blocks classified as background at each
time ¢, their corresponding blockwise updatings would modify
the background model. It is therefore preferable to have as few
false positives by f* as possible. Hence, we use a strict thresh-
olding 7*, i.e., the decision boundary of f*, on P(bi | f*) such
that image blocks with P(b: | f*) > 7* > 0.5 are considered
background. Given this setting, there are two possible cases for
a block updating. ~ ~

1) If b} is not a background block, then b}* = b} |, i.e., the

pixel means and variances of i);l_l are assigned to 5;”
2) If bi is classified as a backgrpund block, we measure the
dissimilarity between bi and b}? , by

i i |
diss (bL xi ):%

where ||bi —b#% | ||2 is the sum of squared pixel intensity dif-
ferences, and |b?] is the block size. Depending on the value
of diss(bi, b |), either a maintenance step or a replace-
ment step is 1nvoked (see Algorithm 1). We apply the iter-
ative maintenance formulas proposed in [4] to update the
latest small variations into B;“ Notice that a block replace-
ment in evaluating Bt* takes place only when the particular
block has been classified as background for N consecutive
frames. Indeed, the maintenance phase is designed to adapt
the gradual variations, and the replacement phase is to ac-
commodate new stationary objects.

2) Top-Down Process: A top-down process based on com-
paring B, with B* 1 is employed to detect isolated block up-
dates in the bottom-up evaluation of By, and undo these up-
dates with the statistical data from B;_,.2 Conveniently, in im-
plementing the algorithm, the top-down process can be carried
out right after the background block classifications. This would
yield a set of valid background blocks; all of them are not iso-
lated. Hence, the bottom-up updatings over these valid blocks
would directly lead to the final estimate [3;".

2An isolated block updating (either for maintenance or for replacement)
has less than three of its 4-connected neighboring blocks being updated in the
bottom-up process.
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Algorithm 1: Constructing the E;‘ .

Data: Process I; using f*, Bi_; and an auxiliary image
B = {b'}. When t = 0, we have B = 0, B =0, and
Vi, age(i) = 0, counter(i) = 0, and
replace(i) = false. _

Result: Obtain a MAP estimate Bj.

begin

Bf «— B{_, )

for image block b} € I do

if b¢ is a valid background block then

if diss(bi,bi’1) < §(= 157 = 225) then

/* Maintenance */ o

b;* «— TterativeAverage(b, bi )

age(i) «— age(i) + 1

counter(i) «— 0

L b «—0

/* Replacement */
b'=b"+ &b
counter(i) «— counter(i) + 1
if counter(i) = N then
age(i) «— 0
counter(i) «— 0
replace(i) «— true

else
age(i) «— age(i) + 1
counter(i) «— 0

L b «—0

output E;‘
end

3) The Background Model: Having described our two-phase
scheme to iteratively improve B, we are now in a position to
define a meaningful and steady initial background model B*.

Definition 1: The initial background model B* is said to
be B;‘Z, if t* is the earliest time instant satisfying the fol-
lowing three conditions: i) there is no block replacement
occurred for the last N image frames, i.e., in calculating
B;_NH, B;"*_NH, .-+, Bf.; ii) all image blocks in B}. have
been replaced at least one time since ¢ = 0; and iii) they are
of ages at least L. (See Algorithm 1 for details. In all our
experiments, we have N = 45and L = N + 15 = 60.)

III. FAST CLASSIFICATION WITH SOFT MARGINS

In this section, issues related to the feature selection and the
classifier formulation are addressed for the construction of an
efficient background block classifier. In the feature selection,
we have chosen to use features as general as possible so that
the resulting classifier can handle a broad range of image
sequences. Regarding the classifier formulation, two learning
methods, support vector machines (SVMs) and column gen-
eration boost (CGBoost), are explored by investigating the
following two issues. First, rather than binary-value classifiers,
a classifier with probability outputs is required for our appli-
cation. Second, the efficiency of the resulting classifier should
fulfill the demand of real-time performance.

1645

A. Feature Selection

For our purpose, the task of training is to learn a binary clas-
sifier for identifying background blocks from a video sequence
captured by a static camera. We use a two-dimensional fea-
ture vector to characterize an image block b’. The first com-
ponent is the average optical flow value, where we apply the
Lucas—Kanade’s algorithm [24] to compute the flow magnitude
of each pixel in b’. In our implementation, it takes three image
frames, I;_o, I;_1, and I}, to calculate the flow values prop-
erly. However, we note that if one-frame delay is allowed, a
slightly better results in evaluating the values of optical flow
can be achieved by referencing I;_1, I}, and ;1. The second
component of a feature vector is derived from the (mean) inter-
frame image difference by (1)/|bi|_1 D (e y)ebi >y — 1Y
To ensure good classification results, the feature values of both
dimensions are normalized into [0, 1] for training and for testing.

The two feature components are discriminant enough for our
application owing to their generality and consistency in classi-
fying background blocks of varied image sequences. We should
also point out that since the optical flow values are computed
using just three consecutive image frames, it may occur that a
few pixels would have erratic/large flow values. Hence, an esti-
mated upper-bound threshold is enforced to eliminate such er-
rors. On the other hand, the additional cue using temporal dif-
ferencing is more stable and easier to calculate, but it may fail
to detect all the relevant cases. For example, the interframe dif-
ference may not be small in evaluating a background block that
consists of slightly waving trees. Instead, an optical flow value
is more informative to capture such a background block with
small motions.

B. SVMs With Probability Outputs

For binary classifications, SVMs determine a separating hy-
perplane fs(x) = w-¢(x),x € D by transforming D from the
input space to a high dimensional feature space, through a map-
ping function ¢. The optimal hyperplane f& can be obtained by
solving the following soft-margin optimization problem:

o1 —
min Slwl? +C5 ) &+ C5 D6
- i+ i-

subjectto  y;fs(x;) >1—-¢&, i=1,...,m 3)
where & > 0 are slack variables for tolerating sample noises
and outliers. The two parameters C’; and Cy are useful when
dealing with unbalanced training data. (Recall that “+” is
for background image blocks and “—” for foreground image
blocks.) For the sake of reducing false positives, which may
lead to more serious flaws in the estimated background model
than false negatives would cause, Cg is given a value four
times larger than the one for C; to penalize more the mis-
classifications of foreground blocks. In solving (3), we use a
degree 2 polynomial kernel to yield satisfactory classification
outcomes efficiently.

1) Probability Output: We use a sigmoid model to map an

SVM score into the probability of being a background block by

1
1+ exp(Afé(x) + B)

P(x|fs) = Q)
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Fig. 4. Training data. Examples of collected images and their binary maps of the foreground (white) and the background regions (black) are plotted, top and
bottom, respectively.

where the two parameters A and B can be fitted using max-
imum likelihood estimation from D. Following [28], a model-
trust algorithm is applied to solve the two-parameter optimiza-
tion problem. In our experiments, 65% of the training blocks
are used for deriving an SVM, and the other 35% are for cali-
brating probability outputs. The two fitted parameters are A =
—0.673724 and B = —2.359339.

C. CGBoost With Probability Outputs

Among the many variants of boosting methods, the AdaBoost,
introduced by Freund and Schapire [11], is the most popular
one to derive an effective ensemble classifier iteratively. While
AdaBoost has been proved to asymptotically achieve a max-
imum margin solution, recent studies also suggest the adoption
of soft margin boosting to prevent the problem of overfitting
[8], [29]. We thus employ the linear program boosting proposed
by Demiriz et al. [8] for achieving soft-margin distribution
over the traming data D and acquiring an ensemble classifier
fB = Z] 1 @; fj, which is comprised of T' weak learners f;s
and weights «;s. Actually, Demiriz et al. apply a column genera-
tion method to solve the linear program by part, and establish an
iterative boosting process that is similar to AdaBoost. Note that
in implementing the CGBoost, the weak learners are constructed
from radial basis function (RBF) networks, denoted as hs [29].
And each h has three Gaussian hidden units where two of them
are initialized for the background, and the remaining one is for
the foreground training data. Let f;(x) = sign(h;(x)) be the
weak learner selected at the jth iteration of CGBoost. Then,
the RBF network h; is derived by minimizing the following
weighted error function

Z wi(h;(xi) = yi)? (5)

where {w; } is the weight distribution over training data D at the
7th iteration.

1) Probability Output: Different from (4), it is more con-
venient to link boosting scores to probabilities. Friedman et al.
[13] have proved that the AdaBoost algorithm can be viewed as
a stagewise estimation procedure for fitting an additive logistic
regression model. Consequently, a logistic transfer function can
be directly applied to map CGBoost scores to posterior proba-
bilities by

1

Pl B = T e m)

(6)

where the mapping in (6) is valid when the training data D do
not contain a large portion of noisy samples or outliers. For the
general case, it should still yield reasonable probability values
with respect to the classification results by ffs.

To summarize, both the two classifiers, f& and ff, seek a
soft-margin solution when deciding a decision boundary for the
training data D. They indeed achieve similar classification per-
formance in our experiments. However, SVMs are generally less
efficient than boosting, as the number of support vectors in-
creases rapidly with the size of D. We thus prefer a CGBoost
classifier for estimating an initial background model.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

To demonstrate the effectiveness of our approach, we first de-
scribe how the classifiers are learned for the specific problem.
We then test the algorithm with a number of image sequences
on a P4 1.8 GHz PC. Through illustrating with the experimental
results, we highlight the advantages of learning a background
model by classification, and make comparisons with those re-
lated works. Finally, possible future extensions to the current
system are also explored.

A. Classifier Learning

1) Training Data: We begin by collecting images that
contain moving objects of different sizes and speeds from var-
ious indoor and outdoor image sequences captured by a static
camera. These images are analyzed using a tracking algorithm
(with known background models), decomposed into 8 X 8
image blocks, and then manually labeled as +1 for background
blocks, or —1 for foreground ones. Examples of the collected
images and the detected foreground and background regions
are shown in Fig. 4. Since we prefer a resulting classifier to
accommodate small variations, image blocks from regions of
faint shadows or lighting changes are labeled as background.
The feature vector of an image block can be computed straight-
forwardly by referencing the related £ = 3 blocks from the
respective image sequence. Totally, there are 27 600 image
blocks collected to form the training data D. As shown in
Fig. 5(a), the features extracted from the background blocks
are mostly of small values, while those extracted from the
foreground blocks mostly have feature values corresponding to
the regions of large motions.

2) Classifier Evaluations: The training and the classification
outcomes by implementing the classifier respectively with f§
and f7 are summarized in Table I. Owing to the soft-margin
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Fig. 5. (a) Distribution of the training data. The training features are normalized to the values between 0 and 1. In order to detail the distribution of background
samples, only the part of 0 to 0.5 is plotted. (b) Level curve of f};’s decision scores. The zero-score decision boundary is located on the lower-left corner of the plot.

TABLE I
COMPARISONS BETWEEN SVMs AND CGBOOST
(USING ADABOOST AS A BENCHMARK)

[ Classifier ][ SVM ff | CGBoost f | AdaBoost fq |
Settings Image Size: 320 x 240, Platform: P4-1.8GHz PC
Parameters C’;’ =20, | Cp = % None

Cg =80
Components 4185 SVs 33 fjs 33 fjs
Error Rate* 0.0466 0.0466 0.0507
[ Test Speed [[  0.4fps | 9.5fps [ 9.5fps |

* Error Rate = # of Misclassified Blocks / # of Training Blocks

TABLE II
AVERAGE ERROR RATES OF TENFOLD CROSS VALIDATION IN
DIFFERENT THRESHOLD SETTINGS

[ F [ 05 ] 06 [ 07 ]
False Positive 0.02912| 0.02768| 0.01196
False Negative 0.01877| 0.02062| 0.49652

property of the two classifiers, almost the same training errors
have been obtained. However, the classification efficiency of f5
is more than 20 times faster than that of f§. To visualize the dis-
tribution of a derived classifier, for example, f5, its level curves
of the decision scores are plotted in Fig. 5(b). It can be observed
that the area of positive scores is located near the lower-left
corner, which is consistent with the distribution of feature values
computed from the training data.

3) Probability Thresholding: For the sake of reducing false
positives, we adopt a stricter probability threshold 7* = 0.6
in setting the decision boundary of a CGBoost classifier. This
value is determined through tenfold cross validation. In Table I,
the average values of the false positive and false negative rates
in cross validation with respect to different threshold settings
are listed. While false negatives mainly affect the needed time
in estimating an initial background model, the false positives,
i.e., misclassifying foreground blocks as background, will have
direct impacts on the quality of the background model. Thus, it

is preferable to choose 0.6 as the probability threshold in that it
causes fewer false positives without introducing too many false
negatives.

B. Some Experiments

Since the classification efficiency of CGBoost is more than
20 times faster than that of an SVM implementation (see
Table I), we describe below only the experimental results
yielded by using the CGBoost classifier f5. For testing the
generality of the proposed scheme, all the to-be-estimated
scenes of the testing sequences are completely different from
those of the training data. The testing sequences also contain
complex motions, e.g., substantial object interactions, and
varied lighting conditions, like cloudiness.

1) Background Model Estimation: We first demonstrate the
efficiency of our method for an outdoor environment. The se-
quence A contains different types of objects, including slightly
waving trees, walking people, slow and fast moving vehicles,
and even a stationary bike rider. We shall use this example as a
benchmark to analyze the quality of our results, detection rates,
and comparisons to other existing algorithms. As illustrated in
Fig. 6(a) and (b), the background model is initialized into an
empty set att = 0, and it is until the forty-fourth frame that sta-
tionary regions of the scene are started to be incorporated into
the model (due to N = 45 in our setting). Fig. 6(c) shows a
very slow moving car is falsely adapted into the background in
transient (and is eventually removed after its leaving the scene).
More interesting is the scenario depicted in Fig. 6(d) and (e)
that a bike rider waiting for a green traffic light has remained
still long enough to become a part of the derived background
model at t* = 650. Then, the system can start to track objects
via frame differencing and proper model updating. On the other
hand, if we subtract the model from the first ¢* frames, it gives
the complexity of how the background model is initialized. Fac-
tors such as dark shadows and waving trees can now be easily
identified from those shown in Fig. 6(f)—(j).
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Fig. 6. (a)-(e) Upper row shows image frames from sequence .A, and the lower row depicts the progressive estimation results. The initial background model is
completed at t* = 650. (f)—(j) The frame subtraction results by referencing the derived background model B, (a) A000, B, (b) A044, By, (c) A261, B3,

() A510, Bz, () A650, Bt (f) A000 — BL,,, (2) A04d — By, . (h) A261 — B.,, () A510 — Bi.,, (j) A650 — B,

(a) (b)

(e

Fig. 7. Row one: Image frames from sequence .A. Row two: The manually labeled foreground (white) and background (black) maps. Note that the very slow-
moving car in (c) that later becomes fully stationary in (d) is labeled as foreground and background, respectively. Row three: Our background block detection
results. The foreground blocks in gray are identified by the top-down validation process. (a) .A020, (b) A166, (c) .A261, (d) A372, and (e) A540

2) Background Block Detection: To quantitatively evaluate
the accuracy of the bottom-up block classifications and the im-
provement with the top-down validations, we select 20 image
frames from sequence A that contain moving objects of dif-
ferent sizes and speeds, specular light, and shadows. We then
manually label each image block of the twenty frames to re-
sult in a set of 20 061 background and 3939 foreground blocks,
where we shall use them to examine the accuracy of our scheme
for background block detection. In Fig. 7, we show results for
five selected frames. Note that those gray blocks are detected as
foreground through the top-down validation process. To further
justify the need of a local and global approach, a comparison of
the detection error rates with or without the top-down validation
step is given in Table III. Although the values of detection rates
could vary from testing our system in different environments, it
is clear that the improvement of reducing the errors by applying
the top-down validation is significant. As in this example, the
reduction rate of false positives is about 18.744% while the in-
crease rate of false negatives is only 3.059%. Two observations

TABLE III
DETECTION ERROR RATES WITH OR WITHOUT THE TOP-DOWN VALIDATION
BG/FG Block Without With %
Detection top-down | top-down | Improvement
Detection Error Rate™ 0.04142 0.03779 8.764 %
False Positive Rate 0.02246 0.01825 18.744 %
False Negative Rate 0.01896 0.01954 -3.059 %

* Detection Error Rate = # of Misclassified Blocks / # of Testing Blocks

could arise from the foregoing verification for the accuracy of
our scheme in detecting background blocks.

1) For the classifier to accommodate small variations like
waving trees, it may mistakenly classify very slow-moving
objects into background [see Figs. 6(c) and 7(c)]. This is
indeed a trade-off, and we resolve the issue by learning a
proper decision boundary from the training data.

2) Our classification scheme may suffer from the aperture
problem in detecting large objects in that we use motion
features to construct a general classifier [see Fig. 7(a) and
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(c)]. With the top-down validation, this problem can be
alleviated to some degree. Still a number of false positives
caused by the aperture problem exist framewise. However,
since only the same false positive occurring for N consec-
utive frames would be adapted into a background model,
such an event rarely happens in practice (with a very low
probability, e.g., around 0.01825Y for the example in
Table III).

3) Parameter Settings: We next investigate the sensitivity of
our method with respect to different values of the two parame-
ters N and L. (Since . = N + 15, it is indeed a one-param-
eter scheme.) Specifically, we have experimented with NV = 30,
45, 60, 75, and 90. Our results show that they mainly affect the
needed time to compute a stable initial background model. The
larger the value of N is, the longer period of time it takes to
complete the estimation. Except for N = 30, which is too short
a time period for yielding a stationary adaptation, all other set-
tings of N lead to stable background models.

4) Related Comparisons: A clear advantage of our formu-
lation is the ability to know when a well-defined initial back-
ground model is ready to be used for tracking. We demonstrate
this point by making comparisons with the popular mixture of
Gaussians model [33] and the local image flow approach [16].
While the two methods are also effective for background ini-
tialization, they both lack a clear definition of what an under-
lying background scene is at any time instant of the estimation
processes. For systems based on the mixture of Gaussians, they
work by memorizing a certain number of modes for each pixel,
and then by pixelwise integrating the most probable modes to
form a background model. This is in essence a local scheme that
the overall quality of a background model is difficult to evaluate.
On the other hand, the method described in [16] is designed to
process a whole image sequence to output a background model.
We thus need to modify the algorithm into a sequential one so
that the comparisons can be done by framewise examining the
respectively derived background models.

The first experiment is carried out with image sequence A
where the three algorithms are alternately run till the image
frame ¢* = 650 that our method completes its estimation for an
initial background model. For the mixture model, we use three
Gaussian distributions and a blending rate of 0.01, and initialize
the background model at ¢ = 0 to the first image frame. For
the local image flow implementation, the values of w and §ax
are set to 30 and 15, and the background model is an empty
set at £ = 0. In Fig. 8, we show some intermediate results of
ours and the corresponding background models produced by the
other two methods. Due to the batch nature of the local image
flow scheme, its three background models shown in Fig. 8§ are
obtained by running the algorithm three times, using the respec-
tive periods of image frames as the inputs. Overall, the results
produced by ours and the mixture of Gaussians are more re-
liable than those of the local image flow, largely because the
local flow scheme relies heavily on the estimations of optical
flow directions and their accuracy. While the outcomes by the
mixture of Gaussians seem to be satisfactory and similar to ours,
the absence of a good measurement to guarantee the quality of
the resulting background models remains a disadvantage of the
approach. Furthermore, as one would expect that a mixture of
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Gaussians method should be sensitive to lighting variations in
that it is done by locally combining pixel intensities. We shall
further elaborate on this issue with the next experiment.

Our second comparison focuses on the effects of lighting
changes. For the outdoor sequence B (see Fig. 9), the lighting
condition varies rapidly due to overcast clouds. And the exper-
imental results show that our method is less sensitive to varia-
tions of this kind. Specifically, in Fig. 9(e) and (f), we enlarge
the sizes and enhance the contrasts of the two derived back-
ground models for a clearer view. Note that especially in the
road area our background model estimation is clearly of better
quality than the one yielded by the mixture of Gaussians. This is
mostly because of our uses of motion cues for identifying back-
ground blocks and the properties of the MAP background model
for integrating local and global consistency. On the other hand,
the mixture of Gaussians approach uses only the pixelwise in-
tensity information so that its performance depends critically
on the variations of intensity distribution about the background
scene.

5) Initialization and Tracking: To further illustrate the
efficiency of using our proposed algorithm to estimate a back-
ground model for tracking, we show the estimations of initial
background models of test sequences C and D, and some
subsequent tracking results in Fig. 10. Below each depicted
image frame I;, the corresponding background model B;" is
plotted. In the two experiments, the estimations of the ini-
tial background model B;ﬁ are completed at frame number
t* = 470 and 243, respectively. Once the [3;‘; is available,
the system can start to track objects immediately, using the
scheme described in [4] (see Fig. 10). We also note that, as
demonstrated in Fig. 10(j)—(1), the background model can be
updated appropriately during tracking, even when significant
changes in the scene background have occurred.

C. Discussions

An efficient online algorithm to establish a background model
for tracking is proposed. The key idea of our approach is simple
but effective: If one can tell whether an image block is part of
the background, the additional knowledge can help to perform
appropriate block updates. In addition, we introduce a global
consistency check to eliminate noises in the updates. The two
mechanisms, together, lead to a reliable system.

In background classifier learning, a classifier formulation
with probability outputs is adopted so that the classification
boundary can be easily tuned. While both an SVM and a CG-
Boost classifier are appropriate for this purpose, the latter has an
advantage of efficiency and is thus applied to the experiments.
We also note that the relevance vector machines (RVMs) [34]
are another possible choice. Particularly, RVMs are derived
from MAP equations, and are truly probabilistic.

Regarding feature selection, two general motion cues, the in-
terframe difference and the optical flow value, are adopted to
discriminate background scenes. While the interframe differ-
ence is effective in detecting static background blocks, the op-
tical flow value, on the other hand, provides discriminability
in classifying image blocks in small motions into gradually-
varying background or moving foreground. To further justify
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Fig. 8. Row one: Images frames from image sequence A. Row two: Intermediate results of background estimation by our method that completes at t* = 650.
Row three and four: The results respectively derived by the local image flow approach [16] and the mixture of Gaussians method [33] at each corresponding time

instant.

the use of the optical flow cue, additional evaluations using the
interframe difference alone are provided. With the best setting
of the difference threshold at 0.013, the training error is raised
from 0.0466 to 0.0528 (or a 13.3% increase), and the testing
error for the 20 evaluation image frames increases from 0.0378
to 0.0436 (or a 15.3% increase). Hence, the benefit of incorpo-
rating the optical flow value is obvious.

About the three parameters, 7%, § and N, used in our method,
only N needs to be determined manually. Indeed, the exper-
imental results demonstrate that the algorithm is robust to
different parameter settings, and can handle lighting variations.
Overall, our system is shown to be useful and practical for
real-time tracking applications. For the future work, we are now
extending the system to accommodate a pan/tilt/zoom camera.
Such a modification would lead to a more challenging problem
of simultaneous estimations of several initial background
models.

APPENDIX

Described below are the derivations of the MAP formula-
tion (2) in Section II-A. For easy explanation, the derivations
are decomposed into six parts, which are classifier training, it-
erative formulation, posterior probability decomposition, like-
lihood probability decomposition, background block classifica-
tion, and the final MAP formulation.

1) Classifier Training: To begin with, a MAP clas-
sifier derived from the training data D 1is defined by
[ = argmax,P(f|D) = argmax;P(f|X,Y). It can
be interpreted as a supervised learning process to train an
optimal classifier f* from the training data D = {X,Y}.
With the definition of f*, we can start to derive the following
equations to estimate a background model:

P(B,|1,,D)
P(B;|1.,D, f)p(f |1, D) df

P(Bt |L;, f)p(f| D) df
P(By |1, f*)

Il
——

Q

where P(f | D) is assumed to peak at the optimal classifier f*
(e.g., see [32, pp. 474-476]).

2) Iterative Formulation: To develop an iterative form for
estimating a background model, we first define

By

argmax P(Bt |T¢, f*)
B,
and
B | = argmaxP(Bt_1 | L1, f7).
Bi_1
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Fig.9. Testsequence B for lighting variations. (a)—(d) Due to overcast clouds, the outdoor lightings over the road change significantly throughout the sequence. As
aresult, the quality of background models yielded by the mixture of Gaussians is considerably affected. However, our formulation is more robust to such lighting
perturbations. (e)—(f) Two derived background models at ¢* = 475 are enlarged and enhanced in contrast. False textures and extra noises can be observed in the
road areas of (e). (a) BO08, (b) B165, (c) B260, (d) B396, (e) Mixture of Gaussians, and (f) MAP.

Then we have

P(By |1, ) ~ ~ )
= > (P(Bi|L. f*, Bi_1)P(Biy | I, f*))
B4
= Z (P(Bt|1t,271t—27f*7ét—l)
Bi_y

x P(By—1| X1, 1y, f7))
(The image frames I, ¢ are used later to compute

feature vectors for classification.)

= Z (P(Bt |Li.e, f*7Bt—1)P(Bt—1 [L—1, f7))
B,y
P(By|Le, 5, B;_y)

Q

where, similarly, P(Bt_l |T;—1, f*) is assumed to peak at

3) Posterior Probability Decomposition: Using Bayes’ rule,
we decompose P(By | I, f*, Bf_;) into a product of an image
likelihood term and a prior.

P(By|Ye, f*, BYy)
= P(Bt IIt, e ,It—Z-{—l) f*7B:—1)
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Fig. 10. Current image frame I; and the derived background model Bt* are plotted together, top and bottom, respectively. Some tracking results are also shown in
the I;s: (a) C050, (b) C295, (g) DIV, (h) D146 (c) C4T0(¢* = 470), (d) C501, (i) D243(¢* = 243), (j) D338 (e) C535, (f) C549, (k) D373, and (1) D610.

x P(I; |Bt, Licq,...,li—p41, By 4, f7) prior probability which is used to measure the global consis-
x P( B, ARV A Bt*—l) tency over image block*s. :FEat is, we §imp~lify the prior term

_p( |B I I ) from P(By |T;—1 -1, f*,B}_;) to P(B; | B{_,).

=P =11 Bt 4) Likelihood Probability Decomposition: Applying the as-

x P (Bt | L10-1,f7, B:—l) sumption of blockwise independencies, the likelihood term can
= P(I, |]_'§t7 Tio1-1, B:—u ) p(Bt | B;‘_l) ) be further decomposed as follows:
image l;ielihood p;iror

P(I;| Be,Yy_10-1,B" 4, f*
Because the classifier f* is used to perform blockwise (local) (Ie| Be,Lve-1, Biy, f7)

n
class1ﬁ§at10ns, and I;_; .y are those 1mag.e frames used in _ HP (b; |5, ;—1,8—17 b, f*)
computing feature values, both of them are eliminated from the i
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n

o<H( (bz|br 1,0—1>

i=1

by, f)
i s))
:ﬁ( P (B 1bi 1B, f7)
)
:HP b [ bi 1o 1) HP(bZ|bM, S

ocHP(bL|bM, )

The term  P(b;|bj_, , 4, bii,, f*) is reduced to
P(bi|bi_, , ), because b7 is the ith block of frame I; from
an arbitrary online image stream, and it should be independent
from our choice of a classifier f* and what the ith block of a
background model is at time ¢t — 1, i.e., B;”_l

5) Background Block Classification: To utilize background
block classification in estimating a background model, we have

P (511 £7)
P (5; | b, Nfil) , if b} is classified as background by f*
L)

Then we derive the decomposition for the image likelihood

P(I;| Be,Tim1,-1, Bi_y. )

« [P (B;‘|b;’, )HP (bL b )
it

where it = {i|b! is a background block} and i~ = {1,...,

n} —iat.

6) The Final MAP Formulation: With all these derivations,
we arrive at the following MAP optimization

HP(BW;, )HP(H )

P(B:|Bi_)

X P(Eﬂbzl ifl,éfh

x P (b;|bi

otherwise.

B} = argmax
By
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